Science.gov

Sample records for alaska lists stations

  1. Species List of Alaskan Birds, Mammals, Fish, Amphibians, Reptiles, and Invertebrates. Alaska Region Report Number 82.

    ERIC Educational Resources Information Center

    Taylor, Tamra Faris

    This publication contains a detailed list of the birds, mammals, fish, amphibians, reptiles, and invertebrates found in Alaska. Part I lists the species by geographical regions. Part II lists the species by the ecological regions of the state. (CO)

  2. 47 CFR 80.133 - Private coast stations using facsimile in Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Private coast stations using facsimile in... Procedures-Private Coast Stations § 80.133 Private coast stations using facsimile in Alaska. Facsimile techniques may be implemented in accordance with the following paragraphs. (a) Private coast stations...

  3. 47 CFR 80.133 - Private coast stations using facsimile in Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Private coast stations using facsimile in... Procedures-Private Coast Stations § 80.133 Private coast stations using facsimile in Alaska. Facsimile techniques may be implemented in accordance with the following paragraphs. (a) Private coast stations...

  4. 47 CFR 80.133 - Private coast stations using facsimile in Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Private coast stations using facsimile in... Procedures-Private Coast Stations § 80.133 Private coast stations using facsimile in Alaska. Facsimile techniques may be implemented in accordance with the following paragraphs. (a) Private coast stations...

  5. 47 CFR 80.133 - Private coast stations using facsimile in Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Private coast stations using facsimile in... Procedures-Private Coast Stations § 80.133 Private coast stations using facsimile in Alaska. Facsimile techniques may be implemented in accordance with the following paragraphs. (a) Private coast stations...

  6. 47 CFR 80.133 - Private coast stations using facsimile in Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Private coast stations using facsimile in... Procedures-Private Coast Stations § 80.133 Private coast stations using facsimile in Alaska. Facsimile techniques may be implemented in accordance with the following paragraphs. (a) Private coast stations...

  7. 50 CFR Table I to Part 36 - Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL WILDLIFE REFUGES Pt. 36, Table I Table I to Part 36—Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act... National Wildlife Refuges established by the Alaska Lands Act....

  8. 50 CFR Table I to Part 36 - Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL WILDLIFE REFUGES Pt. 36, Table I Table I to Part 36—Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act... National Wildlife Refuges established by the Alaska Lands Act....

  9. 50 CFR Table I to Part 36 - Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL WILDLIFE REFUGES Pt. 36, Table I Table I to Part 36—Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act... National Wildlife Refuges established by the Alaska Lands Act....

  10. 50 CFR Table I to Part 36 - Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL WILDLIFE REFUGES Pt. 36, Table I Table I to Part 36—Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act... National Wildlife Refuges established by the Alaska Lands Act....

  11. Baseline Environmental Monitoring Program at Toolik Field Station, Alaska

    NASA Astrophysics Data System (ADS)

    Kade, A.; Bret-Harte, M. S.

    2011-12-01

    The Environmental Data Center at the Toolik Field Station, Alaska established a baseline environmental monitoring program in 2007 to provide a long-term record of key biotic and abiotic variables to the scientific community. We maintain a weather station for a long-term climate record at the field station and monitor the timing of key plant phenological events, bird migration and mammal sightings. With regards to plant phenology, we record event dates such as emergence of first leaves, open flowers and seed dispersal for twelve select species typical of the moist acidic tundra, following the ITEX plant phenology protocol. From 2007 to 2011, we observed earlier emergence of first leaves by approximately one week for species such as the dwarf birch Betula nana, sedge Carex bigelowii and evergreen lingonberry Vaccinium vitis-idaea, while seed dispersal for some of these species was delayed by more than two weeks. We also monitor the arrival and departure dates of thirty bird species common to the Toolik area. Yearlong residents included species such as the common raven, rock and willow ptarmigan, and some migrants such as yellow-billed loons and American tree sparrows could be detected for about four months at Toolik, while long-distance traveling arctic terns stayed only two months during the summer. The timing of bird migration dates did not show any clear trends over the past five years for most species. For the past two decades, we recorded climate data such as air, soil and lake temperature, radiation, wind speed and direction, relative humidity and barometric pressure. During this time period, monthly mean air temperatures varied from -31.7 to -12.8 °C in January and from 8.3 to 13.1 °C in July, with no trend over time. Our baseline data on plant phenological changes, timing of bird migration and climate variables are valuable in the light of long-term environmental monitoring efforts as they provide the context for other seasonality projects that are

  12. MSFC Space Station Program Commonly Used Acronyms and Abbreviations Listing

    NASA Technical Reports Server (NTRS)

    Gates, Thomas G.

    1988-01-01

    The Marshall Space Flight Center maintains an active history program to assure that the foundation of the Center's history is captured and preserved for current and future generations. As part of that overall effort, the Center began a project in 1987 to capture historical information and documentation on the Marshall Center's roles regarding Space Shuttle and Space Station. This document is MSFC Space Station Program Commonly Used Acronyms and Abbreviations Listing. It contains acronyms and abbreviations used in Space Station documentation and in the Historian Annotated Bibliography of Space Station Program. The information may be used by the researcher as a reference tool.

  13. Cost-Benefit Analysis of Permanent Change of Duty Station (PCS) Modes of Travel for Moves to Alaska

    DTIC Science & Technology

    2013-12-01

    ANALYSIS OF PERMANENT CHANGE OF DUTY STATION (PCS) MODES OF TRAVEL FOR MOVES TO ALASKA by Mohamed B. Massaquoi December 2013 Thesis Advisor...PCS) MODES OF TRAVEL FOR MOVES TO ALASKA 5. FUNDING NUMBERS 6. AUTHOR(S) Mohamed B. Massaquoi 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...words) This research examines whether permanent change of station (PCS) travel by privately owned vehicle (POV) to Alaska is to the government’s

  14. Principal facts for 408 gravity stations in the vicinity of the Talkeetna Mountains, south-central Alaska

    USGS Publications Warehouse

    Morin, Robert L.; Glen, Jonathan M.G.

    2003-01-01

    Gravity data were collected between 1999 and 2002 along transects in the Talkeetna Mountains of south-central Alaska as part of a geological and geophysical study of the framework geology of the region. The study area lies between 61° 30’ and 63° 45’ N. latitude and 145° and 151° W. longitude. This data set includes 408 gravity stations. These data, combined with the pre-existing 3,286 stations, brings the total data in this area to 3,694 gravity stations. Principal facts for the 408 new gravity stations and the 15 gravity base stations used for control are listed in this report. During the summer of 1999, a gravity survey was conducted in the western Talkeetna Mountains. Measurements at 55 gravity stations were made. One gravity base station was used for control for this survey. This base station, STEP, is located at the Stephan Lake Lodge on Stephan Lake. The observed gravity of this station was calculated based on an indirect tie to base station ANCL in Anchorage. The temporary base used to tie between STEP and ANCL was REGL in Anchorage. During the summer of 2000, a gravity survey was conducted in the western Talkeetna Mountains. Measurements at 56 gravity stations were made. One gravity base station was used for control for this survey. This base station, GRHS, is located at the Gracious House Lodge on the Denali Highway. The observed gravity of this station was calculated based on multiple ties to base stations D87, and D57 along the Denali Highway. During the summer of 2001, a gravity survey was conducted in the western Talkeetna Mountains. Measurements at 90 gravity stations were made. One gravity base station was used for control for this survey. This base station, HLML, is located at the High Lake Lodge. The observed gravity of this station was calculated based on multiple ties to base stations ANCU in Anchorage, PALH in Palmer, WASA in Wasilla, and TLKM in Talkeetna. Also during the summer of 2001, a gravity survey was conducted in the vicinity

  15. 77 FR 18869 - Cable Statutory License: Specialty Station List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... Commission's (``FCC'') definition of specialty station in effect on June 24, 1981. The list shall be used to... INFORMATION: Under the cable statutory license, 17 U.S.C. 111, a cable operator may retransmit the signal of a... status. It was the Office's intention at that time that the notice, publication, and objection...

  16. Ice Accumulation and the Apparent Seasonal Variation of GPS Stations in Alaska

    NASA Astrophysics Data System (ADS)

    Kochanski, K.; Herring, T.

    2015-12-01

    Many GPS stations in Alaska have apparent seasonal variations with amplitudes between 5 and 10mm. This motion is usually in phase with regional snowfall and has been attributed to hydrological loading (Fu et al. 2012). We studied the phase of vertical seasonal motion for fifty stations in the PBO network across Alaska and Washington State and found six stations which move two to four months out of phase with snowfall with amplitudes greater than 4mm. The mean date at which stations' seasonal movement reached peak height was October 21 with a standard deviation of 49.7 days. 59% of this variation is created by the six stations with phases furthest from the mean. These stations are also distinguished by discontinuous winter movements, including jumps of more than 10mm/day, and they have the six most asymmetric time-series in the study. Three of these stations, AB11, AB12, and AB14, are local high points on Alaska's west coast. These locations have high wind speeds and humidity and we expect that in freezing conditions they accumulate thick frost and rime. This hypothesis is supported by multipath values at the sites, which show increased signal scattering during the winter. We modelled signal delays for partially ice-covered GPS stations, and predicted that asymmetric horizontal ice growth will cause apparent vertical motion of GPS stations with a magnitude determined by ice thickness and orientation. Rime grows horizontally into the wind, so we estimated rime directions using wind records from nearby airports. We compared these results to our simulation, and predicted upwards apparent motion for the stations that was consistent with the stations' observed winter movement. The apparent vertical seasonal motion of these stations is not caused by loads but is an artefact of signal delay from ice accumulation.

  17. 47 CFR 80.108 - Transmission of traffic lists by coast stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Transmission of traffic lists by coast stations... Procedures-Land Stations § 80.108 Transmission of traffic lists by coast stations. (a) Each coast station is... working hours of the coast station. (2) In the case of radiotelephony, at least one hour and not more...

  18. 47 CFR 80.108 - Transmission of traffic lists by coast stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Transmission of traffic lists by coast stations... Procedures-Land Stations § 80.108 Transmission of traffic lists by coast stations. (a) Each coast station is... working hours of the coast station. (2) In the case of radiotelephony, at least one hour and not more...

  19. 47 CFR 80.108 - Transmission of traffic lists by coast stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Transmission of traffic lists by coast stations... Procedures-Land Stations § 80.108 Transmission of traffic lists by coast stations. (a) Each coast station is... working hours of the coast station. (2) In the case of radiotelephony, at least one hour and not more...

  20. 47 CFR 80.108 - Transmission of traffic lists by coast stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Transmission of traffic lists by coast stations... Procedures-Land Stations § 80.108 Transmission of traffic lists by coast stations. (a) Each coast station is... working hours of the coast station. (2) In the case of radiotelephony, at least one hour and not more...

  1. 47 CFR 80.108 - Transmission of traffic lists by coast stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Transmission of traffic lists by coast stations... Procedures-Land Stations § 80.108 Transmission of traffic lists by coast stations. (a) Each coast station is... working hours of the coast station. (2) In the case of radiotelephony, at least one hour and not more...

  2. Science program for an imaging radar receiving station in Alaska. Report of the science working group

    NASA Astrophysics Data System (ADS)

    1983-12-01

    It is argued that there would be broad scientific benefit in establishing in Alaska an imaging radar receiving station that would collect data from the European Space Agency's Remote Sensing Satellite, ERS-1. This station would acquire imagery of the ice cover from the American territorial waters of the Beaufort, Chukchi, and Bering Seas. This station, in conjunction with similar stations proposed for Kiruna, Sweden, and Prince Albert, Canada would provide synoptic coverage of nearly the entire Arctic. The value of such coverage to aspects of oceanography, geology, glaciology, and botany is considered.

  3. Science program for an imaging radar receiving station in Alaska. Report of the science working group

    NASA Technical Reports Server (NTRS)

    1983-01-01

    It is argued that there would be broad scientific benefit in establishing in Alaska an imaging radar receiving station that would collect data from the European Space Agency's Remote Sensing Satellite, ERS-1. This station would acquire imagery of the ice cover from the American territorial waters of the Beaufort, Chukchi, and Bering Seas. This station, in conjunction with similar stations proposed for Kiruna, Sweden, and Prince Albert, Canada would provide synoptic coverage of nearly the entire Arctic. The value of such coverage to aspects of oceanography, geology, glaciology, and botany is considered.

  4. Bioventing Field Initiative at Galena and Campion Air Force Stations, Alaska

    DTIC Science & Technology

    2007-11-02

    This report describes the activities conducted at Galena Air Force Station (AFS) and Campion AFS, Alaska, as part of the Bioventing Field Initiative...air permeability test, in situ respiration tests, and installation of bioventing systems. The specific objectives of this Bioventing Field Initiative

  5. Installation Restoration Program Records Search for Alaska DEW Line Stations

    DTIC Science & Technology

    1982-06-01

    full service and logistics support for its sector; (2) the Auxiliary station consisting of one 25-module train, equipped with rotating radar and self ...mmear 70 Sompsse modeate que5aftw of besuleeem mintem -VN 1 ienire "aciinsaee at bassezime, ’ estee 16 Sooreem lagge qwuaAt~sei of hases ome ’ea u to

  6. 50 CFR Table I to Part 36 - Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Summary Listing the National Wildlife... Part 36 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL WILDLIFE REFUGES Pt. 36, Table I Table I...

  7. 76 FR 5213 - Cable Compulsory License: Specialty Station List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... affidavits to the Copyright Office stating that the programming of their stations meets the requirements... television broadcast station that generally carries foreign-language, religious, and/or automated programming... sworn affidavit attesting that the station's programming comports with the 1981 FCC definition,...

  8. 76 FR 22733 - Cable Statutory License: Specialty Station List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... broadcast station that generally carries foreign- language, religious, and/or automated programming in one... that the station's programming comports with the 1981 FCC definition, and hence, qualifies it as a... valid agent of the owner, to file a sworn affidavit stating that the station's programming satisfies...

  9. Solar radiation observation stations with complete listing of data archived by the National Climatic Center, Asheville, North Carolina and initial listing of data not currently archived

    NASA Technical Reports Server (NTRS)

    Carter, E. A.; Wells, R. E.; Williams, B. B.; Christensen, D. L.

    1976-01-01

    A listing is provided of organizations taking solar radiation data, the 166 stations where observations are made, the type of equipment used, the form of the recorded data, and the period of operation of each station. Included is a listing of the data from 150 solar radiation stations collected over the past 25 years and stored by the National Climatic Center.

  10. 78 FR 4377 - Annual List of Newspapers To Be Used by the Alaska Region for Publication of Legal Notices of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... Region will use to publish legal notices of the opportunity to object to proposed hazardous fuel... allowing them to receive constructive notice of the proposed actions, to provide clear evidence of timely... notice provides the list of newspapers that Responsible Officials in the Alaska Region will use to...

  11. 76 FR 56362 - Removal of Approved Non-U.S.-Licensed Space Stations From the Section 214 Exclusion List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... COMMISSION 47 CFR Part 63 Removal of Approved Non-U.S.-Licensed Space Stations From the Section 214 Exclusion... remove from the Section 214 Exclusion List those non-U.S.-licensed space stations that have been allowed... from the Section 214 Exclusion List those non-U.S.-licensed space stations that have been allowed...

  12. 76 FR 72982 - Cable Statutory License: Specialty Station List; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... November 8, 2011. FOR FURTHER INFORMATION CONTACT: Ben Golant, Assistant General Counsel, Copyright GC/I&R... programming broadcast should not be identified as specialty stations) Dated: November 21, 2011. Maria...

  13. Alaska

    SciTech Connect

    Jones, B.C.; Sears, D.W.

    1981-10-01

    Twenty-five exploratory wells were drilled in Alaska in 1980. Five oil or gas discovery wells were drilled on the North Slope. One hundred and seventeen development and service wells were drilled and completed, primarily in the Prudhoe Bay and Kuparuk River fields on the North Slope. Geologic-geophysical field activity consisted of 115.74 crew months, an increase of almost 50% compared to 1979. These increases affected most of the major basins of the state as industry stepped up preparations for future lease sales. Federal acreage under lease increased slightly, while state lease acreage showed a slight decline. The year's oil production showed a increase of 16%, while gas production was down slightly. The federal land freeze in Alaska showed signs of thawing, as the US Department of Interior asked industry to identify areas of interest onshore for possible future leasing. National Petroleum Reserve in Alaska was opened to private exploration, and petroleum potential of the Arctic Wildlife Refuge will be studied. One outer continental shelf lease sale was held in the eastern Gulf of Alaska, and a series of state and federal lease sales were announced for the next 5 years. 5 figures, 5 tables.

  14. Installation-Restoration Program Preliminary Assessment, Granite Mountain Radio Relay Station, Alaska

    SciTech Connect

    Not Available

    1989-04-01

    The Hazardous Materials Technical Center (HMTC) was retained in January 1988 to conduct the Installation-Restoration Program (IRP) Preliminary Assessment of Granite Mountain Radio Relay Station (RRS), Alaska; DoD policy is to identify and fully evaluate suspected problems associated with past hazardous material disposal sites on DoD facilities, control the migration of hazardous contamination from such facilities, and control hazards to health and welfare that may have resulted from these past operations. The major operations of the installation that used and diposed of hazardous materials/hazardous waste (HM/HW) included management of fuel and electrical equipment, maintenance of the facility and vehicles, and use of asbestos as a construction material. Based on information obtained through interviews with Air Force personnel and review of installation records, hazardous materials were used at Granite Mountain RRS while the facility was in operation. Although no evidence of contamination was visible at the time of the site visit, it was common practice at similar facilities to bury drums and waste liquids and these wastes may be present in the solid-waste landfill at the RRS. In addition, asbestos may remain within the buildings.

  15. 76 FR 69288 - Cable Statutory License: Specialty Station List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ..., Cleveland, OH. ABC and Fox affiliates offering syndicated programming throughout the day in English should... Communications Commission with respect to the retransmission of English-speaking stations in Puerto Rico. See, e..., Reynosa, Tamaulipas, Mexico. XHAB-TV, Matamoros, Tamaulipas, Mexico. Dated: November 2, 2011. Maria...

  16. Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Though it's not quite spring, waters in the Gulf of Alaska (right) appear to be blooming with plant life in this true-color MODIS image from March 4, 2002. East of the Alaska Peninsula (bottom center), blue-green swirls surround Kodiak Island. These colors are the result of light reflecting off chlorophyll and other pigments in tiny marine plants called phytoplankton. The bloom extends southward and clear dividing line can be seen west to east, where the bloom disappears over the deeper waters of the Aleutian Trench. North in Cook Inlet, large amounts of red clay sediment are turning the water brown. To the east, more colorful swirls stretch out from Prince William Sound, and may be a mixture of clay sediment from the Copper River and phytoplankton. Arcing across the top left of the image, the snow-covered Brooks Range towers over Alaska's North Slope. Frozen rivers trace white ribbons across the winter landscape. The mighty Yukon River traverses the entire state, beginning at the right edge of the image (a little way down from the top) running all the way over to the Bering Sea, still locked in ice. In the high-resolution image, the circular, snow-filled calderas of two volcanoes are apparent along the Alaska Peninsula. In Bristol Bay (to the west of the Peninsula) and in a couple of the semi-clear areas in the Bering Sea, it appears that there may be an ice algae bloom along the sharp ice edge (see high resolution image for better details). Ground-based observations from the area have revealed that an under-ice bloom often starts as early as February in this region and then seeds the more typical spring bloom later in the season.

  17. Field investigation source area ST58 old Quartermaster service station, Eielson Air Force Base, Alaska

    SciTech Connect

    Liikala, T.L.; Evans, J.C.

    1995-01-01

    Source area ST58 is the site of the old Quartermaster service station at Eielson Air Force Base, Alaska. The source area is one of several Source Evaluation Report sites being investigated by Pacific Northwest Laboratory for the US Air Force as candidates for no further remedial action, interim removal action, or a remedial investigation/feasibility study under a Federal Facilities Agreement. The purpose of this work was to characterize source area ST58 and excavate the most contaminated soils for use in composting treatability studies. A field investigation was conducted to determine the nature and extent of soil contamination. The field investigation entailed a records search; grid node location, surface geophysical, and soil gas surveys; and test pit soil sampling. Soil excavation followed based on the results of the field investigation. The site was backfilled with clean soil. Results from this work indicate close spatial correlation between screening instruments, used during the field investigation and soil excavation, and laboratory analyses. Gasoline was identified as the main subsurface contaminant based on the soil gas surveys and test pit soil sampling. A center of contamination was located near the northcentral portion of the source area, and a center was located in the northwestern comer. The contamination typically occurred near or below a former soil horizon probably as a result of surface spills and leaks from discontinuities and/or breaks in the underground piping. Piping locations were delineated during the surface geophysical surveys and corresponded very well to unscaled drawings of the site. The high subsurface concentrations of gasoline detected in the northwestern comer of the source area probably reflect ground-water contamination and/or possibly floating product.

  18. 78 FR 24666 - Updates to the List of Plant Inspection Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... Animal and Plant Health Inspection Service 7 CFR Part 319 Updates to the List of Plant Inspection Stations AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Final rule. SUMMARY: We are amending the regulations governing the importation of plants for planting to remove the entries for...

  19. An Annotated List of Marine Stations Suitable for Field Courses in Carbonate Geology and Tropical Marine Sciences.

    ERIC Educational Resources Information Center

    Kaplan, Eugene H.

    1980-01-01

    Listed are field stations in the Caribbean and Florida-Bahamas which are suitable for classes in field geology and tropical marine science. Each field station is described by listing the name of the institution, description of accommodations, library facilities, laboratory facilities, boats, classrooms, motor vehicles, study areas, scuba, and…

  20. 47 CFR 0.434 - Data bases and lists of authorized broadcast stations and pending broadcast applications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Data bases and lists of authorized broadcast... Commission § 0.434 Data bases and lists of authorized broadcast stations and pending broadcast applications. Periodically the FCC makes available copies of its data bases and lists containing information about...

  1. 47 CFR 0.434 - Data bases and lists of authorized broadcast stations and pending broadcast applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Data bases and lists of authorized broadcast... Commission § 0.434 Data bases and lists of authorized broadcast stations and pending broadcast applications. Periodically the FCC makes available copies of its data bases and lists containing information about...

  2. 47 CFR 0.434 - Data bases and lists of authorized broadcast stations and pending broadcast applications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Data bases and lists of authorized broadcast... Commission § 0.434 Data bases and lists of authorized broadcast stations and pending broadcast applications. Periodically the FCC makes available copies of its data bases and lists containing information about...

  3. 47 CFR 0.434 - Data bases and lists of authorized broadcast stations and pending broadcast applications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Data bases and lists of authorized broadcast... Commission § 0.434 Data bases and lists of authorized broadcast stations and pending broadcast applications. Periodically the FCC makes available copies of its data bases and lists containing information about...

  4. Single-station characterization of seismic events during the 2009 eruption of Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Power, J. A.; Ketner, D. M.

    2011-12-01

    To characterize the type and progression of seismic events throughout the 2009 eruption of Redoubt Volcano, Alaska, we use a short-term/long-term average detection algorithm to identify more than 126,000 seismic events between January 1 and June 30, 2009. This analysis was performed at station REF, a short-period seismometer, located on the Redoubt volcanic edifice. Calculated hypocenters suggest most of the detected events occurred at shallow depth within 1 to 3 km of the summit crater floor. Once events were identified we calculated the duration, inter-event time, event rate, peak amplitude, peak-to-peak amplitude, root-mean-square (RMS) amplitude, peak frequency, center frequency, frequency index, and earthquake spectral amplitude (ESAM) for each event. We also use a cross correlation technique to identify event families or multiplets that occurred within this suite of selected events. A total of eight swarms were identified with event rates exceeding 100 events per hour. Swarms between March 20 and April 4 were manually repicked, and the May 2 - 10 swarm was repicked using a correlation detection scheme. Multiplet analysis revealed a total of 149 event families throughout the study period. The first two swarms occurred in late January and were associated high amplitude, low frequency spasmodic tremor. Six more swarms occurred on February 26-27, March 20-23, March 27, March 29, April 2-4, and May 2-10. Swarms on March 20-23, March 27, and April 2-4 immediately preceded explosions. The swarm on March 20-23 was uniquely heterogeneous containing 21 separate families with a wide range of amplitudes and spectral content. This swarm took place while new magma was first observed to be forming a dome within the Redoubt crater. Swarms preceding explosions on March 27 and April 2-4, as well as swarms on March 29 and May 2-10, that did not preceded explosions, contained events that were more homogenous in waveform character and were often composed of a single event family

  5. Work Plan, Galena Airport and Kalakaket Radio Relay Station, Alaska. Addendum

    DTIC Science & Technology

    1994-09-08

    Federal Regulations (CFR), Chapter I and V, Protection of Environment. ad Air Force Regulations (AFR) 19-1, " Pollution Abatement and Environmental...Quality," 9 Jan 78. ae) AFR 19-2, "Environmental Impact Analysis Process (EIAP)," 23 Sep 81. af) AFR 19-6, " Air Pollution Control Systems for Boilers and...United States Air Force "-- 611th Civil Engineer O • Squadron Elmendorf AFB, Alaska Final Addendum to the Work Plan Galena Airport and Kalakaket

  6. 47 CFR 0.434 - Data bases and lists of authorized broadcast stations and pending broadcast applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Data bases and lists of authorized broadcast stations and pending broadcast applications. 0.434 Section 0.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION General Information Lists Containing Information Compiled by the Commission § 0.434 Data bases...

  7. 7 CFR 3300.91 - List of approved testing stations, approved testing laboratories, and fees for certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CARRIAGE OF PERISHABLE FOODSTUFFS AND ON THE SPECIAL EQUIPMENT TO BE USED FOR SUCH CARRIAGE (ATP... testing stations, approved testing laboratories, and fees for certificates. A current list of U.S. ATP testing stations, U.S. ATP testing laboratories, and fees for issuance of U.S. ATP certificates may...

  8. Community Relations Plan: Galena Airport and Campion Air Force Station, Alaska

    DTIC Science & Technology

    1994-11-11

    CERCLA ) of 1980, as Restoration Account (DERA) is the fund amended by the Superfund Amendments DOD uses to comply with the investigation and...Reauthorization Act (SARA) of 1986. and cleanup requirements of the Superfund program. 1.1 The CERCLA Remedial After a site is listed on the NPL, Process the...activities by the EPA, under direction of the Comnprehensive Erwiromraal Response, Comnpensation. and UaLlty- Act ( CERCLA ) of 1980, as amended by the

  9. Near-field ground motion of the 2002 Denali fault, Alaska, earthquake recorded at pump station 10

    USGS Publications Warehouse

    Ellsworth, W.L.; Celebi, M.; Evans, J.R.; Jensen, E.G.; Kayen, R.; Metz, M.C.; Nyman, D.J.; Roddick, J.W.; Spudich, P.; Stephens, C.D.

    2004-01-01

    A free-field recording of the Denali fault earthquake was obtained by the Alyeska Pipeline Service Company 3 km from the surface rupture of the Denali fault. The instrument, part of the monitoring and control system for the trans-Alaska pipeline, was located at Pump Station 10, approximately 85 km east of the epicenter. After correction for the measured instrument response, we recover a seismogram that includes a permanent displacement of 3.0 m. The recorded ground motion has relatively low peak acceleration (0.36 g) and very high peak velocity (180 cm/s). Nonlinear soil response may have reduced the peak acceleration to this 0.36 g value. Accelerations in excess of 0.1 g lasted for 10 s, with the most intense motion occurring during a 1.5-s interval when the rupture passed the site. The low acceleration and high velocity observed near the fault in this earthquake agree with observations from other recent large-magnitude earthquakes. ?? 2004, Earthquake Engineering Research Institute.

  10. Environmental Assessment for Clear AFS Grid Tie-in and Heat Plant, Clear Air Force Station, Alaska

    DTIC Science & Technology

    2013-07-01

    Alaska Administrative Code AAAQS Alaska ambient air quality standards ACM asbestos -containing material ADEC Alaska Department of Environmental...maintenance activities. While asbestos or lead based paint may be encountered during the expansion of the existing mechanical rooms and within the...AFS July 2013 13 products. All work would be done in compliance with Federal and State regulations as well as the OSHA Asbestos Standard (29 CFR

  11. Sandia National Laboratories land use permit for operations at Oliktok Alaska Long Range Radar Station.

    SciTech Connect

    Catechis, Christopher Spyros

    2013-02-01

    The property subject to this Environmental Baseline Survey (EBS) is located at the Oliktok Long Range Radar Station (LRRS). The Oliktok LRRS is located at 70À 30 W latitude, 149À 53 W longitude. It is situated at Oliktok Point on the shore of the Beaufort Sea, east of the Colville River. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  12. Alaska geothermal bibliography

    SciTech Connect

    Liss, S.A.; Motyka, R.J.; Nye, C.J.

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  13. Instructional Materials Available from Agricultural Education Teaching Materials Center, College Station, Texas. Price List No. 1.

    ERIC Educational Resources Information Center

    Agricultural Education Teaching Materials Center, College Station, TX.

    Price lists and order forms are provided for courses of study, lesson plans, and laboratory exercises for vocational agriculture cooperative education and preemployment laboratory training. Courses of study and required references are listed for training employees for: (1) milk, meat, and poultry processing, (2) poultry hatcheries, (3) dairy…

  14. 75 FR 33575 - List of Newspapers To Be Used by the Alaska Region for Publication of Legal Notices of Decisions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... the newspapers that Forests and the Regional Office of the Alaska Region will use to publish legal... decision, to provide clear evidence of timely notice, and to achieve consistency in administering the... Region will use to give notice of decisions subject to appeal. The timeframe for appeal under...

  15. 78 FR 4378 - Annual List of Newspapers To Be Used by the Alaska Region for Publication of Legal Notices of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... Ranger Districts, Forests, and the Regional Office of the Alaska Region will use to publish legal... proposed action, to provide clear evidence of timely notice, and to achieve consistency in administering... Region will use to give notice of decisions subject to notice, comment, and appeal under 36 CFR Part...

  16. 75 FR 32737 - Annual List of Newspapers To Be Used by the Alaska Region for Publication of Legal Notices of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ... Districts, Forests, and the Regional Office of the Alaska Region will use to publish legal notice of all... provide clear evidence of timely notice, and to achieve consistency in administering the appeals process... use to give notice of decisions subject to notice, comment, and appeal under 36 CFR part 215....

  17. Catalog of seismograph stations operated in support of the ERDA Nevada Operations Office, January 1964 thru June 1976

    USGS Publications Warehouse

    Navarro, R.; Wuollet, Geraldine M.; Bradley, B.R.

    1977-01-01

    The seismograph stations listed in this catalog were established over the period January 1964 through June 1976 in support of the Energy Research and Development Administration, Nevada (ERDA/NV) underground weapons testing program at the Nevada Test Site (NTS), central Nevada, and Amchitka, Alaska. For station listings before 1964 see Coast and Geodetic Survey publication, "Seismic Data Summary Nuclear Detonation Program 1961 through 1963", by W. V. Mickey and T. R. Shugart, January 1964. Coordinates of stations instrumented for ERDA's Industrial Application Division (IAD, Plowshare) events are published in separate reports (Appendix A, page 66). In addition to the stations for monitoring the testing program, other stations established for specific seismicity studies, such as the Aleutian Seismicity Network, are also listed.

  18. Geologic studies in Alaska by the U.S. Geological Survey, 1993

    USGS Publications Warehouse

    Till, Alison B.; Moore, Thomas E.

    1994-01-01

    This collection of 19 papers continues the annual series of U.S. Geological Survey reports on geologic investigations in Alaska. Contributions include 14 Articles and 5 shorter Geologic Notes that report results from all corners of the State.USGS activities in Alaska cover a broad spectrum of earth science topics, including the environment, hazards, resources, and geologic framework studies. Three articles focus on the environmental geochemistry of parts of south-central, west-central, and southwestern Alaska. An article on methane released from permafrost near Fairbanks and a note on paleowind direction indicators on the Arctic coastal plain contribute to ongoing climate and paleoclimate investigations. Landslide hazards in the Talkeetna Mountains and Wrangell-St. Elias National Park are discussed in two notes. Possible active fault traces near Alaska's main population center are described in an article on the Castle Mountain fault. An article on Aniakchak volcano presents evidence for a previously unrecognized catastrophic flooding event. Resources and resource assessment on gold, base metals, and coal are discussed in several articles and a note. Geologic framework studies cover tectonics, paleontology, stratigraphy, and metamorphic petrology. One contribution involves field methods; it evaluates the relative accuracy of global positioning systems and topographic map-based methods for deriving location data for field stations.Two bibliographies at the end of the volume list reports about Alaska in USGS publications released in 1993 and reports about Alaska by USGS authors in non-USGS publications in 1993.

  19. EarthScope's Transportable Array in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Enders, M.; Miner, J.; Bierma, R. M.; Busby, R.

    2015-12-01

    EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. As the array doubles in Alaska, IRIS continues to collaborate closely with other network operators, universities and research consortia in Alaska and Canada including the Alaska Earthquake Center (AEC), the Alaska Volcano Observatory (AVO), the UNAVCO Plate Boundary Observatory (PBO), the National Tsunami Warning Center (NTWC), Natural Resources Canada (NRCAN), Canadian Hazard Information Service (CHIS), the Yukon Geologic Survey (YGS), the Pacific Geoscience Center of the Geologic Survey, Yukon College and others. During FY14 and FY15 the TA has completed upgrade work at 20 Alaska Earthquake Center stations and 2 AVO stations, TA has co-located borehole seismometers at 5 existing PBO GPS stations to augment the EarthScope observatory. We present an overview of deployment plan and the status through 2015. The performance of new Alaska TA stations including improvements to existing stations is described.

  20. Geological studies in Alaska by the U.S. Geological Survey, 1999

    USGS Publications Warehouse

    Gough, Larry P.; Wilson, Frederic H.

    2001-01-01

    Two bibliographies at the end of the volume list reports covering Alaska earth science topics in USGS publications during 1999 and reports about Alaska by USGS authors in non-USGS publications during the same period.

  1. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  2. Specification list and function structure for a full-body dynamometer to be used aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Mcmahan, Robert

    1993-01-01

    NASA has a need for a machine which can be used as an exercise device and as an instrument to measure an astronaut's muscle performance. The purpose of the exercise device is to work various muscle groups of the astronaut to prevent muscle atrophy, the loss of muscle strength and mass from prolonged exposure to a microgravity environment. The measurement part of the machine will be used to collect data on the strength and power of the astronaut's muscle groups to be used in studies examining the effects of prolonged space inhabitation. The principle device used in this machine to both exercise and measure muscle performance is the dynamometer. The dynamometer converts electrical energy to mechanical energy and mechanical energy to electrical energy or signals. The task of the designer will be to incorporate a dynamometer into a device which can meet all of the needs discussed above. This memorandum has two sections which clarify the design task of producing a full-body dynamometer. The first section is a specification list. The specification list provides the requirements that the designer must meet in his/her design. The second part is a function structure. The function structure shows graphically the flow of material, energy, and information through the machine. These two items will be used by the designer in the design process for the full-body dynamometer.

  3. Use of indigenous small mammal populations to assess a National Priority List site: A case study at Naval Air Station, Whidbey Island

    SciTech Connect

    Hummell, R.A.

    1994-12-31

    Prior disposal activities at Naval Air Station, Whidbey Island resulted in the release of heavy metals and organic chemicals into the environment resulting in the site being placed on the National Priorities List (NPL) in 1990. This presentation reports an ecotoxicological study of indigenous populations of voles on the NPL site. The study attempted to provide three endpoints: (1) exposure, (2) individual effects, (3) population effects. Exposure was quantified during the study by comparing chemical concentrations in the tissues of voles live captured on site to tissue concentrations of mammals captured at site specific reference locations. Live trapped voles were also aged according to eye lens weights. Effects exerted on individuals were evaluated based on physiological measurements of the liver, kidney, and whole body as they correlated with age and chemical concentrations. Capture-recapture techniques and age structure analyses were used to develop survivorship curves and evaluate population stability and fitness. The study provides data that can be used to support ecological risk assessments required for CIRCLE investigations.

  4. First Report of Tobacco Rattle Virus in Peony in Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2007, scattered peony (Paeonia lactiflora ‘Sarah Bernhardt’) plants cultivated on plots at the University of Alaska Experimental Station in Fairbanks, Alaska, contained distinct leaf ringspot patterns. Leaf samples from symptomatic plants were collected in early July (6 plants) and late September...

  5. Eastern Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this SeaWiFS image of eastern Alaska, the Aleutian Islands, Kodiak Island, Yukon and Tanana rivers are clearly visible. Also visible, but slightly hidden beneath the clouds, is a bloom in Bristol Bay. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  6. 77 FR 26795 - Product List Changes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... Product List Changes AGENCY: Postal Regulatory Commission. ACTION: Notice. SUMMARY: The Commission is noticing a recently-filed Postal Service request to remove Parcel Post from the market dominant product list and to add a nearly identical ``Parcel Post'' to the competitive product list. Alaska...

  7. Alaska Resource Data File, Noatak Quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.; Dumoulin, Julie A.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Noatak 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  8. Water Resources Data, Alaska, Water Year 2000

    USGS Publications Warehouse

    Meyer, D.F.; Hess, D.L.; Schellekens, M.F.; Smith, C.W.; Snyder, E.F.; Solin, G.L.

    2001-01-01

    Water-resources data for the 2000 water year for Alaska consists of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 106 gaging stations; stage or contents only at 4 gaging stations; water quality at 31 gaging stations; and water levels for 30 observation wells and 1 water-quality well. Also included are data for 47 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

  9. Birds and Wetlands of Alaska. Alaska Sea Week Curriculum Series. Alaska Sea Grant Report 88-1.

    ERIC Educational Resources Information Center

    King, James G.; King, Mary Lou

    This curriculum guide is the fourth (Series V) in a six-volume set that comprises the Sea Week Curriculum Series developed in Alaska. Twelve units contain 45 activities with worksheets that cover the following topics: (1) bird lists and field guides; (2) definitions of a bird; (3) parts of a bird; (4) bird watching; (5) bird migration; (6) wetland…

  10. Broadcasting Stations of the World; Part IV. Television Stations.

    ERIC Educational Resources Information Center

    Foreign Broadcast Information Service, Washington, DC.

    This fourth part of "Broadcasting Stations of the World", which lists all reported radio broadcasting and television stations, with the exception of those in the United States which broadcast on domestic channels, covers television stations. Two sections are provided: one indexed alphabetically by country and city, and the other indexed by…

  11. Indians, Eskimos and Aleuts of Alaska.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Washington, DC.

    Brief descriptions of the historical and cultural background of the Eskimo, Aleut, Athapascan, Tlingit, and Haida Indian groups of Alaska are presented. Further information is given concerning the educational, health, employment, and economic opportunities available to the natives today. A list is included of activities and points of interest in…

  12. University of Alaska 1997 Facilities Inventory.

    ERIC Educational Resources Information Center

    Alaska Univ., Fairbanks. Statewide Office of Institutional Research.

    This facilities inventory report presents a comprehensive listing of physical assets owned and operated by the University of Alaska and includes, for each asset, data on average age, weighted average age, gross square footage, original total project funding, and the asset's plant investment value adjusted to the current year. Facilities are listed…

  13. Alaska volcanoes guidebook for teachers

    USGS Publications Warehouse

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  14. Alaska climate divisions based on objective methods

    NASA Astrophysics Data System (ADS)

    Angeloff, H.; Bieniek, P. A.; Bhatt, U. S.; Thoman, R.; Walsh, J. E.; Daly, C.; Shulski, M.

    2010-12-01

    Alaska is vast geographically, is located at high latitudes, is surrounded on three sides by oceans and has complex topography, encompassing several climate regions. While climate zones exist, there has not been an objective analysis to identify regions of homogeneous climate. In this study we use cluster analysis on a robust set of weather observation stations in Alaska to develop climate divisions for the state. Similar procedures have been employed in the contiguous United States and other parts of the world. Our analysis, based on temperature and precipitation, yielded a set of 10 preliminary climate divisions. These divisions include an eastern and western Arctic (bounded by the Brooks Range to the south), a west coast region along the Bering Sea, and eastern and western Interior regions (bounded to the south by the Alaska Range). South of the Alaska Range there were the following divisions: an area around Cook Inlet (also including Valdez), coastal and inland areas along Bristol Bay including Kodiak and Lake Iliamna, the Aleutians, and Southeast Alaska. To validate the climate divisions based on relatively sparse station data, additional sensitivity analysis was performed. Additional clustering analysis utilizing the gridded North American Regional Reanalysis (NARR) was also conducted. In addition, the divisions were evaluated using correlation analysis. These sensitivity tests support the climate divisions based on cluster analysis.

  15. Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.

    1996-01-01

    During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).

  16. Technology and Engineering Advances Supporting EarthScope's Alaska Transportable Array

    NASA Astrophysics Data System (ADS)

    Miner, J.; Enders, M.; Busby, R.

    2015-12-01

    EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer of 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. Continued development of battery systems using LiFePO4 chemistries, integration of BGAN, Iridium, Cellular and VSAT technologies for real time data transfer, and modifications to electronic systems are a driving force for year two of the Alaska Transportable Array. Station deployment utilizes custom heliportable drills for sensor emplacement in remote regions. The autonomous station design evolution include hardening the sites for Arctic, sub-Arctic and Alpine conditions as well as the integration of rechargeable Lithium Iron Phosphate batteries with traditional AGM batteries We will present new design aspects, outcomes, and lessons learned from past and ongoing deployments, as well as efforts to integrate TA stations with other existing networks in Alaska including the Plate Boundary Observatory and the Alaska Volcano Observatory.

  17. Metalliferous lode deposits of Alaska

    USGS Publications Warehouse

    Berg, Henry C.; Cobb, Edward Huntington

    1967-01-01

    This report summarizes from repoAs of Federal and State agencies published before August 31, 1965, the geology of Alaska's metal-bearing lodes, including their structural or stratigraphic control, host rock, mode of origin, kinds of .Q minerals, grade, past production, and extent of exploration. In addition, the lists of mineral occurrences that accompany the 35 mineral-deposit location maps constitute an inventory of the State's known lodes. A total of 692 localities where m&alliferous deposits have been found are shown on the maps. The localities include 1,739 mines, prospects, and reported occurrences, of which 821 are described individually or otherwise cited in the text.

  18. Alaska's Children, 1997.

    ERIC Educational Resources Information Center

    Douglas, Dorothy, Ed.

    1997-01-01

    These four issues of the "Alaska's Children" provide information on the activities of the Alaska Head Start State Collaboration Project and other Head Start activities. Legal and policy changes affecting the education of young children in Alaska are also discussed. The Spring 1997 issue includes articles on brain development and the…

  19. Alaska's Economy: What's Ahead?

    ERIC Educational Resources Information Center

    Alaska Review of Social and Economic Conditions, 1987

    1987-01-01

    This review describes Alaska's economic boom of the early 1980s, the current recession, and economic projections for the 1990s. Alaska's economy is largely influenced by oil prices, since petroleum revenues make up 80% of the state government's unrestricted general fund revenues. Expansive state spending was responsible for most of Alaska's…

  20. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  1. Water and Sediment Quality in the Yukon River Basin, Alaska, During Water Year 2005

    USGS Publications Warehouse

    Schuster, Paul F.

    2007-01-01

    OVERVIEW: This report contains water-quality and sediment-quality data from samples collected in the Yukon River Basin from March through September during the 2005 water year (WY). Samples were collected throughout the year at five stations in the basin (three on the main stem Yukon River, one each on the Tanana and Porcupine Rivers). A broad range of physical, chemical, and biological analyses are presented. This is the final report in a series of five USGS Open-File Reports spanning five WYs, from October 2000 through September 2005. The previous four reports are listed in the references (Schuster, 2003, 2005a, 2005b, 2006). Water-quality and sediment-quality data from samples collected on the Yukon River and selected major tributaries in Alaska for synoptic studies during WYs 2002-03 are published in Dornblaser and Halm (2006).

  2. Leadership Programs and Alaska Native Perspectives: A Study to Promote University Awareness.

    ERIC Educational Resources Information Center

    Hecht, Kathryn A.; Fox, Robert M.

    Information for planning a university-sponsored Alaska Native leadership program was derived from a literature review and a review of leadership programs outside Alaska coupled with in-depth interviews with identified Native leaders (N=10 from a list of 90). Among the kinds of programs examined were: a leadership development program; the cultural…

  3. The Alaska SAR processor

    NASA Technical Reports Server (NTRS)

    Carande, R. E.; Charny, B.

    1988-01-01

    The Alaska SAR processor was designed to process over 200 100 km x 100 km (Seasat like) frames per day from the raw SAR data, at a ground resolution of 30 m x 30 m from ERS-1, J-ERS-1, and Radarsat. The near real time processor is a set of custom hardware modules operating in a pipelined architecture, controlled by a general purpose computer. Input to the processor is provided from a high density digital cassette recording of the raw data stream as received by the ground station. A two pass processing is performed. During the first pass clutter-lock and auto-focus measurements are made. The second pass uses the results to accomplish final image formation which is recorded on a high density digital cassette. The processing algorithm uses fast correlation techniques for range and azimuth compression. Radiometric compensation, interpolation and deskewing is also performed by the processor. The standard product of the ASP is a high resolution four-look image, with a low resolution (100 to 200 m) many look image provided simultaneously.

  4. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  5. Glaciers of North America - Glaciers of Alaska

    USGS Publications Warehouse

    Molnia, Bruce F.

    2008-01-01

    literature for each of the 11 mountain ranges, the large island, the island chain, and the archipelago was conducted to determine both the individual and the regional status of Alaskan glaciers and to characterize changes in thickness and terminus position of representative glaciers in each mountain range or island group. In many areas, observations used for determining changes date from the late 18th or early 19th century. Temperature records at all Alaskan meteorological recording stations document a 20th century warming trend. Therefore, characterizing the response of Alaska's glaciers to changing climate helps to quantify potential sea-level rise from past, present, and future melting of glacier ice (deglaciation of the 14 glacierized regions of Alaska), understand present and future hydrological changes, and define impacts on ecosystems that are responding to deglacierization. Many different types of data were scrutinized to determine baselines and to assess the magnitude of glacier change. These data include the following: published descriptions of glaciers (1794-2000), especially the comprehensive research by Field (1975a) and his colleagues in the Alaska part of Mountain Glaciers of the Northern Hemisphere, aerial photography (since 1926), ground photography (since 1884), airborne radar (1981-91), satellite radar (1978-98), space photography (1984-94), multispectral satellite imagery (since 1972), aerial reconnaissance and field observations made by many scientists during the past several decades, and various types of proxy data. The published and unpublished data available for each glacierized region and individual glacier varied significantly. Geospatial analysis of digitized U.S. Geological Survey (USGS) topographic maps is used to statistically define selected glaciological parameters in the eastern part of the Alaska Range. The analysis determined that every mountain range and island group investigated can be characterized by significant glac

  6. Status of EarthScope's Transportable Array in Alaska

    NASA Astrophysics Data System (ADS)

    Hafner, K.; Busby, R. W.; Enders, M.

    2014-12-01

    The EarthScope's Transportable Array has completed its first year of operations in Alaska. The proposed station grid uses 85 km spacing & consists of ~290 locations in Alaska and Western Canada. About 60 of the grid locations will be at existing seismic stations operated by the AEC, AVO & ATWC and are being upgraded with shallow borehole installations or higher quality sensors as appropriate. About 10 new stations will be collocated with PBO GPS stations. At the end of July 2014, 90% of the site reconnaissance has been completed, & 25 sites have been permitted with private landowners or the State of Alaska. 11 new TA stations have been installed, & 7 existing stations (AK network code) have been upgraded. Data from these stations is flowing to the Array Network Facility (ANF) and being archived at the IRIS DMC. As the Transportable Array has moved to Alaska, IRIS has experimented with different portable drills and drilling techniques to create shallow holes (1-5 m deep, 15-20 cm in diameter) in permafrost and rock outcrops for seismometer installation. The goal of these new methods is to maintain or enhance a station's noise performance while minimizing its footprint & the equipment, materials, and overall expense required for its construction. Motivating this approach are recent developments in posthole broadband seismometer design & the unique conditions for operating in Alaska, where most areas are only accessible by small plane or helicopter, & permafrost underlies much of the region. IRIS contracted with a drilling specialist to create a prototype Transportable Drill (less than 1300 lbs with tooling) that is capable of augering to 5 m in unconsolidated materials and permafrost, downhole hammering to 2.5 m in bedrock with a steel casing following the bit and diamond coring in solid rock to 2 m. This drill has been successfully deployed by helicopter to create a hole 2.7 m deep and 15 cm diameter in bedrock. The auger mode was used successfully to install a

  7. Alaska's renewable energy potential.

    SciTech Connect

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  8. EarthScope Transportable Array Siting Outreach Activities in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Gardine, L.; Dorr, P. M.; Tape, C.; McQuillan, P.; Taber, J.; West, M. E.; Busby, R. W.

    2014-12-01

    The EarthScopeTransportable Array is working to locate over 260 stations in Alaska and western Canada. In this region, new tactics and partnerships are needed to increase outreach exposure. IRIS and EarthScope are partnering with the Alaska Earthquake Center, part of University of Alaska Geophysical Institute, to spread awareness of Alaska earthquakes and the benefits of the Transportable Array for Alaskans. Nearly all parts of Alaska are tectonically active. The tectonic and seismic variability of Alaska requires focused attention at the regional level, and the remoteness and inaccessibility of most Alaska villages and towns often makes frequent visits difficult. For this reason, Alaska outreach most often occurs at community events. When a community is accessible, every opportunity to engage the residents is made. Booths at state fairs and large cultural gatherings, such as the annual convention of the Alaska Federation of Natives, are excellent venues to distribute earthquake information and to demonstrate a wide variety of educational products and web-based applications related to seismology and the Transportable Array that residents can use in their own communities. Region-specific publications have been developed to tie in a sense of place for residents of Alaska. The Alaska content for IRIS's Active Earth Monitor will emphasize the widespread tectonic and seismic features and offer not just Alaska residents, but anyone interested in Alaska, a glimpse into what is going on beneath their feet. The concerted efforts of the outreach team will have lasting effects on Alaskan understanding of the seismic hazard and tectonics of the region. Efforts to publicize the presence of the Transportable Array in Alaska, western Canada, and the Lower 48 also continue. There have been recent articles published in university, local and regional newspapers; stories appearing in national and international print and broadcast media; and documentaries produced by some of the world

  9. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and

  10. Renewable Energy in Alaska

    SciTech Connect

    Not Available

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  11. American Indian & Alaska Native Sources of Health Materials.

    ERIC Educational Resources Information Center

    Office of Minority Health (PHS/DHHS), Washington, DC.

    This brief directory lists 28 agencies providing culturally sensitive printed health materials for American Indians and Alaska Natives. Each entry provides the agency's address; telephone number; fax number; and annotated titles available, with price. Many materials are free. There is also a subject index with these categories: adolescent…

  12. Resource Guide of American Indian and Alaska Native Women, 1980.

    ERIC Educational Resources Information Center

    Anderson, Owanah P., Comp.; Verble, Sedelta D., Comp.

    A resource listing of 678 prominent American Indian and Alaska Native women representing 159 tribes throughout the United States provides the following information: name, address, date and place of birth, tribal membership, field of interest, current occupation, Indian activities, women's advocacy, educational background and professional interest.…

  13. Postsecondary Certificates and Degrees in the State of Alaska.

    ERIC Educational Resources Information Center

    Alaska State Commission on Postsecondary Education, Juneau.

    The number of certificate and degree programs offered and awarded at public and private nonproprietary, postsecondary institutions in Alaska is listed statewide and by institution. Programs that may be underproductive based on the number of formal awards over a four-year period are also identified. A total of 252 unduplicated certificate and…

  14. Bibliography of Educational Publications for Alaska Native Languages.

    ERIC Educational Resources Information Center

    McGary, Jane, Comp.

    Both Indian and Eskimo-Aleut languages are covered in this annotated bibliography of Alaska native languages. Listings for each language are broken down into general works, reference works, materials on bilingual education where there are any available, and educational materials. In many cases the last category is extensive enough to require…

  15. Attu, Alaska

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Attu, the westernmost Aleutian island, is nearly 1760 km from the Alaskan mainland and 1200 km northeast of the northernmost of the Japanese Kurile Islands. Attu is about 32 by 56 km in size, and is today the home of a small number of U. S. Coast Guard personnel operating a Loran station. The weather on Attu is typical of Aleutian weather in general...cloudy, rain, fog, and occasional high winds. The weather becomes progressively worse as you travel from the easternmost islands to the west. On Attu, five or six days a week are likely to be rainy, with hardly more than eight or ten clear days a year. The image was acquired July 4, 2000, covers an area of 31.2 by 61.1 km, and is centered near 52.8 degrees north latitude, 173 degrees east longitude.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of

  16. Alaska Problem Resource Manual: Alaska Future Problem Solving Program. Alaska Problem 1985-86.

    ERIC Educational Resources Information Center

    Gorsuch, Marjorie, Ed.

    "Alaska's Image in the Lower 48," is the theme selected by a Blue Ribbon panel of state and national leaders who felt that it was important for students to explore the relationship between Alaska's outside image and the effect of that image on the federal programs/policies that impact Alaska. An overview of Alaska is presented first in…

  17. Evaluation of the streamflow-gaging network of Alaska in providing regional streamflow information

    USGS Publications Warehouse

    Brabets, Timothy P.

    1996-01-01

    In 1906, the U.S. Geological Survey (USGS) began operating a network of streamflow-gaging stations in Alaska. The primary purpose of the streamflow- gaging network has been to provide peak flow, average flow, and low-flow characteristics to a variety of users. In 1993, the USGS began a study to evaluate the current network of 78 stations. The objectives of this study were to determine the adequacy of the existing network in predicting selected regional flow characteristics and to determine if providing additional streamflow-gaging stations could improve the network's ability to predict these characteristics. Alaska was divided into six distinct hydrologic regions: Arctic, Northwest, Southcentral, Southeast, Southwest, and Yukon. For each region, historical and current streamflow data were compiled. In Arctic, Northwest, and Southwest Alaska, insufficient data were available to develop regional regression equations. In these areas, proposed locations of streamflow-gaging stations were selected by using clustering techniques to define similar areas within a region and by spatial visual analysis using the precipitation, physiographic, and hydrologic unit maps of Alaska. Sufficient data existed in Southcentral and Southeast Alaska to use generalized least squares (GLS) procedures to develop regional regression equations to estimate the 50-year peak flow, annual average flow, and a low-flow statistic. GLS procedures were also used for Yukon Alaska but the results should be used with caution because the data do not have an adequate spatial distribution. Network analysis procedures were used for the Southcentral, Southeast, and Yukon regions. Network analysis indicates the reduction in the sampling error of the regional regression equation that can be obtained given different scenarios. For Alaska, a 10-year planning period was used. One scenario showed the results of continuing the current network with no additional gaging stations and another scenario showed the results

  18. Libraries in Alaska: MedlinePlus

    MedlinePlus

    ... this page: https://medlineplus.gov/libraries/alaska.html Libraries in Alaska To use the sharing features on ... JavaScript. Anchorage University of Alaska Anchorage Alaska Medical Library 3211 Providence Drive Anchorage, AK 99508-8176 907- ...

  19. The Princess Elisabeth Station

    NASA Technical Reports Server (NTRS)

    Berte, Johan

    2012-01-01

    Aware of the increasing impact of human activities on the Earth system, Belgian Science Policy Office (Belspo) launched in 1997 a research programme in support of a sustainable development policy. This umbrella programme included the Belgian Scientific Programme on Antarctic Research. The International Polar Foundation, an organization led by the civil engineer and explorer Alain Hubert, was commissioned by the Belgian Federal government in 2004 to design, construct and operate a new Belgian Antarctic Research Station as an element under this umbrella programme. The station was to be designed as a central location for investigating the characteristic sequence of Antarctic geographical regions (polynia, coast, ice shelf, ice sheet, marginal mountain area and dry valleys, inland plateau) within a radius of 200 kilometers (approx.124 miles) of a selected site. The station was also to be designed as "state of the art" with respect to sustainable development, energy consumption, and waste disposal, with a minimum lifetime of 25 years. The goal of the project was to build a station and enable science. So first we needed some basic requirements, which I have listed here; plus we had to finance the station ourselves. Our most important requirement was that we decided to make it a zero emissions station. This was both a philosophical choice as we thought it more consistent with Antarctic Treaty obligations and it was also a logistical advantage. If you are using renewable energy sources, you do not have to bring in all the fuel.

  20. Hazardous Waste State Authorization Tracking System (StATS) Report for Alaska as of September 30, 2016

    EPA Pesticide Factsheets

    State Authorization Tracking System (StATS) data for Alaska listing checklist code, Federal Register Reference, promulgation date, rule description, state adopted/effective date, date of Federal Register Notice, and effective date.

  1. UAFSmoke Modeling in Alaska

    NASA Astrophysics Data System (ADS)

    Stuefer, M.; Grell, G.; Freitas, S.; Newby, G.

    2008-12-01

    Alaska wildfires have strong impact on air pollution on regional Arctic, Sub-Arctic and even hemispheric scales. In response to a high number of wildfires in Alaska, emphasis has been placed on developing a forecast system for wildfire smoke dispersion in Alaska. We have developed a University of Alaska Fairbanks WRF/Chem smoke (UAFSmoke) dispersion system, which has been adapted and initialized with source data suitable for Alaska. UAFSmoke system modules include detection of wildfire location and area using Alaska Fire Service information and satellite remote sensing data from the MODIS instrument. The fire emissions are derived from above ground biomass fuel load data in one-kilometer resolution. WRF/Chem Version 3 with online chemistry and online plume dynamics represents the core of the UAFSmoke system. Besides wildfire emissions and NOAA's Global Forecast System meteorology, WRF/Chem initial and boundary conditions are updated with anthropogenic and sea salt emission data from the Georgia Institute of Technology-Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) Model. System runs are performed at the Arctic Region Supercomputing Center's Sun Opteron cluster "Midnight". During the 2008 fire season once daily UAFSmoke runs were presented at a dedicated webpage at http://smoke.arsc.edu. We present examples from these routine runs and from the extreme 2004 Alaska wildfire season.

  2. EarthScope Transportable Array Siting Outreach Activities in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Dorr, P. M.; Gardine, L.; Tape, C.; McQuillan, P.; Cubley, J. F.; Samolczyk, M. A.; Taber, J.; West, M. E.; Busby, R.

    2015-12-01

    The EarthScope Transportable Array is deploying about 260 stations in Alaska and western Canada. IRIS and EarthScope are partnering with the Alaska Earthquake Center, part of the University of Alaska's Geophysical Institute, and Yukon College to spread awareness of earthquakes in Alaska and western Canada and the benefits of the Transportable Array for people living in these regions. We provide an update of ongoing education and outreach activities in Alaska and Canada as well as continued efforts to publicize the Transportable Array in the Lower 48. Nearly all parts of Alaska and portions of western Canada are tectonically active. The tectonic and seismic variability of Alaska, in particular, requires focused attention at the regional level, and the remoteness and inaccessibility of most Alaskan and western Canadian villages and towns often makes frequent visits difficult. When a community is accessible, every opportunity to engage the residents is made. Booths at state fairs and large cultural gatherings, such as the annual convention of the Alaska Federation of Natives, are excellent venues to distribute earthquake information and to demonstrate a wide variety of educational products and web-based applications related to seismology and the Transportable Array that residents can use in their own communities. Meetings and interviews with Alaska Native Elders and tribal councils discussing past earthquakes has led to a better understanding of how Alaskans view and understand earthquakes. Region-specific publications have been developed to tie in a sense of place for residents of Alaska and the Yukon. The Alaska content for IRIS's Active Earth Monitor emphasizes the widespread tectonic and seismic features and offers not just Alaska residents, but anyone interested in Alaska, a glimpse into what is going on beneath their feet. The concerted efforts of the outreach team will have lasting effects on Alaskan and Canadian understanding of the seismic hazard and

  3. Broadcasting Stations of the World; Part II. Amplitude Modulation Broadcasting Stations According to Frequency.

    ERIC Educational Resources Information Center

    Foreign Broadcast Information Service, Washington, DC.

    This second part of "Broadcasting Stations of the World", which lists all reported radio broadcasting and television stations with the exception of those in the United States which broadcast on domestic channels, covers amplitude modulation broadcasting stations according to frequency in ascending order. Information included covers call letters,…

  4. Broadcasting Stations of the World; Part III. Frequency Modulation Broadcasting Stations.

    ERIC Educational Resources Information Center

    Foreign Broadcast Information Service, Washington, DC.

    This third part of "Broadcasting Stations of the World", which lists all reported radio broadcasting and television stations, with the exception of those in the United States which broadcast on domestic channels, covers frequency modulation broadcasting stations. It contains two sections: one indexed alphabetically by country and city, and the…

  5. Broadcasting Stations of the World; Part I. Amplitude Modulation Broadcasting Stations According to Country and City.

    ERIC Educational Resources Information Center

    Foreign Broadcast Information Service, Washington, DC.

    This first part of "Broadcasting Stations of the World", which lists all reported radio broadcasting and television stations, with the exception of those in the United States which broadcast on domestic channels, covers amplitude modulation broadcasting stations. Information is indexed alphabetically by country and city. Within a city, stations…

  6. Alaska marine ice atlas

    SciTech Connect

    LaBelle, J.C.; Wise, J.L.; Voelker, R.P.; Schulze, R.H.; Wohl, G.M.

    1982-01-01

    A comprehensive Atlas of Alaska marine ice is presented. It includes information on pack and landfast sea ice and calving tidewater glacier ice. It also gives information on ice and related environmental conditions collected over several years time and indicates the normal and extreme conditions that might be expected in Alaska coastal waters. Much of the information on ice conditions in Alaska coastal waters has emanated from research activities in outer continental shelf regions under assessment for oil and gas exploration and development potential. (DMC)

  7. Alaska geology revealed

    USGS Publications Warehouse

    Wilson, Frederic H.; Labay, Keith A.

    2016-11-09

    This map shows the generalized geology of Alaska, which helps us to understand where potential mineral deposits and energy resources might be found, define ecosystems, and ultimately, teach us about the earth history of the State. Rock units are grouped in very broad categories on the basis of age and general rock type. A much more detailed and fully referenced presentation of the geology of Alaska is available in the Geologic Map of Alaska (http://dx.doi.org/10.3133/sim3340). This product represents the simplification of thousands of individual rock units into just 39 broad groups. Even with this generalization, the sheer complexity of Alaskan geology remains evident.

  8. Consolidated List of Lists

    EPA Pesticide Factsheets

    List of chemicals subject to reporting requirements under the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), and Section 112(r) of the Clean Air Act.

  9. Revised Report: A Summary of ETV Station Information.

    ERIC Educational Resources Information Center

    National Association of Educational Broadcasters, Washington, DC.

    A summary of 186 educational television stations in the United States is presented. Stations are listed in order of State by call letters, and information concerning height of antenna (as related to commercial stations), color facilities, and operation below or at authorized power is included for each station. A summary of this information is…

  10. 47 CFR 73.807 - Minimum distance separation between stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Minimum distance separation between stations... separation between stations. Minimum separation requirements for LPFM stations are listed in the following...- and second-adjacent channel separations are met. An LPFM station need not satisfy the...

  11. 47 CFR 73.807 - Minimum distance separation between stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Minimum distance separation between stations... separation between stations. Minimum separation requirements for LPFM stations are listed in the following...- and second-adjacent channel separations are met. An LPFM station need not satisfy the...

  12. Alaska telemedicine: growth through collaboration.

    PubMed

    Patricoski, Chris

    2004-12-01

    The last thirty years have brought the introduction and expansion of telecommunications to rural and remote Alaska. The intellectual and financial investment of earlier projects, the more recent AFHCAN Project and the Universal Service Administrative Company Rural Health Care Division (RHCD) has sparked a new era in telemedicine and telecommunication across Alaska. This spark has been flamed by the dedication and collaboration of leaders at he highest levels of organizations such as: AFHCAN member organizations, AFHCAN Office, Alaska Clinical Engineering Services, Alaska Federal Health Care Partnership, Alaska Federal Health Care Partnership Office, Alaska Native health Board, Alaska Native Tribal health Consortium, Alaska Telehealth Advisory Council, AT&T Alascom, GCI Inc., Health care providers throughout the state of Alaska, Indian Health Service, U.S. Department of Health and Human Services, Office of U.S. Senator Ted Steens, State of Alaska, U.S. Department of Homeland Security--United States Coast Guard, United States Department of Agriculture, United States Department of Defense--Air Force and Army, United States Department of Veterans Affairs, University of Alaska, and University of Alaska Anchorage. Alaska now has one of the largest telemedicine programs in the world. As Alaska moves system now in place become self-sustaining, and 2) collaborating with all stakeholders in promoting the growth of an integrated, state-wide telemedicine network.

  13. Alaska Resource Data File, Nabesna quadrangle, Alaska

    USGS Publications Warehouse

    Hudson, Travis L.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  14. Alaska Resource Data File, Wiseman quadrangle, Alaska

    USGS Publications Warehouse

    Britton, Joe M.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  15. Alaska Resource Data File, Juneau quadrangle, Alaska

    USGS Publications Warehouse

    Barnett, John C.; Miller, Lance D.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  16. Index of surface-water stations in Texas, January 1988

    USGS Publications Warehouse

    Rawson, Jack; Carrillo, E.R.; Buckner, H.D.

    1988-01-01

    This index shows the station number and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2, the 8-digit station number is abbreviated because of space limitation.

  17. Index of surface-water stations in Texas, January 1984

    USGS Publications Warehouse

    Carrillo, E.R.; Buckner, H.D.

    1984-01-01

    This index shows the station number and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2 the 8-digit station number is abbreviated because of space limitation.

  18. Index of surface-water stations in Texas, January 1985

    USGS Publications Warehouse

    Carrillo, E.R.; Buckner, H.D.; Rawson, Jack

    1984-01-01

    This index shows the station number -and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2, the 8-digit station number is abbreviated because of space limitation.

  19. Index of surface-water stations in Texas, January 1987

    USGS Publications Warehouse

    Rawson, Jack; Carrillo, E.R.; Buckner, H.D.

    1987-01-01

    This index shows the station number and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2, the 8-digit station number is abbreviated because of space limitation.

  20. The EarthScope Plate Boundary Observatory Alaska Region: Highlights from the 2012 Summer Field Season

    NASA Astrophysics Data System (ADS)

    Enders, M.; Bierma, R. M.; Boyce, E. S.; Willoughby, H.; Fend, M.; Feaux, K.

    2012-12-01

    UNAVCO has now completed its fourth year of operation and maintenance of the 138 continuous GPS stations, 12 tiltmeters and 31 data communications relays that comprise the Alaska region of the EarthScope Plate Boundary Observatory (PBO). The successful operation of the autonomous GPS and tiltmeter network in Alaska continues to be a challenge, because of logistics, weather, and other difficulties related to working in Alaska. PBO engineers continue to work on network enhancements to make the stations more robust, while improving overall data quality and station uptime to better serve the EarthScope science community. In the summer of 2012, PBO engineers completed maintenance activities in Alaska, which resulted in a 95% operational status for the Alaska network within PBO. PBO engineers completed a total of 87 maintenance visits in the summer of FY2012, including 62 routine maintenance and 25 unscheduled maintenance visits to GPS and data communications stations. We present a number of highlights and accomplishments from the PBO 2012 summer field season in Alaska, for example the deployment of a newly designed methanol fuel cell at AV35, a critical station that serves as the main repeater for the real time network on Unimak Island. In addition, PBO engineers also completed the installation of three Inmarsat BGAN terminals for data telemetry following successful testing at AC60 Shemya. Lastly, PBO engineers completed scheduled battery replacements at most of the PBO stations on Unimak Island, in collaboration with the USGS/Alaska Volcano Observatory. In addition to routine maintenance and planned station improvements to sites in Alaska, numerous critical repairs were made at stations on Unimak Island and elsewhere to ensure that the PBO network continues to function well and continues to meet the requirements stipulated by the NSF. We also present some of the station failures unique to Alaska, which we encountered during the course of the 2012 field season, as well

  1. Alaska: A frontier divided

    SciTech Connect

    O'Dell, R. )

    1986-09-01

    The superlatives surrounding Alaska are legion. Within the borders of the 49th US state are some of the world's greatest concentrations of waterfowl, bald eagles, fur seals, walrus, sea lions, otters, and the famous Kodiak brown bear. Alaska features the highest peak of North America, the 20,320-foot Mount McKinley, and the longest archipelago of small islands, the Aleutians. The state holds the greatest percentage of protected wilderness per capita in the world. The expanse of some Alaskan glaciers dwarfs entire countries. Like the periodic advance and retreat of its glaciers, Alaska appears with some regularity on the national US agenda. It last achieved prominence when President Jimmy Carter signed the Alaska National Interest Lands Conservation Act in 1980. Since then the conflict between environmental protection and economic development has been played out throughout the state, and Congress is expected to turn to Alaskan issues again in its next sessions.

  2. Hawkweed Control in Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several hawkweed species from Europe have escaped ornamental planting and have colonized roadsides and grasslands in south central and southeast Alaska. These plants form near monotypic stands, reducing plant diversity and decreasing pasture productivity. A replicated greenhouse study was conducted ...

  3. Geologic studies in Alaska by the U.S. Geological Survey, 1996

    USGS Publications Warehouse

    Gray, John E.; Riehle, James R.

    1998-01-01

    This collection of 12 papers continues the annual series of U.S. Geological Survey (USGS) reports on geologic investigations in Alaska. The annual volume presents results from new or ongoing studies in Alaska that are of interest to scientists in academia, industry, land and resource managers, and the general public. The Geological Studies in Alaska volume reports the results of studies that cover a broad spectrum of earth science topics from many parts of the state (fig. 1).The papers in this volume are organized under the topics Environment and Climate, Resources, and Geologic Framework, in order to reflect the objectives and scope of USGS programs that are currently active in Alaska. Environmental studies are the focus of two articles in this volume: One study addresses the relation between glaciers and aquatic habitat on the Kenai River and another study evaluates the geochemistry of water draining chromite deposits in Alaska. Two papers address mineral resources in southwestern Alaska including a geochemical study of the Fortyseven Creek prospect and a geological and geochemical study of the Stuyahok area. Eight geologic framework studies apply a variety of techniques to a wide range of subjects throughout Alaska, including biostratigraphy, geochemistry, geochronology, paleomagnetism, sedimentology, and tectonics.Two bibliographies at the end of the volume list reports about Alaska in USGS publications released in 1996 and reports about Alaska by USGS authors in non-USGS publications in 1996.

  4. The United States Geological Survey in Alaska: Accomplishments during 1980

    USGS Publications Warehouse

    Coonrad, Warren L.

    1982-01-01

    This report of accomplishments of the U.S. Geological Survey in Alaska during 1980 contains summary and topical accounts of results of studies in a wide range of topics of economic and scientific interest. In addition, many more detailed maps and reports are included in the lists of references cited for each article and in the appended compilations of 297 reports on Alaska published by the U.S. Geological Survey and of 177 reports by U.S. Geological Survey authors in various other scientific publications.

  5. The United States Geological Survey in Alaska: Accomplishments during 1981

    USGS Publications Warehouse

    Coonrad, Warren L.; Elliot, Raymond L.

    1984-01-01

    This report of accomplishments of the U.S. Geological Survey in Alaska during 1981 contains summary and topical accounts of the results of studies on a wide range of topics of economic and scientific interest. In addition, many more detailed maps and reports are included in the lists of references cited for each article and in the appended compilations of 277 reports on Alaska published by the U.S. Geological Survey and of 103 reports, by U.S. Geological Survey authors in various other scientific publications.

  6. Space station

    NASA Technical Reports Server (NTRS)

    Stewart, Donald F.; Hayes, Judith

    1989-01-01

    The history of American space flight indicates that a space station is the next logical step in the scientific pursuit of greater knowledge of the universe. The Space Station and its complement of space vehicles, developed by NASA, will add new dimensions to an already extensive space program in the United States. The Space Station offers extraordinary benefits for a comparatively modest investment (currently estimated at one-ninth the cost of the Apollo Program). The station will provide a permanent multipurpose facility in orbit necessary for the expansion of space science and technology. It will enable significant advancements in life sciences research, satellite communications, astronomy, and materials processing. Eventually, the station will function in support of the commercialization and industrialization of space. Also, as a prerequisite to manned interplanetary exploration, the long-duration space flights typical of Space Station missions will provide the essential life sciences research to allow progressively longer human staytime in space.

  7. Alaska Resource Data File, Point Lay quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Point Lay 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  8. Alaska looks HOT!

    SciTech Connect

    Belcher, J.

    1997-07-01

    Production in Alaska has been sluggish in recent years, with activity in the Prudhoe Bay region in the North Slope on a steady decline. Alaska North Slope (ANS) production topped out in 1988 at 2.037 MMbo/d, with 1.6 MMbo/d from Prudhoe Bay. This year operators expect to produce 788 Mbo/d from Prudhoe Bay, falling to 739 Mbo/d next year. ANS production as a whole should reach 1.3 MMbo/d this year, sliding to 1.29 MMbo/d in 1998. These declining numbers had industry officials and politicians talking about the early death of the Trans-Alaskan Pipeline System-the vital link between ANS crude and markets. But enhanced drilling technology coupled with a vastly improved relationship between the state government and industry have made development in Alaska more economical and attractive. Alaska`s Democratic Gov. Tommy Knowles is fond of telling industry {open_quotes}we`re open for business.{close_quotes} New discoveries on the North Slope and in the Cook Inlet are bringing a renewed sense of optimism to the Alaska exploration and production industry. Attempts by Congress to lift a moratorium on exploration and production activity in the Arctic National Wildlife Refuge (ANWR) have been thwarted thus far, but momentum appears to be with proponents of ANWR drilling.

  9. Space Station

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1985-01-01

    The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.

  10. Space Station Freedom food management

    NASA Technical Reports Server (NTRS)

    Whitehurst, Troy N., Jr.; Bourland, Charles T.

    1992-01-01

    This paper summarizes the specification requirements for the Space Station Food System, and describes the system that is being designed and developed to meet those requirements. Space Station Freedom will provide a mix of frozen, refrigerated, rehydratable, and shelf stable foods. The crew will pre-select preferred foods from an approved list, to the extent that proper nutrition balance is maintained. A galley with freezers, refrigerators, trash compactor, and combination microwave and convection ovens will improve crew efficiency and productivity during the long Space Station Freedom (SSF) missions.

  11. Space Station Freedom Evolution Symposium

    NASA Technical Reports Server (NTRS)

    Ott, Richard H.

    1991-01-01

    Information on the Space Station Freedom Evolution Symposium is given in viewgraph form. Topics covered include industry development needs and the Office of Commercial Programs strategy, the three-phase program to develop commercial space, Centers for the Commercial Development of Space (CCDS), key provisions of the Joint Endeavor agreement, current commercial flight experiment requirements, the CCDS expendable launch vehicle program, the Commercial Experiment Transporter (COMET) program, commercial launch dates, payload sponsors, the commercial roles of the Space Station Freedom, and a listing of the Office of Commercial Programs Space Station Freedom payloads.

  12. Alaska Resource Data File: Chignik quadrangle, Alaska

    USGS Publications Warehouse

    Pilcher, Steven H.

    2000-01-01

    Descriptions of the mineral occurrences can be found in the report. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska. There is a website from which you can obtain the data for this report in text and Filemaker Pro formats

  13. Bryophytes from Tuxedni Wilderness area, Alaska

    USGS Publications Warehouse

    Schofield, W.B.; Talbot, S. S.; Talbot, S.L.

    2002-01-01

    The bryoflora of two small maritime islands, Chisik and Duck Island (2,302 ha), comprising Tuxedni Wilderness in western lower Cook Inlet, Alaska, was examined to determine species composition in an area where no previous collections had been reported. The field study was conducted from sites selected to represent the totality of environmental variation within Tuxedni Wilderness. Data were analyzed using published reports to compare the bryophyte distribution patterns at three levels, the Northern Hemisphere, North America, and Alaska. A total of 286 bryophytes were identified: 230 mosses and 56 liverworts. Bryum miniatum, Dichodontium olympicum, and Orthotrichum pollens are new to Alaska. The annotated list of species for Tuxedni Wilderness expands the known range for many species and fills distribution gaps within Hulte??n's Central Pacific Coast district. Compared with bryophyte distribution in the Northern Hemisphere, the bryoflora of Tuxedni Wilderness primarily includes taxa of boreal (61%), montane (13%), temperate (11%), arctic-alpine (7%), cosmopolitan (7%), distribution; 4% of the total moss flora are North America endemics. A brief summary of the botanical exploration of the general area is provided, as is a description of the bryophytes present in the vegetation and habitat types of Chisik and Duck Islands.

  14. Wind energy resource atlas. Volume 10. Alaska region

    SciTech Connect

    Wise, J.L.; Wentink, T. Jr.; Becker, R. Jr.; Comiskey, A.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-12-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each subregion of Alaska. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a state scale is given. The results of the wind energy assessments for each subregion are assembled into an overview and summary of the various features of the Alaska wind energy resource. An outline to the descriptions of the wind resource given for each subregion is included. Assessments for individual subregions are presented as separate chapters. The subregion wind energy resources are described in greater detail than is the Alaska wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the subregion chapters.

  15. The Earthscope Plate Boundary Observatory Alaska Region an Overview of Network Operation, Maintenance and Improvement

    NASA Astrophysics Data System (ADS)

    Enders, M.; Boyce, E. S.; Bierma, R.; Walker, K.; Feaux, K.

    2011-12-01

    UNAVCO has now completed its third year of operation of the 138 continuous GPS stations, 12 tiltmeters and 31 communications relays that comprise the Alaska Region of the Earthscope Plate Boundary Observatory. Working in Alaska has been challenging due to the extreme environmental conditions encountered and logistics difficulties. Despite these challenges we have been able to complete each summer field season with network operation at 95% or better. Throughout the last three years we have analyzed both our successes and failures to improve the quality of our network and better serve the scientific community. Additionally, we continue to evaluate and deploy new technologies to improve station reliability and add to the data set available from our stations. 2011 was a busy year for the Alaska engineering team and some highlights from last year's maintenance season include the following. This spring we completed testing and deployment of the first Inmarsat BGAN satellite terminal for data telemetry at AC60 Shemya Island. Shemya Island is at the far western end of the Aleutian Islands and is one of the most remote and difficult to access stations in the PBO AK network. Until the installation of the BGAN, this station was offline with no data telemetry for almost one year. Since the installation of the BGAN in early April 2011 dataflow has been uninterrupted. This year we also completed the first deployments of Stardot NetCamSC webcams in the PBO Network. Currently, these are installed and operational at six GPS stations in Alaska, with plans to install several more next season in Alaska. Images from these cameras can be found at the station homepages linked to from the UNAVCO website. In addition to the hard work put in by PBO engineers this year, it is important that we recognize the contributions of our partners. In particular the Alaska Volcano Observatory, the Alaska Earthquake Information Center and others who have provided us with valuable engineering assistance

  16. Alaska's model program for surveillance and prevention of occupational injury deaths.

    PubMed Central

    Conway, G A; Lincoln, J M; Husberg, B J; Manwaring, J C; Klatt, M L; Thomas, T K

    1999-01-01

    The National Institute for Occupational Safety and Health (NIOSH) established its Alaska Field Station in Anchorage in 1991 after identifying Alaska as the highest-risk state for traumatic worker fatalities. Since then, the Field Station, working in collaboration with other agencies, organizations, and individuals, has established a program for occupational injury surveillance in Alaska and formed interagency working groups to address the risk factors leading to occupational death and injury in the state. Collaborative efforts have contributed to reducing crash rates and mortality in Alaska's rapidly expanding helicopter logging industry and have played an important supportive role in the substantial progress made in reducing the mortality rate in Alaska's commercial fishing industry (historically Alaska's and America's most dangerous industry). Alaska experienced a 46% overall decline in work-related acute traumatic injury deaths from 1991 to 1998, a 64% decline in commercial fishing deaths, and a very sharp decline in helicopter logging-related deaths. Extending this regional approach to other parts of the country and applying these strategies to the entire spectrum of occupational injury and disease hazards could have a broad effect on reducing occupational injuries. PMID:10670623

  17. Accretion of southern Alaska

    USGS Publications Warehouse

    Hillhouse, J.W.

    1987-01-01

    Paleomagnetic data from southern Alaska indicate that the Wrangellia and Peninsular terranes collided with central Alaska probably by 65 Ma ago and certainly no later than 55 Ma ago. The accretion of these terranes to the mainland was followed by the arrival of the Ghost Rocks volcanic assemblage at the southern margin of Kodiak Island. Poleward movement of these terranes can be explained by rapid motion of the Kula oceanic plate, mainly from 85 to 43 Ma ago, according to recent reconstructions derived from the hot-spot reference frame. After accretion, much of southwestern Alaska underwent a counterclockwise rotation of about 50 ?? as indicated by paleomagnetic poles from volcanic rocks of Late Cretaceous and Early Tertiary age. Compression between North America and Asia during opening of the North Atlantic (68-44 Ma ago) may account for the rotation. ?? 1987.

  18. NWS Alaska Sea Ice Program: Operations and Decision Support Services

    NASA Astrophysics Data System (ADS)

    Schreck, M. B.; Nelson, J. A., Jr.; Heim, R.

    2015-12-01

    The National Weather Service's Alaska Sea Ice Program is designed to service customers and partners operating and planning operations within Alaska waters. The Alaska Sea Ice Program offers daily sea ice and sea surface temperature analysis products. The program also delivers a five day sea ice forecast 3 times each week, provides a 3 month sea ice outlook at the end of each month, and has staff available to respond to sea ice related information inquiries. These analysis and forecast products are utilized by many entities around the state of Alaska and nationally for safety of navigation and community strategic planning. The list of current customers stem from academia and research institutions, to local state and federal agencies, to resupply barges, to coastal subsistence hunters, to gold dredgers, to fisheries, to the general public. Due to a longer sea ice free season over recent years, activity in the waters around Alaska has increased. This has led to a rise in decision support services from the Alaska Sea Ice Program. The ASIP is in constant contact with the National Ice Center as well as the United States Coast Guard (USCG) for safety of navigation. In the past, the ASIP provided briefings to the USCG when in support of search and rescue efforts. Currently, not only does that support remain, but our team is also briefing on sea ice outlooks into the next few months. As traffic in the Arctic increases, the ASIP will be called upon to provide more and more services on varying time scales to meet customer needs. This talk will address the many facets of the current Alaska Sea Ice Program as well as delve into what we see as the future of the ASIP.

  19. Stations Outdoors

    ERIC Educational Resources Information Center

    Madison, John P.; And Others

    1976-01-01

    Described is a program of outdoor education utilizing activity-oriented learning stations. Described are 13 activities including: a pond study, orienteering, nature crafts, outdoor mathematics, linear distance measurement, and area measurement. (SL)

  20. 2012 Alaska Performance Scholarship Outcomes Report

    ERIC Educational Resources Information Center

    Rae, Brian

    2012-01-01

    As set forth in Alaska Statute 14.43.840, Alaska's Departments of Education & Early Development (EED) and Labor and Workforce Development (DOLWD), the University of Alaska (UA), and the Alaska Commission on Postsecondary Education (ACPE) present this first annual report on the Alaska Performance Scholarship to the public, the Governor, and the…

  1. USGS Alaska State Mosaic

    USGS Publications Warehouse

    ,

    2008-01-01

    The Alaska State Mosaic consists of portions of scenes from the Multi-Resolution Land Characteristics 2001 (MRLC 2001) collection. The 172 selected scenes have been geometrically and radiometrically aligned to produce a seamless, relatively cloud-free image of the State. The scenes were acquired between July 1999 and September 2002, resampled to 120-meter pixels, and cropped to the State boundary. They were reprojected into a standard Alaska Albers projection with the U.S. National Elevation Dataset (NED) used to correct for relief.

  2. 2006 Compilation of Alaska Gravity Data and Historical Reports

    USGS Publications Warehouse

    Saltus, Richard W.; Brown, Philip J.; Morin, Robert L.; Hill, Patricia L.

    2008-01-01

    Gravity anomalies provide fundamental geophysical information about Earth structure and dynamics. To increase geologic and geodynamic understanding of Alaska, the U.S. Geological Survey (USGS) has collected and processed Alaska gravity data for the past 50 years. This report introduces and describes an integrated, State-wide gravity database and provides accompanying gravity calculation tools to assist in its application. Additional information includes gravity base station descriptions and digital scans of historical USGS reports. The gravity calculation tools enable the user to reduce new gravity data in a consistent manner for combination with the existing database. This database has sufficient resolution to define the regional gravity anomalies of Alaska. Interpretation of regional gravity anomalies in parts of the State are hampered by the lack of local isostatic compensation in both southern and northern Alaska. However, when filtered appropriately, the Alaska gravity data show regional features having geologic significance. These features include gravity lows caused by low-density rocks of Cenozoic basins, flysch belts, and felsic intrusions, as well as many gravity highs associated with high-density mafic and ultramafic complexes.

  3. Design, test, and applications of the Alaska SAR Facility

    NASA Technical Reports Server (NTRS)

    Berwin, R. W.; Cuddy, D. T.; Hilland, J. E.; Holt, B.

    1992-01-01

    The key science requirements, the overall design, and the innovative testing approaches that have been used to ensure the functionality of the Alaska SAR Facility (ASF) are described. The facility is to play an important role in the remote sensing applications of Arctic oceanography, geology, glaciology, hydrology, and ecosystem processes. Attention is given to the ASF's three major components: the Receiving Ground Station, the SAR Processing System, and the Archive and Operations System. The ASF hardware configuration and software support, through extensive design and implementaton reviews, were shown to satisfy the initial memorandum of agreement first initiated by NASA for the establishment of a receiving ground station and image processing facility at the University of Alaska Fairbanks, and also to satisfy the science objectives formulated by the prelaunch Science Working team. The testing strategy and techniques used in the implementation of the ASF to assure functionality is outlined. The test structures, approach, and environment are considered.

  4. Alaska's Cold Desert.

    ERIC Educational Resources Information Center

    Brune, Jeff; And Others

    1996-01-01

    Explores the unique features of Alaska's Arctic ecosystem, with a focus on the special adaptations of plants and animals that enable them to survive in a stressful climate. Reviews the challenges facing public and private land managers who seek to conserve this ecosystem while accommodating growing demands for development. Includes classroom…

  5. Alaska Mathematics Standards

    ERIC Educational Resources Information Center

    Alaska Department of Education & Early Development, 2012

    2012-01-01

    High academic standards are an important first step in ensuring that all Alaska's students have the tools they need for success. These standards reflect the collaborative work of Alaskan educators and national experts from the nonprofit National Center for the Improvement of Educational Assessment. Further, they are informed by public comments.…

  6. Alaska Glaciers and Rivers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image on October 7, 2007, showing the Alaska Mountains of south-central Alaska already coated with snow. Purple shadows hang in the lee of the peaks, giving the snow-clad land a crumpled appearance. White gives way to brown on the right side of the image where the mountains yield to the lower-elevation Susitna River Valley. The river itself cuts a silver, winding path through deep green forests and brown wetlands and tundra. Extending from the river valley, are smaller rivers that originated in the Alaska Mountains. The source of these rivers is evident in the image. Smooth white tongues of ice extend into the river valleys, the remnants of the glaciers that carved the valleys into the land. Most of the water flowing into the Gulf of Alaska from the Susitna River comes from these mountain glaciers. Glacier melt also feeds glacier lakes, only one of which is large enough to be visible in this image. Immediately left of the Kahiltna River, the aquamarine waters of Chelatna Lake stand out starkly against the brown and white landscape.

  7. Venetie, Alaska energy assessment.

    SciTech Connect

    Jensen, Richard Pearson; Baca, Michael J.; Schenkman, Benjamin L.; Brainard, James Robert

    2013-07-01

    This report summarizes the Energy Assessment performed for Venetie, Alaska using the principals of an Energy Surety Microgrid (ESM) The report covers a brief overview of the principals of ESM, a site characterization of Venetie, a review of the consequence modeling, some preliminary recommendations, and a basic cost analysis.

  8. Alaska's Logging Camp School.

    ERIC Educational Resources Information Center

    Millward, Robert E.

    1999-01-01

    A visit to Ketchikan, Alaska, reveals a floating, one-teacher logging-camp school that uses multiage grouping and interdisciplinary teaching. There are 10 students. The school gym and playground, bunkhouse, fuel tanks, mess hall, and students' homes bob up and down and are often moved to other sites. (MLH)

  9. Seismology Outreach in Alaska

    NASA Astrophysics Data System (ADS)

    Gardine, L.; Tape, C.; West, M. E.

    2014-12-01

    Despite residing in a state with 75% of North American earthquakes and three of the top 15 ever recorded, most Alaskans have limited knowledge about the science of earthquakes. To many, earthquakes are just part of everyday life, and to others, they are barely noticed until a large event happens, and often ignored even then. Alaskans are rugged, resilient people with both strong independence and tight community bonds. Rural villages in Alaska, most of which are inaccessible by road, are underrepresented in outreach efforts. Their remote locations and difficulty of access make outreach fiscally challenging. Teacher retention and small student bodies limit exposure to science and hinder student success in college. The arrival of EarthScope's Transportable Array, the 50th anniversary of the Great Alaska Earthquake, targeted projects with large outreach components, and increased community interest in earthquake knowledge have provided opportunities to spread information across Alaska. We have found that performing hands-on demonstrations, identifying seismological relevance toward career opportunities in Alaska (such as natural resource exploration), and engaging residents through place-based experience have increased the public's interest and awareness of our active home.

  10. Catalog of strong motion stations in Eastern North America

    NASA Astrophysics Data System (ADS)

    Busby, R. W.

    1990-04-01

    The catalog contains information on all strong motion stations operating in Eastern North America known to the National Center for Earthquake Engineering Research (NCEER). The location, coordinates, installation dates, type of instrument, operator, structure type and size, and site geology are listed for each station. The format of the catalog is patterned after the United States Geological Survey (USGS) Open-File Report 81-664, 'Western Hemisphere Strong-Motion Accelerograph Station List-1980' but the entries have been updated as of January 1990. There are 237 stations listed in the catalog which include 414 recording instruments. One third of these stations are intended to record free-field ground motion while the rest are associated with large engineered structures. The relationship of station location to seismicity is shown in a series of figures and a method is described to predict peak acceleration levels from an earthquake where the magnitude and distance to station are known.

  11. Geologic studies in Alaska by the U.S. Geological Survey, 1988

    USGS Publications Warehouse

    Dover, James H.; Galloway, John P.

    1989-01-01

    This volume continues the annual series of U.S. Geological Survey (USGS) reports on geologic investigations in Alaska. Since 1975, when the first of these collections of short papers appeared under the title "The United States Geological Survey in Alaska: Accomplishments during 1975," the series has been published as USGS circulars. This bulletin departs from the circular style, in part to provide a more flexible format for longer reports with more depth of content, better documentation, and broader scope than is possible for circular articles.The 13 papers in this bulletin represent a sampling of research activities carried out in Alaska by the USGS over the past few years. The topics addressed range from mineral resource studies (including natural gas) and geochemistry, Quaternary geology, basic stratigraphic and structural problems, and the use of computer graphics in geologic map preparation, to the application of geochronology to regional tectonic problems. Geographic areas represented are numbered on figure 1 and include the North Slope (1) and Brooks Range (2, 3) of Arctic Alaska, Seward Peninsula (4), interior Alaska (5-9), and remote locations of the Alaska Peninsula (10, 11) and southeast Alaska (12, 13).Two bibliographies following the reports of investigations list (1) reports about Alaska in USGS publications released in 1988 and (2) reports about Alaska by USGS authors in publications outside the USGS in 1988. A bibliography and index of the short papers in past USGS circulars devoted to Geological Research and Accomplishments in Alaska (1975-1986) is published as USGS Open-File Report 87-420.

  12. Baseline Characteristics of Jordan Creek, Juneau, Alaska

    USGS Publications Warehouse

    Host, Randy H.; Neal, Edward G.

    2004-01-01

    Anadromous fish populations historically have found healthy habitat in Jordan Creek, Juneau, Alaska. Concern regarding potential degradation to the habitat by urban development within the Mendenhall Valley led to a cooperative study among the City and Borough of Juneau, Alaska Department of Environmental Conservation, and the U.S. Geological Survey, that assessed current hydrologic, water-quality, and physical-habitat conditions of the stream corridor. Periods of no streamflow were not uncommon at the Jordan Creek below Egan Drive near Auke Bay stream gaging station. Additional flow measurements indicate that periods of no flow are more frequent downstream of the gaging station. Although periods of no flow typically were in March and April, streamflow measurements collected prior to 1999 indicate similar periods in January, suggesting that no flow conditions may occur at any time during the winter months. This dewatering in the lower reaches likely limits fish rearing and spawning habitat as well as limiting the migration of juvenile salmon out to the ocean during some years. Dissolved-oxygen concentrations may not be suitable for fish survival during some winter periods in the Jordan Creek watershed. Dissolved-oxygen concentrations were measured as low as 2.8 mg/L at the gaging station and were measured as low as 0.85 mg/L in a tributary to Jordan Creek. Intermittent measurements of pH and dissolved-oxygen concentrations in the mid-reaches of Jordan Creek were all within acceptable limits for fish survival, however, few measurements of these parameters were made during winter-low-flow conditions. One set of water quality samples was collected at six different sites in the Jordan Creek watershed and analyzed for major ions and dissolved nutrients. Major-ion chemistry showed Jordan Creek is calcium bicarbonate type water with little variation between sampling sites.

  13. 14 CFR 145.215 - Capability list.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Capability list. 145.215 Section 145.215 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES REPAIR STATIONS Operating Rules § 145.215 Capability list. (a)...

  14. Coal resources of Alaska

    SciTech Connect

    Sanders, R.B.

    1982-01-01

    In the late 1800s, whaling ships carried Alaskan coal, and it was used to thaw ground for placer gold mining. Unfortunate and costly political maneuvers in the early 1900s delayed coal removal, but the Alaska Railroad and then World War II provided incentives for opening mines. Today, 33 million acres (about 9% of the state) is classified as prospectively valuable for coal, much of it under federal title. Although the state's geology is poorly known, potential for discovery of new fields exists. The US Geological Survey estimates are outdated, although still officially used. The total Alaska onshore coal resource is estimated to be 216 to 4216 billion tons of which 141 billion tons are identified resources; an additional 1430 billion tons are believed to lie beneath Cook Inlet. Transportation over mountain ranges and wetlands is the biggest hurdle for removal. Known coal sources and types are described and mapped. 1 figure.

  15. Seabirds in Alaska

    USGS Publications Warehouse

    Hatch, Scott A.; Piatt, John F.

    1995-01-01

    Techniques for monitoring seabird populations vary according to habitat types and the breeding behavior of individual species (Hatch and Hatch 1978, 1989; Byrd et al. 1983). An affordable monitoring program can include but a few of the 1,300 seabird colonies identified in Alaska, and since the mid-1970's, monitoring effotrts have emphasized a small selection of surface-feeding and diving species, primarily kittiwakes (Rissa spp.) and murres (Uria spp.). Little or no information on trends is available for other seabirds (Hatch 1993a). The existing monitoring program occurs largely on sites within the Alaska Maritime National Wildlife Refuge, which was established primarily for the conservation of marine birds. Data are collected by refuge staff, other state and federal agencies, private organizations, university faculty, and students.

  16. Space station protective coating development

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Hill, S. G.

    1989-01-01

    A generic list of Space Station surfaces and candidate material types is provided. Environmental exposures and performance requirements for the different Space Station surfaces are listed. Coating materials and the processing required to produce a viable system, and appropriate environmental simulation test facilities are being developed. Mass loss data from the original version of the atomic oxygen test chamber and the improved facility; additional environmental exposures performed on candidate materials; and materials properties measurements on candidate coatings to determine the effects of the exposures are discussed. Methodologies of production, and coating materials, used to produce the large scale demonstration articles are described. The electronic data base developed for the contract is also described. The test chamber to be used for exposure of materials to atomic oxygen was built.

  17. Geologic map of Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Mull, Charles G.; Karl, Susan M.

    2015-12-31

    This Alaska compilation is unique in that it is integrated with a rich database of information provided in the spatial datasets and standalone attribute databases. Within the spatial files every line and polygon is attributed to its original source; the references to these sources are contained in related tables, as well as in stand-alone tables. Additional attributes include typical lithology, geologic setting, and age range for the map units. Also included are tables of radiometric ages.

  18. Index of stations: surface-water data-collection network of Texas, September 1999

    USGS Publications Warehouse

    Gandara, Susan C.; Barbie, Dana L.

    2001-01-01

    As of September 30, 1999, the surface-water data-collection network of Texas (table 1) included 321 continuous-record streamflow stations (D), 20 continuous-record gage-height only stations (G), 24 crest-stage partial-record stations (C), 40 floodhydrograph partial-record stations (H), 25 low-flow partial-record stations (L), 1 continuous-record temperature station (M1), 25 continuous-record temperature and specific conductance stations (M2), 17 continuous-record temperature, specific conductance, dissolved oxygen, and pH stations (M4), 4 daily water-quality stations (Qd), 115 periodic water-quality stations (Qp), 17 reservoir/lake surveys for water quality stations (Qs), 85 continuous or daily reservoircontent stations (R), and 10 daily precipitation stations (Pd). Plate 1 identifies the major river basins in Texas and shows the location of the stations listed in table 1. Table 1 shows the station number and name, latitude and longitude, type of station, and office responsible for the collection of the data and maintenance of the record. An 8-digit permanent numerical designation for all gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering between two main-stem stations are listed between these two stations. A similar order is followed in listing stations by first rank, second rank, and other ranks of tributaries. The rank of any tributary, with respect to the stream to which it is an immediate tributary, is indicated by an indention in the table. Each indention represents one rank. This downstream order and system of indention shows which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated.

  19. Index of stations; surface-water data-collections network of Texas, September 1993

    USGS Publications Warehouse

    Gandara, S.C.; Jones, R.E.

    1995-01-01

    Table 1 shows the station number and name, latitude and longitude, type of station, and the office principally responsible for collection of the data. An 8-digit permanent numerical designation for all gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering between two main-stem stations are listed between them. A similar order is followed in listing stations by first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is an immediate tributary is indicated by an indention in the table. Each indention represents one rank. This downstream order and system of indention shows which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated.

  20. Index of stations; surface-water data-collection network of Texas, September 1995

    USGS Publications Warehouse

    Gandara, S.C.; Jones, R.E.

    1996-01-01

    Table 1 shows the station number and name, latitude and longitude, type of station, and the office responsible for the collection of the data and the record. An 8-digit permanent numerical designation for all gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering between two main-stem stations are listed between them. A similar order is followed in listing stations by first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is an immediate tributary is indicated by an indention in the table. Each indention represents one rank. This downstream order and system of indention shows which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated.

  1. 2013 Alaska Performance Scholarship Outcomes Report

    ERIC Educational Resources Information Center

    Rae, Brian

    2013-01-01

    In accordance with Alaska statute the departments of Education & Early Development (EED) and Labor and Workforce Development (DOLWD), the University of Alaska (UA), and the Alaska Commission on Postsecondary Education (ACPE) present this second annual report on the Alaska Performance Scholarship (APS). Among the highlights: (1) In the public…

  2. Rural Alaska Mentoring Project (RAMP)

    ERIC Educational Resources Information Center

    Cash, Terry

    2011-01-01

    For over two years the National Dropout Prevention Center (NDPC) at Clemson University has been supporting the Lower Kuskokwim School District (LKSD) in NW Alaska with their efforts to reduce high school dropout in 23 remote Yup'ik Eskimo villages. The Rural Alaska Mentoring Project (RAMP) provides school-based E-mentoring services to 164…

  3. Alaska provides icy training ground

    SciTech Connect

    Rintoul, B.

    1983-04-01

    Offshore oil drilling platforms and oil exploration off the coast of Alaska are discussed. Sohio is investigating the feasibility of platform supporters from shore such as icebreakers and air-cushion vehicles. At Prudhoe Bay Arco is embarking on the first tertiary oil recovery project to take place on Alaska's North Slope.

  4. Alaska High Altitude Photography Program

    NASA Technical Reports Server (NTRS)

    Petersen, Earl V.; Knutson, Martin A.; Ekstrand, Robert E.

    1986-01-01

    In 1978, the Alaska High Altitude Photography Program was initiated to obtain simultaneous black and white and color IR aerial photography of Alaska. Dual RC-10 and Zeiss camera systems were used for this program on NASA's U-2 and WB-57F, respectively. Data collection, handling, and distribution are discussed as well as general applications and the current status.

  5. Mobile VLBI deployment plans of the Crustal Dynamics Project for the western United States and Alaska

    NASA Astrophysics Data System (ADS)

    Trask, D. W.; Vegos, C. J.

    Current plans for the Mobile VLBI program are addressed. Present mobile stations and their past activities are summarized, and past and future modes of obtaining data are compared, including the 'burst' and 'leap frog' modes. The observational campaign for Mobile VLBI is described, emphasizing the portions in Canada and Alaska. The extent to which the mobile stations are utilized and the ways in which the site visit yield may be increased are discussed.

  6. Mobile VLBI deployment plans of the Crustal Dynamics Project for the western United States and Alaska

    NASA Technical Reports Server (NTRS)

    Trask, D. W.; Vegos, C. J.

    1983-01-01

    Current plans for the Mobile VLBI program are addressed. Present mobile stations and their past activities are summarized, and past and future modes of obtaining data are compared, including the 'burst' and 'leap frog' modes. The observational campaign for Mobile VLBI is described, emphasizing the portions in Canada and Alaska. The extent to which the mobile stations are utilized and the ways in which the site visit yield may be increased are discussed.

  7. EarthScope Transportable Array (TA) Plans for Deployment in Alaska and Yukon

    NASA Astrophysics Data System (ADS)

    Hafner, K.; Busby, R. W.; Woodward, R.; Frassetto, A.

    2012-12-01

    The USArray portion of the National Science Foundation (NSF)-funded EarthScope project has been rolling across the continental United States from west to east since its construction began in October 2003. The Transportable Array (TA) element of Earthscope / USArray is a large deployment of 400 high quality broadband seismographs that is operated by the Incorporated Research Institutions for Seismology (IRIS) Consortium. The TA will reach the last installation in the eastern US in September 2013, after installing and operating 1678 stations. Following this ten-year deployment across the contiguous 48 US states and southernmost Canada the EarthScope USArray is expected to move to Alaska in 2014, contingent on a renewal proposal for the period FY14-FY18. The plan is to cover Alaska and parts of the Yukon Territory with approximately 300 stations at an 85 km grid-like spacing. The TA station grid will include about 35 existing seismic stations in Alaska. The NSF is currently supporting preparatory work to develop station design and communication concepts appropriate for the variable Alaska conditions. The siting of stations has been a focus of planning to-date, particularly the coordination with existing Alaskan seismic and GPS stations as well as Canadian stations. There is considerable interest in at least some of the stations becoming permanent assets to the existing station operators. We are also working on developing potential collaborative efforts with NOAA and other federal agencies, as well as groups conducting permafrost studies in the Arctic. We describe the station design, including modifications for long-term power and telemetry in remote regions. We have been testing sensor emplacement techniques that can be used across Alaska, particularly in regions of tundra underlain by permafrost, that will yield low horizontal noise at long periods. Results from several test stations are presented and the technique to emplace sensors is discussed. Feedback and

  8. Ohoyo One Thousand: A Resource Guide of American Indian/Alaska Native Women, 1982.

    ERIC Educational Resources Information Center

    Anderson, Owanah

    The resource guide contains a listing of 1,004 notable American Indian/Alaska Native women who are willing to share their resource skills in 62 Indian-specific programs, Indian priority issues, and women's agenda issues. The women represent 321 tribes and bands and are from 44 states. Biographical briefs for each woman include personal data (name,…

  9. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2012-12-01

    Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native

  10. Telemedicine in Alaska: The ATS-6 Satellite Biomedical Demonstration. Final Report.

    ERIC Educational Resources Information Center

    Foote, Dennis; And Others

    A demonstration project explored the potential of satellite video consulation to improve the quality of rural health care in Alaska. Satellite ground stations permitting both transmission and reception of black and white television were installed at clinics in Fairbanks, Fort Yukon, Galena, and Tanana. Receive-only television capability was…

  11. The Alaska Arctic Vegetation Archive (AVA-AK)

    SciTech Connect

    Walker, Donald; Breen, Amy; Druckenmiller, Lisa; Wirth, Lisa W.; Fisher, Will; Raynolds, Martha K.; Sibik, Jozef; Walker, Marilyn D.; Hennekens, Stephan; Boggs, Keith; Boucher, Tina; Buchhorn, Marcel; Bultmann, Helga; Cooper, David; Daniels, Fred J. A.; Davidson, Scott J.; Ebersole, James J.; Elmendorf, Sara C.; Epstein, Howard E.; Gould, William A.; Hollister, Robert D.; Iversen, Colleen M.; Jorgenson, M. Torre; Kade, Anja; Lee, Michael T.; MacKenzie, William H.; Peet, Robert K.; Peirce, Jana L.; Schickhoff, Udo; Sloan, Victoria L.; Talbot, Stephen S.; Tweedie, Craig E.; Villarreal, Sandra; Webber, Patrick J.; Zona, Donatella

    2016-05-17

    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are stored in a Turboveg database. A standardized Pan Arctic Species List provides a consistent nomenclature for vascular plants, bryophytes, and lichens in the archive. A web-based online Alaska Arctic Geoecological Atlas (AGA-AK) allows viewing and downloading the species data in a variety of formats, and provides access to a wide variety of ancillary data. We conducted a preliminary cluster analysis of the first 16 datasets (1,613 plots) to examine how the spectrum of derived clusters is related to the suite of datasets, habitat types, and environmental gradients. Here, we present the contents of the archive, assess its strengths and weaknesses, and provide three supplementary files that include the data dictionary, a list of habitat types, an overview of the datasets, and details of the cluster analysis.

  12. The Alaska Arctic Vegetation Archive (AVA-AK)

    DOE PAGES

    Walker, Donald; Breen, Amy; Druckenmiller, Lisa; ...

    2016-05-17

    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are stored in a Turboveg database. A standardized Pan Arctic Species List provides a consistent nomenclature for vascular plants, bryophytes, and lichens in the archive. A web-based online Alaska Arctic Geoecological Atlas (AGA-AK) allows viewing and downloading the species data in a variety of formats, and providesmore » access to a wide variety of ancillary data. We conducted a preliminary cluster analysis of the first 16 datasets (1,613 plots) to examine how the spectrum of derived clusters is related to the suite of datasets, habitat types, and environmental gradients. Here, we present the contents of the archive, assess its strengths and weaknesses, and provide three supplementary files that include the data dictionary, a list of habitat types, an overview of the datasets, and details of the cluster analysis.« less

  13. 47 CFR 73.4000 - Listing of FCC policies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Listing of FCC policies. 73.4000 Section 73... BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4000 Listing of FCC policies. The following sections list, solely for the purpose of reference and convenience, certain Policies of the...

  14. Inconsistency in precipitation measurements across the Alaska-Yukon border

    NASA Astrophysics Data System (ADS)

    Scaff, L.; Yang, D.; Li, Y.; Mekis, E.

    2015-12-01

    This study quantifies the inconsistency in gauge precipitation observations across the border of Alaska and Yukon. It analyses the precipitation measurements by the national standard gauges (National Weather Service (NWS) 8 in. gauge and Nipher gauge) and the bias-corrected data to account for wind effect on the gauge catch, wetting loss and trace events. The bias corrections show a significant amount of errors in the gauge records due to the windy and cold environment in the northern areas of Alaska and Yukon. Monthly corrections increase solid precipitation by 136 % in January and 20 % for July at the Barter Island in Alaska, and about 31 % for January and 4 % for July at the Yukon stations. Regression analyses of the monthly precipitation data show a stronger correlation for the warm months (mainly rainfall) than for cold month (mainly snowfall) between the station pairs, and small changes in the precipitation relationship due to the bias corrections. Double mass curves also indicate changes in the cumulative precipitation over the study periods. This change leads to a smaller and inverted precipitation gradient across the border, representing a significant modification in the precipitation pattern over the northern region. Overall, this study discovers significant inconsistency in the precipitation measurements across the USA-Canada border. This discontinuity is greater for snowfall than for rainfall, as gauge snowfall observations have large errors in windy and cold conditions. This result will certainly impact regional, particularly cross-border, climate and hydrology investigations.

  15. Geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    USGS Publications Warehouse

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    2015-01-01

    The boundaries separating the Alaska Peninsula terrane from other terranes are commonly indistinct or poorly defined. A few boundaries have been defined at major faults, although the extensions of these faults are speculative through some areas. The west side of the Alaska Peninsula terrane is overlapped by Tertiary sedimentary and volcanic rocks and Quaternary deposits.

  16. The List

    ERIC Educational Resources Information Center

    Gillespie, Tim

    2007-01-01

    Some days it is difficult to remember why we love being teachers. For those difficult days, high school teacher Tim Gillespie maintains a list of fifteen reasons to keep teaching. He shares his list to remind us of the "greatest pleasures and highest callings" that we can experience as English teachers, believing that we can sustain ourselves and…

  17. TIP list

    SciTech Connect

    Ludwig, M E

    2006-06-22

    Subcontractors and vendors providing services, including the installation of purchased goods, are required to complete a TIP List. This list does not include every Environment, Safety, and Health (ES&H) related concern at LLNL. It is intended to highlight major concerns common to most on-site service activities.

  18. Installation Restoration Program Preliminary Assessment Bethel Radio Relay Station, Alaska

    DTIC Science & Technology

    1989-04-01

    capacitors. m GL-6 I I I POLYTRICHUM MOSS - Class Musci of a very small, green, bryophytic plant having stems with leaflike structures and growing in...in many hardpans). SPHAGNUM MOSS - Class Musci of a very small, green, bryophytic plant having stems with leaflike structures and growing in velvety

  19. Health and Safety Plan, Kalakaket Creek, Radion Relay Station, Alaska

    DTIC Science & Technology

    1994-09-01

    landing strip, the gravel links between North River RRS, Bear Creek RRS, and roadway to the RRS site, the RRS site, and the water Tatlna RRS. Microwave...pair of diesel storage tanks, AFB performed a site cleanup and removed hazardous a pair of water storage tanks, four tropospheric scatter materials...temporary vehicle garage and air services support aboveground water line consisting of two 2-in. shed located by the runway, and 3250 cleaned crushed

  20. Metamorphic facies map of Alaska

    SciTech Connect

    Dusel-Bacon, C.; O-Rourke, E.F.; Reading, K.E.; Fitch, M.R.; Klute, M.A.

    1985-04-01

    A metamorphic-facies of Alaska has been compiled, following the facies-determination scheme of the Working Group for the Cartography of the Metamorphic Belts of the World. Regionally metamorphosed rocks are divided into facies series where P/T gradients are known and into facies groups where only T is known. Metamorphic rock units also are defined by known or bracketed age(s) of metamorphism. Five regional maps have been prepared at a scale of 1:1,000,000; these maps will provide the basis for a final colored version of the map at a scale of 1:2,500,000. The maps are being prepared by the US Geological Survey in cooperation with the Alaska Division of Geological and Geophysical Surveys. Precambrian metamorphism has been documented on the Seward Peninsula, in the Baird Mountains and the northeastern Kuskokwim Mountains, and in southwestern Alaska. Pre-Ordovician metamorphism affected the rocks in central Alaska and on southern Prince of Wales Island. Mid-Paleozoic metamorphism probably affected the rocks in east-central Alaska. Most of the metamorphic belts in Alaska developed during Mesozoic or early Tertiary time in conjuction with accretion of many terranes. Examples are Jurassic metamorphism in east-central Alaska, Early Cretaceous metamorphism in the southern Brooks Range and along the rim of the Yukon-Kovyukuk basin, and late Cretaceous to early Tertiary metamorphism in the central Alaska Range. Regional thermal metamorphism was associated with multiple episodes of Cretaceous plutonism in southeastern Alaska and with early Tertiary plutonism in the Chugach Mountains. Where possible, metamorphism is related to tectonism. Meeting participants are encouraged to comment on the present version of the metamorphic facies map.

  1. Chronology: MSFC Space Station program, 1982 - present. Major events

    NASA Technical Reports Server (NTRS)

    Whalen, Jessie E. (Compiler); Mckinley, Sarah L. (Compiler); Gates, Thomas G. (Compiler)

    1988-01-01

    The Marshall Space Flight Center (MSFC) maintains an active program to capture historical information and documentation on the MSFC's roles regarding Space Shuttle and Space Station. Marshall History Report 12, called Chronology: MSFC Space Station Program, 1982-Present, is presented. It contains synopses of major events listed according to the dates of their occurrence. Indices follow the synopses and provide additional data concerning the events listed. The Event Index provides a brief listing of all the events without synopses. The Element Index lists the specific elements of the Space Station Program under consideration in the events. The Location Index lists the locations where the events took place. The indices and synopses may be cross-referenced by using dates.

  2. Evidence for Deep Tectonic Tremor in the Alaska-Aleutian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Brown, J. R.; Prejean, S. G.; Beroza, G. C.; Gomberg, J. S.; Haeussler, P. J.

    2010-12-01

    We search for, characterize, and locate tremor not associated with volcanoes along the Alaska-Aleutian subduction zone using continuous seismic data recorded by the Alaska Volcano Observatory and Alaska Earthquake Information Center from 2005 to the present. Visual inspection of waveform spectra and time series reveal dozens of 10 to 20-minute bursts of tremor throughout the Alaska-Aleutian subduction zone (Peterson, 2009). Using autocorrelation methods, we show that these tremor signals are composed of hundreds of repeating low-frequency earthquakes (LFEs) as has been found in other circum-Pacific subduction zones. We infer deep sources based on phase arrival move-out times of less than 4 seconds across multiple monitoring networks (max. inter-station distances of 50 km), which are designed to monitor individual volcanoes. We find tremor activity is localized in 7 segments: Cook Inlet, Shelikof Strait, Alaska Peninsula, King Cove, Unalaska-Dutch Harbor, Andreanof Islands, and the Rat Islands. Locations along the Cook Inlet, Shelikof Straight and Alaska Peninsula are well constrained due to adequate station coverage. LFE hypocenters in these regions are located on the plate interface and form a sharp edge near the down-dip limit of the 1964 M 9.2 rupture area. Although the geometry, age, thermal structure, frictional and other relevant properties of the Alaska-Aleutian subduction are poorly known, it is likely these characteristics differ along its entire length, and also differ from other subduction zones where tremor has been found. LFE hypocenters in the remaining areas are also located down-dip of the most recent M 8+ megathrust earthquakes, between 60-75 km depth and almost directly under the volcanic arc. Although these locations are less well constrained, our preliminary results suggest LFE/tremor activity marks the down-dip rupture limit for megathrust earthquakes in this subduction zone. Also, we cannot rule out the possibility that our observations could

  3. Alaska Interagency Ecosystem Health Work Group

    USGS Publications Warehouse

    Shasby, Mark

    2009-01-01

    The Alaska Interagency Ecosystem Health Work Group is a community of practice that recognizes the interconnections between the health of ecosystems, wildlife, and humans and meets to facilitate the exchange of ideas, data, and research opportunities. Membership includes the Alaska Native Tribal Health Consortium, U.S. Geological Survey, Alaska Department of Environmental Conservation, Alaska Department of Health and Social Services, Centers for Disease Control and Prevention, U.S. Fish and Wildlife Service, Alaska Sea Life Center, U.S. Environmental Protection Agency, and Alaska Department of Fish and Game.

  4. ATS-F ground station integration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The ATS ground stations were described, including a system description, operational frequencies and bandwidth, and a discussion of individual subsystems. Each station configuration is described as well as its floor plan. The station performance, as tested by the GSI, is displayed in chart form providing a summary of the more important parameters tested. This chart provides a listing of test data, by site, for comparison purposes. Also included is a description of the ATS-6 experiments, the equipment, and interfaces required to perform these experiments. The ADP subsystem and its role in the experiments is also described. A description of each program task and a summary of the activities performed were then given. These efforts were accomplished at the Rosman II Ground Station, located near Rosman N.C., the Mojave Ground Station, located near Barstow Ca., and the GSI Contractors plant located near Baltimore, Md.

  5. On the climate and climate change of Sitka, Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Wendler, Gerd; Galloway, Kevin; Stuefer, Martin

    2016-10-01

    Sitka, located in southeastern coastal Alaska, is the only meteorological station in Alaska and northern coastal British Columbia, with a long climatological record, going back to the first half of the nineteenth century. Sitka was the capital of Alaska, when it was part of the Russian Empire, to which Alaska belonged until 1867, when the American government purchased it. In 1827, the Russian established an observatory on Baranof Island, Sitka Harbor, which made 17-hourly observations, later extended to 19 and thereafter to all hours of the day. When analyzing the data, the 12-day time difference between the Russian (Julian) calendar, at which the observations were made, and ours (Gregorian) has to be considered. The climate of Sitka is maritime, with relative warm winter temperatures—there is no month with a mean temperature below freezing—and moderately warm summer temperatures with 4 months above the 10 °C level and plentiful precipitation all-year long. It is the warmest zone of Alaska. Even though there is a substantial break in observations in the late nineteenth century, these are the only observation, which started so early in the nineteenth century. Systematic US-based observations commenced much later normally in connection with the gold rush, whaling in Northern Alaska, and the fur trade, predominantly along the Yukon River. During the 186 years of observations from 1827 to 2013, the best linear fit gave a temperature increase of 1.56 °C for the whole period or 0.86 °C per century, somewhat lower than expected for the relatively high latitudes. The increase was nonlinear, with several multi-decadal variations. However, when comparing the first normal (1831-1860) to the last normal (1981-2010) and assuming a linear trend, a higher value of 1.06 °C per century was calculated. The discrepancy might be explained by nonlinearity and the fact that during the late nineteenth and early twentieth centuries, observations were sporadic. Furthermore, the

  6. Long-term Variability in Pacific Decadal Oscillation Teleconnections to Climate in Alaska: From "In a Relationship" to "It's Complicated"

    NASA Astrophysics Data System (ADS)

    Heckler, S.; McAfee, S. A.

    2015-12-01

    Since the Pacific Decadal Oscillation's (PDO) identification in 1997, it has been widely used as a seasonal-forecasting and decision-making tool in Alaska. Gulf of Alaska sea surface temperatures have oscillated every few decades between warmer (positive PDO) and colder (negative PDO). In the historical record, there are two negative phases and two positive phases, but since 2000, the PDO has vacillated between warm and cold states annually. Recent inconsistencies in the phase of the PDO as well as its influence on climate have warranted further study of this climate phenomenon. Previous work found that strength and importance of the PDO teleconnections to temperature and precipitation varied widely over time in the Twentieth Century Reanalysis (v2) data and in CRU TS3.2.1. In light of the inherent problems with reanalyses and with gridded products in data-poor areas, it is necessary to examine individual station data to further understand the relationship of the PDO with climate in Alaska. This study examines temperature and precipitation data for individual stations across Alaska to determine the stability of PDO teleconnections. Individual station data were downloaded from the NOAA National Centers for Environmental Information GHCN-D database. For the months of January, February and March, stations with at least 90% complete data for all three months were selected. Using stations grouped according to the recently developed Alaska climate divisions, the stability of PDO teleconnections was analyzed in terms of station anomalies from the PRISM climatology. In many parts of the state, the relationship between the PDO and local climate was not as stable as expected. Even at individual stations, the strength and influence of the PDO was often inconsistent over time.

  7. Service Station Attendant. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Davis, John

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 24 terminal objectives for a basic secondary level service station attendant course. The materials were developed for a two-semester course (2 and 3 hours daily). The specialized classroom and shop experiences are designed to enable the student…

  8. Index of stations: surface-water data-collection network of Texas, September 1998

    USGS Publications Warehouse

    Gandara, Susan C.; Barbie, Dana L.

    1999-01-01

    As of September 30, 1998, the surface-water data-collection network of Texas (table 1) included 313 continuous-recording streamflow stations (D), 22 gage-height record only stations (G), 23 crest-stage partial-record stations (C), 39 flood-hydrograph partial-record stations (H), 25 low-flow partial-record stations (L), 1 continuous-recording temperature station (M1), 25 continuous-recording temperature and conductivity stations (M2), 3 continuous-recording temperature, conductivity, and dissolved oxygen stations (M3), 13 continuous-recording temperature, conductivity, dissolved oxygen, and pH stations (M4), 5 daily chemical-quality stations (Qd), 133 periodic chemical-quality stations (Qp), 16 reservoir/lake surveys for water quality (Qs), and 70 continuous or daily reservoir-content stations (R). Plate 1 identifies the major river basins in Texas and shows the location of the stations listed in table 1.

  9. An Alaska Soil Carbon Database

    NASA Astrophysics Data System (ADS)

    Johnson, Kristofer; Harden, Jennifer

    2009-05-01

    Database Collaborator's Meeting; Fairbanks, Alaska, 4 March 2009; Soil carbon pools in northern high-latitude regions and their response to climate changes are highly uncertain, and collaboration is required from field scientists and modelers to establish baseline data for carbon cycle studies. The Global Change Program at the U.S. Geological Survey has funded a 2-year effort to establish a soil carbon network and database for Alaska based on collaborations from numerous institutions. To initiate a community effort, a workshop for the development of an Alaska soil carbon database was held at the University of Alaska Fairbanks. The database will be a resource for spatial and biogeochemical models of Alaska ecosystems and will serve as a prototype for a nationwide community project: the National Soil Carbon Network (http://www.soilcarb.net). Studies will benefit from the combination of multiple academic and government data sets. This collaborative effort is expected to identify data gaps and uncertainties more comprehensively. Future applications of information contained in the database will identify specific vulnerabilities of soil carbon in Alaska to climate change, disturbance, and vegetation change.

  10. Operation IceBridge Alaska

    NASA Astrophysics Data System (ADS)

    Larsen, C.

    2015-12-01

    The University of Alaska Fairbanks (UAF) has flown LiDAR missions for Operation IceBridge in Alaska each year since 2009, expanding upon UAF's airborne laser altimetry program which started in 1994. These observations show that Alaska's regional mass balance is -75+11/-16 Gt yr-1 (1994-2013) (Larsen et al., 2015). A surprising result is that the rate of surface mass loss observed on non-tidewater glaciers in Alaska is extremely high. At these rates, Alaska contributes ~1 mm to global sea level rise every 5 years. Given the present lack of adequate satellite resources, Operation IceBridge airborne surveys by UAF are the most effective and efficient method to monitor this region's impact on global sea level rise. Ice depth measurements using radar sounding have been part of these airborne surveys since 2012. Many of Alaska's tidewater glaciers are bedded significantly below sea level. The depth and extent of glacier beds below sea level are critical factors in the dynamics of tidewater retreat. Improved radar processing tools are being used to predict clutter using forward simulation. This is essential to properly sort out true bed returns, which are often masked or obscured by valley wall returns. This presentation will provide an overview of the program, highlighting recent findings and observations from the most recent campaigns, and focusing on techniques used for the extrapolation of surface elevation changes to regional mass balances.

  11. Revisiting Notable Earthquakes and Seismic Patterns of the Past Decade in Alaska

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Macpherson, K. A.; Holtkamp, S. G.

    2015-12-01

    Alaska, the most seismically active region of the United States, has produced five earthquakes with magnitudes greater than seven since 2005. The 2007 M7.2 and 2013 M7.0 Andreanof Islands earthquakes were representative of the most common source of significant seismic activity in the region, the Alaska-Aleutian megathrust. The 2013 M7.5 Craig earthquake, a strike-slip event on the Queen-Charlotte fault, occurred along the transform plate boundary in southeast Alaska. The largest earthquake of the past decade, the 2014 M7.9 Little Sitkin event in the western Aleutians, occurred at an intermediate depth and ruptured along a gently dipping fault through nearly the entire thickness of the subducted Pacific plate. Along with these major earthquakes, the Alaska Earthquake Center reported over 250,000 seismic events in the state over the last decade, and its earthquake catalog surpassed 500,000 events in mid-2015. Improvements in monitoring networks and processing techniques allowed an unprecedented glimpse into earthquake patterns in Alaska. Some notable recent earthquake sequences include the 2008 Kasatochi eruption, the 2006-2008 M6+ crustal earthquakes in the central and western Aleutians, the 2010 and 2015 Bering Sea earthquakes, the 2014 Noatak swarm, and the 2014 Minto earthquake sequence. In 2013, the Earthscope USArray project made its way into Alaska. There are now almost 40 new Transportable Array stations in Alaska along with over 20 upgraded sites. This project is changing the earthquake-monitoring scene in Alaska, lowering magnitude of completeness across large, newly instrumented parts of the state.

  12. Alaska's Children, 1998. Alaska Head Start State Collaboration Project, Quarterly Report.

    ERIC Educational Resources Information Center

    Douglas, Dorothy, Ed.

    1998-01-01

    This document consists of four issues of the quarterly report "Alaska's Children," which provides information on the Alaska Head Start State Collaboration Project and updates on Head Start activities in Alaska. Regular features in the issues include a calendar of conferences and meetings, a status report on Alaska's children, reports…

  13. 77 FR 58731 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2013... Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the... and Wildlife Service (Service or we) proposes migratory bird subsistence harvest regulations in...

  14. Alaska Athabascan stellar astronomy

    NASA Astrophysics Data System (ADS)

    Cannon, Christopher M.

    2014-01-01

    Stellar astronomy is a fundamental component of Alaska Athabascan cultures that facilitates time-reckoning, navigation, weather forecasting, and cosmology. Evidence from the linguistic record suggests that a group of stars corresponding to the Big Dipper is the only widely attested constellation across the Northern Athabascan languages. However, instruction from expert Athabascan consultants shows that the correlation of these names with the Big Dipper is only partial. In Alaska Gwich'in, Ahtna, and Upper Tanana languages the Big Dipper is identified as one part of a much larger circumpolar humanoid constellation that spans more than 133 degrees across the sky. The Big Dipper is identified as a tail, while the other remaining asterisms within the humanoid constellation are named using other body part terms. The concept of a whole-sky humanoid constellation provides a single unifying system for mapping the night sky, and the reliance on body-part metaphors renders the system highly mnemonic. By recognizing one part of the constellation the stargazer is immediately able to identify the remaining parts based on an existing mental map of the human body. The circumpolar position of a whole-sky constellation yields a highly functional system that facilitates both navigation and time-reckoning in the subarctic. Northern Athabascan astronomy is not only much richer than previously described; it also provides evidence for a completely novel and previously undocumented way of conceptualizing the sky---one that is unique to the subarctic and uniquely adapted to northern cultures. The concept of a large humanoid constellation may be widespread across the entire subarctic and have great antiquity. In addition, the use of cognate body part terms describing asterisms within humanoid constellations is similarly found in Navajo, suggesting a common ancestor from which Northern and Southern Athabascan stellar naming strategies derived.

  15. The United States Geological Survey in Alaska; accomplishments during 1976

    USGS Publications Warehouse

    Blean, Kathleen M.

    1977-01-01

    United States Geological Survey projects in Alaska include a wide range of topics of economic and scientific interest. Studies in 1976 include economic geology, regional geology, stratigraphy, environmental geology, engineering geology, hydrology, and marine geology. Discussions of the findings or, in some instances, narratives of the course of the investigations are grouped in eight subdivisions corresponding to the six major onshore geographic regions, the offshore projects, and projects that are statewide in scope. Locations of the study areas are shown. In addition, many reports and maps covering various aspects of the geology and mineral and water resources of the State were published. These publications are listed. (Woodard-USGS)

  16. Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

    1991-01-01

    The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

  17. Intelligent Virtual Station (IVS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

  18. International Space Station Overview

    NASA Technical Reports Server (NTRS)

    Bates, William V., Jr.

    1999-01-01

    The overview of the International Space Station (ISS) is comprised of the program vision and mission; Space Station uses; definition of program phases; as well as descriptions and status of several scheduled International Space Station Overview assembly flights.

  19. Alaska GeoFORCE, A New Geologic Adventure in Alaska

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2011-12-01

    RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. A program of rigorous academic activity combines with social, cultural, and recreational activities. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. This summer RAHI is launching a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science as the hook because most kids get excited about dinosaurs, volcanoes and earthquakes, but it includes physics, chemistry, math, biology and other sciences. Students will be recruited, initially from the Arctic North Slope schools, in the 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The carrot on the end of the stick is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks, Arizona, Oregon and the Appalachians. All trips are focused on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska is being launched by UAF in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska will be managed by UAF's long-standing Rural Alaska Honors Insitute (RAHI) that has been successfully providing intense STEM educational opportunities for Alaskan high school students for almost 30 years. The Texas program, with adjustments for differences in culture and environment, will be

  20. Alaska Arts Resource Directory.

    ERIC Educational Resources Information Center

    Dugan, Gene, Ed.

    This directory lists over 250 non-profit and for-profit arts organizations in 90 Alaskan communities. Compiled as a resource guide for artists, arts administrators, and teachers, this document offers information that assist them in sharing resources, communicating, and coordinating arts activities. It contains information from and about arts…

  1. The seismic structure of southeast Alaska

    NASA Astrophysics Data System (ADS)

    Bauer, Mark

    The convergent motion of the Pacific and North American Plates in Alaska has produced geologic features associated with subduction zones and has transported displaced terranes along the Queen Charlotte-Fairweather fault system that forms the northeastern boundary of the Pacific Plate. These subduction features stop abruptly at the edge of the Yakutat Block displaced terrane, approximately 300 km from the Queen Charlotte-Fairweather fault. The purpose of this study was to determine the type and geometry of the boundary between the Yakutat Block and North American as well as the cause of the offset volcanic arc and missing Wadati-Benioff zone. I calculated P and S-wave receiver functions for 57 broadband seismic stations located in southeast Alaska. S-wave data was migrated using a Common Conversion Point procedure. P-wave data was imaged via a three-dimensional, pre-stack migration using plane-wave decomposition weighted by an inverse generalized Radon transform to calculate the scattering potential for each event. I also calculated the temperatures at the top of the Yakutat slab and mantle wedge using three different analytical thermal models. The 3-D images and animations I produced show that the Yakutat Block is being subducted, continuous with the Pacific slab, and extends to the Queen Charlotte-Fairweather strike-slip fault systems. The subducted slab extends north to the Wrangell Volcanic Field with a dip than increases gradually from 10° in the west to 15° in the east, stripping approximately 15 km of overlying sediments. The location of the Wrangell Volcanic Field and lack of Wadati-Benioff zone are consistent with the temperatures I calculated for the top of slab and mantle wedge after stripping 15 km of sediment.

  2. 50 CFR 17.5 - Alaska natives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... resides in Alaska; or (2) Any non-native permanent resident of an Alaskan native village who is primarily... pursuant to paragraph (a) of this section may be sold in native villages or towns in Alaska for native consumption within native villages and towns in Alaska. (c) Non-edible by-products of endangered or...

  3. Alaska Women's Commission Regional Conferences 1986.

    ERIC Educational Resources Information Center

    Callahan, Christine

    This booklet describes the work of the Alaska Women's Commission, a state agency dedicated to the achievement of equal legal, economic, social, and political status for women in Alaska. Since its inception, the Alaska Women's Commission has provided funding for regional women's conferences in rural parts of the state. The document describes four…

  4. 75 FR 45649 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... to the Alaska Native Claims Settlement Act. The lands are in the vicinity of Holy Cross, Alaska, and... Bureau of Land Management Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior. ACTION: Notice of decision approving lands for conveyance. SUMMARY: As required by 43 CFR...

  5. Alaska Performance Scholarship Outcome Report 2015

    ERIC Educational Resources Information Center

    Rae, Brian

    2015-01-01

    The Alaska Performance Scholarship was established in state law in 2011 and first offered to Alaska high school graduates beginning with the class of 2011. Described as "an invitation to excellence" to Alaska's high school students, its goal was to inspire students to push themselves academically in areas that correlate to success in…

  6. Trends in Alaska's People and Economy.

    ERIC Educational Resources Information Center

    Leask, Linda; Killorin, Mary; Martin, Stephanie

    This booklet provides data on Alaska's population, economy, health, education, government, and natural resources, including specific information on Alaska Natives. Since 1960, Alaska's population has tripled and become more diverse, more stable, older, less likely to be male or married, and more concentrated. About 69 percent of the population…

  7. Sensor emplacement testing at Poker Flat, Alaska

    NASA Astrophysics Data System (ADS)

    Reusch, A.; Beaudoin, B. C.; Anderson, K. E.; Azevedo, S.; Carothers, L.; Love, M.; Miller, P. E.; Parker, T.; Pfeifer, M.; Slad, G.; Thomas, D.; Aderhold, K.

    2013-12-01

    PASSCAL provides equipment and support for temporary seismic projects. Speed and efficiency of deployments are essential. A revised emplacement technique of putting broadband sensors directly into soil (aka direct burial) is being tested. The first phase (fall 2011 to spring 2013) comparing data quality and sensor stability between the direct burial and the traditional 1 m deep temporary PASSCAL-style vault in a wet and noisy site near San Antonio, NM is complete. Results suggest there is little or no difference in sensor performance in the relatively high-noise environment of this initial test. The second phase was started in November 2012 with the goal of making the same comparison, but at Poker Flat, Alaska, in a low-noise, high-signal, cold and wet environment, alongside a Transportable Array (TA) deployment to be used as a performance control. This location is in an accessible and secure area with very low site noise. In addition to benefiting future worldwide PASSCAL deployments, the Poker Flat experiment serves a secondary purpose of testing modifications necessary to successfully deploy and recover broadband stations in a cold environment with the limited logistics anticipated for remote Flexible Array (FA) and PASSCAL Program deployments in Alaska. Developing emplacement techniques that maintain high data quality and data return while minimizing logistics is critical to enable principle investigators to effectively and efficiently co-locate within the future TA Alaska footprint. Three Nanometrics sensors were installed in November 2012 in power-augered holes 76 cm in depth: a Trillium Compact Posthole (PH) and two Trillium 120PH units (one standard PH and one enhanced PHQ). The installations took less than 8 hours in -30°C conditions with 4 hours of usable daylight. The Compact PH and the 120PHQ are delivering data in realtime, while the 120PH is testing standalone power and data collection systems. Preliminary results compare favorably to each other as

  8. New Coastal Tsunami Gauges: Application at Augustine Volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    Burgy, M.; Bolton, D. K.

    2006-12-01

    Recent eruptive activity at Augustine Volcano and its associated tsunami threat to lower Cook Inlet pointed out the need for a quickly deployable tsunami detector which could be installed on Augustine Island's coast. The detector's purpose would be to verify tsunami generation by direct observation of the wave at the source to support tsunami warning decisions along populated coastlines. To fill this need the Tsunami Mobile Alert Real-Time (TSMART) system was developed at NOAA's West Coast/Alaska Tsunami Warning Center with support from the University of Alaska Tsunami Warning and Environmental Observatory for Alaska program (TWEAK) and the Alaska Volcano Observatory (AVO). The TSMART system consists of a pressure sensor installed as near as possible to the low tide line. The sensor is enclosed in a water-tight hypalon bag filled with propylene-glycol to prevent silt damage to the sensor and freezing. The bag is enclosed in a perforated, strong plastic pipe about 16 inches long and 8 inches in diameter enclosed at both ends for protection. The sensor is cabled to a data logger/radio/power station up to 300 feet distant. Data are transmitted to a base station and made available to the warning center in real-time through the internet. This data telemetry system can be incorporated within existing AVO and Plate Boundary Observatory networks which makes it ideal for volcano-tsunami monitoring. A TSMART network can be utilized anywhere in the world within 120 miles of an internet connection. At Augustine, two test stations were installed on the east side of the island in August 2006. The sensors were located very near the low tide limit and covered with rock, and the cable was buried to the data logger station which was located well above high tide mark. Data logger, radio, battery and other electronics are housed in an enclosure mounted to a pole which also supports an antenna and solar panel. Radio signal is transmitted to a repeater station higher up on the island

  9. Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.

    This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and

  10. Program Listings.

    ERIC Educational Resources Information Center

    Journal of Computers in Mathematics and Science Teaching, 1983

    1983-01-01

    A complete listing of a projectile motion program for the Apple II microcomputer is provided. A discussion of this computer simulation and a table with variables used in the program (as well as their meanings) can be found in SE 533 596. (JN)

  11. Planning How to Use Land in Village Alaska: One of a Series of Articles on the Native Land Claims.

    ERIC Educational Resources Information Center

    Weeden, Bob

    As one in a series of eight articles written by different professionals concerned with Alaska Native land claims, this article focuses on the influence of change and competition in land use planning. Designed to stimulate careful political/historical assessment at an advanced secondary or adult level, this booklet presents a vocabulary list, 9…

  12. Alaska Energy Inventory Project: Consolidating Alaska's Energy Resources

    NASA Astrophysics Data System (ADS)

    Papp, K.; Clough, J.; Swenson, R.; Crimp, P.; Hanson, D.; Parker, P.

    2007-12-01

    Alaska has considerable energy resources distributed throughout the state including conventional oil, gas, and coal, and unconventional coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass. While much of the known large oil and gas resources are concentrated on the North Slope and in the Cook Inlet regions, the other potential sources of energy are dispersed across a varied landscape from frozen tundra to coastal settings. Despite the presence of these potential energy sources, rural Alaska is mostly dependent upon diesel fuel for both electrical power generation and space heating needs. At considerable cost, large quantities of diesel fuel are transported to more than 150 roadless communities by barge or airplane and stored in large bulk fuel tank farms for winter months when electricity and heat are at peak demands. Recent increases in the price of oil have severely impacted the price of energy throughout Alaska, and especially hard hit are rural communities and remote mines that are off the road system and isolated from integrated electrical power grids. Even though the state has significant conventional gas resources in restricted areas, few communities are located near enough to these resources to directly use natural gas to meet their energy needs. To address this problem, the Alaska Energy Inventory project will (1) inventory and compile all available Alaska energy resource data suitable for electrical power generation and space heating needs including natural gas, coal, coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass and (2) identify locations or regions where the most economic energy resource or combination of energy resources can be developed to meet local needs. This data will be accessible through a user-friendly web-based interactive map, based on the Alaska Department of Natural Resources, Land Records Information Section's (LRIS) Alaska Mapper, Google Earth, and Terrago Technologies' Geo

  13. Correlation of the Cretaceous formations of Greenland and Alaska

    USGS Publications Warehouse

    Imlay, Ralph Willard; Reeside, John B.

    1953-01-01

    This is Number 10d of a series of correlation charts prepared for the Committee on Stratigraphy of the National Research Council. It has been sponsored by the U.S. Geological Survey and has required about seven months' time of both authors gathering and compiling data and evaluating fossil evidence. As the two regions dealt with in the chart are widely separated, the lists of references are also given separately. The annotations dealing with Greenland are based entirely on published information. The annotations dealing with Alaska are based on a re-examination of nearly all the Cretaceous fossils from Alaska are based on a re-examination of nearly all the Cretaceous fossils from Alaska in the collections of the Geological Survey. This has resulted in many concepts not hitherto published and in some concepts that are completely at variance with those that have been published. Naturally for large areas undergoing active exploration, such as Alaska, a correlation chart is out of date in many particulars as soon as published. Nevertheless it is valuable to the field man whose activities are confined to small areas but who must interpret much of his data in terms of surrounding areas that he has not seen. It is valuable to the student and to the general geologist because it organizes scattered information in a manner that can be applied in their field problems, makes quite unnecessary the memorization of stratigraphic correlations are based on observation and reasoning and not on a vast memory. It is probably of greatest value to the specialist who makes the chart because he discovers what areas and problems are most in need of research and can thereby direct his efforts and those of his associates in a manner that will yield the greatest results.

  14. Alaska Pipeline Insulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Crude oil moving through the 800-mile Trans-Alaska Pipeline must be kept at a relatively high temperature, about 180 degrees Fahrenheit, to maintain the fluidity of the oil. In Arctic weather, that demands highly effective insulation. General Electric Co.'s Space Division, Valley Forge, Pennsylvania, provided it with a spinoff product called Therm-O-Trol. Shown being installed on the pipeline, Therm-O-Trol is a metal-bonded polyurethane foam especially formulated for Arctic insulation. A second GE spinoff product, Therm-O-Case, solved a related problem involved in bringing hot crude oil from 2,000-foot-deep wells to the surface without transferring oil heat to the surrounding permafrost soil; heat transfer could melt the frozen terrain and cause dislocations that might destroy expensive well casings. Therm-O-Case is a double-walled oil well casing with multi-layered insulation which provides an effective barrier to heat transfer. Therm-O-Trol and Therm-O-Case are members of a family of insulating products which stemmed from technology developed by GE Space Division in heat transferlthermal control work on Gemini, Apollo and other NASA programs.

  15. Alexander Archipelago, Southeastern Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    West of British Columbia, Canada, and south of the Yukon Territory, the southeastern coastline of Alaska trails off into the islands of the Alexander Archipelago. The area is rugged and contains many long, U-shaped, glaciated valleys, many of which terminate at tidewater. The Alexander Archipelago is home to Glacier Bay National Park. The large bay that has two forks on its northern end is Glacier Bay itself. The eastern fork is Muir inlet, into which runs the Muir glacier, named for the famous Scottish-born naturalist John Muir. Glacier Bay opens up into the Icy Strait. The large, solid white area to the west is Brady Icefield, which terminates at the southern end in Brady's Glacier. To locate more interesting features from Glacier Bay National Park, take a look at the park service map. As recently as two hundred years ago, a massive ice field extended into Icy Strait and filled the Glacier Bay. Since that time, the area has experienced rapid deglaciation, with many large glaciers retreating 40, 60, even 80 km. While temperatures have increased in the region, it is still unclear whether the rapid recession is part of the natural cycle of tidewater glaciers or is an indicator of longer-term climate change. For more on Glacier Bay and climate change, read an online paper by Dr. Dorothy Hall, a MODIS Associate Science Team Member. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  16. Space Station Spartan study

    NASA Technical Reports Server (NTRS)

    Lane, J. H.; Schulman, J. R.; Neupert, W. M.

    1985-01-01

    The required extension, enhancement, and upgrading of the present Spartan concept are described to conduct operations from the space station using the station's unique facilities and operational features. The space station Spartan (3S), the free flyer will be deployed from and returned to the space station and will conduct scientific missions of much longer duration than possible with the current Spartan. The potential benefits of a space station Spartan are enumerated. The objectives of the study are: (1) to develop a credible concept for a space station Spartan; and (2) to determine the associated requirements and interfaces with the space station to help ensure that the 3S can be properly accommodated.

  17. Alaska Resource Data File, Talkeetna Mountains quadrangle, Alaska

    USGS Publications Warehouse

    Rogers, Robert K.; Schmidt, Jeanine M.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  18. Alaska Resource Data File, McCarthy quadrangle, Alaska

    USGS Publications Warehouse

    Hudson, Travis L.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  19. Infrared monitoring of the Space Station environment

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Jennings, Donald E.; Mumma, Michael J.

    1988-01-01

    The measurement and monitoring of infrared emission in the environment of the Space Station has a twofold importance - for the study of the phenomena itself and as an aid in planning and interpreting Station based infrared experiments. Spectral measurements of the infrared component of the spacecraft glow will, along with measurements in other spectral regions, provide data necessary to fully understand and model the physical and chemical processes producing these emissions. The monitoring of the intensity of these emissions will provide background limits for Space Station based infrared experiments and permit the determination of optimum instrument placement and pointing direction. Continuous monitoring of temporal changes in the background radiation (glow) will also permit better interpretation of Station-based infrared earth sensing and astronomical observations. The primary processes producing infrared emissions in the Space Station environment are: (1) Gas phase excitations of Station generated molecules ( e.g., CO2, H2O, organics...) by collisions with the ambient flux of mainly O and N2. Molecular excitations and generation of new species by collisions of ambient molecules with Station surfaces. They provide a list of resulting species, transition energies, excitation cross sections and relevant time constants. The modeled spectrum of the excited species occurs primarily at wavelengths shorter than 8 micrometer. Emissions at longer wavelengths may become important during rocket firing or in the presence of dust.

  20. Teshekpuk Lake, Alaska

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This ASTER image of Teshekpuk Lake on Alaska's North Slope, within the National Petroleum Reserve, was acquired on August 15, 2000. It covers an area of 58.7 x 89.9 km, and is centered near 70.4 degrees north latitude, 153 degrees west longitude.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 58.7 by 89.9 kilometers (36.4 by 55.7 miles) Location: 70.4 degrees North latitude, 153 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: ASTER 30 meters (98.4 feet) Dates Acquired: August 15, 2000

  1. Dental caries in rural Alaska Native children--Alaska, 2008.

    PubMed

    2011-09-23

    In April 2008, the Arctic Investigations Program (AIP) of CDC was informed by the Alaska Department of Health and Social Services (DHSS) of a large number of Alaska Native (AN) children living in a remote region of Alaska who required full mouth dental rehabilitations (FMDRs), including extractions and/or restorations of multiple carious teeth performed under general anesthesia. In this remote region, approximately 400 FMDRs were performed in AN children aged <6 years in 2007; the region has approximately 600 births per year. Dental caries can cause pain, which can affect children's normal growth and development. AIP and Alaska DHSS conducted an investigation of dental caries and associated risk factors among children in the remote region. A convenience sample of children aged 4-15 years in five villages (two with fluoridated water and three without) was examined to estimate dental caries prevalence and severity. Risk factor information was obtained by interviewing parents. Among children aged 4-5 years and 12-15 years who were evaluated, 87% and 91%, respectively, had dental caries, compared with 35% and 51% of U.S. children in those age groups. Among children from the Alaska villages, those aged 4-5 years had a mean of 7.3 dental caries, and those aged 12-15 years had a mean of 5.0, compared with 1.6 and 1.8 dental caries in same-aged U.S. children. Of the multiple factors assessed, lack of water fluoridation and soda pop consumption were significantly associated with dental caries severity. Collaborations between tribal, state, and federal agencies to provide effective preventive interventions, such as water fluoridation of villages with suitable water systems and provision of fluoride varnishes, should be encouraged.

  2. Critical fishery species in Alaska offshore oil and gas lease areas

    SciTech Connect

    Arbegast, J.; Allen, M.

    1980-11-01

    Offshore oil and gas development in Alaska is governed through sales of lease blocks in designated areas. USBLM manages these sales and prepares the necessary environmental impact statement prior to each sale. Collected fishery data are tabulated, linking critical crustacean and fishery species with their associated lease areas. Listed are critical species, organized by taxonomic name, associated common name, and taxonomic code numbers. Each critical species is linked to one or more of the lease area numbers, derived from USBLM planning units.

  3. F-22A Beddown Environmental Assessment Elmendorf Air Force Base, Alaska

    DTIC Science & Technology

    2006-06-01

    listing in the NRHP or have been identified as important to Alaska Natives as outlined in the American Indian Religious Freedom Act and EO 13007... Native American Graves Protection and Repatriation Act, Archeological Resources Protection Act, or the NHPA. If bones are discovered in the course of...opened during the 1930s, and area natives established residency there in the 1960s. The village is a mix of Athabascan and Eskimo people who depend

  4. Adventures in the Alaska Economy.

    ERIC Educational Resources Information Center

    Jackstadt, Steve; Huskey, Lee

    This publication was developed to increase students' understanding of basic economic concepts and the historical development of Alaska's economy. Comics depict major historical events as they occurred, but specific characters are fictionalized. Each of nine episodes is accompanied by several pages of explanatory text, which enlarges on the episode…

  5. Survey of Alaska Information Systems.

    ERIC Educational Resources Information Center

    Allen, Anda; Sokolov, Barbara J.

    This survey by the Arctic Environmental Information and Data Center at the University of Alaska identifies and describes information and data collections within Alaskan libraries and agency offices which pertain to fish and wildlife or their habitat. Included in the survey are descriptions of the location, characteristics, and availability of…

  6. Alaska and Bering Sea Bloom

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Alaska was relatively clear as was part of the Bering Sea where the aquamarine bloom is still visible in this SeaWiFS image. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  7. Licensed Optometrists in Alaska 1973.

    ERIC Educational Resources Information Center

    Health Resources Administration (DHEW/PHS), Bethesda, MD. Div. of Manpower Intelligence.

    This report presents preliminary findings from a mail survey of all optometrists licensed to practice in the State of Alaska. The survey was conducted in 1973 by the International Association of Boards of Examiners in Optometry as part of a national endeavor to collect data on all optometrists in the United States. Since there was a 100 percent…

  8. Legal Guide for Alaska Youth.

    ERIC Educational Resources Information Center

    Nesbitt, Buell, Ed.; And Others

    This legal guide, developed by the Alaska Congress of Parents and Teachers, is intended for young citizens and parents to advise youth of their civil rights and explain what constitutes a criminal offense. The aim is to objectively state the law in understandable terms. The book is arranged in four sections. Section one explains the legal rights…

  9. Tuberculosis among Children in Alaska.

    ERIC Educational Resources Information Center

    Gessner, Bradford D.

    1997-01-01

    The incidence of tuberculosis among Alaskan children under 15 was more than twice the national rate, with Alaska Native children showing a much higher incidence. Children with household exposure to adults with active tuberculosis had a high risk of infection. About 22 percent of pediatric tuberculosis cases were identified through school…

  10. Antidote: Civic Responsibility. Alaska Law.

    ERIC Educational Resources Information Center

    Phi Alpha Delta Law Fraternity International, Washington, DC.

    Designed for middle school through high school students, this unit contains eight lesson plans that focus on Alaska state law. The state lessons correspond to lessons in the volume, "Antidote: Civic Responsibility. Drug Avoidance Lessons for Middle School & High School Students." Developed to be presented by educators, law student,…

  11. Sea level variations in relation to coastal flow around the Gulf of Alaska

    SciTech Connect

    Reed, R.K.; Schumacher, J.D.

    1981-07-20

    Adjusted sea level deviations at six tide stations around the Gulf of Alaska were examined in light of our recent knowledge of the flow regime. On the east side of the gulf a maximum in the deviations seems to be caused by winter barotropic flow on the shelf. On the north side of the gulf, the maximum in fall is apparently produced by a marked increase in flow of the baroclinic coastal current. Farther west the seasonal sea level signal is appreciably reduced.

  12. Determining solid precipitation on Alaska's Arctic Slope

    NASA Astrophysics Data System (ADS)

    Berezovskaya, S.; Liston, G.; Kane, D. L.

    2006-12-01

    Alaska's Arctic Slope (AAS) is snow-covered approximately nine months each year. Accurate representations of this snow cover and the associated snow-related processes can be crucial to AAS hydrological, meteorological, and biological applications. Although physically realistic spatially and temporally distributed modeling tools of snow evolution process have been developed for the cold and windy AAS, they require reliable atmospheric forcing data to produce reasonable results. In particular, accurate winter precipitation inputs are required, but have proven difficult to obtain in remote arctic environments such as AAS. The spatial heterogeneity of precipitation fields, sparse precipitation observing networks, and lack of appropriate instrumentation to measure solid precipitation, produce critical challenges to representing snow spatial distributions and temporal evolution within AAS and throughout the Arctic in general. Using extensive ground-based snow distribution observations and meteorological station measurements from AAS, we evaluated three methods to define solid precipitation timing and magnitudes: i) adjusting precipitation- gauge data using standard wind and temperature corrections, ii) back-calculating precipitation requirements by assimilating snow-water-equivalent depth observations within a snow-evolution model, and iii) estimating precipitation from non-precipitation meteorological station observations (e.g., air temperature and relative humidity). Since no truly-accurate winter precipitation measurements are available for this region, snow- evolution modeling tools were used to evaluate the efficacy of each method. The SnowTran-3D blowing snow model, in conjunction with the SnowModel snow-evolution model, was used to define vertical and horizontal snow-related transport fluxes across the 2.2 square km Imnavait Creek sub-domain of AAS. When forced with the different precipitation representations, the resulting model simulation outputs were compared

  13. Minority Women's Health: American Indians/Alaska Natives

    MedlinePlus

    ... Minority Women's Health > American Indians/Alaska Natives Minority Women's Health American Indians/Alaska Natives Related information How ... conditions common in American Indian and Alaska Native women Accidents Alcoholism and drug abuse Breast cancer Cancer ...

  14. Chronic Liver Disease and American Indians/Alaska Natives

    MedlinePlus

    ... American Indian/Alaska Native > Chronic Liver Disease Chronic Liver Disease and American Indians/Alaska Natives Among American Indians and Alaska Natives, chronic liver disease is a leading cause of death. While ...

  15. Stroke Mortality Among Alaska Native People

    PubMed Central

    Horner, Ronnie D.; Day, Gretchen M.; Lanier, Anne P.; Provost, Ellen M.; Hamel, Rebecca D.

    2009-01-01

    Objectives. We aimed to describe the epidemiology of stroke among Alaska Natives, which is essential for designing effective stroke prevention and intervention efforts for this population. Methods. We conducted an analysis of death certificate data for the state of Alaska for the period 1984 to 2003, comparing age-standardized stroke mortality rates among Alaska Natives residing in Alaska vs US Whites by age category, gender, stroke type, and time. Results. Compared with US Whites, Alaska Natives had significantly elevated stroke mortality from 1994 to 2003 but not from 1984 to 1993. Alaska Native women of all age groups and Alaska Native men younger than 45 years of age had the highest risk, although the rates for those younger than 65 years were statistically imprecise. Over the 20-year study period, the stroke mortality rate was stable for Alaska Natives but declined for US Whites. Conclusions. Stroke mortality is higher among Alaska Natives, especially women, than among US Whites. Over the past 20 years, there has not been a significant decline in stroke mortality among Alaska Natives. PMID:19762671

  16. List based prefetch

    SciTech Connect

    Boyle, Peter; Christ, Norman; Gara, Alan; Kim,; Changhoan,; Mawhinney, Robert; Ohmacht, Martin; Sugavanam, Krishnan

    2012-08-28

    A list prefetch engine improves a performance of a parallel computing system. The list prefetch engine receives a current cache miss address. The list prefetch engine evaluates whether the current cache miss address is valid. If the current cache miss address is valid, the list prefetch engine compares the current cache miss address and a list address. A list address represents an address in a list. A list describes an arbitrary sequence of prior cache miss addresses. The prefetch engine prefetches data according to the list, if there is a match between the current cache miss address and the list address.

  17. List based prefetch

    SciTech Connect

    Boyle, Peter; Christ, Norman; Gara, Alan; Kim, Changhoan; Mawhinney, Robert; Ohmacht, Martin; Sugavanam, Krishnan

    2014-08-12

    A list prefetch engine improves a performance of a parallel computing system. The list prefetch engine receives a current cache miss address. The list prefetch engine evaluates whether the current cache miss address is valid. If the current cache miss address is valid, the list prefetch engine compares the current cache miss address and a list address. A list address represents an address in a list. A list describes an arbitrary sequence of prior cache miss addresses. The prefetch engine prefetches data according to the list, if there is a match between the current cache miss address and the list address.

  18. Sampson v. state of Alaska: in the Supreme Court of the state of Alaska.

    PubMed

    Bostrom, B A

    2001-01-01

    HELD: The Alaska Constitution's guarantees of privacy and liberty do not afford terminally ill persons the right to a physician's assistance in committing suicide and Alaska's statute prohibiting suicide assistance does not violate their right of equal protection.

  19. 47 CFR 73.877 - Station logs for LPFM stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Station logs for LPFM stations. 73.877 Section... BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.877 Station logs for LPFM stations. The licensee of each LPFM station must maintain a station log. Each log entry must include the time and date...

  20. 47 CFR 73.877 - Station logs for LPFM stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Station logs for LPFM stations. 73.877 Section... BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.877 Station logs for LPFM stations. The licensee of each LPFM station must maintain a station log. Each log entry must include the time and date...

  1. 47 CFR 73.877 - Station logs for LPFM stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Station logs for LPFM stations. 73.877 Section... BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.877 Station logs for LPFM stations. The licensee of each LPFM station must maintain a station log. Each log entry must include the time and date...

  2. 47 CFR 73.877 - Station logs for LPFM stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Station logs for LPFM stations. 73.877 Section... BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.877 Station logs for LPFM stations. The licensee of each LPFM station must maintain a station log. Each log entry must include the time and date...

  3. 47 CFR 73.877 - Station logs for LPFM stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station logs for LPFM stations. 73.877 Section... BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.877 Station logs for LPFM stations. The licensee of each LPFM station must maintain a station log. Each log entry must include the time and date...

  4. Ambient Noise Cross-correlation Surface Wave Tomography of the Continental United States and Alaska.

    NASA Astrophysics Data System (ADS)

    Bensen, G. D.; McCoy, C.; Ritzwoller, M. H.; Levshin, A. L.; Barmin, M. P.; Shapiro, N. M.

    2006-12-01

    The recent development of surface wave tomography based on ambient noise cross-correlations has provided good results on regional scales and relatively short periods less than 40 seconds. This technique however is viable at longer periods and on the continental scale. We present dispersion maps from ambient noise cross- correlation surface-wave tomography for the continental United States and Alaska between 10 and 60 seconds period. Using up to 2 years of data from over 250 permanent and temporary stations obtained from the IRIS DMC and the Canadian National Seismic Network we compute cross-correlations for all station pairs. An automated dispersion analysis technique is applied to obtain Rayleigh wave group and phase speed curves and unacceptable measurements are removed. Dispersion curves from over 12,500 paths are retained in the continental US and about 1,000 cross-correlation and earthquake paths result in Alaska. We obtain isotropic Rayleigh wave group and phase speed maps on a one half degree grid using a damped ray theoretical inversion. Compared to previous teleseismic earthquake techniques, the short period maps provide better resolution of smaller scale features, especially those in the crust. The improved path coverage also enhances resolution at longer periods compared to previous maps with better delineation of tectonic provinces. In Alaska, limited station coverage and earthquake distribution confine the results to the south-central part of the state. Preliminary azimuthally anisotropic Rayleigh wave tomography maps are also presented together with an assessment of their robustness.

  5. Map and table showing isotopic age data in Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Shew, Nora B.; DuBois, G.D.

    1994-01-01

    The source of the data reported here is a compilation of radiometric ages maintained in conjunction with the Alaska Mineral Resource Assessment Program (AMRAP) studies for Alaska. The symbol shape plotted at each location is coded for rock type, whether igneous, metamorphic, or other; the color of the symbol shows the geologic era or period for the Sample(s) at each locale. A list of references for each quadrangle is given to enable the user to find specific information including analytical data for each sample dated within a particular quadrangle. At the scale of this map, the very large number of Samples and the clustering of the samples in limited areas prevented the showing of individual sample numbers on the map.Synthesis and interpretation of any data set requires the user to evaluate the reliability or value of each component of the data set with respect to his or her intended use of the data. For geochronological data, this evaluation must be based on both analytical and geological criteria. Most age determinations are published with calculated estimates of analytical precision, Replicate analyses are infrequently performed; therefore, reported analytical precision is based on estimates of the precision of various components of the analysis and often on an intuitive factor to cover components that may have not been considered. Analytical accuracy is somewhat more difficult to determine; it is not only dependent on the actual measurement, it is also concerned with uncertainties in decay and abundance constants, uncertainties in the isotopic composition and size of the tracer for conventional K-Ar ages, and uncertainties in the Original isotopic composition of the sample, Geologic accuracy of a date is Variable; the interpretation of the meaning of an age determination, is important in the evaluation of its geologic accuracy. Potassium-argon, rubidium-strontium, and uranium-lead age determinations on a single sample can differ widely yet none or all may be

  6. Fisheries Education in Alaska. Conference Report. Alaska Sea Grant Report 82-4.

    ERIC Educational Resources Information Center

    Smoker, William W., Ed.

    This conference was an attempt to have the fishing industry join the state of Alaska in building fisheries education programs. Topics addressed in papers presented at the conference include: (1) fisheries as a part of life in Alaska, addressing participation of Alaska natives in commercial fisheries and national efforts; (2) the international…

  7. Selected 1970 Census Data for Alaska Communities. Part 2 - Northwest Alaska.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Community and Regional Affairs, Juneau. Div. of Community Planning.

    As 1 of 6 regional reports supplying statistical information on Alaska's incorporated and unincorporated communities (those of 25 or more people), this report on Northwest Alaska presents data derived from the 1970 U.S. Census first-count microfilm. Organized via the 3 Northwest Alaska census division, data are presented for the 32 communities of…

  8. 78 FR 53137 - Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., Conoco... Pipeline Proceedings, 18 CFR 343.2 (2013), Flint Hills Resources Alaska, LLC (FHR or Complainant) filed...

  9. 76 FR 68263 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... Department of the Interior Fish and Wildlife Service 50 CFR Part 92 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2012 Season; Proposed Rule #0;#0...-1231-9BPP-L2] RIN 1018-AX55 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations...

  10. 78 FR 11988 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... Fish and Wildlife Service 50 CFR Part 92 RIN 1018-AY70 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2013 Season AGENCY: Fish and Wildlife Service... migratory bird subsistence harvest regulations in Alaska for the 2013 season. These regulations enable...

  11. 77 FR 17353 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... Fish and Wildlife Service 50 CFR Part 92 RIN 1018-AX55 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2012 Season AGENCY: Fish and Wildlife Service... migratory bird subsistence harvest regulations in Alaska for the 2012 season. These regulations will...

  12. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... AGENCY 40 CFR Parts 239 and 258 Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit... proposes to approve Alaska's modification of its approved Municipal Solid Waste Landfill (MSWLF) permit... Domenic Calabro, Office of Air, Waste, and Toxics, U.S. EPA, Region 10, 1200 Sixth Avenue, Suite...

  13. Station Tour: Russian Segment

    NASA Video Gallery

    Expedition 33 Commander Suni Williams concludes her tour of the International Space Station with a visit to the Russian segment, which includes Zarya, the first segment of the station launched in 1...

  14. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    SciTech Connect

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-08-04

    The objective of this project is to eliminate three closely inter-related barriers to oil production in Alaska through the use of a geographic information system (GIS) and other information technology strategies. These barriers involve identification of oil development potential from existing wells, planning projects to efficiently avoid conflicts with other interests, and gaining state approvals for exploration and development projects. Each barrier is the result of either current labor-intensive methods or poorly accessible information. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. This web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information online. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. The application will include an on-line diagnostic Coastal Project Questionnaire to determine the suite of permits required for a specific project. The application will also automatically create distribution lists based on the location and type of project, populate document templates for project review start-ups, public notices and findings, allow submission of e-comments, and post project status information on the Internet. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production

  15. Alaska's giant satellite network

    NASA Astrophysics Data System (ADS)

    Hills, A.

    1983-07-01

    The evolution and features of the Alaskan telecommunications network are described, with emphasis on the satellite links. The Alaskan terrain is rugged and largely unpopulated. Satcom V provides C-band (6/4 GHz) transmission with 24 transponders, each having a 40 MHz bandwidth. The Alascom company operated 105 4.5 m earth-based antennas for remote villages, which receive both telephone and television services. There are also 27 10-m dishes for regional and military applications and a 30 m dish, one of three dishes for links to the centerminous U.S. Currently, half the villages have private and business telephone communications facilities and 200 villages have access to two television stations, one educational, one entertainment. Teleconferencing is possible for government and educational purposes, and discussions are underway with NASA to establish a mobile radio communications capacity.

  16. No-source tsunami forecasting for Alaska communities

    NASA Astrophysics Data System (ADS)

    Tolkova, E.; Nicolsky, D.; Suleimani, E.

    2014-12-01

    The presented tsunami forecasting technique employs observations of the approaching tsunami at DART stations near the Aleutian trench to provide fast local forecasts for the Alaska communities. The suggested technique yields a prediction independent of the tsunami source estimate; increases forecast accuracy by using observations close to the target area; allows for checking the accuracy of the inversion-based forecast before the wave hits the coast. We demonstrate this forecasting technology, introduced in (Power and Tolkova, 2013, Ocean Dynamics, 63(11), 1213-1232), with imitating real-time forecasts of the 2011 Tohoku tsunami at several coastal sites in Alaska (to be compared with the gage records). The coastal forecasts are generated as the wave is registered at regional DART stations (46402, 46043, 46409, 46410). Note that while the DART array spans the Pacific Rim, the inversion-based forecasting methodologies can incorporate data from only 1-3 stations in the vicinity of the tsunami origin. We present a forecasting method which complements existing forecasting tools by using tsunami observations in a region to generate regional predictions independent of the tsunami source estimate. This method allows to utilize observing capabilities of the DART array, as well as tsunami detectors in cabled underwater networks (e.g. NEPTUNE in Canada). Future instrumentation on submarine communication cables will supply larger selection of open-ocean measurements and many more opportunities for this method. Figure: (Top) record of the 2012/10/28 Haida Gwaii tsunami at DART 46411; (Bottom) the tsunami record at Monterey tide gage (red) and its forecast (blue). The forecast is been made as the wave is been registered at the DART one hour before arriving at the gage (Power and Tolkova, 2013).

  17. Radio spectrum surveillance station

    NASA Technical Reports Server (NTRS)

    Hersey, D. R.

    1979-01-01

    The paper presents a general and functional description of a low-cost surveillance station designed as the first phase of NASA's program to develop a radio spectrum surveillance capability for deep space stations for identifying radio frequency interference sources. The station described has identified several particular interferences and is yielding spectral signature data which, after cataloging, will serve as a library for rapid identification of frequently observed interference. Findings from the use of the station are discussed.

  18. Geologic studies in Alaska by the U.S. Geological Survey, 1990

    USGS Publications Warehouse

    Bradley, Dwight C.; Ford, Arthur B.

    1992-01-01

    volume list (1) reports about Alaska in USGS publications released in 1990 and (2) reports about Alaska by USGS authors in publications outside the USGS in 1990. A bibliography and index of papers in past USGS circulars that are devoted to geologic research and accomplishments in Alaska (1975 to 1986) is published as USGS Open-File Report 87-420.

  19. Forestry timber typing. Tanana demonstration project, Alaska ASVT. [Alaska

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Ambrosia, V. G.

    1982-01-01

    The feasibility of using LANDSAT digital data in conjunction with topographic data to delineate commercial forests by stand size and crown closure in the Tanana River basin of Alaska was tested. A modified clustering approach using two LANDSAT dates to generate an initial forest type classification was then refined with topographic data. To further demonstrate the ability of remotely sensed data in a fire protection planning framework, the timber type data were subsequently integrated with terrain information to generate a fire hazard map of the study area. This map provides valuable assistance in initial attack planning, determining equipment accessibility, and fire growth modeling. The resulting data sets were incorporated into the Alaska Department of Natural Resources geographic information system for subsequent utilization.

  20. 75 FR 8109 - National Register of Historic Places; Weekly Listing of Historic Properties

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ...., Jefferson, 09000973, LISTED, 12/02/09 NEW YORK Kings County Kol Israel Synagogue, 603 St. John's Place... County Attucks School, 346 S. 4th, Vinita, 09000974, LISTED, 12/03/09 Ellis County Ingle Brothers...., Cushing, 09000979, LISTED, 12/ 03/09 TEXAS Collin County Allen Water Station, N. of Exchange Pkwy...

  1. 46 CFR 196.13-1 - Muster lists, emergency signals, and manning.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Muster lists, emergency signals, and manning. 196.13-1 Section 196.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Station Bills § 196.13-1 Muster lists, emergency signals, and manning. The requirements for muster lists, emergency...

  2. 46 CFR 97.13-1 - Muster lists, emergency signals, and manning.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Muster lists, emergency signals, and manning. 97.13-1 Section 97.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Station Bills § 97.13-1 Muster lists, emergency signals, and manning. The requirements for muster lists, emergency signals,...

  3. 46 CFR 78.13-1 - Muster lists, emergency signals, and manning.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Muster lists, emergency signals, and manning. 78.13-1 Section 78.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Station Bills § 78.13-1 Muster lists, emergency signals, and manning. The requirements for muster lists, emergency signals, and manning...

  4. 46 CFR 196.13-1 - Muster lists, emergency signals, and manning.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Muster lists, emergency signals, and manning. 196.13-1 Section 196.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Station Bills § 196.13-1 Muster lists, emergency signals, and manning. The requirements for muster lists, emergency...

  5. 46 CFR 196.13-1 - Muster lists, emergency signals, and manning.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Muster lists, emergency signals, and manning. 196.13-1 Section 196.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Station Bills § 196.13-1 Muster lists, emergency signals, and manning. The requirements for muster lists, emergency...

  6. 46 CFR 196.13-1 - Muster lists, emergency signals, and manning.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Muster lists, emergency signals, and manning. 196.13-1 Section 196.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Station Bills § 196.13-1 Muster lists, emergency signals, and manning. The requirements for muster lists, emergency...

  7. 46 CFR 97.13-1 - Muster lists, emergency signals, and manning.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Muster lists, emergency signals, and manning. 97.13-1 Section 97.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Station Bills § 97.13-1 Muster lists, emergency signals, and manning. The requirements for muster lists, emergency signals,...

  8. 46 CFR 78.13-1 - Muster lists, emergency signals, and manning.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Muster lists, emergency signals, and manning. 78.13-1 Section 78.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Station Bills § 78.13-1 Muster lists, emergency signals, and manning. The requirements for muster lists, emergency signals, and manning...

  9. 46 CFR 97.13-1 - Muster lists, emergency signals, and manning.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Muster lists, emergency signals, and manning. 97.13-1 Section 97.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Station Bills § 97.13-1 Muster lists, emergency signals, and manning. The requirements for muster lists, emergency signals,...

  10. 46 CFR 78.13-1 - Muster lists, emergency signals, and manning.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Muster lists, emergency signals, and manning. 78.13-1 Section 78.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Station Bills § 78.13-1 Muster lists, emergency signals, and manning. The requirements for muster lists, emergency signals, and manning...

  11. 46 CFR 196.13-1 - Muster lists, emergency signals, and manning.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Muster lists, emergency signals, and manning. 196.13-1 Section 196.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Station Bills § 196.13-1 Muster lists, emergency signals, and manning. The requirements for muster lists, emergency...

  12. 46 CFR 78.13-1 - Muster lists, emergency signals, and manning.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Muster lists, emergency signals, and manning. 78.13-1 Section 78.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Station Bills § 78.13-1 Muster lists, emergency signals, and manning. The requirements for muster lists, emergency signals, and manning...

  13. 46 CFR 97.13-1 - Muster lists, emergency signals, and manning.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Muster lists, emergency signals, and manning. 97.13-1 Section 97.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Station Bills § 97.13-1 Muster lists, emergency signals, and manning. The requirements for muster lists, emergency signals,...

  14. 46 CFR 97.13-1 - Muster lists, emergency signals, and manning.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Muster lists, emergency signals, and manning. 97.13-1 Section 97.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Station Bills § 97.13-1 Muster lists, emergency signals, and manning. The requirements for muster lists, emergency signals,...

  15. 46 CFR 78.13-1 - Muster lists, emergency signals, and manning.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Muster lists, emergency signals, and manning. 78.13-1 Section 78.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Station Bills § 78.13-1 Muster lists, emergency signals, and manning. The requirements for muster lists, emergency signals, and manning...

  16. Space Station Live: Station Communications Upgrade

    NASA Video Gallery

    NASA Public Affairs Officer Nicole Cloutier-Lemasters recently spoke with Penny Roberts, one of the leads for the International Space Station Avionics and Software group, about the upgrade of the K...

  17. Unified Ecoregions of Alaska: 2001

    USGS Publications Warehouse

    Nowacki, Gregory J.; Spencer, Page; Fleming, Michael; Brock, Terry; Jorgenson, Torre

    2003-01-01

    Major ecosystems have been mapped and described for the State of Alaska and nearby areas. Ecoregion units are based on newly available datasets and field experience of ecologists, biologists, geologists and regional experts. Recently derived datasets for Alaska included climate parameters, vegetation, surficial geology and topography. Additional datasets incorporated in the mapping process were lithology, soils, permafrost, hydrography, fire regime and glaciation. Thirty two units are mapped using a combination of the approaches of Bailey (hierarchial), and Omernick (integrated). The ecoregions are grouped into two higher levels using a 'tri-archy' based on climate parameters, vegetation response and disturbance processes. The ecoregions are described with text, photos and tables on the published map.

  18. USGS releases Alaska oil assessment

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    With the U.S. Congress gearing up for a House-Senate conference committee battle about whether to open the Alaska National Wildlife Refuge (ANWR) for oil drilling, a new assessment of the amount of oil in the federal portion of the U.S. National Petroleum Reserve in Alaska (NRPA) is influencing the debate.The U.S. Geological Survey has found that the NPRA holds "significantly greater" petroleum resources than had been estimated previously This finding was disclosed in a 16 May report. The assessment estimated that technically recoverable oil on NPRA federal lands are between 5.9 and 13.2 billion barrels of oil; a 1980 assessment estimated between 0.3 and 5.4 billion barrels.

  19. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    USGS Publications Warehouse

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  20. Alaska Natives and Alaska Higher Education, 1960-1972: A Descriptive Study. Alaska Native Human Resources Development Program, Publication 1.

    ERIC Educational Resources Information Center

    Jacquot, Louis F.

    Utilizing data derived from numerous sources (institutions, Alaska Native organizations, Federal and State agencies, conferences, etc.), this descriptive study is divided into 6 chapters which trace the evolution of and the necessity for Alaska Native higher education. Following a detailed introduction, Chapter 2 describes the physical and…

  1. ORTHOPHOTOQUAD MAPPING PROGRAM FOR ALASKA.

    USGS Publications Warehouse

    Plasker, James R.

    1985-01-01

    The U. S. Geological Survey (USGS) is the lead civilian mapping agency in the United States and is responsible for creating and maintaining numerous map series. In Alaska the standard topographic map series is at a scale of 1:63,360, and maps at that scale have been available from the USGS since the late 1940's. In 1981 USGS initiated production of orthophotoquads of Alaska, also at a scale of 1:63,360 to be compatible with the topographic map series. An orthophotoquad (OQ) is prepared from a rectified or differentially rectified and scaled black-and-white photographic image published in quadrangle format. The current status of the Alaska OQ program is summarized and sample OQ's are illustrated. Engineering applications of orthophotoquads are discussed, with an emphasis on their use in the on-shore and near-shore areas. A combination of orthophoto imagery and topographic line maps is described as a planning and engineering tool. Sources of map separates and orthophotoquads are provided.

  2. Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska

    NASA Astrophysics Data System (ADS)

    Verbyla, David

    2015-12-01

    Climate has warmed substantially in interior Alaska and several remote sensing studies have documented a decadal-scale decline in the normalized difference vegetation index (NDVI) termed a ‘browning trend’. Reduced summer soil moisture due to changing climatic factors such as earlier springs, less snowpack, and summer drought may reduce boreal productivity and NDVI. However, the relative importance of these climatic factors is poorly understood in boreal interior Alaska. In this study, I used the remotely sensed peak summer NDVI as an index of boreal productivity at 250 m pixel size from 2000 to 2014. Maximum summer NDVI was related to last day of spring snow, early spring snow water equivalent (SWE), and a summer moisture index. There was no significant correlation between early spring SWE and peak summer NDVI. There was a significant correlation between the last day of spring snow and peak summer NDVI, but only for a few higher elevation stations. This was likely due to snowmelt occurring later at higher elevations, thus having a greater effect on summer soil moisture relative to lower elevation sites. For most of boreal interior Alaska, summer drought was likely the dominant control on peak summer NDVI and this effect may persist for several years. Peak summer NDVI declined at all 26 stations after the 2004 drought, and the decline persisted for 2 years at all stations. Due to the shallow rooting zone of most boreal plants, even cool and moist sites at lower elevations are likely vulnerable to drought. For example the peak summer NDVI response following the 2004 drought was similar for adjacent cold and warm watershed basins. Thus, if frequent and severe summer droughts continue, moisture stress effects are likely to be widespread and prolonged throughout most of interior boreal Alaska, including relatively cool, moist sites regardless of spring snowpack conditions or spring phenology.

  3. PBO Operations in Alaska and Cascadia, Combining Regions and Collaborating with our Regional Partners

    NASA Astrophysics Data System (ADS)

    Austin, K. E.; Boyce, E. S.; Dausz, K.; Feaux, K.; Mattioli, G. S.; Pyatt, C.; Willoughby, H.; Woolace, A. C.

    2015-12-01

    During the last year, the Alaska and the Cascadia regions of the EarthScope Plate Boundary Observatory (PBO) network were combined into a single management unit. While both remain distinct regions with their own challenges and engineering staff, every effort has been made to operate as a single team to improve efficiency and provide the highest possible data quality and uptime. Over the last several years a concerted effort has been made to work collaboratively with other institutions and stakeholders to defray ongoing costs by sharing staff and resources. UNAVCO currently operates four integrated GPS/seismic stations in collaboration with the Alaska Earthquake Center, eight with the Alaska Volcano Observatory, and three with the EarthScope TA. By the end of 2015, PBO and TA plan to install another 3 integrated and/or co-located geodetic and seismic systems. While most of these are designed around existing PBO stations, the 2014 installation at Middleton Island is a new station for both groups, providing PBO with an opportunity to expand geodetic data in Alaska. There were two major joint maintenance efforts in 2015:, the largest was a 5 day mission among PBO, AVO, and TA, which shared boat, helicopter, and staff on and around Augustine Volcano; the second, was a 10 day helicopter mission shared between AVO and PBO on Unimak Island. PBO Pacific Northwest is working closely with University of Washington to co-locate at least 9 Earthquake Early Warning Systems, which include the addition of strong motion sensors and high speed RT telemetry at PBO sites. The project is managed by University of Washington but UNAVCO is providing land contact information and infrastructure support. Summer 2015 upgrades include a complete overhaul of aging radio technology at two major networks and several small radio networks in Cascadia. The upgrades will increase reliability and enhance the speed of existing telemetry infrastructure and will continue through summer 2018.

  4. Rationale for Seismic Measurements on Mars by a Single Station

    NASA Technical Reports Server (NTRS)

    Lognonne, P.; Banerdt, W. B.

    2003-01-01

    We present here some of the scientific objectives which can be achieved by a single seismic station on Mars, equipped with a 3 axis VBB seismometer and a 3 axis Short Period Seismometer. We assume that this station is also equipped with meteorological sensors, including infra-sound and pressure, in order to perform a complete meteorological noise correction. The science objectives are listed in order of increasing difficulty.

  5. Space station integrated propulsion and fluid systems study. Space station program fluid management systems databook

    NASA Technical Reports Server (NTRS)

    Bicknell, B.; Wilson, S.; Dennis, M.; Lydon, M.

    1988-01-01

    Commonality and integration of propulsion and fluid systems associated with the Space Station elements are being evaluated. The Space Station elements consist of the core station, which includes habitation and laboratory modules, nodes, airlocks, and trusswork; and associated vehicles, platforms, experiments, and payloads. The program is being performed as two discrete tasks. Task 1 investigated the components of the Space Station architecture to determine the feasibility and practicality of commonality and integration among the various propulsion elements. This task was completed. Task 2 is examining integration and commonality among fluid systems which were identified by the Phase B Space Station contractors as being part of the initial operating capability (IOC) and growth Space Station architectures. Requirements and descriptions for reference fluid systems were compiled from Space Station documentation and other sources. The fluid systems being examined are: an experiment gas supply system, an oxygen/hydrogen supply system, an integrated water system, the integrated nitrogen system, and the integrated waste fluids system. Definitions and descriptions of alternate systems were developed, along with analyses and discussions of their benefits and detriments. This databook includes fluid systems descriptions, requirements, schematic diagrams, component lists, and discussions of the fluid systems. In addition, cost comparison are used in some cases to determine the optimum system for a specific task.

  6. Satellite monitoring of remote volcanoes improves study efforts in Alaska

    NASA Astrophysics Data System (ADS)

    Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K.

    Satellite monitoring of remote volcanoes is greatly benefitting the Alaska Volcano Observatory (AVO), and last year's eruption of the Okmok Volcano in the Aleutian Islands is a good case in point. The facility was able to issue and refine warnings of the eruption and related activity quickly, something that could not have been done using conventional seismic surveillance techniques, since seismometers have not been installed at these locations.AVO monitors about 100 active volcanoes in the North Pacific (NOPAC) region, but only a handful are observed by costly and logistically complex conventional means. The region is remote and vast, about 5000 × 2500 km, extending from Alaska west to the Kamchatka Peninsula in Russia (Figure 1). Warnings are transmitted to local communities and airlines that might be endangered by eruptions. More than 70,000 passenger and cargo flights fly over the region annually, and airborne volcanic ash is a threat to them. Many remote eruptions have been detected shortly after the initial magmatic activity using satellite data, and eruption clouds have been tracked across air traffic routes. Within minutes after eruptions are detected, information is relayed to government agencies, private companies, and the general public using telephone, fax, and e-mail. Monitoring of volcanoes using satellite image data involves direct reception, real-time monitoring, and data analysis. Two satellite data receiving stations, located at the Geophysical Institute, University of Alaska Fairbanks (UAF), are capable of receiving data from the advanced very high resolution radiometer (AVHRR) on National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from synthetic aperture radar (SAR) equipped satellites.

  7. Earthquake locations determined by the Southern Alaska seismograph network for October 1971 through May 1989

    USGS Publications Warehouse

    Fogleman, Kent A.; Lahr, John C.; Stephens, Christopher D.; Page, Robert A.

    1993-01-01

    This report describes the instrumentation and evolution of the U.S. Geological Survey’s regional seismograph network in southern Alaska, provides phase and hypocenter data for seismic events from October 1971 through May 1989, reviews the location methods used, and discusses the completeness of the catalog and the accuracy of the computed hypocenters. Included are arrival time data for explosions detonated under the Trans-Alaska Crustal Transect (TACT) in 1984 and 1985.The U.S. Geological Survey (USGS) operated a regional network of seismographs in southern Alaska from 1971 to the mid 1990s. The principal purpose of this network was to record seismic data to be used to precisely locate earthquakes in the seismic zones of southern Alaska, delineate seismically active faults, assess seismic risks, document potential premonitory earthquake phenomena, investigate current tectonic deformation, and study the structure and physical properties of the crust and upper mantle. A task fundamental to all of these goals was the routine cataloging of parameters for earthquakes located within and adjacent to the seismograph network.The initial network of 10 stations, 7 around Cook Inlet and 3 near Valdez, was installed in 1971. In subsequent summers additions or modifications to the network were made. By the fall of 1973, 26 stations extended from western Cook Inlet to eastern Prince William Sound, and 4 stations were located to the east between Cordova and Yakutat. A year later 20 additional stations were installed. Thirteen of these were placed along the eastern Gulf of Alaska with support from the National Oceanic and Atmospheric Administration (NOAA) under the Outer Continental Shelf Environmental Assessment Program to investigate the seismicity of the outer continental shelf, a region of interest for oil exploration. Since then the region covered by the network remained relatively fixed while efforts were made to make the stations more reliable through improved electronic

  8. Automating existing stations

    SciTech Connect

    Little, J.E.

    1986-09-01

    The task was to automate 20 major compressor stations along ANR Pipeline Co.'s Southeastern and Southwestern pipelines in as many months. Meeting this schedule required standardized hardware and software design. Working with Bristol Babcock Co., ANR came up with an off-the-shelf station automation package suitable for a variety of compressor stations. The project involved 148 engines with 488,880-hp in the 20 stations. ANR Pipeline developed software for these engines and compressors, including horsepower prediction and efficiency. The system places processors ''intelligence'' at each station and engine to monitor and control operations. The station processor receives commands from the company's gas dispatch center at Detroit and informs dispatchers of alarms, conditions, and decision it makes. The automation system is controlled by the Detroit center through a central communications network. Operating orders from the center are sent to the station processor, which obeys orders using the most efficient means of operation at the station's disposal. In a malfunction, a control and communications backup system takes over. Commands and information are directly transmitted between the center and the individual compressor stations. Stations receive their orders based on throughput, with suction and discharge pressure overrides. Additionally, a discharge temperature override protects pipeline coatings.

  9. Want To Work in Alaska's Schools? A Guide for Educators.

    ERIC Educational Resources Information Center

    LaBerge, MaryEllen

    This manual offers practical advice to educators on conducting a job search and obtaining a position in Alaska. Alaska Teacher Placement (University of Alaska Fairbanks) is a statewide clearinghouse for the placement of educators. Although Alaska's certification requirements are similar to those of other states, school administrators are also…

  10. Estimating the Magnitude and Frequency of Peak Streamflows for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada

    USGS Publications Warehouse

    Curran, Janet H.; Meyer, David F.; Tasker, Gary D.

    2003-01-01

    Estimates of the magnitude and frequency of peak streamflow are needed across Alaska for floodplain management, cost-effective design of floodway structures such as bridges and culverts, and other water-resource management issues. Peak-streamflow magnitudes for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows were computed for 301 streamflow-gaging and partial-record stations in Alaska and 60 stations in conterminous basins of Canada. Flows were analyzed from data through the 1999 water year using a log-Pearson Type III analysis. The State was divided into seven hydrologically distinct streamflow analysis regions for this analysis, in conjunction with a concurrent study of low and high flows. New generalized skew coefficients were developed for each region using station skew coefficients for stations with at least 25 years of systematic peak-streamflow data. Equations for estimating peak streamflows at ungaged locations were developed for Alaska and conterminous basins in Canada using a generalized least-squares regression model. A set of predictive equations for estimating the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak streamflows was developed for each streamflow analysis region from peak-streamflow magnitudes and physical and climatic basin characteristics. These equations may be used for unregulated streams without flow diversions, dams, periodically releasing glacial impoundments, or other streamflow conditions not correlated to basin characteristics. Basin characteristics should be obtained using methods similar to those used in this report to preserve the statistical integrity of the equations.

  11. Space Station Freedom Utilization Conference

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The topics addressed in Space Station Freedom Utilization Conference are: (1) space station freedom overview and research capabilities; (2) space station freedom research plans and opportunities; (3) life sciences research on space station freedom; (4) technology research on space station freedom; (5) microgravity research and biotechnology on space station freedom; and (6) closing plenary.

  12. 40 CFR 81.402 - Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Alaska. 81.402 Section 81.402 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF... Visibility Is an Important Value § 81.402 Alaska. Area name Acreage Public Law establishing Federal...

  13. 43 CFR 9239.3 - Grazing, Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Grazing, Alaska. 9239.3 Section 9239.3..., DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.3 Grazing, Alaska. (a) Reindeer. (1) Any use of the Federal lands for reindeer grazing purposes, unless authorized by a...

  14. Alaska School District Cost Study Update

    ERIC Educational Resources Information Center

    Tuck, Bradford H.; Berman, Matthew; Hill, Alexandra

    2005-01-01

    The Legislative Budget and Audit Committee of the Alaska Legislature has asked The Institute of Social and Economic Research (ISER) at the University of Alaska Anchorage to make certain changes and adjustments to the Geographic Cost of Education Index (GCEI) that the American Institutes for Research (AIR) constructed and reported on in Alaska…

  15. Some Books about Alaska Received in 1990.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of State Libraries.

    This annual bibliography of Alaska- and Arctic-related publications received by the Alaska Division of State Libraries is divided into three categories. There are 26 titles in the "Juvenile Fiction" section, 122 in the "Adult Non-Fiction" section, and 19 in the "Adult Fiction" section. Government publications are…

  16. 75 FR 9427 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ..., Limited. The lands are in the vicinity of Holy Cross and Huslia, Alaska, and are located in: Kateel River... Bureau of Land Management [AA-8103-63, AA-8103-65, F-21902-06, F-21903-54, F-21903-55, F-21903- 56; LLAK-96400-L14100000-KC0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management,...

  17. Alaska Performance Scholarship Outcome Report 2016

    ERIC Educational Resources Information Center

    Rae, Brian

    2016-01-01

    Five years ago Alaska's high school graduating class of 2011 became the first with the opportunity to accept the state's "invitation to excellence," the Alaska Performance Scholarship (APS), to pursue their postsecondary studies. Eligible graduates could receive up to $4,755 per year for up to four years to study at a participating…

  18. Viewpoints: Reflections on the Principalship in Alaska.

    ERIC Educational Resources Information Center

    Hagstrom, David A., Ed.

    In this collection, 32 Alaskan principals, retired principals, assistant principals, and principals-to-be share their experiences as administrators and reflect on their feelings about the nature of the work and about schooling issues in Alaska. Nine of the writings were selected from "Totem Tales," the newsletter of Alaska's Association…

  19. Alaska Native Parkinson’s Disease Registry

    DTIC Science & Technology

    2011-06-01

    Investigator Parkinsonism (PS) is a syndrome characterized by tremor , rigidity, slowness of movement, and problems with walking and balance...2. Developing an identification protocol. The primary source of parkinsonism cases will be the Indian Health Service (IHS) provider database, called...of parkinsonism among Alaska Natives. Status: Complete 3. Developing a secure Alaska Native parkinsonism registry database. Status: The database

  20. Distance Learning in Alaska's Rural Schools.

    ERIC Educational Resources Information Center

    Bramble, William J.

    1986-01-01

    The distance education and instructional technology projects that have been undertaken in Alaska over the last decade are detailed in this paper. The basic services offered by the "Learn Alaska Network" are described in relation to three user groups: K-12 education; postsecondary education; and general public education and information.…

  1. Building a Workforce Development System in Alaska

    ERIC Educational Resources Information Center

    Spieker, Sally

    2004-01-01

    The Alaska Human Resources Investment Council developed a blueprint to guide a system that is needs-driven, accessible, interconnected, accountable, sustainable, and has collaborative governance. Vocational Technical Education Providers (VTEP) representing secondary education, technical schools, proprietary institutions, the University of Alaska,…

  2. 75 FR 43199 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... approving the conveyance of surface estate for certain lands to Beaver Kwit'chin Corporation, pursuant to... Doyon, Limited when the surface estate is conveyed to Beaver Kwit'chin Corporation. The lands are in the vicinity of Beaver, Alaska, and are located in: Fairbanks Meridian, Alaska T. 16 N., R. 1 E., Secs. 1 to...

  3. Alaska interim land cover mapping program

    USGS Publications Warehouse

    ,

    1987-01-01

    In order to meet the requirements of the Alaska National Interest Lands Conservation Act (ANILCA) for comprehensive resource and management plans from all major land management agencies in Alaska, the USGS has begun a program to classify land cover for the entire State using Landsat digital data. Vegetation and land cover classifications, generated in cooperation with other agencies, currently exist for 115 million acres of Alaska. Using these as a base, the USGS has prepared a comprehensive plan for classifying the remaining areas of the State. The development of this program will lead to a complete interim vegetation and land cover classification system for Alaska and allow the dissemination of digital data for those areas classified. At completion, 153 Alaska 1:250,000-scale quadrangles will be published and will include land cover from digital Landsat classifications, statistical summaries of all land cover by township, and computer-compatible tapes. An interagency working group has established an Alaska classification system (table 1) composed of 18 classes modified from "A land use and land cover classification system for use with remote sensor data" (Anderson and others, 1976), and from "Revision of a preliminary classification system for vegetation of Alaska" (Viereck and Dyrness, 1982) for the unique ecoregions which are found in Alaska.

  4. Women's Legal Rights in Alaska. Reprint.

    ERIC Educational Resources Information Center

    Tatter, Sue Ellen; Saville, Sandra K.

    This publication is intended to help women in Alaska learn about their legal rights. Some of the information is of a general nature and will be of interest to women in other states. Some of the laws and resources are relevant to Alaska only. The publication can serve as a model to other states wanting to develop a resource to inform women about…

  5. Bill Demmert and Native Education in Alaska

    ERIC Educational Resources Information Center

    Barnhardt, Ray

    2011-01-01

    This article describes the influences of William Demmert's formative years growing up in Alaska and his years as an educator of Native American students upon his career in Native education policy. It focuses on Alaska Native education during a ten-year period between 1980 and 1990 during which time he served as the director of the Center for…

  6. Bryophytes from Simeonof Island in the Shumagin Islands, southwestern Alaska

    USGS Publications Warehouse

    Schofield, W.B.; Talbot, S. S.; Talbot, S.L.

    2004-01-01

    Simeonof Island is located south of the Alaska Peninsula in the hyperoceanic sector of the middle boreal subzone. We examined the bryoflora of Simeonof Island to determine species composition in an area where no previous collections had been reported. This field study was conducted in sites selected to represent the spectrum of environmental variation within Simeonof Island. Data were analyzed using published reports to compare bryophyte distribution patterns at three levels, the Northern Hemisphere, North America, and Alaska. A total of 271 bryophytes were identified: 202 mosses and 69 liverworts. The annotated list of species for Simeonof Island expands the known range for many species and fills distribution gaps within Hulte??n's Western Pacific Coast district. Maps and notes on the distribution of 14 significant distribution records are presented. Compared with bryophyte distribution in the Northern Hemisphere, the bryoflora of Simeonof Island primarily includes taxa of boreal (55%), temperate (20%), arctic (10%), and cosmopolitan (8%) distribution; 6% of the moss flora are western North America endemics. A description of the bryophytes present in the vegetation and habitat types is provided as is a quantitative analysis of the most frequently occurring bryophytes in crowberry heath.

  7. NCADI's 1995 National Directory of Drug Abuse and Alcoholism Treatment and Prevention Programs That Have a Special Program for American Indians/Alaska Natives.

    ERIC Educational Resources Information Center

    Vanderbilt, Rebecca, Comp.; Schacht, Robert M., Comp.

    This state-by-state directory lists over 500 alcohol and drug abuse treatment and prevention services that target American Indians and Alaska Natives. The directory was compiled from the website of the National Clearinghouse for Alcohol and Drug Information (NCADI). Their home page on the Internet is located at http://www.health.org/index.htm. The…

  8. Demersal fish assemblages of the northeastern Chukchi Sea, Alaska

    USGS Publications Warehouse

    Barber, W.E.; Smith, R.L.; Vallarino, M.; Meyer, R.M.

    1997-01-01

    We documented the distribution and abundance of demersal fishes in the northeastern Chukchi Sea, Alaska, in 1990 and 1991, and described 1990 demersal fish assemblages and their relationship to general oceanographic features in the area. We collected samples using an otter trawl at 48 stations in 1990 and 16 in 1991, and we identified a total of 66 species in 14 families. Gadids made up 83% and 69% of the abundance in 1990 and 1991, respectively. Cottids, pleuronectids, and zoarcids together made up 15% of the species in 1990, 28% in 1991. The number of species, species diversity (H), and evenness (V') generally were greater inshore than offshore and greater in the south than in the north. There were significant differences in ranks of species, species diversity, and evenness at 3 of 8 stations sampled beth years. From data collected in 1990, 3 nearshore and 3 offshore station groupings were defined. The northern offshore assemblages had the fewest species, lowest diversity and evenness, and least abundance, whereas two southern assemblages had the most species, highest diversity and evenness, and greatest abundance. We determined that bottom salinity and percent gravel were probably the primary factors influencing assemblage arrangement.

  9. Interim report on the St. Elias, Alaska earthquake of 28 February 1979

    USGS Publications Warehouse

    Lahr, John C.; Plafker, George; Stephens, C.D.; Foglean, K.A.; Blackford, M.E.

    1979-01-01

    On 28 February 1979 an earthquake with surface wave magnitude (Ms) of 7.7 (W. Person, personal communication, 1979) occurred beneath the Chugach and St. Elias mountains of southern Alaska (fig. 1). This is a region of complex tectonics resulting from northwestward convergence between the Pacific and North American plates. To the east, the northwest-trending Fairweather fault accommodates the movement with dextral slip of about 5.5 cm/yr (Plafker, Hudson, and others, 1978); to the west, the Pacific plate underthrusts Alaska at the Aleutian trench, which trends southwestward (Plafker 1969). The USGS has operated a telemetered seismic network in southern Alaska since 1971 and it was greatly expanded along the eastern Gulf of Alaska in September 1974. The current configuration of stations is shown in Figure 9. Technical details of the network are available in published earthquake catalogs (Lahr, Page, and others, 1974; Fogleman, Stephens, and others, 1978). Preliminary analysis of the data from this network covering the time period September 1, 1978 through March 10, 1979, as well as worldwide data for the main shock will be discussed in this paper.

  10. Juvenile groundfish habitat in Kachemak Bay, Alaska, during late summer

    USGS Publications Warehouse

    Abookire, Alisa A.; Piatt, J.F.; Norcross, Brenda L.

    2001-01-01

    We investigated the habitat of juvenile groundfishes in relation to depth, water temperature, and salinity in Kachemak Bay, Alaska. Stations ranging in depth from 10 to 70 m and with sand or mud-sand substrates were sampled with a small-meshed beam trawl in August-September of 1994 to 1999. A total of 8,201 fishes were captured, comprising at least 52 species. Most fishes (91%) had a total length 5% of the total catch) were flathead sole Hippoglossoides elassodon, slim sculpin Radulinus asprellus, Pacific halibut Hippoglossus stenolepis, and arrowtooth flounder Atheresthes stomias. Depth accounted for most of the spatial variability in juvenile groundfish abundance, and neither temperature nor salinity was correlated with fish abundance. Juvenile groundfishes concentrated in either shallow (less than or equal to 20 m) or deep (50-70 m) water, with co-occurrence of some species between 30-40 m. Shallow fishes were the rock soles, Pacific halibut, and great sculpin Myoxocephalus polyacanthocephalus. Deep species were flathead sole, slim sculpin, spinycheek starsnout Bathyagonus infraspinatus, rex sole Glyptocephalus zachirus, tadpole sculpin Psychrolutes paradoxus, and whitebarred prickleback Poroclinus rothrocki. This 6-year study provides baseline data on relative abundance and distribution of juvenile groundfishes in Kachemak Bay and may provide a useful tool for predicting the presence of species in similar habitats in other areas of Alaska.

  11. Observing a catastrophic thermokarst lake drainage in northern Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Arp, Christopher D.

    2015-01-01

    The formation and drainage of thermokarst lakes have reshaped ice-rich permafrost lowlands in the Arctic throughout the Holocene. North of Teshekpuk Lake, on the Arctic Coastal Plain of northern Alaska, thermokarst lakes presently occupy 22.5% of the landscape, and drained thermokarst lake basins occupy 61.8%. Analysis of remotely sensed imagery indicates that nine lakes (>10 ha) have drained in the 1,750 km2 study area between 1955 and 2014. The most recent lake drainage was observed using in situ data loggers providing information on the duration and magnitude of the event, and a nearby weather station provided information on the environmental conditions preceding the lake drainage. Lake 195 (L195), an 80 ha thermokarst lake with an estimated water volume of ~872,000 m3, catastrophically drained on 05 July 2014. Abundant winter snowfall and heavy early summer precipitation resulted in elevated lake water levels that likely promoted bank overtopping, thermo-erosion along an ice-wedge network, and formation of a 9 m wide, 2 m deep, and 70 m long drainage gully. The lake emptied in 36 hours, with 75% of the water volume loss occurring in the first ten hours. The observed peak discharge of the resultant flood was 25 m3/s, which is similar to that in northern Alaska river basins whose areas are more than two orders of magnitude larger. Our findings support the catastrophic nature of sudden lake drainage events and the mechanistic hypotheses developed by J. Ross Mackay.

  12. Geotechnical reconnaissance of the 2002 Denali fault, Alaska, earthquake

    USGS Publications Warehouse

    Kayen, R.; Thompson, E.; Minasian, D.; Moss, R.E.S.; Collins, B.D.; Sitar, N.; Dreger, D.; Carver, G.

    2004-01-01

    The 2002 M7.9 Denali fault earthquake resulted in 340 km of ruptures along three separate faults, causing widespread liquefaction in the fluvial deposits of the alpine valleys of the Alaska Range and eastern lowlands of the Tanana River. Areas affected by liquefaction are largely confined to Holocene alluvial deposits, man-made embankments, and backfills. Liquefaction damage, sparse surrounding the fault rupture in the western region, was abundant and severe on the eastern rivers: the Robertson, Slana, Tok, Chisana, Nabesna and Tanana Rivers. Synthetic seismograms from a kinematic source model suggest that the eastern region of the rupture zone had elevated strong-motion levels due to rupture directivity, supporting observations of elevated geotechnical damage. We use augered soil samples and shear-wave velocity profiles made with a portable apparatus for the spectral analysis of surface waves (SASW) to characterize soil properties and stiffness at liquefaction sites and three trans-Alaska pipeline pump station accelerometer locations. ?? 2004, Earthquake Engineering Research Institute.

  13. Small Wind Electric Systems: An Alaska Consumer's Guide

    SciTech Connect

    Not Available

    2007-04-01

    Small Wind Electric Systems: An Alaska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  14. Space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1987-01-01

    The major requirements and guidelines that affect the space station configuration and power system are explained. The evolution of the space station power system from the NASA program development-feasibility phase through the current preliminary design phase is described. Several early station concepts are described and linked to the present concept. Trade study selections of photovoltaic system technologies are described in detail. A summary of present solar dynamic and power management and distribution systems is also given.

  15. Volcanic tremor and plume height hysteresis from Pavlof Volcano, Alaska.

    PubMed

    Fee, David; Haney, Matthew M; Matoza, Robin S; Eaton, Alexa R; Cervelli, Peter; Schneider, David J; Iezzi, Alexandra M

    2017-01-06

    The March 2016 eruption of Pavlof Volcano, Alaska, produced an ash plume that caused the cancellation of more than 100 flights in North America. The eruption generated strong tremor that was recorded by seismic and remote low-frequency acoustic (infrasound) stations, including the EarthScope Transportable Array. The relationship between the tremor amplitudes and plume height changes considerably between the waxing and waning portions of the eruption. Similar hysteresis has been observed between seismic river noise and discharge during storms, suggesting that flow and erosional processes in both rivers and volcanoes can produce irreversible structural changes that are detectable in geophysical data. We propose that the time-varying relationship at Pavlof arose from changes in the tremor source related to volcanic vent erosion. This relationship may improve estimates of volcanic emissions and characterization of eruption size and intensity.

  16. Development of Alaska Volcano Observatory Seismic Networks, 1988-2008

    NASA Astrophysics Data System (ADS)

    Tytgat, G.; Paskievitch, J. F.; McNutt, S. R.; Power, J. A.

    2008-12-01

    The number and quality of seismic stations and networks on Alaskan volcanoes have increased dramatically in the 20 years from 1988 to 2008. Starting with 28 stations on six volcanoes in 1988, the Alaska Volcano Observatory (AVO) now operates 194 stations in networks on 33 volcanoes spanning the 2000 km Aleutian Arc. All data are telemetered in real time to laboratory facilities in Fairbanks and Anchorage and recorded on digital acquisition systems. Data are used for both monitoring and research. The basic and standard network designs are driven by practical considerations including geography and terrain, access to commercial telecommunications services, and environmental vulnerability. Typical networks consist of 6 to 8 analog stations, whose data can be telemetered to fit on a single analog telephone circuit terminated ultimately in either Fairbanks or Anchorage. Towns provide access to commercial telecommunications and signals are often consolidated for telemetry by remote computer systems. Most AVO stations consist of custom made fiberglass huts that house the batteries, electronics, and antennae. Solar panels are bolted to the south facing side of the huts and the seismometers are buried nearby. The huts are rugged and have allowed for good station survivability and performance reliability. However, damage has occurred from wind, wind-blown pumice, volcanic ejecta, lightning, icing, and bears. Power is provided by multiple isolated banks of storage batteries charged by solar panels. Primary cells are used to provide backup power should the rechargable system fail or fall short of meeting the requirement. In the worst cases, snow loading blocks the solar panels for 7 months, so sufficient power storage must provide power for at least this long. Although primarily seismic stations, the huts and overall design allow additional instruments to be added, such as infrasound sensors, webcams, electric field meters, etc. Yearly maintenance visits are desirable, but some

  17. Control of space stations

    NASA Technical Reports Server (NTRS)

    Lee, K. Y.

    1983-01-01

    A study is made to develop controllers for the NASA-JSC Triangular Space Station and evaluate their performances to make recommendations for structural design and/or control alternatives. The control system design assumes the rigid body of the Space Station and developes the lumped parameter control system by using the Inverse Optimal Control Theory. In order to evaluate the performance of the control system, a Parameter Estimation algorithm is being developed which will be used in modeling an equivalent but simpler Space Station model. Finally, a scaled version of the Space Station is being built for the purpose of physical experiments to evaluate the control system performance.

  18. Station Crew Celebrates Christmas

    NASA Video Gallery

    Aboard the orbiting International Space Station, Expedition 34 Commander Kevin Ford, Russian Flight Engineers Oleg Novitskiy, Evgeny Tarelkin and Roman Romanenko, NASA Flight Engineer Tom Marshburn...

  19. Space Station fluid resupply

    NASA Astrophysics Data System (ADS)

    Winters, Al

    Viewgraphs on space station fluid resupply are presented. Space Station Freedom is resupplied with supercritical O2 and N2 for the ECLSS and USL on a 180 day resupply cycle. Resupply fluids are stored in the subcarriers on station between resupply cycles and transferred to the users as required. ECLSS contingency fluids (O2 and N2) are supplied and stored on station in a gaseous state. Efficiency and flexibility are major design considerations. Subcarrier approach allows multiple manifest combinations. Growth is achieved by adding modular subcarriers.

  20. Space Station operations

    NASA Technical Reports Server (NTRS)

    Gray, R. H.

    1985-01-01

    An evaluation of the success of the Space Station will be based on the service provided to the customers by the Station crew, the productivity of the crew, and the costs of operation. Attention is given to details regarding Space Station operations, a summary of operational philosophies and requirements, logistics and resupply operations, prelaunch processing and launch operations, on-orbit operations, aspects of maintainability and maintenance, habitability, and questions of medical care. A logistics module concept is considered along with a logistics module processing timeline, a habitability module concept, and a Space Station rescue mission.

  1. Interdecadal Variations in the Alaska Gyre

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary S.E.

    1995-01-01

    Climatic dynamic topography variations in the Alaska gyre during the period 1968-1990 are described with an objective analysis of more than 12000 STD and XBT stations, and COADS wind stress data Interannual the dynamic height and SST variations were correlated and were consistent with recently described large-scale climatic shifts in the North Pacific. The gyre was centered more to the east, circulation appeared stronger, and SST was lower during the early to mid-1970s than during the 1980s. The Aleutian low (NP and PNA indices) intensified during the interim, but the response did not appear as a gyre spinup. Instead, the associated wind stress anomalies forced a slowly varying dynamic height anomaly across the eastern and northern part of the gyre through Ekman convergence, which had the effect of displacing the gyre's low somewhat to the WSW in the 1980s. The wind curl spectrum was white, and the slow oceanic response was modeled as stochastic-forced climate variability with a simple first-order Markov autoregression process. Forcing was assumed to be Ekman pumping of the pycnocline, and the damping coefficient was estimated from the data to be approx. 1 yr. A hindcast with observed winds gave estimated dynamic height patterns similar to those observed, with a canonical correlation of 0.79 at 99% confidence. This response was weak in the western half of the gyre, where slow baroclinic variability may have been influenced by long Rossby wave propagation. A simple autoregression simulation using artificial white noise forcing shows the evolution of decadal variations similar in nature to those observed. This result, along with the low frequency correlation between dynamic height and SST, suggests that the upper-ocean climatic variability in this region is primarily wind forced.

  2. Recent climate trends, Glacier Bay, Alaska

    NASA Astrophysics Data System (ADS)

    Kopczynski, S. E.; Bigl, S. R.; Lawson, D. E.; Finnegan, D. C.

    2003-12-01

    Glaciers and ice caps respond to changes in regional climate at decadal scales and can thus serve as indicators of regional climate change. Many of the tidewater and terrestrial glaciers in Glacier Bay, Alaska have been in a state of rapid retreat since the late 1700s, with highly disparate rates of recession occurring in the western versus eastern arms, yet the combination of environmental and glaciological factors that must exist to catalyze these rapid changes is not clearly understood. The Cold Regions Research and Engineering Laboratory (CRREL) initiated the first systematic analyses of weather and precipitation patterns across Glacier Bay National Park in 2000 by establishing 26 meteorological stations with the long-term objective of better understanding regional and global factors, that control terrestrial and marine physical systems. Initial temperature and precipitation trends show rapid seasonal and annual shifts. This is consistent with apparent paleo-trends in climate and glacier advance and recession over the last 9K years, as well as the historical record that indicate the area is climatically sensitive. Comparisons of summer and winter precipitation totals show a precipitation gradient increasing northward from the lower bay to the head of Muir Inlet (east arm), and decreasing northwestward in the West Arm. Monthly averages of air temperatures span about 3.5 C between the warmest and coldest sites near sea level. Winter temperatures averaged more than 1 C colder in the West Arm than the East. We also found large gradients of increasing rainfall from north to south in the east arm, from north to south in the Western arm. Average temperatures in October decreased westward in the northern half of the Park and were milder at sites within the larger southern Bay. Continuing a long-term climate-monitoring program in Glacier Bay will assist with quantifying climate trends in the context of glacial movement, helping to determine the overall sensitivity of

  3. STRUVE arc and EUPOS® stations

    NASA Astrophysics Data System (ADS)

    Lasmane, Ieva; Kaminskis, Janis; Balodis, Janis; Haritonova, Diana

    2013-04-01

    The Struve Geodetic Arc was developed in Years 1816 to 1855, 200 years ago. Historic information on the points of the Struve Geodetic Arc are included in the UNESCO World Heritage list in 2005. Nevertheless, the sites of many points are still not identified nor included in the data bases nowadays. Originally STRUVE arc consisted of 258 main triangles with 265 triangulation points. Currently 34 of the original station points are identified and included in the in the UNESCO World Heritage list. identified original measurement points of the Meridian Arc are located in Sweden (7 points), Norway (15), Finland (83), Russia (1), Estonia (22), Latvia (16), Lithuania (18), Belorussia (28), Ukraine (59) and Moldova (27). In Year 2002 was initiated another large coverage project - European Position Determination System "EUPOS®". Currently there are about 400 continuously operating GNSS (Global Navigation Satellite Systems) stations covering EU countries Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Hungary, Bulgaria, Romania and East European countries Ukraine and Moldavia. EUPOS® network is a ground based GNSS augmentation system widely used for geodesy, land surveying, geophysics and navigation. It gives the opportunity for fast and accurate position determination never available before. It is an honorable task to use the EUPOS® system for research of the Struve triangulation former sites. Projects with Struve arc can popularize geodesy, geo-information and its meaning in nowadays GIS and GNSS systems. Struve Arc and its points is unique cooperation cross-border object which deserve special attention because of their natural beauty and historical value for mankind. GNSS in geodesy discovers a powerful tool for the verification and validation of the height values of geodetic leveling benchmarks established historically almost 200 years ago. The differential GNSS and RTK methods appear very useful to identify vertical displacement of landscape by means of

  4. Wind-fuel cell hybrid project in rural Alaska

    SciTech Connect

    David Lockard

    2000-02-18

    This is a summary of the work performed on the Wind-Fuel Cell Hybrid Project: (1) On October 5th, Tim Howell of the Golden Field Office and Tom Anderson of Battelle Labs arrived in Anchorage. They met with David Lockard, Project Manager, and Percy Frisby, Director of the Alaska Rural Energy Programs Group. (2) On October 6th, Tim, Tom and David flew to Nome to inspect the proposed wind turbine site and meet with John Handeland, Director of the Nome Joint Utility System. They visited the proposed site as well as several private, residential-sized wind turbines operating in the Nome area. (3)Tim and Tom flew to Unalaska on October 7th to meet with Mike Golat, City of Unalaska Public Utility Director, and to inspect the proposed wind turbine sites at Pyramid Creek and Pyramid Valley. (4)Tim sent a scoping letter on December 17th to a variety of local, state and federal agencies requesting comments on the proposed wind turbine project. (5) David discussed this project with Marc Schwartz and Gerry Nix at NREL. Marc provided David with a list of wind prospectors and meteorologists. (6) Tom raised the question of FAA permits for structures over 200 feet tall. Gerry provided information on NREL's experience with FAA permitting on other projects. David summarized the potential turbine choices and heights in a spreadsheet and initiated contact with the Alaska region FAA office regarding the permitting process. (7) David responded to a list of design questions from Tom regarding the project foundations, power output, and size for use in developing the environmental assessment. (8) David tried to get wind data for the Nome Anvil Mountain White Alice site from the Corps of Engineers and the Air Force, but was not able to find any. (9) David solicited quotes from vendors of wind monitoring equipment and provided cost information to Doug Hooker, federal grant manager in preparation for ordering the equipment.

  5. The Alaska Mineral Resource Assessment Program; guide to information contained in the folio of geologic and mineral-resource maps of the Medfra Quadrangle, Alaska

    USGS Publications Warehouse

    Patton, William Wallace; Moll, E.J.; King, Harley D.

    1984-01-01

    The Medfra quadrangle in west-central Alaska was investigated by a multidisciplinary team of geoscientists to assess its mineral resources. This Circular is intended to serve as a guide to a folio of 13 separate Open-File Reports covering various aspects of these investigations, including geology, bedrock and stream-sediment geochemistry, potassium-argon dating, Landsat imagery, mineral occurrences, aeromagnetic interpretation, and mineral-resource assessment. This Circular presents a complete reference list of these reports and a summary of the important results of each of the investigations.

  6. Alaska Village Electric Load Calculator

    SciTech Connect

    Devine, M.; Baring-Gould, E. I.

    2004-10-01

    As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

  7. Organic geochemistry data of Alaska

    USGS Publications Warehouse

    complied by Threlkeld, Charles N.; Obuch, Raymond C.; Gunther, G.L.

    2000-01-01

    In order to archive the results of various petroleum geochemical analyses of the Alaska resource assessment, the USGS developed an Alaskan Organic Geochemical Data Base (AOGDB) in 1978 to house the data generated from USGS and subcontracted laboratories. Prior to the AOGDB, the accumulated data resided in a flat data file entitled 'PGS' that was maintained by Petroleum Information Corporation with technical input from the USGS. The information herein is a breakout of the master flat file format into a relational data base table format (akdata).

  8. Estimating annual high-flow statistics and monthly and seasonal low-flow statistics for ungaged sites on streams in Alaska and conterminous basins in Canada

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Curran, Janet H.

    2003-01-01

    Methods for estimating daily mean flow-duration statistics for seven regions in Alaska and low-flow frequencies for one region, southeastern Alaska, were developed from daily mean discharges for streamflow-gaging stations in Alaska and conterminous basins in Canada. The 15-, 10-, 9-, 8-, 7-, 6-, 5-, 4-, 3-, 2-, and 1-percent duration flows were computed for the October-through-September water year for 222 stations in Alaska and conterminous basins in Canada. The 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows were computed for the individual months of July, August, and September for 226 stations in Alaska and conterminous basins in Canada. The 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows were computed for the season July-through-September for 65 stations in southeastern Alaska. The 7-day, 10-year and 7-day, 2-year low-flow frequencies for the season July-through-September were computed for 65 stations for most of southeastern Alaska. Low-flow analyses were limited to particular months or seasons in order to omit winter low flows, when ice effects reduce the quality of the records and validity of statistical assumptions. Regression equations for estimating the selected high-flow and low-flow statistics for the selected months and seasons for ungaged sites were developed from an ordinary-least-squares regression model using basin characteristics as independent variables. Drainage area and precipitation were significant explanatory variables for high flows, and drainage area, precipitation, mean basin elevation, and area of glaciers were significant explanatory variables for low flows. The estimating equations can be used at ungaged sites in Alaska and conterminous basins in Canada where streamflow regulation, streamflow diversion, urbanization, and natural damming and releasing of water do not affect the streamflow data for the given month or season. Standard errors of estimate ranged from 15 to 56 percent for high-duration flow

  9. "Inventive" Learning Stations

    ERIC Educational Resources Information Center

    Jarrett, Olga

    2010-01-01

    Learning stations can be used for myriad purposes--to teach concepts, integrate subject matter, build interest, and allow for inquiry--the possibilities are limited only by the imagination of the teacher and the supplies available. In this article, the author shares suggestions and a checklist for setting up successful learning stations. In…

  10. Summit Station Skiway Review

    DTIC Science & Technology

    2013-03-01

    delivery of personnel and materials, is by skied airplanes (currently Twin Otters and LC-130s) or by annual traverse. To support aircraft, the station...Station during the first sea - son (2009) of skiway construction at Pegasus Airfield (Haehnel et al. 2013) but consistently lower than densities of

  11. Space station dynamics

    NASA Technical Reports Server (NTRS)

    Berka, Reg

    1990-01-01

    Structural dynamic characteristics and responses of the Space Station due to the natural and induced environment are discussed. Problems that are peculiar to the Space Station are also discussed. These factors lead to an overall acceleration environment that users may expect. This acceleration environment can be considered as a loading, as well as a disturbance environment.

  12. Hyperspectral surveying for mineral resources in Alaska

    USGS Publications Warehouse

    Kokaly, Raymond F.; Graham, Garth E.; Hoefen, Todd M.; Kelley, Karen D.; Johnson, Michaela R.; Hubbard, Bernard E.

    2016-07-07

    Alaska is a major producer of base and precious metals and has a high potential for additional undiscovered mineral resources. However, discovery is hindered by Alaska’s vast size, remoteness, and rugged terrain. New methods are needed to overcome these obstacles in order to fully evaluate Alaska’s geology and mineral resource potential. Hyperspectral surveying is one method that can be used to rapidly acquire data about the distributions of surficial materials, including different types of bedrock and ground cover. In 2014, the U.S. Geological Survey began the Alaska Hyperspectral Project to assess the applicability of this method in Alaska. The primary study area is a remote part of the eastern Alaska Range where porphyry deposits are exposed. In collaboration with the Alaska Division of Geological and Geophysical Surveys, the University of Alaska Fairbanks, and the National Park Service, the U.S. Geological Survey is collecting and analyzing hyperspectral data with the goals of enhancing geologic mapping and developing methods to identify and characterize mineral deposits elsewhere in Alaska.

  13. Excluding feral swine, javelina, and raccoons from deer bait stations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents a design, list of materials, and construction procedure for a physical and electric barrier fence to prevent feral swine (Sus scrofa), javelina (Pecari tajacu), raccoons (Procyon lotor), and perhaps other non-target animals from accessing or damaging bait stations designed to adm...

  14. 47 CFR 22.1037 - Application requirements for offshore stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Application requirements for offshore stations. 22.1037 Section 22.1037 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... the channels listed in § 22.1007(b), no third-order intermodulation interference would be caused...

  15. Solar-heated ranger station--Glendo, Wyoming

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report evaluates solar-energy system in residential ranger station. Installation provided 22 percent of space-heating and 58 percent of hot-water energy requirements. Annual net energy savings were 30 million Btu. Report describes system and its subsystems: collector array, storage, hot-water, and space-heating. Average weather conditions of test site, performance values, and energy savings are listed.

  16. Economic efficiency of power stations using renewable energy sources

    SciTech Connect

    Voronkin, A.F.; Lisochkina, T.V.; Malinina, T.V.

    1995-12-01

    This article examines the viability of power stations using the renewable resources of wind energy, tidal energy, and geothermal energy. General pros and cons of renewable resources are discussed, and the socioeconomic impacts and environmental impacts of these resources are listed and compared to those of traditional thermal and hydroelectric power plants.

  17. Digital release of the Alaska Quaternary fault and fold database

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Farrell, R.; Burns, P.; Combellick, R. A.; Weakland, J. R.

    2011-12-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) has designed a Quaternary fault and fold database for Alaska in conformance with standards defined by the U.S. Geological Survey for the National Quaternary fault and fold database. Alaska is the most seismically active region of the United States, however little information exists on the location, style of deformation, and slip rates of Quaternary faults. Thus, to provide an accurate, user-friendly, reference-based fault inventory to the public, we are producing a digital GIS shapefile of Quaternary fault traces and compiling summary information on each fault. Here, we present relevant information pertaining to the digital GIS shape file and online access and availability of the Alaska database. This database will be useful for engineering geologic studies, geologic, geodetic, and seismic research, and policy planning. The data will also contribute to the fault source database being constructed by the Global Earthquake Model (GEM), Faulted Earth project, which is developing tools to better assess earthquake risk. We derived the initial list of Quaternary active structures from The Neotectonic Map of Alaska (Plafker et al., 1994) and supplemented it with more recent data where available. Due to the limited level of knowledge on Quaternary faults in Alaska, pre-Quaternary fault traces from the Plafker map are shown as a layer in our digital database so users may view a more accurate distribution of mapped faults and to suggest the possibility that some older traces may be active yet un-studied. The database will be updated as new information is developed. We selected each fault by reviewing the literature and georegistered the faults from 1:250,000-scale paper maps contained in 1970's vintage and earlier bedrock maps. However, paper map scales range from 1:20,000 to 1:500,000. Fault parameters in our GIS fault attribute tables include fault name, age, slip rate, slip sense, dip direction, fault line type

  18. Alaska LandCarbon wetland distribution map

    USGS Publications Warehouse

    Wylie, Bruce K.; Pastick, Neal J.

    2017-01-01

    This product provides regional estimates of specific wetland types (bog and fen) in Alaska. Available wetland types mapped by the National Wetlands Inventory (NWI) program were re-classed into bog, fen, and other. NWI mapping of wetlands was only done for a portion of the area so a decision tree mapping algorithm was then developed to estimate bog, fen, and other across the state of Alaska using remote sensing and GIS spatial data sets as inputs. This data was used and presented in two chapters on the USGS Alaska LandCarbon Report.

  19. Space station integrated propulsion and fluid systems study

    NASA Technical Reports Server (NTRS)

    Rose, L.; Bergman, D.; Bicknell, B.; Wilson, S.

    1987-01-01

    This Databook addresses the integration of fluid systems of the Space Station program. It includes a catalog of components required for the Space Station elements fluid systems and information on potential hardware commonality. The components catalog is in four parts. The first part lists the components defined for all the fluid systems identified in EP 2.1, Space Station Program Fluid Systems Configuration Databook. The components are cross-referenced in three sections. Section 2.1 lists the components by the fluid system in which they are used. Section 2.2 lists the components by type. Section 2.3 lists by the type of fluid media handled by the component. The next part of the catalog provides a description of the individual component. This section (2.4) is made up of data retrieved from Martin Marietta Denver Aerospace component data base. The third part is an assessment of propulsion hardware technology requirements. Section 2.5 lists components identified during the study as requiring development prior to flight qualification. Finally, Section 2.6 presents the results of the evaluation of commonality between components. The specific requirements of each component have been reviewed and duplication eliminated.

  20. Review: groundwater in Alaska (USA)

    USGS Publications Warehouse

    Callegary, J.B.; Kikuchi, C.P.; Koch, J.C.; Lilly, M.R.; Leake, S.A.

    2013-01-01

    Groundwater in the US state of Alaska is critical to both humans and ecosystems. Interactions among physiography, ecology, geology, and current and past climate have largely determined the location and properties of aquifers as well as the timing and magnitude of fluxes to, from, and within the groundwater system. The climate ranges from maritime in the southern portion of the state to continental in the Interior, and arctic on the North Slope. During the Quaternary period, topography and rock type have combined with glacial and periglacial processes to develop the unconsolidated alluvial aquifers of Alaska and have resulted in highly heterogeneous hydrofacies. In addition, the long persistence of frozen ground, whether seasonal or permanent, greatly affects the distribution of aquifer recharge and discharge. Because of high runoff, a high proportion of groundwater use, and highly variable permeability controlled in part by permafrost and seasonally frozen ground, understanding groundwater/surface-water interactions and the effects of climate change is critical for understanding groundwater availability and the movement of natural and anthropogenic contaminants.

  1. Slump Scaling: Common Geometries Observed from Retrogressive Thaw Slumps in Three Different Environments in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Krieger, K.; Crosby, B. T.; Phillips, C.; Godsey, S.; Jerolmack, D. J.

    2009-12-01

    Contemporary climate change in arctic Alaska has resulted in a substantial increase in mean annual air temperature. This has accelerated permafrost degradation and in turn, decreased hillslope stability. Failures occur in the upper active layer and strip off the thin insulating tundra, exposing frozen ground to the atmosphere. This thermal exposure allows melt to persist and the feature to grow. In this work we examine consistencies in the morphology of retrogressive thaw slumps in three different environments in northern Alaska. Slumps found along rivers (Selawik River, NW Alaska), lakeshores (Northern foothills of the Brooks Range, Alaska) and coastal bluffs (Baldwin Peninsula, NW Alaska) were surveyed using both robotic total stations and ground-based LiDAR. Surveys conducted in both 2007 and 2009 at the river and coastal sites allow measurement of dynamic adjustments in slump form. Static measurements from all three sites allow examination of whether the geometries of these features present scaling relationships independent of their different age and environmental setting. We find that almost all slumps are characterized by arcuate shaped headwalls, narrow constricting outlets, shallowly inclined slump floors, divergent to planar upslope regions and relatively small depositional lobes. We find that the most persistent slumps are located where considerable relief exists between the head scarp and a body of water. In these environments, the products of erosion are removed from the toe of the slump, thus maintaining a low baselevel and a high transport capacity. This work provides a foundation from which we explore what combination of (1) permafrost character, (2) up-slope topography or (3) shallow subsurface flow mechanistically determine these consistent geometries.

  2. 4. EASTBOUND VIEW. NORTH TRACK WAITING STATION ON LEFT. STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EASTBOUND VIEW. NORTH TRACK WAITING STATION ON LEFT. STATION ON RIGHT. NOTE TUNNEL IN BACKGROUND. - Baltimore & Ohio Railroad, Harpers Ferry Station, Potomac Street, Harpers Ferry, Jefferson County, WV

  3. 76 FR 10564 - Takes of Marine Mammals Incidental to Specified Activities; St. George Reef Light Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... the Station's optical light system. The Station, which is listed in the National Park Service's... glazing); (3) maintenance activities (e.g., bulb replacement and automation of the light system); and (4) human presence, may have the potential to cause any pinnipeds hauled out on NWSR to flush into...

  4. 78 FR 29098 - Endangered and Threatened Wildlife; 90-Day Finding on a Petition To List Iliamna Lake Seals as a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... Diversity (CBD) to list the harbor seals in Iliamna Lake, Alaska as a threatened or endangered species under... considered as part of the Bristol Bay harbor seal stock. CBD asserts that the harbor seals found in Iliamna... seals.'' CBD asserts that the seals in Iliamna Lake face the following threats: (1) Habitat...

  5. Hydrologic effects of the earthquake of March 27, 1964, outside Alaska, with sections on Hydroseismograms from the Nunn-Bush Shoe Co. well, Wisconsin, and Alaska earthquake effects on ground water in Iowa: Chapter C in The Alaska earthquakes, March 27, 1964: effects on hydrologic regimen

    USGS Publications Warehouse

    Vorhis, Robert C.; Rexin, Elmer E.; Coble, R.W.

    1967-01-01

    The Alaska earthquake of March 27, 1964, had widespread hydrologic effects throughout practically all of the United States. More than 1,450 water-level recorders, scattered throughout all the 50 States except Connecticut, Delaware, and Rhode Island, registered the earthquake. Half of the water-level records were obtained from ground-water observation wells and half at surface-water gaging stations. The earthquake is also known to have registered on water-level recorders on wells in Canada, England, Denmark, Belgium, Egypt, Israel, Libya, Philippine Islands, South-West Africa, South Africa, and Northern Territory of Australia. The Alaska earthquake is the first for which widespread surface-water effects are known. The effects were recorded at stations on flowing streams, rivers, reservoirs, lakes, and ponds. The 755 surface-water stations recording effects are spread through 38 States, but are most numerous in the south-central and southeastern States, especially in Florida and Louisiana. Most of the fluctuations recorded can be referred to more precisely as seismic seiches; however, a few stations recorded the quake as a minor change in stage. The largest recorded seiche outside Alaska was 1.83 feet on a reservoir in Michigan. The next largest was 1.45 feet on Lake Ouachita in Arkansas. The largest fluctuation in a well was 23 feet registered by a pressure recorder near Belle Fourche, S. Dak. Fluctuations of more than 10 feet were reported from wells in Alabama, Florida, Georgia, Illinois, Missouri, and Pennsylvania. A 3.40-foot fluctuation was recorded in a well in Puerto Rico. The Alaska earthquake was registered by about seven times as many water-level recorders as recorded the Hebgen Lake, Mont., earthquake of August 19, 1959.

  6. Space Station Induced Monitoring

    NASA Technical Reports Server (NTRS)

    Spann, James F. (Editor); Torr, Marsha R. (Editor)

    1988-01-01

    This report contains the results of a conference convened May 10-11, 1988, to review plans for monitoring the Space Station induced environment, to recommend primary components of an induced environment monitoring package, and to make recommendations pertaining to suggested modifications of the Space Station External Contamination Control Requirements Document JSC 30426. The contents of this report are divided as Follows: Monitoring Induced Environment - Space Station Work Packages Requirements, Neutral Environment, Photon Emission Environment, Particulate Environment, Surface Deposition/Contamination; and Contamination Control Requirements.

  7. Madrid space station

    NASA Technical Reports Server (NTRS)

    Fahnestock, R. J.; Renzetti, N. A.

    1975-01-01

    The Madrid space station, operated under bilateral agreements between the governments of the United States and Spain, is described in both Spanish and English. The space station utilizes two tracking and data acquisition networks: the Deep Space Network (DSN) of the National Aeronautics and Space Administration and the Spaceflight Tracking and Data Network (STDN) operated under the direction of the Goddard Space Flight Center. The station, which is staffed by Spanish employees, comprises four facilities: Robledo 1, Cebreros, and Fresnedillas-Navalagamella, all with 26-meter-diameter antennas, and Robledo 2, with a 64-meter antenna.

  8. The space station

    NASA Technical Reports Server (NTRS)

    Munoz, Abraham

    1988-01-01

    Conceived since the beginning of time, living in space is no longer a dream but rather a very near reality. The concept of a Space Station is not a new one, but a redefined one. Many investigations on the kinds of experiments and work assignments the Space Station will need to accommodate have been completed, but NASA specialists are constantly talking with potential users of the Station to learn more about the work they, the users, want to do in space. Present configurations are examined along with possible new ones.

  9. Transportation - Space Station interfaces

    NASA Technical Reports Server (NTRS)

    Macconchie, Ian O.; Eide, D. G.; Witcofski, R. D.; Pennington, J. E.; Rhodes, M. D.; Melfi, L. T.; Jones, W. R.; Morris, W. D.

    1984-01-01

    A study aimed at identifying conceptual mechanisms for the transfer and manipulation of various masses in the vicinity of or on the Space Station is presented. These transfers encompass mass transfers involved in the arrivals or departures of various vehicles including the Shuttle, Orbital Manuever Vehicles (OMVs), and Orbital Transfer Vehicles (OTVs); point-to-point mass transfer of a nonroutine nature around the Space Station; and routine transfer of cargo and spacecraft around the Space Station, including the mating and processing of OMVs, OTVs, propellants, and payloads.

  10. Space station operations management

    NASA Technical Reports Server (NTRS)

    Cannon, Kathleen V.

    1989-01-01

    Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.

  11. Catalog of earthquake hypocenters at Redoubt Volcano and Mt. Spurr, Alaska: October 12, 1989 - December 31, 1990

    USGS Publications Warehouse

    Power, John A.; March, Gail D.; Lahr, John C.; Jolly, Arthur D.; Cruse, Gina R.

    1993-01-01

    Following a 23 year period of quiescence, Redoubt Volcano erupted between December 14,1989 and April 21,1990. The eruption was accompanied by thousands of earthquakes (Alaska Volcano Observatory Staff, 1990). Throughout the eruption sequence, data from the PC/AT system provided the primary means of determining earthquake hypocenters. This report catalogs the earthquake hypocenters and magnitudes calculated from data collected between October 12, 1989 and December 31, 1990 on the PC/AT acquisition system, provides station locations, statistics, and calibrations, and outlines which stations were recorded and used in triggering the PC/AT system.

  12. Geology of the Alaska-Juneau lode system, Alaska

    USGS Publications Warehouse

    Twenhofel, William Stephens

    1952-01-01

    The Alaska-Juneau lode system for many years was one of the worlds leading gold-producing areas. Total production from the years 1893 to 1946 has amounted to about 94 million dollars, with principal values in contained gold but with some silver and lead values. The principal mine is the Alaska-Juneau mine, from which the lode system takes its name. The lode system is a part of a larger gold-bearing belt, generally referred to as the Juneau gold belt, along the western border of the Coast Range batholith. The rocks of the Alaska-Juneau lode system consist of a monoclinal sequence of steeply northeasterly dipping volcanic, state, and schist rocks, all of which have been metamorphosed by dynamic and thermal processes attendant with the intrusion of the Coast Range batholith. The rocks form a series of belts that trend northwest parallel to the Coast Range. In addition to the Coast Range batholith lying a mile to the east of the lode system, there are numerous smaller intrusives, all of which are sill-like in form and are thus conformable to the regional structure. The bedded rocks are Mesozoic in age; the Coast Range batholith is Upper Jurassic and Lower Cretaceous in age. Some of the smaller intrusives pre-date the batholith, others post-date it. All of the rocks are cut by steeply dipping faults. The Alaska-Juneau lode system is confined exclusively to the footwall portion of the Perseverance slate band. The slate band is composed of black slate and black phyllite with lesser amounts of thin-bedded quartzite. Intrusive into the slate band are many sill-like bodies of rocks generally referred to as meta-gabbro. The gold deposits of the lode system are found both within the slate rocks and the meta-gabbro rocks, and particularly in those places where meta-gabbro bodies interfinger with slate. Thus the ore bodies are found in and near the terminations of meta-gabbro bodies. The ore bodies are quartz stringer-lodes composed of a great number of quartz veins from 6

  13. Cross Cultural Scientific Communication in Alaska

    NASA Astrophysics Data System (ADS)

    Bertram, K. B.

    2006-12-01

    An example of cross-cultural education is provided by the Aurora Alive curriculum. Aurora Alive communicates science to Alaska Native students through cross-cultural educational products used in Alaska schools for more than a decade, including (1) a CDROM that provides digital graphics, bilingual (English and Athabascan language) narration-over-text and interactive elements that help students visualize scientific concepts, and (2) Teacher's Manuals containing more than 150 hands-on activities aligned to national science standards, and to Alaska Standards for Culturally Responsive Schools. Created by Native Elders and teachers working together with University Alaska Fairbanks Geophysical Institute scientists, Aurora Alive blends Native "ways of knowing" with current "western" research to teach the physics and math of the aurora.

  14. Advancing Efforts to Energize Native Alaska (Brochure)

    SciTech Connect

    Not Available

    2013-04-01

    This brochure describes key programs and initiatives of the DOE Office of Indian Energy Policy and Programs to advance energy efficiency, renewable energy, and energy infrastructure projects in Alaska Native villages.

  15. 75 FR 43198 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... Alaska Native Claims Settlement Act. The subsurface estate in these lands will be conveyed to Bristol Bay... times in the Bristol Bay Times. DATES: Any party claiming a property interest in the lands affected...

  16. 76 FR 67472 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... lands are located east of Teller, Alaska, and contain 47.87 acres. Notice of the decision will also be... email at ak.blm.conveyance@blm.gov . Persons who use a Telecommunications Device for the Deaf (TDD)...

  17. American Indians, Alaska Natives, and the Flu

    MedlinePlus

    ... CDC Features American Indians, Alaska Natives, and the Flu Recommend on Facebook Tweet Share Compartir Vaccination against ... the flu. Protect Indian Country by Getting Your Flu Vaccine A flu vaccine not only protects you ...

  18. Columbia Glacier, Alaska, 1986-2011

    NASA Video Gallery

    The Columbia Glacier in Alaska is one of many vanishing around the world. Glacier retreat is one of the most direct and understandable effects of climate change. The consequences of the decline in ...

  19. Alaska Simulator - A Journey to Planning

    NASA Astrophysics Data System (ADS)

    Weber, Barbara; Pinggera, Jakob; Zugal, Stefan; Wild, Werner

    The Alaska Simulator is an interactive software tool developed at the University of Innsbruck which allows people to test, analyze and improve their own planning behavior. In addition, the Alaska Simulator can be used for studying research questions in the context of software project management and other related fields. Thereby, the Alaska Simulator uses a journey as a metaphor for planning a software project. In the context of software project management the simulator can be used to compare traditional rather plan-driven project management methods with more agile approaches. Instead of pre-planning everything in advance agile approaches spread planning activities throughout the project and provide mechanisms for effectively dealing with uncertainty. The biggest challenge thereby is to find the right balance between pre-planning activities and keeping options open. The Alaska Simulator allows to explore how much planning is needed under different circumstances.

  20. Renewed unrest at Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  1. Cardiovascular Disease Among Alaska Native Peoples

    PubMed Central

    Jolly, Stacey E.; Howard, Barbara V.; Umans, Jason G.

    2013-01-01

    Although Alaska Native peoples were thought to be protected from cardiovascular disease (CVD), data now show that this is not the case, despite traditional lifestyles and high omega-3 fatty acid intake. In this article, the current understanding of CVD and its risk factors among Alaska Native peoples, particularly among the Yupik and Inupiat populations, will be discussed, using data from three major studies funded by the National Institutes of Health: Genetics of Coronary Artery Disease among Alaska Natives (GOCADAN), Center for Native Health Research (CANHR), and Education and Research Towards Health (EARTH). Data from these epidemiologic studies have focused concern on CVD and its risk factors among Alaska Native peoples. This review will summarize the findings of these three principal studies and will suggest future directions for research and clinical practice. PMID:24367710

  2. 78 FR 53158 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ...) to Sea Lion Corporation. The decision approves the surface estate in the lands described below for... Lion Corporation. The lands are in the vicinity of Hooper Bay, Alaska, and are located in:...

  3. Exobiology research on Space Station Freedom.

    PubMed

    Huntington, J L; Stratton, D M; Scattergood, T W

    1995-03-01

    The Gas-Grain Simulation Facility (GGSF) is a multidisciplinary experiment laboratory being developed by NASA at Ames Research Center for delivery to Space Station Freedom in 1998. This facility will employ the low-gravity environment of the Space Station to enable aerosol experiments of much longer duration than is possible in any ground-based laboratory. Studies of fractal aggregates that are impossible to sustain on Earth will also be enabled. Three research areas within exobiology that will benefit from the GGSF are described here. An analysis of the needs of this research and of other suggested experiments has produced a list of science requirements which the facility design must accommodate. A GGSF design concept developed in the first stage of flight hardware development to meet these requirements is also described.

  4. Exobiology research on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Huntington, J. L.; Stratton, D. M.; Scattergood, T. W.

    1995-01-01

    The Gas-Grain Simulation Facility (GGSF) is a multidisciplinary experiment laboratory being developed by NASA at Ames Research Center for delivery to Space Station Freedom in 1998. This facility will employ the low-gravity environment of the Space Station to enable aerosol experiments of much longer duration than is possible in any ground-based laboratory. Studies of fractal aggregates that are impossible to sustain on Earth will also be enabled. Three research areas within exobiology that will benefit from the GGSF are described here. An analysis of the needs of this research and of other suggested experiments has produced a list of science requirements which the facility design must accommodate. A GGSF design concept developed in the first stage of flight hardware development to meet these requirements is also described.

  5. Space station thermal control surfaces. [space radiators

    NASA Technical Reports Server (NTRS)

    Maag, C. R.; Millard, J. M.; Jeffery, J. A.; Scott, R. R.

    1979-01-01

    Mission planning documents were used to analyze the radiator design and thermal control surface requirements for both space station and 25-kW power module, to analyze the missions, and to determine the thermal control technology needed to satisfy both sets of requirements. Parameters such as thermal control coating degradation, vehicle attitude, self eclipsing, variation in solar constant, albedo, and Earth emission are considered. Four computer programs were developed which provide a preliminary design and evaluation tool for active radiator systems in LEO and GEO. Two programs were developed as general programs for space station analysis. Both types of programs find the radiator-flow solution and evaluate external heat loads in the same way. Fortran listings are included.

  6. Major disruption of D'' beneath Alaska: D'' Beneath Alaska

    SciTech Connect

    Sun, Daoyuan; Helmberger, Don; Miller, Meghan S.; Jackson, Jennifer M.

    2016-05-01

    D'' represents one of the most dramatic thermal and compositional layers within our planet. In particular, global tomographic models display relatively fast patches at the base of the mantle along the circum-Pacific which are generally attributed to slab debris. Such distinct patches interact with the bridgmanite (Br) to post-bridgmanite (PBr) phase boundary to generate particularly strong heterogeneity at their edges. Most seismic observations for the D'' come from the lower mantle S wave triplication (Scd). Here we exploit the USArray waveform data to examine one of these sharp transitions in structure beneath Alaska. From west to east beneath Alaska, we observed three different characteristics in D'': (1) the western region with a strong Scd, requiring a sharp δVs = 2.5% increase; (2) the middle region with no clear Scd phases, indicating a lack of D'' (or thin Br-PBr layer); and (3) the eastern region with strong Scd phase, requiring a gradient increase in δVs. To explain such strong lateral variation in the velocity structure, chemical variations must be involved. We suggest that the western region represents relatively normal mantle. In contrast, the eastern region is influenced by a relic slab that has subducted down to the lowermost mantle. In the middle region, we infer an upwelling structure that disrupts the Br-PBr phase boundary. Such an interpretation is based upon a distinct pattern of travel time delays, waveform distortions, and amplitude patterns that reveal a circular-shaped anomaly about 5° across which can be modeled synthetically as a plume-like structure rising about 400 km high with a shear velocity reduction of ~5%, similar to geodynamic modeling predictions of upwellings.

  7. Space station systems: A bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This bibliography lists 967 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1987 and June 30, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future space station.

  8. Propagation measurements in Alaska using ACTS beacons

    NASA Technical Reports Server (NTRS)

    Mayer, Charles E.

    1991-01-01

    The placement of an ACTS propagation terminal in Alaska has several distinct advantages. First is the inclusion of a new and important climatic zone to the global propagation model. Second is the low elevation look angle from Alaska to ACTS. These two unique opportunities also present problems unique to the location, such as extreme temperatures and lower power levels. These problems are examined and compensatory solutions are presented.

  9. Mercury in polar bears from Alaska

    SciTech Connect

    Lentfer, J.W.; Galster, W.A.

    1987-04-01

    Alaskan polar bear (Ursus maritimus) muscle and liver samples collected in 1972 were analyzed for total mercury. Bears north of Alaska had more mercury than bears west of Alaska. The only difference between young and adult animals was in the northern area where adults had more mercury in liver tissue than young animals. Levels were probably not high enough to be a serious threat to bears.

  10. Oil-and-gas resources of Alaska

    SciTech Connect

    Not Available

    1985-01-01

    This is a short information circular on the history of oil-and-gas development in Alaska. It discusses the past discoveries and the future prospects and the estimated reserve base of the state. It also briefly discusses the oil-and-gas leasing program and exploration activity in the Arctic National Wildlife Refuge. A map of Alaska showing oil-and-gas fields, reserves, and lease boundaries is also provided.

  11. Accretion tectonics and crustal structure in Alaska

    USGS Publications Warehouse

    Coney, P.J.; Jones, D.L.

    1985-01-01

    The entire width of the North American Cordillera in Alaska is made up of "suspect terranes". Pre-Late Cretaceous paleogeography is poorly constrained and the ultimate origins of the many fragments which make up the state are unclear. The Prince William and Chugach terranes accreted since Late Cretaceous time and represent the collapse of much of the northeast Pacific Ocean swept into what today is southern Alaska. Greater Wrangellia, a composite terrane now dispersed into fragments scattered from Idaho to southern Alaska, apparently accreted into Alaska in Late Cretaceous time crushing an enormous deep-marine flysch basin on its inboard side. Most of interior eastern Alaska is the Yukon Tanana terrane, a very large entirely fault-bounded metamorphic-plutonic assemblage covering thousands of square kilometers in Canada as well as Alaska. The original stratigraphy and relationship to North America of the Yukon-Tanana terrane are both obscure. A collapsed Mesozoic flysch basin, similar to the one inboard of Wrangellia, lies along the northern margin. Much of Arctic Alaska was apparently a vast expanse of upper Paleozoic to Early Mesozoic deep marine sediments and mafic volcanic and plutonic rocks now scattered widely as large telescoped sheets and Klippen thrust over the Ruby geanticline and the Brooks Range, and probably underlying the Yukon-Koyukuk basin and the Yukon flats. The Brooks Range itself is a stack of north vergent nappes, the telescoping of which began in Early Cretaceous time. Despite compelling evidence for thousands of kilometers of relative displacement between the accreted terranes, and large amounts of telescoping, translation, and rotation since accretion, the resulting new continental crust added to North America in Alaska carries few obvious signatures that allow application of currently popular simple plate tectonic models. Intraplate telescoping and strike-slip translations, delamination at mid-crustal levels, and large-scale lithospheric

  12. Environmental Assessment for North Warning System (Alaska)

    DTIC Science & Technology

    1986-11-10

    native villages; thus, an Environmental Impact Statement (EIS) on the Alaskan portion of the NWS was judged necessary. A recent reconfiguration of tile... Native and non- Native individuals. Thaw lake - A lake or pond formed by localized thawing of permafrost. Thermokarst - Refers to irregular topography...Preservation AFOSH - Air Force Occupational Safety and Health Standard AFR - Air Force Regulation AHRS - Alaska Heritage Resource Survey ANCSA - Alaska Native

  13. Alaska Native Parkinson’s Disease Registry

    DTIC Science & Technology

    2007-11-01

    Questionable 0 DK f. seborrheic dermatitis 0 Yes 0 No 0 Questionable 0 DK Exclusion criteria O Prominent postural instability in the first 3...4 A. Introduction Parkinsonism (PS) is a syndrome characterized by tremor, rigidity, slowness of movement, and problems with walking and balance...the Alaska Native Medical Center. B. Body The intent of this proposal is to establish a registry of parkinsonism cases among Alaska native

  14. Space Station Live! Tour

    NASA Video Gallery

    NASA is using the Internet and smartphones to provide the public with a new inside look at what happens aboard the International Space Station and in the Mission Control Center. NASA Public Affairs...

  15. Space Station Food System

    NASA Technical Reports Server (NTRS)

    Thurmond, Beverly A.; Gillan, Douglas J.; Perchonok, Michele G.; Marcus, Beth A.; Bourland, Charles T.

    1986-01-01

    A team of engineers and food scientists from NASA, the aerospace industry, food companies, and academia are defining the Space Station Food System. The team identified the system requirements based on an analysis of past and current space food systems, food systems from isolated environment communities that resemble Space Station, and the projected Space Station parameters. The team is resolving conflicts among requirements through the use of trade-off analyses. The requirements will give rise to a set of specifications which, in turn, will be used to produce concepts. Concept verification will include testing of prototypes, both in 1-g and microgravity. The end-item specification provides an overall guide for assembling a functional food system for Space Station.

  16. Space station data flow

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results of the space station data flow study are reported. Conceived is a low cost interactive data dissemination system for space station experiment data that includes facility and personnel requirements and locations, phasing requirements and implementation costs. Each of the experiments identified by the operating schedule is analyzed and the support characteristics identified in order to determine data characteristics. Qualitative and quantitative comparison of candidate concepts resulted in a proposed data system configuration baseline concept that includes a data center which combines the responsibility of reprocessing, archiving, and user services according to the various agencies and their responsibility assignments. The primary source of data is the space station complex which provides through the Tracking Data Relay Satellite System (TDRS) and by space shuttle delivery data from experiments in free flying modules and orbiting shuttles as well as from the experiments in the modular space station itself.

  17. Enabler operator station

    NASA Astrophysics Data System (ADS)

    Bailey, Andrea; Keitzman, John; King, Shirlyn; Stover, Rae; Wegner, Torsten

    The objective of this project was to design an onboard operator station for the conceptual Lunar Work Vehicle (LWV). This LWV would be used in the colonization of a lunar outpost. The details that follow, however, are for an earth-bound model. Several recommendations are made in the appendix as to the changes needed in material selection for the lunar environment. The operator station is designed dimensionally correct for an astronaut wearing the current space shuttle EVA suit (which includes life support). The proposed operator station will support and restrain an astronaut as well as provide protection from the hazards of vehicle rollover. The threat of suit puncture is eliminated by rounding all corners and edges. A step-plate, located at the front of the vehicle, provides excellent ease of entry and exit. The operator station weight requirements are met by making efficient use of grid members, semi-rigid members and woven fabrics.

  18. Destination Station Atlanta

    NASA Video Gallery

    Destination Station was recently in Atlanta from April 15 through April 21. During the week, NASA visited schools, hospitals, museums, and the city’s well known Atlanta Science Tavern Meet Up gro...

  19. The Space Station Chronicles

    NASA Video Gallery

    As early as the nineteenth century, writers and artists and scientists around the world began to publish their visions of a crewed outpost in space. Learn about the history of space stations, from ...

  20. Station Assembly Animation

    NASA Video Gallery

    This animation depicts the assembly of the International Space Station since Nov. 20, 1998, with the delivery of the Zarya module, through May 16, 2011, with the delivery of the EXPRESS Logistics C...

  1. Space Station Software Recommendations

    NASA Technical Reports Server (NTRS)

    Voigt, S. (Editor)

    1985-01-01

    Four panels of invited experts and NASA representatives focused on the following topics: software management, software development environment, languages, and software standards. Each panel deliberated in private, held two open sessions with audience participation, and developed recommendations for the NASA Space Station Program. The major thrusts of the recommendations were as follows: (1) The software management plan should establish policies, responsibilities, and decision points for software acquisition; (2) NASA should furnish a uniform modular software support environment and require its use for all space station software acquired (or developed); (3) The language Ada should be selected for space station software, and NASA should begin to address issues related to the effective use of Ada; and (4) The space station software standards should be selected (based upon existing standards where possible), and an organization should be identified to promulgate and enforce them. These and related recommendations are described in detail in the conference proceedings.

  2. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Briley, G. L.

    1986-01-01

    The progress on the Space Station Propulsion Technology Program is described. The objectives are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the Initial Operating Capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion to that required to support and interface with advanced station functions. The evaluation of concepts was completed. The accumulator module of the test bed was completed and, with the microprocessor controller, delivered to NASA-MSFC. An oxygen/hydrogen thruster was modified for use with the test bed and successfully tested at mixture ratios from 4:1 to 8:1.

  3. Space Station Software Issues

    NASA Technical Reports Server (NTRS)

    Voigt, S. (Editor); Beskenis, S. (Editor)

    1985-01-01

    Issues in the development of software for the Space Station are discussed. Software acquisition and management, software development environment, standards, information system support for software developers, and a future software advisory board are addressed.

  4. Multiple Craft Stations.

    ERIC Educational Resources Information Center

    Johns, Mary Sue

    1980-01-01

    Described are three craft stations (claywork, papermaking, and stamp designing) for intermediate grade students, to correlate with their classroom study which focused on Ohio: its history, geography, cities, industries, products and famous natives. (KC)

  5. Enabler operator station

    NASA Technical Reports Server (NTRS)

    Bailey, Andrea; Kietzman, John; King, Shirlyn; Stover, Rae; Wegner, Torsten

    1992-01-01

    The objective of this project was to design an onboard operator station for the conceptual Lunar Work Vehicle (LWV). The LWV would be used in the colonization of a lunar outpost. The details that follow, however, are for an Earth-bound model. The operator station is designed to be dimensionally correct for an astronaut wearing the current space shuttle EVA suit (which include life support). The proposed operator station will support and restrain an astronaut as well as to provide protection from the hazards of vehicle rollover. The threat of suit puncture is eliminated by rounding all corners and edges. A step-plate, located at the front of the vehicle, provides excellent ease of entry and exit. The operator station weight requirements are met by making efficient use of rigid members, semi-rigid members, and woven fabrics.

  6. Station Commander Praises AMS

    NASA Video Gallery

    When asked what's the most important International Space Station experiment, Commander Chris Hadfield names the Alpha Magnetic Spectrometer-2, a state-of-the-art particle physics detector that coul...

  7. Leadership at Antarctic Stations.

    DTIC Science & Technology

    1987-03-01

    Claseification 6. No. Pegees LEADERSHIP AT ANTARTIC STATIONS hxIs i4 5, C =r~eta(C), 17 Rfs~W (R, Udusiied U)J 7. No Refs 8. Author(s) Edocumesnt I...whether there is a "best" approach to leadership at an Antartic Station and what leadership style may have the most to offer. 3~~ __ ___ Tipesis to be

  8. NASA develops Space Station

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1985-01-01

    The NASA Space Station program's planning stage began in 1982, with a view to development funding in FY1987 and initial operations within a decade. An initial cost of $8 billion is projected for the continuously habitable, Space Shuttle-dependent system, not including either operational or scientific and commercial payload-development costs. As a customer-oriented facility, the Space Station will be available to foreign countries irrespective of their participation in the development phase.

  9. Crustal structure of Bristol Bay Region, Alaska

    SciTech Connect

    Cooper, A.K.; McLean, H.; Marlow, M.S.

    1985-04-01

    Bristol Bay lies along the northern side of the Alaska Peninsula and extends nearly 600 km southwest from the Nushagak lowlands on the Alaska mainland to near Unimak Island. The bay is underlain by a sediment-filled crustal downwarp known as the north Aleutian basin (formerly Bristol basin) that dips southeast toward the Alaska Peninsula and is filled with more than 6 km of strata, dominantly of Cenozoic age. The thickest parts of the basin lie just north of the Alaska Peninsula and, near Port Mollar, are in fault contact with older Mesozoic sedimentary rocks. These Mesozoic rocks form the southern structural boundary of the basin and extend as an accurate belt from at least Cook Inlet to Zhemchug Canyon (central Beringian margin). Offshore multichannel seismic-reflection, sonobuoy seismic-refraction, gravity, and magnetic data collected by the USGS in 1976 and 1982 indicate that the bedrock beneath the central and northern parts of the basin comprises layered, high-velocity, and highly magnetic rocks that are locally deformed. The deep bedrock horizons may be Mesozoic(.) sedimentary units that are underlain by igneous or metamorphic rocks and may correlate with similar rocks of mainland western Alaska and the Alaska Peninsula. Regional structural and geophysical trends for these deep horizons change from northeast-southwest to northwest-southeast beneath the inner Bering shelf and may indicate a major crustal suture along the northern basin edge.

  10. Reconnaissance for radioactive deposits in Alaska, 1953

    USGS Publications Warehouse

    Matzko, John J.; Bates, Robert G.

    1955-01-01

    During the summer of 1953 the areas investigated for radioactive deposits in Alaska were on Nikolai Creek near Tyonek and on Likes Creek near Seward in south-central Alaska where carnotite-type minerals had been reported; in the headwaters of the Peace River in the eastern part of the Seward Peninsula and at Gold Bench on the South Fork of the Koyukuk River in east-central Alaska, where uranothorianite occurs in places associated with base metal sulfides and hematite; in the vicinity of Port Malmesbury in southeastern Alaska to check a reported occurrence of pitchblende; and, in the Miller House-Circle Hot Springs area of east-central Alaska where geochemical studies were made. No significant lode deposits of radioactive materials were found. However, the placer uranothorianite in the headwaters of the Peace River yet remains as an important lead to bedrock radioactive source materials in Alaska. Tundra cover prevents satisfactory radiometric reconnaissance of the area, and methods of geochemical prospecting such as soil and vegetation sampling may ultimately prove more fruitful in the search for the uranothorianite-sulfide lode source than geophysical methods.

  11. Geologic Map of Central (Interior) Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Dover, James H.; Bradley, Dwight C.; Weber, Florence R.; Bundtzen, Thomas K.; Haeussler, Peter J.

    1998-01-01

    Introduction: This map and associated digital databases are the result of a compilation and reinterpretation of published and unpublished 1:250,000- and limited 1:125,000- and 1:63,360-scale mapping. The map area covers approximately 416,000 sq km (134,000 sq mi) and encompasses 25 1:250,000-scale quadrangles in central Alaska. The compilation was done as part of the U.S. Geological Survey National Surveys and Analysis project, whose goal is nationwide assemble geologic, geochemical, geophysical, and other data. This map is an early product of an effort that will eventually encompass all of Alaska, and is the result of an agreement with the Alaska Department of Natural Resources, Division of Oil And Gas, to provide data on interior basins in Alaska. A paper version of the three map sheets has been published as USGS Open-File Report 98-133. Two geophysical maps that cover the identical area have been published earlier: 'Bouguer gravity map of Interior Alaska' (Meyer and others, 1996); and 'Merged aeromagnetic map of Interior Alaska' (Meyer and Saltus, 1995). These two publications are supplied in the 'geophys' directory of this report.

  12. The future of successful aging in Alaska

    PubMed Central

    Lewis, Jordan

    2013-01-01

    Background There is a paucity of research on Alaska Natives and their views on whether or not they believe they will age successfully in their home and community. There is limited understanding of aging experiences across generations. Objective This research explores the concept of successful aging from an urban Alaska Native perspective and explores whether or not they believe they will achieve a healthy older age. Design A cultural consensus model (CCM) approach was used to gain a sense of the cultural understandings of aging among young Alaska Natives aged 50 years and younger. Results Research findings indicate that aging successfully is making the conscious decision to live a clean and healthy life, abstaining from drugs and alcohol, but some of Alaska Natives do not feel they will age well due to lifestyle factors. Alaska Natives see the inability to age well as primarily due to the decrease in physical activity, lack of availability of subsistence foods and activities, and the difficulty of living a balanced life in urban settings. Conclusions This research seeks to inform future studies on successful aging that incorporates the experiences and wisdom of Alaska Natives in hopes of developing an awareness of the importance of practicing a healthy lifestyle and developing guidelines to assist others to age well. PMID:23984300

  13. Water resources of the Cook Inlet Basin, Alaska

    USGS Publications Warehouse

    Freethey, Geoffrey W.; Scully, David R.

    1980-01-01

    Ground-water and surface-water systems of Cook Inlet basin, Alaska, are analyzed. Geologic and topographic features that control the movement and regional availability of ground water are explained and illustrated. Five aquifer systems beneath the most populous areas are described. Estimates of ground-water yield were determined for the region by using ground-water data for the populated areas and by extrapolating known subsurface conditions and interpreting subsurface conditions from surficial features in the other areas. Area maps of generalized geology, Quaternary sediment thickness, and general availability of ground water are shown. Surface-water resources are summarized by describing how basin characteristics affect the discharge in streams. Seasonal trend of streamflow for three types of streams is described. Regression equations for 4 streamflow characteristics (annual, monthly minimum, and maximum discharge) were obtained by using gaging station streamflow characteristics and 10 basin characteristics. In the 24 regression equations presented, drainage area is the most significant basin characteristic, but 5 others are used. Maps of mean annual unit runoff and minimum unit yield for 7 consecutive days with a recurrence interval of 10 years are shown. Historic discharge data at gaging stations is tabulated and representative low-flow and flood-flow frequency curves are shown. (USGS)

  14. Acronym master list

    SciTech Connect

    1995-06-01

    This document is a master list of acronyms and other abbreviations that are used by or could be useful to, the personnel at Los Alamos National Laboratory. Many specialized and well-known abbreviations are not included in this list.

  15. Global monitoring at the United States baseline stations with emphasis on precipitation chemistry measurements.

    PubMed

    Artz, R S

    1989-07-01

    The National Oceanic and Atmospheric Administration Geophysical Monitoring for Climatic Change program has operated four remote precipitation chemistry stations at two polar and two tropical Pacific locations for over a decade. Station geography and meteorology is discussed and a summary of the hydrogen, sulfate, and nitrate ion data collected since 1980 is presented. Results show that at all four locations, the ions which have major anthropogenic sources were far less concentrated than in samples collected in heavily industrialized areas in the northeastern United States and Europe. Concentrations at American Samoa and the South Pole showed little variability over the year whereas concentrations at Point Barrow, Alaska and Mauna Loa, Hawaii were highly variable.

  16. Distributed Permafrost Observation Network in Western Alaska: the First Results

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Cable, W.; Marchenko, S. S.; Panda, S. K.

    2014-12-01

    The area of Western Alaska including the Selawik National Wildlife Refuge (SNWR) is generally underrepresented in terms of permafrost thermal monitoring. Thus, the main objective of this study was to establish a permafrost monitoring network in Western Alaska in order to understand the spatial variability in permafrost thermal regime in the area and to have a baseline in order to detect future change. Present and future thawing of permafrost in the region will have a dramatic effect on the ecosystems and infrastructure because the permafrost here generally has a high ice content, as a result of preservation of old ground ice in these relatively cold regions even during the warmer time intervals of the Holocene. Over the summers of 2011 and 2012 a total of 26 automated monitoring stations were established to collect temperature data from the active layer and near-surface permafrost. While most of these stations were basic and only measured the temperature down to 1.5 m at 4 depths, three of the stations had higher vertical temperature resolution down to 3 m. The sites were selected using an ecotype (basic vegetation groups) map of very high resolution (30 m) that had been created for the area in 2009. We found the Upland Dwarf Birch-Tussock Shrub ecotype to be the coldest with a mean annual ground temperature at 1 meter (MAGT1.0) of -3.9 °C during the August 1st, 2012 to July 31st, 2013 measurement period. This is also the most widespread ecotype in the SNWR, covering approximately 28.4% by area. The next widespread ecotype in the SNWR is the Lowland and Upland Birch-Ericaceous Low Shrub. This ecotype had higher ground temperatures with an average MAGT1.0 of -2.4 °C during the same measurement period. We also found that within some ecotypes (White Spruce and Alder-Willow Shrub) the presence or absence of moss on the surface seems to indicate the presence or absence of near surface permafrost. In general, we found good agreement between ecotype classes and

  17. Space station mobile transporter

    NASA Technical Reports Server (NTRS)

    Renshall, James; Marks, Geoff W.; Young, Grant L.

    1988-01-01

    The first quarter of the next century will see an operational space station that will provide a permanently manned base for satellite servicing, multiple strategic scientific and commercial payload deployment, and Orbital Maneuvering Vehicle/Orbital Transfer Vehicle (OMV/OTV) retrieval replenishment and deployment. The space station, as conceived, is constructed in orbit and will be maintained in orbit. The construction, servicing, maintenance and deployment tasks, when coupled with the size of the station, dictate that some form of transportation and manipulation device be conceived. The Transporter described will work in conjunction with the Orbiter and an Assembly Work Platform (AWP) to construct the Work Station. The Transporter will also work in conjunction with the Mobile Remote Servicer to service and install payloads, retrieve, service and deploy satellites, and service and maintain the station itself. The Transporter involved in station construction when mounted on the AWP and later supporting a maintenance or inspection task with the Mobile Remote Servicer and the Flight Telerobotic Servicer is shown.

  18. Systems Performance Analyses of Alaska Wind-Diesel Projects; Selawik, Alaska (Fact Sheet)

    SciTech Connect

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Selawik, Alaska. Data provided for this project include community load data, wind turbine output, diesel plant output, thermal load data, average wind speed, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, and estimated fuel savings.

  19. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  20. 78 FR 73144 - Subsistence Management Program for Public Lands in Alaska; Western Interior Alaska Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... Subsistence Management Program for Public Lands in Alaska; Western Interior Alaska Federal Subsistence... purpose of the Council is to provide recommendations and information to the Federal Subsistence Board, to review policies and management plans, and to provide a public forum for subsistence issues. DATES:...

  1. 75 FR 3888 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... Fish and Wildlife Service 50 CFR Part 92 RIN 1018-AW67 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2010 Season AGENCY: Fish and Wildlife Service... Wildlife Service, are reopening the public comment period on our proposed rule to establish migratory...

  2. 77 FR 2972 - City and Borough of Sitka, Alaska, Alaska; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission City and Borough of Sitka, Alaska, Alaska; Notice of Availability of Environmental Assessment In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's (Commission...

  3. Building Alaska's Science and Engineering Pipeline: Evaluation of the Alaska Native Science & Engineering Program

    ERIC Educational Resources Information Center

    Bernstein, Hamutal; Martin, Carlos; Eyster, Lauren; Anderson, Theresa; Owen, Stephanie; Martin-Caughey, Amanda

    2015-01-01

    The Urban Institute conducted an implementation and participant-outcomes evaluation of the Alaska Native Science & Engineering Program (ANSEP). ANSEP is a multi-stage initiative designed to prepare and support Alaska Native students from middle school through graduate school to succeed in science, technology, engineering, and math (STEM)…

  4. Alaska Native Languages: Past, Present, and Future. Alaska Native Language Center Research Papers No. 4.

    ERIC Educational Resources Information Center

    Krauss, Michael E.

    Three papers (1978-80) written for the non-linguistic public about Alaska Native languages are combined here. The first is an introduction to the prehistory, history, present status, and future prospects of all Alaska Native languages, both Eskimo-Aleut and Athabaskan Indian. The second and third, presented as appendixes to the first, deal in…

  5. Trophic ecology of introduced populations of Alaska blackfish (Dallia pectoralis) in the Cook Inlet Basin, Alaska.

    PubMed

    Eidam, Dona M; von Hippel, Frank A; Carlson, Matthew L; Lassuy, Dennis R; López, J Andrés

    2016-07-01

    Introduced non-native fishes have the potential to substantially alter aquatic ecology in the introduced range through competition and predation. The Alaska blackfish (Dallia pectoralis) is a freshwater fish endemic to Chukotka and Alaska north of the Alaska Range (Beringia); the species was introduced outside of its native range to the Cook Inlet Basin of Alaska in the 1950s, where it has since become widespread. Here we characterize the diet of Alaska blackfish at three Cook Inlet Basin sites, including a lake, a stream, and a wetland. We analyze stomach plus esophageal contents to assess potential impacts on native species via competition or predation. Alaska blackfish in the Cook Inlet Basin consume a wide range of prey, with major prey consisting of epiphytic/benthic dipteran larvae, gastropods, and ostracods. Diets of the introduced populations of Alaska blackfish are similar in composition to those of native juvenile salmonids and stickleback. Thus, Alaska blackfish may affect native fish populations via competition. Fish ranked third in prey importance for both lake and stream blackfish diets but were of minor importance for wetland blackfish.

  6. Station corrections for the Katmai Region Seismic Network

    USGS Publications Warehouse

    Searcy, Cheryl K.

    2003-01-01

    Most procedures for routinely locating earthquake hypocenters within a local network are constrained to using laterally homogeneous velocity models to represent the Earth's crustal velocity structure. As a result, earthquake location errors may arise due to actual lateral variations in the Earth's velocity structure. Station corrections can be used to compensate for heterogeneous velocity structure near individual stations (Douglas, 1967; Pujol, 1988). The HYPOELLIPSE program (Lahr, 1999) used by the Alaska Volcano Observatory (AVO) to locate earthquakes in Cook Inlet and the Aleutian Islands is a robust and efficient program that uses one-dimensional velocity models to determine hypocenters of local and regional earthquakes. This program does have the capability of utilizing station corrections within it's earthquake location proceedure. The velocity structures of Cook Inlet and Aleutian volcanoes very likely contain laterally varying heterogeneities. For this reason, the accuracy of earthquake locations in these areas will benefit from the determination and addition of station corrections. In this study, I determine corrections for each station in the Katmai region. The Katmai region is defined to lie between latitudes 57.5 degrees North and 59.00 degrees north and longitudes -154.00 and -156.00 (see Figure 1) and includes Mount Katmai, Novarupta, Mount Martin, Mount Mageik, Snowy Mountain, Mount Trident, and Mount Griggs volcanoes. Station corrections were determined using the computer program VELEST (Kissling, 1994). VELEST inverts arrival time data for one-dimensional velocity models and station corrections using a joint hypocenter determination technique. VELEST can also be used to locate single events.

  7. Alaska public health law reform.

    PubMed

    Meier, Benjamin Mason; Hodge, James G; Gebbie, Kristine M

    2008-04-01

    The Turning Point Model State Public Health Act (Turning Point Act), published in September 2003, provides a comprehensive template for states seeking public health law modernization. This case study examines the political and policy efforts undertaken in Alaska following the development of the Turning Point Act. It is the first in a series of case studies to assess states' consideration of the Turning Point Act for the purpose of public health law reform. Through a comparative analysis of these case studies and ongoing legislative tracking in all fifty states, researchers can assess (1) how states codify the Turning Point Act into state law and (2) how these modernized state laws influence or change public health practice, leading to improved health outcomes.

  8. List mode multichannel analyzer

    DOEpatents

    Archer, Daniel E.; Luke, S. John; Mauger, G. Joseph; Riot, Vincent J.; Knapp, David A.

    2007-08-07

    A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.

  9. Acquisitions List No. 43.

    ERIC Educational Resources Information Center

    Planned Parenthood--World Population, New York, NY. Katherine Dexter McCormick Library.

    The "Acquisitions List" of demographic books and articles is issued every two months by the Katharine Dexter McCormick Library. Divided into two parts, the first contains a list of books most recently acquired by the Library, each one annotated and also marked with the Library call number. The second part consists of a list of annotated articles,…

  10. Acquisitions List No. 42.

    ERIC Educational Resources Information Center

    Planned Parenthood--World Population, New York, NY. Katherine Dexter McCormick Library.

    The "Acquisitions List" of demographic books and articles is issued every two months by the Katharine Dexter McCormick Library. Divided into two parts, the first contains a list of books most recently acquired by the Library, each one annotated and also marked with the Library call number. The second part consists of a list of annotated articles,…

  11. Against Reading Lists

    ERIC Educational Resources Information Center

    Davis, Lennard J.

    2012-01-01

    A course's reading list is the skeleton of a semester's body of thought, the inventory that a professor writes up for the departmental Web site and the schedule of courses that lists the goods. Despite the obvious utility of fixed reading lists, one should jettison them when possible. The author has been conducting an informal experiment using a…

  12. Further ecological and shoreline stability reconnaissance surveys of Back Island, Behm Canal, Southeast Alaska

    SciTech Connect

    Young, J.S.; Strand, J.A.; Ecker, R.M.

    1987-09-01

    A diver reconnaissance of the intertidal and subtidal zones of Back Island was performed to catalog potentially vulnerable shellfish, other invertebrates, and marine plant resources occurring at three proposed alternate pier sites on the west side of Back Island. Additionally, a limited survey of terrestrial vegetation was conducted in the vicinity of one of the proposed alternate pier sites to describe the littoral community and to list the dominant plant species found there. Finally, a reconnaissance survey of the shoreline of Back Island was conducted to evaluate potential changes in shoreline stability resulting from construction of onshore portions of the Southeast Alaska Acoustic Measurement Facility (SEAFAC).

  13. The United States Geological Survey in Alaska; organization and status of programs in 1977

    USGS Publications Warehouse

    Blean, Kathleen M.

    1977-01-01

    United States Geological Survey projects in Alaska include a wide range of topics of economic and scientific interest. Studies in 1976 include economic geology, regional geology, stratigraphy, environmental geology, engineering geology, hydrology, and marine geology. Discussions of the findings or, in some instances, narratives of the course of the investigations are grouped in eight subdivisions corresponding to the six major onshore geographic regions, the offshore projects, and projects that are statewide in scope. Locations of the study areas are shown. In addition, many reports and maps covering various aspects of the geology and mineral and water resources of the State were published. These publications are listed. (Woodard-USGS)

  14. Soil Physical, Chemical, and Thermal Characterization, Teller Road Site, Seward Peninsula, Alaska, 2016

    DOE Data Explorer

    Graham, David; Kholodov, Alexander; Busey, Bob; Romanovsky, Vladimir; Wilson, Cathy; Moon, Ji-Won

    2017-02-08

    This dataset provides the results of physical, chemical, and thermal characterization of soils at the Teller Road Site, Seward Peninsula, Alaska. Soil pits were dug from 7-14 September 2016 at designated Intensive Stations 2 through 9 at the Teller Road MM 27 Site. This dataset includes field observations and descriptions of soil layers or horizons, field measurements of soil volumetric water content, soil temperature, thermal conductivity, and heat capacity. Laboratory measurements of soil properties include gravimetric water content, bulk density, volumetric water content, and total carbon and nitrogen.

  15. The Alaska resource data files: Mount Katmai (MK) quadrangle

    USGS Publications Warehouse

    Wilson, Frederic H.; Church, Stanley E.; Bickerstaff, Damon P.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Mount Katmai 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  16. Shoring pumping station excavation

    SciTech Connect

    Glover, J.B.; Reardon, D.J. )

    1991-11-01

    The city of San Mateo, Calif., operates three 12- to 50-year old wastewater pumping stations on a 24-m (80-ft) wide lot located in a residential area near San Francisco Bay. Because the aging stations have difficulty pumping peak 2.19-m{sup 3}/s (50-mgd) wet-weather flows and have structural and maintenance problems, a new 2.62-m{sup 3}/s (60-mgd) station was proposed - the Dale Avenue Pumping Station - to replace the existing ones. To prevent potential damage to adjacent homes, the new station was originally conceived as a circular caisson type; however, a geotechnical investigation recommended against this type of structure because the stiff soils could make sinking the structure difficult. This prompted an investigation of possible shoring methods for the proposed structure. Several shoring systems were investigated, including steel sheeting, soldier beams and lagging, tieback systems, open excavation, and others; however, each had disadvantages that prevented its use. Because these conventional techniques were unacceptable, attention was turned to using deep soil mixing (DSM) to create a diaphragm wall around the area to be excavated before constructing the pumping station. Although this method has been used extensively in Japan since 1983, the Dale Avenue Pumping Station would be the technology's first US application. The technology's anticipated advantages were its impermeability, its fast and efficient installation that did not require tiebacks under existing homes, its adaptability to subsurface conditions ranging from soft ground to stiff clay to gravels, and its lack of pile-driving requirements that would cause high vibration levels during installation.

  17. Alaska

    Atmospheric Science Data Center

    2014-05-15

    ... help to darken the room lights when viewing the image on a computer screen. The Yukon River is seen wending its way from upper left to ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  18. Assessing HAP and VOC emissions from gasoline service stations

    SciTech Connect

    1995-05-01

    Gas stations are not specifically regulated under the national emission standards for hazardous air pollutants (NESHAP) or new source performance standards (NSPS) programs, and it is unlikely that a station would qualify as a major source by emitting 100 tons per year (tpy) or more of any single air pollutant. Determining gas stations` potential to emit VOCs and hazardous air pollutants (HAPs) may become more important as the focus of the Part 70 program shifts from major sources to area (nonmajor) sources. HAP and VOC emissions from gas stations are generated primarily from four sources: (1) tank filling losses, (2) tank breathing losses, (3) automobile refueling displacement losses, and (4) gasoline spillage during dispensing. Each of these sources is discussed, and emission estimates are listed. 3 refs., 3 tabs.

  19. Space Station Freedom: Dynamic instrumentation for a large space structure

    NASA Technical Reports Server (NTRS)

    Raney, John P.; Cooper, Paul A.; Johnson, James W.

    1990-01-01

    A proposed approach called Modal Identification Experiment (MIE) for obtaining on-orbit dynamic response measurements on Space Station Freedom, the first of a family of large, flexible space structures is discussed. The Phase 2 conceptual design study which provides a conceptual design of a proposed measurement system and an experimental protocol for inobstrusively collecting dynamic response data critical to characterizing important vibration modes of Space Station Freedom were recently concluded. The case for conducting such a measurement program is presented and the specific MIE objectives that were identified, are listed. The sequence of discrete Space Station Freedom assembly configurations is described, and the Phase 2 conceptual design of the experiment and instrumentation system are defined. In addition, a plan to utilize a space station hydrid scale model in laboratory simulations as part of the design process are discussed.

  20. Proceedings of the Space Station Freedom Clinical Experts Seminar

    NASA Technical Reports Server (NTRS)

    Billica, Roger P. (Editor); Lloyd, Charles W. (Editor); Doarn, Charles R. (Editor)

    1991-01-01

    These are the proceedings of the Space Station Freedom Health Maintenance Facility 1990 Clinical Experts Seminar held August 27-29, 1990, at the Nassau Bay Hilton, Houston, Texas. Contained within are the agenda, list of medical consultants, executive summary, individual presentations, and the comments generated from the working groups. Issues include the adequacy of current Health Maintenance Facility for Space Station Freedom; impact of having, or not having, an ACRV or physician on board Space Station Freedom; new and developing technologies, techniques, and medications and their impact on the evolving Space Station Freedom, considerations surrounding x-ray, ultrasound, lab, decontamination, blood transfusion, nutrition, safe-haven, computer/telemedicine; suggestions as to how to train the Crew Medical Officer; and, how the consultant network will interface over the next several years.

  1. UMTS Network Stations

    NASA Astrophysics Data System (ADS)

    Hernandez, C.

    2010-09-01

    The weakness of small island electrical grids implies a handicap for the electrical generation with renewable energy sources. With the intention of maximizing the installation of photovoltaic generators in the Canary Islands, arises the need to develop a solar forecasting system that allows knowing in advance the amount of PV generated electricity that will be going into the grid, from the installed PV power plants installed in the island. The forecasting tools need to get feedback from real weather data in "real time" from remote weather stations. Nevertheless, the transference of this data to the calculation computer servers is very complicated with the old point to point telecommunication systems that, neither allow the transfer of data from several remote weather stations simultaneously nor high frequency of sampling of weather parameters due to slowness of the connection. This one project has developed a telecommunications infrastructure that allows sensorizadas remote stations, to send data of its sensors, once every minute and simultaneously, to the calculation server running the solar forecasting numerical models. For it, the Canary Islands Institute of Technology has added a sophisticated communications network to its 30 weather stations measuring irradiation at strategic sites, areas with high penetration of photovoltaic generation or that have potential to host in the future photovoltaic power plants connected to the grid. In each one of the stations, irradiance and temperature measurement instruments have been installed, over inclined silicon cell, global radiation on horizontal surface and room temperature. Mobile telephone devices have been installed and programmed in each one of the weather stations, which allow the transfer of their data taking advantage of the UMTS service offered by the local telephone operator. Every minute the computer server running the numerical weather forecasting models receives data inputs from 120 instruments distributed

  2. Demonstrating the Alaska Ocean Observing System in Prince William Sound

    NASA Astrophysics Data System (ADS)

    Schoch, G. Carl; McCammon, Molly

    2013-07-01

    The Alaska Ocean Observing System and the Oil Spill Recovery Institute developed a demonstration project over a 5 year period in Prince William Sound. The primary goal was to develop a quasi-operational system that delivers weather and ocean information in near real time to diverse user communities. This observing system now consists of atmospheric and oceanic sensors, and a new generation of computer models to numerically simulate and forecast weather, waves, and ocean circulation. A state of the art data management system provides access to these products from one internet portal at http://www.aoos.org. The project culminated in a 2009 field experiment that evaluated the observing system and performance of the model forecasts. Observations from terrestrial weather stations and weather buoys validated atmospheric circulation forecasts. Observations from wave gages on weather buoys validated forecasts of significant wave heights and periods. There was an emphasis on validation of surface currents forecasted by the ocean circulation model for oil spill response and search and rescue applications. During the 18 day field experiment a radar array mapped surface currents and drifting buoys were deployed. Hydrographic profiles at fixed stations, and by autonomous vehicles along transects, were made to acquire measurements through the water column. Terrestrial weather stations were the most reliable and least costly to operate, and in situ ocean sensors were more costly and considerably less reliable. The radar surface current mappers were the least reliable and most costly but provided the assimilation and validation data that most improved ocean circulation forecasts. We describe the setting of Prince William Sound and the various observational platforms and forecast models of the observing system, and discuss recommendations for future development.

  3. ILRS Station Reporting

    NASA Technical Reports Server (NTRS)

    Noll, Carey E.; Pearlman, Michael Reisman; Torrence, Mark H.

    2013-01-01

    Network stations provided system configuration documentation upon joining the ILRS. This information, found in the various site and system log files available on the ILRS website, is essential to the ILRS analysis centers, combination centers, and general user community. Therefore, it is imperative that the station personnel inform the ILRS community in a timely fashion when changes to the system occur. This poster provides some information about the various documentation that must be maintained. The ILRS network consists of over fifty global sites actively ranging to over sixty satellites as well as five lunar reflectors. Information about these stations are available on the ILRS website (http://ilrs.gsfc.nasa.gov/network/stations/index.html). The ILRS Analysis Centers must have current information about the stations and their system configuration in order to use their data in generation of derived products. However, not all information available on the ILRS website is as up-to-date as necessary for correct analysis of their data.

  4. International space station

    NASA Astrophysics Data System (ADS)

    DeLucas, Lawrence J.

    1996-02-01

    The International Space Station represents the largest scientific and technological cooperative program in history, drawing on the resources of thirteen nations. The early stages of construction will involve significant participation from the Russian Space Agency (RSA), numerous nations of the European Space Agency (ESA), and the space agencies of Canada (CSA), Japan (NASDA) and the United States Space Agency (NASA). Its purpose is to place a unique, highly capable laboratory in tower orbit, where high value scientific research can be performed in microgravity. In addition to providing facilities where an international crew of six astronaut-scientists can live and work in space, it will provide important laboratory research facilities for performing basic research in life science, biomedical and material sciences, as well as space and engineering technology development which cannot be accomplished on Earth. The Space Station will be comprised of numerous interlocking components which are currently being constructed on Earth. Space Station will be assembled in orbit over a period of time and will provide several experimentation modules as well as habitation modules and interfaces for logistic modules. Including the four extensive solar rays from which it will draw electrical power, the Station will measure more than 300 feet wide by 200 feet long. This paper will present an overview of the various phases of construction of the Space Station and the planned science thought will be performed during the construction phase and after completion.

  5. The manned space station

    NASA Astrophysics Data System (ADS)

    Kovit, B.

    The development and establishment of a manned space station represents the next major U.S. space program after the Space Shuttle. If all goes according to plan, the space station could be in orbit around the earth by 1992. A 'power tower' station configuration has been selected as a 'reference' design. This configuration involves a central truss structure to which various elements are attached. An eight-foot-square truss forms the backbone of a structure about 400 feet long. At its lower end, nearest the earth, are attached pressurized manned modules. These modules include two laboratory modules and two so-called 'habitat/command' modules, which provide living and working space for the projected crew of six persons. Later, the station's pressurized space would be expanded to accommodate up to 18 persons. By comparison, the Soviets will provide habitable space for 12 aboard a 300-ton station which they are expected to place in orbit. According to current plans the six U.S. astronauts will work in two teams of three persons each. A ninety-day tour of duty is considered.

  6. Space station contamination modeling

    NASA Technical Reports Server (NTRS)

    Gordon, T. D.

    1989-01-01

    Current plans for the operation of Space Station Freedom allow the orbit to decay to approximately an altitude of 200 km before reboosting to approximately 450 km. The Space Station will encounter dramatically increasing ambient and induced environmental effects as the orbit decays. Unfortunately, Shuttle docking, which has been of concern as a high contamination period, will likely occur during the time when the station is in the lowest orbit. The combination of ambient and induced environments along with the presence of the docked Shuttle could cause very severe contamination conditions at the lower orbital altitudes prior to Space Station reboost. The purpose here is to determine the effects on the induced external environment of Space Station Freedom with regard to the proposed changes in altitude. The change in the induced environment will be manifest in several parameters. The ambient density buildup in front of ram facing surfaces will change. The source of such contaminants can be outgassing/offgassing surfaces, leakage from the pressurized modules or experiments, purposeful venting, and thruster firings. The third induced environment parameter with altitude dependence is the glow. In order to determine the altitude dependence of the induced environment parameters, researchers used the integrated Spacecraft Environment Model (ISEM) which was developed for Marshall Space Flight Center. The analysis required numerous ISEM runs. The assumptions and limitations for the ISEM runs are described.

  7. Seamonster: A Smart Sensor Web in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Heavner, M. J.; Hood, E.; Connor, C.; Nagorski, S.

    2006-12-01

    The NASA Research Opportunities in Space and Earth Science (ROSES) program is supporting a wireless sensor network project as part of its Advanced Information Systems Technology "Smart Sensor Web" initiative. The project, entitled Seamonster (for SouthEast Alaska MONitoring Network for Science, Telecomm, and Education Research) is led by the University of Alaska Southeast (Juneau) in collaboration with Microsoft- Vexcel in Boulder Colorado. This paper describes both the data acquisition components and science research objectives of Seamonster. The underlying data acquisition concept is to facilitate geophysics data acquisition by providing a wireless backbone for data recovery. Other researchers would be encouraged to emplace their own sensors together with short-range wireless (ZigBee, Bluetooth, etc). Through a common protocol the backbone will receive data from these sensors and relay them to a wired server. This means that the investigator can receive their data via email on a daily basis thereby cutting cost and monitoring sensor health. With environmental hardening and fairly high bandwidth and long range (100kbps/50km to 5mpbs/15km per hop) the network is intended to cover large areas and operate in harsh environments. Low power sensors and intelligent power management within the backbone are the dual ideas to contend with typical power/cost/data dilemmas. Seamonster science will focus over the next three years on hydrology and glaciology in a succession of valleys near Juneau in various stages of deglaciation, in effect providing a synopsis of a millennium-timescale process in a single moment. The instrumentation will include GPS, geophones, digital photography, met stations, and a suite of stream state and water quality sensors. Initial focus is on the Lemon Creek watershed with expansion to follow in subsequent years. The project will ideally expand to include marine and biological monitoring components.

  8. 41 CFR 302-3.515 - What special rules must we apply for reimbursement of tour renewal travel for employees stationed...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false What special rules must we apply for reimbursement of tour renewal travel for employees stationed, assigned, appointed or transferred to/from Alaska or Hawaii? 302-3.515 Section 302-3.515 Public Contracts and Property Management Federal Travel Regulation System...

  9. 41 CFR 302-3.515 - What special rules must we apply for reimbursement of tour renewal travel for employees stationed...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What special rules must we apply for reimbursement of tour renewal travel for employees stationed, assigned, appointed or transferred to/from Alaska or Hawaii? 302-3.515 Section 302-3.515 Public Contracts and Property Management Federal Travel Regulation System...

  10. 41 CFR 302-3.515 - What special rules must we apply for reimbursement of tour renewal travel for employees stationed...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true What special rules must we apply for reimbursement of tour renewal travel for employees stationed, assigned, appointed or transferred to/from Alaska or Hawaii? 302-3.515 Section 302-3.515 Public Contracts and Property Management Federal Travel Regulation System...

  11. 41 CFR 302-3.515 - What special rules must we apply for reimbursement of tour renewal travel for employees stationed...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false What special rules must we apply for reimbursement of tour renewal travel for employees stationed, assigned, appointed or transferred to/from Alaska or Hawaii? 302-3.515 Section 302-3.515 Public Contracts and Property Management Federal Travel Regulation System...

  12. 41 CFR 302-3.515 - What special rules must we apply for reimbursement of tour renewal travel for employees stationed...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 4 2014-07-01 2014-07-01 false What special rules must we apply for reimbursement of tour renewal travel for employees stationed, assigned, appointed or transferred to/from Alaska or Hawaii? 302-3.515 Section 302-3.515 Public Contracts and Property Management Federal Travel Regulation System...

  13. 77 FR 13683 - Alaska Federal Lands Long Range Transportation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Federal Highway Administration Alaska Federal Lands Long Range Transportation Plan AGENCY: Federal Highway..., announced the availability of the draft Alaska Federal Lands Long Range Transportation Plans (LRTP) for... Alaska Federal Lands draft Long Range Transportation Plans. The draft Plans are available on our...

  14. Alaska Native Population and Manpower: 1975. A Report.

    ERIC Educational Resources Information Center

    Bland, Laurel L.

    Numbering approximately 62,005 and representing 15.3% of the total Alaska population in 1975, Alaska Natives are a finite and predominately rural subpopulation. However, a significant portion of the Alaska Native Work Force (estimated at 13,854) now resides in the major urban areas and is available to the Statewide Work Force. Statistics from May,…

  15. 50 CFR 18.94 - Pacific walrus (Alaska).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Pacific walrus (Alaska). 18.94 Section 18... Marine Mammal Species § 18.94 Pacific walrus (Alaska). (a) Pursuant to sections 101(a)(3)(A) 103, and 109... walrus (Odobenus rosmarus) in waters or on lands subject to the jurisdiction of the State of Alaska,...

  16. 50 CFR 18.94 - Pacific walrus (Alaska).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Pacific walrus (Alaska). 18.94 Section 18... Marine Mammal Species § 18.94 Pacific walrus (Alaska). (a) Pursuant to sections 101(a)(3)(A) 103, and 109... walrus (Odobenus rosmarus) in waters or on lands subject to the jurisdiction of the State of Alaska,...

  17. 50 CFR 18.94 - Pacific walrus (Alaska).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Pacific walrus (Alaska). 18.94 Section 18... Marine Mammal Species § 18.94 Pacific walrus (Alaska). (a) Pursuant to sections 101(a)(3)(A) 103, and 109... walrus (Odobenus rosmarus) in waters or on lands subject to the jurisdiction of the State of Alaska,...

  18. 24 CFR 598.515 - Alaska and Hawaii.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 3 2013-04-01 2013-04-01 false Alaska and Hawaii. 598.515 Section 598.515 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....515 Alaska and Hawaii. A nominated area in Alaska or Hawaii is deemed to satisfy the criteria...

  19. 24 CFR 598.515 - Alaska and Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 3 2014-04-01 2013-04-01 true Alaska and Hawaii. 598.515 Section 598.515 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....515 Alaska and Hawaii. A nominated area in Alaska or Hawaii is deemed to satisfy the criteria...

  20. 24 CFR 598.515 - Alaska and Hawaii.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false Alaska and Hawaii. 598.515 Section 598.515 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....515 Alaska and Hawaii. A nominated area in Alaska or Hawaii is deemed to satisfy the criteria...

  1. 24 CFR 598.515 - Alaska and Hawaii.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Alaska and Hawaii. 598.515 Section 598.515 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....515 Alaska and Hawaii. A nominated area in Alaska or Hawaii is deemed to satisfy the criteria...

  2. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  3. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  4. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  5. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  6. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  7. A History of Schooling for Alaska Native People.

    ERIC Educational Resources Information Center

    Barnhardt, Carol

    2001-01-01

    Reviews the geographic and demographic contexts of Alaska schooling, federal policies that have affected education in Alaska, and the evolution of schooling for Alaska Native people. Describes the development of a dual federal/territorial system of schools, the initiation of federal and state reform efforts, Native-sponsored educational…

  8. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Alaska wildlife areas. 3101.5-3 Section... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations....

  9. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Alaska wildlife areas. 3101.5-3 Section... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations....

  10. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Alaska wildlife areas. 3101.5-3 Section... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations....

  11. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Alaska wildlife areas. 3101.5-3 Section... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations....

  12. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  13. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  14. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  15. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  16. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  17. Status and distribution of the Kittlitz's murrelet Brachyramphus brevirostris in Kenai Fjords, Alaska

    USGS Publications Warehouse

    Arimitsu, M.; Piatt, J.F.; Romano, Marc D.; van Pelt, Thomas I.

    2011-01-01

    The Kittlitz's Murrelet Brachyramphus brevirostris is a candidate species for listing under the US Endangered Species Act because of its apparent declines within core population areas of coastal Alaska. During the summers of 2006-2008, we conducted surveys in marine waters adjacent to Kenai Fjords National Park, Alaska, to estimate the current population size of Kittlitz's and Marbled murrelets B. marmoratus and examine seasonal variability in distribution within coastal fjords. We also evaluated historical data to estimate trend. Based on an average of point estimates, we find the recent population (95% CI) of Kittlitz's Murrelet to be 716 (353-1080) individuals, that of Marbled Murrelet to be 6690 (5427-7953) individuals, and all Brachyramphus murrelets combined to number 8186 (6978-9393) birds. Within-season density estimates showed Kittlitz's Murrelets generally increased between June and July, but dispersed rapidly by August, while Marbled Murrelets generally increased throughout the summer. Trends in Kittlitz's and Marbled murrelet populations were difficult to assess with confidence. Methods for counting or sampling murrelets varied in early decades of study, while in later years there is uncertainty due to highly variable counts among years, which may be due in part to timing of surveys relative to the spring bloom in coastal waters of the Gulf of Alaska.

  18. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    SciTech Connect

    2013-09-01

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and

  19. Space station - Technology development

    NASA Technical Reports Server (NTRS)

    Carlisle, R. F.

    1984-01-01

    The NASA manned space station program's systems technology effort involves the development of novel techniques that will reduce the scope of tasks neeeded for design, development, testing and evaluation of the hardware. Operations technology efforts encompass analyses that will define those techniques best able to improve the efficiency and reduce the costs of space station functions. The technology objective for data management calls for a fault-tolerant, distributed, expandable and adaptable, as well as repairable and user-friendly, flight data management system that employs state-of-the-art hardware and software. The space station's power system includes the largest element, a 'solar blanket', and the heaviest component, the batteries, of all the subsystems. A thermal management system for the power system is of paramount importance. Attention is also given to the exacting demands of attitude control and stabilization and a regenerative life support system of the requisite capacity and reliability.

  20. Operation of a telemetered seismic network on the Alaska Peninsula. Annual report

    SciTech Connect

    Not Available

    1981-02-01

    A large aperture network of eleven short period seismic stations is being operated on the Alaska Peninsula and several offshore islands to acquire data for the study of the seismotectonics of a part of the Alaska-Aleutian arc-trench structure. The system operated satisfactorily during the past year and continued to provide seismic coverage at a low magnitude threshold level (M/sub L/ = 2.0). An event detection system, developed under this contract over the past years, has been field installed and is undergoing fine tuning. Focal mechanism studies of intermediate depths Benioff zone earthquakes were continued. Like a previous, smaller set, these mechanisms show predominantly down-dip extension, indicating gravitational sinking of the subducting lithosphere. Analysis of the combined data from our network and a temporary array of Ocean Bottom Seismometers, deployed under a related study, indicate that epicenters of earthquakes in the continental shelf area off Kodiak Island are shifted landward by about 15 km with respect to the epicenters determined from the combined data set. Clusters of shallow seismic activity associated with certain Alaska Peninsula volcanoes, observed over the past years, had previously been interpreted as related to shallow magmatic-geothermal reservoirs. Volcanologic-petrologic field studies conducted last year show that volcanic centers associated with such swarms do indeed have surface manifestations of hydrothermal activity.

  1. EarthScope's Plate Boundary Observatory in Alaska: Building on Existing Infrastructure to Provide a Platform for Integrated Research and Hazard-monitoring Efforts

    NASA Astrophysics Data System (ADS)

    Boyce, E. S.; Bierma, R. M.; Willoughby, H.; Feaux, K.; Mattioli, G. S.; Enders, M.; Busby, R. W.

    2014-12-01

    EarthScope's geodetic component in Alaska, the UNAVCO-operated Plate Boundary Observatory (PBO) network, includes 139 continuous GPS sites and 41 supporting telemetry relays. These are spread across a vast area, from northern AK to the Aleutians. Forty-five of these stations were installed or have been upgraded in cooperation with various partner agencies and currently provide data collection and transmission for more than one group. Leveraging existing infrastructure normally has multiple benefits, such as easier permitting requirements and costs savings through reduced overall construction and maintenance expenses. At some sites, PBO-AK power and communications systems have additional capacity beyond that which is needed for reliable acquisition of GPS data. Where permits allow, such stations could serve as platforms for additional instrumentation or real-time observing needs. With the expansion of the Transportable Array (TA) into Alaska, there is increased interest to leverage existing EarthScope resources for station co-location and telemetry integration. Because of the complexity and difficulty of long-term O&M at PBO sites, however, actual integration of GPS and seismic equipment must be considered on a case-by-case basis. UNAVCO currently operates two integrated GPS/seismic stations in collaboration with the Alaska Earthquake Center, and three with the Alaska Volcano Observatory. By the end of 2014, PBO and TA plan to install another four integrated and/or co-located geodetic and seismic systems. While three of these are designed around existing PBO stations, one will be a completely new TA installation, providing PBO with an opportunity to expand geodetic data collection in Alaska within the limited operations and maintenance phase of the project. We will present some of the design considerations, outcomes, and lessons learned from past and ongoing projects to integrate seismometers and other instrumentation at PBO-Alaska stations. Developing the PBO

  2. Hydrogen vehicle fueling station

    SciTech Connect

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  3. Geomorphology of the lower Copper River, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.

    1997-01-01

    The Copper River, located in southcentral Alaska, drains an area of more than 24,000 square miles. About 30 miles above its mouth, this large river enters Miles Lake, a proglacial lake formed by the retreat of Miles Glacier. Downstream from the outlet of Miles Lake, the Copper River flows past the face of Childs Glacier before it enters a large, broad, alluvial flood plain. The Copper River Highway traverses this flood plain and in 1995, 11 bridges were located along this section of the highway. These bridges cross parts of the Copper River and in recent years, some of these bridges have sustained serious damage due to the changing course of the Copper River. Although the annual mean discharge of the lower Copper River is 57,400 cubic feet per second, most of the flow occurs during the summer months from snowmelt, rainfall, and glacial melt. Approximately every six years, an outburst flood from Van Cleve Lake, a glacier-dammed lake formed by Miles Glacier, releases approximately 1 million acre-feet of water into the Copper River. When the outflow rate from Van Cleve Lake reaches it peak, the flow of the Copper River will increase between 150,000 to 190,000 cubic feet per second. Data collected by bedload sampling and continuous seismic reflection indicated that Miles Lake traps virtually all the bedload being transported by the Copper River as it enters the lake from the north. The reservoir-like effect of Miles Lake results in the armoring of the channel of the Copper River downstream from Miles Lake, past Childs Glacier, until it reaches the alluvial flood plain. At this point, bedload transport begins again. The lower Copper River transports 69 million tons per year of suspended sediment, approximately the same quantity as the Yukon River, which drains an area of more than 300,000 square miles. By correlating concurrent flows from a long-term streamflow-gaging station on the Copper River with a short-term streamflow-gaging station at the outlet of Miles Lake

  4. Geomorphology of the lower Copper River, Alaska

    USGS Publications Warehouse

    Brabets, T.P.

    1996-01-01

    The Copper River, located in southcentral Alaska, drains an area of more than 24,000 square miles. About 30 miles above its mouth, this large river enters Miles Lake, a proglacial lake formed by the retreat of Miles Glacier. Downstream from the outlet of Miles Lake, the Copper River flows past the face of Childs Glacier before it enters a large, broad, alluvial flood plain. The Copper River Highway traverses this flood plain and in 1996, 11 bridges were located along this section of the highway. These bridges cross parts or all of the Copper River and in recent years, some of these bridges have sustained serious damage due to the changing course of the Copper River. Although the annual mean discharge of the lower Copper River is 57,400 cubic feet per second, most of the flow occurs during the summer months from snowmelt, rainfall, and glacial melt. Approximately every six years, an outburst flood from Van Cleve Lake, a glacier-dammed lake formed by Miles Glacier, releases approximately 1 million acre-feet of water into the Copper River. At the peak outflow rate from Van Cleve Lake, the flow of the Copper River will increase an additional 140,000 and 190,000 cubic feet per second. Bedload sampling and continuous seismic reflection were used to show that Miles Lake traps virtually all the bedload being transported by the Copper River as it enters the lake from the north. The reservoir-like effect of Miles Lake results in the armoring of the channel of the Copper River downstream from Miles Lakes, past Childs Glacier, until it reaches the alluvial flood plain. At this point, bedload transport begins again. The lower Copper River transports 69 million tons per year of suspended sediment, approximately the same quantity as the Yukon River, which drains an area of more than 300,000 square miles. By correlating concurrent flows from a long-term streamflow- gaging station on the Copper River with a short-term streamflow-gaging station at the outlet of Miles Lake, long

  5. Geologic framework of the Aleutian arc, Alaska

    USGS Publications Warehouse

    Vallier, Tracy L.; Scholl, David W.; Fisher, Michael A.; Bruns, Terry R.; Wilson, Frederic H.; von Huene, Roland E.; Stevenson, Andrew J.

    1994-01-01

    The Aleutian arc is the arcuate arrangement of mountain ranges and flanking submerged margins that forms the northern rim of the Pacific Basin from the Kamchatka Peninsula (Russia) eastward more than 3,000 km to Cooke Inlet (Fig. 1). It consists of two very different segments that meet near Unimak Pass: the Aleutian Ridge segment to the west and the Alaska Peninsula-the Kodiak Island segment to the east. The Aleutian Ridge segment is a massive, mostly submerged cordillera that includes both the islands and the submerged pedestal from which they protrude. The Alaska Peninsula-Kodiak Island segment is composed of the Alaska Peninsula, its adjacent islands, and their continental and insular margins. The Bering Sea margin north of the Alaska Peninsula consists mostly of a wide continental shelf, some of which is underlain by rocks correlative with those on the Alaska Peninsula.There is no pre-Eocene record in rocks of the Aleutian Ridge segment, whereas rare fragments of Paleozoic rocks and extensive outcrops of Mesozoic rocks occur on the Alaska Peninsula. Since the late Eocene, and possibly since the early Eocene, the two segments have evolved somewhat similarly. Major plutonic and volcanic episodes, however, are not synchronous. Furthermore, uplift of the Alaska Peninsula-Kodiak Island segment in late Cenozoic time was more extensive than uplift of the Aleutian Ridge segment. It is probable that tectonic regimes along the Aleutian arc varied during the Tertiary in response to such factors as the directions and rates of convergence, to bathymetry and age of the subducting Pacific Plate, and to the volume of sediment in the Aleutian Trench.The Pacific and North American lithospheric plates converge along the inner wall of the Aleutian trench at about 85 to 90 mm/yr. Convergence is nearly at right angles along the Alaska Peninsula, but because of the arcuate shape of the Aleutian Ridge relative to the location of the plates' poles of rotation, the angle of convergence

  6. Earthquake Hazard and Risk in Alaska

    NASA Astrophysics Data System (ADS)

    Black Porto, N.; Nyst, M.

    2014-12-01

    Alaska is one of the most seismically active and tectonically diverse regions in the United States. To examine risk, we have updated the seismic hazard model in Alaska. The current RMS Alaska hazard model is based on the 2007 probabilistic seismic hazard maps for Alaska (Wesson et al., 2007; Boyd et al., 2007). The 2015 RMS model will update several key source parameters, including: extending the earthquake catalog, implementing a new set of crustal faults, updating the subduction zone geometry and reoccurrence rate. First, we extend the earthquake catalog to 2013; decluster the catalog, and compute new background rates. We then create a crustal fault model, based on the Alaska 2012 fault and fold database. This new model increased the number of crustal faults from ten in 2007, to 91 faults in the 2015 model. This includes the addition of: the western Denali, Cook Inlet folds near Anchorage, and thrust faults near Fairbanks. Previously the subduction zone was modeled at a uniform depth. In this update, we model the intraslab as a series of deep stepping events. We also use the best available data, such as Slab 1.0, to update the geometry of the subduction zone. The city of Anchorage represents 80% of the risk exposure in Alaska. In the 2007 model, the hazard in Alaska was dominated by the frequent rate of magnitude 7 to 8 events (Gutenberg-Richter distribution), and large magnitude 8+ events had a low reoccurrence rate (Characteristic) and therefore didn't contribute as highly to the overall risk. We will review these reoccurrence rates, and will present the results and impact to Anchorage. We will compare our hazard update to the 2007 USGS hazard map, and discuss the changes and drivers for these changes. Finally, we will examine the impact model changes have on Alaska earthquake risk. Consider risk metrics include average annual loss, an annualized expected loss level used by insurers to determine the costs of earthquake insurance (and premium levels), and the

  7. Space Station habitability research

    NASA Technical Reports Server (NTRS)

    Clearwater, Y. A.

    1986-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Cente is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  8. Space Station Habitability Research

    NASA Technical Reports Server (NTRS)

    Clearwater, Yvonne A.

    1988-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Center is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  9. Space Station design integration

    NASA Technical Reports Server (NTRS)

    Carlisle, Richard F.

    1988-01-01

    This paper discusses the top Program level design integration process which involves the integration of a US Space Station manned base that consists of both US and international Elements. It explains the form and function of the Program Requirements Review (PRR), which certifies that the program is ready for preliminary design, the Program Design Review (PDR), which certifies the program is ready to start the detail design, and the Critical Design Review (CDR), which certifies that the program is completing a design that meets the Program objectives. The paper also discusses experience, status to date, and plans for continued system integration through manufacturing, testing and final verification of the Space Station system performance.

  10. Modular space station facilities.

    NASA Technical Reports Server (NTRS)

    Parker, P. J.

    1973-01-01

    The modular space station will operate as a general purpose laboratory (GPL). In addition, the space station will be able to support many attached or free-flying research and application modules that would be dedicated to specific projects like astronomy or earth observations. The GPL primary functions have been organized into functional laboratories including an electrical/electronics laboratory, a mechanical sciences laboratory, an experiment and test isolation laboratory, a hard data process facility, a data evaluation facility, an optical sciences laboratory, a biomedical and biosciences laboratory, and an experiment/secondary command and control center.

  11. Space station structures development

    NASA Technical Reports Server (NTRS)

    Teller, V. B.

    1986-01-01

    A study of three interrelated tasks focusing on deployable Space Station truss structures is discussed. Task 1, the development of an alternate deployment system for linear truss, resulted in the preliminary design of an in-space reloadable linear motor deployer. Task 2, advanced composites deployable truss development, resulted in the testing and evaluation of composite materials for struts used in a deployable linear truss. Task 3, assembly of structures in space/erectable structures, resulted in the preliminary design of Space Station pressurized module support structures. An independent, redundant support system was developed for the common United States modules.

  12. Solar power station

    SciTech Connect

    Wenzel, J.

    1982-11-30

    Solar power station with semiconductor solar cells for generating electric power is described, wherein the semiconductor solar cells are provided on a member such as a balloon or a kite which carries the solar cells into the air. The function of the balloon or kite can also be fulfilled by a glider or airship. The solar power station can be operated by allowing the system to ascend at sunrise and descend at sunset or when the wind is going to be too strong in order to avoid any demage.

  13. 77 FR 4290 - TransCanada Alaska Company, LLC; Notice of Public Scoping Meeting for the Planned Alaska Pipeline...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission TransCanada Alaska Company, LLC; Notice of Public Scoping Meeting for the... cancelled on January 4, 2012, because TransCanada Alaska Company, LLC (TC Alaska) had not filed its...

  14. 76 FR 78642 - TransCanada Alaska Company, LLC; Notice of Public Scoping Meetings for the Planned Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... Federal Energy Regulatory Commission TransCanada Alaska Company, LLC; Notice of Public Scoping Meetings... would transport gas produced on the Alaska North Slope to the Alaska-Canada border to connect with a pipeline system in Canada for onward delivery to markets in North America. The APP is being...

  15. 76 FR 33171 - Fisheries of the Exclusive Economic Zone Off Alaska; Alaska Plaice in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Economic Zone Off Alaska; Alaska Plaice in the Bering Sea and Aleutian Islands Management Area AGENCY... Bering Sea and Aleutian Islands management area (BSAI). This action is necessary to prevent exceeding the 2011 Alaska plaice total allowable catch (TAC) specified for the BSAI. DATES: Effective 1200...

  16. 76 FR 33172 - Fisheries of the Exclusive Economic Zone Off Alaska; Alaska Plaice in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Economic Zone Off Alaska; Alaska Plaice in the Bering Sea and Aleutian Islands Management Area AGENCY... of the non-specified reserve to the initial total allowable catch of Alaska plaice in the Bering Sea and Aleutian Islands management area (BSAI). This action is necessary to allow the fisheries...

  17. Alaska Native Languages: A Bibliographical Catalogue. Part One: Indian Languages. Alaska Native Language Center Research Papers, Number 3.

    ERIC Educational Resources Information Center

    Krauss, Michael E.; McGary, Mary Jane

    This catalogue describes Alaska native language materials at the research library and archive of the Alaska Native Language Center, University of Alaska, Fairbanks. The volume covers the sections of the library devoted to Indian languages as well as the general and bibliography sections. Since the collection is almost exhaustive, the catalogue is…

  18. History of petroleum development in Arctic Alaska

    SciTech Connect

    Gryc, G. )

    1991-03-01

    Long before recorded history, tar from oil seepages and oil shale that burned like wood were used for fuel by the Inuit (native people of Arctic Alaska). The first published descriptions of these oil seepages that identified Arctic Alaska as a petroliferous province appeared in 1909. In 1921, several applications for prospecting permits were filed by private groups under the old mining laws, but the permits were never issued. In 1923, President Harding set aside about half of the North Slope of Alaska, including most of the seepage areas, as Naval Petroleum Reserve No. 4. This was followed by three periods of federally sponsored exploration programs in the reserve and the adjoining areas during the periods 1923 to 1926, 1944 to 1952, and 1974 to 1982. Noncommercial oil and gas deposits were discovered in the reserve, the gas deposits at Barrow were developed for local use, and the feasibility of petroleum exploration and development in the Arctic was established. Industry exploration began in 1958 when the lands adjacent to the reserve were opened for lease. Prudhoe Bay, North America's largest oil field, was discovered in 1968. The history of petroleum development in Arctic Alaska provides an interesting study of the building of a geologic, geographic, and logistic base, of the lead time required for resource exploitation, of the interaction of government and industry, and of the expansion of the US resource base during a time of expanding ecologic awareness. Petroleum exploration in the Canadian Arctic region was stimulated by the activity across the border in Alaska.

  19. 46 CFR 108.901 - Muster list and emergency instructions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., and in accommodation spaces. The muster list must be posted at all times while the unit is in service...; and (x) Cover the duties of the crew and industrial personnel in case of severe storms. (7) Each... muster station and in other accommodation spaces to inform personnel of— (1) The fire and...

  20. 47 CFR 80.519 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MARITIME SERVICES Private Coast Stations and Marine Utility Stations § 80.519 Station identification. (a...) Marine utility stations, private coast stations, and associated hand-held radios, when...

  1. Short-term velocity measurements at Columbia Glacier, Alaska; August-September 1984

    USGS Publications Warehouse

    Vaughn, B.H.; Raymond, C.F.; Rasmussen, Lowell A.; Miller, D.S.; Michaelson, C.A.; Meier, M.F.; Krimmel, R.M.; Fountain, A.G.; Dunlap, W.W.; Brown, C.S.

    1985-01-01

    Ice velocity data are presented for the lower reach of Columbia Glacier, Alaska. The data span a 29 day period and contain 1,072 angle sightings from two survey stations to 22 markers placed on the ice surface, and 1,621 laser measurements of the distance to one of those markers (number 11) from another station. These short-interval observations were made to investigate the dynamics of the glacier and to provide input to models for estimation of future retreat and iceberg discharge. The mean ice velocity (at marker number 11) was approximately 9 m/day and ranged from 8 to < 15 m/day. The data set includes a well defined 2-day, 50% velocity increase and a clear pattern of velocity fluctuations of about 5% with approximately diurnal and semiurnal periods. (Author 's abstract)

  2. Space station systems: A bibliography with indexes (supplement 9)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 1,313 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1989 and June 30, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included.

  3. Space station systems: A bibliography with indexes (supplement 7)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 1,158 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1988 and June 30, 1988. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included.

  4. International interface design for Space Station Freedom - Challenges and solutions

    NASA Technical Reports Server (NTRS)

    Mayo, Richard E.; Bolton, Gordon R.; Laurini, Daniele

    1988-01-01

    The definition of interfaces for the International Space Station is discussed, with a focus on negotiations between NASA and ESA. The program organization and division of responsibilities for the Space Station are outlined; the basic features of physical and functional interfaces are described; and particular attention is given to the interface management and documentation procedures, architectural control elements, interface implementation and verification, and examples of Columbus interface solutions (including mechanical, ECLSS, thermal-control, electrical, data-management, standardized user, and software interfaces). Diagrams, drawings, graphs, and tables listing interface types are provided.

  5. Space station systems: A bibliography with indexes (supplement 10)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 1,422 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included.

  6. Space Station Systems: a Bibliography with Indexes (Supplement 8)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 950 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included.

  7. Station Program Note Pull Automation

    NASA Technical Reports Server (NTRS)

    Delgado, Ivan

    2016-01-01

    Upon commencement of my internship, I was in charge of maintaining the CoFR (Certificate of Flight Readiness) Tool. The tool acquires data from existing Excel workbooks on NASA's and Boeing's databases to create a new spreadsheet listing out all the potential safety concerns for upcoming flights and software transitions. Since the application was written in Visual Basic, I had to learn a new programming language and prepare to handle any malfunctions within the program. Shortly afterwards, I was given the assignment to automate the Station Program Note (SPN) Pull process. I developed an application, in Python, that generated a GUI (Graphical User Interface) that will be used by the International Space Station Safety & Mission Assurance team here at Johnson Space Center. The application will allow its users to download online files with the click of a button, import SPN's based on three different pulls, instantly manipulate and filter spreadsheets, and compare the three sources to determine which active SPN's (Station Program Notes) must be reviewed for any upcoming flights, missions, and/or software transitions. Initially, to perform the NASA SPN pull (one of three), I had created the program to allow the user to login to a secure webpage that stores data, input specific parameters, and retrieve the desired SPN's based on their inputs. However, to avoid any conflicts with sustainment, I altered it so that the user may login and download the NASA file independently. After the user has downloaded the file with the click of a button, I defined the program to check for any outdated or pre-existing files, for successful downloads, to acquire the spreadsheet, convert it from a text file to a comma separated file and finally into an Excel spreadsheet to be filtered and later scrutinized for specific SPN numbers. Once this file has been automatically manipulated to provide only the SPN numbers that are desired, they are stored in a global variable, shown on the GUI, and

  8. Designing a Weather Station

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  9. Kiowa Creek Switching Station

    SciTech Connect

    Not Available

    1990-03-01

    The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

  10. INEL seismograph stations

    SciTech Connect

    Jackson, S.M.; Anderson, D.M.

    1985-10-01

    The report describes the array of five seismograph stations operated by the Idaho National Engineering Laboratory to monitor earthquake activity on and adjacent to the eastern Snake River plain. Also included is the earthquake catalog from October 1972-December 1984. 2 refs., 2 figs. (ACR)

  11. Space Station Water Quality

    NASA Technical Reports Server (NTRS)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  12. Power Station Design

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Kuljian Corporation provides design engineering and construction management services for power generating plants in more than 20 countries. They used WASP (Calculating Water and Steam Properties), a COSMIC program to optimize power station design. This enabled the company to substantially reduce lead time and software cost in a recent design project.

  13. Space Station structures

    NASA Astrophysics Data System (ADS)

    Schneider, W.

    1985-04-01

    A brief overview of some structural results that came from space station skunk works is presented. Detailed drawings of the pressurized modules, and primary truss structures such as deployable single fold beams, erectable beams and deployable double folds are given. Typical truss attachment devices and deployable backup procedures are also given.

  14. Dragon Departs the Station

    NASA Video Gallery

    The Expedition 31 crew used the Canadarm2 robotic arm to demate the SpaceX Dragon cargo vehicle from the Earth-facing port of the station’s Harmony node at 4:07 a.m. EDT on Thursday. It was relea...

  15. The Home Weather Station.

    ERIC Educational Resources Information Center

    Steinke, Steven D.

    1991-01-01

    Described is how an amateur weather observer measures and records temperature and precipitation at a well-equipped, backyard weather station. Directions for building an instrument shelter and a description of the instruments needed for measuring temperature and precipitation are included. (KR)

  16. Chariot, Alaska Site Fact Sheet

    SciTech Connect

    2013-01-16

    The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.

  17. Research drilling at Katmai, Alaska

    NASA Astrophysics Data System (ADS)

    Eichelberger, John C.; Hildreth, Wes

    1986-10-01

    Drilling observations made in a young igneous system following a single, recent, well-described volcanic event can greatly improve our understanding of magmatic and hydrothermal processes and of the rates at which these processes operate. A group of geoscientists (Table 1) has been working since May 1985 to formulate and advance a plan for research at the site of the historically important 1912 eruption at Katmai, Alaska, as part of the Continental Scientific Drilling Program (CSDP). The plan was presented at the June 12-13, 1986, CSDP Workshop, held in Rapid City, S.Dak., and has now entered a more formal proposal development stage for consideration by the U.S. Department of Energy, National Science Foundation, and U.S. Geological Survey as an interagency effort. This report is provided to inform the geoscience community of the rationale for CSDP research at Katmai and of the forthcoming opportunities for participation in this multidisciplinary effort in the field of magmatic processes.

  18. Southeastern Alaska tectonostratigraphic terranes revisited

    SciTech Connect

    Brew, D.A.; Ford, A.B.

    1985-04-01

    The presence of only three major tectonostratigraphic terranes (TSTs) in southeastern Alaska and northwestern British Columbia (Chugach, Wrangell, and Alexander) is indicated by critical analysis of available age, stratigraphic, and structural data. A possible fourth TST (Stikine) is probably an equivalent of part or all of the Alexander. The Yakutat block belongs to the Chugach TST, and both are closely linked to the Wrangell and Alexander(-Stikine) TSTs; the Gravina TST is an overlap assemblage. THe Alexander(-Stikine) TSTs is subdivided on the basis of age and facies. The subterranes within it share common substrates and represent large-scale facies changes in a long-lived island-arc environment. The Taku TSTs is the metamorphic equivalent of the upper part (Permian and Upper Triassic) of the Alexander(-Stikine) TSTs with some fossil evidence preserved that indicates the age of protoliths. Similarly, the Tracy Arm TST is the metamorphic equivalent of (1) the lower (Ordovician to Carboniferous) Alexander TST without any such fossil evidence and (2) the upper (Permian to Triassic) Alexander(-Stikine) with some newly discovered fossil evidence. Evidence for the ages of juxtaposition of the TSTs is limited. The Chugach TST deformed against the Wrangell and Alexander TSTs in late Cretaceous. Gravina rocks were deformed at the time and also earlier. The Wrangell TST was stitched to the Alexander(-Stikine) by middle Cretaceous plutons but may have arrived before its Late Jurassic plutons were emplaced. The Alexander(-Stikine) and Cache Creek TSTs were juxtaposed before Late Triassic.

  19. Amchitka, Alaska Site Fact Sheet

    SciTech Connect

    2011-12-15

    Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation.

  20. Moose soup shigellosis in Alaska.

    PubMed Central

    Gessner, B D; Beller, M

    1994-01-01

    Following a community gathering held in early September 1991, an outbreak of gastroenteritis occurred in Galena, Alaska. We conducted an epidemiologic investigation to determine the cause of the outbreak. A case of gastroenteritis was defined as diarrhea or at least 2 other symptoms of gastrointestinal illness occurring in a Galena resident within a week of the gathering. Control subjects included asymptomatic residents who either resided with an affected person or were contacted by us during a telephone survey. Of 25 case-patients, 23 had attended the gathering compared with 33 of 58 controls. Among persons who attended the gathering and from whom we obtained a food consumption history, 17 of 19 case-patients and 11 of 22 controls ate moose soup. No other foods served at the gathering were associated with illness. Ten case-patients had culture-confirmed Shigella sonnei. Many pots of moose soup were served each day, and persons attended the gathering and ate moose soup on more than 1 day. Moose soup was prepared in private homes, allowed to cool, and usually served the same day. We identified 5 women who had prepared soup for the gathering and in whose homes at least 1 person had a gastrointestinal illness occur at the time of or shortly before soup preparation. This investigation suggests that eating contaminated moose soup at a community gathering led to an outbreak of shigellosis and highlights the risk of eating improperly prepared or stored foods at public gatherings. PMID:8048226