Science.gov

Sample records for alaska local time

  1. Temporal patterns in adult salmon migration timing across southeast Alaska

    USGS Publications Warehouse

    Kovach, Ryan P.; Ellison, Stephen; Pyare, Sanjay; Tallmon, David

    2015-01-01

    Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long-term variation in salmon migration timing for multiple species across broad regions. We used long-term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long-term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long-term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region-wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large- (Pacific decadal oscillation), moderate- (sea surface temperature), and local-scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long-term shifts in phenology. Overall, there was extensive heterogeneity in long-term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon

  2. Temporal patterns in adult salmon migration timing across southeast Alaska.

    PubMed

    Kovach, Ryan P; Ellison, Stephen C; Pyare, Sanjay; Tallmon, David A

    2015-05-01

    Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long-term variation in salmon migration timing for multiple species across broad regions. We used long-term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long-term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long-term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region-wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large- (Pacific decadal oscillation), moderate- (sea surface temperature), and local-scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long-term shifts in phenology. Overall, there was extensive heterogeneity in long-term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon

  3. Time to Go Local!

    MedlinePlus

    ... Bar Home Current Issue Past Issues Time to Go Local! Past Issues / Winter 2007 Table of Contents ... MedlinePlus.gov health topic pages, you will find "Go Local" links that take you to information about ...

  4. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    NASA Astrophysics Data System (ADS)

    Weber, Florence R.; Hamilton, Thomas D.; Hopkins, David M.; Repenning, Charles A.; Haas, Herbert

    1981-09-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode.

  5. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    USGS Publications Warehouse

    Weber, F.R.; Hamilton, T.D.; Hopkins, D.M.; Repenning, C.A.; Haas, H.

    1981-01-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode. ?? 1981.

  6. Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this spectacular MODIS image from November 7, 2001, the skies are clear over Alaska, revealing winter's advance. Perhaps the most interesting feature of the image is in its center; in blue against the rugged white backdrop of the Alaska Range, Denali, or Mt. McKinley, casts its massive shadow in the fading daylight. At 20,322 ft (6,194m), Denali is the highest point in North America. South of Denali, Cook Inlet appears flooded with sediment, turning the waters a muddy brown. To the east, where the Chugach Mountains meet the Gulf of Alaska, and to the west, across the Aleutian Range of the Alaska Peninsula, the bright blue and green swirls indicate populations of microscopic marine plants called phytoplankton. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  7. Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this spectacular MODIS image from November 7, 2001, the skies are clear over Alaska, revealing winter's advance. Perhaps the most interesting feature of the image is in its center; in blue against the rugged white backdrop of the Alaska Range, Denali, or Mt. McKinley, casts its massive shadow in the fading daylight. At 20,322 ft (6,194m), Denali is the highest point in North America. South of Denali, Cook Inlet appears flooded with sediment, turning the waters a muddy brown. To the east, where the Chugach Mountains meet the Gulf of Alaska, and to the west, across the Aleutian Range of the Alaska Peninsula, the bright blue and green swirls indicate populations of microscopic marine plants called phytoplankton.

  8. Local sources of pollution and their impacts in Alaska (Invited)

    NASA Astrophysics Data System (ADS)

    Molders, N.

    2013-12-01

    The movie 'Into the Wilde' evoke the impression of the last frontier in a great wide and pristine land. With over half a million people living in Alaska an area as larger as the distance from the US West to the East Coast, this idea comes naturally. The three major cities are the main emission source in an otherwise relative clean atmosphere. On the North Slope oil drilling and production is the main anthropogenic emission sources. Along Alaska's coasts ship traffic including cruises is another anthropogenic emission source that is expected to increase as sea-ice recedes. In summer, wildfires in Alaska, Canada and/or Siberia may cause poor air quality. In winter inversions may lead poor air quality and in spring. In spring, aged polluted air is often advected into Alaska. These different emission sources yield quite different atmospheric composition and air quality impacts. While this may make understanding Alaska's atmospheric composition at-large a challenging task, it also provides great opportunities to examine impacts without co-founders. The talk will give a review of the performed research, and insight into the challenges.

  9. Analysis of time series of glacier speed: Columbia Glacier, Alaska

    USGS Publications Warehouse

    Walters, R.A.; Dunlap, W.W.

    1987-01-01

    During the summer of 1984 and 1985, laser measurements were made of the distance from a reference location to markers on the surface of the lower reach of Columbia Glacier, Alaska. The speed varies from 7 to 15 m/d and has three noteworthy components: 1) a low-frequency perturbation in speed with a time scale of days related to increased precipitation, 2) semidiurnal and diurnal variations related to sea tides, and 3) diurnal variations related to glacier surface melt. -from Authors

  10. Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Though it's not quite spring, waters in the Gulf of Alaska (right) appear to be blooming with plant life in this true-color MODIS image from March 4, 2002. East of the Alaska Peninsula (bottom center), blue-green swirls surround Kodiak Island. These colors are the result of light reflecting off chlorophyll and other pigments in tiny marine plants called phytoplankton. The bloom extends southward and clear dividing line can be seen west to east, where the bloom disappears over the deeper waters of the Aleutian Trench. North in Cook Inlet, large amounts of red clay sediment are turning the water brown. To the east, more colorful swirls stretch out from Prince William Sound, and may be a mixture of clay sediment from the Copper River and phytoplankton. Arcing across the top left of the image, the snow-covered Brooks Range towers over Alaska's North Slope. Frozen rivers trace white ribbons across the winter landscape. The mighty Yukon River traverses the entire state, beginning at the right edge of the image (a little way down from the top) running all the way over to the Bering Sea, still locked in ice. In the high-resolution image, the circular, snow-filled calderas of two volcanoes are apparent along the Alaska Peninsula. In Bristol Bay (to the west of the Peninsula) and in a couple of the semi-clear areas in the Bering Sea, it appears that there may be an ice algae bloom along the sharp ice edge (see high resolution image for better details). Ground-based observations from the area have revealed that an under-ice bloom often starts as early as February in this region and then seeds the more typical spring bloom later in the season.

  11. Geographic Information Network of Alaska: Real-Time Synoptic Satellite Data for Alaska and the High Arctic, Best Available DEMs, and Highest Available Resolution Imagery for Alaska

    NASA Astrophysics Data System (ADS)

    Heinrichs, T. A.; Sharpton, V. L.; Engle, K. E.; Ledlow, L. L.; Seman, L. E.

    2006-12-01

    In support of the International Polar Year, the Geographic Information Network of Alaska (GINA) intends to make available to researchers three important Arctic data sets. The first is near-real-time synoptic scale data from GINA and NOAA/NESDIS satellite ground stations. GINA operates ground stations that receive direct readout from the AVHRR (1.1-km per pixel resolution) and MODIS (250- to 1000-meter) sensors carried on NOAA and NASA satellites. GINA works in partnership with NOAA/NESDIS's Fairbanks Command and Data Acquisition Station (FCDAS) to distribute real-time data captured by FCDAS facilities in Fairbanks and Barrow, Alaska. AVHRR and Feng Yun 1D (1.1-km) sensors are captured in Fairbanks by FCDAS and distributed by GINA. AVHRR data is captured by FCDAS in Barrow and distributed by GINA. Due to its high latitude, the station mask of the Barrow station extends well beyond the Pole, showing the status in real-time of Arctic basin cloud and sea ice conditions. Second, digital elevation models (DEM) for Alaska vary greatly in quality and availability. The best available DEMs for Alaska will be combined and served through a GINA gateway. Third, the best available imagery for more than three quarters of Alaska is 15-meter pan-sharpened Landsat data. Less than a quarter of the state is covered by 5-meter or better data. The best available imagery for Alaska will be combined and served through a GINA gateway. In accordance with the IPY Subcommittee on Data Policy and Management recommendations, all data will be made available via Open Geospatial Consortium protocols, including Web Mapping, Feature, and Coverage Services. Data will also be made available for download in georeferenced formats such as GeoTIFF, MrSID, or GRID. Metadata will be available though the National Spatial Data Infrastructure via Z39.50 GEO protocols and through evolving web-based metadata standards.

  12. The Holocene Thermal Maximum as a Time of Rapid Peat Accumulation and Peatland Expansion in Alaska

    NASA Astrophysics Data System (ADS)

    Jones, M. C.; Yu, Z.; Peteet, D. M.

    2009-05-01

    High latitudes are particularly sensitive to climate warming resulting from a number of important positive feedbacks, including increasing albedo from changing sea ice extent, snow and vegetation cover, and feedbacks to the carbon cycle. The fate of high latitude ecosystems and associated climate feedbacks in response to warming remains uncertain, particularly in boreal peatlands, which store roughly one-third of the global carbon pool. In order to understand how peatlands respond to climate warming, we examined Holocene carbon accumulation rates from four peatlands on the Kenai Peninsula, Alaska, focusing on the early Holocene (~11,000-9000 cal yr BP), a time when the climate was warmer than today. Basal dates from over 200 peat cores across Alaska were compiled to examine the timing and spatial distribution of peatland initiation across Alaska, and available pollen data from the North American Pollen Database (NAPD) and the Paleoenvironmental Arctic Sciences (PARCS) databases were used to examine associated vegetation distribution patterns. Our study reveals that the highest rates of carbon accumulation on the Kenai Peninsula occurred during the early Holocene Thermal Maximum (HTM), which also corresponds to the highest number of peat basal dates both on the Kenai and across Alaska, indicating that not only vertical peat growth but also lateral peatland expansion was high. We suggest that the warm summers and longer growing season during the early Holocene in Alaska resulted in high net primary productivity (NPP), rapid peat burial, and the greatest carbon accumulation rates. Rapid rates of accumulation and burial may have minimized the effects of aerobic decomposition. In addition, a change in the seasonal timing of precipitation and moisture availability and an increase in summer precipitation may have decreased drought stress, promoting peatland initiation and peat growth. We also speculate that the dominance of broad-leafed deciduous forests and abundant

  13. Village Alcohol Control and the Local Option Law. A Report to the Alaska State Legislature.

    ERIC Educational Resources Information Center

    Lonner, Thomas D.; Duff, J. Kenneth

    This is a report on Alaska's "local option law" which allows villages to choose one of the following four options on alcohol availability in their communities: (1) the sale of alcoholic beverages is prohibited unless sold under a community liquor license; (2) the sale of alcoholic beverages is limited to one of several types of retail licenses…

  14. Locally acquired disseminated histoplasmosis in a northern sea otter (Enhydra lutris kenyoni) in Alaska, USA.

    PubMed

    Burek-Huntington, Kathy A; Gill, Verena; Bradway, Daniel S

    2014-04-01

    Histoplasmosis of local origin has not been reported in humans or wildlife in Alaska, and the disease has never been reported in a free-ranging marine mammal. In 2005 a northern sea otter (Enhydra lutris kenyoni) was found on Kodiak Island, Alaska, at 57° latitude north, far outside the known distribution of Histoplasma capsulatum. The animal died of disseminated histoplasmosis. Microorganisms consistent with Histoplasma sp. were observed on histopathology, and H. capsulatum was identified by PCR and sequencing. We suggest migratory seabirds or aerosol transmission through prevailing winds may have resulted in transmission to the sea otter. PMID:24484503

  15. Alaska shorefast ice: Interfacing geophysics with local sea ice knowledge and use

    NASA Astrophysics Data System (ADS)

    Druckenmiller, Matthew L.

    This thesis interfaces geophysical techniques with local and traditional knowledge (LTK) of indigenous ice experts to track and evaluate coastal sea ice conditions over annual and inter-annual timescales. A novel approach is presented for consulting LTK alongside a systematic study of where, when, and how the community of Barrow, Alaska uses the ice cover. The goal of this research is to improve our understanding of and abilities to monitor the processes that govern the state and dynamics of shorefast sea ice in the Chukchi Sea and use of ice by the community. Shorefast ice stability and community strategies for safe hunting provide a framework for data collection and knowledge sharing that reveals how nuanced observations by Inupiat ice experts relate to identifying hazards. In particular, shorefast ice break-out events represent a significant threat to the lives of hunters. Fault tree analysis (FTA) is used to combine local and time-specific observations of ice conditions by both geophysical instruments and local experts, and to evaluate how ice features, atmospheric and oceanic forces, and local to regional processes interact to cause break-out events. Each year, the Barrow community builds trails across shorefast ice for use during the spring whaling season. In collaboration with hunters, a systematic multi-year survey (2007--2011) was performed to map these trails and measure ice thickness along them. Relationships between ice conditions and hunter strategies that guide trail placement and risk assessment are explored. In addition, trail surveys provide a meaningful and consistent approach to monitoring the thickness distribution of shorefast ice, while establishing a baseline for assessing future environmental change and potential impacts to the community. Coastal communities in the region have proven highly adaptive in their ability to safely and successfully hunt from sea ice over the last 30 years as significant changes have been observed in the ice zone

  16. Timing of ore-related magmatism in the western Alaska Range, southwestern Alaska

    USGS Publications Warehouse

    Taylor, Ryan D.; Graham, Garth E.; Anderson, Eric D.; Selby, David

    2014-01-01

    This report presents isotopic age data from mineralized granitic plutons in an area of the Alaska Range located approximately 200 kilometers to the west-northwest of Anchorage in southwestern Alaska. Uranium-lead isotopic data and trace element concentrations of zircons were determined for 12 samples encompassing eight plutonic bodies ranging in age from approximately 76 to 57.4 millions of years ago (Ma). Additionally, a rhenium-osmium age of molybdenite from the Miss Molly molybdenum occurrence is reported (approx. 59 Ma). All of the granitic plutons in this study host gold-, copper-, and (or) molybdenum-rich prospects. These new ages modify previous interpretations regarding the age of magmatic activity and mineralization within the study area. The new ages show that the majority of the gold-quartz vein-hosting plutons examined in this study formed in the Late Cretaceous. Further work is necessary to establish the ages of ore-mineral deposition in these deposits.

  17. The topographically asymmetrical Alaska Range: Multiple tectonic drivers through space and time

    NASA Astrophysics Data System (ADS)

    Benowitz, Jeffrey

    The topographically segmented, ˜700 km long Alaska Range evolved over the last ˜50 Ma in response to both far-field driving mechanisms and near-field boundary conditions. The eastern Alaska Range follows the curve of the Denali Fault strike-slip system, forming a large arc of high topography across southern Alaska. The majority of the topography in the eastern Alaska Range lies north of the Fault. A region of low topography separates the eastern Alaska Range from the central Alaska Range, where most of the high topography lies south of the Denali Fault. To the west, there is a restraining bend in the Fault. Southwest of the bend, the north-south trending western Alaska Range takes an abrupt 90 degree turn away from the Denali Fault. I applied 40Ar/39Ar thermochronology to over forty granitic samples to constrain the thermal history of the western and eastern Alaska Range. I combine the 40Ar/39Ar analyses with available apatite fission track and apatite (U-Th)/He dating. I then inferred the Alaska Range's exhumation history from the region's rates and patterns of rock cooling. Periods of mountain building within the Alaska Range are related to Paleocene-Eocene ridge subduction and an associated slab window (˜50 Ma to ˜35 Ma), Neogene flat-slab subduction of the Yakutat microplate (˜24 Ma to present), Yakutat microplate latitudinal variation in thickness (˜6 Ma to present), block rotation/migration, and fault reorganization along the Denali Fault. However, it is clear from basin, petrological and thermochronological constraints that not all of the far-field driving mechanisms affected every segment of the Alaska Range to the same degree or at the same time. Alaska Range tectonic reconstruction is also complicated by near-field structural controls on both the timing and extent of deformation. Fault geometry affects both the amount of exhumation (e.g., ˜14 km in the Susitna Glacier region of the eastern Alaska Range) and location of topographic development (e

  18. Locally harvested foods support serum 25-hydroxyvitamin D sufficiency in an indigenous population of Western Alaska

    PubMed Central

    Luick, Bret; Bersamin, Andrea; Stern, Judith S.

    2014-01-01

    Background Low serum vitamin D is associated with higher latitude, age, body fat percentage and low intake of fatty fish. Little documentation of vitamin D concentrations is available for Alaska Native populations. Objective This study was undertaken to investigate serum 25-hydroxyvitamin D (25(OH)D) concentrations of the Yup'ik people of southwestern Alaska in relation to demographic and lifestyle variables, particularly with the use of locally harvested (local) foods. Design Cross-sectional study. Methods We estimated 25(OH)D, dietary vitamin D and calcium, percent of energy from local foods and demographic variables in 497 Yup'ik people (43% males) aged 14–92 residing in southwestern Alaska. Sampling was approximately equally divided between synthesizing and non-synthesizing seasons, although the preponderance of samples were drawn during months of increasing daylight. Results Mean vitamin D intake was 15.1±20.2 µg/d, while local foods accounted for 22.9±17.1% of energy intake. The leading sources of vitamin D were local fish (90.1%) followed by market foods. Mean 25(OH)D concentration was 95.6±40.7 nmol/L. Participants in the upper 50th percentile of 25(OH)D concentration tended to be older, male, of lower body mass index, sampled during the synthesizing season, and among the upper 50th percentile of local food use. Conclusions A shift away from locally harvested foods will likely increase the risk for serum 25(OH)D insufficiency in this population. PMID:24665435

  19. Residence time and movements of postbreeding shorebirds on the northern coast of Alaska

    USGS Publications Warehouse

    Taylor, Audrey R.; Lanctot, Richard B.; Powell, A.N.; Kendall, S.J.; Nigro, Debora A.

    2011-01-01

    Relatively little is known about shorebird movements across the coast of northern Alaska, yet postbreeding shorebirds use this coastline extensively prior to fall migration. We deployed 346 radio transmitters on 153 breeding and 193 postbreeding shorebirds of five species from 2005 to 2007.We examined two hypotheses regarding postbreeding shorebirds' movements: (1) whether such movements reflect ultimate routes of southbound migration and (2) whether migration strategy (length of flights) or timing of molt in relation to migration (molt occurring in breeding or winter range) are more influential in determining postbreeding shorebirds' behavior. Semipalmated Sandpipers (Calidris pusilla) moved east, consistent with the direction of their ultimate migration, but patterns of other species' movements did not reflect ultimate migration direction. Timing of postnuptial molt appeared to have more influence over residence time and movements than did migration strategy. Postcapture residence time for the Semipalmated Sandpiper was less than for the Western Sandpiper (C. mauri) and significantly less than for Dunlin (C. alpina), and the Semipalmated Sandpiper's movements between were quicker and more frequent than those of the Dunlin. We expected to see the opposite patterns if migration strategy were more influential. Our data shed light on how different shorebird species use the northern Alaska coast after breeding: most species are likely to be stopping over at postbreeding areas, whereas the Dunlin and some Western Sandpipers may be staging. We suggest the coast of northern Alaska be viewed as an interconnected network of postbreeding sites that serve multiple populations of breeding shorebirds. ?? The Cooper Ornithological Society 2011.

  20. Palynology, paleoclimatology and correlation of middle Miocene beds from Porcupine River (locality 90-1), Alaska

    USGS Publications Warehouse

    White, J.M.; Ager, T.A.

    1994-01-01

    Beds in the Upper Ramparts Canyon of the Porcupine River, Alaska (67?? 20' N, 141?? 20' W), yielded a flora rich in pollen of hardwood genera now found in the temperate climates of North America and Asia. The beds are overlain or enclosed by two basalt flows which were dated to 15.2 ?? 0.1 Ma by the 40Ar 39Ar method, fixing the period of the greatest abundance of warm-loving genera to the early part of the middle Miocene. The assemblage is the most northern middle Miocene flora known in Alaska. Organic bed 1 underlies the basalt and is older than 15.2 Ma, but is of early to middle Miocene age. The pollen assemblage from organic bed 1 is dominated by conifer pollen from the pine and redwood-cypress-yew families with rare occurrences of temperate hardwoods. Organic bed 2 is a forest floor containing redwood trees in life position, engulfed by the lowest basalt flow. A pine log has growth rings up to 1 cm thick. Organic beds 3 and 4 comprise lacustrine sediment and peat between the two basalt flows. Their palynoflora contain conifers and hardwood genera, of which about 40% have modern temperate climatic affinities. Hickory, katsura, walnut, sweet gum, wingnut, basswood and elm pollen are consistently present, and beech and oak alone make up about 20% of the pollen assemblage. A warm high latitude climate is indicated for all of the organic beds, but organic bed 3 was deposited under a time of peak warmth. Climate data derived by comparison with modern east Asian vegetation suggest that, at the time of deposition of organic bed 3, the Mean Annual Temperature (MAT) was ca. 9??C, the Warm Month Mean Temperature (WMMT) was ??? 20??C and the Cold Month Mean Temperature (CMMT) was ca. -2??C. In contrast, the modern MAT for the region is -8.6??C, WMMT is 12.6??C and CMMT is -28??C. Organic beds 3 and 4 correlate to rocks of the middle Miocene-late Seldovian Stage of Cook Inlet and also probably correlate to, and more precisely date, the lower third of the Suntrana Formation

  1. Degradation and Local Survival of Permafrost Through the Last Interglaciation in Interior Alaska and Yukon Territory

    NASA Astrophysics Data System (ADS)

    Reyes, A. V.; Froese, D. G.; Jensen, B. J.

    2006-12-01

    Permafrost in northern North America is warming, and recent modeling efforts have predicted the widespread disappearance of permafrost through much of the northern hemisphere over the next century. However, little is known of the impacts of past sustained warm intervals on permafrost dynamics, antiquity, and distribution due to difficulties in establishing reliable chronologies. Permafrost thus remains the last element of the Arctic cryosphere for which there is poor understanding of its adaptability to past warmer-than-present climate. Here we present observations from three sites in the region of interior Alaska and Yukon Territory that remained ice-free during Plio-Pleistocene glaciations, which collectively demonstrate the variable nature of the response of permafrost to warming during the last interglaciation. Chronology for all sites is based on identification of Old Crow tephra (OCt; 140±10 ka) by glass major element composition. Throughout the study region, OCt is consistently associated with organic-rich sediments that represent the last interglaciation on the basis of pollen, insect, and macrofossil assemblages. At the Palisades site on the Yukon River, 250 km west of Fairbanks, OCt is 1.5-3.5 m below thick (>1m) organic-rich silts and peats that are locally rich in beaver-chewed wood and large wood stumps, some of which are in growth position. In contrast, placer mining at Thistle Creek in central Yukon Territory exposes a dramatic thaw unconformity that is presumably related to local, but incomplete, permafrost degradation during the last interglaciation. In upslope positions at Thistle Creek, OCt is incorporated into a steeply dipping, 30 cm thick, organic-rich silt horizon that truncates at least one intact, relict ice wedge. The steeply dipping organic- rich horizon grades downslope into organic-rich silt with dense accumulations of wood fragments, including tree stems up to 2 m long. Evidence for similar permafrost degradation during the last

  2. Local-time representation of path integrals

    NASA Astrophysics Data System (ADS)

    Jizba, Petr; Zatloukal, Václav

    2015-12-01

    We derive a local-time path-integral representation for a generic one-dimensional time-independent system. In particular, we show how to rephrase the matrix elements of the Bloch density matrix as a path integral over x -dependent local-time profiles. The latter quantify the time that the sample paths x (t ) in the Feynman path integral spend in the vicinity of an arbitrary point x . Generalization of the local-time representation that includes arbitrary functionals of the local time is also provided. We argue that the results obtained represent a powerful alternative to the traditional Feynman-Kac formula, particularly in the high- and low-temperature regimes. To illustrate this point, we apply our local-time representation to analyze the asymptotic behavior of the Bloch density matrix at low temperatures. Further salient issues, such as connections with the Sturm-Liouville theory and the Rayleigh-Ritz variational principle, are also discussed.

  3. Extensive mapping of coastal change in Alaska by Landsat time-series analysis, 1972-2013

    NASA Astrophysics Data System (ADS)

    Reynolds, J.; Macander, M. J.; Swingley, C. S.; Spencer, S. R.

    2014-12-01

    The landscape-scale effects of coastal storms on Alaska's Bering Sea and Gulf of Alaska coasts includes coastal erosion, migration of spits and barrier islands, breaching of coastal lakes and lagoons, and inundation and salt-kill of vegetation. Large changes in coastal storm frequency and intensity are expected due to climate change and reduced sea-ice extent. Storms have a wide range of impacts on carbon fluxes and on fish and wildlife resources, infrastructure siting and operation, and emergency response planning. In areas experiencing moderate to large effects, changes can be mapped by analyzing trends in time series of Landsat imagery from Landsat 1 through Landsat 8. The authors are performing a time-series trend analysis for over 22,000 kilometers of coastline along the Bering Sea and Gulf of Alaska. Ice- and cloud-free Landsat imagery from Landsat 1-8, covering 1972-2013, were analyzed using a combination of regression, changepoint detection, and classification tree approaches to detect, classify, and map changes in near-infrared reflectance. Areas with significant changes in coastal features, as well as timing of dominant changes and, in some cases, rates of change were identified . The approach captured many coastal changes over the 42-year study period, including coastal erosion exceeding the 60-m pixel resolution of the Multispectral Scanner (MSS) data and migrations of coastal spits and estuarine channels.

  4. Analytical data and sample locality map for aqua-regia leachates of stream sediments analyzed by ICP from the Chignik and Sutwik Island quadrangles, Alaska

    SciTech Connect

    Van Trump, G. Jr.; Motooka, J.M.; Erlich, O.; Tompkins, M.L.

    1989-01-01

    A U.S. Geological report is presented detailing analytical data and sample locality map for aqua-regia leachates of stream sediments analyzed by ICP from the Chignik and Sutwik Island quadrangles, Alaska.

  5. Methane emissions from Alaska Arctic tundra - An assessment of local spatial variability

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Livingston, G. P.

    1992-01-01

    The findings of an extensive midsummer survey of CH4 emissions measurements representing the Alaska Arctic tundra are presented. Variability in rates of emissions was similar in magnitude on local and regional scales, ranging from 0 to 286.5 mg/sq m/d overall and often varying across two orders of magnitude within 0.5 m distances. Primary control on rates of emission was determined by the substrate and position of the water table relative to the surface. Emission rates in the Arctic Foothills ranged from 0.2 mg/sq m/d for tussock tundra to 55.53 mg/sq m/d over wet meadows. Plant-mediated release of CH4 to the atmosphere was directly proportional to green leaf area and represented 92-98 percent of the total emission rates over vegetated sites. The results suggest the current published emission rates may have overestimated the contribution of boreal ecosystems to the global CH4 budget by several fold.

  6. Timing of Infections in the Threespine Stickleback (Gasterosteus aculeatus) by Schistocephalus solidus in Alaska.

    PubMed

    Heins, D C; Eidam, D M; Baker, J A

    2016-04-01

    This study provides direct evidence for the timing of infections by Schistocephalus solidus in the threespine stickleback (Gasterosteus aculeatus) of south-central Alaska. Young-of-the-year fish in Cheney Lake were infected during their first summer within a few months after hatching in May-June. Infections appear to continue under ice cover on the lake during the subsequent fall and winter. Few, if any, 1-yr-old fish seemed to be infected for the first time, although 1-yr-old hosts with established parasites apparently acquired additional infections. PMID:26654283

  7. Local-time representation of path integrals.

    PubMed

    Jizba, Petr; Zatloukal, Václav

    2015-12-01

    We derive a local-time path-integral representation for a generic one-dimensional time-independent system. In particular, we show how to rephrase the matrix elements of the Bloch density matrix as a path integral over x-dependent local-time profiles. The latter quantify the time that the sample paths x(t) in the Feynman path integral spend in the vicinity of an arbitrary point x. Generalization of the local-time representation that includes arbitrary functionals of the local time is also provided. We argue that the results obtained represent a powerful alternative to the traditional Feynman-Kac formula, particularly in the high- and low-temperature regimes. To illustrate this point, we apply our local-time representation to analyze the asymptotic behavior of the Bloch density matrix at low temperatures. Further salient issues, such as connections with the Sturm-Liouville theory and the Rayleigh-Ritz variational principle, are also discussed. PMID:26764662

  8. New Insights into Tectonics of the Saint Elias, Alaska, Region Based on Local Seismicity and Tomography

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Zabelina, I.; Freymueller, J. T.

    2013-12-01

    Saint Elias Mountains in southern Alaska are manifestation of ongoing tectonic processes that include collision of the Yakutat block with and subduction of the Yakutat block and Pacific plate under the North American plate. Interaction of these tectonic blocks and plates is complex and not well understood. In 2005 and 2006 a network of 22 broadband seismic sites was installed in the region as part of the SainT Elias TEctonics and Erosion Project (STEEP), a five-year multi-disciplinary study that addressed evolution of the highest coastal mountain range on Earth. High quality seismic data provides unique insights into earthquake occurrence and velocity structure of the region. Local earthquake data recorded between 2005 and 2010 became a foundation for detailed study of seismotectonic features and crustal velocities. The highest concentration of seismicity follows the Chugach-St.Elias fault, a major on land tectonic structure in the region. This fault is also delineated in tomographic images as a distinct contrast between lower velocities to the south and higher velocities to the north. The low-velocity region corresponds to the rapidly-uplifted and exhumed sediments on the south side of the range. Earthquake source parameters indicate high degree of compression and undertrusting processes along the coastal area, consistent with multiple thrust structures mapped from geological studies in the region. Tomographic inversion reveals velocity anomalies that correlate with sedimentary basins, volcanic features and subducting Yakutat block. We will present precise earthquake locations and source parameters recorded with the STEEP and regional seismic network along with the results of P- and S-wave tomographic inversion.

  9. Sources of Local Time Asymmetries in Magnetodiscs

    NASA Astrophysics Data System (ADS)

    Arridge, C. S.; Kane, M.; Sergis, N.; Khurana, K. K.; Jackman, C. M.

    2015-04-01

    The rapidly rotating magnetospheres at Jupiter and Saturn contain a near-equatorial thin current sheet over most local times known as the magnetodisc, resembling a wrapped-up magnetotail. The Pioneer, Voyager, Ulysses, Galileo, Cassini and New Horizons spacecraft at Jupiter and Saturn have provided extensive datasets from which to observationally identify local time asymmetries in these magnetodiscs. Imaging in the infrared and ultraviolet from ground- and space-based instruments have also revealed the presence of local time asymmetries in the aurora which therefore must map to local time asymmetries in the magnetosphere. Asymmetries are found in (i) the configuration of the magnetic field and magnetospheric currents, where a thicker disc is found in the noon and dusk sectors; (ii) plasma flows where the plasma flow has local time-dependent radial components; (iii) a thicker plasma sheet in the dusk sector. Many of these features are also reproduced in global MHD simulations. Several models have been developed to interpret these various observations and typically fall into two groups: ones which invoke coupling with the solar wind (via reconnection or viscous processes) and ones which invoke internal rotational processes operating inside an asymmetrical external boundary. In this paper we review these observational in situ findings, review the models which seek to explain them, and highlight open questions and directions for future work.

  10. In a Time of Change: Integrating the Arts and Humanities with Climate Change Science in Alaska

    NASA Astrophysics Data System (ADS)

    Leigh, M.; Golux, S.; Franzen, K.

    2011-12-01

    The arts and humanities have a powerful capacity to create lines of communication between the public, policy and scientific spheres. A growing network of visual and performing artists, writers and scientists has been actively working together since 2007 to integrate scientific and artistic perspectives on climate change in interior Alaska. These efforts have involved field workshops and collaborative creative processes culminating in public performances and a visual art exhibit. The most recent multimedia event was entitled In a Time of Change: Envisioning the Future, and challenged artists and scientists to consider future scenarios of climate change. This event included a public performance featuring original theatre, modern dance, Alaska Native Dance, poetry and music that was presented concurrently with an art exhibit featuring original works by 24 Alaskan visual artists. A related effort targeted K12 students, through an early college course entitled Climate Change and Creative Expression, which was offered to high school students at a predominantly Alaska Native charter school and integrated climate change science, creative writing, theatre and dance. Our program at Bonanza Creek Long Term Ecological Research (LTER) site is just one of many successful efforts to integrate arts and humanities with science within and beyond the NSF LTER Program. The efforts of various LTER sites to engage the arts and humanities with science, the public and policymakers have successfully generated excitement, facilitated mutual understanding, and promoted meaningful dialogue on issues facing science and society. The future outlook for integration of arts and humanities with science appears promising, with increasing interest from artists, scientists and scientific funding agencies.

  11. Does winter region affect spring arrival time and body mass of king eiders in northern Alaska?

    USGS Publications Warehouse

    Powell, Abby N.; Oppel, Steffen

    2009-01-01

    Events during the non-breeding season may affect the body condition of migratory birds and influence performance during the following breeding season. Migratory birds nesting in the Arctic often rely on endogenous nutrients for reproductive efforts, and are thus potentially subject to such carry-over effects. We tested whether king eider (Somateria spectabilis) arrival time and body mass upon arrival at breeding grounds in northern Alaska were affected by their choice of a winter region in the Bering Sea. We captured birds shortly after arrival on breeding grounds in early June 2002–2006 at two sites in northern Alaska and determined the region in which individuals wintered using satellite telemetry or stable isotope ratios of head feathers. We used generalized linear models to assess whether winter region explained variation in arrival body mass among individuals by accounting for sex, site, annual variation, and the date a bird was captured. We found no support for our hypothesis that either arrival time or arrival body mass of king eiders differed among winter regions. We conclude that wintering in different regions in the Bering Sea is unlikely to have reproductive consequences for king eiders in our study areas.

  12. Revision of Time-Independent Probabilistic Seismic Hazard Maps for Alaska

    USGS Publications Warehouse

    Wesson, Robert L.; Boyd, Oliver S.; Mueller, Charles S.; Bufe, Charles G.; Frankel, Arthur D.; Petersen, Mark D.

    2007-01-01

    We present here time-independent probabilistic seismic hazard maps of Alaska and the Aleutians for peak ground acceleration (PGA) and 0.1, 0.2, 0.3, 0.5, 1.0 and 2.0 second spectral acceleration at probability levels of 2 percent in 50 years (annual probability of 0.000404), 5 percent in 50 years (annual probability of 0.001026) and 10 percent in 50 years (annual probability of 0.0021). These maps represent a revision of existing maps based on newly obtained data and assumptions reflecting best current judgments about methodology and approach. These maps have been prepared following the procedures and assumptions made in the preparation of the 2002 National Seismic Hazard Maps for the lower 48 States. A significant improvement relative to the 2002 methodology is the ability to include variable slip rate along a fault where appropriate. These maps incorporate new data, the responses to comments received at workshops held in Fairbanks and Anchorage, Alaska, in May, 2005, and comments received after draft maps were posted on the National Seismic Hazard Mapping Web Site. These maps will be proposed for adoption in future revisions to the International Building Code. In this documentation we describe the maps and in particular explain and justify changes that have been made relative to the 1999 maps. We are also preparing a series of experimental maps of time-dependent hazard that will be described in future documents.

  13. Real-Time Data Processing Systems and Products at the Alaska Earthquake Information Center

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Hansen, R. A.

    2007-05-01

    The Alaska Earthquake Information Center (AEIC) receives data from over 400 seismic sites located within the state boundaries and the surrounding regions and serves as a regional data center. In 2007, the AEIC reported ~20,000 seismic events, with the largest event of M6.6 in Andreanof Islands. The real-time earthquake detection and data processing systems at AEIC are based on the Antelope system from BRTT, Inc. This modular and extensible processing platform allows an integrated system complete from data acquisition to catalog production. Multiple additional modules constructed with the Antelope toolbox have been developed to fit particular needs of the AEIC. The real-time earthquake locations and magnitudes are determined within 2-5 minutes of the event occurrence. AEIC maintains a 24/7 seismologist-on-duty schedule. Earthquake alarms are based on the real- time earthquake detections. Significant events are reviewed by the seismologist on duty within 30 minutes of the occurrence with information releases issued for significant events. This information is disseminated immediately via the AEIC website, ANSS website via QDDS submissions, through e-mail, cell phone and pager notifications, via fax broadcasts and recorded voice-mail messages. In addition, automatic regional moment tensors are determined for events with M>=4.0. This information is posted on the public website. ShakeMaps are being calculated in real-time with the information currently accessible via a password-protected website. AEIC is designing an alarm system targeted for the critical lifeline operations in Alaska. AEIC maintains an extensive computer network to provide adequate support for data processing and archival. For real-time processing, AEIC operates two identical, interoperable computer systems in parallel.

  14. 75 FR 8396 - Izembek National Wildlife Refuge, Cold Bay, Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ..., and from the State of Alaska on June 19, 2009. Our notice of August 6, 2009 (74 FR 39336), initiated... Nelson Lagoon in Alaska. We will announce these meeting dates, times, and locations locally, at least 10... valleys, glacial moraines, low tundra wetlands, lakes, sand dunes, and lagoons. Elevations range from...

  15. Time Discretization Approach to Dynamic Localization Conditions

    NASA Astrophysics Data System (ADS)

    Papp, E.

    An alternative wavefunction to the description of the dynamic localization of a charged particle moving on a one-dimensional lattice under the influence of a periodic time dependent electric field is written down. For this purpose the method of characteristics such as applied by Dunlap and Kenkre [Phys. Rev. B 34, 3625 (1986)] has been modified by using a different integration variable. Handling this wavefunction one is faced with the selection of admissible time values. This results in a conditionally exactly solvable problem, now by accounting specifically for the implementation of a time discretization working in conjunction with a related dynamic localization condition. In addition, one resorts to the strong field limit, which amounts to replace, to leading order, the large order zeros of the Bessel function J0(z), used before in connection with the cosinusoidal modulation, by integral multiples of π. Here z stands for the ratio between the field amplitude and the frequency. The modulation function of the electric field vanishes on the nodal points of the time grid, which stands for an effective field-free behavior. This opens the way to propose quickly tractable dynamic localization conditions for arbitrary periodic modulations. We have also found that the present time discretization approach produces the minimization of the mean square displacement characterizing the usual exact wavefunction. Other realizations and comparisons have also been presented.

  16. Size- and Time-Resolved Composition of Volcanic Ash From Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Cahill, C. F.; Cahill, T. A.; Webley, P.; Wallace, K. L.; Dean, K. G.; Dehn, J.

    2006-12-01

    Augustine, an island volcano located approximately 275 km SSW of Anchorage, Alaska, produced thirteen discrete ash plumes during an explosive eruption phase that lasted from January 11 to January 28, 2006, followed by continuous ash emissions from January 29 to February 2. Immediately after the first two explosive eruptions on the morning of January 11, an eight-stage DRUM aerosol impactor was installed at Anchorage, Alaska, to collect size and time-resolved aerosols. On January 13th, the sampler was relocated, closer to the volcano, and installed at Homer, Alaska, a community approximately 110 km ENE of Augustine. At Homer, the sampler continuously collected aerosols in eight size fractions (35-5.0, 5.0-2.5, 2.5-1.15, 1.15-0.75, 0.75- 0.56, 0.56-0.34, 0.34-0.26 and 0.26-0.09 microns in aerodynamic diameter) between January 13 and February 11, 2006. The aerosols were analyzed with 3-hour resolution for mass using a beta-gauge, and for elemental composition (42 selected elements between sodium and lead) using synchrotron x-ray fluorescence. The aerosol time series at Homer shows that ash from Augustine impacted the site on numerous occasions during the eruption. The chemical composition and size distribution of the aerosols reaching Homer varied during the sampling period. The variations in the aerosol characteristics possibly reflect changes in the bulk chemistry of the erupting materials that are consistent with changes in coarse grained proximal tephra fall deposits. Volcanic ash plumes tracked using satellite data and the Puff ash dispersion model showed ash far beyond the neighborhood of the volcano. The trajectory models indicate and reports confirm that ash reached as far away as northern California. On January 31, during continuous ash emissions, the ash dispersion model forecast volcanic ash over Fairbanks, Alaska, a city located approximately 685 km NNE of Augustine. In response to the model's prediction, a three-stage DRUM aerosol impactor was deployed to

  17. Local structural controls on outer-rise faulting, hydration, and seismicity in the Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Becel, A.; Nedimovic, M. R.; Kuehn, H.; Webb, S. C.; Li, J.; Keranen, K. M.; Abers, G. A.

    2013-12-01

    We present evidence from marine geophysical data that pre-existing structures in the incoming oceanic plate off the Alaska Peninsula control bending faulting and hydration at the outer rise, which in turn correlate to changes in the abundance of interplate and intermediate-depth earthquakes within the subduction zone. Thus, pre-existing heterogeneities in the downgoing plate can result in significant variations in plate hydration over relatively small distances and may in part explain the observed global diversity of seismicity in subduction zones. ALEUT MCS and bathymetry data reveal large changes in the style and amount of bending in the incoming plate. To the west, outboard of the Shumagin Gap, there is significant bending faulting, with fault offsets up to ~250 m at the seafloor and larger offsets at depth. Faults create rugged topography at the seafloor, and sediment cover is thin (~0.5 km). Most faults have strikes within ~25 degrees of the trench. In contrast, the downgoing plate outboard of the Semidi segment to the east exhibits less dramatic bending faulting, with maximum offsets at the seafloor of 30 m, and the sediment cover is thicker (>1 km). These along-strike changes in faulting correlate with changes in the expected orientation of pre-existing structures in the incoming oceanic crust, which is nearly parallel to the trench near the Shumagin Gap, but highly oblique to the trench near the Semidi segment. This implies that more favorably-oriented pre-existing structures may facilitate bending faulting. P-wave velocity models from wide-angle seismic data reveal that along-strike changes in faulting are accompanied by variations in the velocity structure of the incoming plate. Mantle velocities are reduced by ~0.5 km/s at the outer rise off the Shumagin Gap, where significant bending faulting is observed. We interpret decreased velocities to represent serpentinization of the upper mantle. In contrast, the velocity structure is more variable off the

  18. Alaska Science Center: Providing Timely, Relevant, and Impartial Study of the Landscape, Natural Resources, and Natural Hazards for Alaska and Our Nation

    USGS Publications Warehouse

    USGS Alaska Science Center

    2007-01-01

    The U.S. Geological Survey (USGS), the Nation's largest water, earth, and biological science and civilian mapping agency, has studied the natural features of Alaska since its earliest geologic expeditions in the 1800s. The USGS Alaska Science Center (ASC), with headquarters in Anchorage, Alaska, studies the complex natural science phenomena of Alaska to provide scientific products and results to a wide variety of partners. The complexity of Alaska's unique landscapes and ecosystems requires USGS expertise from many science disciplines to conduct thorough, integrated research.

  19. A 16-year time series of 1 km AVHRR satellite data of the conterminous United States and Alaska

    USGS Publications Warehouse

    Eldenshink, J.

    2006-01-01

    The U.S. Geological Survey (USGS) has developed a 16-year time series of vegetation condition information for the conterminous United States and, Alaska using 1 km Advanced Very High Resolution Radiometer (AVHRR) data. The AVHRR data have been processed using consistent methods that account for radiometric variability due to calibration uncertainty, the effects of the atmosphere on surface radiometric measurements obtained from wide field-of-view observations, and the geometric registration accuracy. The conterminous United States and Alaska data sets have an atmospheric correction for water vapor, ozone, and Rayleigh scattering and include a cloud mask derived using the Clouds from AVHRR (CLAVR) algorithm. In comparison with other AVHRR time series data sets, the conterminous United States and Alaska data are processed using similar techniques. The primary difference is that the conterminous United States and Alaska data are at 1 km resolution, while others are at 8 km resolution. The time series consists of weekly and biweekly maximum normalized difference vegetation index (NDVI) composites. ?? 2006 American Society for Photogrammetry and Remote Sensing.

  20. Local perspectives of the ability of HIA stakeholder engagement to capture and reflect factors that impact Alaska Native health

    PubMed Central

    Jones, Jen; Nix, Nancy A.; Snyder, Elizabeth Hodges

    2014-01-01

    Background Health impact assessment (HIA) is a process used to inform planning and decision making in a range of sectors by identifying potential positive and negative health effects of proposed projects, programs, or policies. Stakeholder engagement is an integral component of HIA and requires careful consideration of participant diversity and appropriate methodologies. Ensuring that the engagement process is able to capture and address Indigenous worldviews and definitions of health is important where Indigenous populations are impacted, particularly in northern regions experiencing increases in natural resource development activities on Indigenous lands. Objective Investigate local participant perspectives of an HIA of a proposed Alaska coal mine, with a focus on the ability of the HIA process to capture, reflect, and address health concerns communicated by Alaska Native participants. Design A qualitative approach guided by semi-structured interviews with purposeful sampling to select key informants who participated in the coal mine HIA stakeholder engagement process. Results Qualitative data identified three key themes as important from the perspective of Alaska Native participants in the Alaska coal mine HIA stakeholder engagement process: (i) the inability of the engagement process to recognize an Indigenous way of sharing or gathering information; (ii) the lack of recognizing traditional knowledge and its use for identifying health impacts and status; and (iii) the inability of the engagement process to register the relationship Indigenous people have with the environment in which they live. Issues of trust in the HIA process and of the HIA findings were expressed within each theme. Conclusions Recommendations derived from the research identify the need to acknowledge and incorporate the history of colonialism and assimilation policies in an HIA when assessing health impacts of resource development on or near Indigenous lands. These historical contexts must

  1. Using the Landscape Reconstruction Algorithm (LRA) to estimate Holocene regional and local vegetation composition in the Boreal Forests of Alaska

    NASA Astrophysics Data System (ADS)

    Hopla, Emma-Jayne; Edwards, Mary; Langdon, Pete

    2016-04-01

    Vegetation is already responding to increasing global temperatures, with shrubs expanding northwards in the Arctic in a process called "greening". Lakes are important features within these changing landscapes, and lake ecosystems are affected by the vegetation in their catchments. Use of dated sediment archives can reveal how lake ecosystems responded to past changes over timescales relevant to vegetation dynamics (decades to centuries). Holocene vegetation changes have been reconstructed for small lake catchments in Alaska to help understand the long-term interactions between vegetation and within lake processes. A quantitative estimate of vegetation cover around these small lakes clarifies the catchment drivers of lake ecosystem processes. Pollen productivity is one of the major parameters used to make quantitative estimates of land cover from palaeodata. Based on extensive fieldwork, we obtained first Pollen Productivity Estimates (PPEs) for the main arboreal taxa in interior Alaska. We used the model REVEALS to estimate the regional vegetation abundance from existing pollen data from large lakes in the region based on Alaskan and European pollen productivity estimates (PPEs). Quantitative estimates of vegetation cover differ from those based on pollen percentages alone. The model LOVE will then be applied to smaller lake basins that are the subject of detailed palaeoliminological investigations in order to estimate the local composition at these sites.

  2. Cultural remains in local and regional context on the central Alaska Peninsula: housepits, language, and cultural affinities at Marraatuq after 1000 B.P.

    PubMed

    McClenahan, Patricia L

    2010-01-01

    Professor Dumond's research on the Alaska Peninsula provided information that prior to 1,000 years ago people of both sides of the Alaska Peninsula shared material culture and exhibited subsistence interests that persisted into historic times, During the Late Precontact Era (ca. 1100 A.D. to mid-1700s) these Alutiiq societies shared cultural traits including language, house styles, and material culture with their relatives and neighbors on Kodiak Island. Until recently, few data were available regarding potential variability in house construction techniques, or styles and functions of Alutiiq semi-subterranean houses of this era found on the Alaska Peninsula, This paper provides examples of a few known prehistoric and historic Alaska Peninsula and Kodiak Alutiiq houses and presents previously unreported data from archaeological tests at Marraatuq on the Central Alaska Peninsula, Taken together with Dumond's 1998-1999 field work at Leader Creek and archaeological research on Kodiak Island, the work provides further evidence that interregional interaction was strong during the Late Precontact Era. However, large population centers and ranked political hierarchies probably were not hallmarks of central Alaska Peninsula communities during the Late Precontact Era and historic times as they were on the Kodiak and Aleutian islands. PMID:21495284

  3. Real-time Tsunami Warning Operations at the NOAA West Coast/Alaska Tsunami Warning Center

    NASA Astrophysics Data System (ADS)

    Whitmore, P.; Huang, P.; Crowley, H.; Ferris, J.; Hale, D.; Knight, W.; Medbery, A.; Nyland, D.; Preller, C.; Turner, B.; Urban, G.

    2007-12-01

    The West Coast/Alaska Tsunami Warning Center (WCATWC) in Palmer, Alaska and the Pacific Tsunami Warning Center (PTWC) in Ewa Beach, Hawaii, provide tsunami warning services for a large portion of the world's coasts. The WCATWC has primary responsibility for providing tsunami detection, warnings, and forecasts to Canada, Puerto Rico, Virgin Islands, and all U.S. States except Hawaii. WCATWC also acts as back-up for the PTWC, requiring the center to constantly monitor global tsunami activities by rapidly detecting and evaluating earthquakes for their tsunamigenic potential. The Centers' goals are to issue initial messages as quickly as possible to alert those near the source to potential danger (assuming there is any), and to follow that with a reasonable forecast of impact level. With these goals in mind, a Watchstander's initial action is based entirely on estimates of tsunami potential from the earthquake's source parameters. The course of action for the first message is determined primarily by the earthquake's magnitude, location, tsunami history, tsunami travel time, estimated threat based on pre-computed models, and pre-set criteria. Supplemental messages, if necessary, are based on wave observations and forecasts generated from hydrodynamic models (which are calibrated with near real-time observations). In April 2006, the WCATWC increased staff level so that the Center can be staffed 24/7 with two watchstanders. Since then, the Center's response time for events within the primary area-of-responsibility has decreased to less than 5 minutes. In order to illustrate the WCATWC's real time tsunami warning operational environment, tsunami warning operation timelines for several tsunamigenic earthquakes - including the September 12 southern Sumatra 8.4 and the January 13 Kuril Island 8.1 earthquakes - are provided. The timelines highlight the key parameters and observations that guide tsunami warning operations chronicling the event through: 1) initial alarm, 2

  4. Impact of lengthening open water season on food security in Alaska coastal communities: Global impacts may outweigh local "frontline" effects

    NASA Astrophysics Data System (ADS)

    Rolph, R.; Mahoney, A. R.

    2015-12-01

    Using ice concentration data from the Alaska Sea Ice Atlas from 1953-2013 for selected communities in Alaska, we find a consistent trend toward later freeze up and earlier breakup, leading a lengthened open water period. Such changes are often considered to bring a variety of "frontline" local impacts to Arctic coastal communities such as increased rates of coastal erosion. However, direct consequences of these changes to local food security (e.g. through impacts on subsistence activities and marine transport of goods) may be outweighed at least in the short term by the effects of large scale Arctic sea ice change coupled with global oil markets. For example, a later freeze-up might delay local hunters' transition from boats to snow-machines, but whether this trend will affect hunting success, especially in the next few years, is uncertain. Likewise, the magnitude of change in open water season length is unlikely to be sufficient to increase the frequency with which communities are served by barges. However, an expanding open water season throughout the Arctic has implications for the global economy, which can have indirect effects on local communities. In the Chukchi and Beaufort Seas, where rapid sea ice change has been accompanied by increased interest in oil and gas development, the U.S. Bureau of Ocean Energy Management currently requires drilling operations to cease 38 days prior to freeze up. Taking this into account, the lengthening open water season has effectively extended the drilling season for oil companies by 184% since the 1950s. If oil development goes ahead, local communities will likely experience a range of indirect impacts on food security due to increased vessel traffic and demand on infrastructure coupled with changes in local economies and employment opportunities. Increased likelihood of an oil spill in coastal waters also poses a significant threat to local food security. Thus, while Arctic coastal communities are already experiencing

  5. Extensive mapping of coastal change in Alaska by Landsat time-series analysis, 1972-2013 (Invited)

    NASA Astrophysics Data System (ADS)

    Macander, M. J.; Swingley, C. S.; Reynolds, J.

    2013-12-01

    The landscape-scale effects of coastal storms on Alaska's Bering Sea and Gulf of Alaska coasts includes coastal erosion, migration of spits and barrier islands, breaching of coastal lakes and lagoons, and inundation and salt-kill of vegetation. Large changes in coastal storm frequency and intensity are expected due to climate change and reduced sea-ice extent. Storms have a wide range of impacts on carbon fluxes and on fish and wildlife resources, infrastructure siting and operation, and emergency response planning. In areas experiencing moderate to large effects, changes can be mapped by analyzing trends in time series of Landsat imagery from Landsat 1 through Landsat 8. ABR, Inc.--Environmental Research & Services and the Western Alaska Landscape Conservation Cooperative are performing a time-series trend analysis for over 22,000 kilometers of coastline along the Bering Sea and Gulf of Alaska. The archive of Landsat imagery covers the time period 1972-present. For a pilot study area in Kotzebue Sound, we conducted a regression analysis of changes in near-infrared reflectance to identify areas with significant changes in coastal features, 1972-2011. Suitable ice- and cloud-free Landsat imagery was obtained for 28 of the 40 years during the period. The approach captured several coastal changes over the 40-year study period, including coastal erosion exceeding the 60-m pixel resolution of the Multispectral Scanner (MSS) data and migrations of coastal spits and estuarine channels. In addition several lake drainage events were identified, mostly inland from the coastal zone. Analysis of shorter, decadal time periods produced noisier results that were generally consistent with the long-term trend analysis. Unusual conditions at the start or end of the time-series can strongly influence decadal results. Based on these results the study is being scaled up to map coastal change for over 22,000 kilometers of coastline along the Bering Sea and Gulf of Alaska coast. The

  6. Intercontinental reassortment and genomic variation of low pathogenic avian influenza viruses isolated from northern pintails (Anas acuta) in Alaska: examining the evidence through space and time

    USGS Publications Warehouse

    Ramey, Andrew M.; Pearce, John M.; Flint, Paul L.; Ip, Hon S.; Derksen, Dirk V.; Franson, J. Christian; Petrula, Michael J.; Scotton, Bradley D.; Sowl, Kristine M.; Wege, Michael L.; Trust, Kimberly A.

    2010-01-01

    Migration and population genetic data for northern pintails (Anas acuta) and phylogenetic analysis of low pathogenic avian influenza (LPAI) viruses from this host in Alaska suggest that northern pintails are involved in ongoing intercontinental transmission of avian influenza. Here, we further refine this conclusion through phylogenetic analyses which demonstrate that detection of foreign lineage gene segments is spatially dependent and consistent through time. Our results show detection of foreign lineage gene segments to be most likely at sample locations on the Alaska Peninsula and least likely along the Southern Alaska Coast. Asian lineages detected at four gene segments persisted across years, suggesting maintenance in avian hosts that migrate to Alaska each year from Asia or in hosts that remain in Alaska throughout the year. Alternatively, live viruses may persist in the environment and re-infect birds in subsequent seasons.

  7. Detrital Zircon U-Pb Age Populations in Time and Space in the Arctic Alaska Terrane

    NASA Astrophysics Data System (ADS)

    Moore, T. E.

    2010-12-01

    The Arctic Alaska Terrane (ATT) occupies the only margin of the Ameriasia Basin whose origin and position since Paleozoic time is incompletely known. To better understand its tectonic history, detrital zircon (DZ) U-Pb ages from about 75 samples of clastic strata were obtained from representative parts of the ATT in northern Alaska. The oldest known strata of the AAT are Neoproterozoic clastic rocks exposed in the northeastern Brooks Range. DZ dating of these rocks show that they contain abundant ~1.8 Ga zircons and subordinate populations that indicate derivation from the northwest part of Laurentia. Upper Neoproterozoic strata in the Brooks Range, in contrast, contain populations dominated by ~600 Ma zircons. The latter ages are similar to those in parts of the ATT outside of northern Alaska, including the Seward Peninsula, Chukotka, and Wrangel Island that are thought to have been derived from the Timanian orogen of northern Baltica. Similar DZ populations have also been obtained from Silurian sandstones of the Lisburne Peninsula, suggesting that much of the western and southern parts of AAT may have formed in or near northern Baltica. A third group of DZ ages were found in deformed clastic rocks that were deposited across large parts of the North Slope in the Silurian and/or Devonian and are also present in parautochthonous settings in the Brooks Range. These rocks typically are dominated by DZ ages of 390-470 Ma, and sometimes contain subordinate non-Laurentian populations of ~1.5 Ga. These DZ ages, the underlying rocks of probable Baltic and Laurentian affinity, and evidence of significant deformation indicate that the ATT may have been constructed by Caledonian tectonism in the Silurian and Devonian. Following Devonian deformation, Mississippian to Triassic platform strata of the Ellesmerian Sequence were deposited on a regional unconformity. DZ ages from these rocks appear to reflect the compositions of the sub-unconformity units and indicate that Timanian

  8. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska

    PubMed Central

    Graham, Russell W.; Belmecheri, Soumaya; Choy, Kyungcheol; Culleton, Brendan J.; Davies, Lauren J.; Hritz, Carrie; Kapp, Joshua D.; Newsom, Lee A.; Rawcliffe, Ruth; Saulnier-Talbot, Émilie; Wang, Yue; Williams, John W.; Wooller, Matthew J.

    2016-01-01

    Relict woolly mammoth (Mammuthus primigenius) populations survived on several small Beringian islands for thousands of years after mainland populations went extinct. Here we present multiproxy paleoenvironmental records to investigate the timing, causes, and consequences of mammoth disappearance from St. Paul Island, Alaska. Five independent indicators of extinction show that mammoths survived on St. Paul until 5,600 ± 100 y ago. Vegetation composition remained stable during the extinction window, and there is no evidence of human presence on the island before 1787 CE, suggesting that these factors were not extinction drivers. Instead, the extinction coincided with declining freshwater resources and drier climates between 7,850 and 5,600 y ago, as inferred from sedimentary magnetic susceptibility, oxygen isotopes, and diatom and cladoceran assemblages in a sediment core from a freshwater lake on the island, and stable nitrogen isotopes from mammoth remains. Contrary to other extinction models for the St. Paul mammoth population, this evidence indicates that this mammoth population died out because of the synergistic effects of shrinking island area and freshwater scarcity caused by rising sea levels and regional climate change. Degradation of water quality by intensified mammoth activity around the lake likely exacerbated the situation. The St. Paul mammoth demise is now one of the best-dated prehistoric extinctions, highlighting freshwater limitation as an overlooked extinction driver and underscoring the vulnerability of small island populations to environmental change, even in the absence of human influence. PMID:27482085

  9. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska.

    PubMed

    Graham, Russell W; Belmecheri, Soumaya; Choy, Kyungcheol; Culleton, Brendan J; Davies, Lauren J; Froese, Duane; Heintzman, Peter D; Hritz, Carrie; Kapp, Joshua D; Newsom, Lee A; Rawcliffe, Ruth; Saulnier-Talbot, Émilie; Shapiro, Beth; Wang, Yue; Williams, John W; Wooller, Matthew J

    2016-08-16

    Relict woolly mammoth (Mammuthus primigenius) populations survived on several small Beringian islands for thousands of years after mainland populations went extinct. Here we present multiproxy paleoenvironmental records to investigate the timing, causes, and consequences of mammoth disappearance from St. Paul Island, Alaska. Five independent indicators of extinction show that mammoths survived on St. Paul until 5,600 ± 100 y ago. Vegetation composition remained stable during the extinction window, and there is no evidence of human presence on the island before 1787 CE, suggesting that these factors were not extinction drivers. Instead, the extinction coincided with declining freshwater resources and drier climates between 7,850 and 5,600 y ago, as inferred from sedimentary magnetic susceptibility, oxygen isotopes, and diatom and cladoceran assemblages in a sediment core from a freshwater lake on the island, and stable nitrogen isotopes from mammoth remains. Contrary to other extinction models for the St. Paul mammoth population, this evidence indicates that this mammoth population died out because of the synergistic effects of shrinking island area and freshwater scarcity caused by rising sea levels and regional climate change. Degradation of water quality by intensified mammoth activity around the lake likely exacerbated the situation. The St. Paul mammoth demise is now one of the best-dated prehistoric extinctions, highlighting freshwater limitation as an overlooked extinction driver and underscoring the vulnerability of small island populations to environmental change, even in the absence of human influence. PMID:27482085

  10. Facies patterns and conodont biogeography in Arctic Alaska and the Canadian Arctic Islands: Evidence against juxtaposition of these areas during early Paleozoic time

    USGS Publications Warehouse

    Dumoulin, J.A.; Harris, A.G.; Bradley, D.C.; De Freitas, T. A.

    2000-01-01

    Differences in lithofacies and biofacies suggest that lower Paleozoic rocks now exposed in Arctic Alaska and the Canadian Arctic Islands did not form as part of a single depositional system. Lithologic contrasts are noted in shallow- and deep-water strata and are especially marked in Ordovician and Silurian rocks. A widespread intraplatform basin of Early and Middle Ordovician age in northern Alaska has no counterpart in the Canadian Arctic, and the regional drowning and backstepping of the Silurian shelf margin in Canada has no known parallel in northern Alaska. Lower Paleozoic basinal facies in northern Alaska are chiefly siliciclastic, whereas resedimented carbonates are volumetrically important in Canada. Micro- and macrofossil assemblages from northern Alaska contain elements typical of both Siberian and Laurentian biotic provinces; coeval Canadian Arctic assemblages contain Laurentian forms but lack Siberian species. Siberian affinities in northern Alaskan biotas persist from at least Middle Cambrian through Mississippian time and appear to decrease in intensity from present-day west to east. Our lithologic and biogeographic data are most compatible with the hypothesis that northern Alaska-Chukotka formed a discrete tectonic block situated between Siberia and Laurentia in early Paleozoic time. If Arctic Alaska was juxtaposed with the Canadian Arctic prior to opening of the Canada basin, biotic constraints suggest that such juxtaposition took place no earlier than late Paleozoic time.

  11. Alaska OCS socioeconomic studies program. Technical report number 31. Bering-Norton petroleum development scenarios local socioeconomic systems analysis. Final report

    SciTech Connect

    Ender, R.L.; Gorski, S.E.; Harrison, G.; Braund, S.

    1980-07-01

    The document provides a baseline profile of the communities of Nome and Kotzebue encompassing local socioeconomic conditions; and an impacts analysis of Nome, Alaska with and without the proposed oil lease sale scheduled for Norton Sound. Topics include an historical perspective, a comprehensive discussion of the local economic conditions and current demographic information; local government revenues and expenditures and community support service sectors including health and social services, leisure, education, public safety, utilities, land use and housing. Socioeconomic impacts are defined with three different growth scenarios stemming from oil development and are compared to a non-OCS base case which defines impacts of growth without the presence of oil development. A final section includes a comprehensive discussion of the assumptions, methods and standards, used in the assessment of impacts due to growth in population employment and service sectors in Nome, Alaska.

  12. Potential for Expanding the Near Real Time ForWarn Regional Forest Monitoring System to Include Alaska

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Gasser, Gerald; Hargrove, William; Smoot, James; Kuper, Philip D.

    2014-01-01

    The on-line near real time (NRT) ForWarn system is currently deployed to monitor regional forest disturbances within the conterminous United States (CONUS), using daily MODIS Aqua and Terra NDVI data to derive monitoring products. The Healthy Forest Restoration Act of 2003 mandated such a system. Work on ForWarn began in 2006 with development and validation of retrospective MODIS NDVI-based forest monitoring products. Subsequently, NRT forest disturbance monitoring products were demonstrated, leading to the actual system deployment in 2010. ForWarn provides new CONUS forest disturbance monitoring products every 8 days, using USGS eMODIS data for current NDVI. ForWarn currently does not cover Alaska, which includes extensive forest lands at risk to multiple biotic and abiotic threats. This poster discusses a case study using Alaska eMODIS Terra data to derive ForWarn like forest change products during the 2010 growing season. The eMODIS system provides current MODIS Terra NDVI products for Alaska. Resulting forest change products were assessed with ground, aerial, and Landsat reference data. When cloud and snow free, these preliminary products appeared to capture regional forest disturbances from insect defoliation and fires; however, more work is needed to mitigate cloud and snow contamination, including integration of eMODIS Aqua data.

  13. Gulf of Alaska, Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This MODIS true-color image shows the Gulf of Alaska and Kodiak Island, the partially snow-covered island in roughly the center of the image. Credit: Jacques Descloitres, MODIS Land Rapid Response Team

  14. Time-Dependent Variations of Slow Slip Events in Lower Cook Inlet of the Alaska-Aleutian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Li, S.; Freymueller, J. T.; McCaffrey, R.

    2014-12-01

    We identfied a series of abrupt changes in GPS site motions observed in Lower Cook Inlet of the Alaska-Aleutian subduction zone in late 2004, early 2010 and late 2011. The site motions from 1995-2004, 2004-2010 and post-2011, however, appear to be steady. To first order, the deformation rates for 1995-2004 and 2010-2011 are similar to each other, as are 2004-2010 and post-2011. This pattrn of toggling between two deformation patterns is due to the time-dependent slip variations on the Alaska-Aleutian subduction plate interface. It is possible that a deeper part of the subduction interface had been suddenly locked between 2004 and 2010, causing additional interseismic strain accumulation, and we test this hypothesis. We model time-dependent variatins in this seismogenic zone using the software TDEFNODE to estimate the slip rate deficit distribution on the Alaska-Aleutian subduction plate interface along with block rotation of upper plate blocks. To do so, we first divided the GPS time series into four time periods: before 2004, 2004 to 2010, 2010-2011, and post-2011. We removed the ongoing postseismic deformation due to the 1964 earthquake fom these GPS velocity fields. We constructed an upper plate block model including three main blocks, Southern Alaska (SOAK), the Peninsula block and the Bering Plate to model the contributions from the secular tectonic motions of the upper plate. We modeled the subduction fault surface based on the Slab1.0 model for the subduction zone, with the slab extended to the east as Slab1.0 terminates the slab under Prince William Sound. We found 50~60 mm/yr slip rate deficit in the shallow part of the seismogenic zone, to depths of ~30km which we identify as the main asperity that ruptured in 1964 earthquake. The shape of the locked region under Lower Cook Inlet differs for each time period, with the locked region being wider in 2004-2010 and post-2011. In the near future we will use TDEFNODE to model the GPS time series directly to

  15. Improving Student Achievement in Alaska. Alaska Goals 2000 Annual Report, 1997-98.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau.

    Alaska Goals 2000 is part of a coordinated, statewide effort to improve public education for all students in Alaska. In 1997-1998, 90% of Alaska's federal funding was used to fund grants to local school districts, and 10% was used to fund state-level activities through the Alaska Department of Education. During 1997-1998, curriculum frameworks and…

  16. Distribution, facies, ages, and proposed tectonic associations of regionally metamorphosed rocks in Southwestern Alaska and the Alaska Peninsula

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Doyle, E.O.; Box, S.E.

    1996-01-01

    The oldest dated metamorphic sequence in Alaska, the fault-bounded Kilbuck Terrane, consists of continental rocks that were metamorphosed under amphibolite-facies conditions during early Proterozoic (1.77 Ga) time. Proterozoic or early Paleozoic metamorphic ages are also possible for greenschist- and amphibolite-facies continental rocks in interior Alaska (Ruby and Nixon Fork terranes). Medium-grade metamorphism on the Alaska Peninsula accompanied intrusion of a Jurassic arc. North of Bristol Bay, low-grade, locally high-pressure Mesozoic metamorphism is attributed to the progressive underthrusting of a subduction complex beneath an oceanic arc followed by underthrusting of the Kilbuck Terrane beneath the subduction complex.

  17. Applications of remote sensing data in Alaska: A cooperative program of the University of Alaska with user organizations, including local, state and federal government agencies

    NASA Technical Reports Server (NTRS)

    Miller, J. M.

    1976-01-01

    The development of the coastal-zone-related issues is generating an increasing need for information which is greater in quantity of natural resource data, greater in quality of detail of data, and more frequent in collection of data owing to the need to monitor certain aspects of programs. The array, detail, and frequency of information acquisition required to develop natural resources and to implement and maintain the resulting programs demand improved techniques of data gathering, processing, and interpretation which is conducive to the use of remote-sensing techniques. As Alaska, both in the state and federal domain, gears up to meet the energy-related issues facing the nation there will be a growing role for efforts which adapt state-of-the-art tools to solving existing problems.

  18. Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data

    USGS Publications Warehouse

    Eberhart-Phillips, D.; Christensen, D.H.; Brocher, T.M.; Hansen, R.; Ruppert, N.A.; Haeussler, P.J.; Abers, G.A.

    2006-01-01

    In southern and central Alaska the subduction and active volcanism of the Aleutian subduction zone give way to a broad plate boundary zone with mountain building and strike-slip faulting, where the Yakutat terrane joins the subducting Pacific plate. The interplay of these tectonic elements can be best understood by considering the entire region in three dimensions. We image three-dimensional seismic velocity using abundant local earthquakes, supplemented by active source data. Crustal low-velocity correlates with basins. The Denali fault zone is a dominant feature with a change in crustal thickness across the fault. A relatively high-velocity subducted slab and a low-velocity mantle wedge are observed, and high Vp/Vs beneath the active volcanic systems, which indicates focusing of partial melt. North of Cook Inlet, the subducted Yakutat slab is characterized by a thick low-velocity, high-Vp/Vs, crust. High-velocity material above the Yakutat slab may represent a residual older slab, which inhibits vertical flow of Yakutat subduction fluids. Alternate lateral flow allows Yakutat subduction fluids to contribute to Cook Inlet volcanism and the Wrangell volcanic field. The apparent northeast edge of the subducted Yakutat slab is southwest of the Wrangell volcanics, which have adakitic composition consistent with melting of this Yakutat slab edge. In the mantle, the Yakutat slab is subducting with the Pacific plate, while at shallower depths the Yakutat slab overthrusts the shallow Pacific plate along the Transition fault. This region of crustal doubling within the shallow slab is associated with extremely strong plate coupling and the primary asperity of the Mw 9.2 great 1964 earthquake. Copyright 2006 by the American Geophysical Union.

  19. Sikuliqiruq: Ice dynamics of the Meade river - Arctic Alaska, from freezeup to breakup from time-series ground imagery

    USGS Publications Warehouse

    Beck, R.A.; Rettig, A.J.; Ivenso, C.; Eisner, Wendy R.; Hinkel, Kenneth M.; Jones, Benjamin M.; Arp, C.D.; Grosse, G.; Whiteman, D.

    2010-01-01

    Ice formation and breakup on Arctic rivers strongly influence river flow, sedimentation, river ecology, winter travel, and subsistence fishing and hunting by Alaskan Natives. We use time-series ground imagery ofthe Meade River to examine the process at high temporal and spatial resolution. Freezeup from complete liquid cover to complete ice cover ofthe Meade River at Atqasuk, Alaska in the fall of 2008 occurred in less than three days between 28 September and 2 October 2008. Breakup in 2009 occurred in less than two hours between 23:47 UTC on 23 May 2009 and 01:27 UTC on 24 May 2009. All times in UTC. Breakup in 2009 and 2010 was ofthe thermal style in contrast to the mechanical style observed in 1966 and is consistent with a warming Arctic. ?? 2010 Taylor & Francis.

  20. 75 FR 1723 - Fisheries of the Exclusive Economic Zone Off Alaska; Chiniak Gully Research Area for Vessels...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... Economic Zone Off Alaska; Chiniak Gully Research Area for Vessels Using Trawl Gear AGENCY: National Marine...: Temporary rule. SUMMARY: NMFS is rescinding the trawl closure in the Chiniak Gully Research Area. This... in the Chiniak Gully Research Area. DATES: Effective 1200 hrs, Alaska local time (A.l.t.), August...

  1. Absolute timing of sulfide and gold mineralization: A comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt, Alaska

    USGS Publications Warehouse

    Selby, D.; Creaser, R.A.; Hart, C.J.R.; Rombach, C.S.; Thompson, J.F.H.; Smith, M.T.; Bakke, A.A.; Goldfarb, R.J.

    2002-01-01

    New Re-Os molybdenite dates from two lode gold deposits of the Tintina Gold Belt, Alaska, provide direct timing constraints for sulfide and gold mineralization. At Fort Knox, the Re-Os molybdenite date is identical to the U-Pb zircon age for the host intrusion, supporting an intrusive-related origin for the deposit. However, 40Ar/39Ar dates from hydrothermal and igneous mica are considerably younger. At the Pogo deposit, Re-Os molybdenite dates are also much older than 40Ar/39Ar dates from hydrothermal mica, but dissimilar to the age of local granites. These age relationships indicate that the Re-Os molybdenite method records the timing of sulfide and gold mineralization, whereas much younger 40Ar/39Ar dates are affected by post-ore thermal events, slow cooling, and/or systemic analytical effects. The results of this study complement a growing body of evidence to indicate that the Re-Os chronometer in molybdenite can be an accurate and robust tool for establishing timing relations in ore systems.

  2. Alaska marine ice atlas

    SciTech Connect

    LaBelle, J.C.; Wise, J.L.; Voelker, R.P.; Schulze, R.H.; Wohl, G.M.

    1982-01-01

    A comprehensive Atlas of Alaska marine ice is presented. It includes information on pack and landfast sea ice and calving tidewater glacier ice. It also gives information on ice and related environmental conditions collected over several years time and indicates the normal and extreme conditions that might be expected in Alaska coastal waters. Much of the information on ice conditions in Alaska coastal waters has emanated from research activities in outer continental shelf regions under assessment for oil and gas exploration and development potential. (DMC)

  3. Near-Real-Time, Global Radar Data at the Alaska Satellite Facility DAAC from NASA's SMAP Satellite

    NASA Astrophysics Data System (ADS)

    Arko, S. A.; Allen, A. R.; Dixon, I. R.

    2014-12-01

    The Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) is supporting NASA's SMAP (Soil Moisture Active Passive) satellite mission, which launches in January 2015. SMAP will measure global soil moisture and its freeze-thaw state every 3 days using an L-band synthetic aperture radar (SAR) and radiometer. ASF, along with the National Snow and Ice Data Center DAAC and NASA's Earth Science Data and Information System (ESDIS), is identifying and developing tools and technologies to facilitate use of global, near-real-time data by the SMAP user community. ASF will host the SMAP Level 1 radar data and make them available for download through ASF's data discovery interface, Vertex, and the ASF Application Programming Interface. Vertex allows a user to search, visualize and download SAR data, browse images and relevant metadata, and will offer the complete SMAP L1 radar archive to the public. The entire SMAP archive consisting of level 1-4 data can be accessed via Reverb, the NASA EOSDIS metadata and service discovery tool. In anticipation of the SMAP launch and data release, ASF has developed and released a new website (https://www.asf.alaska.edu/smap/) and a suite of web resources, including interactive media, technical information, a product guide, related publications, and tools for working with the HDF5 data format. The ASF SMAP team is exploring OPeNDAP and the Jet Propulsion Laboratory's Webification technologies for enhancing in-browser data visualization and analysis. These technologies, and tools developed with them, represent opportunities for exposing this valuable dataset to areas with limited bandwidth or understanding of radar data. This presentation will highlight the enabling technologies and techniques ASF is employing to bring these data to new scientific and applications users and respond to ever-changing user needs.

  4. Depositional environments and processes in Upper Cretaceous nonmarine and marine sediments, Ocean Point dinosaur locality, North Slope, Alaska

    USGS Publications Warehouse

    Phillips, R.L.

    2003-01-01

    A 178-m-thick stratigraphic section exposed along the lower Colville River in northern Alaska, near Ocean Point, represents the uppermost part of a 1500 m Upper Cretaceous stratigraphic section. Strata exposed at Ocean Point are assigned to the Prince Creek and Schrader Bluff formations. Three major depositional environments are identified consisting, in ascending order, of floodplain, interdistributary-bay, and shallow-marine shelf. Nonmarine strata, comprising the lower 140 m of this section, consist of fluvial distributaries, overbank sediments, tephra beds, organic-rich beds, and vertebrate remains. Tephras yield isotopic ages between 68 and 72.9 Ma, generally consistent with paleontologic ages of late Campanian-Maastrichtian determined from dinosaur remains, pollen, foraminifers, and ostracodes. Meandering low-energy rivers on a low-gradient, low-relief floodplain carried a suspended-sediment load. The rivers formed multistoried channel deposits (channels to 10 m deep) as well as solitary channel deposits (channels 2-5 m deep). Extensive overbank deposits resulting from episodic flooding formed fining-upward strata on the floodplain. The fining-upward strata are interbedded with tephra and beds of organic-rich sediment. Vertical-accretion deposits containing abundant roots indicate a sheet flood origin for many beds. Vertebrate and nonmarine invertebrate fossils along with plant debris were locally concentrated in the floodplain sediment. Deciduous conifers as well as abundant wetland plants, such as ferns, horsetails, and mosses, covered the coastal plain. Dinosaur skeletal remains have been found concentrated in floodplain sediments in organic-rich bone beds and as isolated bones in fluvial channel deposits in at least nine separate horizons within a 100-m-thick interval. Arenaceous foraminifers in some organic-rich beds and shallow fluvial distributaries indicate a lower coastal plain environment with marginal marine (bay) influence. Marginal marine strata

  5. Quantum time and spatial localization in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    von Zuben, Francis Stephen Geisler

    1999-11-01

    Two related problems in relativistic quantum mechanics, the apparent superluminal propagation of initially localized particles, and the dependence of their localization on the motion of the observer, are analyzed in the context of the theory of constraints. Time and energy operators are introduced for the free relativistic particle, and a parametrization invariant formulation is obtained through Dirac constraint theory. The resulting description is of a system constrained in momentum and energy, but not in position or time, for which observables are constants of the motion. The Klein-Gordon equation is recovered on a physical Hilbert space, constructed via integration over the proper time from an augmented Hilbert space, wherein time and energy are dynamical variables. It is shown that the position observable acts on states in the augmented space; those states having strictly positive energy are non-local in time. Localization arises on a particular space-like hyperplane from quantum interference in time, position measurements receiving contributions from the past and future. Apparent causality problems are resolved by noting that, as the particle is potentially in the past, it can propagate to distant regions without exceeding the speed of light. Non-locality of the same system to a moving observer is due to Lorentz rotation of spatial axes out of the interference minimum.

  6. 1994 Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Doukas, Michael P.; McGimsey, Robert G.

    1995-01-01

    During 1994, the Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, or false alarms at nine volcanic centers-- Mount Sanford, Iliamna, the Katmai group, Kupreanof, Mount Veniaminof, Shishaldin, Makushin, Mount Cleveland and Kanaga (table 1). Of these volcanoes, AVO has a real time, continuously recording seismic network only at Iliamna, which is located in the Cook Inlet area of south-central Alaska (fig. 1). AVO has dial-up access to seismic data from a 5-station network in the general region of the Katmai group of volcanoes. The remaining unmonitored volcanoes are located in sparsely populated areas of the Wrangell Mountains, the Alaska Peninsula, and the Aleutian Islands (fig. 1). For these volcanoes, the AVO monitoring program relies chiefly on receipt of pilot reports, observations of local residents and analysis of satellite imagery.

  7. Adaptive Decomposition of Highly Resolved Time Series into Local and Non‐local Components

    EPA Science Inventory

    Highly time-resolved air monitoring data are widely being collected over long time horizons in order to characterizeambient and near-source air quality trends. In many applications, it is desirable to split the time-resolved data into two ormore components (e.g., local and region...

  8. Comparisons of spawning areas and times for two runs of chinook salmon (Oncorhynchus tshawytscha) in the Kenai River, Alaska

    USGS Publications Warehouse

    Burger, C.V.; Wilmot, R.L.; Wangaard, D.B.

    1985-01-01

    From 1979 to 1982,188 chinook salmon (Oncorhynchus tshawytscha) were tagged with radio transmitters to locate spawning areas in the glacial Kenai River, southcentral Alaska. Results confirmed that an early run entered the river in May and June and spawned in tributaries, and a late run entered the river from late June through August and spawned in the main stem. Spawning peaked during August in tributaries influenced by lakes, but during July in other tributaries. Lakes may have increased fall and winter temperatures of downstream waters, enabling successful reproduction for later spawning fish within these tributaries. This hypothesis assumes that hatching and emergence can be completed in a shorter time in lake-influenced waters. The time of upstream migration and spawning (mid- to late August) of the late run is unique among chinook stocks in Cook Inlet. This behavior may have developed only because two large lakes (Kenai and Skilak) directly influence the main-stem Kenai River. If run timing is genetically controlled, and if the various components of the two runs are isolated stocks that have adapted to predictable stream temperatures, there are implications for stock transplantation programs and for any activities of man that alter stream temperatures.

  9. Apatite fission-track evidence for regional exhumation in the subtropical Eocene, block faulting, and localized fluid flow in east-central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Bacon, Charles R.; O'Sullivan, Paul B.; Day, Warren C.

    2016-01-01

    The origin and antiquity of the subdued topography of the Yukon–Tanana Upland (YTU), the physiographic province between the Denali and Tintina faults, are unresolved questions in the geologic history of interior Alaska and adjacent Yukon. We present apatite fission-track (AFT) results for 33 samples from the 2300 km2 western Fortymile district in the YTU in Alaska and propose an exhumation model that is consistent with preservation of volcanic rocks in valleys that requires base level stability of several drainages since latest Cretaceous–Paleocene time. AFT thermochronology indicates widespread cooling below ∼110 °C at ∼56–47 Ma (early Eocene) and ∼44–36 Ma (middle Eocene). Samples with ∼33–27, ∼19, and ∼10 Ma AFT ages, obtained near a major northeast-trending fault zone, apparently reflect hydrothermal fluid flow. Uplift and erosion following ∼107 Ma magmatism exposed plutonic rocks to different extents in various crustal blocks by latest Cretaceous time. We interpret the Eocene AFT ages to suggest that higher elevations were eroded during the Paleogene subtropical climate of the subarctic, while base level remained essentially stable. Tertiary basins outboard of the YTU contain sediment that may account for the required >2 km of removed overburden that was not carried to the sea by the ancestral Yukon River system. We consider a climate driven explanation for the Eocene AFT ages to be most consistent with geologic constraints in concert with block faulting related to translation on the Denali and Tintina faults resulting from oblique subduction along the southern margin of Alaska.

  10. Snowmelt and Surface Freeze/Thaw Timings over Alaska derived from Passive Microwave Observations using a Wavelet Classifier

    NASA Astrophysics Data System (ADS)

    Steiner, N.; McDonald, K. C.; Dinardo, S. J.; Miller, C. E.

    2015-12-01

    Arctic permafrost soils contain a vast amount of organic carbon that will be released into the atmosphere as carbon dioxide or methane when thawed. Surface to air greenhouse gas fluxes are largely dependent on such surface controls as the frozen/thawed state of the snow and soil. Satellite remote sensing is an important means to create continuous mapping of surface properties. Advances in the ability to determine soil and snow freeze/thaw timings from microwave frequency observations improves upon our ability to predict the response of carbon gas emission to warming through synthesis with in-situ observation, such as the 2012-2015 Carbon in Arctic Reservoir Vulnerability Experiment (CARVE). Surface freeze/thaw or snowmelt timings are often derived using a constant or spatially/temporally variable threshold applied to time-series observations. Alternately, time-series singularity classifiers aim to detect discontinuous changes, or "edges", in time-series data similar to those that occur from the large contrast in dielectric constant during the freezing or thaw of soil or snow. We use multi-scale analysis of continuous wavelet transform spectral gradient brightness temperatures from various channel combinations of passive microwave radiometers, Advanced Microwave Scanning Radiometer (AMSR-E, AMSR2) and Special Sensor Microwave Imager (SSM/I F17) gridded at a 10 km posting with resolution proportional to the observational footprint. Channel combinations presented here aim to illustrate and differentiate timings of "edges" from transitions in surface water related to various landscape components (e.g. snow-melt, soil-thaw). To support an understanding of the physical basis of observed "edges" we compare satellite measurements with simple radiative transfer microwave-emission modeling of the snow, soil and vegetation using in-situ observations from the SNOw TELemetry (SNOTEL) automated weather stations. Results of freeze/thaw and snow-melt timings and trends are

  11. Real-Time MEG Source Localization Using Regional Clustering.

    PubMed

    Dinh, Christoph; Strohmeier, Daniel; Luessi, Martin; Güllmar, Daniel; Baumgarten, Daniel; Haueisen, Jens; Hämäläinen, Matti S

    2015-11-01

    With its millisecond temporal resolution, Magnetoencephalography (MEG) is well suited for real-time monitoring of brain activity. Real-time feedback allows the adaption of the experiment to the subject's reaction and increases time efficiency by shortening acquisition and off-line analysis. Two formidable challenges exist in real-time analysis: the low signal-to-noise ratio (SNR) and the limited time available for computations. Since the low SNR reduces the number of distinguishable sources, we propose an approach which downsizes the source space based on a cortical atlas and allows to discern the sources in the presence of noise. Each cortical region is represented by a small set of dipoles, which is obtained by a clustering algorithm. Using this approach, we adapted dynamic statistical parametric mapping for real-time source localization. In terms of point spread and crosstalk between regions the proposed clustering technique performs better than selecting spatially evenly distributed dipoles. We conducted real-time source localization on MEG data from an auditory experiment. The results demonstrate that the proposed real-time method localizes sources reliably in the superior temporal gyrus. We conclude that real-time source estimation based on MEG is a feasible, useful addition to the standard on-line processing methods, and enables feedback based on neural activity during the measurements. PMID:25782980

  12. Changes in floral diversities, floral turnover rates, and climates in Campanian and Maastrichtian time, North Slope of Alaska

    USGS Publications Warehouse

    Frederiksen, N.O.

    1989-01-01

    One-hundred-and-ten angiosperm pollen taxa have been found in upper Campanian to Masstrichtian rocks of the Colville River region, North Slope of Alaska. These are the highest paleolatitude Campanian and Maastrichtian floras known from North America. Total angiosperm pollen diversity rose during the Campanian and declined toward the end of the Maastrichtian. However, anemophilous porate pollen of the Betulaceae-Myricaceae-Ulmaceae complex increased gradually in diversity during the late Campanian and Maastrichtian and into the Paleocene. Turnover of angiosperm taxa was active throughout most of late Campanian and Maastrichtian time; rapid turnover affected mainly the taxa of zoophilous herbs, representing an bundant but ecologically subordinate element of the vegetation. Last appearances of pollen taxa during the late Campanian and Maastrichtian probably represented mainly extinctions rather than emigrations; end- Cretaceous angiosperm extinctions in the North American Arctic began well before the Cretaceous-Tertiary boundary event. The last appearances in the late Maastrichtian took place in bursts; they appear to represent stepwise rather than gradual events, which may indicate the existence of pulses of climatic change particularly in late Maastrichtian time. ?? 1989.

  13. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  14. Analytical data and sample locality map for aqua-regia leachates of stream sediments analyzed by ICP, and emission spectrographic results for both stream sediments and panned concentrates collected in 1985 from the Chandler Lake Quadrangle, Alaska

    SciTech Connect

    Erlich, O.; Motooka, J.M.; Church, S.E.; Bailey, E.A.; Arbogast, B.F.; Willson, W.R.

    1989-01-01

    A U.S. Geological Survey report is presented detailing analytical data and sample locality map for aqua-regia leachates of stream sediments analyzed by ICP, and emission spectrographic results for both stream sediments and panned concentrates collected in 1985 from the Chandler Lake Quadrangle, Alaska.

  15. Analytical data and sample locality map for aqua-regia leachates of stream sediments analyzed by ICP, and emission spectrographic and ICP results for many NURE stream sediments from the Killik River Quadrangle, Alaska

    SciTech Connect

    Motooka, J.M.; Adrian, B.M.; Church, S.E.; McDougal, C.M.; Fife, J.B.

    1989-01-01

    A U.S. Geological Survey report is presented giving analytical data and sample locality map for aqua-regia leachates of stream sediments analyzed by ICP, and emission spectrographic and ICP results for many NURE stream sediments from the Killik River Quadrangle, Alaska.

  16. Local troposphere augmentation for real-time precise point positioning

    NASA Astrophysics Data System (ADS)

    Shi, Junbo; Xu, Chaoqian; Guo, Jiming; Gao, Yang

    2014-12-01

    The IGS real-time service (RTS) enables real-time precise point positioning (PPP) at a global scale. A long convergence time however is still a challenging factor. In order to reduce the convergence time, external troposphere corrections could be introduced to remove the troposphere effects on the coordinate solution. This paper proposes the use of a local troposphere model to augment real-time PPP. First, undifferenced observations from a network of multiple stations are processed to estimate the station-based troposphere zenith wet delay (ZWD). A set of local troposphere fitting coefficients are then derived using a proposed optimal fitting model. Finally, the determined troposphere fitting coefficients are broadcast to users to reduce the convergence time in the user solution. A continuous operating reference station (CORS) network is utilized to assess the performance of the proposed approach under quiet and active troposphere conditions. The numerical results show that the overall fitting precisions of the local troposphere model can reach 1.42 and 1.05 cm under the two troposphere conditions. The convergence time of the positioning solutions, especially the height solution, can be greatly reduced using the local troposphere model. The horizontal accuracy of 9.2 cm and the vertical accuracy of 10.1 cm are obtainable under the quiet troposphere condition after 20 min of initialization time, compared to the 14.7 cm horizontal and 21.5 cm vertical accuracies in the conventional troposphere estimation approach. Moreover, the horizontal accuracies of 13.0 cm and the vertical accuracies of 12.4 cm have also been obtained after 20 min under the active troposphere condition.

  17. Understanding response times and groundwater flow dynamics of thaw zone (talik) evolution below lakes in the Yukon Flats, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Wellman, T. P.; Minsley, B. J.; Voss, C. I.; Walvoord, M. A.

    2013-12-01

    In cold regions, hydrologic systems possess seasonal and perennial ice-free zones (taliks) within areas of permafrost that control and are enhanced by groundwater flow. Simulation of talik development that follows lake formation in watersheds modeled after those in the Yukon Flats of interior Alaska (USA) provides insight on the coupled interaction between groundwater flow and ice distribution. The SUTRA groundwater simulator with freeze-thaw physics is used to examine the effect of climate, lake size, and lake-groundwater relations on talik formation. Considering a range of these factors, simulated times for a through-going sub-lake talik to form through 90 m of permafrost range from ~200 to >1,000 years (vertical thaw rates <0.1-0.5 m yr^-1). Seasonal temperature cycles along lake margins impact supra-permafrost flow and late-stage cryologic processes. Warmer climate accelerates complete permafrost thaw and enhances seasonal flow within the supra-permafrost layer. Prior to open talik formation, sub-lake permafrost thaw is dominated by heat conduction. When hydraulic conditions induce upward or downward flow between the lake and sub-permafrost aquifer, thaw rates are greatly increased. The complexity of ground-ice and water-flow interplay, together with anticipated warming in the arctic, underscores the utility of coupled groundwater-energy transport models in evaluating hydrologic systems impacted by permafrost.

  18. Radiocarbon in otoliths of yelloweye rockfish (Sebastes ruberrimus): a reference time series for the coastal waters of southeast Alaska

    SciTech Connect

    Kerr-Ferrey, L A; Andrews, A H; Frantz, B R; Coale, K H; Brown, T A; Cailliet, G M

    2003-10-14

    Atmospheric testing of thermonuclear devices during the 1950s and 1960s created a global radiocarbon ({sup 14}C) signal in the environment that has provided a useful tracer and chronological marker in oceanic systems and organisms. The bomb-generated {sup 14}C signal retained in fish otoliths can be used as a permanent, time-specific recorder of the 14C present in ambient seawater, making it a useful tool in age validation of fishes. The goal of this study was to determine {sup 14}C levels in otoliths of the age-validated yelloweye rockfish (Sebastes ruberrimus) to establish a reference time series for the coastal waters of southeast Alaska. Radiocarbon values from the first year's growth of 43 yelloweye rockfish otoliths were plotted against estimated birth year to produce a 14C time series for these waters spanning 1940 to 1990. The time series shows the initial rise of bomb 14C occurred in 1958 in coastal southeast Alaskan waters and {sup 14}C levels rose relatively rapidly to peak {Delta}{sup 14}C values (60-70%) between 1966 and 1971, with a subsequent declining trend through the end of the record in 1990 (-3.2%). In addition, the radiocarbon data, independent of the radiometric study, confirms the longevity of the yelloweye rockfish up to a minimum of 44 years and strongly supports higher age estimates. The yelloweye rockfish record provides a {sup 14}C chronology that will be useful for the interpretation of {sup 14}C accreted in biological samples from these waters and in future rockfish age validation studies.

  19. Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer

    SciTech Connect

    Willoughby, Twyla R.; Kupelian, Patrick A. . E-mail: patrick.kupelian@orhs.org; Pouliot, Jean; Shinohara, Katsuto; Aubin, Michelle; Roach, Mack; Skrumeda, Lisa L.; Balter, James M.; Litzenberg, Dale W.; Hadley, Scott W.; Wei, John T.; Sandler, Howard M.

    2006-06-01

    Purpose: The Calypso 4D Localization System is being developed to provide accurate, precise, objective, and continuous target localization during radiotherapy. This study involves the first human use of the system, to evaluate the localization accuracy of this technique compared with radiographic localization and to assess its ability to obtain real-time prostate-motion information. Methods and Materials: Three transponders were implanted in each of 20 patients. Eleven eligible patients of the 20 patients participated in a study arm that compared radiographic triangulated transponder locations to electromagnetically recorded transponder locations. Transponders were tracked for 8-min periods. Results: The implantations were all successful, with no major complications. Intertransponder distances were largely stable. Comparison of the patient localization on the basis of transponder locations as per the Calypso system with the radiographic transponder localization showed an average ({+-}SD) 3D difference of 1.5 {+-} 0.9 mm. Upon tracking during 8 min, 2 of the 11 patients showed significant organ motion (>1 cm), with some motion lasting longer that 1 min. Conclusion: Calypso transponders can be used as magnetic intraprostatic fiducials. Clinical evaluation of this novel 4D nonionizing electromagnetic localization system with transponders indicates a comparable localization accuracy to isocenter (within 2 mm) compared with X-ray localiza0010ti.

  20. Anderson localization and Mott insulator phase in the time domain

    PubMed Central

    Sacha, Krzysztof

    2015-01-01

    Particles in space periodic potentials constitute standard models for investigation of crystalline phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena can be observed in the time domain. Here we show that wave-packets localized on resonant classical trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary states of a periodically driven particle. However, an additional perturbation that fluctuates in time results in disorder in time and Anderson localization effects emerge. Switching to many-particle systems we observe that depending on how strong particle interactions are, stationary states can be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be observed in the time domain. PMID:26074169

  1. Anderson localization and Mott insulator phase in the time domain.

    PubMed

    Sacha, Krzysztof

    2015-01-01

    Particles in space periodic potentials constitute standard models for investigation of crystalline phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena can be observed in the time domain. Here we show that wave-packets localized on resonant classical trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary states of a periodically driven particle. However, an additional perturbation that fluctuates in time results in disorder in time and Anderson localization effects emerge. Switching to many-particle systems we observe that depending on how strong particle interactions are, stationary states can be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be observed in the time domain. PMID:26074169

  2. THE LOCAL EFFECT TIME (LET) AND HOW IT INCORPORATES ECOLOGY INTO RESIDENCE TIME

    EPA Science Inventory

    A clear and direct connection between constituent/water residence times and ecological effects is necessary to quantitatively relate these time scales to ecology. The concept of "local effect time" (LET) is proposed here as a time scale with adequate spatial resolution to relate ...

  3. Effects of Local and Widespread Muscle Fatigue on Movement Timing

    PubMed Central

    Cowley, Jeffrey C.; Dingwell, Jonathan B.; Gates, Deanna H.

    2014-01-01

    Repetitive movements can cause muscle fatigue, leading to motor reorganization, performance deficits, and/or possible injury. The effects of fatigue may depend on the type of fatigue task employed, however. The purpose of this study was to determine how local fatigue of a specific muscle group versus widespread fatigue of various muscle groups affected the control of movement timing. Twenty healthy subjects performed an upper-extremity low-load work task similar to sawing for 5 continuous minutes both before and after completing a protocol that either fatigued all the muscles used in the task (widespread fatigue) or a protocol that selectively fatigued the primary muscles used to execute the pushing stroke of the sawing task (localized fatigue). Subjects were instructed to time their movements with a metronome. Timing error, movement distance, and speed were calculated for each movement. Data were then analyzed using a goal-equivalent manifold (GEM) approach to quantify changes in goal-relevant and non-goal-relevant variability. We applied detrended fluctuation analysis to each time series to quantify changes in fluctuation dynamics that reflected changes in the control strategies used. After localized fatigue, subjects made shorter, slower movements and exerted greater control over non-goal-relevant variability. After widespread fatigue, subjects exerted less control over non-goal-relevant variability and did not change movement patterns. Thus, localized and widespread muscle fatigue affected movement differently. Local fatigue may reduce the available motor solutions and therefore cause greater movement reorganization than widespread muscle fatigue. Subjects altered their control strategies but continued to achieve the timing goal after both fatigue tasks. PMID:25183157

  4. Alaska Native Land Claims. [Textbook].

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Written for students at the secondary level, this textbook on Alaska Native land claims includes nine chapters, eight appendices, photographs, maps, graphs, bibliography, and an index. Chapters are titled as follows: (1) Earliest Times (Alaska's first settlers, eighteenth century territories, and other claimants); (2) American Indians and Their…

  5. Time-resolved local strain tracking microscopy for cell mechanics

    NASA Astrophysics Data System (ADS)

    Aydin, O.; Aksoy, B.; Akalin, O. B.; Bayraktar, H.; Alaca, B. E.

    2016-02-01

    A uniaxial cell stretching technique to measure time-resolved local substrate strain while simultaneously imaging adherent cells is presented. The experimental setup comprises a uniaxial stretcher platform compatible with inverted microscopy and transparent elastomer samples with embedded fluorescent beads. This integration enables the acquisition of real-time spatiotemporal data, which is then processed using a single-particle tracking algorithm to track the positions of fluorescent beads for the subsequent computation of local strain. The present local strain tracking method is demonstrated using polydimethylsiloxane (PDMS) samples of rectangular and dogbone geometries. The comparison of experimental results and finite element simulations for the two sample geometries illustrates the capability of the present system to accurately quantify local deformation even when the strain distribution is non-uniform over the sample. For a regular dogbone sample, the experimentally obtained value of local strain at the center of the sample is 77%, while the average strain calculated using the applied cross-head displacement is 48%. This observation indicates that considerable errors may arise when cross-head measurement is utilized to estimate strain in the case of non-uniform sample geometry. Finally, the compatibility of the proposed platform with biological samples is tested using a unibody PDMS sample with a well to contain cells and culture media. HeLa S3 cells are plated on collagen-coated samples and cell adhesion and proliferation are observed. Samples with adherent cells are then stretched to demonstrate simultaneous cell imaging and tracking of embedded fluorescent beads.

  6. Deformation and the timing of gas generation and migration in the eastern Brooks Range foothills, Arctic National Wildlife Refuge, Alaska

    USGS Publications Warehouse

    Parris, T.M.; Burruss, R.C.; O'Sullivan, P. B.

    2003-01-01

    Along the southeast border of the 1002 Assessment Area in the Arctic National Wildlife Refuge, Alaska, an explicit link between gas generation and deformation in the Brooks Range fold and thrust belt is provided through petrographic, fluid inclusion, and stable isotope analyses of fracture cements integrated with zircon fission-track data. Predominantly quartz-cemented fractures, collected from thrusted Triassic and Jurassic rocks, contain crack-seal textures, healed microcracks, and curved crystals and fluid inclusion populations, which suggest that cement growth occurred before, during, and after deformation. Fluid inclusion homogenization temperatures (175-250??C) and temperature trends in fracture samples suggest that cements grew at 7-10 km depth during the transition from burial to uplift and during early uplift. CH4-rich (dry gas) inclusions in the Shublik Formation and Kingak Shale are consistent with inclusion entrapment at high thermal maturity for these source rocks. Pressure modeling of these CH4-rich inclusions suggests that pore fluids were overpressured during fracture cementation. Zircon fission-track data in the area record postdeposition denudation associated with early Brooks Range deformation at 64 ?? 3 Ma. With a closure temperature of 225-240??C, the zircon fission-track data overlap homogenization temperatures of coeval aqueous inclusions and inclusions containing dry gas in Kingak and Shublik fracture cements. This critical time-temperature relationship suggests that fracture cementation occurred during early Brooks Range deformation. Dry gas inclusions suggest that Shublik and Kingak source rocks had exceeded peak oil and gas generation temperatures at the time structural traps formed during early Brooks Range deformation. The timing of hydrocarbon generation with respect to deformation therefore represents an important exploration risk for gas exploration in this part of the Brooks Range fold and thrust belt. The persistence of gas high at

  7. Average waiting time in FDDI networks with local priorities

    NASA Technical Reports Server (NTRS)

    Gercek, Gokhan

    1994-01-01

    A method is introduced to compute the average queuing delay experienced by different priority group messages in an FDDI node. It is assumed that no FDDI MAC layer priorities are used. Instead, a priority structure is introduced to the messages at a higher protocol layer (e.g. network layer) locally. Such a method was planned to be used in Space Station Freedom FDDI network. Conservation of the average waiting time is used as the key concept in computing average queuing delays. It is shown that local priority assignments are feasable specially when the traffic distribution is asymmetric in the FDDI network.

  8. Infant Mortality and American Indians/Alaska Natives

    MedlinePlus

    ... Heath & Mortality Infant Mortality and American Indians/Alaska Natives American Indian/Alaska Natives have 1.5 times the ... Cause of Death (By rank) # American Indian/Alaska Native Deaths American Indian/Alaska Native Death Rate #Non- Hispanic White ...

  9. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    USGS Publications Warehouse

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  10. Impulse source localization in an urban environment: Time reversal versus time matching.

    PubMed

    Cheinet, Sylvain; Ehrhardt, Loïc; Broglin, Thierry

    2016-01-01

    This study investigates two approaches for localizing an impulse sound source with distributed sensors in an urban environment under controlled processing time. In both approaches, the numerical model used for calculating the sound propagation is a finite-difference time-domain (FDTD) model. The simulations are drastically accelerated by restricting to the lower frequencies of the impulse signals and are evaluated against in situ measurements. The first tested localization technique relies on the time reversal of the measurements with the model. In the second technique, the source is localized by matching the observed differences in the first times of arrival of the signals to those obtained from a pre-defined database of simulations with known source positions. The localization performance is physically investigated on the basis of the measurements, considering two source positions and all possible combinations from 5 to 15 microphones. The time matching localization attains an accuracy of 10 m, which is targeted in this study, in the vast majority of the configurations. In comparison, the time reversal localization is affected by the weakness of contributions from sensors masked and distant from the source. Practical requirements are also discussed, such as real-time constraints, hardware and description of the urban environment. PMID:26827011

  11. Effects of Alcohol Tax Increases on Alcohol-Related Disease Mortality in Alaska: Time-Series Analyses From 1976 to 2004

    PubMed Central

    Maldonado-Molina, Mildred M.; Wagenaar, Bradley H.

    2009-01-01

    Objective. We evaluated the effects of tax increases on alcoholic beverages in 1983 and 2002 on alcohol-related disease mortality in Alaska. Methods. We used a quasi-experimental design with quarterly measures of mortality from 1976 though 2004, and we included other states for comparison. Our statistical approach combined an autoregressive integrated moving average model with structural parameters in interrupted time-series models. Results. We observed statistically significant reductions in the numbers and rates of deaths caused by alcohol-related disease beginning immediately after the 1983 and 2002 alcohol tax increases in Alaska. In terms of effect size, the reductions were –29% (Cohen's d = –0.57) and –11% (Cohen's d = –0.52) for the 2 tax increases. Statistical tests of temporary-effect models versus long-term-effect models showed little dissipation of the effect over time. Conclusions. Increases in alcohol excise tax rates were associated with immediate and sustained reductions in alcohol-related disease mortality in Alaska. Reductions in mortality occurred after 2 tax increases almost 20 years apart. Taxing alcoholic beverages is an effective public health strategy for reducing the burden of alcohol-related disease. PMID:19008507

  12. Predicting the time derivative of local magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Tóth, Gábor; Meng, Xing; Gombosi, Tamas I.; Rastätter, Lutz

    2014-01-01

    Some of the potentially most destructive effects of severe space weather storms are caused by the geomagnetically induced currents. Geomagnetically induced currents (GICs) can cause failures of electric transformers and result in widespread blackouts. GICs are induced by the time variability of the magnetic field and are closely related to the time derivative of the local magnetic field perturbation. Predicting dB/dt is rather challenging, since the local magnetic perturbations and their time derivatives are both highly fluctuating quantities, especially during geomagnetic storms. The currently available first principles-based and empirical models cannot predict the detailed minute-scale or even faster time variation of the local magnetic field. On the other hand, Pulkkinen et al. (2013) demonstrated recently that several models can predict with positive skill scores whether the horizontal component of dB/dt at a given magnetometer station will exceed some threshold value in a 20 min time interval. In this paper we investigate if one can improve the efficiency of the prediction further. We find that the Space Weather Modeling Framework, the best performing among the five models compared by Pulkkinen et al. (2013), shows significantly better skill scores in predicting the magnetic perturbation than predicting its time derivative, especially for large deviations. We also find that there is a strong correlation between the magnitude of dB/dt and the magnitude of the horizontal magnetic perturbation itself. Combining these two results one can devise an algorithm that gives better skill scores for predicting dB/dt exceeding various thresholds in 20 min time intervals than the direct approach.

  13. Local time displacement as a symmetry of nature in flat space-time

    NASA Technical Reports Server (NTRS)

    Meador, Willard E.; Townsend, Lawrence W.

    1988-01-01

    Local time displacement is shown to be a true symmetry of Minkowskian physics, thereby demonstrating the empirical equivalence of different choices of the clock synchronization parameter in generalized Lorentz transformations.

  14. Rapid Arctic change and implications for sea-ice use and its management at the local and regional level: An example from Alaska

    NASA Astrophysics Data System (ADS)

    Eicken, H.; Lovecraft, A. L.; Meek, C. L.; Druckenmiller, M. L.

    2008-12-01

    Reductions in sea-ice thickness and summer extent over the past few decades have been particularly pronounced in Alaska. This rapid environmental change coincides with significant socio-economic transformations, including increased ship traffic and offshore oil and gas development. Adaptation and response to these changes and regulation of coastal and offshore activities require environmental data and projections on seasonal to decadal timescales. Nascent Arctic observation networks are of great potential value in this context. However, in order for such observing and associated modeling activities to be useful, several criteria have to be met: (1) observations need to be relevant to stakeholders adapting or responding to a changing ice regime, (2) data products need to be accessible and interpretable by those they are meant to serve, and (3) institutions and governance strategies need to be in place to allow effective utilization of environmental data and information on changing ice conditions. We show how the concept of sea-ice system services can help guide observing programs, in particular in situations with conjoined uses of the ice cover. An example from our work in Arctic Alaska illustrates this concept for the use of sea ice as a platform by indigenous hunters, industry and marine mammals. Adaptive responses by different user groups to the substantial variability observed in local-scale ice conditions will require a significant effort in downscaling standard sea-ice data products and integrating new types of measurements. The challenge for ice-covered waters is that current approaches governing utilization of the sea-ice environment may not always be effective in addressing conjoined, potentially conflicting uses. The major transformations underway in the Arctic now provide us with an opportunity to explore and evaluate different approaches of observing, adapting and responding to change.

  15. Local time dependences of oxygen ENA periodicities at Saturn

    NASA Astrophysics Data System (ADS)

    Carbary, J. F.; Mitchell, D. G.; Brandt, P. C.

    2014-08-01

    The periodicities of energetic neutral atoms (90-170 keV oxygens) at Saturn are determined by applying Lomb-Scargle periodogram analyses to energetic neutral atom (ENA) fluxes observed in eight local time sectors of the equatorial plane between 5 and 15 RS (1 RS = 60,268 km). The analyses come from four long intervals (>180 days each) of high-latitude viewing from 2007 to 2013 and represent an essentially global view of Saturn's periodicities. The periodograms display rich and complex structures in local time. Sectors near midnight generally exhibit the strongest periodicities (in terms of highest signal-to-noise ratios) and often show the dual or single periods of the Saturn kilometric radiation (SKR). Sectors near noon display single or multiple periodicities or none. Furthermore, dayside periods may be much shorter (~10.3 h) than SKR periods. Sectors near dawn or dusk display periodicities intermediate between midnight and noon or may show no periodicities whatsoever. These patterns of local time dependence do not remain constant from interval to interval.

  16. Time-resolved local strain tracking microscopy for cell mechanics.

    PubMed

    Aydin, O; Aksoy, B; Akalin, O B; Bayraktar, H; Alaca, B E

    2016-02-01

    A uniaxial cell stretching technique to measure time-resolved local substrate strain while simultaneously imaging adherent cells is presented. The experimental setup comprises a uniaxial stretcher platform compatible with inverted microscopy and transparent elastomer samples with embedded fluorescent beads. This integration enables the acquisition of real-time spatiotemporal data, which is then processed using a single-particle tracking algorithm to track the positions of fluorescent beads for the subsequent computation of local strain. The present local strain tracking method is demonstrated using polydimethylsiloxane (PDMS) samples of rectangular and dogbone geometries. The comparison of experimental results and finite element simulations for the two sample geometries illustrates the capability of the present system to accurately quantify local deformation even when the strain distribution is non-uniform over the sample. For a regular dogbone sample, the experimentally obtained value of local strain at the center of the sample is 77%, while the average strain calculated using the applied cross-head displacement is 48%. This observation indicates that considerable errors may arise when cross-head measurement is utilized to estimate strain in the case of non-uniform sample geometry. Finally, the compatibility of the proposed platform with biological samples is tested using a unibody PDMS sample with a well to contain cells and culture media. HeLa S3 cells are plated on collagen-coated samples and cell adhesion and proliferation are observed. Samples with adherent cells are then stretched to demonstrate simultaneous cell imaging and tracking of embedded fluorescent beads. PMID:26931864

  17. Source localization in a time-varying ocean waveguide

    NASA Astrophysics Data System (ADS)

    Soares, Cristiano; Siderius, Martin; Jesus, Sergio M.

    2002-11-01

    One of the most stringent impairments in matched-field processing is the impact of missing or erroneous environmental information on the final source location estimate. This problem is known in the literature as model mismatch and is strongly frequency dependent. Another unavoidable factor that contributes to model mismatch is the natural time and spatial variability of the ocean waveguide. As a consequence, most of the experimental results obtained to date focus on short source-receiver ranges (usually <5 km), stationary sources, reduced time windows and frequencies generally below 600 Hz. This paper shows that MFP source localization can be made robust to time-space environmental mismatch if the parameters responsible for the mismatch are clearly identified, properly modeled and (time-)adaptively estimated by a focalization procedure prior to MFP source localization. The data acquired during the ADVENT'99 sea trial at 2, 5, and 10 km source-receiver ranges and in two frequency bands, below and above 600 Hz, provided an excellent opportunity to test the proposed techniques. The results indicate that an adequate parametrization of the waveguide is effective up to 10 km range in both frequency bands achieving a precise localization during the whole recording of the 5 km track, and most of the 10 km track. It is shown that the increasing MFP dependence on erroneous environmental information in the higher frequency and at longer ranges can only be accounted for by including a time dependent modeling of the water column sound speed profile. copyright 2002 Acoustical Society of America.

  18. 77 FR 58828 - Alaska Energy Authority; Notice of Extension of Time To File Comments on the Proposed Study and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ... Proposed Study and Revised Study Plan On July 16, 2012, Alaska Energy Authority (AEA) filed its proposed study plan for the Susitna-Watana Project No. 14241 as required by the Commission's regulations for implementing the Integrated Licensing Process, making comments on the study plan due October 14, 2012....

  19. One Kid at a Time: Evaluative Case Studies and Description of the Alaska Youth Initiative Demonstration Project.

    ERIC Educational Resources Information Center

    Burchard, John D.; And Others

    This monograph presents an evaluative description of the Alaska Youth Initiative (AYI), a community-based interagency program serving children and adolescents with severe emotional and behavioral disorders. Principles of the program include a no reject policy and a "wraparound" service delivery approach. The monograph offers information on both…

  20. Local finite-time Lyapunov exponent, local sampling and probabilistic source and destination regions

    NASA Astrophysics Data System (ADS)

    BozorgMagham, A. E.; Ross, S. D.; Schmale, D. G., III

    2015-11-01

    The finite-time Lyapunov exponent (FTLE) is a powerful Lagrangian concept widely used for describing large-scale flow patterns and transport phenomena. However, field experiments usually have modest scales. Therefore, it is necessary to bridge the gap between the concept of FTLE and field experiments. In this paper, two independent observations are discussed: (i) approximation of the local FTLE time series at a fixed location as a function of known distances between the destination (or source) points of released (or collected) particles and local velocity, and (ii) estimation of the distances between the destination (or source) points of the released (or collected) particles when consecutive release (or sampling) events are performed at a fixed location. These two observations lay the groundwork for an ansatz methodology that can practically assist in field experiments where consecutive samples are collected at a fixed location, and it is desirable to attribute source locations to the collected particles, and also in planning of optimal local sampling of passive particles for maximal diversity monitoring of atmospheric assemblages of microorganisms. In addition to deterministic flows, the more realistic case of unresolved turbulence and low-resolution flow data that yield probabilistic source (or destination) regions are studied. It is shown that, similar to deterministic flows, Lagrangian coherent structures (LCS) and local FTLE can describe the separation of probabilistic source (or destination) regions corresponding to consecutively collected (or released) particles.

  1. NWS Alaska Sea Ice Program: Operations and Decision Support Services

    NASA Astrophysics Data System (ADS)

    Schreck, M. B.; Nelson, J. A., Jr.; Heim, R.

    2015-12-01

    The National Weather Service's Alaska Sea Ice Program is designed to service customers and partners operating and planning operations within Alaska waters. The Alaska Sea Ice Program offers daily sea ice and sea surface temperature analysis products. The program also delivers a five day sea ice forecast 3 times each week, provides a 3 month sea ice outlook at the end of each month, and has staff available to respond to sea ice related information inquiries. These analysis and forecast products are utilized by many entities around the state of Alaska and nationally for safety of navigation and community strategic planning. The list of current customers stem from academia and research institutions, to local state and federal agencies, to resupply barges, to coastal subsistence hunters, to gold dredgers, to fisheries, to the general public. Due to a longer sea ice free season over recent years, activity in the waters around Alaska has increased. This has led to a rise in decision support services from the Alaska Sea Ice Program. The ASIP is in constant contact with the National Ice Center as well as the United States Coast Guard (USCG) for safety of navigation. In the past, the ASIP provided briefings to the USCG when in support of search and rescue efforts. Currently, not only does that support remain, but our team is also briefing on sea ice outlooks into the next few months. As traffic in the Arctic increases, the ASIP will be called upon to provide more and more services on varying time scales to meet customer needs. This talk will address the many facets of the current Alaska Sea Ice Program as well as delve into what we see as the future of the ASIP.

  2. Local infrasound observations of large ash explosions at Augustine Volcano, Alaska, during January 11-28, 2006

    NASA Astrophysics Data System (ADS)

    Petersen, Tanja; De Angelis, Silvio; Tytgat, Guy; McNutt, Stephen R.

    2006-06-01

    We present and interpret acoustic waveforms associated with a sequence of large explosion events that occurred during the initial stages of the 2006 eruption of Augustine Volcano, Alaska. During January 11-28, 2006, 13 large explosion events created ash-rich plumes that reached up to 14 km a.s.l., and generated atmospheric pressure waves that were recorded on scale by a microphone located at a distance of 3.2 km from the active vent. The variety of recorded waveforms included sharp N-shaped waves with durations of a few seconds, impulsive signals followed by complex codas, and extended signals with emergent character and durations up to minutes. Peak amplitudes varied between 14 and 105 Pa; inferred acoustic energies ranged between 2 × 108 and 4 × 109 J. A simple N-shaped short-duration signal recorded on January 11, 2006 was associated with the vent-opening blast that marked the beginning of the explosive eruption sequence. During the following days, waveforms with impulsive onsets and extended codas accompanied the eruptive activity, which was characterized by explosion events that generated large ash clouds and pyroclastic flows along the flanks of the volcano. Continuous acoustic waveforms that lacked a clear onset were more common during this period. On January 28, 2006, the occurrence of four large explosion events marked the end of this explosive eruption phase at Augustine Volcano. After a transitional period of about two days, characterized by many small discrete bursts, the eruption changed into a stage of more sustained and less explosive activity accompanied by the renewed growth of a summit lava dome.

  3. Time-Localization of Forced Oscillations in Power Systems

    SciTech Connect

    Follum, James D.; Pierre, John W.

    2015-07-26

    In power systems forced oscillations occur, and identification of these oscillations is important for the proper operation of the system. Two of the parameters of interest in analyzing and addressing forced oscillations are the starting and ending points. To obtain estimates of these parameters, this paper proposes a time-localization algorithm based on the geometric analysis of the sample cross-correlation between the measured data and a complex sinusoid at the frequency of the forced oscillation. Results from simulated and measured synchrophasor data demonstrate the algorithm's ability to accurately estimate the starting and ending points of forced oscillations.

  4. Suicide in Northwest Alaska.

    ERIC Educational Resources Information Center

    Travis, Robert

    1983-01-01

    Between 1975 and 1979 the Alaskan Native suicide rate (90.9 per 100,000) in Northwest Alaska was more than seven times the national average. Alienation, loss of family, low income, alcohol abuse, high unemployment, and more education were factors related to suicidal behavior. Average age for suicidal behavior was 22.5. (Author/MH)

  5. Tectonic framework of petroliferous rocks in Alaska: hydrocarbons

    USGS Publications Warehouse

    Grantz, Arthur; Kirschner, C.E.

    1976-01-01

    Alaska, which contains about 28% of the land and continental shelf of the United States, is estimated by the U.S. Geological Survey to contain about one third of the nation's undiscovered oil and about one sixth of its undiscovered natural gas. The Survey estimates that fields discovered in Alaska through 1972 ultimately may produce about 26 billion bbl of oil and 68 Tcf of natural gas. In northern Alaska, Paleozoic and Mesozoic shelf and slope carbonate and clastic rocks of the Brooks Range orogen were thrust relatively northward over the depressed south margin of the Paleozoic and Mesozoic Arctic platform. A foredeep, the Colville geosyncline, developed across the depressed margin of the platform in earliest Cretaceous time. Detritus from the Brooks Range filled the foredeep and prograded northward to fill the Cretaceous and Tertiary North Chukchi and Umiat-Camden basins and form the progradational Beaufort shelf. The largest petroleum reserves (Prudhoe Bay and associated fields) and the best prospects for additional large discoveries in Alaska lie in the areally extensive upper Paleozoic to Tertiary carbonate and clastic rocks of northern Alaska. In southern Alaska, a series of arc-trench systems developed on oceanic rocks during Jurassic and Cretaceous time. Between these arcs and the metamorphic (continental) terranes of east-central and northern Alaska, large back-arc and arc-trench gap basins received thick volcanic and detrital deposits. These deposits were extensively, and commonly intensely, deformed and disrupted by mid-Jurassic to Tertiary plutonism, Laramide oroclinal bending, wrench faulting, and arc-related compression. This deformation, coupled with low porosity (in part produced by diagenetic mobilization of labile constituents), has left these rocks with only modest, local prospects for petroleum. Laramide events compressed and consolidated ("continentalized") the late Mesozoic back-arc basin deposits and welded them to the older continental

  6. Magnetopause characteristics at 0840-1040 hours local time

    NASA Technical Reports Server (NTRS)

    Williams, D. J.

    1980-01-01

    An analysis of three-dimensional energetic particle distributions for 14 consecutive ISEE satellite orbits during magnetopause crossings and close approaches is presented. The data were collected from the Nov. 10 through Dec. 11, 1977, time period and cover local times of 0840 to 1040 hours. It was found that the magnetopause in this period defined by energetic particles can be represented as sharp particles and a well defined boundary for magnetospherically trapped particles for a wide range of magnetospheric activity and magnetosheath field conditions. The magnetopause position, orientation, and velocity were determined for all identified magnetopause crossings and close approaches using the technique of Williams (1979); it was found that the magnetopause is nearly always in motion with velocities ranging from near zero to at least plus or minus 25 km/s. Correlations with published plasma, magnetic field, and plasma wave magnetopause identifications show the energetic particle results to be accurate and an important factor in determining magnetopause characteristics and behavior.

  7. LOCAL MEASUREMENT OF {Lambda} USING PULSAR TIMING ARRAYS

    SciTech Connect

    Espriu, Domenec; Puigdomenech, Daniel

    2013-02-20

    We consider the propagation of gravitational waves (GWs) in de Sitter spacetime and how a non-zero value of the cosmological constant might affect their detection in pulsar timing arrays (PTAs). If {Lambda} {ne} 0, the waves are anharmonic in Friedmann-Robertson-Walker coordinates, and although this effect is very small it gives rise to noticeable consequences for GWs originating in extragalactic sources such as spiraling black hole binaries. The results indicate that the timing residuals induced by GWs from such sources in PTAs will show a peculiar angular dependence with a marked enhancement around a particular value of the angle subtended by the source and the pulsars, depending mainly on the actual value of the cosmological constant and the distance to the source. The position of the peak could represent a gauge of the value of {Lambda}. The enhancement that the new effect brings about could facilitate the first direct detection of GWs while representing a local measurement of {Lambda}.

  8. Detecting Abrupt Changes in a Piecewise Locally Stationary Time Series

    PubMed Central

    Last, Michael; Shumway, Robert

    2007-01-01

    Non-stationary time series arise in many settings, such as seismology, speech-processing, and finance. In many of these settings we are interested in points where a model of local stationarity is violated. We consider the problem of how to detect these change-points, which we identify by finding sharp changes in the time-varying power spectrum. Several different methods are considered, and we find that the symmetrized Kullback-Leibler information discrimination performs best in simulation studies. We derive asymptotic normality of our test statistic, and consistency of estimated change-point locations. We then demonstrate the technique on the problem of detecting arrival phases in earthquakes. PMID:19190715

  9. What controls the local time extent of flux transfer events?

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Imber, S. M.; Carter, J. A.; Walach, M.-T.; Hubert, B.

    2016-02-01

    Flux transfer events (FTEs) are the manifestation of bursty and/or patchy magnetic reconnection at the magnetopause. We compare two sequences of the ionospheric signatures of flux transfer events observed in global auroral imagery and coherent ionospheric radar measurements. Both sequences were observed during very similar seasonal and interplanetary magnetic field (IMF) conditions, though with differing solar wind speed. A key observation is that the signatures differed considerably in their local time extent. The two periods are 26 August 1998, when the IMF had components BZ≈-10 nT and BY≈9 nT and the solar wind speed was VX≈650 km s-1, and 31 August 2005, IMF BZ≈-7 nT, BY≈17 nT, and VX≈380 km s-1. In the first case, the reconnection rate was estimated to be near 160 kV, and the FTE signatures extended across at least 7 h of magnetic local time (MLT) of the dayside polar cap boundary. In the second, a reconnection rate close to 80 kV was estimated, and the FTEs had a MLT extent of roughly 2 h. We discuss the ramifications of these differences for solar wind-magnetosphere coupling.

  10. Local time variations of the Venusian hydrogen corona

    NASA Astrophysics Data System (ADS)

    Chaufray, J.-Y.; Bertaux, J.-L.; Quémerais, E.; Sulis, S.; Leblanc, F.

    2014-04-01

    Atomic hydrogen in the upper atmosphere of Venus is produced by chemical reactions involving hydrogen bearing molecules such as H2O. Due to its low mass, atomic hydrogen can reach high altitudes and become the dominant species in the Venusian exosphere. The density of atomic hydrogen retrieved by Pioneer Venus Orbiter from H+ measurement of the ion mass spectrometer indicated large diurnal variation of the hydrogen content with a peak of density near 4:00 local time (1). The large dayside/nightside ratio ~ 1000 was attributed to the wind system induced from temperature contrast. First dayside observations of the atomic hydrogen Lymanalpha resonant line performed by the UV spectrometer SPICAV (2) aboard Venus Express suggested a lower ratio ~ 30 between morning side and evening side (3). In this presentation, we will present several recent observations of the Venusian hydrogen corona obtained by SPICAV at different local times at nightside to investigate more accurately the diurnal variations of the Venusian hydrogen corona.

  11. Water storage capacity exceedance controls the timing and amount of runoff generated from Arctic hillslopes in Alaska, USA

    NASA Astrophysics Data System (ADS)

    Rushlow, C. R.; Godsey, S.

    2014-12-01

    Within the hydrologic community, there is a growing recognition that different runoff generation mechanisms can be unified within a "fill-and-spill" or storage exceedance paradigm. However, testing this unifying paradigm requires observing watersheds at a variety of scales under their full range of storage conditions, which are difficult to observe on typical human timescales in most environments. Polar watersheds underlain by continuous permafrost provide an opportunity to address these issues, because their total capacity for water storage follows a consistent annual cycle of expansion and contraction as a direct consequence of the extreme seasonality of solar energy availability. Cryotic conditions usually limit water storage to the surface snowpack and frozen soils, but summer warming allows the shallow subsurface to progressively thaw, providing a dynamic storage reservoir that is the convolved expression of several factors, including substrate hydrologic properties, watershed structure, and stochastic precipitation. We hypothesize that the amount of remaining water storage capacity in the system directly controls the amount and timing of runoff production for a given input. We test this prediction for six hillslope watersheds in Arctic Alaska over the 2013 and 2014 summer seasons from snowmelt in May through plant senescence in mid-August. We compare water table position to runoff produced from a given storm event or series of storm events. We find that no runoff is produced until a threshold water table position is exceeded; that is, as seasonal storage changes, runoff depends on watershed storage capacity exceedance. Preliminary results suggest that once that threshold is met, hydrologic response is proportional to storage exceedance. Thus, runoff production from Arctic hillslopes can be modeled from the surface energy balance and a reasonable estimate of shallow subsurface material properties. If storage exceedance is the key control on water export from

  12. Local-time asymmetries in the Venus thermosphere

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Stewart, A. I. F.; Bougher, S. W.

    1992-01-01

    Our current understanding of the global structure and dynamics of the Venus thermosphere is embodied in models such as the Venus Thermospheric General Circulation Model (VTGCM) and empirical composition models such as VIRA and VTS3. We have completed an analysis of ultraviolet images of Venus at 130 nm acquired by the Pioneer Venus Orbiter Ultraviolet Spectrometer (PVOUVS). We have examined 97 images spanning the 10-year period between 1980 and 1990, and have developed a technique for global radiative transfer modeling with which we create synthetic models of each image analyzed. We have developed a hypothesis for understanding the persistent local-time asymmetry observed as a signature of vertically propagating internal gravity waves interacting with the thermospheric SS-AS circulation. This hypothesis is presented.

  13. Energy-time entanglement, elements of reality, and local realism

    NASA Astrophysics Data System (ADS)

    Jogenfors, Jonathan; Larsson, Jan-Åke

    2014-10-01

    The Franson interferometer, proposed in 1989 (Franson 1989 Phys. Rev. Lett. 62 2205-08), beautifully shows the counter-intuitive nature of light. The quantum description predicts sinusoidal interference for specific outcomes of the experiment, and these predictions can be verified in experiment. In the spirit of Einstein, Podolsky, and Rosen it is possible to ask if the quantum-mechanical description (of this setup) can be considered complete. This question will be answered in detail in this paper, by delineating the quite complicated relation between energy-time entanglement experiments and Einstein-Podolsky-Rosen (EPR) elements of reality. The mentioned sinusoidal interference pattern is the same as that giving a violation in the usual Bell experiment. Even so, depending on the precise requirements made on the local realist model, this can imply (a) no violation, (b) smaller violation than usual, or (c) full violation of the appropriate statistical bound. Alternatives include (a) using only the measurement outcomes as EPR elements of reality, (b) using the emission time as EPR element of reality, (c) using path realism, or (d) using a modified setup. This paper discusses the nature of these alternatives and how to choose between them. The subtleties of this discussion needs to be taken into account when designing and setting up experiments intended to test local realism. Furthermore, these considerations are also important for quantum communication, for example in Bell-inequality-based quantum cryptography, especially when aiming for device independence. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.

  14. The IMF dependence of the local time of transpolar arcs

    NASA Astrophysics Data System (ADS)

    Fear, R.; Milan, S. E.

    2011-12-01

    Transpolar arcs or polar cap arcs are auroral features which are observed within the polar cap. They occur predominantly during intervals of northward IMF (Berkey et al., 1976). There is mixed evidence for IMF BY control of the local time at which the arcs initially form; Gussenhoven (1982) found that polar cap arcs formed preferentially post-midnight when BY < 0 (evaluated over 1 or 2 hours preceding the start of the arc) and pre-midnight when BY > 0, whereas Valladares et al (1991) found no clear dependency. The only previous statistical study of globally-imaged transpolar arcs (Kullen et al., 2002) found differing results for moving and non-moving arcs, concluding that three different models were required to identify (i) moving arcs, (ii) stationary arcs near the dawn/dusk portion of the main oval, and (iii) stationary arcs in the midnight sector. In this presentation, we show the results of a statistical study of 131 transpolar arcs observed by the FUV cameras on the IMAGE satellite between June 2000 and September 2005. We find that arcs tend to form following the same dependency on BY as identified by Gussenhoven (1982), whether moving or not. We find that the correlation between the magnetic local time at which the arc forms and the IMF BY component is relatively weak if the IMF is only averaged over the hour preceding the arc formation, but becomes stronger if the IMF is evaluated between 1 and 4 hours before the arc first forms. This is consistent with the timescale that is expected for newly-opened magnetospheric flux to reach the magnetotail plasma sheet (Dungey, 1961; Milan et al., 2007), and is therefore consistent with the suggestion that transpolar arcs map to the plasma sheet. We suggest that the similar dependence of stationary and moving arcs on the IMF BY component might imply that it is possible to explain both types of arc in terms of a single mechanism.

  15. Long Term Mean Local Time of the Ascending Node Prediction

    NASA Technical Reports Server (NTRS)

    McKinley, David P.

    2007-01-01

    Significant error has been observed in the long term prediction of the Mean Local Time of the Ascending Node on the Aqua spacecraft. This error of approximately 90 seconds over a two year prediction is a complication in planning and timing of maneuvers for all members of the Earth Observing System Afternoon Constellation, which use Aqua's MLTAN as the reference for their inclination maneuvers. It was determined that the source of the prediction error was the lack of a solid Earth tide model in the operational force models. The Love Model of the solid Earth tide potential was used to derive analytic corrections to the inclination and right ascension of the ascending node of Aqua's Sun-synchronous orbit. Additionally, it was determined that the resonance between the Sun and orbit plane of the Sun-synchronous orbit is the primary driver of this error. The analytic corrections have been added to the operational force models for the Aqua spacecraft reducing the two-year 90-second error to less than 7 seconds.

  16. Metamorphic facies map of Alaska

    SciTech Connect

    Dusel-Bacon, C.; O-Rourke, E.F.; Reading, K.E.; Fitch, M.R.; Klute, M.A.

    1985-04-01

    A metamorphic-facies of Alaska has been compiled, following the facies-determination scheme of the Working Group for the Cartography of the Metamorphic Belts of the World. Regionally metamorphosed rocks are divided into facies series where P/T gradients are known and into facies groups where only T is known. Metamorphic rock units also are defined by known or bracketed age(s) of metamorphism. Five regional maps have been prepared at a scale of 1:1,000,000; these maps will provide the basis for a final colored version of the map at a scale of 1:2,500,000. The maps are being prepared by the US Geological Survey in cooperation with the Alaska Division of Geological and Geophysical Surveys. Precambrian metamorphism has been documented on the Seward Peninsula, in the Baird Mountains and the northeastern Kuskokwim Mountains, and in southwestern Alaska. Pre-Ordovician metamorphism affected the rocks in central Alaska and on southern Prince of Wales Island. Mid-Paleozoic metamorphism probably affected the rocks in east-central Alaska. Most of the metamorphic belts in Alaska developed during Mesozoic or early Tertiary time in conjuction with accretion of many terranes. Examples are Jurassic metamorphism in east-central Alaska, Early Cretaceous metamorphism in the southern Brooks Range and along the rim of the Yukon-Kovyukuk basin, and late Cretaceous to early Tertiary metamorphism in the central Alaska Range. Regional thermal metamorphism was associated with multiple episodes of Cretaceous plutonism in southeastern Alaska and with early Tertiary plutonism in the Chugach Mountains. Where possible, metamorphism is related to tectonism. Meeting participants are encouraged to comment on the present version of the metamorphic facies map.

  17. Real-time Scintillation Monitoring in Alaska from a Longitudinal Chain of ASTRA's SM-211 GPS TEC and Scintillation Receivers

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Azeem, S. I.; Reynolds, A.; Santana, J.; Hampton, D. L.

    2013-12-01

    Amplitude and phase scintillation can cause serious difficulties for GPS receivers. Intense scintillation can cause loss of lock. High latitude studies generally show that phase scintillation can be severe, but the amplitude scintillation tends to be small. The reason for this is not yet understood. Furthermore, the actual causes of the ionospheric irregularities that produce high latitude scintillation are not well understood. While the gradient drift instability is thought to be important in the F-region, there may be other structures present in either the E- or F-regions. The role of particle precipitation is also not well understood. Four of ASTRA's CASES GPS receivers were deployed in Alaska to demonstrate our ability to map scintillation in realtime, to provide space weather services to GPS users, and to initiate a detailed investigation of these effects. These dual-frequency GPS receivers measure total electron content (TEC) and scintillation. The scintillation monitors were deployed in a longitudinal chain at sites in Kaktovic, Fort Yukon, Poker Flat, and Gakona. Scintillation statistics show phase scintillations to be largest at Kaktovic and smallest at Gakona. We present GPS phase scintillation and auroral emission results from the Alaska chain to characterize the correspondence between scintillation and auroral features, and to investigate the role of high latitude auroral features in driving the phase scintillations. We will also present data showing how phase scintillation can cause other GPS receivers to lose lock. The data and results are particularly valuable because they illustrate some of the challenges of using GPS systems for positioning and navigation in an auroral region like Alaska. These challenges for snowplough drivers were recently highlighted, along with the CASES SM-211 space weather monitor, in a special video in which ASTRA and three other small businesses were presented with an entrepreneurial award from William Shatner (http://youtu.be/bIVKEQH_YPk).

  18. Local Time-Dependent Charging in a Perovskite Solar Cell.

    PubMed

    Bergmann, Victor W; Guo, Yunlong; Tanaka, Hideyuki; Hermes, Ilka M; Li, Dan; Klasen, Alexander; Bretschneider, Simon A; Nakamura, Eiichi; Berger, Rüdiger; Weber, Stefan A L

    2016-08-01

    Efficient charge extraction within solar cells explicitly depends on the optimization of the internal interfaces. Potential barriers, unbalanced charge extraction, and interfacial trap states can prevent cells from reaching high power conversion efficiencies. In the case of perovskite solar cells, slow processes happening on time scales of seconds cause hysteresis in the current-voltage characteristics. In this work, we localized and investigated these slow processes using frequency-modulation Kelvin probe force microscopy (FM-KPFM) on cross sections of planar methylammonium lead iodide (MAPI) perovskite solar cells. FM-KPFM can map the charge density distribution and its dynamics at internal interfaces. Upon illumination, space charge layers formed at the interfaces of the selective contacts with the MAPI layer within several seconds. We observed distinct differences in the charging dynamics at the interfaces of MAPI with adjacent layers. Our results indicate that more than one process is involved in hysteresis. This finding is in agreement with recent simulation studies claiming that a combination of ion migration and interfacial trap states causes the hysteresis in perovskite solar cells. Such differences in the charging rates at different interfaces cannot be separated by conventional device measurements. PMID:27377472

  19. Alaska Resource Data File, Noatak Quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.; Dumoulin, Julie A.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Noatak 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  20. Mean Velocity of Local Populations: Axiality, Age and Time Dependence

    NASA Astrophysics Data System (ADS)

    Cubarsi, Rafael; Alcobé, Santiago

    2007-05-01

    The mean velocity of local stellar populations is analyzed by building a set of hierarchically selected samples from Hipparcos catalog, with the full space motions. The technique for scanning populations, MEMPHIS (Maximum Entropy of the Mixture Probability from HIerarchical Segregation), is a combination of two separate procedures: A sample selecting filter (Alcobé & Cubarsi 2005, A&A 442, 292) and a segregation method (Cubarsi & Alcobé 2004, A&A 427, 131). By continuously increasing the sampling parameter, in our case the absolute value of the stellar velocity, we build a set of nested subsamples containing an increasing number of populations. A bimodal pattern is then applied in order to identify differentiated kinematic populations. The resulting populations can be identified as early-type stars, young disk stars, old disk stars, and thick disk stars. Discontinuities of the velocity dispersion are found for early-type and thick disk stars, while young and old disk stars show a continuous trend that is asymptotically represented by the thin disk galactic component. Similarly, the mean velocity of early-type stars shows a particular behavior, while the remaining populations share a similar average motion. The later populations are studied on the basis of a time-dependent and non-axial Chandrasekhar model, allowing to estimate the degree of deviation from axial symmetry and steady-state hypotheses, as well as the average age of each population. According to this model, the no net radial movement point can be evaluated, having heliocentric velocities U=-18 ± 1 km/s in the radial direction, which is very close to the radial mean velocity of early-type stars, and V=-76 ± 2 km/s in rotation. The remaining populations share a common differential galactic movement, suggesting a common dynamical origin for the rupture of the axial symmetry.

  1. Time-dependent local density approximation study of attosecond time delays in the photoionization of xenon

    NASA Astrophysics Data System (ADS)

    Magrakvelidze, Maia; Madjet, Mohamed; Chakraborty, Himadri

    2016-05-01

    We investigate Wigner-Smith (WS) time delays of the photoionization from various subshells of xenon using the time-dependent local density approximation (TDLDA) with the Leeuwen and Baerends exchange-correlation functional. At the 4d giant dipole resonance region as well as near all the Cooper minimum anti-resonances in 5p, 5s and 4d photoemissions, effects of electron correlations uniquely determine the shapes of the emission quantum phase. The Wigner-Smith time delay derived from this phase indicates significant variations as a function of energy. The results qualitatively support our TDLDA predictions at the fullerene plasmon region and at 3p Cooper minimum in argon, and should encourage attosecond measurements of Xe photoemission via two-photon interferometric techniques, such as RABITT. The work is supported by the NSF, USA.

  2. Abundance, Timing of Migration, and Egg-to-Smolt Survival of Juvenile Chum Salmon, Kwethluk River, Alaska, 2007 and 2008

    USGS Publications Warehouse

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.; U.S. Geological Survey; Gillikin, Daniel; U.S. Fish and Wildlife Service

    2010-01-01

    To better understand and partition mortality among life stages of chum salmon (Oncorhynchus keta), we used inclined-plane traps to monitor the migration of juveniles in the Kwethluk River, Alaska in 2007 and 2008. The migration of juvenile chum salmon peaked in mid-May and catch rates were greatest when water levels were rising. Movement of chum salmon was diurnal with highest catch rates occurring during the hours of low light (that is, 22:00 to 10:00). Trap efficiency ranged from 0.37 to 4.04 percent (overall efficiency = 1.94 percent). Total abundance of juvenile chum salmon was estimated to be 2.0 million fish in 2007 and 2.9 million fish in 2008. On the basis of the estimate of chum salmon females passing the Kwethluk River weir and age-specific fecundity, we estimated the potential egg deposition (PED) upstream of the weir and trapping site. Egg-to-smolt survival, calculated by dividing the estimate of juvenile chum salmon emigrating past the weir site by the estimate of PED, was 4.6 percent in 2007 and 5.2 percent in 2008. In addition to chum salmon, Chinook salmon O. tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and pink salmon (O. gorbuscha), as well as ten other fish species, were captured in the traps. As with chum salmon, catch of these species increased during periods of increasing discharge and peaked during hours of low light. This study successfully determined the characteristics of juvenile salmon migrations and estimated egg-to-smolt survival for chum salmon. This is the first estimate of survival for any juvenile salmon in the Arctic-Yukon-Kuskokwim region of Alaska and demonstrates an approach that can help to partition mortality between freshwater and marine life stages, information critical to understanding the dynamics of salmon in this region.

  3. Alaska's Potential Tax Revenues. ISER Fiscal Policy Papers, No. 3, February 1990.

    ERIC Educational Resources Information Center

    Goldsmith, Oliver Scott; And Others

    1990-01-01

    During the 1980s Alaska's state and local governments spent two to three times more per capita than governments in other states but taxed individuals and businesses only about half as much. They were able to do this because high petroleum revenues paid most government expenses. Petroleum revenues began declining in the 1980s, and by the year 2000,…

  4. Needs and Opportunities: An Exploratory Needs Assessment Survey for University of Alaska, Juneau.

    ERIC Educational Resources Information Center

    Johnson, B. Lamar

    The University of Alaska (UAJ) consists of Juneau-Douglas Community College and Southeastern Senior College. Enrollment is predominantly part-time and largely concentrated in the community college. Personal interviews were conducted in May-June 1979 with 16 UAJ personnel and 50 citizens in six adjacent communities to identify local and University…

  5. Young tectonics of a complex plate boundary zone: Indentation, rotation, and escape in Alaska

    NASA Astrophysics Data System (ADS)

    Wallace, W. K.; Ruppert, N. A.

    2012-12-01

    Convergence of thick crust of the Yakutat block with the southern margin of Alaska is widely recognized as a dominant influence on the tectonics of Alaska since at least late Miocene time. It is less clear how this convergence relates to the distribution, type, and orientation of geologic structures, and to the boundaries between the tectonic provinces that they define. We propose that convergence of Yakutat block includes two distinct components that influence deformation and topography in different ways: 1) The crust of the exposed, southern Yakutat block is too thick to subduct, which has caused the collisional St. Elias orogen. Detachment of the upper part of the mafic basement allows delamination and sinking of the remaining mafic crust and lithospheric mantle. The collisional orogen drives rigid counterclockwise rotation of the southern Alaska block south of the arcuate, right-lateral Denali fault. The western boundary of this block is a zone of distributed contraction in the western Alaska Range and Cook Inlet. 2) The northern part of the Yakutat block is thin enough to subduct but thick and buoyant enough to cause localized flat-slab subduction orthogonal to rotation of the southern Alaska block. Consequences include the gently antiformal Talkeetna Mountains that span the forearc basin, a gap in the magmatic arc, and a basement-involved fold-and-thrust belt in the northern Alaska Range. An arcuate oroclinal hinge from southern Alaska to the northeastern Brooks Range reflects indentation since at least Paleocene time. Traction above the subducted Yakutat block along the southern part of this hinge drives current indentation. North of the subducted Yakutat block, indentation is reflected by left-lateral block rotation that accommodates shortening between the Denali and Tintina faults and by contraction farther north along the northern edge of the arcuate northeastern Brooks Range. Western Alaska accommodates both northward indentation and westward convergence

  6. Methane emissions from Alaska in 2012 from CARVE airborne observations

    PubMed Central

    Chang, Rachel Y.-W.; Miller, Charles E.; Dinardo, Steven J.; Karion, Anna; Sweeney, Colm; Daube, Bruce C.; Henderson, John M.; Mountain, Marikate E.; Eluszkiewicz, Janusz; Miller, John B.; Bruhwiler, Lori M. P.; Wofsy, Steven C.

    2014-01-01

    We determined methane (CH4) emissions from Alaska using airborne measurements from the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Atmospheric sampling was conducted between May and September 2012 and analyzed using a customized version of the polar weather research and forecast model linked to a Lagrangian particle dispersion model (stochastic time-inverted Lagrangian transport model). We estimated growing season CH4 fluxes of 8 ± 2 mg CH4⋅m−2⋅d−1 averaged over all of Alaska, corresponding to fluxes from wetlands of 56−13+22 mg CH4⋅m−2⋅d−1 if we assumed that wetlands are the only source from the land surface (all uncertainties are 95% confidence intervals from a bootstrapping analysis). Fluxes roughly doubled from May to July, then decreased gradually in August and September. Integrated emissions totaled 2.1 ± 0.5 Tg CH4 for Alaska from May to September 2012, close to the average (2.3; a range of 0.7 to 6 Tg CH4) predicted by various land surface models and inversion analyses for the growing season. Methane emissions from boreal Alaska were larger than from the North Slope; the monthly regional flux estimates showed no evidence of enhanced emissions during early spring or late fall, although these bursts may be more localized in time and space than can be detected by our analysis. These results provide an important baseline to which future studies can be compared. PMID:25385648

  7. Time-dependent fiber bundles with local load sharing.

    PubMed

    Newman, W I; Phoenix, S L

    2001-02-01

    Fiber bundle models, where fibers have random lifetimes depending on their load histories, are useful tools in explaining time-dependent failure in heterogeneous materials. Such models shed light on diverse phenomena such as fatigue in structural materials and earthquakes in geophysical settings. Various asymptotic and approximate theories have been developed for bundles with various geometries and fiber load-sharing mechanisms, but numerical verification has been hampered by severe computational demands in larger bundles. To gain insight at large size scales, interest has returned to idealized fiber bundle models in 1D. Such simplified models typically assume either equal load sharing (ELS) among survivors, or local load sharing (LLS) where a failed fiber redistributes its load onto its two nearest flanking survivors. Such models can often be solved exactly or asymptotically in increasing bundle size, N, yet still capture the essence of failure in real materials. The present work focuses on 1D bundles under LLS. As in previous works, a fiber has failure rate following a power law in its load level with breakdown exponent rho. Surviving fibers under fixed loads have remaining lifetimes that are independent and exponentially distributed. We develop both new asymptotic theories and new computational algorithms that greatly increase the bundle sizes that can be treated in large replications (e.g., one million fibers in thousands of realizations). In particular we develop an algorithm that adapts several concepts and methods that are well-known among computer scientists, but relatively unknown among physicists, to dramatically increase the computational speed with no attendant loss of accuracy. We consider various regimes of rho that yield drastically different behavior as N increases. For 1/2< or =rho< or =1, ELS and LLS have remarkably similar behavior (they have identical lifetime distributions at rho=1) with approximate Gaussian bundle lifetime statistics and a

  8. The Face of Alaska: A Look at Land Cover and the Potential Drivers of Change

    USGS Publications Warehouse

    Jones, Benjamin M.

    2008-01-01

    The purpose of this report is to provide statewide baseline information on the status and potential drivers of land-cover change in Alaska. The information gathered for this report is based on a review and analysis of published literature and consists of prominent factors contributing to the current state of the land surface of Alaska as well as a synthesis of information about the status and trends of the factors affecting the land surface of Alaska. The land surface of Alaska is sparsely populated and the impacts from humans are far less extensive when compared to the contiguous United States. The changes in the population and the economy of Alaska have historically been driven by boom and bust cycles, primarily from mineral discoveries, logging, military expansion, and oil and gas development; however, the changes as a result of these factors have occurred in relatively small, localized areas. Many of the large-scale statewide changes taking place in the land surface however, are a result of natural or climate driven processes as opposed to direct anthropogenic activities. In recent times, reports such as this have become increasingly useful as a means of synthesizing information about the magnitude and frequency of changes imparted by natural and anthropogenic forces. Thus, it is essential to assess the current state of the land surface of Alaska and identify apparent trends in the surficial changes that are occurring in order to be prepared for the future.

  9. Alaska, Naturally Occurring Asbestos: Experiences, Policy and 2012 Limitation of Liability Legislation

    NASA Astrophysics Data System (ADS)

    Hargesheimer, J.; Perkins, R.

    2012-12-01

    Naturally Occurring Asbestos (NOA) occurs in mineral deposits in Alaska. There are many regions in Alaska that have minerals in surface rocks that may contain asbestos and asbestos has been discovered in many locations in Alaska. Gravel is constantly in demand for heavy construction projects, but some remote localities in Alaska do not have gravel sources that are NOA-free. Determining if NOA can be safely used in heavy construction materials and what can or should be done with NOA materials that are already in place are complex questions. Answers will depend on the amount and type of asbestos mineral, how it is handled in processing, and how it is maintained - all subject to regulation and control of operations. The State of Alaska recently enacted legislation (HB 258) providing, among other things, "… immunity for the state and for landowners, extractors, suppliers, transporters, and contractors for certain actions or claims arising in connection with the use of gravel or aggregate material containing naturally occurring asbestos in certain areas." Implementation of the law and interim regulations and guidance should enable use of NOA for heavy construction materials in Alaska, but as with any new law, it will take some time to understand its full scope and effect.

  10. Slow slip events and time-dependent variations in locking beneath Lower Cook Inlet of the Alaska-Aleutian subduction zone

    NASA Astrophysics Data System (ADS)

    Li, Shanshan; Freymueller, Jeffrey; McCaffrey, Robert

    2016-02-01

    We identify a series of abrupt changes in GPS site velocities in Lower Cook Inlet, Alaska, in late 2004, early 2010, and late 2011. The site motions during each time period are nearly linear. The surface deformations inferred from GPS for pre-2004 and 2010-2011 are similar to each other, as are 2004-2010 and post-2011. We estimate the slip distribution on the Alaska-Aleutian subduction plate interface accounting for upper plate block rotations and interpret this toggling between two deformation patterns as caused by transient slip. We find that by allowing negative slip deficit rates (i.e., creep rates in excess of relative plate motion), the data in Lower Cook Inlet are fit significantly better during pre-2004 and 2010-2011, suggesting the occurrence of slow slip events (SSEs) there during those time periods. The earlier SSE lasted at least 9 years (observations in that area began in 1995) with Mw ~7.8. The latter SSE had almost the same area as the earlier one and a duration of ~2 years with Mw ~7.2. During 2004-2010 and post-2011, the inversions result in only positive slip deficit rates (i.e., locking) in Lower Cook Inlet. Slip rates are nearly constant during the Lower Cook Inlet SSEs, and the events start and stop abruptly. Both of these properties contrast with observations of SSEs in Upper Cook Inlet and elsewhere. The Lower Cook Inlet SSEs are consistent with previously proposed duration-magnitude scaling laws and demonstrate that slow slip events can last as long as a decade.

  11. Timing, Distribution, and Character of Tephra Fall from the 2005-2006 Eruption of Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Wallace, K. L.; Neal, C.; McGimsey, G.

    2006-12-01

    The 2005-2006 eruption of Augustine Volcano produced tephra-fall deposits during four eruptive phases. The island setting, deposition of thin, fine-grained fall deposits onto the snowpack, and subsequent reworking by high winds and surface-water flow has removed much of the original proximal fall record. During the late precursory phase (December 2005), small phreatic explosions produced very light, localized tephra fall. Tephra from one such event is composed of altered and fresh, possibly juvenile, glass shards. The greatest volume of tephra fall was produced during the explosive phase (January 11 - 28) when 13 discrete explosive events generated plumes between 3 -14 km ASL during a period of dome building and collapse. Associated strong seismicity lasted 1-11 min (avg 4 min), closely matching the duration of plume generation followed by detachment from the vent and distribution by local winds. On January 11, explosions generated two plumes to ~9 km ASL and deposited trace amounts of ash on communities surrounding Lake Iliamna W and NW of Augustine. Tephra from this event are not well preserved and were likely small in volume, but proximal and distal samples collected during the eruption are composed mainly of older dense dome fragments and crystals with little to no juvenile material. On January 13 and 14, six discrete explosions produced plumes to 9 - 11 km ASL that dispersed to the N-NE and deposited < 1mm of ash on Homer, Seldovia, Nanwelek and Port Graham. Coarse proximal fall deposits are composed mainly of olive- green, scoriaceous, low-silica andesite; subordinate black, dense, porphyritic low-silica andesite; white, variably vesicular high-silica andesite; and accidental lithic fragments. During this time, low-silica andesite dome extrusion was occurring. An explosion on January 17 produced a plume to ~14 km ASL that dispersed to the W-NW and deposited 1 mm of ash on communities surrounding Lake Iliamna. Coarse proximal fall deposits contain the same

  12. Changing times, changing stories: Generational differences in climate change perspectives from four remote indigenous communities in Subarctic Alaska

    USGS Publications Warehouse

    Herman-Mercer, Nicole M.; Matkin, Elli; Laituri, Melinda J.; Toohey, Ryan C; Massey, Maggie; Kelly Elder; Schuster, Paul F.; Mutter, Edda A.

    2016-01-01

    Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK) and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation research; however, the cultural dimensions of climate change are equally important because cultural dimensions inform perceptions of risk. Furthermore, many Arctic and Subarctic IK climate change studies document observations of change and knowledge of the elders and older generations in a community, but few include the perspectives of the younger population. These observations by elders and older generations form a historical baseline record of weather and climate observations in these regions. However, many indigenous Arctic and Subarctic communities are composed of primarily younger residents. We focused on the differences in the cultural dimensions of climate change found between young adults and elders. We outlined the findings from interviews conducted in four indigenous communities in Subarctic Alaska. The findings revealed that (1) intergenerational observations of change were common among interview participants in all four communities, (2) older generations observed more overall change than younger generations interviewed by us, and (3) how change was perceived varied between generations. We defined “observations” as the specific examples of environmental and weather change that were described, whereas “perceptions” referred to the manner in which these observations of change were understood and contextualized by the interview participants. Understanding the differences in generational observations and perceptions of change are key issues in the development of climate change adaptation strategies.

  13. Studies of ambient noise in shallow water environments off Mexico and Alaska: characteristics, metrics and time-synchronization applications

    NASA Astrophysics Data System (ADS)

    Guerra, Melania

    Sound in the ocean originates from multiple mechanisms, both natural and anthropogenic. Collectively, underwater ambient noise accumulates valuable information about both its sources and the oceanic environment that propagates this noise. Characterizing the features of ambient noise source mechanisms is challenging, but essential, for properly describing an acoustic environment. Disturbances to a local acoustic environment may affect many aquatic species that have adapted to be heavily dependent on this particular sense for survival functions. In the case of marine mammals, which are federally protected, demand exists for understanding such potential impacts, which drives important scientific efforts that utilize passive acoustic monitoring (PAM) tools to inform regulatory decisions. This dissertation presents two independent studies that use PAM data to investigate the characteristics of source mechanisms that dominate ambient noise in two diverse shallow water environments. The study in Chapter 2 directly addresses the concern of how anthropogenic activities can degrade the effectiveness of PAM. In the Alaskan Beaufort Sea, an environment where ambient noise is normally dominated by natural causes, seismic surveys create impulsive sounds to map the composition of the bottom. By inspecting single-sensor PAM data, the spectral characteristics of seismic survey airgun reverberation are measured, and their contribution to the overall ambient noise is quantified. This work is relevant to multiple ongoing mitigation protocols that rely on PAM to acoustically detect marine mammal presence during industrial operations. Meanwhile, Chapter 3 demonstrates that by analyzing data from multiple PAM sensors, features embedded in both directional and omnidirectional ambient noise can be used to develop new time-synchronization processing techniques for aligning autonomous elements of an acoustic array, a tool commonly used in PAM for detecting and tracking marine mammals. Using

  14. Space-Time Localization and Registration on the Beating Heart

    PubMed Central

    Wood, Nathan A.; Waugh, Kevin; Liu, Tian Yu Tommy; Zenati, Marco A.; Riviere, Cameron N.

    2012-01-01

    This paper presents a framework for localizing a miniature epicardial crawling robot, HeartLander, on the beating heart using only 6-degree-of-freedom position measurements from an electromagnetic position tracker and a dynamic surface model of the heart. Using only this information, motion and observation models of the system are developed such that a particle filter can accurately estimate not only the location of the robot on the surface of the heart, but also the pose of the heart in the world coordinate frame as well as the current physiological phase of the heart. The presented framework is then demonstrated in simulation on a dynamic 3-D model of the human heart and a robot motion model which accurately mimics the behavior of the HeartLander robot. PMID:24511430

  15. Time-independent quantum circuits with local interactions

    NASA Astrophysics Data System (ADS)

    Seifnashri, Sahand; Kianvash, Farzad; Nobakht, Jahangir; Karimipour, Vahid

    2016-06-01

    Heisenberg spin chains can act as quantum wires transferring quantum states either perfectly or with high fidelity. Gaussian packets of excitations passing through dual rails can encode the two states of a logical qubit, depending on which rail is empty and which rail is carrying the packet. With extra interactions in one or between different chains, one can introduce interaction zones in arrays of such chains, where specific one- or two-qubit gates act on any qubit which passes through these interaction zones. Therefore, universal quantum computation is made possible in a static way where no external control is needed. This scheme will then pave the way for a scalable way of quantum computation where specific hardware can be connected to make large quantum circuits. Our scheme is an improvement of a recent scheme where we borrowed an idea from quantum electrodynamics to replace nonlocal interactions between spin chains with local interactions mediated by an ancillary chain.

  16. IMPROVING SCIENCE EDUCATION AND CAREER OPPORTUNITIES IN RURAL ALASKA:The Synergistic Connection between Educational Outreach Efforts in the Copper Valley, Alaska.

    NASA Astrophysics Data System (ADS)

    Solie, D. J.; McCarthy, S.

    2004-12-01

    The objective of the High frequency Active Auroral Research Program (HAARP) Education Outreach is to enhance the science education opportunities in the Copper Valley region in Alaska. In the process, we also educate local residents about HAARP and its research. Funded jointly by US Air Force and Navy, HAARP is located at Gakona Alaska, a very rural region of central Alaska with a predominantly Native population. The main instrument at HAARP is a vertically directed, phased array RF transmitter which is primarily an ionospheric research tool, however, its geophysical research applications range from terrestrial to near-space. Research is conducted at HAARP in collaboration with scientists and institutions world-wide. The HAARP Education Outreach Program, run through the University of Alaska Geophysical Institute has been active for over six years and in that time has become an integral part of science education in the Copper Valley for residents of all ages. HAARP education outreach efforts are through direct involvement in local schools in the Copper River School District (CRSD) and the Prince William Sound Community College (PWSCC), as well as public lectures and workshops, and intern and student research programs. These outreach efforts require cooperation and coordination between the CRSD, PWSCC, the University of Alaska Fairbanks Physics Department and the NSF sponsored Alaska Native Science & Engineering Program (ANSEP) and HAARP researchers. The HAARP Outreach program also works with other organizations promoting science education in the region, such as the National Park Service (Wrangell- St. Elias National Park) and the Wrangell Institute for Science and Environment (WISE) a newly formed regional non-profit organization. We work closely with teachers in the schools, adapting to their needs and the particular scientific topic they are covering at the time. Because of time and logistic constraints, outreach visits to schools are episodic, occurring roughly

  17. Alaska Natives assessing the health of their environment.

    PubMed

    Garza, D

    2001-11-01

    The changes in Alaska's ecosystems caused by pollution, contaminants and global climate change are negatively impacting Alaska Natives and rural residents who rely on natural resources for food, culture and community identity. While Alaska commerce has contributed little to these global changes and impacts, Alaska and its resources are nonetheless affected by the changes. While Alaska Natives have historically relied on Alaska's land, water and animals for survival and cultural identity, today their faith in the safety and quality of these resources has decreased. Alaska Natives no longer believe that these wild resources are the best and many are turning to alternative store-bought foods. Such a change in diet and activity may be contributing to a decline in traditional activities and a decline in general health. Contaminants are showing up in the animals, fish and waters that Alaska Natives use. Efforts need to be expanded to empower Alaska Native Tribes to collect and analyze local wild foods for various contaminants. In addition existing information on contaminants and pollution should be made readily available to Alaska residents. Armed with this type of information Alaska Native residents will be better prepared to make informed decisions on using wild foods and materials. PMID:11768422

  18. Memory trace and timing mechanism localized to cerebellar Purkinje cells.

    PubMed

    Johansson, Fredrik; Jirenhed, Dan-Anders; Rasmussen, Anders; Zucca, Riccardo; Hesslow, Germund

    2014-10-14

    The standard view of the mechanisms underlying learning is that they involve strengthening or weakening synaptic connections. Learned response timing is thought to combine such plasticity with temporally patterned inputs to the neuron. We show here that a cerebellar Purkinje cell in a ferret can learn to respond to a specific input with a temporal pattern of activity consisting of temporally specific increases and decreases in firing over hundreds of milliseconds without a temporally patterned input. Training Purkinje cells with direct stimulation of immediate afferents, the parallel fibers, and pharmacological blocking of interneurons shows that the timing mechanism is intrinsic to the cell itself. Purkinje cells can learn to respond not only with increased or decreased firing but also with an adaptively timed activity pattern. PMID:25267641

  19. Local feature saliency classifier for real-time intrusion monitoring

    NASA Astrophysics Data System (ADS)

    Buch, Norbert; Velastin, Sergio A.

    2014-07-01

    We propose a texture saliency classifier to detect people in a video frame by identifying salient texture regions. The image is classified into foreground and background in real time. No temporal image information is used during the classification. The system is used for the task of detecting people entering a sterile zone, which is a common scenario for visual surveillance. Testing is performed on the Imagery Library for Intelligent Detection Systems sterile zone benchmark dataset of the United Kingdom's Home Office. The basic classifier is extended by fusing its output with simple motion information, which significantly outperforms standard motion tracking. A lower detection time can be achieved by combining texture classification with Kalman filtering. The fusion approach running at 10 fps gives the highest result of F1=0.92 for the 24-h test dataset. The paper concludes with a detailed analysis of the computation time required for the different parts of the algorithm.

  20. Alaska Energy Inventory Project: Consolidating Alaska's Energy Resources

    NASA Astrophysics Data System (ADS)

    Papp, K.; Clough, J.; Swenson, R.; Crimp, P.; Hanson, D.; Parker, P.

    2007-12-01

    Alaska has considerable energy resources distributed throughout the state including conventional oil, gas, and coal, and unconventional coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass. While much of the known large oil and gas resources are concentrated on the North Slope and in the Cook Inlet regions, the other potential sources of energy are dispersed across a varied landscape from frozen tundra to coastal settings. Despite the presence of these potential energy sources, rural Alaska is mostly dependent upon diesel fuel for both electrical power generation and space heating needs. At considerable cost, large quantities of diesel fuel are transported to more than 150 roadless communities by barge or airplane and stored in large bulk fuel tank farms for winter months when electricity and heat are at peak demands. Recent increases in the price of oil have severely impacted the price of energy throughout Alaska, and especially hard hit are rural communities and remote mines that are off the road system and isolated from integrated electrical power grids. Even though the state has significant conventional gas resources in restricted areas, few communities are located near enough to these resources to directly use natural gas to meet their energy needs. To address this problem, the Alaska Energy Inventory project will (1) inventory and compile all available Alaska energy resource data suitable for electrical power generation and space heating needs including natural gas, coal, coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass and (2) identify locations or regions where the most economic energy resource or combination of energy resources can be developed to meet local needs. This data will be accessible through a user-friendly web-based interactive map, based on the Alaska Department of Natural Resources, Land Records Information Section's (LRIS) Alaska Mapper, Google Earth, and Terrago Technologies' Geo

  1. Time Variable Gravity from Local Mascon Analysis of GRACE Data

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Luthcke, Scott B.; Klosko, Steven M.; Rowlands, David; Chinn, Douglas S.; McCarthy, John J.; Cox, Christopher M.; Williams, Terry A.; Pavlis, Despina E.

    2004-01-01

    We have analyzed GRACE Level 1-B data in 2003 and assessed a new approach for extracting time variable gravity that isolates the gravity signal in both time and space. The Level-1B satellite-to-satellite range rate (KBRR) data and accelerometry are processed in daily arcs using the precise orbit products produced by the GRACE team from GPS to calibrate both the accelerometer and KBRR data. We then adjusted select components of the intersatellite baseline vector for each data segment isolated to the region of interest. Herein, we solved for mass anomalies in 45 deg x 45 deg blocks over the Amazon and the nearby Atlantic Ocean and estimate mass flux in units of cm of water over each block. We show with this approach that we can recover mass anomalies on a submonthly basis with 10 to 15 day temporal resolution. We discuss the important issues related to this solution, including the size of the mascon blocks, the weight given to the temporal and spatial constraint used to stabalize the solutions, as well as the optimal correlation in time and distance. We compare the the mascon results with solutions obtained from the more standard approach using spherical harmonics and with independent hydrology models and lake data. This technique demonstrates that sub-monthly medium wavelength mass flux phenomena are well sensed by the hyper-precise line of sight velocity data produced from GRACE.

  2. Spike-Timing-Based Computation in Sound Localization

    PubMed Central

    Goodman, Dan F. M.; Brette, Romain

    2010-01-01

    Spike timing is precise in the auditory system and it has been argued that it conveys information about auditory stimuli, in particular about the location of a sound source. However, beyond simple time differences, the way in which neurons might extract this information is unclear and the potential computational advantages are unknown. The computational difficulty of this task for an animal is to locate the source of an unexpected sound from two monaural signals that are highly dependent on the unknown source signal. In neuron models consisting of spectro-temporal filtering and spiking nonlinearity, we found that the binaural structure induced by spatialized sounds is mapped to synchrony patterns that depend on source location rather than on source signal. Location-specific synchrony patterns would then result in the activation of location-specific assemblies of postsynaptic neurons. We designed a spiking neuron model which exploited this principle to locate a variety of sound sources in a virtual acoustic environment using measured human head-related transfer functions. The model was able to accurately estimate the location of previously unknown sounds in both azimuth and elevation (including front/back discrimination) in a known acoustic environment. We found that multiple representations of different acoustic environments could coexist as sets of overlapping neural assemblies which could be associated with spatial locations by Hebbian learning. The model demonstrates the computational relevance of relative spike timing to extract spatial information about sources independently of the source signal. PMID:21085681

  3. Alaska volcanoes guidebook for teachers

    USGS Publications Warehouse

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  4. Dynamic regimes of local homogeneous population model with time lag

    NASA Astrophysics Data System (ADS)

    Neverova, Galina; Frisman, Efim

    2016-06-01

    We investigated Moran - Ricker model with time lag 1. It is made analytical and numerical study of the model. It is shown there is co-existence of various dynamic regimes under the same values of parameters. The model simultaneously possesses several different limit regimes: stable state, periodic fluctuations, and chaotic attractor. The research results show if present population size substantially depends on population number of previous year then it is observed quasi-periodic oscillations. Fluctuations with period 2 occur when the growth of population size is regulated by density dependence in the current year.

  5. Energy-momentum localization in Marder space-time

    NASA Astrophysics Data System (ADS)

    Saygün, S.; Saygün, M.; Tarhan, I.

    2007-01-01

    Considering the Einstein, Møller, Bergmann--Thomson, Landau--Lifshitz (LL), Papapetrou, Qadir--Sharif and Weinberg's definitions in general relativity, we find the momentum four-vector of the closed Universe based on Marder space--time. The momentum four-vector (due to matter plus field) is found to be zero. These results support the viewpoints of Banerjee--Sen, Xulu and Aydogdu--Salti. Another point is that our study agrees with the previous works of Cooperstock--Israelit, Rosen, Johri et al.

  6. Alaska's Economy: What's Ahead?

    ERIC Educational Resources Information Center

    Alaska Review of Social and Economic Conditions, 1987

    1987-01-01

    This review describes Alaska's economic boom of the early 1980s, the current recession, and economic projections for the 1990s. Alaska's economy is largely influenced by oil prices, since petroleum revenues make up 80% of the state government's unrestricted general fund revenues. Expansive state spending was responsible for most of Alaska's…

  7. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  8. Time-dependent local density measurements in unsteady flows

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.; Monson, D. J.; Exberger, R. J.

    1979-01-01

    A laser-induced fluorescence technique for measuring the relative time-dependent density fluctuations in unsteady or turbulent flows is demonstrated. Using a 1.5-W continuous-wave Kr(+) laser, measurements have been obtained in 0.1-mm diameter by 1-mm-long sampling volumes in a Mach 3 flow of N2 seeded with biacetyl vapor. A signal amplitude resolution of 2% was achieved for a detection frequency bandwidth of 10 kHz. The measurement uncertainty was found to be dominated by noise behaving as photon statistical noise. The practical limits of signal-to-noise ratios have been characterized for a wide range of detection frequency bandwidths that encompasses those of interest in supersonic turbulence measurements.

  9. Time-dependent local density measurements in unsteady flows

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.; Monson, D. J.; Exberger, R. J.

    1979-01-01

    A laser-induced fluorescence technique for measuring the relative time-dependent density fluctuations in unsteady or turbulent flows is demonstrated. Using a 1.5-W continuous-wave Kr(+) laser, measurements have been obtained in 0.1-mm-diameter by 1-mm-long sampling volumes in a Mach 3 flow of N2 seeded with biacetyl vapor. A signal amplitude resolution of 2% was achieved for a detection frequency bandwidth of 10 kHz. The measurement uncertainty was found to be dominated by noise behaving as photon statistical noise. The practical limits of signal-to-noise ratios have been characterized for a wide range of detection frequency bandwidths that encompasses those of interest in supersonic turbulence measurements.

  10. Timing matters: sonar call groups facilitate target localization in bats

    PubMed Central

    Kothari, Ninad B.; Wohlgemuth, Melville J.; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F.

    2014-01-01

    To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment. PMID:24860509

  11. Water age, exposure time, and local flushing time in semi-enclosed, tidal basins with negligible freshwater inflow

    NASA Astrophysics Data System (ADS)

    Viero, Daniele Pietro; Defina, Andrea

    2016-04-01

    Within the framework of tidally flushed, semi-enclosed basins with negligible freshwater inflow, and under steady periodic flow conditions, three frequently used local transport time scales to quantify the efficiency of water renewal, namely water age, exposure time, and local flushing time are studied and compared to each other. In these environments, water renewal is strongly controlled by diffusion, and it is significantly affected by the return flow (i.e., the fraction of effluent water that returns into the basin on each flood tide). The definition of water age is here modified to account for the return flow, in analogy with exposure time and local flushing time. We consider approximate time scales, whose accuracy is analyzed, in order to overcome problems related to the size of the computational domain and to reduce the computational effort. A new approximate procedure is introduced to estimate water age, which is based on the water aging rate. Also, the concept of local flushing time as a relevant time scale is introduced. Under steady periodic conditions, we demonstrate that the local flushing time quantitatively corresponds to water age, and well approximates exposure time when the flow is dominated by diffusion. Since the effort required to compute water age and exposure time is greater than that required to compute the local flushing time, the present results can also have a practical interest in the assessment of water renewal efficiency of semi-enclosed water basins. The results of a modeling study, in which the lagoon of Venice is used as a benchmark, confirm the substantial quantitative equivalence between these three transport time scales in highly diffusive environments.

  12. Sharing Ideas. Southeast Alaska Cultures: Teaching Ideas and Resource Information.

    ERIC Educational Resources Information Center

    Hinckley, Kay, Comp.; Kleinert, Jean, Comp.

    The product of two 1975 workshops held in Southeastern Alaska (Fairbanks and Sitka), this publication presents the following: (1) papers (written by the educators in attendance at the workshops) which address education methods and concepts relevant to the culture of Southeastern Alaska ("Tlingit Sea Lion Parable"; "Using Local Knowledge in…

  13. Localization of Parathyroid Adenoma With Real-Time Ultrasound: Freehand SPECT Fusion.

    PubMed

    Bluemel, Christina; Kirchner, Paul; Kajdi, Georg W; Werner, Rudolf A; Herrmann, Ken

    2016-03-01

    Preoperative localization of parathyroid adenoma in primary hyperparathyroidism gains in importance as there is a trend toward minimally invasive parathyroid surgery. Besides MRI, 4-dimensional CT, PET/CT, invasive-selective venous sampling, or angiography, both ultrasound and scintigraphy are standard of care for lesion localization. Here we report on a 53-year-old woman with suspicion of primary hyperparathyroidism using real-time fusion of scintigraphic (freehand SPECT) and ultrasound imaging for adenoma localization. Real-time fusion of ultrasound and freehand SPECT allowed noninvasive dedicated metabolic and anatomic adenoma localization and treatment planning. PMID:26284776

  14. NASA's DESDynI in Alaska

    NASA Astrophysics Data System (ADS)

    Sauber, J. M.; Hofton, M. A.; Bruhn, R. L.; Forster, R. R.; Burgess, E. W.; Cotton, M. M.

    2010-12-01

    In 2007 the National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommended an integrated L-band InSAR and multibeam Lidar mission called DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) and it is scheduled for launch in 2017. The NASA InSAR and Lidar mission is optimized for studying geohazards and global environmental change. The complex plate boundary in southern coastal Alaska provides an excellent setting for testing DESDynI capabilities to recover fundamental parameters of glacio-seismotectonic processes. Also, aircraft and satellites acquisitions of Lidar and L-band SAR have been made in this region in the last decade that can be used for DESDynI performance simulations. Since the Lidar observations would penetrate most vegetation, the accurate bald Earth elevation profiles will give new elevation information beyond the standard 30-m digital elevation models (DEM) and the Lidar-derived elevations will provide an accurate georeferenced surface for local and regional scale studies. In an earlier study we demonstrated how the Lidar observations could be used in combination with SAR to generate an improved InSAR derived DEM in the Barrow, Alaska region [Atwood et al., 2007]; here we discuss how Lidar could be fused with L-band SAR in more rugged, vegetated terrane. Based on simulations of multi-beam Lidar instrument performance over uplifted marine terraces, active faults and folds, uplift associated with the 1899 Yakataga seismic event (M=8), and elevation change on the glaciers in southern, coastal Alaska, we report on the significance of the DESDynI Lidar contiguous 25 m footprint elevation profiles for EarthScope related studies in Alaska. We are using the morphology and dynamics of glaciers derived from L-band SAR ice velocities to infer the large scale sub-ice structures that form the structural framework of the Seward-Bagley Basins. Using primarily winter acquisitions of L-band SAR data from ALOS

  15. A METHOD TO INCORPORATE ECOLOGY INTO RESIDENCE TIME OF CHEMICALS IN EMBAYMENTS: LOCAL EFFECT TIME

    EPA Science Inventory

    Residence times are classically defined by the physical and chemical aspects of water bodies rather than by their ecological implications. Therefore, a more clear and direct connection between the residence times and ecological effects is necessary to quantitatively relate these ...

  16. Time-local Heisenberg-Langevin equations and the driven qubit

    NASA Astrophysics Data System (ADS)

    Whalen, S. J.; Carmichael, H. J.

    2016-06-01

    The time-local master equation for a driven boson system interacting with a boson environment is derived by way of a time-local Heisenberg-Langevin equation. Extension to the driven qubit fails—except for weak excitation—due to the lost linearity of the system-environment interaction. We show that a reported time-local master equation for the driven qubit is incorrect. As a corollary to our demonstration, we also uncover odd asymptotic behavior in the "repackaged" time-local dynamics of a system driven to a far-from-equilibrium steady state: the density operator becomes steady while time-dependent coefficients oscillate (with periodic singularities) forever.

  17. Local time occurrence frequency of energetic ions in the earth's magnetosheath

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Hill, P.; Baumjohann, W.; Gosling, J. T.

    1993-01-01

    The occurrence frequency of energetic ions in the energy range from 8 to 40 keV/e as a function of local time in the magnetosheath is presented. Energetic ions are observed in the magnetosheath with a minimum probability of 25 percent for all local times. The occurrence frequency for the energetic ions is higher on the dawnside than on the duskside but shows a relative maximum postnoon in the local time range from 12 to 15 hours. The postnoon relative maximum is attributed to a magnetospheric source for the energetic ions while the dawn-dusk asymmetry is attributed to a quasi-parallel bow shock source.

  18. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  19. Accretion tectonics and crustal structure in Alaska

    USGS Publications Warehouse

    Coney, P.J.; Jones, D.L.

    1985-01-01

    The entire width of the North American Cordillera in Alaska is made up of "suspect terranes". Pre-Late Cretaceous paleogeography is poorly constrained and the ultimate origins of the many fragments which make up the state are unclear. The Prince William and Chugach terranes accreted since Late Cretaceous time and represent the collapse of much of the northeast Pacific Ocean swept into what today is southern Alaska. Greater Wrangellia, a composite terrane now dispersed into fragments scattered from Idaho to southern Alaska, apparently accreted into Alaska in Late Cretaceous time crushing an enormous deep-marine flysch basin on its inboard side. Most of interior eastern Alaska is the Yukon Tanana terrane, a very large entirely fault-bounded metamorphic-plutonic assemblage covering thousands of square kilometers in Canada as well as Alaska. The original stratigraphy and relationship to North America of the Yukon-Tanana terrane are both obscure. A collapsed Mesozoic flysch basin, similar to the one inboard of Wrangellia, lies along the northern margin. Much of Arctic Alaska was apparently a vast expanse of upper Paleozoic to Early Mesozoic deep marine sediments and mafic volcanic and plutonic rocks now scattered widely as large telescoped sheets and Klippen thrust over the Ruby geanticline and the Brooks Range, and probably underlying the Yukon-Koyukuk basin and the Yukon flats. The Brooks Range itself is a stack of north vergent nappes, the telescoping of which began in Early Cretaceous time. Despite compelling evidence for thousands of kilometers of relative displacement between the accreted terranes, and large amounts of telescoping, translation, and rotation since accretion, the resulting new continental crust added to North America in Alaska carries few obvious signatures that allow application of currently popular simple plate tectonic models. Intraplate telescoping and strike-slip translations, delamination at mid-crustal levels, and large-scale lithospheric

  20. Efficient Multi-Stage Time Marching for Viscous Flows via Local Preconditioning

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Wood, William A.; vanLeer, Bram

    1999-01-01

    A new method has been developed to accelerate the convergence of explicit time-marching, laminar, Navier-Stokes codes through the combination of local preconditioning and multi-stage time marching optimization. Local preconditioning is a technique to modify the time-dependent equations so that all information moves or decays at nearly the same rate, thus relieving the stiffness for a system of equations. Multi-stage time marching can be optimized by modifying its coefficients to account for the presence of viscous terms, allowing larger time steps. We show it is possible to optimize the time marching scheme for a wide range of cell Reynolds numbers for the scalar advection-diffusion equation, and local preconditioning allows this optimization to be applied to the Navier-Stokes equations. Convergence acceleration of the new method is demonstrated through numerical experiments with circular advection and laminar boundary-layer flow over a flat plate.

  1. Local regularity for time-dependent tug-of-war games with varying probabilities

    NASA Astrophysics Data System (ADS)

    Parviainen, Mikko; Ruosteenoja, Eero

    2016-07-01

    We study local regularity properties of value functions of time-dependent tug-of-war games. For games with constant probabilities we get local Lipschitz continuity. For more general games with probabilities depending on space and time we obtain Hölder and Harnack estimates. The games have a connection to the normalized p (x , t)-parabolic equation ut = Δu + (p (x , t) - 2) Δ∞Nu.

  2. Movements of juvenile Gyrfalcons from western and interior Alaska following departure from their natal areas

    USGS Publications Warehouse

    McIntyre, C.L.; Douglas, D.C.; Adams, L.G.

    2009-01-01

    Juvenile raptors often travel thousands of kilometers from the time they leave their natal areas to the time they enter a breeding population. Documenting movements and identifying areas used by raptors before they enter a breeding population is important for understanding the factors that influence their survival. In North America, juvenile Gyrfalcons (Falco rusticolus) are routinely observed outside the species' breeding range during the nonbreeding season, but the natal origins of these birds are rarely known. We used satellite telemetry to track the movements of juvenile Gyrfalcons during their first months of independence. We instrumented nestlings with lightweight satellite transmitters within 10 d of estimated fledging dates on the Seward Peninsula in western Alaska and in Denali National Park (Denali) in interior Alaska. Gyrfalcons spent an average of 41.4 ?? 6.1 d (range = 30-50 d) in their natal areas after fledging. The mean departure date from natal areas was 27 August ?? 6.4 d. We tracked 15 individuals for an average of 70.5 ?? 28.1 d post-departure; Gyrfalcons moved from 105 to 4299 km during this period and tended to move greater distances earlier in the tracking period than later in the tracking period. Gyrfalcons did not establish temporary winter ranges within the tracking period. We identified several movement patterns among Gyrfalcons, including unidirectional long-distance movements, multidirectional long-and shortdistance movements, and shorter movements within a local region. Gyrfalcons from the Seward Peninsula remained in western Alaska or flew to eastern Russia with no movements into interior Alaska. In contrast, Gyrfalcons from Denali remained in interior Alaska, flew to northern and western Alaska, or flew to northern Alberta. Gyrfalcons from both study areas tended to move to coastal, riparian, and wetland areas during autumn and early winter. Because juvenile Gyrfalcons dispersed over a large geographic area and across three

  3. Alaska's renewable energy potential.

    SciTech Connect

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  4. Quasi-local mass in the covariant Newtonian space-time

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Huei; Wang, Chih-Hung

    2008-10-01

    In general relativity, quasi-local energy-momentum expressions have been constructed from various formulae. However, Newtonian theory of gravity gives a well known and an unique quasi-local mass expression (surface integration). Since geometrical formulation of Newtonian gravity has been established in the covariant Newtonian space-time, it provides a covariant approximation from relativistic to Newtonian theories. By using this approximation, we calculate Komar integral, Brown-York quasi-local energy and Dougan-Mason quasi-local mass in the covariant Newtonian space-time. It turns out that Komar integral naturally gives the Newtonian quasi-local mass expression, however, further conditions (spherical symmetry) need to be made for Brown-York and Dougan-Mason expressions.

  5. Are petrographic textural criteria valid for determining timing of dolomitization. An example from Wahoo Formation, Prudhoe Bay, Alaska

    SciTech Connect

    Jameson, J.

    1989-03-01

    Textural criteria such as crystal size, shape, and fabric preservation may be misleading when trying to distinguish early from late dolomites. Data from the Wahoo formation, a typical Pennsylvanian shallow-marine carbonate, reveal that petrographically similar dolomites can have very different origins. In the absence of other evidence, fine-grained (15-30 ..mu..m), subhedral-to-anhedral or hypidiotopic fabrics with well-preserved depositional textures are often regarded as having formed relatively early. Coarse, nonfabric selective dolomitization generally is considered to be of late origin. The problem of using textural criteria to determine timing is particularly acute in hypidiotopic fabrics, where more than one stage of dolomitization may be present. Crosscutting relationships and geochemical and isotopic data reveal the range of origins of Wahoo formation hypidiotopic dolomites. The earliest dolomites were of mixing zone origin and probably formed during the Pennsylvanian. Dolomitization resumed in the Permian-Triassic as the Wahoo formation was buried to depths of 1000-2000 ft. Permian-Triassic burial dolomites are usually overgrowths of earlier dolomite. Trace element gradients reveal that burial dolomitizing fluids were sourced from the shales above the Wahoo formation. In spite of their diverse origins, Wahoo dolomites are petrographically similar. Geochemical and isotopic data reveal that most dolomites that meet the early criteria formed relatively late at shallow to intermediate burial depths. Petrography incorrectly suggests only one episode of dolomitization. Textural criteria alone are a misleading guide to the origin of Wahoo dolomites.

  6. If time is a local observable, then Hawking radiation is unitary

    NASA Astrophysics Data System (ADS)

    Nikolić, Hrvoje

    2014-08-01

    In the usual formulation of quantum theory, time is a global classical evolution parameter, not a local quantum observable. On the other hand, both canonical quantum gravity (which lacks fundamental time-evolution parameter) and the principle of spacetime covariance (which insists that time should be treated on an equal footing with space) suggest that quantum theory should be slightly reformulated, in a manner that promotes time to a local observable. Such a reformulated quantum theory is unitary in a more general sense than the usual quantum theory. In particular, this promotes the non-unitary Hawking radiation to a unitary phenomenon, which avoids the black-hole information paradox.

  7. Alaska Athabascan stellar astronomy

    NASA Astrophysics Data System (ADS)

    Cannon, Christopher M.

    Stellar astronomy is a fundamental component of Alaska Athabascan cultures that facilitates time-reckoning, navigation, weather forecasting, and cosmology. Evidence from the linguistic record suggests that a group of stars corresponding to the Big Dipper is the only widely attested constellation across the Northern Athabascan languages. However, instruction from expert Athabascan consultants shows that the correlation of these names with the Big Dipper is only partial. In Alaska Gwich'in, Ahtna, and Upper Tanana languages the Big Dipper is identified as one part of a much larger circumpolar humanoid constellation that spans more than 133 degrees across the sky. The Big Dipper is identified as a tail, while the other remaining asterisms within the humanoid constellation are named using other body part terms. The concept of a whole-sky humanoid constellation provides a single unifying system for mapping the night sky, and the reliance on body-part metaphors renders the system highly mnemonic. By recognizing one part of the constellation the stargazer is immediately able to identify the remaining parts based on an existing mental map of the human body. The circumpolar position of a whole-sky constellation yields a highly functional system that facilitates both navigation and time-reckoning in the subarctic. Northern Athabascan astronomy is not only much richer than previously described; it also provides evidence for a completely novel and previously undocumented way of conceptualizing the sky---one that is unique to the subarctic and uniquely adapted to northern cultures. The concept of a large humanoid constellation may be widespread across the entire subarctic and have great antiquity. In addition, the use of cognate body part terms describing asterisms within humanoid constellations is similarly found in Navajo, suggesting a common ancestor from which Northern and Southern Athabascan stellar naming strategies derived.

  8. Local Stable and Unstable Manifolds and Their Control in Nonautonomous Finite-Time Flows

    NASA Astrophysics Data System (ADS)

    Balasuriya, Sanjeeva

    2016-03-01

    It is well known that stable and unstable manifolds strongly influence fluid motion in unsteady flows. These emanate from hyperbolic trajectories, with the structures moving nonautonomously in time. The local directions of emanation at each instance in time is the focus of this article. Within a nearly autonomous setting, it is shown that these time-varying directions can be characterised through the accumulated effect of velocity shear. Connections to Oseledets spaces and projection operators in exponential dichotomies are established. Availability of data for both infinite- and finite-time intervals is considered. With microfluidic flow control in mind, a methodology for manipulating these directions in any prescribed time-varying fashion by applying a local velocity shear is developed. The results are verified for both smoothly and discontinuously time-varying directions using finite-time Lyapunov exponent fields, and excellent agreement is obtained.

  9. Local Stable and Unstable Manifolds and Their Control in Nonautonomous Finite-Time Flows

    NASA Astrophysics Data System (ADS)

    Balasuriya, Sanjeeva

    2016-08-01

    It is well known that stable and unstable manifolds strongly influence fluid motion in unsteady flows. These emanate from hyperbolic trajectories, with the structures moving nonautonomously in time. The local directions of emanation at each instance in time is the focus of this article. Within a nearly autonomous setting, it is shown that these time-varying directions can be characterised through the accumulated effect of velocity shear. Connections to Oseledets spaces and projection operators in exponential dichotomies are established. Availability of data for both infinite- and finite-time intervals is considered. With microfluidic flow control in mind, a methodology for manipulating these directions in any prescribed time-varying fashion by applying a local velocity shear is developed. The results are verified for both smoothly and discontinuously time-varying directions using finite-time Lyapunov exponent fields, and excellent agreement is obtained.

  10. The Alaska experience using store-and-forward telemedicine for ENT care in Alaska.

    PubMed

    Kokesh, John; Ferguson, A Stewart; Patricoski, Chris

    2011-12-01

    This article discusses the development, evaluation, and growth of telemedicine in Alaska. Store-and-forward telemedicine has been used to deliver ear, nose, and throat (ENT) care to rural Alaska since 2002. It has proved valuable in the treatment of many conditions of the head and neck, and it is particularly well suited for the diagnosis and treatment of ear disease. Usage has grown steadily as telemedicine has become widely accepted. Store-and-forward telemedicine has been shown within the Alaska Native Health System to improve access for care and reduce wait times, as well as decrease travel-associated costs for patients. PMID:22032488

  11. Improving electroencephalographic source localization of epileptogenic zones with time-frequency analysis.

    PubMed

    Cuspineda-Bravo, Elena R; Martínez-Montes, Eduardo; Farach-Fumero, Miguel; Machado-Curbelo, Calixto

    2015-04-01

    The combination of recently developed methods for electroencephalographic (EEG) space-time-frequency analysis can provide noninvasive functional neuroimages necessary for obtaining an accurate localization of the epileptogenic zone. The aim of this study was to determine if time-frequency (TF) analysis, followed by EEG source localization, would improve the detection and identification of epileptogenic and related activity. Seventeen patients with refractory frontal lobe epilepsy (FLE) were studied using video EEG recording. TF analysis identified the first epileptogenic EEG changes. Using the Bayesian model averaging (BMA) approach, we compared brain electromagnetic tomographic (BET) images, constructed from the TF domain, with BET images constructed from the time domain only. We determined if the localization identified by BET images was concordant with the localization from medical history and video EEG recording. TF analysis provided a clear display of subtle EEG features, including EEG lateralization, and more concordant and delimited epileptogenic zones, compared with time-domain source analysis. In conclusion, EEG TF analysis improves source localization. After a thorough validation, this methodology could become a useful noninvasive tool for localizing the epileptogenic zone in clinical practice. PMID:24879437

  12. Numerical approximations to nonlinear conservation laws with locally varying time and space grids

    NASA Technical Reports Server (NTRS)

    Osher, S.; Sanders, R.

    1983-01-01

    Numerical approximations to the initial value problem for nonlinear systems of conservation laws are considered. The considered system is said to be hyperbolic when all eigenvalues of every real linear combination of the Jacobian matrices are real. Solutions may develop discontinuities in finite time, even when the initial data are smooth. In the investigation, explicit finite difference methods which use locally varying time grids are considered. The global CFL restriction is replaced by a local restriction. The numerical flux function is studied from a finite volume viewpoint, and a differencing technique is developed at interface points between regions of distinct time increments.

  13. Alaska Library Directory, 1996.

    ERIC Educational Resources Information Center

    Jennings, Mary, Ed.

    This directory of Alaska's Libraries lists: members of the Alaska Library Association (AkLA) Executive Council and Committee Chairs; State Board of Education members; members of the Governor's Advisory Council on Libraries; school, academic and public libraries and their addresses, phone and fax numbers, and contact persons; personal,…

  14. Alaska geothermal bibliography

    SciTech Connect

    Liss, S.A.; Motyka, R.J.; Nye, C.J.

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  15. Renewable Energy in Alaska

    SciTech Connect

    Not Available

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  16. South Central Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Glacial silt along the Copper River in Alaska is picked up by the wind and carried out over the Gulf of Alaska. This true-color MODIS image from October 26, 2001, shows a large gray dust plume spreading out over the Gulf. West of the Copper River Delta, Cook Inlet is full of sediment.

  17. The State of Adolescent Health in Alaska.

    ERIC Educational Resources Information Center

    Alaska State Office of the Commissioner, Juneau.

    A survey was conducted to provide a profile of the health status and risk behaviors of youth in Alaska. The goal was to develop a statewide database which, when coupled with morbidity and mortality data, would provide information that would allow those who plan and develop services at state and local levels to better target those services. During…

  18. Complex-time singularity and locality estimates for quantum lattice systems

    NASA Astrophysics Data System (ADS)

    Bouch, Gabriel D.

    In a very general class of one-dimensional quantum spin systems, the infinite volume limit of the complex-time evolution of a local observable is an entire analytic function of the time variable and obeys a locality principle. This result has recently been used to prove a number of important results in statistical mechanics. In dimensions greater than one, although it has not been expected that the infinite volume limit of the complex-time evolution of a general local observable will be entire analytic, nothing rigorous has been established concerning the breakdown of analyticity or the nature of the singularities, if they exist. In this work we begin by presenting a possible approach to proving locality bounds for the complex-time dynamics of a general class of quantum spin systems in any dimension. Then we specifically apply this approach to the one-dimensional case, and establish entire analyticity of the dynamics as a corollary. In dimensions greater than one, ideas related to the much studied Eden growth process suggest that a similar locality result will also hold. In particular, we establish an upper bound on the expected perimeter of lattice animals grown according to an Eden growth process, and note that a similar upper bound on a closely related average perimeter would lead to a locality result in the plane. Finally, and perhaps unexpectedly, we demonstrate through a specific construction that such a locality result does not hold in general and that the infinite volume limit of the complex-time dynamics can blow up a finite distance along the imaginary-time axis.

  19. Comparison of spring-time phytoplankton community composition in two cold years from the western Gulf of Alaska into the southeastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Stauffer, Beth A.; Goes, Joaquim I.; McKee, Kali T.; do Rosario Gomes, Helga; Stabeno, Phyllis J.

    2014-11-01

    The Bering Sea is a highly productive ecosystem providing the main oceanographic connection between the North Pacific and Arctic oceans. The atmospheric connection with the Arctic Ocean leads to seasonal sea ice formation in the Bering Sea, the areal extent and timing of retreat of which have important implications for primary productivity and phytoplankton community composition in this region. Hydrographic data from cruises and satellite sea ice and sea surface temperature data in spring 2011 and 2012 suggest classification of these years as relatively warmer and colder years, respectively. Locations in the western Gulf of Alaska (Pavlof Bay), at the north end of an eastern pass through the Aleutian Islands (Unimak Pass), and on the continental shelf of the Bering Sea (M2) were visited in both years. Stratification was apparent on the shelf in 2012, while the water column was comparatively well-mixed at other locations in both years. Phytoplankton biomass was highest in 2011 overall and specifically on the shelf in both years, while minimal biomass was measured within the well-mixed Unimak Pass in 2012. Surface phytoplankton size distributions included substantial contributions of picoplankton (<3 μm) in 2011 (21-35%), while micro- (20-200 μm) and nanoplankton (3-20 μm) comprised 79% and 95% of biomass in Pavlof Bay and at M2, respectively, in 2012. Analyses of similarity revealed spatial variability in the phytoplankton assemblages within each year (2011: R=0.588, p<0.004; 2012: R=0.646, p<0.004). Additionally, between-year variability had a strong and significant effect on differences between assemblages across all locations (R=0.579, p<0.0003), likely masking differences between sites when years were grouped (R=0.134, p<0.079). These differences were likely driven by the dominance (up to 75% in Unimak Pass) of the colonial prymnesiophyte Phaeocystis sp. at all sites in 2011, resulting in reduced community diversity, compared to more widespread abundance of

  20. Dynamical localization in chaotic systems: spectral statistics and localization measure in the kicked rotator as a paradigm for time-dependent and time-independent systems.

    PubMed

    Manos, Thanos; Robnik, Marko

    2013-06-01

    We study the kicked rotator in the classically fully chaotic regime using Izrailev's N-dimensional model for various N≤4000, which in the limit N→∞ tends to the quantized kicked rotator. We do treat not only the case K=5, as studied previously, but also many different values of the classical kick parameter 5≤K≤35 and many different values of the quantum parameter kε[5,60]. We describe the features of dynamical localization of chaotic eigenstates as a paradigm for other both time-periodic and time-independent (autonomous) fully chaotic or/and mixed-type Hamilton systems. We generalize the scaling variable Λ=l(∞)/N to the case of anomalous diffusion in the classical phase space by deriving the localization length l(∞) for the case of generalized classical diffusion. We greatly improve the accuracy and statistical significance of the numerical calculations, giving rise to the following conclusions: (1) The level-spacing distribution of the eigenphases (or quasienergies) is very well described by the Brody distribution, systematically better than by other proposed models, for various Brody exponents β(BR). (2) We study the eigenfunctions of the Floquet operator and characterize their localization properties using the information entropy measure, which after normalization is given by β(loc) in the interval [0,1]. The level repulsion parameters β(BR) and β(loc) are almost linearly related, close to the identity line. (3) We show the existence of a scaling law between β(loc) and the relative localization length Λ, now including the regimes of anomalous diffusion. The above findings are important also for chaotic eigenstates in time-independent systems [Batistić and Robnik, J. Phys. A: Math. Gen. 43, 215101 (2010); arXiv:1302.7174 (2013)], where the Brody distribution is confirmed to a very high degree of precision for dynamically localized chaotic eigenstates, even in the mixed-type systems (after separation of regular and chaotic eigenstates). PMID

  1. Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF

    NASA Astrophysics Data System (ADS)

    Ellington, S. M.; Moldwin, M. B.; Liemohn, M. W.

    2016-03-01

    We present evidence of resonant wave-wave coupling via toroidal field line resonance (FLR) signatures in the Space Weather Modeling Framework's (SWMF) global, terrestrial magnetospheric model in one simulation driven by a synthetic upstream solar wind with embedded broadband dynamic pressure fluctuations. Using in situ, stationary point measurements of the radial electric field along the 1500 LT meridian, we show that SWMF reproduces a multiharmonic, continuous distribution of FLRs exemplified by 180° phase reversals and amplitude peaks across the resonant L shells. By linearly increasing the amplitude of the dynamic pressure fluctuations in time, we observe a commensurate increase in the amplitude of the radial electric and azimuthal magnetic field fluctuations, which is consistent with the solar wind driver being the dominant source of the fast mode energy. While we find no discernible local time changes in the FLR frequencies despite large-scale, monotonic variations in the dayside equatorial mass density, in selectively sampling resonant points and examining spectral resonance widths, we observe significant radial, harmonic, and time-dependent local time asymmetries in the radial electric field amplitudes. A weak but persistent local time asymmetry exists in measures of the estimated coupling efficiency between the fast mode and toroidal wave fields, which exhibits a radial dependence consistent with the coupling strength examined by Mann et al. (1999) and Zhu and Kivelson (1988). We discuss internal structural mechanisms and additional external energy sources that may account for these asymmetries as we find that local time variations in the strength of the compressional driver are not the predominant source of the FLR amplitude asymmetries. These include resonant mode coupling of observed Kelvin-Helmholtz surface wave generated Pc5 band ultralow frequency pulsations, local time differences in local ionospheric dampening rates, and variations in azimuthal

  2. Alaska Volcano Observatory's KML Tools

    NASA Astrophysics Data System (ADS)

    Valcic, L.; Webley, P. W.; Bailey, J. E.; Dehn, J.

    2008-12-01

    Virtual Globes are now giving the scientific community a new medium to present data, which is compatible across multiple disciplines. They also provide scientists the ability to display their data in real-time, a critical factor in hazard assessment. The Alaska Volcano Observatory remote sensing group has developed Keyhole Markup Language (KML) tools that are used to display satellite data for volcano monitoring and forecast ash cloud movement. The KML tools allow an analyst to view the satellite data in a user-friendly web based environment, without a reliance on non-transportable, proprietary software packages. Here, we show how the tools are used operationally for thermal monitoring of volcanic activity, volcanic ash cloud detection and dispersion modeling, using the Puff model. animate.images.alaska.edu/

  3. Natural Science of Alaska Handbook. Revised. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Oliver, Valerie Smith; Sumner, Jim

    This handbook is a collection of printed materials that are available to students about the geology, weather, plants, animals and people of Alaska. Topics included are: (1) "Alaska History Line"; (2) "Geography of Alaska" (including maps, rivers, and islands); (3) "Geologic Time"; (4) "Geology" (including plates, earthquake zones, permafrost, and…

  4. Space-Time Hierarchical-Graph Based Cooperative Localization in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Lv, Tiejun; Gao, Hui; Li, Xiaopeng; Yang, Shaoshi; Hanzo, Lajos

    2016-01-01

    It has been shown that cooperative localization is capable of improving both the positioning accuracy and coverage in scenarios where the global positioning system (GPS) has a poor performance. However, due to its potentially excessive computational complexity, at the time of writing the application of cooperative localization remains limited in practice. In this paper, we address the efficient cooperative positioning problem in wireless sensor networks. A space-time hierarchical-graph based scheme exhibiting fast convergence is proposed for localizing the agent nodes. In contrast to conventional methods, agent nodes are divided into different layers with the aid of the space-time hierarchical-model and their positions are estimated gradually. In particular, an information propagation rule is conceived upon considering the quality of positional information. According to the rule, the information always propagates from the upper layers to a certain lower layer and the message passing process is further optimized at each layer. Hence, the potential error propagation can be mitigated. Additionally, both position estimation and position broadcasting are carried out by the sensor nodes. Furthermore, a sensor activation mechanism is conceived, which is capable of significantly reducing both the energy consumption and the network traffic overhead incurred by the localization process. The analytical and numerical results provided demonstrate the superiority of our space-time hierarchical-graph based cooperative localization scheme over the benchmarking schemes considered.

  5. Alaska Problem Resource Manual: Alaska Future Problem Solving Program. Alaska Problem 1985-86.

    ERIC Educational Resources Information Center

    Gorsuch, Marjorie, Ed.

    "Alaska's Image in the Lower 48," is the theme selected by a Blue Ribbon panel of state and national leaders who felt that it was important for students to explore the relationship between Alaska's outside image and the effect of that image on the federal programs/policies that impact Alaska. An overview of Alaska is presented first in this…

  6. Rope culture of the kelp Laminaria groenlandica in Alaska

    SciTech Connect

    Ellis, R.J.; Calvin, N.I.

    1981-02-01

    This paper is an account of rope culture of the brown seaweed or kelp, Laminaria groenlandica, in Alaska. It describes the placement of the ropes, time of first appearance of young L. groenlandica, size of the plants at various ages, and other life history features applicable to the use of rope for the culture of seaweeds in Alaska. (Refs. 3).

  7. Enrollment Trends at University of Alaska Community Campuses

    ERIC Educational Resources Information Center

    Goldsmith, Scott; Hill, Alexandra; Killorin, Mary

    2005-01-01

    In this report, Institute of Social and Economic Research, University of Alaska Anchorage, investigated the factors that explain change over time in enrollments and credit hours (participation) at the community campuses of the University of Alaska using both quantitative and qualitative methods. Sections include: (1) Background; (2) Factors…

  8. Statewide Educator Supply & Demand Report, State of Alaska, 1998.

    ERIC Educational Resources Information Center

    LaBerge, MaryEllen

    In 1998, the demand for educators in Alaska reached an all-time high. The shortage was most critical for music, math, and special education teachers, as well as for counselors. Filling positions in rural areas is especially difficult. An early retirement incentive program has caused a drain on Alaska's pool of teachers. Factors that inhibit…

  9. Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrodinger equations

    SciTech Connect

    Liang, Xiao; Khaliq, Abdul Q. M.; Xing, Yulong

    2015-01-23

    In this paper, we study a local discontinuous Galerkin method combined with fourth order exponential time differencing Runge-Kutta time discretization and a fourth order conservative method for solving the nonlinear Schrödinger equations. Based on different choices of numerical fluxes, we propose both energy-conserving and energy-dissipative local discontinuous Galerkin methods, and have proven the error estimates for the semi-discrete methods applied to linear Schrödinger equation. The numerical methods are proven to be highly efficient and stable for long-range soliton computations. Finally, extensive numerical examples are provided to illustrate the accuracy, efficiency and reliability of the proposed methods.

  10. Local dominance of exotic plants declines with residence time: a role for plant–soil feedback?

    PubMed Central

    Speek, Tanja A.A.; Schaminée, Joop H.J.; Stam, Jeltje M.; Lotz, Lambertus A.P.; Ozinga, Wim A.; van der Putten, Wim H.

    2015-01-01

    Recent studies have shown that introduced exotic plant species may be released from their native soil-borne pathogens, but that they become exposed to increased soil pathogen activity in the new range when time since introduction increases. Other studies have shown that introduced exotic plant species become less dominant when time since introduction increases, and that plant abundance may be controlled by soil-borne pathogens; however, no study yet has tested whether these soil effects might explain the decline in dominance of exotic plant species following their initial invasiveness. Here we determine plant–soil feedback of 20 plant species that have been introduced into The Netherlands. We tested the hypotheses that (i) exotic plant species with a longer residence time have a more negative soil feedback and (ii) greater local dominance of the introduced exotic plant species correlates with less negative, or more positive, plant–soil feedback. Although the local dominance of exotic plant species decreased with time since introduction, there was no relationship of local dominance with plant–soil feedback. Plant–soil feedback also did not become more negative with increasing time since introduction. We discuss why our results may deviate from some earlier published studies and why plant–soil feedback may not in all cases, or not in all comparisons, explain patterns of local dominance of introduced exotic plant species. PMID:25770013

  11. Continuous time random walks for non-local radial solute transport

    NASA Astrophysics Data System (ADS)

    Dentz, Marco; Kang, Peter K.; Le Borgne, Tanguy

    2015-08-01

    This study formulates and analyzes continuous time random walk (CTRW) models in radial flow geometries for the quantification of non-local solute transport induced by heterogeneous flow distributions and by mobile-immobile mass transfer processes. To this end we derive a general CTRW framework in radial coordinates starting from the random walk equations for radial particle positions and times. The particle density, or solute concentration is governed by a non-local radial advection-dispersion equation (ADE). Unlike in CTRWs for uniform flow scenarios, particle transition times here depend on the radial particle position, which renders the CTRW non-stationary. As a consequence, the memory kernel characterizing the non-local ADE, is radially dependent. Based on this general formulation, we derive radial CTRW implementations that (i) emulate non-local radial transport due to heterogeneous advection, (ii) model multirate mass transfer (MRMT) between mobile and immobile continua, and (iii) quantify both heterogeneous advection in a mobile region and mass transfer between mobile and immobile regions. The expected solute breakthrough behavior is studied using numerical random walk particle tracking simulations. This behavior is analyzed by explicit analytical expressions for the asymptotic solute breakthrough curves. We observe clear power-law tails of the solute breakthrough for broad (power-law) distributions of particle transit times (heterogeneous advection) and particle trapping times (MRMT model). The combined model displays two distinct time regimes. An intermediate regime, in which the solute breakthrough is dominated by the particle transit times in the mobile zones, and a late time regime that is governed by the distribution of particle trapping times in immobile zones. These radial CTRW formulations allow for the identification of heterogeneous advection and mobile-immobile processes as drivers of anomalous transport, under conditions relevant for field tracer

  12. Alaska Resource Data File, Wiseman quadrangle, Alaska

    USGS Publications Warehouse

    Britton, Joe M.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  13. Local Rainfall Forecast System based on Time Series Analysis and Neural Networks

    NASA Astrophysics Data System (ADS)

    Buendia-Buendía, F. S.; López Carrión, F.; Tarquis, A. M.; Buendía Moya, G.; Andina, D.

    2010-05-01

    Rainfall is one of the most important events in daily life of human beings. During several decades, scientists have been trying to characterize the weather, current forecasts are based on high complex dynamic models. In this paper is presented a local rainfall forecast system based on Time Series analysis and Neural Networks. This model tries to complement the currently state of the art ensembles, from a locally historical perspective, where the model definition is not so dependent from the exact values of the initial conditions. After several years taking data, expert meteorologists proposed this approximation to characterize the local weather behaviour, that is automated by this system. The current system predicts rainfall events over Valladolid within a time period of a month with a twelve hours accuracy. The different blocks of the system is explained as well as the work introduces how to apply the forecast system to prevent economical impact hazards produced by rainfalls.

  14. Local Rainfall Forecast System based on Time Series Analysis and Neural Networks

    NASA Astrophysics Data System (ADS)

    Buendia, Fulgencio S.; Tarquis, A. M.; Buendia, G.; Andina, D.

    2010-05-01

    Rainfall is one of the most important events in daily life of human beings. During several decades, scientists have been trying to characterize the weather, current forecasts are based on high complex dynamic models. In this paper is presented a local rainfall forecast system based on Time Series analysis and Neural Networks. This model tries to complement the currently state of the art ensembles, from a locally historical perspective, where the model definition is not so dependent from the exact values of the initial conditions. After several year taking data, expert meteorologists proposed this approximation to characterize the local weather behavior, that is being automated by this system in different stages. However the whole system is introduced, it is focused on the different rainfall events situation classification as well as the time series analysis and forecast

  15. Causal-Path Local Time-Stepping in the discontinuous Galerkin method for Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Angulo, L. D.; Alvarez, J.; Teixeira, F. L.; Pantoja, M. F.; Garcia, S. G.

    2014-01-01

    We introduce a novel local time-stepping technique for marching-in-time algorithms. The technique is denoted as Causal-Path Local Time-Stepping (CPLTS) and it is applied for two time integration techniques: fourth-order low-storage explicit Runge-Kutta (LSERK4) and second-order Leap-Frog (LF2). The CPLTS method is applied to evolve Maxwell's curl equations using a Discontinuous Galerkin (DG) scheme for the spatial discretization. Numerical results for LF2 and LSERK4 are compared with analytical solutions and the Montseny's LF2 technique. The results show that the CPLTS technique improves the dispersive and dissipative properties of LF2-LTS scheme.

  16. A conservative finite volume scheme with time-accurate local time stepping for scalar transport on unstructured grids

    NASA Astrophysics Data System (ADS)

    Cavalcanti, José Rafael; Dumbser, Michael; Motta-Marques, David da; Fragoso Junior, Carlos Ruberto

    2015-12-01

    In this article we propose a new conservative high resolution TVD (total variation diminishing) finite volume scheme with time-accurate local time stepping (LTS) on unstructured grids for the solution of scalar transport problems, which are typical in the context of water quality simulations. To keep the presentation of the new method as simple as possible, the algorithm is only derived in two space dimensions and for purely convective transport problems, hence neglecting diffusion and reaction terms. The new numerical method for the solution of the scalar transport is directly coupled to the hydrodynamic model of Casulli and Walters (2000) that provides the dynamics of the free surface and the velocity vector field based on a semi-implicit discretization of the shallow water equations. Wetting and drying is handled rigorously by the nonlinear algorithm proposed by Casulli (2009). The new time-accurate LTS algorithm allows a different time step size for each element of the unstructured grid, based on an element-local Courant-Friedrichs-Lewy (CFL) stability condition. The proposed method does not need any synchronization between different time steps of different elements and is by construction locally and globally conservative. The LTS scheme is based on a piecewise linear polynomial reconstruction in space-time using the MUSCL-Hancock method, to obtain second order of accuracy in both space and time. The new algorithm is first validated on some classical test cases for pure advection problems, for which exact solutions are known. In all cases we obtain a very good level of accuracy, showing also numerical convergence results; we furthermore confirm mass conservation up to machine precision and observe an improved computational efficiency compared to a standard second order TVD scheme for scalar transport with global time stepping (GTS). Then, the new LTS method is applied to some more complex problems, where the new scalar transport scheme has also been coupled to

  17. Late quaternary vegetational change in the Kotzebue sound area, northwestern Alaska

    SciTech Connect

    Anderson, P.M.

    1985-01-01

    Two sediment cores from Kaiyak and Squirrel lakes in northwestern Alaska yielded pollen records that date to ca. 39,000 and 27,000 yr B.P., respectively. Between 39,000 and 14,000 yr B.P., the vegetation around these lakes was dominated by Gramineae and Cyperaceae with some Salix and possibly Betula nana/glandulosa forming a local, shrub component of the vegetation. Betula pollen percentages increased about 14,000 yr B.P., indicating the presence of a birch-dominated shrub tundra. Alnus pollen appeared at both sites between 9000 and 8000 yr B.P., and Picea pollen (mostly P. mariana) arrived at Squirrel Lake about 5000 yr B.P. The current forest-tundra mosaic around Squirrel Lake was established at this time, whereas shrub tundra existed near Kaiyak Lake throughout the Holocene. When compared to other pollen records from northwestern North America, these cores (1) represent a meadow component of lowland, Beringian tundra between 39,000 and 14,000 yr B.P., (2) demonstrate an early Holocene arrival of Alnus in northwestern Alaska that predates most other Alnus horizons in northern Alaska or northwestern Canada, and (3) show an east-to-west migration of Picea across northern Alaska from 9000 to 5000 yr B.P.

  18. Libraries in Alaska: MedlinePlus

    MedlinePlus

    ... this page: https://medlineplus.gov/libraries/alaska.html Libraries in Alaska To use the sharing features on ... JavaScript. Anchorage University of Alaska Anchorage Alaska Medical Library 3211 Providence Drive Anchorage, AK 99508-8176 907- ...

  19. Local volume-time averaged equations of motion for dispersed, turbulent, multiphase flows

    SciTech Connect

    Sha, W.T.; Slattery, J.C.

    1980-11-01

    In most flows of liquids and their vapors, the phases are dispersed randomly in both space and time. These dispersed flows can be described only statistically or in terms of averages. Local volume-time averaging is used here to derive a self-consistent set of equations governing momentum and energy transfer in dispersed, turbulent, multiphase flows. The empiricisms required for use with these equations are the subject of current research.

  20. Geometrical properties of an internal local octonionic space in curved space time

    SciTech Connect

    Marques, S.; Oliveira, C.G.

    1986-04-01

    A geometrical treatment on a flat tangent space local to a generalized complex, quaternionic, and octonionic space-time is constructed. It is shown that it is possible to find an Einstein-Maxwell-Yang-Mills correspondence in this generalized (Minkowskian) tangent space. 9 refs.

  1. Three-dimensional localization of low activity gamma-ray sources in real-time scenarios

    NASA Astrophysics Data System (ADS)

    Sharma, Manish K.; Alajo, Ayodeji B.; Lee, Hyoung K.

    2016-03-01

    Radioactive source localization plays an important role in tracking radiation threats in homeland security tasks. Its real-time application requires computationally efficient and reasonably accurate algorithms even with limited data to support detection with minimum uncertainty. This paper describes a statistic-based grid-refinement method for backtracing the position of a gamma-ray source in a three-dimensional domain in real-time. The developed algorithm used measurements from various known detector positions to localize the source. This algorithm is based on an inverse-square relationship between source intensity at a detector and the distance from the source to the detector. The domain discretization was developed and implemented in MATLAB. The algorithm was tested and verified from simulation results of an ideal case of a point source in non-attenuating medium. Subsequently, an experimental validation of the algorithm was performed to determine the suitability of deploying this scheme in real-time scenarios. Using the measurements from five known detector positions and for a measurement time of 3 min, the source position was estimated with an accuracy of approximately 53 cm. The accuracy improved and stabilized to approximately 25 cm for higher measurement times. It was concluded that the error in source localization was primarily due to detection uncertainties. In verification and experimental validation of the algorithm, the distance between 137Cs source and any detector position was between 0.84 m and 1.77 m. The results were also compared with the least squares method. Since the discretization algorithm was validated with a weak source, it is expected that it can localize the source of higher activity in real-time. It is believed that for the same physical placement of source and detectors, a source of approximate activity 0.61-0.92 mCi can be localized in real-time with 1 s of measurement time and same accuracy. The accuracy and computational efficiency

  2. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  3. Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay

    NASA Astrophysics Data System (ADS)

    Novi W, Cascarilla; Lestari, Dwi

    2016-02-01

    This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.

  4. Real-time automatic small infrared target detection using local spectral filtering in the frequency

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Zhang, Hong; Li, Jiafeng; Yuan, Ding; Sun, Mingui

    2014-11-01

    Accurate and fast detection of small infrared target has very important meaning for infrared precise guidance, early warning, video surveillance, etc. Based on human visual attention mechanism, an automatic detection algorithm for small infrared target is presented. In this paper, instead of searching for infrared targets, we model regular patches that do not attract much attention by our visual system. This is inspired by the property that the regular patches in spatial domain turn out to correspond to the spikes in the amplitude spectrum. Unlike recent approaches using global spectral filtering, we define the concept of local maxima suppression using local spectral filtering to smooth the spikes in the amplitude spectrum, thereby producing the pop-out of the infrared targets. In the proposed method, we firstly compute the amplitude spectrum of an input infrared image. Second, we find the local maxima of the amplitude spectrum using cubic facet model. Third, we suppress the local maxima using the convolution of the local spectrum with a low-pass Gaussian kernel of an appropriate scale. At last, the detection result in spatial domain is obtained by reconstructing the 2D signal using the original phase and the log amplitude spectrum by suppressing local maxima. The experiments are performed for some real-life IR images, and the results prove that the proposed method has satisfying detection effectiveness and robustness. Meanwhile, it has high detection efficiency and can be further used for real-time detection and tracking.

  5. Alaska: A frontier divided

    SciTech Connect

    O'Dell, R. )

    1986-09-01

    The superlatives surrounding Alaska are legion. Within the borders of the 49th US state are some of the world's greatest concentrations of waterfowl, bald eagles, fur seals, walrus, sea lions, otters, and the famous Kodiak brown bear. Alaska features the highest peak of North America, the 20,320-foot Mount McKinley, and the longest archipelago of small islands, the Aleutians. The state holds the greatest percentage of protected wilderness per capita in the world. The expanse of some Alaskan glaciers dwarfs entire countries. Like the periodic advance and retreat of its glaciers, Alaska appears with some regularity on the national US agenda. It last achieved prominence when President Jimmy Carter signed the Alaska National Interest Lands Conservation Act in 1980. Since then the conflict between environmental protection and economic development has been played out throughout the state, and Congress is expected to turn to Alaskan issues again in its next sessions.

  6. Assessing Significance of Global Climate Change in Local Climate Time Series

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Bair, A.; Livezey, R.; Hollingshead, A.; Horsfall, F. M. C.; Meyers, J. C.

    2014-12-01

    A common question by users to NOAA National Weather Service (NWS) local offices is how significant is global climate change in their local area. The scientific community provides copious information on global climate change, including assessments, for large regions. However, most decisions are made at the local level, where little or no information typically exists. To address this need, NOAA NWS released operationally the Local Climate Analysis Tool (LCAT) in 2013 and specifically incorporated a capability into the tool to determine the local Rate of Change (ROC). Although ROC provides answers to some questions, we have seen an additional need for clarification on the significance of the ROC, such as whether or not it differentiates natural variability from a real signal of longer-term climate change. This question becomes very important for decision makers in consideration of their long term planning efforts to build local resilience to changes in climate. LCAT uses three trend adjustment methods in computing ROC: Hinge, Optimal Climate Normals (OCN), and Exponentially Weighted Moving Average (EWMA). The Hinge tracks changes in climate time series, and OCN and EWMS track changes in climate normals. ROC is the slope of the straight line fit of the trend. Standard statistical methodology in use provides guidance for confidence intervals of the slope parameter (von Storch and Zwiers, 1999), which works well for a linear regression fit and can be used for ROCs of OCN and EWMA. However the Hinge, which is a linear fit anchored on one end, needs some additional adjustments and most likely will have smaller confidence intervals than those estimated by the statistical method. An additional way to look at the problem is to assess how the climate change signal compares to climate variability in the local time series. Livezey et al. (2007) suggested the use of the signal to noise ratio to estimate the significance of the rate of climate change. The signal to noise ratio of

  7. A Non-invasive Real-time Localization System for Enhanced Efficacy in Nasogastric Intubation.

    PubMed

    Sun, Zhenglong; Foong, Shaohui; Maréchal, Luc; Tan, U-Xuan; Teo, Tee Hui; Shabbir, Asim

    2015-12-01

    Nasogastric (NG) intubation is one of the most commonly performed clinical procedures. Real-time localization and tracking of the NG tube passage at the larynx region into the esophagus is crucial for safety, but is lacking in current practice. In this paper, we present the design, analysis and evaluation of a non-invasive real-time localization system using passive magnetic tracking techniques to improve efficacy of the clinical NG intubation process. By embedding a small permanent magnet at the insertion tip of the NG tube, a wearable system containing embedded sensors around the neck can determine the absolute position of the NG tube inside the body in real-time to assist in insertion. In order to validate the feasibility of the proposed system in detecting erroneous tube placement, typical reference intubation trajectories are first analyzed using anatomically correct models and localization accuracy of the system are evaluated using a precise robotic platform. It is found that the root-mean-squared tracking accuracy is within 5.3 mm for both the esophagus and trachea intubation pathways. Experiments were also designed and performed to demonstrate that the system is capable of tracking the NG tube accurately in biological environments even in presence of stationary ferromagnetic objects (such as clinical instruments). With minimal physical modification to the NG tube and clinical process, this system allows accurate and efficient localization and confirmation of correct NG tube placement without supplemental radiographic methods which is considered the current clinical standard. PMID:26108204

  8. Toward fast feature adaptation and localization for real-time face recognition systems

    NASA Astrophysics Data System (ADS)

    Zuo, Fei; de With, Peter H.

    2003-06-01

    In a home environment, video surveillance employing face detection and recognition is attractive for new applications. Facial feature (e.g. eyes and mouth) localization in the face is an essential task for face recognition because it constitutes an indispensable step for face geometry normalization. This paper presents a new and efficient feature localization approach for real-time personal surveillance applications with low-quality images. The proposed approach consists of three major steps: (1) self-adaptive iris tracing, which is preceded by a trace-point selection process with multiple initializations to overcome the local convergence problem, (2) eye structure verification using an eye template with limited deformation freedom, and (3) eye-pair selection based on a combination of metrics. We have tested our facial feature localization method on about 100 randomly selected face images from the AR database and 30 face images downloaded from the Internet. The results show that our approach achieves a correct detection rate of 96%. Since our eye-selection technique does not involve time-consuming deformation processes, it yields relatively fast processing. The proposed algorithm has been successfully applied to a real-time home video surveillance system and proven to be an effective and computationally efficient face normalization method preceding the face recognition.

  9. Latitude and local time dependence of precipitated low energy electrons at high latitudes

    NASA Technical Reports Server (NTRS)

    Gustafsson, G.

    1972-01-01

    Data from particle detectors on board the satellite OGO-4 were used to study the precipitation of electrons in the energy range 0.7 to 24 keV. The latitude dependence of these particles in the local time region from midnight to dawn was investigated in detail. The analysis shows that the precipitation of particles of energies 2.3 to 24 keV is centered at an invariant latitude of about 68 deg at midnight with a clear shift in latitude with increasing local time and this shift is more pronounced for lower energies. The highest fluxes of particles in this energy interval are measured at midnight and they decrease rapidly with local time. The data in the energy range 2.3 to 24 keV support a theory where particles are injected in the midnight region from the tail gaining energy due to a betatron process and then drift eastwards in a combined electric and magnetic field. The main part of the electrons at 0.7 keV show a different behavior. They seem to undergo an acceleration process which is rather local, sometimes giving field aligned fluxes which may be super-imposed on the background precipitation.

  10. Subjective time dilation: spatially local, object-based, or a global visual experience?

    PubMed

    New, Joshua J; Scholl, Brian J

    2009-01-01

    Time can appear to slow down in certain brief real-life events-e.g. during car accidents or critical moments of athletes' performances. Such time dilation can also be produced to a smaller degree in the laboratory by 'oddballs' presented in series of otherwise identical stimuli. We explored the spatial distribution of subjective time dilation: Does time expand only for the oddball objects themselves, only for the local spatial region including the oddball, or for the entire visual field? Because real-life traumatic events provoke an apparently global visual experience of time expansion, we predicted-and observed-that a locally discrete oddball would also dilate the apparent duration of other concurrent events in other parts of the visual field. This 'dilation at a distance' was not diminished by increasing spatial separation between the oddball and target events, and was not influenced by manipulations of objecthood that drive object-based attention. In addition, behaviorally 'urgent' oddballs (looming objects) yielded time dilation, but visually similar receding objects did not. We interpret these results in terms of the influence of attention on time perception-where attention reflects general arousal and faster internal pacing rather than spatial or object-based selection, per se. As a result, attention influences subjective time dilation as a global visual experience. PMID:19271914

  11. Processing advances for localization of beaked whales using time difference of arrival.

    PubMed

    Baggenstoss, Paul M

    2013-06-01

    This paper is concerned with the localization of clicking Blainville's beaked whales (Mesoplodon densirostris) using an array of widely spaced bottom-mounted hydrophones. A set of signal and data processing advances are presented that together make reliable tracking a possibility. These advances include a species-specific detector, elimination of spurious time-difference-of-arrival (TDOA) estimates, improved tracking of TDOA estimates, positive association of TDOA estimates using different hydrophone pairs, and joint localization of multiple whales. A key innovation in three of these advances is the principle of click-matching. The methods are demonstrated using real data. PMID:23742359

  12. Approximate local magnetic-to-electric surface operators for time-harmonic Maxwell's equations

    SciTech Connect

    El Bouajaji, M.

    2014-12-15

    The aim of this paper is to propose new local and accurate approximate magnetic-to-electric surface boundary operators for the three-dimensional time-harmonic Maxwell's equations. After their construction where their accuracy is improved through a regularization process, a localization of these operators and a full finite element approximation is introduced. Next, their numerical efficiency and accuracy is investigated in detail for different scatterers when these operators are used in the extreme situation of On-Surface Radiation Conditions methods.

  13. Spatially Distributing a GRACE Mascon Solution Across Gulf of Alaska Glaciers

    NASA Astrophysics Data System (ADS)

    Young, J. C.; Arendt, A. A.; Luthcke, S. B.

    2014-12-01

    Glaciers of Alaska and Northwestern Canada are losing mass at one of the highest rates of any mountain glacier system globally. High-precision measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have revealed changes in the local gravitational field along the Gulf of Alaska due to changes in these ice masses since 2003. Previous efforts have spatially resolved these mass changes to 100 x 100 km grid cells or mass concentrations (mascons) as part of a global GRACE solution. While mass change estimates at the scale of entire mountain ranges (i.e. several geographically-grouped mascons) show strong temporal correlation to surface mass balance and air temperature, and while ice loss magnitudes for all Gulf of Alaska glaciers agree closely with geodetic estimates from ICESat, most GRACE-derived glacier mass loss magnitudes do not match ground observations at the level of individual mascons. In this study, we examine several approaches for partitioning the most recent GRACE mascon solution for glacier mass change along the Gulf of Alaska to individual mascons. We derive sets of scaling coefficients for every mascon, representing the local averages of different topographic or climatological characteristics, which essentially serve as different measures of continentality. These characteristics include mean ice elevation and distance from the coast, derived from the Randolph Glacier Inventory, and mean monthly temperature and precipitation, derived from the gridded climate product PRISM. Each set of scaling coefficients (representing each continentality index) is evaluated by comparing our derived timeseries' of mass change to independent estimates from available ground and remote sensing datasets. We focus our preliminary validation on mascons within the Juneau Icefield area in Southeast Alaska, for which we have independent constraints on mass change from hydrological models and laser altimetry, and which acts as a test case for future

  14. Complex-time singularity and locality estimates for quantum lattice systems

    NASA Astrophysics Data System (ADS)

    Bouch, Gabriel

    2015-12-01

    We present and prove a well-known locality bound for the complex-time dynamics of a general class of one-dimensional quantum spin systems. Then we discuss how one might hope to extend this same procedure to higher dimensions using ideas related to the Eden growth process and lattice trees. Finally, we demonstrate with a specific family of lattice trees in the plane why this approach breaks down in dimensions greater than one and prove that there exist interactions for which the complex-time dynamics blows-up in finite imaginary time.

  15. Complex-time singularity and locality estimates for quantum lattice systems

    SciTech Connect

    Bouch, Gabriel

    2015-12-15

    We present and prove a well-known locality bound for the complex-time dynamics of a general class of one-dimensional quantum spin systems. Then we discuss how one might hope to extend this same procedure to higher dimensions using ideas related to the Eden growth process and lattice trees. Finally, we demonstrate with a specific family of lattice trees in the plane why this approach breaks down in dimensions greater than one and prove that there exist interactions for which the complex-time dynamics blows-up in finite imaginary time. .

  16. Changing exhumation patterns during Cenozoic growth and glaciation of the Alaska Range: Insights from detrital thermochronology and geochronology

    NASA Astrophysics Data System (ADS)

    Lease, Richard O.; Haeussler, Peter J.; O'Sullivan, Paul

    2016-04-01

    Cenozoic growth of the Alaska Range created the highest topography in North America, but the space-time pattern and drivers of exhumation are poorly constrained. We analyzed U/Pb and fission-track double dates of detrital zircon and apatite grains from 12 catchments that span a 450 km length of the Alaska Range to illuminate the timing and extent of exhumation during different periods. U/Pb ages indicate a dominant Late Cretaceous to Oligocene plutonic provenance for the detrital grains, with only a small percentage of grains recycled from the Mesozoic and Paleozoic sedimentary cover. Fission-track ages record exhumation during Alaska Range growth and incision and reveal three distinctive patterns. First, initial Oligocene exhumation was focused in the central Alaska Range at ~30 Ma and expanded outward along the entire length of the range until 18 Ma. Oligocene exhumation, coeval with initial Yakutat microplate collision >600 km to the southeast, suggests a far-field response to collision that was localized by the Denali Fault within a weak Mesozoic suture zone. Second, the variable timing of middle to late Miocene exhumation suggests independently evolving histories influenced by local structures. Time-transgressive cooling ages suggest successive rock uplift and erosion of Mounts Foraker (12 Ma) through Denali (6 Ma) as crust was advected through a restraining bend in the Denali Fault and indicate a long-term slip rate ~4 mm/yr. Third, Pliocene exhumation is synchronous (3.7-2.7 Ma) along the length of the Alaska Range but only occurs in high-relief, glacier-covered catchments. Pliocene exhumation may record an acceleration in glacial incision that was coincident with the onset of Northern Hemisphere glaciation.

  17. Real-time image dehazing using local adaptive neighborhoods and dark-channel-prior

    NASA Astrophysics Data System (ADS)

    Valderrama, Jesus A.; Díaz-Ramírez, Víctor H.; Kober, Vitaly; Hernandez, Enrique

    2015-09-01

    A real-time algorithm for single image dehazing is presented. The algorithm is based on calculation of local neighborhoods of a hazed image inside a moving window. The local neighborhoods are constructed by computing rank-order statistics. Next the dark-channel-prior approach is applied to the local neighborhoods to estimate the transmission function of the scene. By using the suggested approach there is no need for applying a refining algorithm to the estimated transmission such as the soft matting algorithm. To achieve high-rate signal processing the proposed algorithm is implemented exploiting massive parallelism on a graphics processing unit (GPU). Computer simulation results are carried out to test the performance of the proposed algorithm in terms of dehazing efficiency and speed of processing. These tests are performed using several synthetic and real images. The obtained results are analyzed and compared with those obtained with existing dehazing algorithms.

  18. Real-time neural network based camera localization and its extension to mobile robot control.

    PubMed

    Choi, D H; Oh, S Y

    1997-06-01

    The feasibility of using neural networks for camera localization and mobile robot control is investigated here. This approach has the advantages of eliminating the laborious and error-prone process of imaging system modeling and calibration procedures. Basically, two different approaches of using neural networks are introduced of which one is a hybrid approach combining neural networks and the pinhole-based analytic solution while the other is purely neural network based. These techniques have been tested and compared through both simulation and real-time experiments and are shown to yield more precise localization than analytic approaches. Furthermore, this neural localization method is also shown to be directly applicable to the navigation control of an experimental mobile robot along the hallway purely guided by a dark wall strip. It also facilitates multi-sensor fusion through the use of multiple sensors of different types for control due to the network's capability of learning without models. PMID:9427102

  19. Alaska Resource Data File, Point Lay quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Point Lay 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  20. Local-in-Time Adjoint-Based Method for Optimal Control/Design Optimization of Unsteady Compressible Flows

    NASA Technical Reports Server (NTRS)

    Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.

    2009-01-01

    .We study local-in-time adjoint-based methods for minimization of ow matching functionals subject to the 2-D unsteady compressible Euler equations. The key idea of the local-in-time method is to construct a very accurate approximation of the global-in-time adjoint equations and the corresponding sensitivity derivative by using only local information available on each time subinterval. In contrast to conventional time-dependent adjoint-based optimization methods which require backward-in-time integration of the adjoint equations over the entire time interval, the local-in-time method solves local adjoint equations sequentially over each time subinterval. Since each subinterval contains relatively few time steps, the storage cost of the local-in-time method is much lower than that of the global adjoint formulation, thus making the time-dependent optimization feasible for practical applications. The paper presents a detailed comparison of the local- and global-in-time adjoint-based methods for minimization of a tracking functional governed by the Euler equations describing the ow around a circular bump. Our numerical results show that the local-in-time method converges to the same optimal solution obtained with the global counterpart, while drastically reducing the memory cost as compared to the global-in-time adjoint formulation.

  1. Crustal Structure Beneath Pleasant Valley, Nevada from Local and Regional Earthquake Travel Times

    NASA Astrophysics Data System (ADS)

    Kant, L. B.; Nabelek, J.; Braunmiller, J.

    2011-12-01

    In 1915 the Pleasant Valley fault in the Basin and Range Province of northern Nevada ruptured in a Mw~7 earthquake, one of the largest normal faulting earthquakes in U.S. history. We are currently operating a densely spaced linear array of broadband three-component seismometers across the Pleasant Valley fault to investigate the structure and the geometry of the fault zone. Here, we present a local crustal velocity model derived from P and S wave travel times of local and regional earthquakes recorded by the Pleasant Valley array. Regional events in northern California, eastern Nevada and Utah that occurred in line with the array are well recorded and provide constraints on upper mantle velocities. Many local seismic events were also observed. Only a few of these events were detected by the ANSS network, reflecting the limited detection capability in sparsely instrumented northern Nevada. The local event set includes earthquakes, mining blasts and sonic booms from nearby jet airplane flights. A subset of these events was located using Hypoinverse. Their travel time curves are used to estimate crustal structure and velocity in the Pleasant Valley region. This is an EarthScope FlexArray project.

  2. Wireless acoustic modules for real-time data fusion using asynchronous sniper localization algorithms

    NASA Astrophysics Data System (ADS)

    Hengy, S.; De Mezzo, S.; Duffner, P.; Naz, P.

    2012-11-01

    The presence of snipers in modern conflicts leads to high insecurity for the soldiers. In order to improve the soldier's protection against this threat, the French German Research Institute of Saint-Louis (ISL) has been conducting studies in the domain of acoustic localization of shots. Mobile antennas mounted on the soldier's helmet were initially used for real-time detection, classification and localization of sniper shots. It showed good performances in land scenarios, but also in urban scenarios if the array was in the shot corridor, meaning that the microphones first detect the direct wave and then the reflections of the Mach and muzzle waves (15% distance estimation error compared to the actual shooter array distance). Fusing data sent by multiple sensor nodes distributed on the field showed some of the limitations of the technologies that have been implemented in ISL's demonstrators. Among others, the determination of the arrays' orientation was not accurate enough, thereby degrading the performance of data fusion. Some new solutions have been developed in the past year in order to obtain better performance for data fusion. Asynchronous localization algorithms have been developed and post-processed on data measured in both free-field and urban environments with acoustic modules on the line of sight of the shooter. These results are presented in the first part of the paper. The impact of GPS position estimation error is also discussed in the article in order to evaluate the possible use of those algorithms for real-time processing using mobile acoustic nodes. In the frame of ISL's transverse project IMOTEP (IMprovement Of optical and acoustical TEchnologies for the Protection), some demonstrators are developed that will allow real-time asynchronous localization of sniper shots. An embedded detection and classification algorithm is implemented on wireless acoustic modules that send the relevant information to a central PC. Data fusion is then processed and the

  3. Alaska Resource Data File: Chignik quadrangle, Alaska

    USGS Publications Warehouse

    Pilcher, Steven H.

    2000-01-01

    Descriptions of the mineral occurrences can be found in the report. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska. There is a website from which you can obtain the data for this report in text and Filemaker Pro formats

  4. Local-time survey of plasma at low altitudes over the auroral zones

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Ackerson, K. L.

    1971-01-01

    A local-time survey of the low energy proton and electron intensities precipitated into the earth's atmosphere during periods of magnetic quiescence was constructed. A typical, individual satellite crossing of this region in each of eight local-time sectors was selected from a library of similar observations with the polar-orbiting satellite Injun 5. The trapping boundary for more energetic electron intensities, E 45 keV, is a natural coordinate for delineating the boundary between the two major types of lower energy, 50 or = E or = 15,000 eV. The main contributors to electron energy influx are inverted V precipitation poleward of the trapping boundary and the plasma sheet intensities equatorward. These are interpreted in terms of a magnetospheric model.

  5. Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping

    NASA Astrophysics Data System (ADS)

    Hosseini, Vahid Reza; Shivanian, Elyas; Chen, Wen

    2016-05-01

    The purpose of the current investigation is to determine numerical solution of time-fractional diffusion-wave equation with damping for Caputo's fractional derivative of order α (1 < α ≤ 2). A meshless local radial point interpolation (MLRPI) scheme based on Galerkin weak form is analyzed. The reason of choosing MLRPI approach is that it does not require any background integrations cells, instead integrations are implemented over local quadrature domains which are further simplified for reducing the complication of computation using regular and simple shape. The unconditional stability and convergence with order O (τ 6 - 2 α) are proved, where τ is time stepping. Also, several numerical experiments are illustrated to verify theoretical analysis.

  6. Time difference of arrival blast localization using a network of disposable sensors

    NASA Astrophysics Data System (ADS)

    Knobler, Ronald A.; Plummer, Thomas J.

    2007-04-01

    Determining the location of an explosive event using a networked sensor system within an acceptable accuracy is a challenging problem. McQ has developed such a system, using a mesh network of inexpensive acoustic sensors. The system performs a three-dimensional, time-difference-of-arrival (TDOA) localization of blasts of various yields in several different environments. Localization information of the blast is provided to the end user by exfiltration over satellite communications. The system is able to perform accurately in the presence of various sources of error including GPS position, propagation effects, temperature, and error in determining the time of arrival (TOA). The system design as well as its performance are presented.

  7. Local-in-time well-posedness of a regularized mathematical model for silicon MESFET

    NASA Astrophysics Data System (ADS)

    Blokhin, A. M.; Tkachev, D. L.

    2010-10-01

    We prove the local-in-time well-posedness of the initial boundary value problem for a system of quasilinear equations. This system is used for finding numerical stationary solutions of the hydrodynamical model of charge transport in the silicon MESFET (metal semiconductor field effect transistor). The initial boundary value problem has the following peculiarities: the quasilinear system is not a Cauchy-Kovalevskaya-type system; the boundary is a non-smooth curve and has angular points; nonlinearity of the problem is mainly connected with squares of gradients of the unknown functions. By using a special representation for the solution of a model problem we reduce the original problem to an integro-differential system. The local-in-time existence of a weakened generalized solution of this system is then proved by the fixed-point argument.

  8. Alexander Archipelago, Southeastern Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    West of British Columbia, Canada, and south of the Yukon Territory, the southeastern coastline of Alaska trails off into the islands of the Alexander Archipelago. The area is rugged and contains many long, U-shaped, glaciated valleys, many of which terminate at tidewater. The Alexander Archipelago is home to Glacier Bay National Park. The large bay that has two forks on its northern end is Glacier Bay itself. The eastern fork is Muir inlet, into which runs the Muir glacier, named for the famous Scottish-born naturalist John Muir. Glacier Bay opens up into the Icy Strait. The large, solid white area to the west is Brady Icefield, which terminates at the southern end in Brady's Glacier. To locate more interesting features from Glacier Bay National Park, take a look at the park service map. As recently as two hundred years ago, a massive ice field extended into Icy Strait and filled the Glacier Bay. Since that time, the area has experienced rapid deglaciation, with many large glaciers retreating 40, 60, even 80 km. While temperatures have increased in the region, it is still unclear whether the rapid recession is part of the natural cycle of tidewater glaciers or is an indicator of longer-term climate change. For more on Glacier Bay and climate change, read an online paper by Dr. Dorothy Hall, a MODIS Associate Science Team Member. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  9. Digital Sequences and a Time Reversal-Based Impact Region Imaging and Localization Method

    PubMed Central

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Qian, Weifeng

    2013-01-01

    To reduce time and cost of damage inspection, on-line impact monitoring of aircraft composite structures is needed. A digital monitor based on an array of piezoelectric transducers (PZTs) is developed to record the impact region of impacts on-line. It is small in size, lightweight and has low power consumption, but there are two problems with the impact alarm region localization method of the digital monitor at the current stage. The first one is that the accuracy rate of the impact alarm region localization is low, especially on complex composite structures. The second problem is that the area of impact alarm region is large when a large scale structure is monitored and the number of PZTs is limited which increases the time and cost of damage inspections. To solve the two problems, an impact alarm region imaging and localization method based on digital sequences and time reversal is proposed. In this method, the frequency band of impact response signals is estimated based on the digital sequences first. Then, characteristic signals of impact response signals are constructed by sinusoidal modulation signals. Finally, the phase synthesis time reversal impact imaging method is adopted to obtain the impact region image. Depending on the image, an error ellipse is generated to give out the final impact alarm region. A validation experiment is implemented on a complex composite wing box of a real aircraft. The validation results show that the accuracy rate of impact alarm region localization is approximately 100%. The area of impact alarm region can be reduced and the number of PZTs needed to cover the same impact monitoring region is reduced by more than a half. PMID:24084123

  10. Direct picosecond time resolution of unimolecular reactions initiated by local mode excitation

    NASA Technical Reports Server (NTRS)

    Scherer, N. F.; Doany, F. E.; Zewail, A. H.; Perry, J. W.

    1986-01-01

    Attention is given to the first results of direct, picosec measurements of the Delta-nu(OH) 5 local mode transition of H2O2. These time-resolved studies yield a direct measure of the unimolecular dissociation rate, and furnish a lower limit for the rate of energy redistribution from the OH stretch to the O-O reaction coordinate. The data thus determined may be used to ascertain the domain of validity for statistical unimolecular reaction rate theories.

  11. Digital sequences and a time reversal-based impact region imaging and localization method.

    PubMed

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Qian, Weifeng

    2013-01-01

    To reduce time and cost of damage inspection, on-line impact monitoring of aircraft composite structures is needed. A digital monitor based on an array of piezoelectric transducers (PZTs) is developed to record the impact region of impacts on-line. It is small in size, lightweight and has low power consumption, but there are two problems with the impact alarm region localization method of the digital monitor at the current stage. The first one is that the accuracy rate of the impact alarm region localization is low, especially on complex composite structures. The second problem is that the area of impact alarm region is large when a large scale structure is monitored and the number of PZTs is limited which increases the time and cost of damage inspections. To solve the two problems, an impact alarm region imaging and localization method based on digital sequences and time reversal is proposed. In this method, the frequency band of impact response signals is estimated based on the digital sequences first. Then, characteristic signals of impact response signals are constructed by sinusoidal modulation signals. Finally, the phase synthesis time reversal impact imaging method is adopted to obtain the impact region image. Depending on the image, an error ellipse is generated to give out the final impact alarm region. A validation experiment is implemented on a complex composite wing box of a real aircraft. The validation results show that the accuracy rate of impact alarm region localization is approximately 100%. The area of impact alarm region can be reduced and the number of PZTs needed to cover the same impact monitoring region is reduced by more than a half. PMID:24084123

  12. Correlation of tertiary formations of Alaska

    USGS Publications Warehouse

    MacNeil, F.S.; Wolfe, J.A.; Miller, D.J.; Hopkins, D.M.

    1961-01-01

    Recent stratigraphic and paleontologic studies have resulted in substantial revision of the age assignments and inter-basin correlations of the Tertiary formations of Alaska as given in both an earlier compilation by P. S. Smith (1939) and a tentative chart prepared for distribution at the First International Symposium on Arctic Geology at Calgary, Alberta (Miller, MacNeil, and Wahrhaftig, 1960). Current work in Alaska by the U. S. Geological Survey and several oil companies is furnishing new information at a rapid rate and further revisions may be expected. The correlation chart (Fig. 1), the first published chart to deal exclusively with the Tertiary of Alaska, had the benefit of a considerable amount of stratigraphic data and fossil collections from some oil companies, but recent surface mapping and drilling by other oil companies in several Tertiary basins undoubtedly must have produced much more information. Nevertheless, the extent of available data justifies the publication of a revised correlation chart at this time.

  13. Paleoindians in beringia: evidence from arctic alaska.

    PubMed

    Kunz, M L; Reanier, R E

    1994-02-01

    Excavations at the Mesa site in arctic Alaska provide evidence for a Paleoindian occupation of Beringia, the region adjacent to the Bering Strait. Eleven carbon-14 dates on hearths associated with Paleoindian projectile points place humans at the site between 9,730 and 11,660 radiocarbon years before present (years B.P.). The presence of Paleoindians in Beringia at these times challenges the notion that Paleoindian cultures arose exclusively in mid-continental North America. The age span of Paleoindians at the Mesa site overlaps with dates from two other cultural complexes in interior Alaska. A hiatus in the record of human occupation occurs between 10,300 and 11,000 years B.P. Late Glacial climatic fluctuations may have made northern Alaska temporarily unfavorable for humans and spurred their southward dispersal. PMID:17747660

  14. Loschmidt echo in many-spin systems: contrasting time scales of local and global measurements.

    PubMed

    Zangara, Pablo R; Bendersky, Denise; Levstein, Patricia R; Pastawski, Horacio M

    2016-06-13

    A local excitation in a quantum many-spin system evolves deterministically. A time-reversal procedure, involving the inversion of the signs of every energy and interaction, should produce the excitation revival. This idea, experimentally coined in nuclear magnetic resonance, embodies the concept of the Loschmidt echo (LE). While such an implementation involves a single spin autocorrelation M(1,1), i.e. a local LE, theoretical efforts have focused on the study of the recovery probability of a complete many-body state, referred to here as global or many-body LE MMB Here, we analyse the relation between these magnitudes, with regard to their characteristic time scales and their dependence on the number of spins N We show that the global LE can be understood, to some extent, as the simultaneous occurrence of N independent local LEs, i.e. MMB∼(M(1,1))(N/4) This extensive hypothesis is exact for very short times and confirmed numerically beyond such a regime. Furthermore, we discuss a general picture of the decay of M1,1 as a consequence of the interplay between the time scale that characterizes the reversible interactions (T(2)) and that of the perturbation (τ(Σ)). Our analysis suggests that the short-time decay, characterized by the time scale τ(Σ), is greatly enhanced by the complex processes that occur beyond T(2) This would ultimately lead to the experimentally observed T(3), which was found to be roughly independent of τ(Σ) but closely tied to T(2). PMID:27140970

  15. Real-Time Lexicon-Free Scene Text Localization and Recognition.

    PubMed

    Neumann, Lukas; Matas, Jiri

    2016-09-01

    An end-to-end real-time text localization and recognition method is presented. Its real-time performance is achieved by posing the character detection and segmentation problem as an efficient sequential selection from the set of Extremal Regions. The ER detector is robust against blur, low contrast and illumination, color and texture variation. In the first stage, the probability of each ER being a character is estimated using features calculated by a novel algorithm in constant time and only ERs with locally maximal probability are selected for the second stage, where the classification accuracy is improved using computationally more expensive features. A highly efficient clustering algorithm then groups ERs into text lines and an OCR classifier trained on synthetic fonts is exploited to label character regions. The most probable character sequence is selected in the last stage when the context of each character is known. The method was evaluated on three public datasets. On the ICDAR 2013 dataset the method achieves state-of-the-art results in text localization; on the more challenging SVT dataset, the proposed method significantly outperforms the state-of-the-art methods and demonstrates that the proposed pipeline can incorporate additional prior knowledge about the detected text. The proposed method was exploited as the baseline in the ICDAR 2015 Robust Reading competition, where it compares favourably to the state-of-the art. PMID:26540676

  16. The eruption of Redoubt Volcano, Alaska, December 14,1989-August 31, 1990

    SciTech Connect

    Brantley, S.R.

    1990-12-01

    This paper reports on explosive volcanic activity at Redoubt Volcano, 177 km southwest of Anchorage, Alaska, which generated numerous tephra plumes that disrupted air traffic above southern Alaska, damaged aircraft, and caused locally heavy tephra fall. Pyroclastic flows triggered debris flows that inundated part of an oil-tanker facility, temporarily suspending oil production in Cook Inlet. The newly established Alaska Volcano Observatory increased its monitoring effort and disseminated volcanic hazard information to government agencies, industry, and the public.

  17. 78 FR 42024 - Fisheries of the Exclusive Economic Zone Off Alaska; Northern Rockfish and Dusky Rockfish in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... Regulatory Area of the GOA under Sec. 679.20(d)(1)(iii) on July 3, 2013 (78 FR 40638 July 8, 2013). As of...). Attachments to electronic comments will be accepted in Microsoft Word or Excel, WordPerfect, or Adobe PDF file..., Alaska local time (A.l.t.), July 10, 2013, through 1200 hrs, A.l.t., July 12, 2013. Comments must...

  18. Time-lapse monitoring of localized changes within heterogeneous media with scattered waves

    NASA Astrophysics Data System (ADS)

    Chinaemerem, Kanu

    Time-lapse monitoring of geological and mechanical media has been the focus of various studies over the past four decades because of the information that the inferred changes within the medium provides insight into the dynamic characteristics of the medium. Time-lapse changes within a medium can be used to characterize the temporal evolution of the medium, evaluate the forces driving the changes within the medium and make predictions on the future state of the monitored medium. The detectability of the changes within a material depends on the characteristics of the change to be imaged, the sensitivity of the monitoring data to the change, and the time-lapse monitoring parameters such as the monitoring source-receiver array and the spectral content of the monitoring waves. Various time-lapse monitoring tools have been used to monitor changes within media ranging from the earth's surface to tumors within the human body. These monitoring tools include the use of 4D active surveys were an imprint of the change within the medium is extracted from the time-lapse surveys and the use of interferometric techniques that use singly or multiply scattered waves. My major goal in this study is to image and localize changes present within a scattering medium using time-lapse multiply scattered waves generated within the monitored medium. The changes to be imaged are generally localized in space. This work is an extension of coda wave interferometry. Coda wave interferometry focuses on the identification and extraction of average velocity change occurring within a scattering medium. Due to the non-linear characteristics of multiply scattered waves and limited information of the origin of the multiply scattered waves, coda wave interferometry resolves the average velocity change within the scattering medium with no or limited indication of the location of the change. In this study, I demonstrate that time-lapse changes can be imaged and localized within scattering media using

  19. Fermion sign problem in imaginary-time projection continuum quantum Monte Carlo with local interaction

    NASA Astrophysics Data System (ADS)

    Calcavecchia, Francesco; Holzmann, Markus

    2016-04-01

    We use the shadow wave function formalism as a convenient model to study the fermion sign problem affecting all projector quantum Monte Carlo methods in continuum space. We demonstrate that the efficiency of imaginary-time projection algorithms decays exponentially with increasing number of particles and/or imaginary-time propagation. Moreover, we derive an analytical expression that connects the localization of the system with the magnitude of the sign problem, illustrating this behavior through numerical results. Finally, we discuss the computational complexity of the fermion sign problem and methods for alleviating its severity.

  20. Fermion sign problem in imaginary-time projection continuum quantum Monte Carlo with local interaction.

    PubMed

    Calcavecchia, Francesco; Holzmann, Markus

    2016-04-01

    We use the shadow wave function formalism as a convenient model to study the fermion sign problem affecting all projector quantum Monte Carlo methods in continuum space. We demonstrate that the efficiency of imaginary-time projection algorithms decays exponentially with increasing number of particles and/or imaginary-time propagation. Moreover, we derive an analytical expression that connects the localization of the system with the magnitude of the sign problem, illustrating this behavior through numerical results. Finally, we discuss the computational complexity of the fermion sign problem and methods for alleviating its severity. PMID:27176442

  1. 1997 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Wallace, Kristi L.

    1999-01-01

    The Alaska Volcano Observatory (AVO) monitors over 40 historically active volcanoes along the Aleutian Arc. Twenty are seismically monitored and for the rest, the AVO monitoring program relies mainly on pilot reports, observations of local residents and ship crews, and daily analysis of satellite images. In 1997, AVO responded to eruptive activity or suspect volcanic activity at 11 volcanic centers: Wrangell, Sanford, Shrub mud volcano, Iliamna, the Katmai group (Martin, Mageik, Snowy, and Kukak volcanoes), Chiginagak, Pavlof, Shishaldin, Okmok, Cleveland, and Amukta. Of these, AVO has real-time, continuously recording seismic networks at Iliamna, the Katmai group, and Pavlof. The phrase “suspect volcanic activity” (SVA), used to characterize several responses, is an eruption report or report of unusual activity that is subsequently determined to be normal or enhanced fumarolic activity, weather-related phenomena, or a non-volcanic event. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) about the 1997 activity of 5 Russian volcanoes--Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Alaid (SVA). This report summarizes volcanic activity and SVA in Alaska during 1997 and the AVO response, as well as information on the reported activity at the Russian volcanoes. Only those reports or inquiries that resulted in a “significant” investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of reports throughout the year of steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1997 response record.

  2. DETECTION, LOCALIZATION, AND CHARACTERIZATION OF GRAVITATIONAL WAVE BURSTS IN A PULSAR TIMING ARRAY

    SciTech Connect

    Finn, Lee Samuel; Lommen, Andrea N.

    2010-08-01

    Efforts to detect gravitational waves by timing an array of pulsars have traditionally focused on stationary gravitational waves, e.g., stochastic or periodic signals. Gravitational wave bursts-signals whose duration is much shorter than the observation period-will also arise in the pulsar timing array waveband. Sources that give rise to detectable bursts include the formation or coalescence of supermassive black holes (SMBHs), the periapsis passage of compact objects in highly elliptic or unbound orbits about an SMBH, or cusps on cosmic strings. Here, we describe how pulsar timing array data may be analyzed to detect and characterize these bursts. Our analysis addresses, in a mutually consistent manner, a hierarchy of three questions. (1) What are the odds that a data set includes the signal from a gravitational wave burst? (2) Assuming the presence of a burst, what is the direction to its source? (3) Assuming the burst propagation direction, what is the burst waveform's time dependence in each of its polarization states? Applying our analysis to synthetic data sets, we find that we can detect gravitational waves even when the radiation is too weak to either localize the source or infer the waveform, and detect and localize sources even when the radiation amplitude is too weak to permit the waveform to be determined. While the context of our discussion is gravitational wave detection via pulsar timing arrays, the analysis itself is directly applicable to gravitational wave detection using either ground- or space-based detector data.

  3. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zhang, X.; Zavodsky, B. T.; Heinrichs, T.; Broderson, D.

    2014-01-01

    A case study and monthly statistical analysis using sounder data assimilation to improve the Alaska regional weather forecast model are presented. Weather forecast in Alaska faces challenges as well as opportunities. Alaska has a large land with multiple types of topography and coastal area. Weather forecast models must be finely tuned in order to accurately predict weather in Alaska. Being in the high-latitudes provides Alaska greater coverage of polar orbiting satellites for integration into forecasting models than the lower 48. Forecasting marine low stratus clouds is critical to the Alaska aviation and oil industry and is the current focus of the case study. NASA AIRS/CrIS sounder profiles data are used to do data assimilation for the Alaska regional weather forecast model to improve Arctic marine stratus clouds forecast. Choosing physical options for the WRF model is discussed. Preprocess of AIRS/CrIS sounder data for data assimilation is described. Local observation data, satellite data, and global data assimilation data are used to verify and/or evaluate the forecast results by the MET tools Model Evaluation Tools (MET).

  4. Tundra Rehabilitation in Alaska's Arctic

    NASA Astrophysics Data System (ADS)

    Lynn, L. A.

    2012-12-01

    Oil exploration in Alaska's Arctic has been conducted for more than 40 years, resulting in over 3,640 ha of gravel fill placed for roads, pads, and airstrips to support the industry. Likewise, tundra disturbance from burying power lines and by tundra vehicle travel are also common. Rehabilitation of disturbed sites began around 2002, with well over 150 ha that has been previously treated or is currently being rehabilitated. Two primary goals of rehabilitation efforts have been 1) revegetation by indigenous species, and 2) limiting thermokarst. Early efforts were concerned that removing gravel and having exposed bare ground would lead to extensive subsidence and eolian erosion. Native grass cultivars (e.g. Poa glauca, Arctagrostis latifolia, and Festuca rubra) were seeded to create vegetation cover quickly with the expectation that these grasses would survive only temporarily. The root masses and leaf litter were also expected to trap indigenous seed to enhance natural recolonization by indigenous plants. Due to the remote location of these sites, many of which are only accessible by helicopter, most are visited only two to three times following cultivation treatments, providing a limited data pool. At many sites, the total live seeded grass cover declined about 15% over the first 5¬-6 years (from around 30% to 15% cover), while total live indigenous vascular cover increased from no or trace cover to an average of 10% cover in that time. Cover of indigenous vascular plants at sites that were not seeded with native grass cultivars averaged just less than 10% after 10 years, showing no appreciable difference between the two approaches. Final surface elevations at the sites affect local hydrology and soil moisture. Other factors that influence the success of vegetation cover are proximity to the Arctic coast (salt effects), depth of remaining gravel, and changes in characteristics of the near-surface soil. Further development of rehabilitation techniques and the

  5. Statewide Repository and Interactive Map of Coastal Elevation Profiles for Alaska

    NASA Astrophysics Data System (ADS)

    Gould, A.; Kinsman, N.; Southerland, L.

    2014-12-01

    Beach elevation profiles are a type of temporal coastal data that can be used to better understand coastal environments, document change and assess hazard vulnerability. The value of these measurements increases when sites are revisited seasonally and/or interannually to capture the dynamic range of coastal landforms. Static measurements of the shoreface have been collected by a number of stakeholders in Alaska since the 1960s, but, have not historically been published or made readily accessible. In cooperation with the Alaska Ocean Observing System, the Alaska Division of Geological & Geophysical Surveys (DGGS) has designed a universal data repository to house these coastal measurements. This new database has an interactive map interface that enables easy access to existing profile locations to encourage repeat observations. Users can explore profile measurements collected by DGGS and others as time-series plots and location-based images of the shoreface environment. The database has been designed to accommodate datasets collected with differing techniques, including differential leveling, survey-grade GPS or extraction from lidar-derived digital elevation models. Non-DGGS profile measurements, including community-led efforts, University of Alaska project datasets, and archived United States Geological Survey coastal profiles have also been incorporated into the database and contributions from other entities are welcomed. In addition to exhibiting the new interactive map capabilities, we also provide a case study example from Yakutat, Alaska illustrating how this tool can be incorporated into broader investigations of coastal dynamics and how these measurements can augment shoreline change assessments. The readily accessible nature of this database also promotes local involvement in community-based coastal monitoring, also demonstrated in the Yakutat example.

  6. LOCAL BUCKLEY-JAMES ESTIMATION FOR HETEROSCEDASTIC ACCELERATED FAILURE TIME MODEL

    PubMed Central

    Pang, Lei; Lu, Wenbin; Wang, Huixia Judy

    2016-01-01

    In survival analysis, the accelerated failure time model is a useful alternative to the popular Cox proportional hazards model due to its easy interpretation. Current estimation methods for the accelerated failure time model mostly assume independent and identically distributed random errors, but in many applications the conditional variance of log survival times depend on covariates exhibiting some form of heteroscedasticity. In this paper, we develop a local Buckley-James estimator for the accelerated failure time model with heteroscedastic errors. We establish the consistency and asymptotic normality of the proposed estimator and propose a resampling approach for inference. Simulations demonstrate that the proposed method is flexible and leads to more efficient estimation when heteroscedasticity is present. The value of the proposed method is further assessed by the analysis of a breast cancer data set.

  7. Development of a protocol to quantify local bone adaptation over space and time: Quantification of reproducibility.

    PubMed

    Lu, Yongtao; Boudiffa, Maya; Dall'Ara, Enrico; Bellantuono, Ilaria; Viceconti, Marco

    2016-07-01

    In vivo micro-computed tomography (µCT) scanning of small rodents is a powerful method for longitudinal monitoring of bone adaptation. However, the life-time bone growth in small rodents makes it a challenge to quantify local bone adaptation. Therefore, the aim of this study was to develop a protocol, which can take into account large bone growth, to quantify local bone adaptations over space and time. The entire right tibiae of eight 14-week-old C57BL/6J female mice were consecutively scanned four times in an in vivo µCT scanner using a nominal isotropic image voxel size of 10.4µm. The repeated scan image datasets were aligned to the corresponding baseline (first) scan image dataset using rigid registration. 80% of tibia length (starting from the endpoint of the proximal growth plate) was selected as the volume of interest and partitioned into 40 regions along the tibial long axis (10 divisions) and in the cross-section (4 sectors). The bone mineral content (BMC) was used to quantify bone adaptation and was calculated in each region. All local BMCs have precision errors (PE%CV) of less than 3.5% (24 out of 40 regions have PE%CV of less than 2%), least significant changes (LSCs) of less than 3.8%, and 38 out of 40 regions have intraclass correlation coefficients (ICCs) of over 0.8. The proposed protocol allows to quantify local bone adaptations over an entire tibia in longitudinal studies, with a high reproducibility, an essential requirement to reduce the number of animals to achieve the necessary statistical power. PMID:27262181

  8. Space-Time Localization of Plasma Turbulence Using Multiple Spacecraft Radio Links

    NASA Technical Reports Server (NTRS)

    Armstrong, John W.; Estabrook, Frank B.

    2011-01-01

    Space weather is described as the variability of solar wind plasma that can disturb satellites and systems and affect human space exploration. Accurate prediction requires information of the heliosphere inside the orbit of the Earth. However, for predictions using remote sensing, one needs not only plane-of-sky position but also range information the third spatial dimension to show the distance to the plasma disturbances and thus when they might propagate or co-rotate to create disturbances at the orbit of the Earth. Appropriately processed radio signals from spacecraft having communications lines-of-sight passing through the inner heliosphere can be used for this spacetime localization of plasma disturbances. The solar plasma has an electron density- and radio-wavelength-dependent index of refraction. An approximately monochromatic wave propagating through a thin layer of plasma turbulence causes a geometrical-optics phase shift proportional to the electron density at the point of passage, the radio wavelength, and the thickness of the layer. This phase shift is the same for a wave propagating either up or down through the layer at the point of passage. This attribute can be used for space-time localization of plasma irregularities. The transfer function of plasma irregularities to the observed time series depends on the Doppler tracking mode. When spacecraft observations are in the two-way mode (downlink radio signal phase-locked to an uplink radio transmission), plasma fluctuations have a two-pulse response in the Doppler. In the two-way mode, the Doppler time series y2(t) is the difference between the frequency of the downlink signal received and the frequency of a ground reference oscillator. A plasma blob localized at a distance x along the line of sight perturbs the phase on both the up and down link, giving rise to two events in the two-way tracking time series separated by a time lag depending the blob s distance from the Earth: T2-2x/c, where T2 is the

  9. Flood frequency in Alaska

    USGS Publications Warehouse

    Childers, J.M.

    1970-01-01

    Records of peak discharge at 183 sites were used to study flood frequency in Alaska. The vast size of Alaska, its great ranges of physiography, and the lack of data for much of the State precluded a comprehensive analysis of all flood determinants. Peak stream discharges, where gaging-station records were available, were analyzed for 2-year, 5-year, 10-year, 25-year, and 50-year average-recurrence intervals. A regional analysis of the flood characteristics by multiple-regression methods gave a set of equations that can be used to estimate floods of selected recurrence intervals up to 50 years for any site on any stream in Alaska. The equations relate floods to drainage-basin characteristics. The study indicates that in Alaska the 50-year flood can be estimated from 10-year gaging- station records with a standard error of 22 percent whereas the 50-year flood can be estimated from the regression equation with a standard error of 53 percent. Also, maximum known floods at more than 500 gaging stations and miscellaneous sites in Alaska were related to drainage-area size. An envelope curve of 500 cubic feet per second per square mile covered all but 2 floods in the State.

  10. Kids Count Alaska Data Book, 2001.

    ERIC Educational Resources Information Center

    Leask, Linda, Ed.

    This Kids Count Data Book examines statewide trends in the well-being of Alaska's children. The statistical portrait is based on key indicators in six areas: (1) infancy, including prenatal care, low birth weight, and infant mortality; (2) economic well-being, including child poverty, children with no parent working full-time, and teen births; (3)…

  11. Kids Count Alaska, 2000 Data Book.

    ERIC Educational Resources Information Center

    Leask, Linda, Ed.

    This Kids Count Data Book examines statewide trends in the well-being of Alaska's children. The statistical portrait is based on key indicators in six areas: (1) infancy, including prenatal care, low birth weight, and infant mortality; (2) economic well-being, including child poverty, children with no parent working full-time, and teen births; (3)…

  12. Kids Count Alaska Data Book, 2002.

    ERIC Educational Resources Information Center

    Leask, Linda, Ed.

    This Kids Count Data Book examines statewide trends in the well-being of Alaska's children. The statistical portrait is based on key indicators in six areas: (1) infancy, including prenatal care, low birth weight, and infant mortality; (2) economic well-being, including child poverty, children with no parent working full-time, children in single…

  13. 78 FR 27991 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... Bureau of Land Management Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior...), notice is hereby given that an appealable decision will be issued by the Bureau of Land Management (BLM... accepted as timely filed. ADDRESSES: A copy of the decision may be obtained from: Bureau......

  14. 78 FR 65354 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... Bureau of Land Management Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior...), notice is hereby given that an appealable decision will be issued by the Bureau of Land Management (BLM... not be accepted as timely filed. ADDRESSES: A copy of the decision may be obtained from:......

  15. EarthScope Transportable Array Siting Outreach Activities in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Gardine, L.; Dorr, P. M.; Tape, C.; McQuillan, P.; Taber, J.; West, M. E.; Busby, R. W.

    2014-12-01

    The EarthScopeTransportable Array is working to locate over 260 stations in Alaska and western Canada. In this region, new tactics and partnerships are needed to increase outreach exposure. IRIS and EarthScope are partnering with the Alaska Earthquake Center, part of University of Alaska Geophysical Institute, to spread awareness of Alaska earthquakes and the benefits of the Transportable Array for Alaskans. Nearly all parts of Alaska are tectonically active. The tectonic and seismic variability of Alaska requires focused attention at the regional level, and the remoteness and inaccessibility of most Alaska villages and towns often makes frequent visits difficult. For this reason, Alaska outreach most often occurs at community events. When a community is accessible, every opportunity to engage the residents is made. Booths at state fairs and large cultural gatherings, such as the annual convention of the Alaska Federation of Natives, are excellent venues to distribute earthquake information and to demonstrate a wide variety of educational products and web-based applications related to seismology and the Transportable Array that residents can use in their own communities. Region-specific publications have been developed to tie in a sense of place for residents of Alaska. The Alaska content for IRIS's Active Earth Monitor will emphasize the widespread tectonic and seismic features and offer not just Alaska residents, but anyone interested in Alaska, a glimpse into what is going on beneath their feet. The concerted efforts of the outreach team will have lasting effects on Alaskan understanding of the seismic hazard and tectonics of the region. Efforts to publicize the presence of the Transportable Array in Alaska, western Canada, and the Lower 48 also continue. There have been recent articles published in university, local and regional newspapers; stories appearing in national and international print and broadcast media; and documentaries produced by some of the world

  16. Effect of Local Nonradiative Recombination on Time-Resolved Electroluminescence of p-n Junctions

    NASA Astrophysics Data System (ADS)

    Ptashchenko, A. A.; Melkonyan, D. V.; Moroz, N. V.; Ptashchenko, F. A.

    1997-02-01

    The effect of locally introduced dislocations on time-resolved electroluminescence (EL) in GaAlAs, GaAsP and GaP p-n structures is studied. The data indicate that the local nonradiative recombination results in non-exponential EL decay. A one-dimensional model of this effect, involving back-diffusion of injected electrons, their extraction into the n-region and local recombination at dislocations and the surface, is proposed. An analysis of EL decay, based on this model, enables to estimate the bulk lifetime of minority carriers and some parameters of local nonradiative recombination. Der Einfluß örtlich eingeführter Dislokationen auf den Zeitverlauf der Elektrolumineszenz (EL) in GaAlAs, GaAsP und GaP p-n Strukturen wurde studiert. Die experimentellen Daten zeigen, daß die lokale strahlungslose Rekombination zu einem nichtexponentiellen EL-Abfall führt. Ein eindimensionales Modell dieser Erscheinung, das die Rückdiffusion der injizierten Elektronen, ihre Extraktion in das n-Gebiet und lokale Rekombination an Dislokationen und der Oberfläche berücksichtigt, wird vorgeschlagen. Eine Analyse des EL-Abfalles auf Grund dieses Modells erlaubt, die Volumen-Lebensdauer von Minoritätsträgern und einige Parameter der lokalen strahlungslosen Rekombination abzuschätzen.

  17. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements

    NASA Astrophysics Data System (ADS)

    Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; Carlson, Thomas J.

    2016-04-01

    Locating the position of fixed or mobile sources (i.e., transmitters) based on measurements obtained from sensors (i.e., receivers) is an important research area that is attracting much interest. In this paper, we review several representative localization algorithms that use time of arrivals (TOAs) and time difference of arrivals (TDOAs) to achieve high signal source position estimation accuracy when a transmitter is in the line-of-sight of a receiver. Circular (TOA) and hyperbolic (TDOA) position estimation approaches both use nonlinear equations that relate the known locations of receivers and unknown locations of transmitters. Estimation of the location of transmitters using the standard nonlinear equations may not be very accurate because of receiver location errors, receiver measurement errors, and computational efficiency challenges that result in high computational burdens. Least squares and maximum likelihood based algorithms have become the most popular computational approaches to transmitter location estimation. In this paper, we summarize the computational characteristics and position estimation accuracies of various positioning algorithms. By improving methods for estimating the time-of-arrival of transmissions at receivers and transmitter location estimation algorithms, transmitter location estimation may be applied across a range of applications and technologies such as radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.

  18. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements.

    PubMed

    Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T; Carlson, Thomas J

    2016-04-01

    Locating the position of fixed or mobile sources (i.e., transmitters) based on measurements obtained from sensors (i.e., receivers) is an important research area that is attracting much interest. In this paper, we review several representative localization algorithms that use time of arrivals (TOAs) and time difference of arrivals (TDOAs) to achieve high signal source position estimation accuracy when a transmitter is in the line-of-sight of a receiver. Circular (TOA) and hyperbolic (TDOA) position estimation approaches both use nonlinear equations that relate the known locations of receivers and unknown locations of transmitters. Estimation of the location of transmitters using the standard nonlinear equations may not be very accurate because of receiver location errors, receiver measurement errors, and computational efficiency challenges that result in high computational burdens. Least squares and maximum likelihood based algorithms have become the most popular computational approaches to transmitter location estimation. In this paper, we summarize the computational characteristics and position estimation accuracies of various positioning algorithms. By improving methods for estimating the time-of-arrival of transmissions at receivers and transmitter location estimation algorithms, transmitter location estimation may be applied across a range of applications and technologies such as radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia. PMID:27131647

  19. Time-distance domain transformation for Acoustic Emission source localization in thin metallic plates.

    PubMed

    Grabowski, Krzysztof; Gawronski, Mateusz; Baran, Ireneusz; Spychalski, Wojciech; Staszewski, Wieslaw J; Uhl, Tadeusz; Kundu, Tribikram; Packo, Pawel

    2016-05-01

    Acoustic Emission used in Non-Destructive Testing is focused on analysis of elastic waves propagating in mechanical structures. Then any information carried by generated acoustic waves, further recorded by a set of transducers, allow to determine integrity of these structures. It is clear that material properties and geometry strongly impacts the result. In this paper a method for Acoustic Emission source localization in thin plates is presented. The approach is based on the Time-Distance Domain Transform, that is a wavenumber-frequency mapping technique for precise event localization. The major advantage of the technique is dispersion compensation through a phase-shifting of investigated waveforms in order to acquire the most accurate output, allowing for source-sensor distance estimation using a single transducer. The accuracy and robustness of the above process are also investigated. This includes the study of Young's modulus value and numerical parameters influence on damage detection. By merging the Time-Distance Domain Transform with an optimal distance selection technique, an identification-localization algorithm is achieved. The method is investigated analytically, numerically and experimentally. The latter involves both laboratory and large scale industrial tests. PMID:26950889

  20. Sound Source Localization for HRI Using FOC-Based Time Difference Feature and Spatial Grid Matching.

    PubMed

    Li, Xiaofei; Liu, Hong

    2013-08-01

    In human-robot interaction (HRI), speech sound source localization (SSL) is a convenient and efficient way to obtain the relative position between a speaker and a robot. However, implementing a SSL system based on TDOA method encounters many problems, such as noise of real environments, the solution of nonlinear equations, switch between far field and near field. In this paper, fourth-order cumulant spectrum is derived, based on which a time delay estimation (TDE) algorithm that is available for speech signal and immune to spatially correlated Gaussian noise is proposed. Furthermore, time difference feature of sound source and its spatial distribution are analyzed, and a spatial grid matching (SGM) algorithm is proposed for localization step, which handles some problems that geometric positioning method faces effectively. Valid feature detection algorithm and a decision tree method are also suggested to improve localization performance and reduce computational complexity. Experiments are carried out in real environments on a mobile robot platform, in which thousands of sets of speech data with noise collected by four microphones are tested in 3D space. The effectiveness of our TDE method and SGM algorithm is verified. PMID:26502430

  1. Real-time realizations of the Bayesian Infrasonic Source Localization Method

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Arrowsmith, S.; Hofstetter, A.; Nippress, A.

    2015-12-01

    The Bayesian Infrasonic Source Localization method (BISL), introduced by Mordak et al. (2010) and upgraded by Marcillo et al. (2014) is destined for the accurate estimation of the atmospheric event origin at local, regional and global scales by the seismic and infrasonic networks and arrays. The BISL is based on probabilistic models of the source-station infrasonic signal propagation time, picking time and azimuth estimate merged with a prior knowledge about celerity distribution. It requires at each hypothetical source location, integration of the product of the corresponding source-station likelihood functions multiplied by a prior probability density function of celerity over the multivariate parameter space. The present BISL realization is generally time-consuming procedure based on numerical integration. The computational scheme proposed simplifies the target function so that integrals are taken exactly and are represented via standard functions. This makes the procedure much faster and realizable in real-time without practical loss of accuracy. The procedure executed as PYTHON-FORTRAN code demonstrates high performance on a set of the model and real data.

  2. Particle swarm optimization and its application in MEG source localization using single time sliced data

    NASA Astrophysics Data System (ADS)

    Lin, Juan; Liu, Chenglian; Guo, Yongning

    2014-10-01

    The estimation of neural active sources from the magnetoencephalography (MEG) data is a very critical issue for both clinical neurology and brain functions research. A widely accepted source-modeling technique for MEG involves calculating a set of equivalent current dipoles (ECDs). Depth in the brain is one of difficulties in MEG source localization. Particle swarm optimization(PSO) is widely used to solve various optimization problems. In this paper we discuss its ability and robustness to find the global optimum in different depths of the brain when using single equivalent current dipole (sECD) model and single time sliced data. The results show that PSO is an effective global optimization to MEG source localization when given one dipole in different depths.

  3. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems

    NASA Technical Reports Server (NTRS)

    Cockburn, Bernardo; Shu, Chi-Wang

    1997-01-01

    In this paper, we study the Local Discontinuous Galerkin methods for nonlinear, time-dependent convection-diffusion systems. These methods are an extension of the Runge-Kutta Discontinuous Galerkin methods for purely hyperbolic systems to convection-diffusion systems and share with those methods their high parallelizability, their high-order formal accuracy, and their easy handling of complicated geometries, for convection dominated problems. It is proven that for scalar equations, the Local Discontinuous Galerkin methods are L(sup 2)-stable in the nonlinear case. Moreover, in the linear case, it is shown that if polynomials of degree k are used, the methods are k-th order accurate for general triangulations; although this order of convergence is suboptimal, it is sharp for the LDG methods. Preliminary numerical examples displaying the performance of the method are shown.

  4. Optical cable fault locating using Brillouin optical time domain reflectometer and cable localized heating method

    NASA Astrophysics Data System (ADS)

    Lu, Y. G.; Zhang, X. P.; Dong, Y. M.; Wang, F.; Liu, Y. H.

    2007-07-01

    A novel optical cable fault location method, which is based on Brillouin optical time domain reflectometer (BOTDR) and cable localized heating, is proposed and demonstrated. In the method, a BOTDR apparatus is used to measure the optical loss and strain distribution along the fiber in an optical cable, and a heating device is used to heat the cable at its certain local site. Actual experimental results make it clear that the proposed method works effectively without complicated calculation. By means of the new method, we have successfully located the optical cable fault in the 60 km optical fiber composite power cable from Shanghai to Shengshi, Zhejiang. A fault location accuracy of 1 meter was achieved. The fault location uncertainty of the new optical cable fault location method is at least one order of magnitude smaller than that of the traditional OTDR method.

  5. Stress avoidance in a common annual: reproductive timing is important for local adaptation and geographic distribution.

    PubMed

    Griffith, T M; Watson, M A

    2005-11-01

    Adaptation to local environments may be an important determinant of species' geographic range. However, little is known about which traits contribute to adaptation or whether their further evolution would facilitate range expansion. In this study, we assessed the adaptive value of stress avoidance traits in the common annual Cocklebur (Xanthium strumarium) by performing a reciprocal transplant across a broad latitudinal gradient extending to the species' northern border. Populations were locally adapted and stress avoidance traits accounted for most fitness differences between populations. At the northern border where growing seasons are cooler and shorter, native populations had evolved to reproduce earlier than native populations in the lower latitude gardens. This clinal pattern in reproductive timing corresponded to a shift in selection from favouring later to earlier reproduction. Thus, earlier reproduction is an important adaptation to northern latitudes and constraint on the further evolution of this trait in marginal populations could potentially limit distribution. PMID:16313471

  6. Accretion of southern Alaska

    USGS Publications Warehouse

    Hillhouse, J.W.

    1987-01-01

    Paleomagnetic data from southern Alaska indicate that the Wrangellia and Peninsular terranes collided with central Alaska probably by 65 Ma ago and certainly no later than 55 Ma ago. The accretion of these terranes to the mainland was followed by the arrival of the Ghost Rocks volcanic assemblage at the southern margin of Kodiak Island. Poleward movement of these terranes can be explained by rapid motion of the Kula oceanic plate, mainly from 85 to 43 Ma ago, according to recent reconstructions derived from the hot-spot reference frame. After accretion, much of southwestern Alaska underwent a counterclockwise rotation of about 50 ?? as indicated by paleomagnetic poles from volcanic rocks of Late Cretaceous and Early Tertiary age. Compression between North America and Asia during opening of the North Atlantic (68-44 Ma ago) may account for the rotation. ?? 1987.

  7. Sparse representation based on local time-frequency template matching for bearing transient fault feature extraction

    NASA Astrophysics Data System (ADS)

    He, Qingbo; Ding, Xiaoxi

    2016-05-01

    The transients caused by the localized fault are important measurement information for bearing fault diagnosis. Thus it is crucial to extract the transients from the bearing vibration or acoustic signals that are always corrupted by a large amount of background noise. In this paper, an iterative transient feature extraction approach is proposed based on time-frequency (TF) domain sparse representation. The approach is realized by presenting a new method, called local TF template matching. In this method, the TF atoms are constructed based on the TF distribution (TFD) of the Morlet wavelet bases and local TF templates are formulated from the TF atoms for the matching process. The instantaneous frequency (IF) ridge calculated from the TFD of an analyzed signal provides the frequency parameter values for the TF atoms as well as an effective template matching path on the TF plane. In each iteration, local TF templates are employed to do correlation with the TFD of the analyzed signal along the IF ridge tube for identifying the optimum parameters of transient wavelet model. With this iterative procedure, transients can be extracted in the TF domain from measured signals one by one. The final signal can be synthesized by combining the extracted TF atoms and the phase of the raw signal. The local TF template matching builds an effective TF matching-based sparse representation approach with the merit of satisfying the native pulse waveform structure of transients. The effectiveness of the proposed method is verified by practical defective bearing signals. Comparison results also show that the proposed method is superior to traditional methods in transient feature extraction.

  8. Localized-state distributions in molecularly doped polymers determined from time-of-flight transient photocurrent

    NASA Astrophysics Data System (ADS)

    Nagase, Takashi; Naito, Hiroyoshi

    2000-07-01

    Localized-state distributions have been studied in a molecularly doped polymer (MDP) system of a polymer binder (polycarbonate) doped with charge-transporting [N, N'-diphenyl-N, N'-bis(3-methylphenyl)(1,1'-biphenyl)-4,4'-diamine (TPD)] and trap-forming molecules [1-phenyl-3-(p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline (PRA)] simultaneously by means of the conventional time-of-flight (TOF) transient photocurrent measurements. The existence of a transport energy in the MDP system is experimentally shown by comparing Gaussian distributions of localized states deduced by the Gaussian disorder model, due to Bässler and co-workers [H. Bässler, Phys. Status Solidi B 175, 15 (1993)], with localized-state distributions determined from the analysis of the TOF transient photocurrent data, based on the trap-controlled band transport [H. Naito, J. Ding, and M. Okuda, Appl. Phys. Lett. 64, 1830 (1994)]. The transport energy is found to be located at the center of the Gaussian distribution due to the host TPD molecules. It is also found that at 0.1 mol % PRA addition, the Gaussian distribution of localized states due to TPD molecules is broadened through the random electrostatic potential generated by dipoles of PRA, and at 1 mol % PRA addition, the localized-state structure due to PRA molecules, as well as the further broadening of the Gaussian distribution, are observed. The energy level of the structure is determined to be 0.54 eV above the transport energy, which is almost equal to the difference in the ionization potential between PRA and TPD.

  9. Coherent time-reversal microwave imaging for the detection and localization of breast tissue malignancies

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Delwar; Mohan, Ananda Sanagavarapu

    2015-02-01

    This paper deals with the coherent processing of time-reversal operator for microwave imaging in the frequency domain. In frequency domain time-reversal imaging approach, images obtained for different frequency bins over ultrawideband are incoherently processed. In highly dense and cluttered medium, the signal subspace over each narrow frequency bin varies from that obtained using the complete ultrawideband. As a result, the detection and localization from noncoherent imaging approach is often inconclusive. In order to improve the stability of time-reversal microwave imaging, we propose coherent processing using novel focusing matrix approach. The proposed focusing matrix makes possible the time-reversal imaging technique to coherently process each frequency bin to yield a consistent signal subspace. The performance of coherent focusing is investigated when combined with time-reversal robust Capon beamformer (TR-RCB). We have used numerical experiments on breast cancer detection using finite difference time domain employing anatomically realistic numerical breast phantoms that contain varying amounts of dense fibroglandular tissue content. The imaging results indicate that the proposed coherent-TR-RCB could overcome the limitations of time-reversal imaging in a highly heterogeneous and cluttered medium.

  10. Mercury localization in mouse kidney over time: autoradiography versus silver staining

    SciTech Connect

    Rodier, P.M.; Kates, B.; Simons, R.

    1988-02-01

    Several methods of silver staining have been employed to localize mercury in tissue, under the assumption that the techniques represent total Hg, but recent reports have suggested that these stains are specific for a limited fraction of the Hg present in some samples. Magos et al. hypothesized that the stains actually vary with inorganic mercury content. The purpose of the present study was to compare localization by radiolabeling to localization by one silver stain, the photoemulsion histochemical technique, in tissues prepared to contain a range of levels of total Hg and a range of levels of inorganic Hg. Mice dosed with 8 mg Hg/kg as MeHg were killed 24 hr, 1 week, or 2 weeks after exposure, to allow a decrease in total Hg and an increase in the proportion of demethylated Hg over time. Mice dosed with 4 mg Hg/kg as HgCl/sub 2/ provided samples in which all the Hg present was in the inorganic form. Atomic absorption of kidneys of mice dosed with MeHg showed that total Hg fell from 55 micrograms/g to 39 to 25 over 2 weeks, while the inorganic fraction climbed from about 2 to 27 to 35%. Grain counts from autoradiographs of /sup 203/Hg-labeled sections correlated with total Hg content at +0.88, but silver staining was correlated with inorganic Hg content, appearing only at late termination times in MeHg-exposed animals, but soon after dosing in mice exposed to inorganic Hg. The photoemulsion histochemical technique revealed a substance strictly localized in the proximal tubules, while autoradiographs and grain counts showed total Hg to be present throughout the kidney tissue. These results support the contention that silver stains are selective for inorganic Hg.

  11. The local maxima method for enhancement of time-frequency map and its application to local damage detection in rotating machines

    NASA Astrophysics Data System (ADS)

    Obuchowski, Jakub; Wyłomańska, Agnieszka; Zimroz, Radosław

    2014-06-01

    In this paper a new method of fault detection in rotating machinery is presented. It is based on a vibration time series analysis in time-frequency domain. A raw vibration signal is decomposed via the short-time Fourier transform (STFT). The time-frequency map is considered as matrix (M×N) with N sub-signals with length M. Each sub-signal is considered as a time series and might be interpreted as energy variation for narrow frequency bins. Each sub-signal is processed using a novel approach called the local maxima method. Basically, we search for local maxima because they should appear in the signal if local damage in bearings or gearbox exists. Finally, information for all sub-signals is combined in order to validate impulsive behavior of energy. Due to random character of the obtained time series, each maximum occurrence has to be checked for its significance. If there are time points for which the average number of local maxima for all sub-signals is significantly higher than for the other time instances, then location of these maxima is “weighted” as more important (at this time instance local maxima create for a set of Δf a pattern on the time-frequency map). This information, called vector of weights, is used for enhancement of spectrogram. When vector of weights is applied for spectrogram, non-informative energy is suppressed while informative features on spectrogram are enhanced. If the distribution of local maxima on spectrogram creates a pattern of wide-band cyclic energy growth, the machine is suspected of being damaged. For healthy condition, the vector of the average number of maxima for each time point should not have outliers, aggregation of information from all sub-signals is rather random and does not create any pattern. The method is illustrated by analysis of very noisy both real and simulated signals.

  12. Path collapse in Feynman formula. Stable path integral formula from local time reparametrization invariant amplitude

    NASA Astrophysics Data System (ADS)

    Kleinert, H.

    1989-06-01

    The Feynman formula, which expresses the time displacement amplitude > x b | exp (-t Ȟ) | x a< in terms of a path integral Π 1N (∫ dn) Π 1N+1 ( {∫ dp n}/{2π}) exp{Σ 1N [ ip n(x n-x n-1) - ɛH (p n, x n)]} with large N, does not exist for systems with Coulomb {-1}/{r} potential and gives incorrect threshold behaviours near centrifugal {1}/{r 2} or angular {1}/{sin2θ } barriers. We discuss the physical origin of this failure and propose an alternative well-defined path integral formula based on a family of amplitudes that is invariant under arbitrary local time reparametrizations. The time slicing with finite N breaks this invariance. For appropriate choices of the reparametrization function the fluctuations are stabilized and the new formula is applicable to all the above systems.

  13. Time-reversal asymmetry without local moments via directional scalar spin chirality

    NASA Astrophysics Data System (ADS)

    Hosur, Pavan

    Quantum phases of matter that violate time-reversal symmetry invariably develop local spin or orbital moments in the ground state. Here, a directional scalar spin chiral order (DSSCO) phase is introduced, that disrespects time-reversal symmetry but has no static moments. It can be obtained by melting the spin moments in a magnetically ordered phase but retaining residual broken time-reversal symmetry. Orbital moments are then precluded by the spatial symmetries of the spin rotation symmetric state. Interestingly, polar Kerr effect in the 3D DSSCO has the same symmetries as those observed experimentally in the pseudogap phase of several underdoped cuprates. Finally, it is shown that the DSSCO provides a phenomenological route for reconciling the results of Kerr effect and nuclear magnetic resonance experiments in the cuprates, with charge ordering tendencies - observed in X-ray diffraction studies - playing a crucial role. The so-called ''memory effect'' in the cuprates can be incorporated into this picture as well.

  14. Real-time traffic jam detection and localization running on a smart camera

    NASA Astrophysics Data System (ADS)

    Lipetski, Yuriy; Loibner, Gernot; Ulm, Michael; Ponweiser, Wolfgang; Sidla, Oliver

    2014-03-01

    Reliable automatic detection of traffic jam occurrences is of big significance for traffic flow analysis related applications. We present our work aimed at the application of video based real-time traffic jam detection. Our method can handle both calibrated and un-calibrated scenarios, operating in world and in image coordinate systems respectively. The method is designed to be operated on a smart camera, but is also suitable for a standard personal computer. The combination of state-of-the-art algorithms for vehicle detections and velocity estimation allows robust long-term system operation in due to the high recall rate and very low false alarm rate. The proposed method not only detects traffic jam events in real-time, but also precisely localizes traffic jams by their start and end positions per road lane. We describe also our strategy in making computationally heavy algorithms real-time capable even on hardware with a limited computing power.

  15. Locally activated Monte Carlo method for long-time-scale simulations

    NASA Astrophysics Data System (ADS)

    Kaukonen, M.; Peräjoki, J.; Nieminen, R. M.; Jungnickel, G.; Frauenheim, Th.

    2000-01-01

    We present a technique for the structural optimization of atom models to study long time relaxation processes involving different time scales. The method takes advantage of the benefits of both the kinetic Monte Carlo (KMC) and the molecular dynamics simulation techniques. In contrast to ordinary KMC, our method allows for an estimation of a true lower limit for the time scale of a relaxation process. The scheme is fairly general in that neither the typical pathways nor the typical metastable states need to be known prior to the simulation. It is independent of the lattice type and the potential which describes the atomic interactions. It is adopted to study systems with structural and/or chemical inhomogeneity which makes it particularly useful for studying growth and diffusion processes in a variety of physical systems, including crystalline bulk, amorphous systems, surfaces with adsorbates, fluids, and interfaces. As a simple illustration we apply the locally activated Monte Carlo to study hydrogen diffusion in diamond.

  16. "How Will I Sew My Baskets?" Women Vendors, Market Art, and Incipient Political Activism in Anchorage, Alaska

    ERIC Educational Resources Information Center

    Lee, Molly

    2003-01-01

    In this article the author examines the multifaceted role of the Alaska Federation of Natives crafts fair in the lives of Alaska Native women who have left their home villages and moved into Anchorage, Alaska's largest city. At the same time, this discussion raises broader issues such as the evolving politicization of women traders and the growing…

  17. The Effect of Alaska's Home Visitation Program for High-Risk Families on Trends in Abuse and Neglect

    ERIC Educational Resources Information Center

    Gessner, Bradford D.

    2008-01-01

    Objectives: At 6 sites serving 21 communities, Alaska implemented Healthy Families Alaska, a home visitation program using paraprofessionals designed to decrease child abuse and neglect. The primary study objective was to compare changes over time in Child Protective Services outcomes by Healthy Families Alaska enrollment status. Methods:…

  18. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy

    SciTech Connect

    Via, Riccardo Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Ciocca, Mario; Riboldi, Marco; Baroni, Guido; Orecchia, Roberto

    2015-05-15

    Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring

  19. Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    SciTech Connect

    Chapman, S. C.; Dendy, R. O.; Todd, T. N.; Webster, A. J.; Morris, J.; Watkins, N. W.; Calderon, F. A.

    2014-06-15

    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM.

  20. The Relative Contribution of Interaural Time and Magnitude Cues to Dynamic Sound Localization

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    This paper presents preliminary data from a study examining the relative contribution of interaural time differences (ITDs) and interaural level differences (ILDs) to the localization of virtual sound sources both with and without head motion. The listeners' task was to estimate the apparent direction and distance of virtual sources (broadband noise) presented over headphones. Stimuli were synthesized from minimum phase representations of nonindividualized directional transfer functions; binaural magnitude spectra were derived from the minimum phase estimates and ITDs were represented as a pure delay. During dynamic conditions, listeners were encouraged to move their heads; the position of the listener's head was tracked and the stimuli were synthesized in real time using a Convolvotron to simulate a stationary external sound source. ILDs and ITDs were either correctly or incorrectly correlated with head motion: (1) both ILDs and ITDs correctly correlated, (2) ILDs correct, ITD fixed at 0 deg azimuth and 0 deg elevation, (3) ITDs correct, ILDs fixed at 0 deg, 0 deg. Similar conditions were run for static conditions except that none of the cues changed with head motion. The data indicated that, compared to static conditions, head movements helped listeners to resolve confusions primarily when ILDs were correctly correlated, although a smaller effect was also seen for correct ITDs. Together with the results for static conditions, the data suggest that localization tends to be dominated by the cue that is most reliable or consistent, when reliability is defined by consistency over time as well as across frequency bands.

  1. Effective real-time vehicle tracking using discriminative sparse coding on local patches

    NASA Astrophysics Data System (ADS)

    Chen, XiangJun; Ye, Feiyue; Ruan, Yaduan; Chen, Qimei

    2016-01-01

    A visual tracking framework that provides an object detector and tracker, which focuses on effective and efficient visual tracking in surveillance of real-world intelligent transport system applications, is proposed. The framework casts the tracking task as problems of object detection, feature representation, and classification, which is different from appearance model-matching approaches. Through a feature representation of discriminative sparse coding on local patches called DSCLP, which trains a dictionary on local clustered patches sampled from both positive and negative datasets, the discriminative power and robustness has been improved remarkably, which makes our method more robust to a complex realistic setting with all kinds of degraded image quality. Moreover, by catching objects through one-time background subtraction, along with offline dictionary training, computation time is dramatically reduced, which enables our framework to achieve real-time tracking performance even in a high-definition sequence with heavy traffic. Experiment results show that our work outperforms some state-of-the-art methods in terms of speed, accuracy, and robustness and exhibits increased robustness in a complex real-world scenario with degraded image quality caused by vehicle occlusion, image blur of rain or fog, and change in viewpoint or scale.

  2. Detection of the Third Heart Sound Based on Nonlinear Signal Decomposition and Time-Frequency Localization.

    PubMed

    Barma, Shovan; Chen, Bo-Wei; Ji, Wen; Rho, Seungmin; Chou, Chih-Hung; Wang, Jhing-Fa

    2016-08-01

    This study presents a precise way to detect the third ( S3 ) heart sound, which is recognized as an important indication of heart failure, based on nonlinear single decomposition and time-frequency localization. The detection of the S3 is obscured due to its significantly low energy and frequency. Even more, the detected S3 may be misunderstood as an abnormal second heart sound with a fixed split, which was not addressed in the literature. To detect such S3, the Hilbert vibration decomposition method is applied to decompose the heart sound into a certain number of subcomponents while intactly preserving the phase information. Thus, the time information of all of the decomposed components are unchanged, which further expedites the identification and localization of any module/section of a signal properly. Next, the proposed localization step is applied to the decomposed subcomponents by using smoothed pseudo Wigner-Ville distribution followed by the reassignment method. Finally, based on the positional information, the S3 is distinguished and confirmed by measuring time delays between the S2 and S3. In total, 82 sets of cardiac cycles collected from different databases including Texas Heart Institute database are examined for evaluation of the proposed method. The result analysis shows that the proposed method can detect the S3 correctly, even when the normalized temporal energy of S3 is larger than 0.16, and the frequency of those is larger than 34 Hz. In a performance analysis, the proposed method demonstrates that the accuracy rate of S3 detection is as high as 93.9%, which is significantly higher compared with the other methods. Such findings prove the robustness of the proposed idea for detecting substantially low-energized S3 . PMID:26584485

  3. Real-time analysis application for identifying bursty local areas related to emergency topics.

    PubMed

    Sakai, Tatsuhiro; Tamura, Keiichi

    2015-01-01

    Since social media started getting more attention from users on the Internet, social media has been one of the most important information source in the world. Especially, with the increasing popularity of social media, data posted on social media sites are rapidly becoming collective intelligence, which is a term used to refer to new media that is displacing traditional media. In this paper, we focus on geotagged tweets on the Twitter site. These geotagged tweets are referred to as georeferenced documents because they include not only a short text message, but also the documents' posting time and location. Many researchers have been tackling the development of new data mining techniques for georeferenced documents to identify and analyze emergency topics, such as natural disasters, weather, diseases, and other incidents. In particular, the utilization of geotagged tweets to identify and analyze natural disasters has received much attention from administrative agencies recently because some case studies have achieved compelling results. In this paper, we propose a novel real-time analysis application for identifying bursty local areas related to emergency topics. The aim of our new application is to provide new platforms that can identify and analyze the localities of emergency topics. The proposed application is composed of three core computational intelligence techniques: the Naive Bayes classifier technique, the spatiotemporal clustering technique, and the burst detection technique. Moreover, we have implemented two types of application interface: a Web application interface and an android application interface. To evaluate the proposed application, we have implemented a real-time weather observation system embedded the proposed application. we used actual crawling geotagged tweets posted on the Twitter site. The weather observation system successfully detected bursty local areas related to observed emergency weather topics. PMID:25918679

  4. RadTrac : A system for detecting, localizing, and tracking radioactive sources in real time.

    SciTech Connect

    Vilim, R.; Klann, R.; Nuclear Engineering Division

    2009-10-01

    Within the homeland security and emergency response communities, there is a need for a low-profile system to detect and locate radioactive sources. RadTrac has been developed at Argonne National Laboratory as an integrated system for the detection, localization, identification, and tracking of radioactive sources in real time. The system is based on a network of radiation detectors and advanced signal-processing algorithms. Features include video surveillance, automated tracking, easy setup, and logging of all data and images. This paper describes the advanced algorithms that were developed and implemented for source detection, localization, and tracking in real time. In the physio-spatial integration approach to source localization, counts from multiple detectors are processed according to the underlying physics linking these counts to obtain the probability that a source is present at any point in space. This information is depicted in a probability density function map. This type of depiction allows the results to be presented in a simple, easy-to-understand manner. It also allows for many different complicated factors to be accounted for in a single image as each factor is computed as a probability density in space. These factors include spatial limitations, variable shielding, directional detectors, moving detectors, and different detector sizes and orientations. The utility and versatility of this approach is described in further detail. Advanced signal-processing algorithms have also been incorporated to improve real-time tracking and to increase signal-to-noise ratios including temporal linking and energy binning. Measurements aimed at demonstrating the sensitivity improvements through the use of advanced signal-processing techniques were performed and are presented. Results of tracking weak sources (<100 {micro}Ci {sup 137}Cs) using four fixed-position detectors are presented.

  5. Glaciomarine deposits of Miocene through Holocene age in the Yakataga Formation along the Gulf of Alaska margin, Alaska

    USGS Publications Warehouse

    Plafker, George; Addicott, W.O.

    1976-01-01

    Perhaps the world's longest and most complete onshore sedimentary record of late Cenozoic glaciation is preserved in the Gulf of Alaska Tertiary province that extends 800 km along the coast of southern Alaska. The Yakataga Formation, with an aggregate outcrop thickness of about 5,000 m, is characterized by variable amounts of distinctive neritic marine tillite-like diamictite and laminated siltstone containing dropstones interpreted as ice-rafted glacial debris. The lithology, sedimentary structures and molluscan fauna of the formation suggest that active tidal glaciers or an ice shelf were present along the landward margin of the basin possibly beginning in early or early middle Miocene time. Dropstone distribution in outcrop sections indicates that glaciers reached tidewater intermittently during the Miocene and were almost continually present throughout the Pliocene and much of the Pleistocene. Paleomagnetic and nannoplankton dating of the upper 1,181 m of the Yakataga Formation at Middleton Island indicate that this part of the sequence probably was entirely deposited during the Matuyama reversed polarity epoch of the Pleistocene during which the sedimentation rate was of the order of 1 m/1,000 years. Lithologically similar deposits of poorly consolidated sandy mud and pebbly mud continue to accumulate locally near tidal glaciers in the same area, and older late Quaternary deposits are undoubtedly present offshore. The anomalous late Cenozoic glaciation recorded in the sediments along the Gulf of Alaska margin reflects a fortuitous combination of a subsiding shelf basin adjacent to an area of extremely high elevations and exceptionally heavy precipitation, an environment that persists to the present.

  6. Response of the Alaska Volcano Observatory to Public Inquiry Concerning the 2006 Eruption of Augustine Volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    Adleman, J. N.

    2006-12-01

    The 2006 eruption of Augustine Volcano provided the Alaska Volcano Observatory (AVO) with an opportunity to test its newly renovated Operations Center (Ops) at the Alaska Science Center in Anchorage. Because of the demand for interagency operations and public communication, Ops became the hub of Augustine monitoring activity, twenty-four hours a day, seven days a week, from January 10 through May 19, 2006. During this time, Ops was staffed by 17 USGS AVO staff, and over two dozen Fairbanks-based AVO staff from the Alaska Department of Geological and Geophysical Surveys and the University of Alaska Fairbanks Geophysical Institute and USGS Volcano Hazards Program staff from outside Alaska. This group engaged in communicating with the public, media, and other responding agencies throughout the eruption. Before and during the eruption, reference sheets - ;including daily talking - were created, vetted, and distributed to prepare staff for questions about the volcano. These resources were compiled into a binder stationed at each Ops phone and available through the AVO computer network. In this way, AVO was able to provide a comprehensive, uniform, and timely response to callers and emails at all three of its cooperative organizations statewide. AVO was proactive in scheduling an Information Scientist for interviews on-site with Anchorage television stations and newspapers several times a week. Scientists available, willing, and able to speak clearly about the current activity were crucial to AVO's response. On January 19, 2006, two public meetings were held in Homer, 120 kilometers northeast of Augustine Volcano. AVO, the West Coast Alaska Tsunami Warning Center, and the Kenai Peninsula Borough Office of Emergency Management gave brief presentations explaining their roles in eruption response. Representatives from several local, state, and federal agencies were also available. In addition to communicating with the public by daily media interviews and phone calls to Ops

  7. Non-Markovian Quantum Evolution: Time-Local Generators and Memory Kernels

    NASA Astrophysics Data System (ADS)

    Chruściński, Dariusz; Należyty, Paweł

    2016-06-01

    In this paper we provide a basic introduction to the topic of quantum non-Markovian evolution presenting both time-local and memory kernel approach to the evolution of open quantum systems. We start with the standard notion of a classical Markovian stochastic process and generalize it to classical Markovian stochastic evolution which in turn becomes a starting point of the quantum setting. Our approach is based on the notion of P-divisible, CP-divisible maps and their refinements to k-divisible maps. Basic methods enabling one to detect non-Markovianity of the quantum evolution are also presented. Our analysis is illustrated by several simple examples.

  8. Complete positivity, finite-temperature effects, and additivity of noise for time-local qubit dynamics

    NASA Astrophysics Data System (ADS)

    Lankinen, Juho; Lyyra, Henri; Sokolov, Boris; Teittinen, Jose; Ziaei, Babak; Maniscalco, Sabrina

    2016-05-01

    We present a general model of qubit dynamics which entails pure dephasing and dissipative time-local master equations. This allows us to describe the combined effect of thermalization and dephasing beyond the usual Markovian approximation. We investigate the complete positivity conditions and introduce a heuristic model that is always physical and provides the correct Markovian limit. We study the effects of temperature on the non-Markovian behavior of the system and show that the noise additivity property discussed by Yu and Eberly [Phys. Rev. Lett. 97, 140403 (2006), 10.1103/PhysRevLett.97.140403] holds beyond the Markovian limit.

  9. Application of empirical mode decomposition with local linear quantile regression in financial time series forecasting.

    PubMed

    Jaber, Abobaker M; Ismail, Mohd Tahir; Altaher, Alsaidi M

    2014-01-01

    This paper mainly forecasts the daily closing price of stock markets. We propose a two-stage technique that combines the empirical mode decomposition (EMD) with nonparametric methods of local linear quantile (LLQ). We use the proposed technique, EMD-LLQ, to forecast two stock index time series. Detailed experiments are implemented for the proposed method, in which EMD-LPQ, EMD, and Holt-Winter methods are compared. The proposed EMD-LPQ model is determined to be superior to the EMD and Holt-Winter methods in predicting the stock closing prices. PMID:25140343

  10. Time-localized projectors in string field theory with an E-field

    SciTech Connect

    Maccaferri, C.; Scherer Santos, R.J.; Tolla, D.D.

    2005-03-15

    We extend the analysis of Bonora et al. [hep-th/0409063] to the case of a constant electric field turned on the world volume and on a transverse direction of a D-brane. We show that time localization is still obtained by inverting the discrete eigenvalues of the lump solution. The lifetime of the unstable soliton is shown to depend on two free parameters: the b parameter and the value of the electric field. As a by-product, we construct the normalized diagonal basis of the star algebra in the B{sub {mu}}{sub {nu}}-field background.

  11. Accelerating spectral-element simulations of seismic wave propagation using local time stepping

    NASA Astrophysics Data System (ADS)

    Peter, D. B.; Rietmann, M.; Galvez, P.; Nissen-Meyer, T.; Grote, M.; Schenk, O.

    2013-12-01

    Seismic tomography using full-waveform inversion requires accurate simulations of seismic wave propagation in complex 3D media. However, finite element meshing in complex media often leads to areas of local refinement, generating small elements that accurately capture e.g. strong topography and/or low-velocity sediment basins. For explicit time schemes, this dramatically reduces the global time-step for wave-propagation problems due to numerical stability conditions, ultimately making seismic inversions prohibitively expensive. To alleviate this problem, local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. Numerical simulations are thus liberated of global time-step constraints potentially speeding up simulation runtimes significantly. We present here a new, efficient multi-level LTS-Newmark scheme for general use with spectral-element methods (SEM) with applications in seismic wave propagation. We fit the implementation of our scheme onto the package SPECFEM3D_Cartesian, which is a widely used community code, simulating seismic and acoustic wave propagation in earth-science applications. Our new LTS scheme extends the 2nd-order accurate Newmark time-stepping scheme, and leads to an efficient implementation, producing real-world speedup of multi-resolution seismic applications. Furthermore, we generalize the method to utilize many refinement levels with a design specifically for continuous finite elements. We demonstrate performance speedup using a state-of-the-art dynamic earthquake rupture model for the Tohoku-Oki event, which is currently limited by small elements along the rupture fault. Utilizing our new algorithmic LTS implementation together with advances in exploiting graphic processing units (GPUs), numerical seismic wave propagation simulations in complex media will dramatically reduce computation times, empowering high

  12. Racism's Frontier: The Untold Story of Discrimination and Division in Alaska.

    ERIC Educational Resources Information Center

    Alaska State Advisory Committee to the U.S. Commission on Civil Rights.

    In response to an incident in which white teenagers shot Alaska Natives with frozen paintballs, the Alaska State Advisory Committee (SAC) to the U.S. Commission on Civil Rights hosted a 2-day community forum in Anchorage. The forum solicited input about improving race relations from state, local, and federal officials, representatives of advocacy…

  13. 2012 Alaska Performance Scholarship Outcomes Report

    ERIC Educational Resources Information Center

    Rae, Brian

    2012-01-01

    As set forth in Alaska Statute 14.43.840, Alaska's Departments of Education & Early Development (EED) and Labor and Workforce Development (DOLWD), the University of Alaska (UA), and the Alaska Commission on Postsecondary Education (ACPE) present this first annual report on the Alaska Performance Scholarship to the public, the Governor,…

  14. Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping

    PubMed Central

    Cantwell, C.D.; Roney, C.H.; Ng, F.S.; Siggers, J.H.; Sherwin, S.J.; Peters, N.S.

    2015-01-01

    Measurements of cardiac conduction velocity provide valuable functional and structural insight into the initiation and perpetuation of cardiac arrhythmias, in both a clinical and laboratory context. The interpretation of activation wavefronts and their propagation can identify mechanistic properties of a broad range of electrophysiological pathologies. However, the sparsity, distribution and uncertainty of recorded data make accurate conduction velocity calculation difficult. A wide range of mathematical approaches have been proposed for addressing this challenge, often targeted towards specific data modalities, species or recording environments. Many of these algorithms require identification of activation times from electrogram recordings which themselves may have complex morphology or low signal-to-noise ratio. This paper surveys algorithms designed for identifying local activation times and computing conduction direction and speed. Their suitability for use in different recording contexts and applications is assessed. PMID:25978869

  15. Time-dependent behavior of a localized electron at a heterojunction boundary of graphene

    SciTech Connect

    Jang, Min S.; Kim, Hyungjun; Atwater, Harry A.; Goddard, William A.

    2010-01-01

    We develop a finite-difference time-domain(FDTD) method for simulating the dynamics of graphene electrons, denoted GraFDTD. We then use GraFDTD to study the temporal behavior of a single localized electron wave packet, showing that it exhibits optical-like dynamics including the Goos–Hänchen effect [F. Goos and H. Hänchen, Ann. Phys.436, 333 (1947)] at a heterojunction, but the behavior is quantitatively different than for electromagnetic waves. This suggests issues that must be addressed in designing graphene-based electronic devices analogous to optical devices. GraFDTD should be useful for studying such complex time-dependent behavior of a quasiparticle in graphene.

  16. Relativistic Coulomb excitation within the time dependent superfluid local density approximation

    SciTech Connect

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.

    2015-01-06

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.

  17. Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping.

    PubMed

    Cantwell, C D; Roney, C H; Ng, F S; Siggers, J H; Sherwin, S J; Peters, N S

    2015-10-01

    Measurements of cardiac conduction velocity provide valuable functional and structural insight into the initiation and perpetuation of cardiac arrhythmias, in both a clinical and laboratory context. The interpretation of activation wavefronts and their propagation can identify mechanistic properties of a broad range of electrophysiological pathologies. However, the sparsity, distribution and uncertainty of recorded data make accurate conduction velocity calculation difficult. A wide range of mathematical approaches have been proposed for addressing this challenge, often targeted towards specific data modalities, species or recording environments. Many of these algorithms require identification of activation times from electrogram recordings which themselves may have complex morphology or low signal-to-noise ratio. This paper surveys algorithms designed for identifying local activation times and computing conduction direction and speed. Their suitability for use in different recording contexts and applications is assessed. PMID:25978869

  18. Evoked Potentials in Motor Cortical Local Field Potentials Reflect Task Timing and Behavioral Performance

    PubMed Central

    Confais, Joachim; Ponce-Alvarez, Adrián; Diesmann, Markus; Riehle, Alexa

    2010-01-01

    Evoked potentials (EPs) are observed in motor cortical local field potentials (LFPs) during movement execution (movement-related potentials [MRPs]) and in response to relevant visual cues (visual evoked potentials [VEPs]). Motor cortical EPs may be directionally selective, but little is known concerning their relation to other aspects of motor behavior, such as task timing and performance. We recorded LFPs in motor cortex of two monkeys during performance of a precued arm-reaching task. A time cue at the start of each trial signaled delay duration and thereby the pace of the task and the available time for movement preparation. VEPs and MRPs were strongly modulated by the delay duration, VEPs being systematically larger in short-delay trials and MRPs larger in long-delay trials. Despite these systematic modulations related to the task timing, directional selectivity was similar in short and long trials. The behavioral reaction time was positively correlated with MRP size and negatively correlated with VEP size, within sessions. In addition, the behavioral performance improved across sessions, in parallel with a slow decrease in the size of VEPs and MRPs. Our results clearly show the strong influence of the behavioral context and performance on motor cortical population activity during movement preparation and execution. PMID:20884766

  19. Local algorithm for computing complex travel time based on the complex eikonal equation

    NASA Astrophysics Data System (ADS)

    Huang, Xingguo; Sun, Jianguo; Sun, Zhangqing

    2016-04-01

    The traditional algorithm for computing the complex travel time, e.g., dynamic ray tracing method, is based on the paraxial ray approximation, which exploits the second-order Taylor expansion. Consequently, the computed results are strongly dependent on the width of the ray tube and, in regions with dramatic velocity variations, it is difficult for the method to account for the velocity variations. When solving the complex eikonal equation, the paraxial ray approximation can be avoided and no second-order Taylor expansion is required. However, this process is time consuming. In this case, we may replace the global computation of the whole model with local computation by taking both sides of the ray as curved boundaries of the evanescent wave. For a given ray, the imaginary part of the complex travel time should be zero on the central ray. To satisfy this condition, the central ray should be taken as a curved boundary. We propose a nonuniform grid-based finite difference scheme to solve the curved boundary problem. In addition, we apply the limited-memory Broyden-Fletcher-Goldfarb-Shanno technology for obtaining the imaginary slowness used to compute the complex travel time. The numerical experiments show that the proposed method is accurate. We examine the effectiveness of the algorithm for the complex travel time by comparing the results with those from the dynamic ray tracing method and the Gauss-Newton Conjugate Gradient fast marching method.

  20. Neighbourhood selection for local modelling and prediction of hydrological time series

    NASA Astrophysics Data System (ADS)

    Jayawardena, A. W.; Li, W. K.; Xu, P.

    2002-02-01

    The prediction of a time series using the dynamical systems approach requires the knowledge of three parameters; the time delay, the embedding dimension and the number of nearest neighbours. In this paper, a new criterion, based on the generalized degrees of freedom, for the selection of the number of nearest neighbours needed for a better local model for time series prediction is presented. The validity of the proposed method is examined using time series, which are known to be chaotic under certain initial conditions (Lorenz map, Henon map and Logistic map), and real hydro meteorological time series (discharge data from Chao Phraya river in Thailand, Mekong river in Thailand and Laos, and sea surface temperature anomaly data). The predicted results are compared with observations, and with similar predictions obtained by using arbitrarily fixed numbers of neighbours. The results indicate superior predictive capability as measured by the mean square errors and coefficients of variation by the proposed approach when compared with the traditional approach of using a fixed number of neighbours.

  1. Local velocity measurements in heterogeneous and time-dependent flows of a micellar solution.

    PubMed

    Decruppe, J P; Greffier, O; Manneville, S; Lerouge, S

    2006-06-01

    We present and discuss the results of pointwise velocity measurements performed on a viscoelastic micellar solution made of cetyltrimethylammonium bromide and sodium salicylate in water, respectively, at the concentrations of 50 and 100 mmol. The sample is contained in a Couette device and subjected to flow in the strain controlled mode. This particular solution shows shear banding and, in a narrow range of shear rates at the right end of the stress plateau, apparent shear thickening occurs. Time-dependent recordings of the shear stress in this range reveal that the flow has become unstable and that large sustained oscillations of the shear stress and of the first normal stresses difference emerge and grow in the flow. Local pointwise velocity measurements clearly reveal a velocity profile typical of shear banding when the imposed shear rate belongs to the plateau, but also important wall slip in the entire range of velocity gradients investigated. In the oscillations regime, the velocity is recorded as a function of time at a fixed point close to the rotor of the Couette device. The time-dependent velocity profile reveals random fluctuations but, from time to time, sharp decreases much larger than the standard deviation are observed. An attempt is made to correlate these strong variations with the stress oscillations and a correlation coefficient r is computed. However, the small value found for the coefficient r does not allow us to draw a final conclusion as concerns the correlation between stress oscillations and velocity fast decreases. PMID:16906838

  2. Simulation of a Real-Time Local Data Integration System over East-Central Florida

    NASA Technical Reports Server (NTRS)

    Case, Jonathan

    1999-01-01

    The Applied Meteorology Unit (AMU) simulated a real-time configuration of a Local Data Integration System (LDIS) using data from 15-28 February 1999. The objectives were to assess the utility of a simulated real-time LDIS, evaluate and extrapolate system performance to identify the hardware necessary to run a real-time LDIS, and determine the sensitivities of LDIS. The ultimate goal for running LDIS is to generate analysis products that enhance short-range (less than 6 h) weather forecasts issued in support of the 45th Weather Squadron, Spaceflight Meteorology Group, and Melbourne National Weather Service operational requirements. The simulation used the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) software on an IBM RS/6000 workstation with a 67-MHz processor. This configuration ran in real-time, but not sufficiently fast for operational requirements. Thus, the AMU recommends a workstation with a 200-MHz processor and 512 megabytes of memory to run the AMU's configuration of LDIS in real-time. This report presents results from two case studies and several data sensitivity experiments. ADAS demonstrates utility through its ability to depict high-resolution cloud and wind features in a variety of weather situations. The sensitivity experiments illustrate the influence of disparate data on the resulting ADAS analyses.

  3. Source-space ICA for EEG source separation, localization, and time-course reconstruction.

    PubMed

    Jonmohamadi, Yaqub; Poudel, Govinda; Innes, Carrie; Jones, Richard

    2014-11-01

    We propose source-space independent component analysis (ICA) for separation, tomography, and time-course reconstruction of EEG and MEG source signals. Source-space ICA is based on the application of singular value decomposition and ICA on the neuroelectrical signals from all brain voxels obtained post minimum-variance beamforming of sensor-space EEG or MEG. We describe the theoretical background and equations, then evaluate the performance of this technique in several different situations, including weak sources, bilateral correlated sources, multiple sources, and cluster sources. In this approach, tomographic maps of sources are obtained by back-projection of the ICA mixing coefficients into the source-space (3-D brain template). The advantages of source-space ICA over the popular alternative approaches of sensor-space ICA together with dipole fitting and power mapping via minimum-variance beamforming are demonstrated. Simulated EEG data were produced by forward head modeling to project the simulated sources onto scalp sensors, then superimposed on real EEG background. To illustrate the application of source-space ICA to real EEG source reconstruction, we show the localization and time-course reconstruction of visual evoked potentials. Source-space ICA is superior to the minimum-variance beamforming in the reconstruction of multiple weak and strong sources, as ICA allows weak sources to be identified and reconstructed in the presence of stronger sources. Source-space ICA is also superior to sensor-space ICA on accuracy of localization of sources, as source-space ICA applies ICA to the time-courses of voxels reconstructed from minimum-variance beamforming on a 3D scanning grid and these time-courses are optimally unmixed via the beamformer. Each component identified by source-space ICA has its own tomographic map which shows the extent to which each voxel has contributed to that component. PMID:25108125

  4. Past-time Radar Rainfall Estimates using Radar AWS Rainrate system with Local Gauge Correction method

    NASA Astrophysics Data System (ADS)

    Choi, D.; Lee, M. H.; Suk, M. K.; Nam, K. Y.; Hwang, J.; Ko, J. S.

    2015-12-01

    The Weather Radar Center at Korea Meteorological Administration (KMA) has radar network for warnings for heavy rainfall and severe storms. We have been operating an operational real-time adjusted the Radar-Automatic Weather Station (AWS) Rainrate (RAR) system developed by KMA in 2006 for providing radar-based quantitative precipitation estimation (QPE) to meteorologists. This system has several uncertainty in estimating precipitation by radar reflectivity (Z) and rainfall intensity (R) relationship. To overcome uncertainty of the RAR system and improve the accuracy of QPE, we are applied the Local Gauge Correction (LGC) method which uses geo-statistical effective radius of errors of the QPE to RAR system in 2012. According to the results of previous study in 2014 (Lee et al., 2014), the accuracy of the RAR system with LGC method improved about 7.69% than before in the summer season of 2012 (from June to August). It has also improved the accuracy of hydrograph when we examined the accuracy of flood simulation using hydrologic model and data derived by the RAR system with LGC method. We confirmed to have its effectiveness through these results after the application of LGC method. It is required for high quality data of long term to utilize in hydrology field. To provide QPE data more precisely and collect past-time data, we produce that calculated by the RAR system with LGC method in the summer season from 2006 to 2009 and investigate whether the accuracy of past-time radar rainfall estimation enhance or not. Keywords : Radar-AWS Rainrate system, Local gauge correction, past-time Radar rainfall estimation Acknowledgements : This research is supported by "Development and application of Cross governmental dual-pol radar harmonization (WRC-2013-A-1)" project of the Weather Radar Center, Korea Meteorological Administration in 2015.

  5. Time-Dependent Effects of Localized Inflammation on Peripheral Clock Gene Expression in Rats

    PubMed Central

    Westfall, Susan; Aguilar-Valles, Argel; Mongrain, Valérie; Luheshi, Giamal N.; Cermakian, Nicolas

    2013-01-01

    Many aspects of the immune system, including circulating cytokine levels as well as counts and function of various immune cell types, present circadian rhythms. Notably, the mortality rate of animals subjected to high doses of lipopolysaccharide is dependent on the time of treatment. In addition, the severity of symptoms of various inflammatory conditions follows a daily rhythmic pattern. The mechanisms behind the crosstalk between the circadian and immune systems remain elusive. Here we demonstrate that localized inflammation induced by turpentine oil (TURP) causes a time-dependent induction of interleukin (IL)-6 and has time-, gene- and tissue-specific effects on clock gene expression. More precisely, TURP blunts the peak of Per1 and Per2 expression in the liver while in other tissues, the expression nadir is elevated. In contrast, Rev-erbα expression remains relatively unaffected by TURP treatment. Co-treatment with the anti-inflammatory agent IL-1 receptor antagonist (IL-1Ra) did not alter the response of Per2 to TURP treatment in liver, despite the reduced induction of fever and IL-6 serum levels. This indicates that the TURP-mediated changes of Per2 in the liver might be due to factors other than systemic IL-6 and fever. Accordingly, IL-6 treatment had no effect on clock gene expression in HepG2 liver carcinoma cells. Altogether, we show that localized inflammation causes significant time-dependent changes in peripheral circadian clock gene expression, via a mechanism likely involving mediators independent from IL-6 and fever. PMID:23527270

  6. Alaska Mathematics Standards

    ERIC Educational Resources Information Center

    Alaska Department of Education & Early Development, 2012

    2012-01-01

    High academic standards are an important first step in ensuring that all Alaska's students have the tools they need for success. These standards reflect the collaborative work of Alaskan educators and national experts from the nonprofit National Center for the Improvement of Educational Assessment. Further, they are informed by public…

  7. ECOREGIONS OF ALASKA

    EPA Science Inventory

    A map of ecoregions of Alaska has been produced as a framework for organizing and interpreting environmental data for state, national, and international inventory, monitoring, and research efforts. he map and descriptions for 20 ecological regions were derived by synthesizing inf...

  8. Customer Service in Alaska.

    ERIC Educational Resources Information Center

    Ogliore, Judy

    1997-01-01

    Examines how the child support enforcement program in Alaska has responded to the challenges of distance, weather, and cultural differences through training representatives, making waiting areas more comfortable, conducting random customer evaluation of services, establishing travel hubs in regional offices and meeting with community leaders and…

  9. Current Ethnomusicology in Alaska.

    ERIC Educational Resources Information Center

    Johnston, Thomas F.

    The systematic study of Eskimo, Indian, and Aleut musical sound and behavior in Alaska, though conceded to be an important part of white efforts to foster understanding between different cultural groups and to maintain the native cultural heritage, has received little attention from Alaskan educators. Most existing ethnomusical studies lack one or…

  10. Seismology Outreach in Alaska

    NASA Astrophysics Data System (ADS)

    Gardine, L.; Tape, C.; West, M. E.

    2014-12-01

    Despite residing in a state with 75% of North American earthquakes and three of the top 15 ever recorded, most Alaskans have limited knowledge about the science of earthquakes. To many, earthquakes are just part of everyday life, and to others, they are barely noticed until a large event happens, and often ignored even then. Alaskans are rugged, resilient people with both strong independence and tight community bonds. Rural villages in Alaska, most of which are inaccessible by road, are underrepresented in outreach efforts. Their remote locations and difficulty of access make outreach fiscally challenging. Teacher retention and small student bodies limit exposure to science and hinder student success in college. The arrival of EarthScope's Transportable Array, the 50th anniversary of the Great Alaska Earthquake, targeted projects with large outreach components, and increased community interest in earthquake knowledge have provided opportunities to spread information across Alaska. We have found that performing hands-on demonstrations, identifying seismological relevance toward career opportunities in Alaska (such as natural resource exploration), and engaging residents through place-based experience have increased the public's interest and awareness of our active home.

  11. Alaska's Cold Desert.

    ERIC Educational Resources Information Center

    Brune, Jeff; And Others

    1996-01-01

    Explores the unique features of Alaska's Arctic ecosystem, with a focus on the special adaptations of plants and animals that enable them to survive in a stressful climate. Reviews the challenges facing public and private land managers who seek to conserve this ecosystem while accommodating growing demands for development. Includes classroom…

  12. Alaska Glaciers and Rivers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image on October 7, 2007, showing the Alaska Mountains of south-central Alaska already coated with snow. Purple shadows hang in the lee of the peaks, giving the snow-clad land a crumpled appearance. White gives way to brown on the right side of the image where the mountains yield to the lower-elevation Susitna River Valley. The river itself cuts a silver, winding path through deep green forests and brown wetlands and tundra. Extending from the river valley, are smaller rivers that originated in the Alaska Mountains. The source of these rivers is evident in the image. Smooth white tongues of ice extend into the river valleys, the remnants of the glaciers that carved the valleys into the land. Most of the water flowing into the Gulf of Alaska from the Susitna River comes from these mountain glaciers. Glacier melt also feeds glacier lakes, only one of which is large enough to be visible in this image. Immediately left of the Kahiltna River, the aquamarine waters of Chelatna Lake stand out starkly against the brown and white landscape.

  13. Alaska and Yukon Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Smoke Signals from the Alaska and Yukon Fires   ... the Yukon Territory from mid-June to mid-July, 2004. Thick smoke particles filled the air during these fires, prompting Alaskan officials to issue air quality warnings. Some of the smoke from these fires was detected as far away as New Hampshire. These ...

  14. The effects of local prevalence and explicit expectations on search termination times

    PubMed Central

    Kita, Shinichi; Wolfe, Jeremy M.

    2014-01-01

    In visual search tasks, the relative proportions of target-present and -absent trials have important effects on behavior. Miss error rates rise as target prevalence decreases (Wolfe, Horowitz, & Kenner, Nature 435, 439–440, 2005). At the same time, search termination times on target-absent trials become shorter (Wolfe & Van Wert, Current Biology 20, 121–124, 2010). These effects must depend on some implicit or explicit knowledge of the current prevalence. What is the nature of that knowledge? In Experiment 1, we conducted visual search tasks at three levels of prevalence (6%, 50%, and 94%) and analyzed performance as a function of “local prevalence,” the prevalence over the last n trials. The results replicated the usual effects of overall prevalence but revealed only weak or absent effects of local prevalence. In Experiment 2, the overall prevalence in a block of trials was 20%, 50%, or 80%. However, a 100%-valid cue informed observers of the prevalence on the next trial. These explicit cues had a modest effect on target-absent RTs, but explicit expectation could not explain the full prevalence effect. We conclude that observers predict prevalence on the basis of an assessment of a relatively long prior history. Each trial contributes a small amount to that assessment, and this can be modulated but not overruled by explicit instruction. PMID:22006528

  15. Global meta-analysis reveals no net change in local-scale plant biodiversity over time.

    PubMed

    Vellend, Mark; Baeten, Lander; Myers-Smith, Isla H; Elmendorf, Sarah C; Beauséjour, Robin; Brown, Carissa D; De Frenne, Pieter; Verheyen, Kris; Wipf, Sonja

    2013-11-26

    Global biodiversity is in decline. This is of concern for aesthetic and ethical reasons, but possibly also for practical reasons, as suggested by experimental studies, mostly with plants, showing that biodiversity reductions in small study plots can lead to compromised ecosystem function. However, inferring that ecosystem functions will decline due to biodiversity loss in the real world rests on the untested assumption that such loss is actually occurring at these small scales in nature. Using a global database of 168 published studies and >16,000 nonexperimental, local-scale vegetation plots, we show that mean temporal change in species diversity over periods of 5-261 y is not different from zero, with increases at least as likely as declines over time. Sites influenced primarily by plant species' invasions showed a tendency for declines in species richness, whereas sites undergoing postdisturbance succession showed increases in richness over time. Other distinctions among studies had little influence on temporal richness trends. Although maximizing diversity is likely important for maintaining ecosystem function in intensely managed systems such as restored grasslands or tree plantations, the clear lack of any general tendency for plant biodiversity to decline at small scales in nature directly contradicts the key assumption linking experimental results to ecosystem function as a motivation for biodiversity conservation in nature. How often real world changes in the diversity and composition of plant communities at the local scale cause ecosystem function to deteriorate, or actually to improve, remains unknown and is in critical need of further study. PMID:24167259

  16. Calculations of the time-averaged local heat transfer coefficients in circulating fluidized bed

    SciTech Connect

    Dai, T.H.; Qian, R.Z.; Ai, Y.F.

    1999-04-01

    The great potential to burn a wide variety of fuels and the reduced emission of pollutant gases mainly SO{sub x} and NO{sub x} have inspired the investigators to conduct research at a brisk pace all around the world on circulating fluidized bed (CFB) technology. An accurate understanding of heat transfer to bed walls is required for proper design of CFB boilers. To develop an optimum economic design of the boiler, it is also necessary to know how the heat transfer coefficient depends on different design and operating parameters. It is impossible to do the experiments under all operating conditions. Thus, the mathematical model prediction is a valuable method instead. Based on the cluster renewal theory of heat transfer in circulating fluidized beds, a mathematical model for predicting the time-averaged local bed-to-wall heat transfer coefficients is developed. The effects of the axial distribution of the bed density on the time-average local heat transfer coefficients are taken into account via dividing the bed into a series of sections along its height. The assumptions are made about the formation and falling process of clusters on the wall. The model predictions are in an acceptable agreement with the published data.

  17. Global meta-analysis reveals no net change in local-scale plant biodiversity over time

    PubMed Central

    Vellend, Mark; Baeten, Lander; Myers-Smith, Isla H.; Elmendorf, Sarah C.; Beauséjour, Robin; Brown, Carissa D.; De Frenne, Pieter; Verheyen, Kris; Wipf, Sonja

    2013-01-01

    Global biodiversity is in decline. This is of concern for aesthetic and ethical reasons, but possibly also for practical reasons, as suggested by experimental studies, mostly with plants, showing that biodiversity reductions in small study plots can lead to compromised ecosystem function. However, inferring that ecosystem functions will decline due to biodiversity loss in the real world rests on the untested assumption that such loss is actually occurring at these small scales in nature. Using a global database of 168 published studies and >16,000 nonexperimental, local-scale vegetation plots, we show that mean temporal change in species diversity over periods of 5–261 y is not different from zero, with increases at least as likely as declines over time. Sites influenced primarily by plant species’ invasions showed a tendency for declines in species richness, whereas sites undergoing postdisturbance succession showed increases in richness over time. Other distinctions among studies had little influence on temporal richness trends. Although maximizing diversity is likely important for maintaining ecosystem function in intensely managed systems such as restored grasslands or tree plantations, the clear lack of any general tendency for plant biodiversity to decline at small scales in nature directly contradicts the key assumption linking experimental results to ecosystem function as a motivation for biodiversity conservation in nature. How often real world changes in the diversity and composition of plant communities at the local scale cause ecosystem function to deteriorate, or actually to improve, remains unknown and is in critical need of further study. PMID:24167259

  18. Time-Accurate Local Time Stepping and High-Order Time CESE Methods for Multi-Dimensional Flows Using Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary

    2013-01-01

    With the wide availability of affordable multiple-core parallel supercomputers, next generation numerical simulations of flow physics are being focused on unsteady computations for problems involving multiple time scales and multiple physics. These simulations require higher solution accuracy than most algorithms and computational fluid dynamics codes currently available. This paper focuses on the developmental effort for high-fidelity multi-dimensional, unstructured-mesh flow solvers using the space-time conservation element, solution element (CESE) framework. Two approaches have been investigated in this research in order to provide high-accuracy, cross-cutting numerical simulations for a variety of flow regimes: 1) time-accurate local time stepping and 2) highorder CESE method. The first approach utilizes consistent numerical formulations in the space-time flux integration to preserve temporal conservation across the cells with different marching time steps. Such approach relieves the stringent time step constraint associated with the smallest time step in the computational domain while preserving temporal accuracy for all the cells. For flows involving multiple scales, both numerical accuracy and efficiency can be significantly enhanced. The second approach extends the current CESE solver to higher-order accuracy. Unlike other existing explicit high-order methods for unstructured meshes, the CESE framework maintains a CFL condition of one for arbitrarily high-order formulations while retaining the same compact stencil as its second-order counterpart. For large-scale unsteady computations, this feature substantially enhances numerical efficiency. Numerical formulations and validations using benchmark problems are discussed in this paper along with realistic examples.

  19. Review: groundwater in Alaska (USA)

    USGS Publications Warehouse

    Callegary, J.B.; Kikuchi, C.P.; Koch, J.C.; Lilly, M.R.; Leake, S.A.

    2013-01-01

    Groundwater in the US state of Alaska is critical to both humans and ecosystems. Interactions among physiography, ecology, geology, and current and past climate have largely determined the location and properties of aquifers as well as the timing and magnitude of fluxes to, from, and within the groundwater system. The climate ranges from maritime in the southern portion of the state to continental in the Interior, and arctic on the North Slope. During the Quaternary period, topography and rock type have combined with glacial and periglacial processes to develop the unconsolidated alluvial aquifers of Alaska and have resulted in highly heterogeneous hydrofacies. In addition, the long persistence of frozen ground, whether seasonal or permanent, greatly affects the distribution of aquifer recharge and discharge. Because of high runoff, a high proportion of groundwater use, and highly variable permeability controlled in part by permafrost and seasonally frozen ground, understanding groundwater/surface-water interactions and the effects of climate change is critical for understanding groundwater availability and the movement of natural and anthropogenic contaminants.

  20. Cyberinfrastructure to support Real-time, End-to-End, High Resolution, Localized Forecasting

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.; Lindholm, D.; Baltzer, T.; Domenico, B.

    2004-12-01

    From natural disasters such as flooding and forest fires to man-made disasters such as toxic gas releases, the impact of weather-influenced severe events on society can be profound. Understanding, predicting, and mitigating such local, mesoscale events calls for a cyberinfrastructure to integrate multidisciplinary data, tools, and services as well as the capability to generate and use high resolution data (such as wind and precipitation) from localized models. The need for such end to end systems -- including data collection, distribution, integration, assimilation, regionalized mesoscale modeling, analysis, and visualization -- has been realized to some extent in many academic and quasi-operational environments, especially for atmospheric sciences data. However, many challenges still remain in the integration and synthesis of data from multiple sources and the development of interoperable data systems and services across those disciplines. Over the years, the Unidata Program Center has developed several tools that have either directly or indirectly facilitated these local modeling activities. For example, the community is using Unidata technologies such as the Internet Data Distribution (IDD) system, Local Data Manger (LDM), decoders, netCDF libraries, Thematic Realtime Environmental Distributed Data Services (THREDDS), and the Integrated Data Viewer (IDV) in their real-time prediction efforts. In essence, these technologies for data reception and processing, local and remote access, cataloging, and analysis and visualization coupled with technologies from others in the community are becoming the foundation of a cyberinfrastructure to support an end-to-end regional forecasting system. To build on these capabilities, the Unidata Program Center is pleased to be a significant contributor to the Linked Environments for Atmospheric Discovery (LEAD) project, a NSF-funded multi-institutional large Information Technology Research effort. The goal of LEAD is to create an

  1. Floor Covering and Surface Identification for Assistive Mobile Robotic Real-Time Room Localization Application

    PubMed Central

    Gillham, Michael; Howells, Gareth; Spurgeon, Sarah; McElroy, Ben

    2013-01-01

    Assistive robotic applications require systems capable of interaction in the human world, a workspace which is highly dynamic and not always predictable. Mobile assistive devices face the additional and complex problem of when and if intervention should occur; therefore before any trajectory assistance is given, the robotic device must know where it is in real-time, without unnecessary disruption or delay to the user requirements. In this paper, we demonstrate a novel robust method for determining room identification from floor features in a real-time computational frame for autonomous and assistive robotics in the human environment. We utilize two inexpensive sensors: an optical mouse sensor for straightforward and rapid, texture or pattern sampling, and a four color photodiode light sensor for fast color determination. We show how data relating floor texture and color obtained from typical dynamic human environments, using these two sensors, compares favorably with data obtained from a standard webcam. We show that suitable data can be extracted from these two sensors at a rate 16 times faster than a standard webcam, and that these data are in a form which can be rapidly processed using readily available classification techniques, suitable for real-time system application. We achieved a 95% correct classification accuracy identifying 133 rooms' flooring from 35 classes, suitable for fast coarse global room localization application, boundary crossing detection, and additionally some degree of surface type identification. PMID:24351647

  2. Floor covering and surface identification for assistive mobile robotic real-time room localization application.

    PubMed

    Gillham, Michael; Howells, Gareth; Spurgeon, Sarah; McElroy, Ben

    2013-01-01

    Assistive robotic applications require systems capable of interaction in the human world, a workspace which is highly dynamic and not always predictable. Mobile assistive devices face the additional and complex problem of when and if intervention should occur; therefore before any trajectory assistance is given, the robotic device must know where it is in real-time, without unnecessary disruption or delay to the user requirements. In this paper, we demonstrate a novel robust method for determining room identification from floor features in a real-time computational frame for autonomous and assistive robotics in the human environment. We utilize two inexpensive sensors: an optical mouse sensor for straightforward and rapid, texture or pattern sampling, and a four color photodiode light sensor for fast color determination. We show how data relating floor texture and color obtained from typical dynamic human environments, using these two sensors, compares favorably with data obtained from a standard webcam. We show that suitable data can be extracted from these two sensors at a rate 16 times faster than a standard webcam, and that these data are in a form which can be rapidly processed using readily available classification techniques, suitable for real-time system application. We achieved a 95% correct classification accuracy identifying 133 rooms' flooring from 35 classes, suitable for fast coarse global room localization application, boundary crossing detection, and additionally some degree of surface type identification. PMID:24351647

  3. Impulsive sound source localization using peak and RMS estimation of the time-domain beamformer output

    NASA Astrophysics Data System (ADS)

    Seo, Dae-Hoon; Choi, Jung-Woo; Kim, Yang-Hann

    2014-12-01

    This paper presents a beamforming technique for locating impulsive sound source. The conventional frequency-domain beamformer is advantageous for localizing noise sources for a certain frequency band of concern, but the existence of many frequency components in the wide-band spectrum of impulsive noise makes the beamforming image less clear. In contrast to a frequency-domain beamformer, it has been reported that a time-domain beamformer can be better suited for transient signals. Although both frequency- and time-domain beamformers produce the same result for the beamforming power, which is defined as the RMS value of its output, we can use alternative directional estimators such as the peak value to enhance the performance of a time-domain beamformer. In this study, the performance of two different directional estimators, the peak and RMS output values, are investigated and compared with the incoherent measurement noise embedded in multiple microphone signals. The impulsive noise source is modeled as a triangular pulse, and the beamwidth and side lobe level of the time-domain beamformer are formulated as functions of the pulse duration, the microphone spacing, and the number of microphones. The proposed formula is verified via experiments in an anechoic chamber using a uniformly spaced linear array, and the results show that the peak estimation of beamformer output determines the location with better spatial resolution and a lower side lobe level than RMS estimation.

  4. Storm-to-storm main phase repeatability of the local time variation of disturbed low-latitude vertical ion drifts

    NASA Astrophysics Data System (ADS)

    Huang, Chao-Song

    2015-07-01

    Penetration electric field can be very strong during magnetic storms. However, the variation of penetration electric field with local time (LT) has not been well understood. The Communication/Navigation Outage Forecasting System (C/NOFS) satellite measures the plasma drift/electric field over all local times within ~100 min. In this paper, we present the first nearly simultaneous observations of the dependence of penetration electric field on local time. The meridional ion drift measured by C/NOFS during the main phase of five magnetic storms in 2012 is analyzed. The storm time ion drift shows a large enhancement around 1900 LT, a relatively small enhancement during daytime, and a deep decrease in the postmidnight sector with a peak around 0500 LT. The observed storm time variation of the meridional ion drift with local time represents the variation of the penetration electric field. The averaged ion drifts are in remarkable agreement with recent simulations.

  5. Derivation of local-in-time fourth post-Newtonian ADM Hamiltonian for spinless compact binaries

    NASA Astrophysics Data System (ADS)

    Jaranowski, Piotr; Schäfer, Gerhard

    2015-12-01

    The paper gives full details of the computation within the canonical formalism of Arnowitt, Deser, and Misner of the local-in-time part of the fourth post-Newtonian, i.e. of power eight in one over speed of light, conservative Hamiltonian of spinless compact binary systems. The Hamiltonian depends only on the bodies' positions and momenta. Dirac delta distributions are taken as source functions. Their full control is furnished by dimensional continuation, by means of which the occurring ultraviolet (UV) divergences are uniquely regularized. The applied near-zone expansion of the time-symmetric Green function leads to infrared (IR) divergences. Their analytic regularization results in one single ambiguity parameter. Unique fixation of it was successfully performed in T. Damour, P. Jaranowski, and G. Schäfer, Phys. Rev. D 89, 064058 (2014) through far-zone matching. Technically as well as conceptually (backscatter binding energy), the level of the Lamb shift in quantum electrodynamics is reached. In a first run a computation of all terms is performed in three-dimensional space using analytic Riesz-Hadamard regularization techniques. Then divergences are treated locally (i.e., around particles' positions for UV and in the vicinity of spatial infinity for IR divergences) by means of combined dimensional and analytic regularization. Various evolved analytic expressions are presented for the first time. The breakdown of the Leibniz rule for distributional derivatives is addressed as well as the in general nondistributive law when regularizing value of products of functions evaluated at their singular point.

  6. Paleomagnetic data from Alaska: reliability, interpretation and terrane trajectories

    NASA Astrophysics Data System (ADS)

    Harbert, William

    1990-11-01

    Virtually the entire body of paleomagnetic data collected from southern Alaska depicts a clear decrease in paleolatitude with increasing age, strongly suggesting that southern Alaska represents a displaced terrane. In this paper, paleomagnetic studies from southern Alaska have been classified with respect to a Quality Index that is based on four criteria. These criteria are the presence of both polarities of magnetic remanence, stepwise thermal or alternating field demagnetization of specimens, principal component analysis of demagnetization data, and a successful fold test. Of the 51 studies compiled, only four from southern Alaska and one from western Canada are demonstrated to satisfy all criteria and fall therefore in the category of Group 3, ("highly reliable"). Two studies from southern Alaska satisfy three of the four criteria, lacking both polarities of characteristic remanence, and are judged to be of Group 2 ("reliable"). Two of these paleomagnetic studies constrain the accretion time of the southern Alaska terrane to the relatively stationary region of central Alaska north of the Denali fault. Four paleomagnetic studies from the southern Alaska terrane show a distinct paleolatitude anomaly when compared with their expected paleolatitudes from the North American apparent polar wander path. Using the model of Engebretson et al. (1984), a series of models are presented to best fit these highly reliable and reliable paleomagnetic studies. The model preferred in this article assumes an accretion time with North America of 50 Ma, and documents pre-50 Ma displacement of the southern Alaska terrane on the Kula plate. If the Ghost Rocks paleomagnetic magnetizations (Plumley et al., 1983) are assumed to be of earliest Tertiary age, this model fits all of the low paleolatitudes observed in southern Alaska. Models incorporating coastwise translation of the southern Alaska terrane along the western boundary of the North America plate and a 50 Ma suturing age of this

  7. Asthma and American Indians/Alaska Natives

    MedlinePlus

    ... Minority Population Profiles > American Indian/Alaska Native > Asthma Asthma and American Indians/Alaska Natives In 2014, 218, ... Native American adults reported that they currently have asthma. American Indian/Alaska Native children are 30% more ...

  8. Mesozoic thermal history and timing of structural events for the Yukon-Tanana Upland, east-central Alaska: 40Ar/39Ar data from metamorphic and plutonic rocks

    USGS Publications Warehouse

    Dusel-Bacon, C.; Lanphere, M.A.; Sharp, W.D.; Layer, P.W.; Hansen, V.L.

    2002-01-01

    We present new 40Ar/39Ar ages for hornblende, muscovite, and biotite from metamorphic and plutonic rocks from the Yukon-Tanana Upland, Alaska. Integration of our data with published 40Ar/39Ar, kinematic, and metamorphic pressure (P) and temperature (T) data confirms and refines the complex interaction of metamorphism and tectonism proposed for the region. The oldest metamorphic episode(s) postdates Middle Permian magmatism and predates the intrusion of Late Triassic (215-212 Ma) granitoids into the Fortymile River assemblage (Taylor Mountain assemblage of previous papers). In the eastern Eagle quadrangle, rapid and widespread Early Jurassic cooling is indicated by ???188-186 Ma 40Ar/39Ar plateau ages for hornblende from plutons that intrude the Fortymile River assemblage, and for metamorphic minerals from the Fortymile River assemblage and the structurally underlying Nasina assemblage. We interpret these Early Jurassic ages to represent cooling resulting from northwest-directed contraction that emplaced the Fortymile River assemblage onto the Nasina assemblage to the north as well as the Lake George assemblage to the south. This cooling was the final stage of a continuum of subduction-related contraction that produced crustal thickening, intermediate- to high-P metamorphism within both the Fortymile River assemblage and the structurally underlying Lake George assemblage, and Late Triassic and Early Jurassic plutonism in the Fortymile River and Nasina assemblages. Although a few metamorphic samples from the Lake George assemblage yield Jurassic 40Ar/39Ar cooling ages, most yield Early Cretaceous 40Ar/39Ar ages: hornblende ???135-115 Ma, and muscovite and biotite ???110-108 Ma. We interpret the Early Cretaceous metamorphic cooling, in most areas, to have resulted from regional extension and exhumation of the lower plate, previously tectonically thickened during Early Jurassic and older convergence.

  9. Fisher informations and local asymptotic normality for continuous-time quantum Markov processes

    NASA Astrophysics Data System (ADS)

    Catana, Catalin; Bouten, Luc; Guţă, Mădălin

    2015-09-01

    We consider the problem of estimating an arbitrary dynamical parameter of an open quantum system in the input-output formalism. For irreducible Markov processes, we show that in the limit of large times the system-output state can be approximated by a quantum Gaussian state whose mean is proportional to the unknown parameter. This approximation holds locally in a neighbourhood of size {t}-1/2 in the parameter space, and provides an explicit expression of the asymptotic quantum Fisher information in terms of the Markov generator. Furthermore we show that additive statistics of the counting and homodyne measurements also satisfy local asymptotic normality and we compute the corresponding classical Fisher informations. The general theory is illustrated with the examples of a two-level system and the atom maser. Our results contribute towards a better understanding of the statistical and probabilistic properties of the output process, with relevance for quantum control engineering, and the theory of non-equilibrium quantum open systems.

  10. Local Self-Similarity and Finite-Time Singularity in a High-Symmetry Euler Flow

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Bhattacharjee, A.

    1997-11-01

    The dynamical consequence of a positive fourth-order pressure derivative (p_xxxx) at the origin [C. S. Ng and A. Bhattacharjee, Phys. Rev. E 54 1530, 1996] in a high-symmetry Euler flow (the Kida flow) is considered. It is shown that the third order spatial derivative u_xxx of the x component of the velocity u at the origin is always decreasing in this situation. By assuming that u_xxx always attains a minimum possible value consistent with a given spectral profile, it is found that the flow is locally self-similar near the origin and collapses as energy cascades to Fourier modes with higher wavenumbers k. Moreover, it is found that the self-similar p(x) and u(x) profiles (as well as their derivatives) near the origin are very similar in shape to what were found in numerical simulations [O. N. Boratav and R. B. Pelz, Phys. Fluids 6 2757, 1994]. It is shown that a finite-time singularity (FTS) must appear in this case if the spectral index ν of the energy spectrum E(k) ∝ k^-ν of the locally self-similar flow is less than 6. A self-similar solution satisfying the Kelvin's theorem of circulation trivially has ν = 2 with vortex filaments and a FTS.

  11. Transforming growth factor-beta 1 in experimental autoimmune neuritis. Cellular localization and time course.

    PubMed Central

    Kiefer, R.; Funa, K.; Schweitzer, T.; Jung, S.; Bourde, O.; Toyka, K. V.; Hartung, H. P.

    1996-01-01

    Experimental autoimmune neuritis (EAN) is a monophasic inflammatory disorder of the peripheral nervous system that resolves spontaneously by molecular mechanisms as yet unknown. We have investigated whether the immunosuppressive cytokine transforming growth factor-beta 1 (TGF-beta 1) might be endogenously expressed in the peripheral nervous system of Lewis rats with actively induced and adoptive transfer EAN. TGF-beta 1 mRNA was upregulated to high levels in sensory and motor roots, spinal ganglia, and sciatic nerve as revealed by quantitative Northern blot analysis and in situ hybridization histochemistry, with peak levels just preceding the first signs of clinical recovery. TGF-beta 1 mRNA was localized to scattered round cells and dense cellular infiltrates, but only rarely to Schwann cell profiles. Double labeling studies revealed macrophages and subpopulations of T cells as the major cellular source of TGF-beta 1 mRNA. TGF-beta 1 protein was visualized immunocytochemically and localized to infiltrating mononuclear cells with peak expression around the same time as mRNA, in addition to some constitutive expression in axons and Schwann cells. Our studies suggest that the spontaneous recovery observed in Lewis rat EAN might be mediated by the endogenous elaboration of TGF-beta 1 within the peripheral nerve, and that macrophages might control their own cytotoxicity by expressing TGF-beta 1. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:8546208

  12. Time reversal for localization of sources of infrasound signals in a windy stratified atmosphere.

    PubMed

    Lonzaga, Joel B

    2016-06-01

    Time reversal is used for localizing sources of recorded infrasound signals propagating in a windy, stratified atmosphere. Due to the convective effect of the background flow, the back-azimuths of the recorded signals can be substantially different from the source back-azimuth, posing a significant difficulty in source localization. The back-propagated signals are characterized by negative group velocities from which the source back-azimuth and source-to-receiver (STR) distance can be estimated using the apparent back-azimuths and trace velocities of the signals. The method is applied to several distinct infrasound arrivals recorded by two arrays in the Netherlands. The infrasound signals were generated by the Buncefield oil depot explosion in the U.K. in December 2005. Analyses show that the method can be used to substantially enhance estimates of the source back-azimuth and the STR distance. In one of the arrays, for instance, the deviations between the measured back-azimuths of the signals and the known source back-azimuth are quite large (-1° to -7°), whereas the deviations between the predicted and known source back-azimuths are small with an absolute mean value of <1°. Furthermore, the predicted STR distance is off only by <5% of the known STR distance. PMID:27369127

  13. Real-time ultrasound transducer localization in fluoroscopy images by transfer learning from synthetic training data.

    PubMed

    Heimann, Tobias; Mountney, Peter; John, Matthias; Ionasec, Razvan

    2014-12-01

    The fusion of image data from trans-esophageal echography (TEE) and X-ray fluoroscopy is attracting increasing interest in minimally-invasive treatment of structural heart disease. In order to calculate the needed transformation between both imaging systems, we employ a discriminative learning (DL) based approach to localize the TEE transducer in X-ray images. The successful application of DL methods is strongly dependent on the available training data, which entails three challenges: (1) the transducer can move with six degrees of freedom meaning it requires a large number of images to represent its appearance, (2) manual labeling is time consuming, and (3) manual labeling has inherent errors. This paper proposes to generate the required training data automatically from a single volumetric image of the transducer. In order to adapt this system to real X-ray data, we use unlabeled fluoroscopy images to estimate differences in feature space density and correct covariate shift by instance weighting. Two approaches for instance weighting, probabilistic classification and Kullback-Leibler importance estimation (KLIEP), are evaluated for different stages of the proposed DL pipeline. An analysis on more than 1900 images reveals that our approach reduces detection failures from 7.3% in cross validation on the test set to zero and improves the localization error from 1.5 to 0.8mm. Due to the automatic generation of training data, the proposed system is highly flexible and can be adapted to any medical device with minimal efforts. PMID:24856101

  14. Magnetic STAR technology for real-time localization and classification of unexploded ordnance and buried mines

    NASA Astrophysics Data System (ADS)

    Wiegert, R. F.

    2009-05-01

    A man-portable Magnetic Scalar Triangulation and Ranging ("MagSTAR") technology for Detection, Localization and Classification (DLC) of unexploded ordnance (UXO) has been developed by Naval Surface Warfare Center Panama City Division (NSWC PCD) with support from the Strategic Environmental Research and Development Program (SERDP). Proof of principle of the MagSTAR concept and its unique advantages for real-time, high-mobility magnetic sensing applications have been demonstrated by field tests of a prototype man-portable MagSTAR sensor. The prototype comprises: a) An array of fluxgate magnetometers configured as a multi-tensor gradiometer, b) A GPS-synchronized signal processing system. c) Unique STAR algorithms for point-by-point, standoff DLC of magnetic targets. This paper outlines details of: i) MagSTAR theory, ii) Design and construction of the prototype sensor, iii) Signal processing algorithms recently developed to improve the technology's target-discrimination accuracy, iv) Results of field tests of the portable gradiometer system against magnetic dipole targets. The results demonstrate that the MagSTAR technology is capable of very accurate, high-speed localization of magnetic targets at standoff distances of several meters. These advantages could readily be transitioned to a wide range of defense, security and sensing applications to provide faster and more effective DLC of UXO and buried mines.

  15. Localized Single Frequency Lasing States in a Finite Parity-Time Symmetric Resonator Chain

    NASA Astrophysics Data System (ADS)

    Phang, Sendy; Vukovic, Ana; Creagh, Stephen C.; Sewell, Phillip D.; Gradoni, Gabriele; Benson, Trevor M.

    2016-02-01

    In this paper a practical case of a finite periodic Parity Time chain made of resonant dielectric cylinders is considered. The paper analyzes a more general case where PT symmetry is achieved by modulating both the real and imaginary part of the material refractive index along the resonator chain. The band-structure of the finite periodic PT resonator chains is compared to infinite chains in order to understand the complex interdependence of the Bloch phase and the amount of the gain/loss in the system that causes the PT symmetry to break. The results show that the type of the modulation along the unit cell can significantly affect the position of the threshold point of the PT system. In all cases the lowest threshold is achieved near the end of the Brillouin zone. In the case of finite PT-chains, and for a particular type of modulation, early PT symmetry breaking is observed and shown to be caused by the presence of termination states localized at the edges of the finite chain resulting in localized lasing and dissipative modes at each end of the chain.

  16. Detection and localization of continuous gravitational waves with pulsar timing arrays: the role of pulsar terms

    NASA Astrophysics Data System (ADS)

    Zhu, X.-J.; Wen, L.; Xiong, J.; Xu, Y.; Wang, Y.; Mohanty, S. D.; Hobbs, G.; Manchester, R. N.

    2016-09-01

    A pulsar timing array is a Galactic-scale detector of nanohertz gravitational waves (GWs). Its target signals contain two components: the `Earth term' and the `pulsar term' corresponding to GWs incident on the Earth and pulsar, respectively. In this work we present a Frequentist method for the detection and localization of continuous waves that takes into account the pulsar term and is significantly faster than existing methods. We investigate the role of pulsar terms by comparing a full-signal search with an Earth-term-only search for non-evolving black hole binaries. By applying the method to synthetic data sets, we find that (i) a full-signal search can slightly improve the detection probability (by about five per cent); (ii) sky localization is biased if only Earth terms are searched for and the inclusion of pulsar terms is critical to remove such a bias; (iii) in the case of strong detections (with signal-to-noise ratio ≳30), it may be possible to improve pulsar distance estimation through GW measurements.

  17. Real-time detection of generic objects using objectness estimation and locally adaptive regression kernels matching

    NASA Astrophysics Data System (ADS)

    Zheng, Zhihui; Gao, Lei; Xiao, Liping; Zhou, Bin; Gao, Shibo

    2015-12-01

    Our purpose is to develop a detection algorithm capable of searching for generic interest objects in real time without large training sets and long-time training stages. Instead of the classical sliding window object detection paradigm, we employ an objectness measure to produce a small set of candidate windows efficiently using Binarized Normed Gradients and a Laplacian of Gaussian-like filter. We then extract Locally Adaptive Regression Kernels (LARKs) as descriptors both from a model image and the candidate windows which measure the likeness of a pixel to its surroundings. Using a matrix cosine similarity measure, the algorithm yields a scalar resemblance map, indicating the likelihood of similarity between the model and the candidate windows. By employing nonparametric significance tests and non-maxima suppression, we detect the presence of objects similar to the given model. Experiments show that the proposed detection paradigm can automatically detect the presence, the number, as well as location of similar objects to the given model. The high quality and efficiency of our method make it suitable for real time multi-category object detection applications.

  18. Localized Mode DFT-S-OFDMA Implementation Using Frequency and Time Domain Interpolation

    NASA Astrophysics Data System (ADS)

    Viholainen, Ari; Ihalainen, Tero; Rinne, Mika; Renfors, Markku

    2009-12-01

    This paper presents a novel method to generate a localized mode single-carrier frequency division multiple access (SC-FDMA) waveform. Instead of using DFT-spread OFDMA (DFT-S-OFDMA) processing, the new structure called SCiFI-FDMA relies on frequency and time domain interpolation followed by a user-specific frequency shift. SCiFI-FDMA can provide signal waveforms that are compatible to DFT-S-OFDMA. In addition, it provides any resolution of user bandwidth allocation for the uplink multiple access with comparable computational complexity, because the DFT is avoided. Therefore, SCiFI-FDMA allows a flexible choice of parameters appreciated in broadband mobile communications in the future.

  19. Real-time feedback control for high-intensity focused ultrasound system using localized motion imaging

    NASA Astrophysics Data System (ADS)

    Sugiyama, Ryusuke; Kanazawa, Kengo; Seki, Mika; Azuma, Takashi; Sasaki, Akira; Takeuchi, Hideki; Fujiwara, Keisuke; Itani, Kazunori; Tamano, Satoshi; Yoshinaka, Kiyoshi; Takagi, Shu; Matsumoto, Yoichiro

    2015-07-01

    High-intensity focused ultrasound (HIFU) is one of the noninvasive treatment for tumors. Visualizing the treated area inside the human body is necessary to control the HIFU exposure. Localized motion imaging (LMI) using ultrasound to induce and detect tissue deformation is one technique to detect a change in tissue stiffness caused by thermal coagulation. In experiments with porcine liver, LMI has shown to detect deformation with less than 20% accuracy. We have developed a prototype feedback control system using real-time LMI. In this system, coagulation size was measured every 1 s and controlled to correspond to a targeted size. The typical size error was reduced to 14% from 35%. LMI displacements in normal and coagulated tissues were sufficiently different to discriminate between coagulated areas and noncoagulated ones after HIFU sonication and to visualize treated areas after HIFU treatment.

  20. Global Auroral Energy Deposition during Substorm Onset Compared with Local Time and Solar Wind IMF Conditions

    NASA Technical Reports Server (NTRS)

    Spann, J. F.; Brittnacher, M.; Fillingim, M. O.; Germany, G. A.; Parks, G. K.

    1998-01-01

    The global images made by the Ultraviolet Imager (UVI) aboard the IASTP/Polar Satellite are used to derive the global auroral energy deposited in the ionosphere resulting from electron precipitation. During a substorm onset, the energy deposited and its location in local time are compared to the solar wind IMF conditions. Previously, insitu measurements of low orbiting satellites have made precipitating particle measurements along the spacecraft track and global images of the auroral zone, without the ability to quantify energy parameters, have been available. However, usage of the high temporal, spatial, and spectral resolution of consecutive UVI images enables quantitative measurement of the energy deposited in the ionosphere not previously available on a global scale. Data over an extended period beginning in January 1997 will be presented.

  1. Real-time estimation and biofeedback of single-neuron firing rates using local field potentials

    PubMed Central

    Hall, Thomas M.; Nazarpour, Kianoush; Jackson, Andrew

    2014-01-01

    The long-term stability and low-frequency composition of local field potentials (LFPs) offer important advantages for robust and efficient neuroprostheses. However, cortical LFPs recorded by multi-electrode arrays are often assumed to contain only redundant information arising from the activity of large neuronal populations. Here we show that multichannel LFPs in monkey motor cortex each contain a slightly different mixture of distinctive slow potentials that accompany neuronal firing. As a result, the firing rates of individual neurons can be estimated with surprising accuracy. We implemented this method in a real-time biofeedback brain–machine interface, and found that monkeys could learn to modulate the activity of arbitrary neurons using feedback derived solely from LFPs. These findings provide a principled method for monitoring individual neurons without long-term recording of action potentials. PMID:25394574

  2. Enhanced sonar array target localization using time-frequency interference phenomena

    NASA Astrophysics Data System (ADS)

    Shibley, Jordan Almon

    The ability of traditional active sonar processing methods to detect targets is often limited by clutter and reverberation from ocean environments. Similarly, multipath arrivals from radiating sources such as ships and submarines are received at sensors in passive sonar systems. Reverberation and multipath signals introduce constructive and destructive interference patterns in received spectrograms in both active and passive sonar applications that vary with target range and frequency. The characterization and use of interference phenomena can provide insights into environmental parameters and target movement in conjunction with standard processing methods including spectrograms and array beamforming. This thesis focuses on utilizing the time-frequency interference structure of moving targets captured on sonar arrays to enhance the resolution and abilities of conventional sonar methods to detect and localize targets. Physics-based methods for interference-based beamforming and target depth separation are presented with application of these methods shown using broadband simulated array data.

  3. Long-term Variability in Pacific Decadal Oscillation Teleconnections to Climate in Alaska: From "In a Relationship" to "It's Complicated"

    NASA Astrophysics Data System (ADS)

    Heckler, S.; McAfee, S. A.

    2015-12-01

    Since the Pacific Decadal Oscillation's (PDO) identification in 1997, it has been widely used as a seasonal-forecasting and decision-making tool in Alaska. Gulf of Alaska sea surface temperatures have oscillated every few decades between warmer (positive PDO) and colder (negative PDO). In the historical record, there are two negative phases and two positive phases, but since 2000, the PDO has vacillated between warm and cold states annually. Recent inconsistencies in the phase of the PDO as well as its influence on climate have warranted further study of this climate phenomenon. Previous work found that strength and importance of the PDO teleconnections to temperature and precipitation varied widely over time in the Twentieth Century Reanalysis (v2) data and in CRU TS3.2.1. In light of the inherent problems with reanalyses and with gridded products in data-poor areas, it is necessary to examine individual station data to further understand the relationship of the PDO with climate in Alaska. This study examines temperature and precipitation data for individual stations across Alaska to determine the stability of PDO teleconnections. Individual station data were downloaded from the NOAA National Centers for Environmental Information GHCN-D database. For the months of January, February and March, stations with at least 90% complete data for all three months were selected. Using stations grouped according to the recently developed Alaska climate divisions, the stability of PDO teleconnections was analyzed in terms of station anomalies from the PRISM climatology. In many parts of the state, the relationship between the PDO and local climate was not as stable as expected. Even at individual stations, the strength and influence of the PDO was often inconsistent over time.

  4. The inner magnetosphere ion composition and local time distribution over a solar cycle

    NASA Astrophysics Data System (ADS)

    Kistler, L. M.; Mouikis, C. G.

    2016-03-01

    Using the Cluster/Composition and Distribution Function (CODIF) analyzer data set from 2001 to 2013, a full solar cycle, we determine the ion distributions for H+, He+, and O+ in the inner magnetosphere (L < 12) over the energy range 40 eV to 40 keV as a function magnetic local time, solar EUV (F10.7), and geomagnetic activity (Kp). Concentrating on L = 6-7 for comparison with previous studies at geosynchronous orbit, we determine both the average flux at 90° pitch angle and the pitch angle anisotropy as a function of energy and magnetic local time. We clearly see the minimum in the H+ spectrum that results from the competition between eastward and westward drifts. The feature is weaker in O+ and He+, leading to higher O+/H+ and He+/H+ ratios in the affected region, and also to a higher pitch angle anisotropy, both features expected from the long-term effects of charge exchange. We also determine how the nightside L = 6-7 densities and temperatures vary with geomagnetic activity (Kp) and solar EUV (F10.7). Consistent with other studies, we find that the O+ density and relative abundance increase significantly with both Kp and F10.7. He+ density increases with F10.7, but not significantly with Kp. The temperatures of all species decrease with increasing F10.7. The O+ and He+ densities increase from L = 12 to L ~ 3-4, both absolutely and relative to H+, and then drop off sharply. The results give a comprehensive view of the inner magnetosphere using a contiguous long-term data set that supports much of the earlier work from GEOS, ISEE, Active Magnetospheric Particle Tracer Explorers, and Polar from previous solar cycles.

  5. Crustal Structure of Northeastern Sicily, South Italy, From Tomographic Inversion of Local Earthquake Arrival-times

    NASA Astrophysics Data System (ADS)

    Orecchio, B.; Aloisi, M.; Barberi, G.; Neri, G.

    After integrating the databases of the local and national seismic networks relative to lithospheric seismicity that occurred in and around Northeastern Sicily bet ween 1978 and 2001, we selected 932 events for 3D local tomography of P- and S-wave velocity. A dataset of 10241 P and 5597 S arrival times was inverted for Vp, Vs and hypocenter distributions using the SIMULPS12 algorithm. Analysis of the Derivative Weight Sum and Spread Function detected a rather good level of constraint of velocity at nodes of a grid with horizontal and vertical spacing of 10 and 6 km respectively, spanning the upper 30 Km beneath the area including Central and Northeastern Sicily, Southern Calabria and the Southeasternmost Tyrrhenian Sea. Standard deviation of arrival-time residuals after 3D inversion was about 20% lower than obtained by locating the same earthquakes using the minimum 1D model. Four main spatial domains can be distinguished in the obtained velocity structure: i) a high-velocity domain corresponding to Tyrrhenian structural units; ii) low-velocity domain corresponding to Sicilian units; iii) a domain corresponding to the Calabrian Arc characterized by positive velocity anomalies at shallow depth (nodes in the range 0-12 Km) and by negative velocity ones below (18-30 Km); iv) positive anomalies at deep nodes (18-30 Km) and negative anomalies above, in the area including the Etna volcano and the Ionian coast of Sicily near the volcanic edifice. Velocity distributions were analyzed jointly with the geophysical and geological information available in the literature in order to improve our knowledge of the crustal structure in the study area. Furthermore, comparisons were made with the most recent regional geodynamic models and led us to state that the crustal features evidenced in the present investigation match well with the model assuming gravity- induced southeastward roll-back of an Ionian lithospheric slab subducting beneath the Tyrrhenian sea.

  6. Petrology of the Plutonic Rocks of west-central Alaska

    USGS Publications Warehouse

    Miller, Thomas P.

    1970-01-01

    alkaline rocks appears to be related to regional structural features, particularly the boundary between the Mesozoic volcanogenic province of west-central Alaska and the thrust-faulted province of metamorphic-plutonic and sedimentary rocks of Paleozoic and Precambrian age that forms the eastern Seward Peninsula. This boundary may have been a zone of structural weakness along which alkaline magma was generated. Modal and chemical trends suggest that the potassium-rich magma influenced the composition of more granitic magmas forming at higher levels. The latter may have been forming as a result of anatexis of andesite and mixing of mantle-derived mafic magma. The result is the heterogeneous assemblage of generally potassium-rich plutonic rocks that forms the west end of the Hogataza plutonic belt. The loci of magmatism in west-central Alaska shifted east in Late Cretaceous time and the eastern plutons show only local signs of potassium enrichment. They are compositionally homogeneous and differences within plutons appear due to local contamination.

  7. Separation of hydrological effects from GNSS time series on regional and local scale

    NASA Astrophysics Data System (ADS)

    Rossi, Giuliana; Zuliani, David; Fabris, Paolo

    2016-04-01

    Continuous GNSS networks provide unique information about the crustal displacements, of use for studies concerning gravity field, plate motions, tectonic processes, and earthquake cycle understanding. For these purposes, overall in the case of regions with slow deformation strain, we have to individuate and separate all the possible contributions, at the various frequencies. Among the others, hydrological loading effects can be present over a wide frequency range and have to be accurately modelled. The present work is aimed to test, whether the GNSS signal is sensitive to hydrological effects at a regional or a more local scale. The dataset we chose for the tests is ideal: it relates to a relatively small region, where the active collisional processes generate a moderate seismic activity and is characterized by high rainfall rate and significant hydrological phenomena. The data belong to the Friuli Regional Deformation Network (FReDNet) of OGS (Istituto Nazionale di Oceanografia e Geofisica Sperimentale), consisting of 16 GNSS permanent sites distributed on the northern edge of the Adria microplate (NE-Italy). The data set includes the time series from the 10 GNSS permanent sites of the Marussi network of the Friuli-Venezia Giulia Regional Council. The time-span covered by the network overcomes in many cases the twelve years, giving the possibility to study the various terms superimposed to the linear one, due to the plate motion. After a first processing of the GPS data of the longest time series, using GAMIT/GLOBK, eliminating the outliers, and filling eventual short gaps in the data through linear interpolation, we corrected them for the annual and seasonal terms and the displacements due to hydrological mass loading effects on multiyear timescales. For our test, we first addressed the regional level problem. Following the approach of Chamoli et al. (2014), we separated the annual, semiannual, and pluriannual terms of the displacements excited by the

  8. Metallicity gradients in local Universe galaxies: Time evolution and effects of radial migration

    NASA Astrophysics Data System (ADS)

    Magrini, Laura; Coccato, Lodovico; Stanghellini, Letizia; Casasola, Viviana; Galli, Daniele

    2016-04-01

    Context. Our knowledge of the shape of radial metallicity gradients in disc galaxies has recently improved. Conversely, the understanding of their time evolution is more complex, since it requires analysis of stellar populations with different ages or systematic studies of galaxies at different redshifts. In the local Universe, H ii regions and planetary nebulae (PNe) are important tools to investigate radial metallicity gradients in disc galaxies. Aims: We present an in-depth study of all nearby spiral galaxies (M33, M31, NGC 300, and M81) with direct-method nebular abundances of both populations, aiming at studying the evolution of their radial metallicity gradients. For the first time, we also evaluate the radial migration of PN populations. Methods: For the selected galaxies, we analysed H ii region and PN properties to: determine whether oxygen in PNe is a reliable tracer for past interstellar medium (ISM) composition; homogenise published datasets; estimate the migration of the oldest stellar populations; and determine the overall chemical enrichment and slope evolution. Results: We confirm that oxygen in PNe is a reliable tracer for past ISM metallicity. We find that PN gradients are flatter than or equal to those of H ii regions. When radial motions are negligible, this result provides a direct measurement of the time evolution of the gradient. For galaxies with dominant radial motions, we provide upper limits on the gradient evolution. Finally, the total metal content increases with time in all target galaxies, and early morphological types have a larger increment Δ(O/H) than late-type galaxies. Conclusions: Our findings provide important constraints to discriminate among different galactic evolutionary scenarios, favouring cosmological models with enhanced feedback from supernovae. The advent of extremely large telescopes allows us to include galaxies in a wider range of morphologies and environments, thus putting firmer constraints on galaxy formation

  9. Real-time measurements of local myocardium motion and arterial wall thickening.

    PubMed

    Kanai, H; Koiwa, Y; Zhang, J

    1999-01-01

    We have already developed a new method, namely, the phased tracking method, to track the movement of the heart wall and arterial wall accurately based on both the phase and magnitude of the demodulated signals to determine the instantaneous position of an object. This method has been realized by an off-line measurement system, which cannot be applied to transient evaluation of rapid response of the cardiovascular system to physiological stress. In this paper, therefore, a real-time system to measure change in the thickness of the myocardium and the arterial wall is presented. In this system, an analytic signal from standard ultrasonic diagnostic equipment is analogue-to-digital (A/D) converted at a sampling frequency of 1 MHz. By pipelining and parallel processing using four high-speed digital signal processing (DSP) chips, the method described is realized in real time. The tracking results for both sides of the heart and/or arterial wall are superimposed on the M (motion)-mode image in the work station (WS), and the thickness changes of the heart and/or arterial wall are also displayed and digital-to-analogue (D/A) converted in real time. From the regional change in thickness of the heart wall, spatial distribution of myocardial motility and contractility can be evaluated. For the arterial wall, its local elasticity can be evaluated by referring to the blood pressure. In in vivo experiments, the rapid response of the change in wall thickness of the carotid artery to the dose of the nitroglycerine (NTG) is evaluated. This new real-time system offers potential for quantitative diagnosis of myocardial motility, early stage atherosclerosis, and the transient evaluation of the rapid response of the cardiovascular system to physiological stress. PMID:18244316

  10. Analysis of local ionospheric time varying characteristics with singular value decomposition

    NASA Astrophysics Data System (ADS)

    Jakobsen, Jakob; Knudsen, Per; Jensen, Anna B. O.

    2010-07-01

    In this paper, a time series from 1999 to 2007 of absolute total electron content (TEC) values has been computed and analyzed using singular value decomposition (SVD). The data set has been computed using a Kalman Filter and is based on dual frequency GPS data from three reference stations in Denmark located in the midlatitude region. The station separation between the three stations is 132-208 km (the time series of the TEC can be freely downloaded at http://www.heisesgade.dk ). For each year, a SVD has been performed on the TEC time series in order to identify the three time varying (daily, yearly, and 11 yearly) characteristics of the ionosphere. The applied SVD analysis provides a new method for separating the daily from the yearly components. The first singular value is very dominant (approximately six times larger than the second singular value), and this singular value corresponds clearly to the variation of the daily cycle over the year. The second singular value corresponds to variations of the width of the daily peak over the year, and the third singular value shows a clear yearly variation of the daily signal with peaks around the equinoxes. The singular values for each year show a very strong correlation with the sunspot number for all the singular values. The correlation coefficients for the first 5 sets of singular values are all above 0.96. Based on the SVD analysis yearly models of the TEC in the ionosphere can be recomposed and illustrate the three time varying characteristics of the ionosphere very clearly. By prediction of the yearly mean sunspot number, future yearly models can also be predicted. These can serve as a priori information for a real time space weather service providing information of the current status of the ionosphere. They will improve the Kalman filter processing making it more robust, but can also be used as

  11. Little Ice Age Glaciation in Alaska: A record of recent global climatic change

    SciTech Connect

    Calkin, P.E.; Wiles, G.C.

    1992-03-01

    General global cooling and temperature fluctuation accompanied by expansion of mountain glaciers characterized the Little Ice Age of about A.D. 1200 through A.D. 1900. The effects of such temperature changes appear first and are strongest at high latitudes. Therefore the Little Ice Age record of glacial fluctuation in Alaska may provide a good proxy for these events and a test for models of future climatic change. Holocene expansions began here as early as 7000 B.P. and locally show a periodicity of 350 years after about 4500 years B.P. The Little Ice Age followed a late Holocene interval of minor ice advance and a subsequent period of ice margin recession lasting one to seven centuries. The timing of expansions since about A.D. 1200 have often varied between glaciers, but these are the most pervasive glacial events of the Holocene in Alaska and frequently represent ice marginal maxima for this interval. At least two major expansions are, apparent in forefields of both land-terminating and fjord-calving glaciers, but the former display the most reliable and detailed climatic record. Major maxima occurred by the 16th century and into the mid-18th century. Culmination of advances occurred throughout Alaska during the 19th century followed within a few decades by general glacial retreat. Concurrently, equilibrium line altitudes have been raised 100-400 m, representing a rise of 2-3 deg C in mean summer temperature.

  12. Significant Alaska minerals

    SciTech Connect

    Robinson, M.S.; Bundtzen, T.K.

    1982-01-01

    Alaska ranks in the top four states in gold production. About 30.5 million troy oz have been produced from lode and placer deposits. Until 1930, Alaska was among the top 10 states in copper production; in 1981, Kennecott Copper Company had prospects of metal worth at least $7 billion. More than 85% of the 20 million oz of silver derived have been byproducts of copper mining. Nearly all lead production has been as a byproduct of gold milling. Molybdenum is a future Alaskan product; in 1987 production is scheduled to be about 12% of world demand. Uranium deposits discovered in the Southeast are small but of high grade and easily accessible; farther exploration depends on improvement of a depressed market. Little has been done with Alaskan iron and zinc, although large deposits of the latter were discovered. Alaskan jade has a market among craftspeople. A map of the mining districts is included. 2 figures, 1 table.

  13. Coal resources of Alaska

    SciTech Connect

    Sanders, R.B.

    1982-01-01

    In the late 1800s, whaling ships carried Alaskan coal, and it was used to thaw ground for placer gold mining. Unfortunate and costly political maneuvers in the early 1900s delayed coal removal, but the Alaska Railroad and then World War II provided incentives for opening mines. Today, 33 million acres (about 9% of the state) is classified as prospectively valuable for coal, much of it under federal title. Although the state's geology is poorly known, potential for discovery of new fields exists. The US Geological Survey estimates are outdated, although still officially used. The total Alaska onshore coal resource is estimated to be 216 to 4216 billion tons of which 141 billion tons are identified resources; an additional 1430 billion tons are believed to lie beneath Cook Inlet. Transportation over mountain ranges and wetlands is the biggest hurdle for removal. Known coal sources and types are described and mapped. 1 figure.

  14. Hazard communication by the Alaska Volcano Observatory Concerning the 2008 Eruptions of Okmok and Kasatochi Volcanoes, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Adleman, J. N.; Cameron, C. E.; Neal, T. A.; Shipman, J. S.

    2008-12-01

    The significant explosive eruptions of Okmok and Kasatochi volcanoes in 2008 tested the hazard communication systems at the Alaska Volcano Observatory (AVO) including a rigorous test of the new format for written notices of volcanic activity. AVO's Anchorage-based Operations facility (Ops) at the USGS Alaska Science Center serves as the hub of AVO's eruption response. From July 12 through August 28, 2008 Ops was staffed around the clock (24/7). Among other duties, Ops staff engaged in communicating with the public, media, and other responding federal and state agencies and issued Volcanic Activity Notices (VAN) and Volcano Observatory Notifications for Aviation (VONA), recently established and standardized products to announce eruptions, significant activity, and alert level and color code changes. In addition to routine phone communications with local, national and international media, on July 22, AVO held a local press conference in Ops to share observations and distribute video footage collected by AVO staff on board a U.S. Coast Guard flight over Okmok. On July 27, AVO staff gave a public presentation on the Okmok eruption in Unalaska, AK, 65 miles northeast of Okmok volcano and also spoke with local public safety and industry officials, observers and volunteer ash collectors. AVO's activity statements, photographs, and selected data streams were posted in near real time on the AVO public website. Over the six-week 24/7 period, AVO staff logged and answered approximately 300 phone calls in Ops and approximately 120 emails to the webmaster. Roughly half the logged calls were received from interagency cooperators including NOAA National Weather Service's Alaska Aviation Weather Unit and the Center Weather Service Unit, both in Anchorage. A significant number of the public contacts were from mariners reporting near real-time observations and photos of both eruptions, as well as the eruption of nearby Cleveland Volcano on July 21. As during the 2006 eruption of

  15. Suppression and Revival of Weak Localization of Ultra-Cold Atoms by Manipulation of Time-Reversal Symmetry

    NASA Astrophysics Data System (ADS)

    Aspect, Alain

    In the early 1980's, observation of a magneto-resistance anomaly in metallic thin films was attributed to the phenomenon of weak localization of electrons and to time-reversal symmetry breaking due to a magnetic field acting upon charged particles. We have observed weak localization of ultra-cold atoms in a 2D configuration, placed in a disordered potential created by a laser speckle. In order to manipulate time-reversal symmetry with our neutral atoms, we take advantage of the slow evolution of our system, and we observe the suppression and revival of weak localization when time reversal symmetry is cancelled and reestablished. References: K. Muller, J. Richard, V. V. Volchkov, V. Denechaud, P. Bouyer, A. Aspect, and V. Josse, ''Suppression and Revival of Weak Localization through Control of Time-Reversal Symmetry,'' Physical Review Letters 114 (20) (2015) and references in. Work supported by the ERC Avanced Grant Quantatop.

  16. The best timing for administering systemic chemotherapy in patients with locally advanced rectal cancer

    PubMed Central

    Shimodaira, Yusuke; Harada, Kazuto; Lin, Quan

    2016-01-01

    Over the past several decades, outcomes for patients with rectal cancer have improved considerably. However, several questions have emerged as survival times have lengthened and quality of life has improved for these patients. Currently patients with locally advanced rectal cancer (LARC) are often recommended multimodality therapy with fluoropyrimidine-based chemotherapy (CT) and radiation followed by total mesorectal excision (TME), with consideration given to FOLFOX before chemoradiotherapy (CRT). Recently, Garcia-Aguilar and colleagues reported in Lancet Oncology that the addition of mFOLFOX6 administered between CRT and surgery affected the number of patients achieving pathologic complete response (pathCR), which is of great interest from the standpoint of pursuit of optimal timing of systemic CT delivery. This was a multicenter phase II study consisting of 4 sequential treatment groups of patients with LARC, and they reported that patients given higher number CT cycles between CRT and surgery achieved higher rates of pathCR than those given standard treatment. There was no association between response improvement and tumor progression, increased technical difficulty, or surgical complications. Ongoing phase III clinical trial further assessing this strategy might result in a paradigm shift. PMID:26889491

  17. Local time resolved dynamics of field-aligned currents and their response to solar wind variability

    NASA Astrophysics Data System (ADS)

    He, Maosheng; Vogt, Joachim; Lühr, Hermann; Sorbalo, Eugen

    2014-07-01

    Using 10 years of CHAMP measurements condensed into the empirical model of field-aligned currents through empirical orthogonal function analysis, the dynamics of field-aligned currents (FACs) is modeled and studied in separate magnetic local time (MLT) sectors. We investigate the distributions of FAC intensity and latitude and evaluate their predictability in terms of geospace parameters which are ranked according to their relative importance measured by a multivariate regression procedure. The response time to changes in solar wind variables is studied in detail and found to be much shorter for dayside FACs than on the nightside (15-25 min versus 35-95 min). Furthermore, dayside FACs can be parameterized more accurately: R2 values maximize greater than 0.7 for FAC latitude and greater than 0.3 for FAC intensity, whereas the corresponding values on the nightside are smaller than 0.3 and 0.15, respectively. The results support the separation between directly driven coupling processes acting on the dayside and unloading processes controlling the nightside. In addition, the MLT-resolved standardized regression coefficients suggest that (1) FAC latitude is affected most significantly by the transpolar potential, substorm evolution, solar activity as represented by the F10.7 index and its square, and the dipole tilt; (2) Region-1/2 current intensity is controlled most efficiently by substorm evolution, IMF Bz and IMF By; and (3) cusp current intensity is influenced by conductivity, IMF By and their cross item.

  18. Positional Stability of Electromagnetic Transponders Used for Prostate Localization and Continuous, Real-Time Tracking

    SciTech Connect

    Litzenberg, Dale W. . E-mail: litzen@umich.edu; Willoughby, Twyla R. M.Sc.; Balter, James M.; Sandler, Howard M.; Wei, John; Kupelian, Patrick A.; Cunningham, Alexis A.; Bock, Andrea; Aubin, Michele; Roach, Mack; Shinohara, Katsuto; Pouliot, Jean

    2007-07-15

    Purpose: To determine the relative positional stability of implanted glass-encapsulated circuits (transponders) used in continuous electromagnetic localization and tracking of target volumes during radiation therapy. Ideally, the distances between transponders remains constant over the course of treament. In this work, we evaluate the accuracy of these conditions. Methods and Materials: Three transponders were implanted in each of 20 patients. Images (CT scan or X-ray pair) were acquired at 13 time points. These images occurred from the day of implant (2 weeks before simulation) to 4 weeks posttreatment. The distance between transponders was determined from each dataset. The average and standard deviation of each distance were determined, and changes were evaluated over several time periods, including pretreatment and during therapy. Results: Of 60 transponders implanted, 58 showed no significant migration from their intended positions. Of the two transponders that did migrate, one appears to have been implanted in the venous plexus, and the other in the urethra, with no clinical consequences to the patients. An analysis that included the planning CT scan and all subsequent distance measurements showed that the standard deviation of intertransponder distances was {<=}1.2 mm for up to 1 month after the completion of therapy. Conclusions: Implanted transponders demonstrate the same long-term stability characteristics as implanted gold markers, within statistical uncertainties. As with gold markers, and using the same implant procedure, basic guidelines for the placement of transponders within the prostate help ensure minimal migration.

  19. Relativistic Coulomb excitation within the time dependent superfluid local density approximation

    DOE PAGESBeta

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.

    2015-01-06

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, themore » dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.« less

  20. Dynamic binaural sound localization based on variations of interaural time delays and system rotations.

    PubMed

    Baumann, Claude; Rogers, Chris; Massen, Francis

    2015-08-01

    This work develops the mathematical model for a steerable binaural system that determines the instantaneous direction of a sound source in space. The model combines system angular speed and interaural time delays (ITDs) in a differential equation, which allows monitoring the change of source position in the binaural reference frame and therefore resolves the confusion about azimuth and elevation. The work includes the analysis of error propagation and presents results from a real-time application that was performed on a digital signal processing device. Theory and experiments demonstrate that the azimuthal angle to the sound source is accurately yielded in the case of horizontal rotations, whereas the elevation angle is estimated with large uncertainty. This paper also proves the equivalence of the ITD derivative and the Doppler shift appearing between the binaurally captured audio signals. The equation of this Doppler shift is applicable for any kind of motion. It shows that weak binaural pitch differences may represent an additional cue in localization of sound. Finally, the paper develops practical applications from this relationship, such as the synthesizing of binaural images of pure and complex tones emitted by a moving source, and the generation of multiple frequency images for binaural beat experiments. PMID:26328682

  1. Longitudinal and local time asymmetries of magnetospheric turbulence in Saturn's plasma sheet

    NASA Astrophysics Data System (ADS)

    Papen, Michael; Saur, Joachim

    2016-05-01

    Based on earlier studies that have shown Saturn's middle magnetosphere to contain turbulent magnetic field fluctuations, we analyze the spatial and temporal variations of the magnetic fluctuations and turbulent heating rate as a function of local time and magnetic phase. The region of study is Saturn's plasma sheet at a distance of 6-20 Rs, where Rs is Saturn's equatorial radius. The data set consists of magnetic field data measured during 92 orbits (revolutions) from the equatorial phases of Cassini covering 9 years from 2004 to 2012. We find asymmetries in the magnetosphere with enhanced fluctuations around noon. With respect to longitude we find increased fluctuations at 65° southern and 250° northern magnetic phase. This leads to an increased turbulent heating rate in these regions and is consistent with regions of increased plasma density and maximum downward field-aligned currents according to the quasi-dipolar perturbation fields. Analysis of single orbits reveals that the heating rate of 79% of all analyzed inbound and outbound legs is significantly (statistical error less than 1%) sinusoidally modulated. The modulation of the turbulent heating rate is predominantly observed during times when Cassini is located between dusk and midnight and additionally at dawn.

  2. Bifunctional electro-optical nanoprobe to real-time detect local biochemical processes in single cells.

    PubMed

    Zheng, Xin Ting; Hu, Weihua; Wang, Houxiao; Yang, Hongbin; Zhou, Wei; Li, Chang Ming

    2011-07-15

    A bifunctional electro-optical nanoprobe with integrated nanoring electrode and optical nanotip was fabricated and investigated to simultaneously detect both electrical and optical signals in real-time with high spatial resolution. Concurrent measurements of the oxidant generation and the intracellular antioxidant levels in single cells correlate the stronger oxidant generation with an altered initial antioxidant response in the breast cancer cells in comparison to the normal ones suggesting that the cell malignancy is associated with the strength of oxidative stress, and the higher antioxidant level may be the cause of the drug resistance. While the optical detection indicates the fluctuation of the intracellular redox homeostasis, the chronoamperometric signals allow quantitative real-time detection of the H₂O₂ release and decay. Furthermore, the nanoscale probe enables localized simultaneous detections thus discovering that activated enzymes responsible for the oxidative stress target at specific membrane regions. This method promises applications in study of the dynamics of important physiological processes, and provides the opportunity to unravel the interplay of various signaling pathways. PMID:21632233

  3. Magnetic local time variation and scaling of poleward auroral boundary dynamics

    NASA Astrophysics Data System (ADS)

    Longden, N.; Chisham, G.; Freeman, M. P.

    2014-12-01

    The balance of dayside and nightside reconnection processes within the Earth's magnetosphere and its effect on the amount of open magnetic flux threading the ionosphere is well understood in terms of the expanding-contracting polar cap model. However, the nature and character of the consequential fluctuations in the polar cap boundary are poorly understood. By using the poleward auroral luminosity boundary (PALB), as measured by the FUV instrument of the IMAGE spacecraft, as a proxy for the polar cap boundary, we have studied the motion of this boundary for more than 2 years across the complete range of magnetic local time. Our results show that the dayside PALB dynamics are broadly self-similar on timescales of 12 min to 6 h and appear to be monofractal. Similarity with the characteristics of solar wind and interplanetary magnetic field variability suggests that this dayside monofractal behavior is predominantly inherited from the solar wind via the reconnection process. The nightside PALB dynamics exhibit scale-free behavior at intermediate time scales (12-90 min) and appear to be multifractal. We propose that this character is a result of the intermittent multifractal structure of magnetotail reconnection.

  4. Local time distributions of repetition periods for rising tone lower band chorus waves in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Shue, Jih-Hong; Hsieh, Yi-Kai; Tam, Sunny W. Y.; Wang, Kaiti; Fu, Hui Shan; Bortnik, Jacob; Tao, Xin; Hsieh, Wen-Chieh; Pi, Gilbert

    2015-10-01

    Whistler mode chorus waves generally occur outside the plasmapause in the magnetosphere. The most striking feature of the waves is their occurrence in discrete elements. One of the parameters that describe the discrete elements is the repetition period (Trp), the time between consecutive elements. The Trp has not been studied statistically before. We use high-resolution waveform data to derive distributions of Trp for different local times. We find that the average Trp for the nightside (0.56 s) and dawnside (0.53 s) are smaller than those for the dayside (0.81 s) and duskside (0.97 s). Through a comparison with the background plasma and magnetic fields, we also find that the total magnetic field and temperature are the main controlling factors that affect the variability of Trp. These results are important for understanding the generation mechanism of chorus and choosing parameters in simulations that model the acceleration and loss of electrons by wave-particle interactions.

  5. Tomographic imaging of local earthquake delay times for three-dimensional velocity variation in western Washington

    SciTech Connect

    Lees, J.M.; Crosson, R.S. )

    1990-04-10

    Tomographic inversion is applied to delay times from local earthquakes to image three dimensional velocity variations in the Puget Sound region of western Washington. The 37,500 square km region is represented by nearly cubic blocks of 5 km per side. P-wave arrival time observations from 4,387 crustal earthquakes, with depths of 0 to 40 km, were used as sources producing 36,865 rays covering the target region. A conjugate gradient method (LSQR) is used to invert the large, sparse system of equations. To diminish the effects of noisy data, the Laplacian is constrained to be zero within horizontal layers, providing smoothing of the model. The resolution is estimated by calculating impulse responses at blocks of interest and estimates of standard errors are calculated by the jackknife statistical procedure. Results of the inversion are correlated with some known geologic features and independent geophysical measurements. High P-wave velocities along the eastern flank of the Olympic Peninsula are interpreted to reflect the subsurface extension of Crescent terrane. Low velocities beneath the Puget Sound further to the east are inferred to reflect thick sediment accumulations. The Crescent terrane appears to extend beneath Puget Sound, consistent with its interpretation as a major accretionary unit. In the southern Puget Sound basin, high velocity anomalies at depths of 10-20 km are interpreted as Crescent terrane and are correlated with a region of low seismicity. Near Mt. Ranier, high velocity anomalies may reflect buried plutons.

  6. Aniakchak Crater, Alaska Peninsula

    USGS Publications Warehouse

    Smith, Walter R.

    1925-01-01

    The discovery of a gigantic crater northwest of Aniakchak Bay (see fig. 11) closes what had been thought to be a wide gap in the extensive series of volcanoes occurring at irregular intervals for nearly 600 miles along the axial line of the Alaska Peninsula and the Aleutian Islands. In this belt there are more active and recently active volcanoes than in all the rest of North America. Exclusive of those on the west side of Cook Inlet, which, however, belong to the same group, this belt contains at least 42 active or well-preserved volcanoes and about half as many mountains suspected or reported to be volcanoes. The locations of some of these mountains and the hot springs on the Alaska Peninsula and the Aleutian Islands are shown on a map prepared by G. A. Waring. Attention has been called to these volcanoes for nearly two centuries, but a record of their activity since the discovery of Alaska is far from being complete, and an adequate description of them as a group has never been written. Owing to their recent activity or unusual scenic beauty, some of the best known of the group are Mounts Katmai, Bogoslof, and Shishaldin, but there are many other beautiful and interesting cones and craters.

  7. The Local Group as a time machine: studying the high-redshift Universe with nearby galaxies

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Weisz, Daniel R.; Johnson, Benjamin D.; Bullock, James S.; Conroy, Charlie; Fitts, Alex

    2015-10-01

    We infer the UV luminosities of Local Group galaxies at early cosmic times (z ˜ 2 and z ˜ 7) by combining stellar population synthesis modelling with star formation histories derived from deep colour-magnitude diagrams constructed from Hubble Space Telescope (HST) observations. Our analysis provides a basis for understanding high-z galaxies - including those that may be unobservable even with the James Webb Space Telescope (JWST) - in the context of familiar, well-studied objects in the very low-z Universe. We find that, at the epoch of reionization, all Local Group dwarfs were less luminous than the faintest galaxies detectable in deep HST observations of blank fields. We predict that JWST will observe z ˜ 7 progenitors of galaxies similar to the Large Magellanic Cloud today; however, the HST Frontier Fields initiative may already be observing such galaxies, highlighting the power of gravitational lensing. Consensus reionization models require an extrapolation of the observed blank-field luminosity function (LF) at z ≈ 7 by at least 2 orders of magnitude in order to maintain reionization. This scenario requires the progenitors of the Fornax and Sagittarius dwarf spheroidal galaxies to be contributors to the ionizing background at z ˜ 7. Combined with numerical simulations, our results argue for a break in the UV LF from a faint-end slope of α ˜ -2 at MUV ≲ -13 to α ˜ -1.2 at lower luminosities. Applied to photometric samples at lower redshifts, our analysis suggests that HST observations in lensing fields at z ˜ 2 are capable of probing galaxies with luminosities comparable to the expected progenitor of Fornax.

  8. PEGylation of antibody fragments greatly increases their local residence time following delivery to the respiratory tract.

    PubMed

    Koussoroplis, Salome Juliette; Paulissen, Geneviève; Tyteca, Donatienne; Goldansaz, Hadi; Todoroff, Julie; Barilly, Céline; Uyttenhove, Catherine; Van Snick, Jacques; Cataldo, Didier; Vanbever, Rita

    2014-08-10

    Inhalation aerosols offer a targeted therapy for respiratory diseases. However, the therapeutic efficacy of inhaled biopharmaceuticals is limited by the rapid clearance of macromolecules in the lungs. The aim of this research was to study the effects of the PEGylation of antibody fragments on their local residence time after administration to the respiratory tract. We demonstrate that the conjugation of a two-armed 40-kDa polyethylene glycol (PEG) chain to anti-interleukin-17A (IL-17A) F(ab')2 and anti-IL-13 Fab' greatly prolonged the presence of these fragments within the lungs of mice. The content of PEGylated antibody fragments within the lungs plateaued up to 4h post-delivery, whereas the clearance of unconjugated proteins started immediately after administration. Forty-eight hours post-delivery, F(ab')2 and Fab' contents in the lungs had decreased to 10 and 14% of the dose initially deposited, respectively. However, this value was 40% for both PEG40-F(ab')2 and PEG40-Fab'. The prolonged pulmonary residency of the anti-IL-17A PEG40-F(ab')2 translated into an improved efficacy in reducing lung inflammation in a murine model of house dust mite-induced lung inflammation. We demonstrate that PEGylated proteins were principally retained within the lung lumen rather than the nasal cavities or lung parenchyma. In addition, we report that PEG increased pulmonary retention of antibody fragments through mucoadhesion and escape from alveolar macrophages rather than increased hydrodynamic size or improved enzymatic stability. The PEGylation of proteins might find broad application in the local delivery of therapeutic proteins to diseased airways. PMID:24845126

  9. Three-dimensional crustal structure of the Mendocino Triple Junction region from local earthquake travel times

    NASA Astrophysics Data System (ADS)

    Verdonck, David; Zandt, George

    1994-12-01

    The large-scale, three-dimensional geometry of the Mendocino Triple Junction at Cape Mendocino, California, was investigated by inverting nearly 19,000 P wave arrival times from over 1400 local earthquakes to estimate the three-dimensional velocity structure and hypocentral parameters. A velocity grid 175 km (N-S) by 125 km (E-W) centered near Garberville, California, was constructed with 25 km horizontal and 5 km vertical mode spacing. The model was well resolved near Cape Mendocino, where the earthquakes and stations are concentrated. At about 40.6 N latitude a high-velocity gradient between 6.5 and 7.5 km/s dips gently to the south and east from about 15 km depth near the coast. Relocated hypocenters concentrate below this high gradient which we interpret as the oceanic crust of the subducted Gorda Plate. Therefore the depth to the top of the Gorda Plate near Cape Mendocino is interpreted to be approximately 15 km. The Gorda Plate appears intact and dipping approximately 8 deg eastward due to subduction and flexing downward 6 deg - 12 deg to the south. Both hypocenters and velocity structure suggest that the southern edge of the plate intersects the coastline at 40.3 N latitude and maintains a linear trend 15 deg south of east to at least 123 W longitude. The top of a large low-velocity region at 20-30 km depth extends about 50 km N-S and 75 km E-W (roughly between Garberville and Covelo) and is located above and south of the southern edge of the Gorda Plate. We interpret this low velocity area to be locally thickened crust (8-10 km) due to either local compressional forces associated with north-south compression caused by the northward impingement of the rigid Pacific Plate or by underthrusting of the base of the accretionary subduction complex at the southern terminous of the Cascadia Subduction Zone. South of Cape Mendocino and southwest of the Garberville fault, high velocities indicative of oceanic crust are detected at 15 km depth. We interpret this

  10. Three-dimensional crustal structure for the Mendocino Triple Junction region from local earthquake travel times

    SciTech Connect

    Verdonck, D.; Zandt, G.

    1994-12-10

    The large-scale, three-dimensional geometry of the Mendocino Triple Junction at Cape Mendocino, California, was investigated by inverting nearly 19,000 P wave arrival times from over 1400 local earthquakes to estimate the three-dimensional velocity structure and hypocentral parameters. A velocity grid 175 km (N-S) by 125 km (E-W) centered near Garberville, California, was constructed with 25 km horizontal and 5 km vertical node spacing. The model was well resolved near Cape Mendocino, where the earthquakes and stations are concentrated. At about 40.6{degrees}N latitude a high-velocity gradient between 6.5 and 7.5 km/s dips gently to the south and east from about 15 km depth near the coast. Relocated hypocenters concentrate below this high gradient which the authors interpret as the oceanic crust of the subducted Gorda Plate. Therefore the depth to the top of the Gorda Plate near Cape Mendocino is interpreted to be {approximately} 15 km. The Gorda Plate appears intact and dipping {approximately}8{degrees} eastward due to subduction and flexing downward 6{degrees}-12{degrees} to the south. Both hypocenters and velocity structure suggest that the southern edge of the plate intersects the coastline at 40.3{degrees}N latitude and maintains a linear trend 15{degrees} south of east to at least 123{degrees}W longitude. The top of a large low-velocity region at 20-30 km depth extends about 50 km N-S and 75 km E-W (roughly between Garberville and Covelo) and is located above and south of the southern edge of the Gorda Plate. The authors interpret this low velocity area to be locally thickened crust (8-10 km) due to either local compressional forces associated with north-south compression caused by the northward impingement of the rigid Pacific Plate or by underthrusting of the base of the accretionary subduction complex at the southern terminous of the Cascadia Subduction Zone. 66 refs., 11 figs., 3 tabs.

  11. Time and Frequency-Dependent Modulation of Local Field Potential Synchronization by Deep Brain Stimulation

    PubMed Central

    McCracken, Clinton B.; Kiss, Zelma H. T.

    2014-01-01

    High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS), is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP), the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson’s disease (PD). We performed simultaneous multi-site local field potential (LFP) recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective), low-frequency (LF, 15 Hz; ineffective) and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR), ventroanterior thalamus (VA), primary motor cortex (M1), and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic effects

  12. Comparison of manual and automatic onset Time picking for local earthquake in North Eastern Italy.

    NASA Astrophysics Data System (ADS)

    Spallarossa, D.; Tiberi, L.; Costa, G.

    2012-04-01

    Automatic estimates of earthquake parameters continues to be of considerable interest to the seismological community. The automatic processing of seismic data, whether for real-time seismic warning system or to reprocessing large amount of seismic recordings, is increasingly being demanded by seismologists. In this study is presented a new method used for automatic phase picking (P and S) which include envelope function calculation, STA/LTA detectors and AR picking algorithms based on the Akaike information criterion (AIC) The main characteristics of the proposed picking algorithm are: a) Pre-filtering and envelope calculation to prearrange the onset; b) Preliminary detection of P onset using both the AIC based picker and the STA/LTA picker; c) S/N analysis, P validation, filtering and re-picking; d) Preliminary earthquake location; e) Detection of S onset adopting the AIC based picker; f) S/N analysis, S validation; g) Earthquake location. The algorithm is applied to a reference data composed by 200 events set with very heterogeneous qualities of P and S onsets acquired by South Eastern Alps Transfontier network from 01/01/2008 to 03/31/2008 in North Eastern Italy and surrounding regions. These data are collected through the use of the software Antelope, an integrated collection of programs for data management and seismic data analysis. The reliability and robustness of the proposed algorithm is tested by comparing manually derived P and S readings (determined by an experienced seismic analyst), serving as reference picks, with the corresponding automatically estimated P and S arrival times. An additional analysis is comparing these automatic picks with the ones produced by Antelope, which used only STA/LTA detectors and finally studying the effect of these different set of arrival times in the resultant localizations for each database event. Preliminary results indicate that seismic detectors which integrate different techniques could improve the stability of the

  13. The Forgotten Minority: An Analysis of American Indian Employment Patterns in State and Local Governments, 1991-2005

    ERIC Educational Resources Information Center

    Hunt, Valerie H.; Kerr, Brinck; Ketcher, Linda K.; Murphy, Jennifer

    2010-01-01

    The purpose of this article is to address a gap in the empirical literature by analyzing levels of proportional representation of American Indians over time in state and local government bureaucracies in key states. The authors limit their analysis to six states with the largest percentages of American Indian populations in 2000: Alaska, Arizona,…

  14. A new magnetic view of Alaska

    USGS Publications Warehouse

    Saltus, R.W.; Hudson, T.L.; Connard, G.G.

    1999-01-01

    A new, publicly available aeromagnetic data compilation spanning Alaska enables analysis of the regional crustal character of this tectonically diverse and poorly understood part of the North American Cordillera. The merged data were upward-continued by 10 km (mathematically smoothed without assumptions about sources) to enhance crustal-scale magnetic features and facilitate tectonic analysis. This analysis reveals a basic threefold magnetic character: (1) a southern region with arcuate magnetic domains closely tied to tectonostratigraphic elements, (2) a magnetically neutral interior region punctuated locally by intermediate and deep magnetic highs representing a complex history, and (3) a magnetically subdued northern region that includes a large deep magnetic high. Our tectonic view of the data supports interpretations that Paleozoic extension and continental rift basins played a significant role in the tectonic development of northern and interior Alaska. Accretion of oceanic and continental margin terranes could be restricted to the southern region. The new magnetic view of Alaska can be compared and contrasted with other Pacific margin regions where convergent margin and accretionary tectonic processes are important.

  15. A late quaternary record of eolian silt deposition in a maar lake, St. Michael Island, western Alaska

    USGS Publications Warehouse

    Muhs, D.R.; Ager, T.A.; Been, J.; Bradbury, J.P.; Dean, W.E.

    2003-01-01

    Recent stratigraphic studies in central Alaska have yielded the unexpected finding that there is little evidence for full-glacial (late Wisconsin) loess deposition. Because the loess record of western Alaska is poorly exposed and not well known, we analyzed a core from Zagoskin Lake, a maar lake on St. Michael Island, to determine if a full-glacial eolian record could be found in that region. Particle size and geochemical data indicate that the mineral fraction of the lake sediments is not derived from the local basalt and is probably eolian. Silt deposition took place from at least the latter part of the mid-Wisconsin interstadial period through the Holocene, based on radiocarbon dating. Based on the locations of likely loess sources, eolian silt in western Alaska was probably deflated by northeasterly winds from glaciofluvial sediments. If last-glacial winds that deposited loess were indeed from the northeast, this reconstruction is in conflict with a model-derived reconstruction of paleowinds in Alaska. Mass accumulation rates in Zagoskin Lake were higher during the Pleistocene than during the Holocene. In addition, more eolian sediment is recorded in the lake sediments than as loess on the adjacent landscape. The thinner loess record on land may be due to the sparse, herb tundra vegetation that dominated the landscape in full-glacial time. Herb tundra would have been an inefficient loess trap compared to forest or even shrub tundra due to its low roughness height. The lack of abundant, full-glacial, eolian silt deposition in the loess stratigraphic record of central Alaska may be due, therefore, to a mimimal ability of the landscape to trap loess, rather than a lack of available eolian sediment. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.

  16. Phase-space growth rates, local Lyapunov spectra, and symmetry breaking for time-reversible dissipative oscillators

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, Carol G.; Grond, Florian

    2008-08-01

    We investigate and discuss the time-reversible nature of phase-space instabilities for several flows, x˙=f(x). The flows describe thermostated oscillator systems in from two through eight phase-space dimensions. We determine the local extremal phase-space growth rates, which bound the instantaneous comoving Lyapunov exponents. The extremal rates are point functions which vary continuously in phase space. The extremal rates can best be determined with a "singular-value decomposition" algorithm. In contrast to these precisely time-reversible local "point function" values, a time-reversibility analysis of the comoving Lyapunov spectra is more complex. The latter analysis is nonlocal and requires the additional storing and playback of relatively long (billion-step) trajectories. All the oscillator models studied here show the same time reversibility symmetry linking their time-reversed and time-averaged "global" Lyapunov spectra. Averaged over a long-time-reversed trajectory, each of the long-time-averaged Lyapunov exponents simply changes signs. The negative/positive sign of the summed-up and long-time-averaged spectra in the forward/backward time directions is the microscopic analog of the Second Law of Thermodynamics. This sign changing of the individual global exponents contrasts with typical more-complex instantaneous "local" behavior, where there is no simple relation between the forward and backward exponents other than the local (instantaneous) dissipative constraint on their sum. As the extremal rates are point functions, they too always satisfy the sum rule.

  17. Alaska's Children, 2000. Alaska Head Start State Collaboration Project. Quarterly Report.

    ERIC Educational Resources Information Center

    Douglas, Dorothy, Ed.

    2000-01-01

    This document consists of the two 2000 issues of "Alaska's Children," which provides information on the Alaska Head Start State Collaboration Project and updates on Head Start activities in Alaska. Regular features include a calendar of conferences and meetings, a status report on Alaska's children, reports from the Alaska Children's Trust, and…

  18. 78 FR 53137 - Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... formal complaint against BP Pipelines (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc., and... Energy Regulatory Commission Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc., ExxonMobil Pipeline Company; Notice of Complaint Take notice that...

  19. Rural Alaska Mentoring Project (RAMP)

    ERIC Educational Resources Information Center

    Cash, Terry

    2011-01-01

    For over two years the National Dropout Prevention Center (NDPC) at Clemson University has been supporting the Lower Kuskokwim School District (LKSD) in NW Alaska with their efforts to reduce high school dropout in 23 remote Yup'ik Eskimo villages. The Rural Alaska Mentoring Project (RAMP) provides school-based E-mentoring services to 164…

  20. Preparing Teachers for Rural Alaska.

    ERIC Educational Resources Information Center

    Barnhardt, Ray

    1999-01-01

    This article discusses preparing teachers to teach in rural Alaska. An anecdote illustrates how outsiders who come to work in rural Alaska get into trouble because they are unprepared for conditions unique to the North. These conditions end up being viewed as impediments rather than opportunities. The same is true for the field of education. Of…

  1. The time-dependence of compaction localization in a porous sandstone

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Brantut, N.; Baud, P.; Meredith, P. G.

    2015-12-01

    Compaction bands in sandstone are laterally-extensive planar deformation features that are characterized by lower porosity and permeability than the surrounding host rock. As a result, this form of localization has important implications for both strain partitioning and fluid flow in the Earth's upper crust. To better understand the time-dependency of compaction band growth, we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (initial porosity = 0.24) under constant stress (creep) conditions in the compactant regime. Our experiments show that inelastic strain accumulates at a constant stress in the compactant regime, manifest as compaction bands. While creep in the dilatant regime is characterized by an increase in porosity and, ultimately, an acceleration in axial strain rate to shear failure, compaction creep is characterized by a reduction in porosity and a gradual deceleration in axial strain rate. The global decrease in the rates of axial strain, acoustic emission energy, and porosity change during creep compaction is punctuated at intervals by higher rate excursions, interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased. However, the inelastic strain associated with the growth of a compaction band remains constant over strain rates spanning several orders of magnitude (from 10-8 to 10-5 s-1). We find that, despite the large differences in strain rate and growth rate (from both creep and constant strain rate experiments), the characteristics (geometry, thickness) of the compaction bands remain essentially the same. Several lines of evidence, notably the similarity between the differential stress dependence of creep strain rate in the dilatant and compactant regimes, suggest that, as for dilatant creep, subcritical stress corrosion cracking is the mechanism responsible for

  2. Trait inferences in goal-directed behavior: ERP timing and localization under spontaneous and intentional processing

    PubMed Central

    Van den Eede, Sofie; Baetens, Kris; Vandekerckhove, Marie

    2009-01-01

    This study measured event-related potentials (ERPs) during multiple goal and trait inferences, under spontaneous or intentional instructions. Participants read sentences describing several goal-implying behaviors of a target person from which also a strong trait could be inferred or not. The last word of each sentence determined the consistency with the inference induced during preceding sentences. In comparison with behaviors that implied only a goal, stronger waveforms beginning at ∼150 ms were obtained when the behaviors additionally implied a trait. These ERPs showed considerable parallels between spontaneous and intentional inferences. This suggests that traits embedded in a stream of goal-directed behaviors were detected more rapidly and automatically than mere goals, irrespective of the participants’ spontaneous or intentional instructions. In line with this, source localization (LORETA) of the ERPs show predominantly activation in the temporo-parietal junction (TPJ) during 150–200 ms, suggesting that goals were detected at that time interval. During 200–300 ms, activation was stronger at the medial prefrontal cortex (mPFC) for multiple goals and traits as opposed to goals only, suggesting that traits were inferred during this time window. A cued recall measure taken after the presentation of the stimulus material support the occurrence of goal and trait inferences and shows significant correlations with the neural components, indicating that these components are valid neural indices of spontaneous and intentional social inferences. The early detection of multiple goal and trait inferences is explained in terms of their greater social relevance, leading to privileged attention allocation and processing in the brain. PMID:19270041

  3. Local, real-time measurement of drying films of aqueous polymer solutions using active microrheology.

    PubMed

    Komoda, Yoshiyuki; Leal, L Gary; Squires, Todd M

    2014-05-13

    Oscillatory microdisk rheometry was applied to evaluate the evolution of the viscoelastic properties at the surface of a film of an aqueous solution of poly(vinyl alcohol) (PVA) during drying. The drying rate was measured concurrently, based upon measurements of the variation of film thickness. A fully hydrolyzed PVA solution shows a constant drying rate, while a less hydrolyzed PVA solution exhibits a decreased drying rate in the latter part of the drying process, which occurred at the same time as an increase of the elastic modulus. We suggest that this difference in behavior is a consequence of the fact that both the configuration of the PVA molecule and the strength of interaction with water depend on the degree to which the PVA is hydrolyzed. The polymer concentration at the film surface can be estimated from the measured viscosity at the surface for the fully hydrolyzed PVA solution, and this result then can be compared with two theoretical calculations: one in which the polymer concentration is assumed to remain uniform throughout the film, and the other in which the polymer concentration distribution is determined via a one-dimensional diffusion model. This comparison suggests that the polymer is first concentrated locally near the surface but later in the drying process the distribution of polymer becomes increasingly uniform, possibly due to a spontaneously generated convective flow inside the film. PMID:24725080

  4. Ordering of young injection events within Saturnian SLS longitude and local time

    NASA Astrophysics Data System (ADS)

    Kennelly, T.; Leisner, J. S.; Hospodarsky, G. B.; Gurnett, D. A.

    2012-12-01

    The Saturnian SLS longitude systems are based on periodic radio emissions generated at high latitudes and relatively close to the planet. These periodicities have been observed throughout the magnetosphere in both the magnetic field and the plasma. While their presence in the outer magnetosphere has been understood, one outstanding question is how these periodicities are transmitted to the inner magnetosphere. The inner and outer magnetospheres are connected by inward-moving flux tubes, referred to as injection events, and it was postulated that they could carry the periodicities between the two regions. Early analysis of these phenomena, however, showed that there was no ordering in longitude. In this study, we reexamine this possibility by limiting our data set to the young injection events observed by the Cassini Radio and Plasma Wave Science instrument. We find that the young injection events are restricted to two local time sectors: post-noon and near-midnight. We find no structure in the post-noon sector, but the near-midnight events are strongly ordered by SLS longitude. Further, the longitudinal ordering varies with Saturnian season. Pre-equinox, the longitude system derived from the northern hemisphere's SKR emissions controls the event occurrence. Post-equinox, the events are ordered by the southern hemisphere-derived longitude system. We suggest that this may be an effect in the variations in the ionospheric conductivity or due to change in the magnetosphere's orientation relative to the solar wind.

  5. Interplay between ballooning and peeling modes in simulations of the time evolution of edge localized modes

    SciTech Connect

    Onjun, Thawatchai; Kritz, Arnold H.; Bateman, Glenn; Parail, Vassili; Wilson, Howard R.; Dnestrovskij, Alex

    2005-01-01

    The time evolution of edge localized modes (ELMs) in the Joint European Torus tokamak [P. H. Rebut et al., Nucl. Fusion 25, 1011 (1985)] is investigated using the JETTO predictive modeling code [M. Erba et al., Plasma Phys. Controlled Fusion 39, 261 (1997)]. It is found that both pressure-driven ballooning and current-driven peeling modes can play a role in triggering the ELM crashes. In the simulations carried out, each large ELM consists of a sequence of quasicontinuous small ELM crashes. Each sequence of ELM crashes is separated from the next sequence by a relatively longer ELM-free period. The initial crash in each ELM sequence can be triggered either by a pressure-driven ballooning mode or by a current-driven peeling mode, while the subsequent crashes within that sequence are triggered by current-driven peeling modes, which are made more unstable by the reduction in the pressure gradient resulting from the initial crash. The HELENA and MISHKA ideal magnetohydrodynamic stability codes [A. B. Mikhailovskii et al., Plasma Phys. Rep. 23, 713 (1997)] are used to validate the stability criteria used in the JETTO simulations. This stability analysis includes infinite-n ideal ballooning, finite-n ballooning, and low-n kink/peeling modes.

  6. Partial melting of amphibolite to trondhjemite near Ykutat, Alaska

    NASA Technical Reports Server (NTRS)

    Barker, F.

    1986-01-01

    At Nunatak Fiord, 55 km NE of Yakutat, Alaska, a uniform layer of Cretaceous metabasalt approximately 3 km thick was metamorphosed to amphibolite facies and locally partially melted to trondhjemite pegmatite. Results of the rare earth element analysis performed on the amphibolite and the trondhjemite pegmatite are discussed.

  7. Climate change and health effects in Northwest Alaska

    PubMed Central

    Brubaker, Michael; Berner, James; Chavan, Raj; Warren, John

    2011-01-01

    This article provides examples of adverse health effects, including weather-related injury, food insecurity, mental health issues, and water infrastructure damage, and the responses to these effects that are currently being applied in two Northwest Alaska communities. Background In Northwest Alaska, warming is resulting in a broad range of unusual weather and environmental conditions, including delayed freeze-up, earlier breakup, storm surge, coastal erosion, and thawing permafrost. These are just some of the climate impacts that are driving concerns about weather-related injury, the spread of disease, mental health issues, infrastructure damage, and food and water security. Local leaders are challenged to identify appropriate adaptation strategies to address climate impacts and related health effects. Implementation process The tribal health system is combining local observations, traditional knowledge, and western science to perform community-specific climate change health impact assessments. Local leaders are applying this information to develop adaptation responses. Objective The Alaska Native Tribal Health Consortium will describe relationships between climate impacts and health effects and provide examples of community-scaled adaptation actions currently being applied in Northwest Alaska. Findings Climate change is increasing vulnerability to injury, disease, mental stress, food insecurity, and water insecurity. Northwest communities are applying adaptation approaches that are both specific and appropriate. Conclusion The health impact assessment process is effective in raising awareness, encouraging discussion, engaging partners, and implementing adaptation planning. With community-specific information, local leaders are applying health protective adaptation measures. PMID:22022304

  8. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2012-12-01

    Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native

  9. ShakeMap Implementation in Alaska

    NASA Astrophysics Data System (ADS)

    Martirosyan, A.; Hansen, R.; Robinson, M.

    2007-12-01

    The ShakeMap (SM) system was developed by the USGS for generating and distributing real-time ground- shaking maps in the aftermath of significant earthquakes. SMs provide vital information within minutes after an earthquake to emergency response agencies, the media and the general public. It is also a tool to produce earthquake planning scenarios and to estimate losses from hypothetical strong earthquakes. SM production in Alaska is based on observed ground motion data (maximum peak ground accelerations and velocities of two horizontal components) and complemented by calculated values using empirical attenuation relationships. These data are collected from more than 80 broadband and 25 strong motion stations throughout the state. The real-time seismic operations in Alaska, including the SM system, are maintained at the Alaska Earthquake Information Center (AEIC) of the Geophysical Institute in Fairbanks. The earthquake parameters and waveform measurements are obtained within the Antelope seismic monitoring system. Currently, SMs are produced for events with magnitudes greater that M3.5 with at least 10 associated arrival picks. Moreover, the calculated intensity of the eligible events should be greater than 2.5 at the epicenter. With these settings, about 20 to 30 SMs are triggered in Alaska per month. The maps are generated and posted on the AEIC website 2-3 minutes after the event. The processing time mostly depends on the number of waveforms utilized in the calculation. Several SM updates may be issued for the same event as more reliable data become available. A manual run may be executed afterwards for significant events in order to utilize any additional information, such as extended source geometry or data from external sources.

  10. 2013 Alaska Performance Scholarship Outcomes Report

    ERIC Educational Resources Information Center

    Rae, Brian

    2013-01-01

    In accordance with Alaska statute the departments of Education & Early Development (EED) and Labor and Workforce Development (DOLWD), the University of Alaska (UA), and the Alaska Commission on Postsecondary Education (ACPE) present this second annual report on the Alaska Performance Scholarship (APS). Among the highlights: (1) In the public…

  11. Application of Pb isotopes to the absolute timing of regional exposure events in carbonate rocks: An example from U-rich dolostones from the Wahoo Formation (Pennsylvanian), Prudhoe Bay, Alaska

    SciTech Connect

    Hoff, J.A.; Hanson, G.N.; Jameson, J.

    1995-01-02

    Pb isotope data from U-rich dolostones from the Wahoo Formation (Pennsylvanian) from the subsurface at Prudhoe Bay, alaska, demonstrate that the U-Th-Pb system can be a powerful geochemical and geochronological tool in understanding carbonate diagenesis. These U-rich dolostones are developed beneath a major, Late Permian to Early Triassic truncational unconformity. U enrichment is uniquely associated with the mineral dolomite, but anomalously high concentrations of U are not present within the dolomite crystal lattice. Major mineral or fluid phases can be ruled out as U hosts. SEM analyses indicate that U anomalies are present in an unknown mineral phase associated with authigenic clays and are commonly concentrated along stylolites. Geologic, petrographic, and geochemical data indicate that the bulk of dolomitization occurred during the Permo-Triassic, following development of a regional unconformity (Jameson 1989a, 1989b, 1990a, 1990b, 1994). In this study, the Pb isotopic composition of these U-rich dolostones is used to establish the absolute timing of U enrichment and its relationship to dolomitization and to the burial history of the Wahoo Formation.

  12. Oscillatory dynamics of vasoconstriction and vasodilation identified by time-localized phase coherence

    NASA Astrophysics Data System (ADS)

    Sheppard, L. W.; Vuksanović, V.; McClintock, P. V. E.; Stefanovska, A.

    2011-06-01

    We apply wavelet-based time-localized phase coherence to investigate the relationship between blood flow and skin temperature, and between blood flow and instantaneous heart rate (IHR), during vasoconstriction and vasodilation provoked by local cooling or heating of the skin. A temperature-controlled metal plate (≈10 cm2) placed on the volar side of the left arm was used to provide the heating and cooling. Beneath the plate, the blood flow was measured by laser Doppler flowmetry and the adjacent skin temperature by a thermistor. Two 1 h datasets were collected from each of the ten subjects. In each case a 30 min basal recording was followed by a step change in plate temperature, to either 24 °C or 42 °C. The IHR was derived from simultaneously recorded ECG. We confirm the changes in the energy and frequency of blood flow oscillations during cooling and heating reported earlier. That is, during cooling, there was a significant decrease in the average frequency of myogenic blood flow oscillations (p < 0.05) and the myogenic spectral peak became more prominent. During heating, there was a significant (p < 0.05) general increase in spectral energy, associated with vasodilation, except in the myogenic interval. Weak phase coherence between temperature and blood flow was observed for unperturbed skin, but it increased in all frequency intervals as a result of heating. It was not significantly affected by cooling. We also show that significant (p < 0.05) phase coherence exists between blood flow and IHR in the respiratory and myogenic frequency intervals. Cooling did not affect this phase coherence in any of the frequency intervals, whereas heating enhanced the phase coherence in the respiratory and myogenic intervals. This can be explained by the reduction in vascular resistance produced by heating, a process where myogenic mechanisms play a key role. We conclude that the mechanisms of vasodilation and vasoconstriction, in response to temperature change, are

  13. Oscillatory dynamics of vasoconstriction and vasodilation identified by time-localized phase coherence.

    PubMed

    Sheppard, L W; Vuksanović, V; McClintock, P V E; Stefanovska, A

    2011-06-21

    We apply wavelet-based time-localized phase coherence to investigate the relationship between blood flow and skin temperature, and between blood flow and instantaneous heart rate (IHR), during vasoconstriction and vasodilation provoked by local cooling or heating of the skin. A temperature-controlled metal plate (approximately 10 cm2) placed on the volar side of the left arm was used to provide the heating and cooling. Beneath the plate, the blood flow was measured by laser Doppler flowmetry and the adjacent skin temperature by a thermistor. Two 1 h datasets were collected from each of the ten subjects. In each case a 30 min basal recording was followed by a step change in plate temperature, to either 24 °C or 42 °C. The IHR was derived from simultaneously recorded ECG. We confirm the changes in the energy and frequency of blood flow oscillations during cooling and heating reported earlier. That is, during cooling, there was a significant decrease in the average frequency of myogenic blood flow oscillations (p < 0.05) and the myogenic spectral peak became more prominent. During heating, there was a significant (p < 0.05) general increase in spectral energy, associated with vasodilation, except in the myogenic interval. Weak phase coherence between temperature and blood flow was observed for unperturbed skin, but it increased in all frequency intervals as a result of heating. It was not significantly affected by cooling. We also show that significant (p < 0.05) phase coherence exists between blood flow and IHR in the respiratory and myogenic frequency intervals. Cooling did not affect this phase coherence in any of the frequency intervals, whereas heating enhanced the phase coherence in the respiratory and myogenic intervals. This can be explained by the reduction in vascular resistance produced by heating, a process where myogenic mechanisms play a key role. We conclude that the mechanisms of vasodilation and vasoconstriction, in response to temperature change

  14. Synthetic Studies of Local Travel Time Tomography In The Earthquake Swarm Region Vogtland/nw-bohemia

    NASA Astrophysics Data System (ADS)

    Roessler, D.; Korn, M.

    The Vogtland/NW-Bohemia region is characterized by periodic occurence of earth- quake swarms at upper crustal depths along deep-reaching neotectonic faults and other geophysical phenomena. As one source of these phenomena the existence of a deep- seated magma reservoir at the mantle-crust transition has been postulated. Seismic traveltime tomography making use of local seismic sources can image the 3-dimensional structure of the vp- and vp/vs-distribution in the earth's crust including the mantle-crust transition and thus might give explanations for the observed phenom- ena as aimed by the seismic experiment BOHEMA starting in 2002. The synthetic study presented here deals with the feasability to resolve given synthetic velocity anomalies embedded in a realistic background model of the Vogtland/NW- Bohemia region using realistic velocity background model derived from a refraction seismic experiment. A low velocity zone was included below 7 km representing a worst case scenario concerning ray path coverage. Synthetic travel times were com- puted for a receiver distribution consisting of 54 presently existing permanent seismic stations and 64 additional temporary stations as planned for for BOHEMA experi- ment. As for the sources, 12 epicentres of frequently recorded tectonic earthquakes and 138 sites of known quarry blasts were used guaranteeing sufficiant ray distri- bution in the crust. Applying the SIMULPS software, the tomographic inversion for P-velocity was carried out for a volume of 220 km x 180 km in horizontal and 50 km in vertical direction having increased grid density in the Vogtland/NW-Bohemia re- gion. Results of the inversion as well as considerations of their reliability are presented. The usage of a high number of quarry blasts enables high spatial resolution in the upper crust whereas reproduction of velocity patterns at Moho depth is strongly dependent on well distributed earthquake sources. Due to the existence of a low velocity zone tomographic

  15. Time dependent weak localization of a 2DEG in the presence of Andreev reflections

    SciTech Connect

    Drexler, H.; Harris, J.; Yuh, E.L.

    1995-12-31

    Experiments on superconducting-normal-superconducting, SNS, junctions, comprised of Nb-2D InAs - Nb, exhibit AC currents at v = 4eV/h, twice the Josephson frequency. These currents can be ascribed to time dependent weak localization in the 2D InAs electron gas modulated by the presence of superconducting electrodes. The change of the current-voltage characteristic of a SNS structure under far-infrared (FIR) illumination (180GHz, 300GHz) has been investigated as a function of temperature, FIR power and magnetic field. The sample is an InAs/AlSb quantum well with a 1{mu}m-period Nb grating contacting the InAs. In the experiments a series connection of N = 300 junctions is measured. The differential resistance of the sample shows a very clear subharmonic gap structure, indicating multiple Andreev reflections between the SN-interfaces. Below a temperature of about T = 5K the sample is superconductive. At sufficiently high temperatures (T > 6K) the photoresponse of the sample under FIR illumination exhibits only a single resonance. This resonance is at V = Nhv/4e, that is half the voltage at which the first step of the AC Josephson effect would occur. B.Z. Spivak and D.E. Khmel`nitskii predicted this effect which arises from the quantum correction of the conductivity of a normal state electron gas due to Andreev reflections. Electrons and holes that are Andreev reflected at the superconductor interface acquire a phase shift that is determined by the phase {Phi} of the superconductor. Interference terms of time reversed paths that include Andreev reflections on adjacent superconductor stripes oscillate with 2({Phi}{sub 2}-{Phi}{sub 1}) = 4eVt/h and therefore lead to a time-dependent conductivity. The manifestation of the oscillating conductivity in the experiments is similar to the Shapiro steps of the AC Josephson effect but with twice the frequency. The experiments show that this effect is very sensitive to an applied magnetic field.

  16. Law and Alaska Native Education: The Influence of Federal and State Legislation Upon Education of Rural Alaska Natives.

    ERIC Educational Resources Information Center

    Getches, David H.

    Education for rural Alaska Natives has come along a lengthy and tortuous path. Today the much criticized tripartite system remains in which the Federal, state and local governments deliver educational services. A new state law, S.B. 35, which attempts to decentralize control, raises some serious legal problems because of its inconsistency with…

  17. A Coastal Flood Decision Support Tool for Forecast Operations in Alaska

    NASA Astrophysics Data System (ADS)

    van Breukelen, C. M.; Moore, A.; Plumb, E. W.

    2015-12-01

    ABSTRACT Coastal flooding and erosion poses a serious threat to infrastructure, livelihood, and property for communities along Alaska's northern and western coastline. While the National Weather Service Alaska Region (NWS-AR) forecasts conditions favorable for coastal flooding, an improvement can be made in communicating event impacts between NWS-AR and local residents. Scientific jargon used by NWS-AR to indicate the severity of flooding potential is often misconstrued by residents. Additionally, the coastal flood forecasting process is cumbersome and time consuming due to scattered sources of flood guidance. To alleviate these problems, a single coastal flooding decision support tool was created for the Fairbanks Weather Forecast Office to help bridge the communication gap, streamline the forecast and warning process, and take into account both the meteorological and socioeconomic systems at work during a flood event. This tool builds on previous research and data collected by the Alaska Division of Geological and Geophysical Surveys (DGGS) and the NWS-AR, using high resolution elevation data to model the impacts of storm tide rise above the mean lower low water level on five of the most at-risk communities along the Alaskan coast. Important local buildings and infrastructure are highlighted, allowing forecasters to relate the severity of the storm tide in terms of local landmarks that are familiar to residents. In this way, this decision support tool allows for a conversion from model output storm tide levels into real world impacts that are easily understood by forecasters, emergency managers, and other stakeholders, helping to build a Weather-Ready Nation. An overview of the new coastal flood decision support tool in NWS-AR forecast operations will be discussed. KEYWORDS Forecasting; coastal flooding; coastal hazards; decision support

  18. Tephrochronologic Dating and Correlation of Historic and Prehistoric Tsunami Deposits in South-Central Alaska

    NASA Astrophysics Data System (ADS)

    Beget, J. E.; Combellick, R. A.; Addison, J.

    2007-12-01

    Volcanic Ash deposits can be used to identify, date and correlate tsunami deposits in the Cook Inlet and Prince William Sound areas of south-central Alaska. The 1964 Good Friday Earthquake (M9.2) produced a major regional tsunami that affected the entire coast of south-central Alaska, and coeval submarine landslides in Prince William Sound generated local tsunamis more than 30 m high. The 1964 tsunami deposits on Augustine Island in Cook Inlet are partly buried by tephras and pyroclastic flows from recent eruptions and record an 8-m-high wave. Tsunami deposits recording a volcanic tsunami produced by an eruption at Augustine Volcano in 1883 indicate initial wave heights of more than 18 m, and are overlain by coeval 1883 tephra and also Katmai 1912 tephra at multiple sites on Augustine Island, as well as at Nanwalek and Homer 80-100 km to the north. Newly discovered tsunami deposits recording the penultimate great earthquake on the subduction zone beneath south- central Alaska are dated to ca. 950 yr BP near Valdez. The tsunami deposits are overlain by a mafic tephra from the Wrangell area erupted ca. 750 yr BP. The tephra and new dates on the tsunami deposit help refine the age of the late major earthquake on the subduction zone beneath south-central Alaska, as there is wide range of radiocarbon dates associated with broadly coeval episodes of local subsidence identified at sites in Prince William Sound and Cook Inlet. A regionally extensive Augustine tephra erupted ca. 800 yr BP occurs in sediments deposited after the subsidence at several sites around Cook Inlet, and further helps refine the age of the penultimate great earthquake in south-central Alaska. An older tsunami deposit located near Homer is dated to ca. 3400 yr BP and occurs above tephra from Redoubt Volcano, and records an older subduction zone earthquake. A still older tsunami deposit dated to 3600 yr BP directly underlies the Redoubt tephra, and may have been generated by a huge eruption at Redoubt

  19. Heavy minerals in surficial sediments from lower Cook Inlet, Alaska

    USGS Publications Warehouse

    Wong, F.L.

    1984-01-01

    Amphiboles, orthopyroxenes, and clinopyroxenes dominate the heavy mineral suite of surficial sediments in lower Cook Inlet, Alaska. Sources for these sediments include the igneous arc terrane of the northeast Alaska Range, reworked intrabasinal sediments, and local drainages in lower Cook Inlet. The distribution of these deposits is a reflection of both the tidal currents and the prevailing southerly net movement from the head of Cook Inlet. The heavy mineral studies concur with similar findings from gravel analyses, clay mineral investigations, and quartz microtexture observations. ?? 1984 Springer-Verlag New York Inc.

  20. Two Years of California's Local Control Funding Formula: Time to Reaffirm the Grand Vision

    ERIC Educational Resources Information Center

    Koppich, Julia E.; Humphrey, Daniel C.; Marsh, Julie A.

    2015-01-01

    California ended 40 years of reliance on categorical funding for schools when Governor Jerry Brown signed the Local Control Funding Formula (LCFF) into law on July 1, 2013. LCFF intends to enhance services for high-needs students through new flexibility, targeted student funding, and local accountability. Two years into LCFF implementation,…

  1. Surface melt dominates Alaska glacier mass balance

    USGS Publications Warehouse

    Larsen Chris F; Burgess, E; Arendt, A.A.; O'Neel, Shad; Johnson, A.J.; Kienholz, C.

    2015-01-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of −75 ± 11 Gt yr−1 (1994–2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.

  2. Recent sedimentation, northeastern Port Valdez, Alaska

    NASA Astrophysics Data System (ADS)

    Palmer, Harold D.

    1981-09-01

    Sediments accumulating on the northeastern shore of Port Valdez, a fjord leading to Prince William Sound in southern Alaska, are derived from both deltaic and alluvial fan processes. The resulting thick wedge of Recent silts, sands, shells and gravels lies atop irregular ridges of local graywacke bedrock and scattered till deposits. Seismic reflection profiling augmented by soil borings indicates that rapid infilling and upbuilding has occurred at this site. Evidence of slumping suggests general instability of steep submarine slopes in an area characterized by strong earthquakes and large tidal ranges.

  3. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival

    USGS Publications Warehouse

    Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Reanier, Richard E.; Gaglioti, Benjamin V.

    2013-01-01

    Radical restructuring of the terrestrial, large mammal fauna living in arctic Alaska occurred between 14,000 and 10,000 years ago at the end of the last ice age. Steppe bison, horse, and woolly mammoth became extinct, moose and humans invaded, while muskox and caribou persisted. The ice age megafauna was more diverse in species and possibly contained 6× more individual animals than live in the region today. Megafaunal biomass during the last ice age may have been 30× greater than present. Horse was the dominant species in terms of number of individuals. Lions, short-faced bears, wolves, and possibly grizzly bears comprised the predator/scavenger guild. The youngest mammoth so far discovered lived ca 13,800 years ago, while horses and bison persisted on the North Slope until at least 12,500 years ago during the Younger Dryas cold interval. The first people arrived on the North Slope ca 13,500 years ago. Bone-isotope measurements and foot-loading characteristics suggest megafaunal niches were segregated along a moisture gradient, with the surviving species (muskox and caribou) utilizing the warmer and moister portions of the vegetation mosaic. As the ice age ended, the moisture gradient shifted and eliminated habitats utilized by the dryland, grazing species (bison, horse, mammoth). The proximate cause for this change was regional paludification, the spread of organic soil horizons and peat. End-Pleistocene extinctions in arctic Alaska represent local, not global extinctions since the megafaunal species lost there persisted to later times elsewhere. Hunting seems unlikely as the cause of these extinctions, but it cannot be ruled out as the final blow to megafaunal populations that were already functionally extinct by the time humans arrived in the region.

  4. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival

    NASA Astrophysics Data System (ADS)

    Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Reanier, Richard E.; Gaglioti, Benjamin V.

    2013-06-01

    Radical restructuring of the terrestrial, large mammal fauna living in arctic Alaska occurred between 14,000 and 10,000 years ago at the end of the last ice age. Steppe bison, horse, and woolly mammoth became extinct, moose and humans invaded, while muskox and caribou persisted. The ice age megafauna was more diverse in species and possibly contained 6× more individual animals than live in the region today. Megafaunal biomass during the last ice age may have been 30× greater than present. Horse was the dominant species in terms of number of individuals. Lions, short-faced bears, wolves, and possibly grizzly bears comprised the predator/scavenger guild. The youngest mammoth so far discovered lived ca 13,800 years ago, while horses and bison persisted on the North Slope until at least 12,500 years ago during the Younger Dryas cold interval. The first people arrived on the North Slope ca 13,500 years ago. Bone-isotope measurements and foot-loading characteristics suggest megafaunal niches were segregated along a moisture gradient, with the surviving species (muskox and caribou) utilizing the warmer and moister portions of the vegetation mosaic. As the ice age ended, the moisture gradient shifted and eliminated habitats utilized by the dryland, grazing species (bison, horse, mammoth). The proximate cause for this change was regional paludification, the spread of organic soil horizons and peat. End-Pleistocene extinctions in arctic Alaska represent local, not global extinctions since the megafaunal species lost there persisted to later times elsewhere. Hunting seems unlikely as the cause of these extinctions, but it cannot be ruled out as the final blow to megafaunal populations that were already functionally extinct by the time humans arrived in the region.

  5. Asymmetric continuous-time neural networks without local traps for solving constraint satisfaction problems.

    PubMed

    Molnár, Botond; Ercsey-Ravasz, Mária

    2013-01-01

    There has been a long history of using neural networks for combinatorial optimization and constraint satisfaction problems. Symmetric Hopfield networks and similar approaches use steepest descent dynamics, and they always converge to the closest local minimum of the energy landscape. For finding global minima additional parameter-sensitive techniques are used, such as classical simulated annealing or the so-called chaotic simulated annealing, which induces chaotic dynamics by addition of extra terms to the energy landscape. Here we show that asymmetric continuous-time neural networks can solve constraint satisfaction problems without getting trapped in non-solution attractors. We concentrate on a model solving Boolean satisfiability (k-SAT), which is a quintessential NP-complete problem. There is a one-to-one correspondence between the stable fixed points of the neural network and the k-SAT solutions and we present numerical evidence that limit cycles may also be avoided by appropriately choosing the parameters of the model. This optimal parameter region is fairly independent of the size and hardness of instances, this way parameters can be chosen independently of the properties of problems and no tuning is required during the dynamical process. The model is similar to cellular neural networks already used in CNN computers. On an analog device solving a SAT problem would take a single operation: the connection weights are determined by the k-SAT instance and starting from any initial condition the system searches until finding a solution. In this new approach transient chaotic behavior appears as a natural consequence of optimization hardness and not as an externally induced effect. PMID:24066045

  6. Local time distribution of the SSC-associated HF-Doppler frequency shifts

    NASA Technical Reports Server (NTRS)

    Kikuchi, T.; Sugiuchi, H.; Ishimine, T.

    1985-01-01

    The HF-Doppler frequency shift observed at the storm's sudden commencement is composed of a frequency increase (+) and decrease (-), and classified into four types, SCF(+ -), SCF(- +), SCF(+) and SCF(-). Since the latter two types are special cases of the former two types, two different kinds of electrical field exist in the F region and cause the ExB drift motion of plasma. HUANG (1976) interpreted the frequency increase of SCF(+ -) as due to the westward induction electric field proportional to delta H/ delta t and the succeeding frequency decrease due to the eastward conduction electric field which produces ionospheric currents responsible for the magnetic increase on the ground. In spite of his success in interpreting the SCF(+ -), some other interpretations are needed for the explanation of the whole set of SCF's, particularly SCF(- +). Local time distributions of the SCF's are derived from 41 SCF's which are observed on the HF standard signal (JJY) as received in Okinawa (path length =1600 km) and Kokubunji (60 km). It is shown that the SCF(+ -) appears mainly during the day, whereas the SCF(- +) is observed during the night. The results indicate that the preliminary frequency shift (+) of SCF(+ -) and (-) of SCF(- +) is caused by a westward electric field in the dayside hemisphere, while by an eastward electric field in the nightside hemisphere. The main frequency shift (-) of SCF(+ -) and (+) of SCF(- +) is caused by the reversed electric field. Consequently, the preliminary frequency shift is caused by the dusk-to-dawn electric field, while the main frequency shift by the dawn-to-dusk electric field.

  7. A Local Index of Cloud Immersion in Tropical Forests Using Time-Lapse Photography

    NASA Astrophysics Data System (ADS)

    Bassiouni, M.; Scholl, M. A.

    2015-12-01

    Data on the frequency, duration and elevation of cloud immersion is essential to improve estimates of cloud water deposition in water budgets in cloud forests. Here, we present a methodology to detect local cloud immersion in remote tropical forests using time-lapse photography. A simple approach is developed to detect cloudy conditions in photographs within the canopy where image depth during clear conditions may be less than 10 meters and moving leaves and branches and changes in lighting are unpredictable. A primary innovation of this study is that cloudiness is determined from images without using a reference clear image and without minimal threshold value determination or human judgment for calibration. Five sites ranging from 600 to 1000 meters elevation along a ridge in the Luquillo Critical Zone Observatory, Puerto Rico were each equipped with a trail camera programmed to take an image every 30 minutes since March 2014. Images were classified using four selected cloud-sensitive image characteristics (SCICs) computed for small image regions: contrast, the coefficient of variation and the entropy of the luminance of each image pixel, and image colorfulness. K-means clustering provided reasonable results to discriminate cloudy from clear conditions. Preliminary results indicate that 79-94% (daytime) and 85-93% (nighttime) of validation images were classified accurately at one open and two closed canopy sites. The euclidian distances between SCICs vectors of images during cloudy conditions and the SCICs vector of the centroid of the cluster of clear images show potential to quantify cloud density in addition to immersion. The classification method will be applied to determine spatial and temporal patterns of cloud immersion in the study area. The presented approach offers promising applications to increase observations of low-lying clouds at remote mountain sites where standard instruments to measure visibility and cloud base may not be practical.

  8. Asymmetric Continuous-Time Neural Networks without Local Traps for Solving Constraint Satisfaction Problems

    PubMed Central

    Molnár, Botond; Ercsey-Ravasz, Mária

    2013-01-01

    There has been a long history of using neural networks for combinatorial optimization and constraint satisfaction problems. Symmetric Hopfield networks and similar approaches use steepest descent dynamics, and they always converge to the closest local minimum of the energy landscape. For finding global minima additional parameter-sensitive techniques are used, such as classical simulated annealing or the so-called chaotic simulated annealing, which induces chaotic dynamics by addition of extra terms to the energy landscape. Here we show that asymmetric continuous-time neural networks can solve constraint satisfaction problems without getting trapped in non-solution attractors. We concentrate on a model solving Boolean satisfiability (k-SAT), which is a quintessential NP-complete problem. There is a one-to-one correspondence between the stable fixed points of the neural network and the k-SAT solutions and we present numerical evidence that limit cycles may also be avoided by appropriately choosing the parameters of the model. This optimal parameter region is fairly independent of the size and hardness of instances, this way parameters can be chosen independently of the properties of problems and no tuning is required during the dynamical process. The model is similar to cellular neural networks already used in CNN computers. On an analog device solving a SAT problem would take a single operation: the connection weights are determined by the k-SAT instance and starting from any initial condition the system searches until finding a solution. In this new approach transient chaotic behavior appears as a natural consequence of optimization hardness and not as an externally induced effect. PMID:24066045

  9. A Compilation and Review of Alaska Energy Projects

    SciTech Connect

    Arlon Tussing; Steve Colt

    2008-12-31

    There have been many energy projects proposed in Alaska over the past several decades, from large scale hydro projects that have never been built to small scale village power projects to use local alternative energy sources, many of which have also not been built. This project was initially intended to review these rejected projects to evaluate the economic feasibility of these ideas in the light of current economics. This review included contacting the agencies responsible for reviewing and funding these projects in Alaska, including the Alaska Energy Authority, the Denali Commission, and the Arctic Energy Technology Development Laboratory, obtaining available information about these projects, and analyzing the economic data. Unfortunately, the most apparent result of this effort was that the data associated with these projects was not collected in a systematic way that allowed this information to be analyzed.

  10. Decadal changes in Gulf of Alaska upwelling source waters

    NASA Astrophysics Data System (ADS)

    Pozo Buil, Mercedes; Di Lorenzo, Emanuele

    2015-03-01

    Decadal changes in sea surface temperature (SST) in the Gulf of Alaska are linked to long-term transitions in the marine ecosystem. While previous studies have identified the atmospheric variability of the Aleutian Low as an important driver of Ekman pumping and low-frequency SST anomalies, the role of subsurface gyre-scale dynamics remains unexplored. Using a set of reanalysis data sets from 1958 to the present, we find that subsurface temperature anomalies generated along the North Pacific Current significantly contribute through mean upwelling to decadal changes of SST in the Gulf of Alaska. This influence is comparable to the contribution associated with variations in atmospheric winds. Given the exceptional low-frequency character of the propagation of subsurface anomalies (e.g., multidecadal) along the gyre, monitoring subsurface temperature anomalies up stream along the North Pacific Current may enhance the decadal predictability of SST in the Gulf of Alaska and its impact on local marine ecosystems.

  11. Responding to NCLB in Alaska: A Three-Pronged, Teacher-Focused Approach Yields Success

    ERIC Educational Resources Information Center

    Sees, Jennifer

    2012-01-01

    At the beginning of the 2011-2012 school year, the Alaska State School for the Deaf and Hard of Hearing (ASSDHH) was informed that they had met Alaska's Annual Yearly Progress as required by No Child Left Behind (NCLB) for the first time ever. This was incredibly exciting and worth celebrating since teachers had invested so much "blood, sweat, and…

  12. Alaska's Dependence on State Spending. ISER Fiscal Policy Papers, No. 5.

    ERIC Educational Resources Information Center

    Goldsmith, Scott; And Others

    Alaska will face a large fiscal gap and growing budget deficits in the near future. The timing of such fiscal gap open hinges on the joint effect of state budget growth and the oil price change. This paper explains Alaska's dependence on state spending and offers policy options addressing the fiscal gap. State spending: (1) supports nearly one in…

  13. Eight Stars of Gold--The Story of Alaska's Flag. Primary Grade Activities.

    ERIC Educational Resources Information Center

    Alaska State Museum, Juneau.

    This activities booklet focuses on the story of Alaska's flag. The booklet is intended for teachers to use with primary-grade children. Each activity in the booklet contains background information, a summary and time estimate, Alaska state standards, a step-by-step technique for implementing the activity, assessment tips, materials and resource…

  14. Developmental Education and College Readiness at the University of Alaska. REL 2016-123

    ERIC Educational Resources Information Center

    Hodara, Michelle; Cox, Monica

    2016-01-01

    This study explores developmental education placement rates and how well high school grade point average and exam performance predicted performance in college-level courses among first-time students who enrolled in the University of Alaska system from fall 2008 to spring 2012. Like other colleges and universities, the University of Alaska, the…

  15. Building Systems on the Campus, Part II. The University of Alaska. BSIC/EFL Newsletter.

    ERIC Educational Resources Information Center

    BSIC/EFL Newsletter, 1972

    1972-01-01

    This newsletter details the efforts of the University of Alaska to develop a systems approach that will provide facilities for higher education in a State with an area more than three and one half times that of New Jersey, Florida, and Oregon combined. The problem involved in providing appropriate facilities in a State such as Alaska are…

  16. 2006 Compilation of Alaska Gravity Data and Historical Reports

    USGS Publications Warehouse

    Saltus, Richard W.; Brown, Philip J., II; Morin, Robert L.; Hill, Patricia L.

    2008-01-01

    Gravity anomalies provide fundamental geophysical information about Earth structure and dynamics. To increase geologic and geodynamic understanding of Alaska, the U.S. Geological Survey (USGS) has collected and processed Alaska gravity data for the past 50 years. This report introduces and describes an integrated, State-wide gravity database and provides accompanying gravity calculation tools to assist in its application. Additional information includes gravity base station descriptions and digital scans of historical USGS reports. The gravity calculation tools enable the user to reduce new gravity data in a consistent manner for combination with the existing database. This database has sufficient resolution to define the regional gravity anomalies of Alaska. Interpretation of regional gravity anomalies in parts of the State are hampered by the lack of local isostatic compensation in both southern and northern Alaska. However, when filtered appropriately, the Alaska gravity data show regional features having geologic significance. These features include gravity lows caused by low-density rocks of Cenozoic basins, flysch belts, and felsic intrusions, as well as many gravity highs associated with high-density mafic and ultramafic complexes.

  17. In the right place at the right time: visualizing and understanding mRNA localization

    PubMed Central

    Buxbaum, Adina R.; Haimovich, Gal

    2015-01-01

    The spatial regulation of protein translation is an efficient way to create functional and structural asymmetries in cells. Recent research has furthered our understanding of how individual cells spatially organize protein synthesis, by applying innovative technology to characterize the relationship between mRNAs and their regulatory proteins, single-mRNA trafficking dynamics, physiological effects of abrogating mRNA localization in vivo and for endogenous mRNA labelling. The implementation of new imaging technologies has yielded valuable information on mRNA localization, for example, by observing single molecules in tissues. The emerging movements and localization patterns of mRNAs in morphologically distinct unicellular organisms and in neurons have illuminated shared and specialized mechanisms of mRNA localization, and this information is complemented by transgenic and biochemical techniques that reveal the biological consequences of mRNA mislocalization. PMID:25549890

  18. Ethical Reasoning in a Time of Revolution: A Study of Local Officials in Poland.

    ERIC Educational Resources Information Center

    Stewart, Debra W; Sprinthall, Norman; Siemienska, Renata

    1997-01-01

    Interviews with 485 local officials in Poland showed that both elected and appointed officials strongly preferred principled reasoning for ethical decision making. Gender and attitude toward the change from Communism made a difference in preferred modes of ethical reasoning. (SK)

  19. Taylor dispersion in the presence of time-periodic convection phenomena. Part I. Local-space periodicity

    NASA Astrophysics Data System (ADS)

    Shapiro, M.; Brenner, H.

    1990-10-01

    Generalized Taylor dispersion theory is herein extended to circumstances for which the transport of dissolved or suspended chemically reactive (as well as inert) solutes is affected by carrier-solvent flow fields and/or external forces that are time periodic in both their global and local microscale spaces (and possess commensurate frequencies). The local-space- and time-averaged solute transport process is characterized by three time-independent, but frequency-dependent microscale phenomenological coefficients—K¯*, Ū*, and cf6D*, representing the mean chemical reaction rate, velocity vector, and dispersivity dyadic of the solute, respectively. These macroscale transport coefficients are expressed in terms of time-periodic eigenfunctions and corresponding eigenvalues using a recently developed solution scheme. This scheme permits the analysis of phenomena involving time-periodic transport coefficients on a par with that for the classical case of time-independent microscale phenomenological coefficients. The analysis generalizes to time-periodic local-space phenomena a previous treatment, in which only the global-space coefficients were allowed to vary periodically with time. This greatly enlarges the scope of potential applications of the analysis. In addition to the time-averaged phenomenological coefficients K¯*, Ū*, and CF6D*, comparable instantaneous coefficients are defined governing the local-space-averaged instantaneous solute concentration. In contrast with their time-averaged counterparts, K¯*, Ū*, and CF6D*, the latter instantaneous transport coefficients are shown to depend upon the initial solute distribution within the local space. Because of coupling between the local- and global-space transport processes in oscillatory flows and/or oscillatory external force fields, all harmonics of the resulting global-space solute velocity field contribute to the mean convective solute transport. This phenomenon may result, for example, in zero solvent

  20. Seasonal variabilty of surface velocities and ice discharge of Columbia Glacier, Alaska using high-resolution TanDEM-X satellite time series and NASA IceBridge data

    NASA Astrophysics Data System (ADS)

    Vijay, Saurabh; Braun, Matthias

    2014-05-01

    Columbia Glacier is a grounded tidewater glacier located on the south coast of Alaska. It has lost half of its volume during 1957-2007, more rapidly after 1980. It is now split into two branches, known as Main/East and West branch due to the dramatic retreat of ~ 23 km and calving of iceberg from its terminus in past few decades. In Alaska, a majority of the mass loss from glaciers is due to rapid ice flow and calving icebergs into tidewater and lacustrine environments. In addition, submarine melting and change in the frontal position can accelerate the ice flow and calving rate. We use time series of high-resolution TanDEM-X stripmap satellite imagery during 2011-2013. The active image of the bistatic TanDEM-X acquisitions, acquired over 11 or 22 day repeat intervals, are utilized to derive surface velocity fields using SAR intensity offset tracking. Due to the short temporal baselines, the precise orbit control and the high-resolution of the data, the accuracies of the velocity products are high. We observe a pronounce seasonal signal in flow velocities close to the glacier front of East/Main branch of Columbia Glacier. Maximum values at the glacier front reach up to 14 m/day were recorded in May 2012 and 12 m/day in June 2013. Minimum velocities at the glacier front are generally observed in September and October with lowest values below 2 m/day in October 2012. Months in between those dates show corresponding increase or deceleration resulting a kind of sinusoidal annual course of the surface velocity at the glacier front. The seasonal signal is consistently decreasing with the distance from the glacier front. At a distance of 17.5 km from the ice front, velocities are reduced to 2 m/day and almost no seasonal variability can be observed. We attribute these temporal and spatial variability to changes in the basal hydrology and lubrification of the glacier bed. Closure of the basal drainage system in early winter leads to maximum speeds while during a fully

  1. The determination for time delay of the CCTV signals relayed by local TV stations.

    NASA Astrophysics Data System (ADS)

    Ren, Yan; Liang, Shuangyou

    1997-06-01

    It is necessary for the users, who need time signals of high precision, to understand the time delay of the received CCTV time signals. The methods for measuring the time delay of CCTV time signals relayed by synchronous satellite position and the measured results are described.

  2. Fourth Order Exponential Time Differencing Method with Local Discontinuous Galerkin Approximation for Coupled Nonlinear Schrödinger Equations

    DOE PAGESBeta

    Liang, Xiao; Khaliq, Abdul Q.M.; Xing, Yulong

    2015-01-23

    In this paper, we study a local discontinuous Galerkin method combined with fourth order exponential time differencing Runge-Kutta time discretization and a fourth order conservative method for solving the nonlinear Schrödinger equations. Based on different choices of numerical fluxes, we propose both energy-conserving and energy-dissipative local discontinuous Galerkin methods, and have proven the error estimates for the semi-discrete methods applied to linear Schrödinger equation. The numerical methods are proven to be highly efficient and stable for long-range soliton computations. Finally, extensive numerical examples are provided to illustrate the accuracy, efficiency and reliability of the proposed methods.

  3. Software for real-time localization of baleen whale calls using directional sonobuoys: A case study on Antarctic blue whales.

    PubMed

    Miller, Brian S; Calderan, Susannah; Gillespie, Douglas; Weatherup, Graham; Leaper, Russell; Collins, Kym; Double, Michael C

    2016-03-01

    Directional frequency analysis and recording (DIFAR) sonobuoys can allow real-time acoustic localization of baleen whales for underwater tracking and remote sensing, but limited availability of hardware and software has prevented wider usage. These software limitations were addressed by developing a module in the open-source software PAMGuard. A case study is presented demonstrating that this software provides greater efficiency and accessibility than previous methods for detecting, localizing, and tracking Antarctic blue whales in real time. Additionally, this software can easily be extended to track other low and mid frequency sounds including those from other cetaceans, pinnipeds, icebergs, shipping, and seismic airguns. PMID:27036292

  4. Late Quaternary environmental and landscape dynamics revealed by a pingo sequence on the northern Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Grosse, Guido; Schirrmeister, Lutz; Andreev, Andrei A.; Bobrov, Anatoly A.; Kienast, Frank; Bigelow, Nancy H.; Edwards, Mary E.

    2012-04-01

    A terrestrial sediment sequence exposed in an eroding pingo provides insights into the late-Quaternary environmental history of the northern Seward Peninsula, Alaska. We have obtained the first radiocarbon-dated evidence for a mid-Wisconsin thermokarst lake, demonstrating that complex landscape dynamics involving cyclic permafrost aggradation and thermokarst lake formation occurred over stadial-interstadial as well as glacial-interglacial time periods. High values of Picea pollen and the presence of Larix pollen in sediments dated to 50-40 ka BP strongly suggest the presence of forest or woodland early in MIS 3; the trees grew within a vegetation matrix dominated by grass and sedge, and there is indirect evidence of grazing animals. Thus the interstadial ecosystem was different in structure and composition from the Holocene or from the preceding Last Interglacial period. An early Holocene warm period is indicated by renewed thermokarst lake formation and a range of fossil taxa. Multiple extralimital plant taxa suggest mean July temperatures above modern values. The local presence of spruce during the early Holocene warm interval is evident from a radiocarbon-dated spruce macrofossil remain and indicates significant range extension far beyond the modern tree line. The first direct evidence of spruce in Northwest Alaska during the early Holocene has implications for the presence of forest refugia in Central Beringia and previously assumed routes and timing of post-glacial forest expansion in Alaska.

  5. Investigation of local time dependence of Mercury's sodium exosphere based on a numerical simulation

    NASA Astrophysics Data System (ADS)

    Misawa, Hiroaki; Sonobe, Aya; Morioka, Akira; Okano, Shoichi

    2008-11-01

    Mercury has a surface-bounded exosphere (SBE) similar to that of the Moon. One of the atmospheric species, sodium, was found by ground-based observations to be the most prominent component. Mercury's sodium SBE is known to be non-uniform with respect to local time (LT) in low-latitude regions: the sodium column density in the dawn-side region is larger than that in the dusk-side region, and the sodium abundance is the largest in the morning-noon region. To reveal the production processes for the exosphere near Mercury's surface, the LT dependence of the exosphere was investigated through a numerical simulation. Three data sets of sodium column densities observed for the dawn-side hemisphere, observed by Sprague et al. [1997. Distribution and abundance of sodium in Mercury's atmosphere, 1985-1988. Icarus 12, 506-527], were compared with results simulated by a 3D Monte Carlo method, and the source rates and density of sodium of the planetary surface were estimated. In the simulation, the photon-stimulated desorption (PSD) and thermal desorption (TD) processes were assumed as the release mechanisms. The sodium source rates for the three data sets, at respective heliocentric distances of about 0.33, 0.42, and 0.44 AU, were estimated as 1-4×10 8 Na/cm 2/s with weak LT dependence. In contrast, the expected sodium surface density showed clear dependence on LT and the heliocentric distance. The sodium surface density decreases from early morning to noon by a few orders, and, particularly for large heliocentric distances, the surface is in a condition of sodium excess and depletion with respect to the surface sodium density assumed by Killen et al. [2004. Source rates and ion recycling rates for Na and K in Mercury's atmosphere. Icarus 171, 1-19] in the early morning and morning-noon regions, respectively. This study implies that the decrease in sodium surface density from the early morning to noon regions might produce the characteristic LT dependence in the low

  6. Global processing takes time: A meta-analysis on local-global visual processing in ASD.

    PubMed

    Van der Hallen, Ruth; Evers, Kris; Brewaeys, Katrien; Van den Noortgate, Wim; Wagemans, Johan

    2015-05-01

    What does an individual with autism spectrum disorder (ASD) perceive first: the forest or the trees? In spite of 30 years of research and influential theories like the weak central coherence (WCC) theory and the enhanced perceptual functioning (EPF) account, the interplay of local and global visual processing in ASD remains only partly understood. Research findings vary in indicating a local processing bias or a global processing deficit, and often contradict each other. We have applied a formal meta-analytic approach and combined 56 articles that tested about 1,000 ASD participants and used a wide range of stimuli and tasks to investigate local and global visual processing in ASD. Overall, results show no enhanced local visual processing nor a deficit in global visual processing. Detailed analysis reveals a difference in the temporal pattern of the local-global balance, that is, slow global processing in individuals with ASD. Whereas task-dependent interaction effects are obtained, gender, age, and IQ of either participant groups seem to have no direct influence on performance. Based on the overview of the literature, suggestions are made for future research. PMID:25420221

  7. Impact localization combined with haptic feedback for touch panel applications based on the time-reversal approach.

    PubMed

    Bai, Mingsian R; Tsai, Yao Kun

    2011-03-01

    In this paper, a combined impact localization and haptic feedback system based on time-reversal signal processing is presented for touch panel applications. Theoretical impulse responses are derived from a propagation model of bending waves in a thin elastic plate. On the basis of the impulse responses, the time-reversal technique is exploited to spot the impact location as well as to generate haptic feedback. The chief advantage of the time-reversal technique lies in its robustness of tackling broadband sources in a reverberant environment. Piezoelectric ceramic plates and voice-coil motors are used as sensors for localization, whereas only voice-coil motors are used as the actuator for haptic feedback. Experimental results demonstrated that the proposed system was effective in precise impact localization for a thin panel, while haptic feedback also implemented using time-reversal principle can generate an impulse at the previously touched position. The combined impact localization and haptic feedback system is capable of enhancing the sensation of man-machine interaction in real time fashion. PMID:21428493

  8. Binaural speech unmasking and localization in noise with bilateral cochlear implants using envelope and fine-timing based strategies.

    PubMed

    van Hoesel, Richard; Böhm, Melanie; Pesch, Jörg; Vandali, Andrew; Battmer, Rolf D; Lenarz, Thomas

    2008-04-01

    Four adult bilateral cochlear implant users, with good open-set sentence recognition, were tested with three different sound coding strategies for binaural speech unmasking and their ability to localize 100 and 500 Hz click trains in noise. Two of the strategies tested were envelope-based strategies that are clinically widely used. The third was a research strategy that additionally preserved fine-timing cues at low frequencies. Speech reception thresholds were determined in diotic noise for diotic and interaurally time-delayed speech using direct audio input to a bilateral research processor. Localization in noise was assessed in the free field. Overall results, for both speech and localization tests, were similar with all three strategies. None provided a binaural speech unmasking advantage due to the application of 700 micros interaural time delay to the speech signal, and localization results showed similar response patterns across strategies that were well accounted for by the use of broadband interaural level cues. The data from both experiments combined indicate that, in contrast to normal hearing, timing cues available from natural head-width delays do not offer binaural advantages with present methods of electrical stimulation, even when fine-timing cues are explicitly coded. PMID:18397030

  9. Age, Distribution, and Style of Deformation in Alaska North of 60°N: Implications for Assembly of Alaska

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Box, S. E.

    2015-12-01

    The structural architecture of Alaska is the product of a complex history of deformation along both the Cordilleran and Arctic margins of North America through interactions with ocean plates and with continental elements of Laurentia, Siberia, and Baltica. We use geological constraints to assign areal deformation to 14 time intervals and map their distributions in Alaska. Alaska can be divided into three domains with differing histories of deformation. The northern domain experienced the Early Cretaceous Brookian orogeny, an oceanic arc-continent collisional orogeny, followed by a mid-Cretaceous extensional overprint. Opening of the oceanic Canada Basin rifted the orogen from the Canadian Arctic margin, producing the bent trends of the orogen. The second domain constitutes the Phanerozoic Peninsular-Wrangellia-Alexander arc terrane and its paired Mesozoic accretionary prisms. Its structural history is unrelated to domains to the north until a shared history of Late Cretaceous deformation. The third domain, situated between the first two domains and roughly bounded by the Cenozoic dextral Denali and Tintina faults, includes the Yukon Composite terrane (Laurentian origin) and the large Farewell (Baltica origin) terrane. These terranes are not linked until Late Cretaceous sedimentary overlap, but we have not identified a shared deformation between these two terranes that might mark their juxtaposition by collisional processes. Similar early Late Cretaceous sedimentary linkages stitch the northern and central domains. Late Late Cretaceous folding and thrusting across much of Alaska south of the Brooks Range correlates temporally with the collision of the southern domain with the remainder of Alaska. Early Cenozoic shortening is mild across much of the state but is significant in the Brooks Range, and correlates in time with dextral faulting, ridge subduction, and rotation of western Alaska. Late Cenozoic shortening is significant in southern Alaska inboard of the

  10. Local Demand for a Global Intervention: Policy Priorities in the Time of AIDS

    PubMed Central

    DIONNE, KIM YI

    2012-01-01

    Summary — The success of global health and development interventions ultimately depends on local reception. This paper documents local demand for HIV/AIDS interventions in Africa and seeks to explain patterns of demand using data from a country hard-hit by AIDS. As international agencies and national governments scale up HIV/AIDS interventions in Africa, I find HIV-positive respondents more highly prioritize HIV/AIDS programs, however, cross-national opinion data paired with interviews of villagers and their headmen in rural Malawi show weak prioritization of HIV/AIDS. The data illustrate a misalignment of policy preferences in the global-to-local hierarchy, highlighting the import of studying preferences of intended beneficiaries. PMID:23585707

  11. No-source tsunami forecasting for Alaska communities

    NASA Astrophysics Data System (ADS)

    Tolkova, E.; Nicolsky, D.; Suleimani, E.

    2014-12-01

    The presented tsunami forecasting technique employs observations of the approaching tsunami at DART stations near the Aleutian trench to provide fast local forecasts for the Alaska communities. The suggested technique yields a prediction independent of the tsunami source estimate; increases forecast accuracy by using observations close to the target area; allows for checking the accuracy of the inversion-based forecast before the wave hits the coast. We demonstrate this forecasting technology, introduced in (Power and Tolkova, 2013, Ocean Dynamics, 63(11), 1213-1232), with imitating real-time forecasts of the 2011 Tohoku tsunami at several coastal sites in Alaska (to be compared with the gage records). The coastal forecasts are generated as the wave is registered at regional DART stations (46402, 46043, 46409, 46410). Note that while the DART array spans the Pacific Rim, the inversion-based forecasting methodologies can incorporate data from only 1-3 stations in the vicinity of the tsunami origin. We present a forecasting method which complements existing forecasting tools by using tsunami observations in a region to generate regional predictions independent of the tsunami source estimate. This method allows to utilize observing capabilities of the DART array, as well as tsunami detectors in cabled underwater networks (e.g. NEPTUNE in Canada). Future instrumentation on submarine communication cables will supply larger selection of open-ocean measurements and many more opportunities for this method. Figure: (Top) record of the 2012/10/28 Haida Gwaii tsunami at DART 46411; (Bottom) the tsunami record at Monterey tide gage (red) and its forecast (blue). The forecast is been made as the wave is been registered at the DART one hour before arriving at the gage (Power and Tolkova, 2013).

  12. On the potential strength and consequences for nonrandom gene flow caused by local adaptation in flowering time.

    PubMed

    Weis, A E

    2015-03-01

    Gene flow is generally considered a random process, that is the loci under consideration have no effect on dispersal success. Edelaar and Bolnick (Trends Ecol Evol, 27, 2012 659) recently argued that nonrandom gene flow could exert a significant evolutionary force. It can, for instance, ameliorate the maladaptive effects of immigration into locally adapted populations. I examined the potential strength for nonrandom gene flow for flowering time genes, a trait frequently found to be locally adapted. The idea is that plants that successfully export pollen into a locally adapted resident population will be a genetically biased subset of their natal population - they will have resident-like flowering times. Reciprocally, recipients will be more migrant-like than the resident population average. I quantified the potential for biased pollen exchange among three populations along a flowering time cline in Brassica rapa from southern California. A two-generation line cross experiment demonstrated genetic variance in flowering time, both within and among populations. Calculations based on the variation in individual flowering schedules showed that resident plants with the most migrant-like flowering times could expect to have up to 10 times more of the their flowers pollinated by immigrant pollen than the least migrant-like. Further, the mean flowering time of the pollen exporters that have access to resident mates differs by up to 4 weeks from the mean in the exporters' natal population. The data from these three populations suggest that the bias in gene flow for flowering time cuts the impact on the resident population by as much as half. This implies that when selection is divergent between populations, migrants with the highest mating success tend to be resident-like in their flowering times, and so, fewer maladaptive alleles will be introduced into the locally adapting gene pool. PMID:25728931

  13. SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy

    PubMed Central

    Tang, Yunqing; Dai, Luru; Zhang, Xiaoming; Li, Junbai; Hendriks, Johnny; Fan, Xiaoming; Gruteser, Nadine; Meisenberg, Annika; Baumann, Arnd; Katranidis, Alexandros; Gensch, Thomas

    2015-01-01

    Single molecule localization based super-resolution fluorescence microscopy offers significantly higher spatial resolution than predicted by Abbe’s resolution limit for far field optical microscopy. Such super-resolution images are reconstructed from wide-field or total internal reflection single molecule fluorescence recordings. Discrimination between emission of single fluorescent molecules and background noise fluctuations remains a great challenge in current data analysis. Here we present a real-time, and robust single molecule identification and localization algorithm, SNSMIL (Shot Noise based Single Molecule Identification and Localization). This algorithm is based on the intrinsic nature of noise, i.e., its Poisson or shot noise characteristics and a new identification criterion, QSNSMIL, is defined. SNSMIL improves the identification accuracy of single fluorescent molecules in experimental or simulated datasets with high and inhomogeneous background. The implementation of SNSMIL relies on a graphics processing unit (GPU), making real-time analysis feasible as shown for real experimental and simulated datasets. PMID:26098742

  14. Deformation associated with the 1997 eruption of Okmok volcano, Alaska

    USGS Publications Warehouse

    Mann, Dorte; Freymueller, Jeffrey T.; Lu, Zhiming

    2002-01-01

    Okmok volcano, located on Umnak Island in the Aleutian chain, Alaska, is the most eruptive caldera system in North America in historic time. Its most recent eruption occurred in 1997. Synthetic aperture radar interferometry shows deflation of the caldera center of up to 140 cm during this time, preceded and followed by inflation of smaller magnitude. The main part of the observed deformation can be modeled using a pressure point source model. The inferred source is located between 2.5 and 5.0 km beneath the approximate center of the caldera and ???5 km from the eruptive vent. We interpret it as a central magma reservoir. The preeruptive period features inflation accompanied by shallow localized subsidence between the caldera center and the vent. We hypothesize that this is caused by hydrothermal activity or that magma moved away from the central chamber and toward the later vent. Since all historic eruptions at Okmok have originated from the same cone, this feature may be a precursor that indicates an upcoming eruption. The erupted magma volume is ???9 times the volume that can be accounted for by the observed preeruptive inflation. This indicates a much longer inflation interval than we were able to observe. The observation that reinflation started shortly after the eruption suggests that inflation spans the whole time interval between eruptions. Extrapolation of the average subsurface volume change rate is in good agreement with the long-term eruption frequency and eruption volumes of Okmok.

  15. Timing of Therapies in the Multidisciplinary Treatment of Locally Advanced Rectal Cancer: Available Evidence and Implications for Routine Practice.

    PubMed

    Sclafani, Francesco; Chau, Ian

    2016-07-01

    A multimodality disciplinary approach is paramount for the management of locally advanced rectal cancer. Over the last decade, (chemo)radiotherapy followed by surgery plus or minus adjuvant chemotherapy has represented the mainstay of treatment for this disease. Nevertheless, robust evidence suggesting the optimal timing and sequence of therapies in this setting has been overall limited. A number of questions are still unsolved including the length of the interval between neoadjuvant radiotherapy and surgery or the timing of systemic chemotherapy. Interestingly, emerging data support the contention that altering sequence or timing or both of the components of this multimodality approach may provide an opportunity to implement treatment strategies that far better address the risk and expectations of individual patients. In this article, we review the available evidence on timing of therapies in the multidisciplinary treatment of locally advanced rectal cancer and discuss the potential implications for routine practice that may derive from a change of the currently accepted treatment paradigm. PMID:27238468

  16. Adapting to Hard Times: Family Participation Patterns in Local Thrift Economies

    ERIC Educational Resources Information Center

    James, Spencer; Brown, Ralph B.; Goodsell, Todd L.; Stovall, Josh; Flaherty, Jeremy

    2010-01-01

    Using survey data from a western U.S. county (N = 595), we examined how lower, middle, and higher income families negotiate a period of economic stress--the closing of a major employer in the community--through their shopping patterns. Specifically, we examined their participation in local thrift economies such as yard sales and secondhand stores.…

  17. Dynamics of Choice: Relative Rate and Amount Affect Local Preference at Three Different Time Scales

    ERIC Educational Resources Information Center

    Aparicio, Carlos F.; Baum, William M.

    2009-01-01

    To examine extended control over local choice, the present study investigated preference in transition as food-rate ratio provided by two levers changed across seven components within daily sessions, and food-amount ratio changed across phases. Phase 1 arranged a food-amount ratio of 4:1 (i.e., the left lever delivered four pellets and the right…

  18. Local Mesh Refinement in the Space-Time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Wu, Yuhui; Wang, Xiao-Yen; Yang, Vigor

    2000-01-01

    A local mesh refinement procedure for the CE/SE method which does not use an iterative procedure in the treatments of grid-to-grid communications is described. It is shown that a refinement ratio higher than ten can be applied successfully across a single coarse grid/fine grid interface.

  19. The Production and Operational Use of Day-Night Band Imagery in Alaska

    NASA Astrophysics Data System (ADS)

    Stevens, E.

    2015-12-01

    As part of the High Latitude Proving Ground, the Geographic Information Network of Alaska (GINA) at the University of Alaska Fairbanks (UAF) receives data from the Suomi National Polar-orbiting Partnership (SNPP) satellite via direct broadcast antennas in Fairbanks, including data from the SNPP's Visible Infrared Imaging Radiometer Suite (VIIRS) instrument. These data are processed by GINA, and the resulting imagery is delivered in near real-time to the National Weather Service (NWS) in Alaska for use in weather analysis and forecasting. The VIIRS' Day-Night Band (DNB) produces what is functionally visible imagery at night and has been used extensively by operational meteorologists in Alaska, especially during the prolonged darkness of the arctic winter. The DNB has proven to be a powerful tool when combined with other observational and model data sets and has offered NWS meteorologists a more complete picture of weather processes in a region where coverage from surface-based observations is generally poor. Thanks to its high latitude, Alaska benefits from much more frequent coverage in time by polar orbiting satellites such as SNPP and its DNB channel. Also, the sparse population of Alaska and the vast stretches of ocean that surround Alaska on three sides allow meteorological and topographical signatures to be detected by the DNB with minimal interference from anthropogenic sources of light. Examples of how the DNB contributes to the NWS' forecast process in Alaska will be presented and discussed.

  20. Equatorial longitude and local time variations of topside magnetic field-aligned ion drifts at solar minimum

    NASA Astrophysics Data System (ADS)

    Burrell, A. G.; Heelis, R. A.; Stoneback, R. A.

    2012-04-01

    In the topside ionosphere, the high mobility of the plasma along the magnetic field allows field-aligned ion drifts to occur readily as a result of field-aligned gravitational forces, collisional forces, or pressure gradients. Therefore, variations in the field-aligned ion drifts can be used to explore the influence of thermospheric, electrodynamic, and chemical processes on the ionosphere. Longitude and local time variations in the field-aligned ion drifts near the magnetic equator are presented using observations from the Coupled Ion Neutral Dynamics Investigation on board the Communications/Navigation Outage Forecast System satellite. These observations were obtained during the period of extremely low solar activity present in 2008 and 2009, allowing the seasonal, local time, and longitudinal variations to reveal the relative importance of the processes responsible for topside field-aligned plasma drifts during solar minimum. This investigation found that the low-altitude winds and tides, the net ionization or loss, and the meridional E×B drift were all influential in creating longitudinal and local time variations in the field-aligned drift, though the strength of the influence seen by each driver was found to vary with season, local time, and longitude.

  1. Wandering terranes in southern Alaska: The Aleutia Microplate and implications for the Bering Sea

    NASA Astrophysics Data System (ADS)

    Marlow, Michael S.; Cooper, Alan K.

    1983-04-01

    Paleomagnetic and geological data suggest that much of southern Alaska is a collage of tectonostratigraphic terranes which originated in Mesozoic time at paleolatitudes far south of their present position. The time of `docking' of the terranes against cratonic Alaska is critical to defining their amalgamated size and extent during their northward motion as well as their role in the evolution of the Bering Sea. One of the largest of the tectonostratigraphic terranes, the Peninsular terrane of south central and southwestern Alaska, extends offshore along the outer Bering Sea continental margin (Beringia). Paleomagnetic data suggest that this terrane has moved northward through all of Cenozoic time, but geologic data imply that the terrane had accreted to Alaska by the end of the Mesozoic. In early Cenozoic time the eastern part of the Aleutian arc appears to have been superimposed on the Peninsular terrane, and postulated northward Cenozoic motion of the terrane would therefore have required northward motion of the arc. Two accretion models, based on docking times for terranes in Alaska, are proposed, and they illustrate that large areas of the abyssal Bering Sea, the Alaska Peninsula, the Aleutian arc, and the Beringian continental margin may be part of a superterrane or microplate called Aleutia (microplate as defined by Beck et al. (1980), i.e., a microplate is a displaced segment of lithosphere that has crustal roots, whereas a superterrane is an amalgamation of terranes which may or may not be rootless). Model A implies that the Aleutian arc developed in situ on the southern edge of Aleutia after the microplate had docked. In model B, the final docking time of the Peninsular terrane is late Cenozoic, which implies that the Aleutia microplate encompasses a mammoth area that includes parts of southern Alaska, the Alaska Peninsula, the southern Beringian margin, the abyssal Bering Sea (Kula plate), and the Aleutian arc. If model A is correct, the docking time of

  2. Time-dependent fiber bundles with local load sharing. II. General Weibull fibers.

    PubMed

    Phoenix, S Leigh; Newman, William I

    2009-12-01

    Fiber bundle models (FBMs) are useful tools in understanding failure processes in a variety of material systems. While the fibers and load sharing assumptions are easily described, FBM analysis is typically difficult. Monte Carlo methods are also hampered by the severe computational demands of large bundle sizes, which overwhelm just as behavior relevant to real materials starts to emerge. For large size scales, interest continues in idealized FBMs that assume either equal load sharing (ELS) or local load sharing (LLS) among fibers, rules that reflect features of real load redistribution in elastic lattices. The present work focuses on a one-dimensional bundle of N fibers under LLS where life consumption in a fiber follows a power law in its load, with exponent rho , and integrated over time. This life consumption function is further embodied in a functional form resulting in a Weibull distribution for lifetime under constant fiber stress and with Weibull exponent, beta. Thus the failure rate of a fiber depends on its past load history, except for beta=1 . We develop asymptotic results validated by Monte Carlo simulation using a computational algorithm developed in our previous work [Phys. Rev. E 63, 021507 (2001)] that greatly increases the size, N , of treatable bundles (e.g., 10(6) fibers in 10(3) realizations). In particular, our algorithm is O(N ln N) in contrast with former algorithms which were O(N2) making this investigation possible. Regimes are found for (beta,rho) pairs that yield contrasting behavior for large N. For rho>1 and large N, brittle weakest volume behavior emerges in terms of characteristic elements (groupings of fibers) derived from critical cluster formation, and the lifetime eventually goes to zero as N-->infinity , unlike ELS, which yields a finite limiting mean. For 1/2

  3. Time-dependent fiber bundles with local load sharing. II. General Weibull fibers

    NASA Astrophysics Data System (ADS)

    Phoenix, S. Leigh; Newman, William I.

    2009-12-01

    Fiber bundle models (FBMs) are useful tools in understanding failure processes in a variety of material systems. While the fibers and load sharing assumptions are easily described, FBM analysis is typically difficult. Monte Carlo methods are also hampered by the severe computational demands of large bundle sizes, which overwhelm just as behavior relevant to real materials starts to emerge. For large size scales, interest continues in idealized FBMs that assume either equal load sharing (ELS) or local load sharing (LLS) among fibers, rules that reflect features of real load redistribution in elastic lattices. The present work focuses on a one-dimensional bundle of N fibers under LLS where life consumption in a fiber follows a power law in its load, with exponent ρ , and integrated over time. This life consumption function is further embodied in a functional form resulting in a Weibull distribution for lifetime under constant fiber stress and with Weibull exponent, β . Thus the failure rate of a fiber depends on its past load history, except for β=1 . We develop asymptotic results validated by Monte Carlo simulation using a computational algorithm developed in our previous work [Phys. Rev. EPLEEE81063-651X 63, 021507 (2001)] that greatly increases the size, N , of treatable bundles (e.g., 106 fibers in 103 realizations). In particular, our algorithm is O(NlnN) in contrast with former algorithms which were O(N2) making this investigation possible. Regimes are found for (β,ρ) pairs that yield contrasting behavior for large N . For ρ>1 and large N , brittle weakest volume behavior emerges in terms of characteristic elements (groupings of fibers) derived from critical cluster formation, and the lifetime eventually goes to zero as N→∞ , unlike ELS, which yields a finite limiting mean. For 1/2≤ρ≤1 , however, LLS has remarkably similar behavior to ELS (appearing to be virtually identical for ρ=1 ) with an asymptotic Gaussian lifetime distribution and a

  4. Alaska Interagency Ecosystem Health Work Group

    USGS Publications Warehouse

    Shasby, Mark

    2009-01-01

    The Alaska Interagency Ecosystem Health Work Group is a community of practice that recognizes the interconnections between the health of ecosystems, wildlife, and humans and meets to facilitate the exchange of ideas, data, and research opportunities. Membership includes the Alaska Native Tribal Health Consortium, U.S. Geological Survey, Alaska Department of Environmental Conservation, Alaska Department of Health and Social Services, Centers for Disease Control and Prevention, U.S. Fish and Wildlife Service, Alaska Sea Life Center, U.S. Environmental Protection Agency, and Alaska Department of Fish and Game.

  5. Operation IceBridge Alaska

    NASA Astrophysics Data System (ADS)

    Larsen, C.

    2015-12-01

    The University of Alaska Fairbanks (UAF) has flown LiDAR missions for Operation IceBridge in Alaska each year since 2009, expanding upon UAF's airborne laser altimetry program which started in 1994. These observations show that Alaska's regional mass balance is -75+11/-16 Gt yr-1 (1994-2013) (Larsen et al., 2015). A surprising result is that the rate of surface mass loss observed on non-tidewater glaciers in Alaska is extremely high. At these rates, Alaska contributes ~1 mm to global sea level rise every 5 years. Given the present lack of adequate satellite resources, Operation IceBridge airborne surveys by UAF are the most effective and efficient method to monitor this region's impact on global sea level rise. Ice depth measurements using radar sounding have been part of these airborne surveys since 2012. Many of Alaska's tidewater glaciers are bedded significantly below sea level. The depth and extent of glacier beds below sea level are critical factors in the dynamics of tidewater retreat. Improved radar processing tools are being used to predict clutter using forward simulation. This is essential to properly sort out true bed returns, which are often masked or obscured by valley wall returns. This presentation will provide an overview of the program, highlighting recent findings and observations from the most recent campaigns, and focusing on techniques used for the extrapolation of surface elevation changes to regional mass balances.

  6. Time Series of Aerosol Column Optical Depth at the Barrow, Alaska, ARM Climate Research Facility for 2008 Fourth Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    SciTech Connect

    C Flynn; AS Koontz; JH Mather

    2009-09-01

    The uncertainties in current estimates of anthropogenic radiative forcing are dominated by the effects of aerosols, both in relation to the direct absorption and scattering of radiation by aerosols and also with respect to aerosol-related changes in cloud formation, longevity, and microphysics (See Figure 1; Intergovernmental Panel on Climate Change, Assessment Report 4, 2008). Moreover, the Arctic region in particular is especially sensitive to changes in climate with the magnitude of temperature changes (both observed and predicted) being several times larger than global averages (Kaufman et al. 2009). Recent studies confirm that aerosol-cloud interactions in the arctic generate climatologically significant radiative effects equivalent in magnitude to that of green house gases (Lubin and Vogelmann 2006, 2007). The aerosol optical depth is the most immediate representation of the aerosol direct effect and is also important for consideration of aerosol-cloud interactions, and thus this quantity is essential for studies of aerosol radiative forcing.

  7. Anticipating by Pigeons Depends on Local Statistical Information in a Serial Response Time Task

    ERIC Educational Resources Information Center

    Froehlich, Alyson L.; Herbranson, Walter T.; Loper, Julia D.; Wood, David M.; Shimp, Charles P.

    2004-01-01

    Pigeons responded in a serial response time task patterned after that of M. J. Nissen and P. Bullemer (1987) with humans. Experiment 1 produced global facilitation: Response times in repeating lists of locations were faster than when locations were random. Response time to a spatial location was also a function of both that location's 1st- and…

  8. Tsunami Modeling and Inundation Mapping in Southcentral Alaska

    NASA Astrophysics Data System (ADS)

    Nicolsky, D.; Suleimani, E.; Koehler, R. D.

    2013-12-01

    The Alaska Earthquake Information Center (AEIC) participates in the National Tsunami Hazard Mitigation Program by evaluating and mapping potential tsunami inundation of coastal Alaska. We evaluate potential tsunami hazards for several coastal communities near the epicenter of the 1964 Great Alaska Earthquake and numerically model the extent of their inundation due to tsunamis generated by earthquake and landslide sources. Tsunami scenarios include a repeat of the tsunami triggered by the 1964 Great Alaska Earthquake, as well as hypothetical tsunamis generated by an extended 1964 rupture, a Cascadia megathrust earthquake, earthquakes from the Prince William Sound and Kodiak asperities of the 1964 rupture, and a hypothetical Tohoku-type rupture in the Gulf of Alaska region. Local underwater landslide events in several communities are also considered as credible tsunamigenic scenarios. We perform simulations for each of the source scenarios using AEIC's recently developed and tested numerical model of tsunami wave propagation and runup. Results of the numerical modeling are verified by simulating the tectonic and landslide-generated tsunamis observed during the 1964 earthquake. The tsunami scenarios are intended to provide guidance to local emergency management agencies in tsunami hazard assessment, evacuation planning, and public education for reducing future casualties and damage from tsunamis. During the 1964 earthquake, locally generated waves of unknown origin were identified at several communities, located in the western part of Prince William Sound. The waves appeared shortly after the shaking began and swept away most of the buildings while the shaking continued. We model the tectonic tsunami assuming different tsunami generation processes and claim the importance of including both vertical and horizontal displacement into the 1964 tsunami generation process.

  9. Phytoliths infer locally dense and heterogeneous paleovegetation at FLK North and surrounding localities during upper Bed I time, Olduvai Gorge, Tanzania

    NASA Astrophysics Data System (ADS)

    Barboni, Doris; Ashley, Gail M.; Dominguez-Rodrigo, Manuel; Bunn, Henry T.; Mabulla, Audax Z. P.; Baquedano, Enrique

    2010-11-01

    The phytolith content of 10 samples collected immediately under Tuff IF (~ 1.785 Ma) at FLK N and other surrounding localities (~ 2 km²) provides a direct botanical evidence for woody vegetation in the eastern margin of Olduvai Gorge during uppermost Bed I time. Observation and counting of 143 phytolith types (5 to >150 μ) reveal dense but heterogeneous woody cover (~ 40-90%) of unidentified trees and/or shrubs and palms associated to the freshwater springs surrounding FLK N, and more open formation (presumably ~ 25-70% woody cover) in the southeast at localities VEK, HWK W and HWK E. The paleovegetation is best described as groundwater palm forest/woodland or bushland, which current analogue may be found near Lake Manyara in similar hydrogeological context (freshwater springs near saline/alkaline lake). Re-evaluating the published pollen data based on this analogy shows that 70% of the pollen signal at FLK N may be attributed to thicket-woodland, Acacia groundwater woodland, gallery and groundwater forests; while < 30% is attributed to swamp herbage and grasslands. Micro-botanical, isotopic, and taphonomical studies of faunal remains converge on the same conclusion that the area surrounding FLK N, which attracted both carnivores and hominins in the early Pleistocene, was densely wooded during uppermost Bed I time.

  10. Analysis of memory use for improved design and compile-time allocation of local memory

    NASA Technical Reports Server (NTRS)

    Mcniven, Geoffrey D.; Davidson, Edward S.

    1986-01-01

    Trace analysis techniques are used to study memory referencing behavior for the purpose of designing local memories and determining how to allocate them for data and instructions. In an attempt to assess the inherent behavior of the source code, the trace analysis system described here reduced the effects of the compiler and host architecture on the trace by using a technical called flattening. The variables in the trace, their associated single-assignment values, and references are histogrammed on the basis of various parameters describing memory referencing behavior. Bounds are developed specifying the amount of memory space required to store all live values in a particular histogram class. The reduction achieved in main memory traffic by allocating local memory is specified for each class.

  11. Measurement and Modeling of Cryosphere-Geosphere Interactions in South Central Alaska

    NASA Astrophysics Data System (ADS)

    Sauber, J. M.; Han, S. C.; Luthcke, S. B.; Ruppert, N. A.; Bruhn, R. L.

    2014-12-01

    In south central Alaska large cryosphere fluctuations occur on a variety of temporal and spatial scales in a region of upper crustal faulting and folding associated with collision and accretion of the Yakutat terrane. Over the last decade (2002-present) the Gravity Recovery and Climate Experiment (GRACE) gravity measurements from southern Alaska indicate region-specific trends of annual mass loss and large variable seasonal mass fluctuations. Unraveling the various geophysical signals within GRACE and continuous GPS data, as well as earlier campaign GPS data, has required acquiring geodetic constraints on changes in the cryosphere from satellite, aircraft, and in situ data. At broad spatial scales, short-term atmospheric loading corrections are important as well. On a more local scale, we use snow accumulation profiles from Larson's GPS reflectometry, SNOTEL sites, and MODIS derived melt onset/refreeze timing to estimate the magnitude and timing of seasonal cryosphere loading and unloading. The regional GRACE trends need to be corrected for the rheological response to century time-scale ice mass loss as well. Our numerical modeling of the solid Earth response to cryosphere changes and earthquakes includes use of simple elastic models, regional finite element modeling with PyLith and a global normal model approach. For instance, our calculations predict the region specific GRACE trends due to ongoing mass change associated with viscoelastic relaxation following the 1964 and other earthquakes.

  12. Alaska Volcano Observatory Seismic Network Data Availability

    NASA Astrophysics Data System (ADS)

    Dixon, J. P.; Haney, M. M.; McNutt, S. R.; Power, J. A.; Prejean, S. G.; Searcy, C. K.; Stihler, S. D.; West, M. E.

    2009-12-01

    The Alaska Volcano Observatory (AVO) established in 1988 as a cooperative program of the U.S. Geological Survey, the Geophysical Institute at the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, monitors active volcanoes in Alaska. Thirty-three volcanoes are currently monitored by a seismograph network consisting of 193 stations, of which 40 are three-component stations. The current state of AVO’s seismic network, and data processing and availability are summarized in the annual AVO seismological bulletin, Catalog of Earthquake Hypocenters at Alaska Volcanoes, published as a USGS Data Series (most recent at http://pubs.usgs.gov/ds/467). Despite a rich seismic data set for 12 VEI 2 or greater eruptions, and over 80,000 located earthquakes in the last 21 years, the volcanic seismicity in the Aleutian Arc remains understudied. Initially, AVO seismic data were only provided via a data supplement as part of the annual bulletin, or upon request. Over the last few years, AVO has made seismic data more available with the objective of increasing volcano seismic research on the Aleutian Arc. The complete AVO earthquake catalog data are now available through the annual AVO bulletin and have been submitted monthly to the on-line Advanced National Seismic System (ANSS) composite catalog since 2008. Segmented waveform data for all catalog earthquakes are available upon request and efforts are underway to make this archive web accessible as well. Continuous data were first archived using a tape backup, but the availability of low cost digital storage media made a waveform backup of continuous data a reality. Currently the continuous AVO waveform data can be found in several forms. Since late 2002, AVO has burned all continuous waveform data to DVDs, as well as storing these data in Antelope databases at the Geophysical Institute. Beginning in 2005, data have been available through a Winston Wave Server housed at the USGS in

  13. Alaska Seismic Network Upgrade and Expansion

    NASA Astrophysics Data System (ADS)

    Sandru, J. M.; Hansen, R. A.; Estes, S. A.; Fowler, M.

    2009-12-01

    such as ANSS, Alaska Volcano Observatory, Bradley Lake Dam, Red Dog Mine, The Plate Boundary Observatory (PBO), Alaska Tsunami Warning Center, and City and State Emergency Managers has helped link vast networks together so that the overall data transition can be varied. This lessens the likelihood of having a single point of failure for an entire network. Robust communication is key to retrieving seismic data. AEIC has gone through growing pains learning how to harden our network and encompassing the many types of telemetry that can be utilized in today's world. Redundant telemetry paths are a goal that is key to retrieving data, however at times this is not feasible with the vast size and terrain in Alaska. We will demonstrate what has worked for us and what our network consists of.

  14. Robust and low complexity localization algorithm based on head-related impulse responses and interaural time difference.

    PubMed

    Wan, Xinwang; Liang, Juan

    2013-01-01

    This article introduces a biologically inspired localization algorithm using two microphones, for a mobile robot. The proposed algorithm has two steps. First, the coarse azimuth angle of the sound source is estimated by cross-correlation algorithm based on interaural time difference. Then, the accurate azimuth angle is obtained by cross-channel algorithm based on head-related impulse responses. The proposed algorithm has lower computational complexity compared to the cross-channel algorithm. Experimental results illustrate that the localization performance of the proposed algorithm is better than those of the cross-correlation and cross-channel algorithms. PMID:23298016

  15. Decision regret following treatment for localized breast cancer: is regret stable over time?

    PubMed Central

    Martinez, Kathryn A.; Li, Yun; Resnicow, Ken; Graff, John J.; Hamilton, Ann S.; Hawley, Sarah T

    2015-01-01

    Background While studies suggest most women have little regret regarding their breast cancer treatment decisions immediately following treatment, to date no studies have evaluated how regret may change over time. Objective To measure the stability of post-treatment decision regret over time among women with breast cancer. Methods Women diagnosed with breast cancer between August 2005 and May 2007 reported to the Detroit, Michigan or Los Angeles County Surveillance Epidemiology and End Results (SEER) registry completed surveys at 9 months following diagnosis (Time 1) and again approximately 4 years later (Time 2). A decision regret scale consisting of 5 items was summed to create two decision regret scores at both Time 1 and Time 2 (range: 0 to 20). Multivariable linear regression was used to examine change in regret from 9 months to 4 years. Independent variables included surgery type, receipt of reconstruction, and recurrence status at follow-up. The model controlled for demographic and clinical factors. Results The analytic sample included 1,536 women. Mean regret in the overall sample was 4.9 at Time 1 and 5.4 at Time 2 (p<0.001). In the multivariable linear model, we found no difference in change in decision regret over time by surgery type. Reporting a new diagnosis of breast cancer at Time 2 was associated with 2.6 point increase in regret over time, compared to women without an additional diagnosis (p=0.003). Receipt of reconstruction was not associated with change in decision regret over time. Conclusions Decision regret following treatment was low and relatively stable over time for most women. Those facing an additional diagnosis of breast cancer following treatment may be at risk for elevated regret-related distress. PMID:25532824

  16. 78 FR 73144 - Subsistence Management Program for Public Lands in Alaska; Western Interior Alaska Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... Subsistence Management Program for Public Lands in Alaska; Western Interior Alaska Federal Subsistence... subsistence uses on Federal public lands and waters in Alaska. The Federal Subsistence Board, which includes... the subsistence management of fish and wildlife on Federal public lands in Alaska. The Board...

  17. Alaska's Children, 1998. Alaska Head Start State Collaboration Project, Quarterly Report.

    ERIC Educational Resources Information Center

    Douglas, Dorothy, Ed.

    1998-01-01

    This document consists of four issues of the quarterly report "Alaska's Children," which provides information on the Alaska Head Start State Collaboration Project and updates on Head Start activities in Alaska. Regular features in the issues include a calendar of conferences and meetings, a status report on Alaska's children, reports from the…

  18. [Local fractal analysis of noise-like time series by all permutations method for 1-115 min periods].

    PubMed

    Panchelyuga, V A; Panchelyuga, M S

    2015-01-01

    Results of local fractal analysis of 329-per-day time series of 239Pu alpha-decay rate fluctuations by means of all permutations method (APM) are presented. The APM-analysis reveals in the time series some steady frequency set. The coincidence of the frequency set with the Earth natural oscillations was demonstrated. A short review of works by different authors who analyzed the time series of fluctuations in processes of different nature is given. We have shown that the periods observed in those works correspond to the periods revealed in our study. It points to a common mechanism of the phenomenon observed. PMID:26016038

  19. Using CNLS-net (Connectionist Normalized Local Spline-network) to predict the Mackey-Glass chaotic time series

    SciTech Connect

    Mead, W.C.; Jones, R.D.; Barnes, C.W.; Lee, L.A.; O'Rourke, M.K. ); Lee, Y.C.; Flake, G.W. Maryland Univ., College Park, MD )

    1991-01-01

    We use the Connectionist Normalized Local Spline (CNLS) network to learn the dynamics of the Mackey-Glass time-delay differential equation, for the case {tau} = 30. We show the optimum network operating mode and determine the accuracy and robustness of predictions. We obtain pedictions of varying accuracy using some 2--120 minutes of execution time on a Sun SPARC-1 workstation. CNLS-net is capable of very good performance in predicting the Mackey-Glass time series. 11 refs., 4 figs.

  20. Molluscan evidence for early middle Miocene marine glaciation in southern Alaska

    USGS Publications Warehouse

    Marincovich, L., Jr.

    1990-01-01

    Profound cooling of Miocene marine climates in southern Alaska culminated in early middle Miocene coastal marine glaciation in the northeastern Gulf of Alaska. This climatic change resulted from interaction of the Yakutat terrane with southern Alaska beginning in late Oligocene time. The ensuing extreme uplift of the coastal Chugach and St. Elias Mountains resulted in progressive regional cooling that culminated in coastal marine glaciation beginning in the early middle Miocene (15-16 Ma) and continuing to the present. The counterclockwise flow of surface water from the frigid northeastern Gulf of Alaska resulted in a cold-temperate shallow-marine environment in the western Gulf of Alaska, as it does today. Ironically, dating of Gulf of Alaska marine glaciation as early middle Miocene is strongly reinforced by the presence of a few tropical and subtropical mollusks in western Gulf of Alaska faunas. Shallow-marine waters throughout the Gulf of Alaska were cold-temperate to cold in the early middle Miocene, when the world ocean was undergoing peak Neogene warming. -Author

  1. Alaska GeoFORCE, A New Geologic Adventure in Alaska

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2011-12-01

    RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. A program of rigorous academic activity combines with social, cultural, and recreational activities. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. This summer RAHI is launching a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science as the hook because most kids get excited about dinosaurs, volcanoes and earthquakes, but it includes physics, chemistry, math, biology and other sciences. Students will be recruited, initially from the Arctic North Slope schools, in the 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The carrot on the end of the stick is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks, Arizona, Oregon and the Appalachians. All trips are focused on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska is being launched by UAF in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska will be managed by UAF's long-standing Rural Alaska Honors Insitute (RAHI) that has been successfully providing intense STEM educational opportunities for Alaskan high school students for almost 30 years. The Texas program, with adjustments for differences in culture and environment, will be

  2. Southeastern Alaska tectonostratigraphic terranes revisited

    SciTech Connect

    Brew, D.A.; Ford, A.B.

    1985-04-01

    The presence of only three major tectonostratigraphic terranes (TSTs) in southeastern Alaska and northwestern British Columbia (Chugach, Wrangell, and Alexander) is indicated by critical analysis of available age, stratigraphic, and structural data. A possible fourth TST (Stikine) is probably an equivalent of part or all of the Alexander. The Yakutat block belongs to the Chugach TST, and both are closely linked to the Wrangell and Alexander(-Stikine) TSTs; the Gravina TST is an overlap assemblage. THe Alexander(-Stikine) TSTs is subdivided on the basis of age and facies. The subterranes within it share common substrates and represent large-scale facies changes in a long-lived island-arc environment. The Taku TSTs is the metamorphic equivalent of the upper part (Permian and Upper Triassic) of the Alexander(-Stikine) TSTs with some fossil evidence preserved that indicates the age of protoliths. Similarly, the Tracy Arm TST is the metamorphic equivalent of (1) the lower (Ordovician to Carboniferous) Alexander TST without any such fossil evidence and (2) the upper (Permian to Triassic) Alexander(-Stikine) with some newly discovered fossil evidence. Evidence for the ages of juxtaposition of the TSTs is limited. The Chugach TST deformed against the Wrangell and Alexander TSTs in late Cretaceous. Gravina rocks were deformed at the time and also earlier. The Wrangell TST was stitched to the Alexander(-Stikine) by middle Cretaceous plutons but may have arrived before its Late Jurassic plutons were emplaced. The Alexander(-Stikine) and Cache Creek TSTs were juxtaposed before Late Triassic.

  3. Profile: American Indian/Alaska Native

    MedlinePlus

    ... million American Indians and Alaska Natives. Typically, this urban clientele has less accessibility to hospitals; health clinics ... IHS and tribal health programs. Studies on the urban American Indian and Alaska Native population have documented ...

  4. 76 FR 53151 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... Kuskokwim Corporation, Successor in Interest to Red Devil Incorporated. The decision approves the surface... Devil, Alaska, and are located in: Seward Meridian, Alaska T. 22 N., R. 44 W., Secs. 27 to 34,...

  5. 2012 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Herrick, Julie A.; Neal, Christina A.; Cameron, Cheryl E.; Dixon, James P.; McGimsey, Robert G.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, or suspected unrest at 11 volcanic centers in Alaska during 2012. Of the two verified eruptions, one (Cleveland) was clearly magmatic and the other (Kanaga) was most likely a single phreatic explosion. Two other volcanoes had notable seismic swarms that probably were caused by magmatic intrusions (Iliamna and Little Sitkin). For each period of clear volcanic unrest, AVO staff increased monitoring vigilance as needed, reviewed eruptive histories of the volcanoes in question to help evaluate likely outcomes, and shared observations and interpretations with the public. 2012 also was the 100th anniversary of Alaska’s Katmai-Novarupta eruption of 1912, the largest eruption on Earth in the 20th century and one of the most important volcanic eruptions in modern times. AVO marked this occasion with several public events.

  6. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska

    USGS Publications Warehouse

    Sassen, Kenneth; Zhu, Jiang; Webley, Peter W.; Dean, K.; Cobb, Patrick

    2007-01-01

    During mid January to early February 2006, a series of explosive eruptions occurred at the Augustine volcanic island off the southern coast of Alaska. By early February a plume of volcanic ash was transported northward into the interior of Alaska. Satellite imagery and Puff volcanic ash transport model predictions confirm that the aerosol plume passed over a polarization lidar (0.694 mm wavelength) site at the Arctic Facility for Atmospheric Remote Sensing at the University of Alaska Fairbanks. For the first time, lidar linear depolarization ratios of 0.10 – 0.15 were measured in a fresh tropospheric volcanic plume, demonstrating that the nonspherical glass and mineral particles typical of volcanic eruptions generate strong laser depolarization. Thus, polarization lidars can identify the volcanic ash plumes that pose a threat to jet air traffic from the ground, aircraft, or potentially from Earth orbit.

  7. Damage localization of marine risers using time series of vibration signals

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Yang, Hezhen; Liu, Fushun

    2014-10-01

    Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average (ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive (AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.

  8. Demonstration of delivery of orthoimagery in real time for local emergency response

    NASA Astrophysics Data System (ADS)

    McKeown, Donald; Faulring, Jason; Krzaczek, Robert; Cavilia, Stephen; van Aardt, Jan

    2011-06-01

    The Information Products Laboratory for Emergency Response (IPLER) is a new initiative led by the Rochester Institute of Technology (RIT) to develop and put into use new information products and tools derived from remote sensing data. This effort involves technical development and outreach to the user community having the two-fold objective of providing new information tools to enhance public safety and fostering economic development. Specifically, this paper addresses the demonstration of the collection and delivery of geo-referenced overhead imagery to local (county level) emergency managers in near realtime. The demonstration proved valuable to county personnel in showing what is possible and valuable to the researchers in highlighting the very real constraints of operatives in local government. The demonstration consisted of four major elements; 1) a multiband imaging system incorporating 4 cameras operating simultaneously in the visible (color), shortwave infrared, midwave infrared and long wave infrared, 2) an on-board inertial navigation and data processing system that renders the imagery into geo-referenced coordinates, 3) a microwave digital downlink, and 4) a data dissemination service via FTP and WMS-based browser. In this particular exercise, we successfully collected and downloaded over 700 images and delivered them to county servers located in their Emergency Operations Center as well as to a remote GIS van.

  9. Palaeomagnetism of lower cretaceous tuffs from Yukon-Kuskokwim delta region, western Alaska

    USGS Publications Warehouse

    Globerman, B.R.; Coe, R.S.; Hoare, J.M.; Decker, J.

    1983-01-01

    During the past decade, the prescient arguments1-3 for the allochthoneity of large portions of southern Alaska have been corroborated by detailed geological and palaeomagnetic studies in south-central Alaska 4-9 the Alaska Peninsula10, Kodiak Island11,12 and the Prince William Sound area13 (Fig. 1). These investigations have demonstrated sizeable northward displacements for rocks of late Palaeozoic, Mesozoic, and early Tertiary age in those regions, with northward motion at times culminating in collision of the allochthonous terranes against the backstop of 'nuclear' Alaska14,15. A fundamental question is which parts of Alaska underwent significantly less latitudinal translation relative to the 'stable' North American continent, thereby serving as the 'accretionary nucleus' into which the displaced 'microplates'16 were eventually incorporated17,18? Here we present new palaeomagnetic results from tuffs and associated volcaniclastic rocks of early Cretaceous age from the Yukon-Kuskokwin delta region in western Alaska. These rocks were probably overprinted during the Cretaceous long normal polarity interval, although a remagnetization event as recent as Palaeocene cannot be ruled out. This overprint direction is not appreciably discordant from the expected late Cretaceous direction for cratonal North America. The implied absence of appreciable northward displacement for this region is consistent with the general late Mesozoic-early Tertiary tectonic pattern for Alaska, based on more definitive studies: little to no poleward displacement for central Alaska, though substantially more northward drift for the 'southern Alaska terranes' (comprising Alaska Peninsula, Kodiak Island, Prince William Sound area, and Matunuska Valley) since late Cretaceous to Palaeocene time. ?? 1983 Nature Publishing Group.

  10. Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.

    This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and

  11. Adjustment of interaural time difference in head related transfer functions based on listeners' anthropometry and its effect on sound localization

    NASA Astrophysics Data System (ADS)

    Suzuki, Yôiti; Watanabe, Kanji; Iwaya, Yukio; Gyoba, Jiro; Takane, Shouichi

    2005-04-01

    Because the transfer functions governing subjective sound localization (HRTFs) show strong individuality, sound localization systems based on synthesis of HRTFs require suitable HRTFs for individual listeners. However, it is impractical to obtain HRTFs for all listeners based on measurements. Improving sound localization by adjusting non-individualized HRTFs to a specific listener based on that listener's anthropometry might be a practical method. This study first developed a new method to estimate interaural time differences (ITDs) using HRTFs. Then correlations between ITDs and anthropometric parameters were analyzed using the canonical correlation method. Results indicated that parameters relating to head size, and shoulder and ear positions are significant. Consequently, it was attempted to express ITDs based on listener's anthropometric data. In this process, the change of ITDs as a function of azimuth angle was parameterized as a sum of sine functions. Then the parameters were analyzed using multiple regression analysis, in which the anthropometric parameters were used as explanatory variables. The predicted or individualized ITDs were installed in the nonindividualized HRTFs to evaluate sound localization performance. Results showed that individualization of ITDs improved horizontal sound localization.

  12. Sound localization in common vampire bats: acuity and use of the binaural time cue by a small mammal.

    PubMed

    Heffner, Rickye S; Koay, Gimseong; Heffner, Henry E

    2015-01-01

    Passive sound-localization acuity and the ability to use binaural time and intensity cues were determined for the common vampire bat (Desmodus rotundus). The bats were tested using a conditioned suppression/avoidance procedure in which they drank defibrinated blood from a spout in the presence of sounds from their right, but stopped drinking (i.e., broke contact with the spout) whenever a sound came from their left, thereby avoiding a mild shock. The mean minimum audible angle for three bats for a 100-ms noise burst was 13.1°-within the range of thresholds for other bats and near the mean for mammals. Common vampire bats readily localized pure tones of 20 kHz and higher, indicating they could use interaural intensity-differences. They could also localize pure tones of 5 kHz and lower, thereby demonstrating the use of interaural time-differences, despite their very small maximum interaural distance of 60 μs. A comparison of the use of locus cues among mammals suggests several implications for the evolution of sound localization and its underlying anatomical and physiological mechanisms. PMID:25618037

  13. Sound localization in common vampire bats: Acuity and use of the binaural time cue by a small mammal

    PubMed Central

    Heffner, Rickye S.; Koay, Gimseong; Heffner, Henry E.

    2015-01-01

    Passive sound-localization acuity and the ability to use binaural time and intensity cues were determined for the common vampire bat (Desmodus rotundus). The bats were tested using a conditioned suppression/avoidance procedure in which they drank defibrinated blood from a spout in the presence of sounds from their right, but stopped drinking (i.e., broke contact with the spout) whenever a sound came from their left, thereby avoiding a mild shock. The mean minimum audible angle for three bats for a 100-ms noise burst was 13.1°—within the range of thresholds for other bats and near the mean for mammals. Common vampire bats readily localized pure tones of 20 kHz and higher, indicating they could use interaural intensity-differences. They could also localize pure tones of 5 kHz and lower, thereby demonstrating the use of interaural time-differences, despite their very small maximum interaural distance of 60 μs. A comparison of the use of locus cues among mammals suggests several implications for the evolution of sound localization and its underlying anatomical and physiological mechanisms. PMID:25618037

  14. The local properties of ocean surface waves by the phase-time method

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.; Long, Steven R.; Tung, Chi-Chao; Donelan, Mark A.; Yuan, Yeli; Lai, Ronald J.

    1992-01-01

    A new approach using phase information to view and study the properties of frequency modulation, wave group structures, and wave breaking is presented. The method is applied to ocean wave time series data and a new type of wave group (containing the large 'rogue' waves) is identified. The method also has the capability of broad applications in the analysis of time series data in general.

  15. The Late Triassic bivalve Monotis in accreted terranes of Alaska

    USGS Publications Warehouse

    Silberling, Norman J.; Grant-Mackie, J. A.; Nichols, K.M.

    1997-01-01

    Late Triassic bivalves of the genus Monotis occur in at least 16 of the lithotectonic terranes and subterranes that together comprise nearly all of Alaska, and they also occur in the Upper Yukon region of Alaska where Triassic strata are regarded as representing non-accretionary North America. On the basis of collections made thus far, 14 kinds of Monotis that differ at the species or subspecies level can be recognized from alaska. These are grouped into the subgenera Monotis (Monotis), M. (Pacimonotis), M. (Entomonotis), and M. (Eomonotis). In places, Monotis shells of one kind or another occur in rock-forming abundance. On the basis of superpositional data from Alaska, as well as from elsewhere in North America and Far Eastern Russia, at least four distince biostratigraphic levels can be discriminated utilizing Monotis species. Different species of M. (Eomonotis) characterize two middle Norian levels, both probably within the supper middle Norian Columbianus Ammonite Zone. Two additional levels are recognized in the lower upper Norian Cordilleranus Ammonite Zone utilizing species of M. (Monotis) or M. (Entomonotis), both of which subgenera are restricted to the late Norian. An attached-floating mode of life is commonly attributed to Monotis; thus, these bivalves would have been pseudoplanktonic surface dwellers that were sensitive to surface-water temperature and paleolatitude. Distinctly different kinds of Monotis occur at different paleolatitudes along the Pacific and Arctic margins of the North American craton inboard of the accreted terranes. Comparison between thse craton-bound Monotis faunas and those of the Alaskan terranes in southern Alaska south of the Denali fault were paleoequatorial in latitude during Late Triassic time. Among these terranes, the Alexander terrane was possibly in the southern hemisphere at that time. Terranes of northern Alaska, on the other hand, represent middle, possibly high-middle, northern paleolatitudes.

  16. An implicit difference scheme for the long-time evolution of localized solutions of a generalized Boussinesq system

    SciTech Connect

    Christov, C.I.; Maugin, G.A.

    1995-01-01

    We consider the nonlinear system of equations built up from a generalized Boussinesq equation coupled with a wave equation which is a model for the one-dimensional dynamics of phases in martensitic alloys. The strongly implicit scheme employing Newton`s quasilinearisation allows us to track the long time evolution of the localized solutions of the system. Two distinct classes of solutions are encountered for the pure Boussinesq equation. The first class consists of oscillatory pulses whose envelopes are localized waves. The second class consists of smoother solutions whose shapes are either heteroclinic (kinks) or homoclinic (bumps). The homoclinics decrease in amplitude with time while their support increases. An appropriate self-similar scaling is found analytically and confirmed by the direct numerical simulations to high accuracy. The rich phenomenology resulting from the coupling with the wave equation is also investigated. 11 refs., 12 figs., 2 tabs.

  17. 1995 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.

    1996-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity (SVA) at 6 volcanic centers in 1995: Mount Martin (Katmai Group), Mount Veniaminof, Shishaldin, Makushin, Kliuchef/Korovin, and Kanaga. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) on the 1995 eruptions of 2 Russian volcanoes: Bezymianny and Karymsky. This report summarizes volcanic activity in Alaska during 1995 and the AVO response, as well as information on the 2 Kamchatkan eruptions. Only those reports or inquiries that resulted in a "significant" investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of phone calls throughout the year reporting steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1995 response record.

  18. Improving Sanitation and Health in Rural Alaska

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2013-01-01

    In rural Alaskan communities personal health is threatened by energy costs and limited access to clean water, wastewater management, and adequate nutrition. Fuel-­-based energy systems are significant factors in determining local accessibility to clean water, sanitation and food. Increasing fuel costs induce a scarcity of access and impact residents' health. The University of Alaska Fairbanks (UAF) School of Natural Resources and Agricultural Sciences (SNRAS), NASA's Ames Research Center, and USDA Agricultural Research Service (ARS) have joined forces to develop high-efficiency, low­-energy consuming techniques for water treatment and food production in rural circumpolar communities. Methods intended for exploration of space and establishment of settlements on the Moon or Mars will ultimately benefit Earth's communities in the circumpolar north. The initial phase of collaboration is completed. Researchers from NASA Ames Research Center and SNRAS, funded by the USDA­-ARS, tested a simple, reliable, low-energy sewage treatment system to recycle wastewater for use in food production and other reuse options in communities. The system extracted up to 70% of the water from sewage and rejected up to 92% of ions in the sewage with no carryover of toxic effects. Biological testing showed that plant growth using recovered water in the nutrient solution was equivalent to that using high-purity distilled water. With successful demonstration that the low energy consuming wastewater treatment system can provide safe water for communities and food production, the team is ready to move forward to a full-scale production testbed. The SNRAS/NASA team (including Alaska students) will design a prototype to match water processing rates and food production to meet rural community sanitation needs and nutritional preferences. This system would be operated in Fairbanks at the University of Alaska through SNRAS. Long­-term performance will be validated and operational needs of the

  19. Adapting to Hard Times: Family Participation Patterns in Local Thrift Economies

    PubMed Central

    James, Spencer; Brown, Ralph B.; Goodsell, Todd L.; Stovall, Josh; Flaherty, Jeremy

    2010-01-01

    Using survey data from a western U.S. county (N = 595), we examined how lower, middle, and higher income families negotiate a period of economic stress—the closing of a major employer in the community—through their shopping patterns. Specifically, we examined their participation in local thrift economies such as yard sales and secondhand stores. We found that lower and middle income households shop more frequently at these venues. They also tend to shop more for furniture and clothing, whereas higher income households tend to shop for antiques and trinkets. These relationships varied across the type of thrift economy examined. Overall, findings support the argument that engagement in thrift economies may constitute one mechanism families use during periods of economic stress. PMID:21197154

  20. Trends in Alaska's People and Economy.

    ERIC Educational Resources Information Center

    Leask, Linda; Killorin, Mary; Martin, Stephanie

    This booklet provides data on Alaska's population, economy, health, education, government, and natural resources, including specific information on Alaska Natives. Since 1960, Alaska's population has tripled and become more diverse, more stable, older, less likely to be male or married, and more concentrated. About 69 percent of the population…

  1. 50 CFR 32.21 - Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.21 Alaska. Alaska refuges are opened to hunting, fishing and trapping pursuant to the Alaska National Interest Lands Conservation Act (Pub. L. 96-487, 94 Stat. 2371). Information regarding specific...

  2. 50 CFR 32.21 - Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Alaska. 32.21 Section 32.21 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.21 Alaska. Alaska refuges are opened to...

  3. Some Books about Alaska Received in 1986.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of State Libraries.

    This publication is an annotated listing of 143 books about Alaska or the Arctic, received by the Alaska Division of State Libraries in 1986. Most of the material is current or published in recent years, with the exception of government publications. Categories are juvenile, adult non-fiction, adult fiction, and reference. A few Alaska state and…

  4. 33 CFR 80.1705 - Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Alaska. 80.1705 Section 80.1705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Alaska § 80.1705 Alaska. The 72 COLREGS shall apply on all the sounds,...

  5. Modeling and Observational Framework for Diagnosing Local Land-Atmosphere Coupling on Diurnal Time Scales

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Alonge, Charles; Tao, Wei-Kuo

    2009-01-01

    Land-atmosphere interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture states. The degree of coupling between the land surface and PBL in numerical weather prediction and climate models remains largely unexplored and undiagnosed due to the complex interactions and feedbacks present across a range of scales. Further, uncoupled systems or experiments (e.g., the Project for Intercomparison of Land Parameterization Schemes, PILPS) may lead to inaccurate water and energy cycle process understanding by neglecting feedback processes such as PBL-top entrainment. In this study, a framework for diagnosing local land-atmosphere coupling is presented using a coupled mesoscale model with a suite of PBL and land surface model (LSM) options along with observations during field experiments in the U. S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to the Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. Within this framework, the coupling established by each pairing of the available PBL schemes in WRF with the LSMs in LIS is evaluated in terms of the diurnal temperature and humidity evolution in the mixed layer. The co-evolution of these variables and the convective PBL is sensitive to and, in fact, integrative of the dominant processes that govern the PBL budget, which are synthesized through the use of mixing diagrams. Results show how the sensitivity of land-atmosphere interactions to the specific choice of PBL scheme and LSM varies across surface moisture regimes and can be quantified and evaluated against observations. As such, this methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate

  6. A Modeling and Observational Framework for Diagnosing Local Land-Atmosphere Coupling on Diurnal Time Scales

    NASA Astrophysics Data System (ADS)

    Santanello, J. A.; Peters-Lidard, C. D.; Kumar, S.

    2009-12-01

    Land-atmosphere interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture states. The degree of coupling between the land surface and PBL in numerical weather prediction and climate models remains largely unexplored and undiagnosed due to the complex interactions and feedbacks present across a range of scales. Further, uncoupled systems or experiments (e.g., the Project for Intercomparison of Land Parameterization Schemes, PILPS) may lead to inaccurate water and energy cycle process understanding by neglecting feedback processes such as PBL-top entrainment. In this study, a framework for diagnosing local land-atmosphere coupling is presented using a coupled mesoscale model with a suite of PBL and land surface model (LSM) options along with observations during the summer of 2006 and 2007 in the Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to the Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. Mixing diagram diagnostics based on the evolution of 2m temperature and humidity are examined for the dry/wet extremes of this region, along with the sensitivity of PBL-LSM coupling to perturbations in soil moisture. As such, this methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate coupling diagnostics within the community.

  7. A system for nonradiographic source localization and real-time planning of intraoperative high dose rate brachytherapy.

    PubMed

    Watanabe, Y; Anderson, L L

    1997-12-01

    We have developed a system for source localization and real-time planning of interstitial volume implants for intraoperative radiation therapy (IORT) using high dose rate remote afterloading techniques. Source localization is realized by using an electromagnetic tracking device, which consists of a transmitter coil, a receiver coil, and a signal processing unit, to generate the coordinates and orientation of the receiver. A drawback of the device is its sensitivity to adjacent metallic objects. Localization accuracy was evaluated in an operating room environment, where the metallic objects closest to the receiver are surgical retractors (that, incidentally, preclude radiographic localization). For achievable separation distances, we found an rms error of 0.7 mm in determining the distance between points 2 cm apart, thereby demonstrating the feasibility of the method. The receiver is mounted on a plastic block from which projects a long stylet and the transmitter is located at about 50 cm from the receiver. The stylet is inserted sequentially into source catheters to obtain the location and orientation data that serve as input to treatment planning software. The planning program optimizes source dwell time to make calculated dose conform to the dose prescribed on an ellipsoidal surface to an extent consistent with a certain level of dose uniformity inside the target volume. A least squares method is used that involves minimizing the objective function by a matrix method (nonnegative least squares). We have demonstrated that dwell time optimization can be performed in a short time and that the approach is adequate for the IORT application. PMID:9434985

  8. Occupational safety and health training in Alaska.

    PubMed

    Hild, C M

    1992-01-01

    We have eleven years of experience delivering a wide variety of worker education programs in cross-cultural settings to reduce the levels of occupational fatalities and injuries in Alaska. We published an instructional manual and informational poster for workers, on Alaska's "Right-To-Know" law regarding chemical and physical hazards. The "Job Hazard Recognition Program" curriculum for high school students has received national acclaim for being proactive in dealing with worker safety education before the student becomes a member of the work force. Adult educational programs and materials have been designed to include less lecture and formal presentation, and more practical "hands on" and on-the-job experience for specific trades and hazards. New industry specific manuals deal with hazardous waste reduction as a method to reduce harm to the employee. Difficulty in getting instructors and training equipment to rural locations is dealt with by becoming creative in scheduling classes, using locally available equipment, and finding regional contacts who support the overall program. Alternative approaches to funding sources include building on regional long-term plans and establishing complementary program objectives. PMID:1285824

  9. Statistical Abstract 1987. [University of Alaska System of Higher Education].

    ERIC Educational Resources Information Center

    Gaylord, Thomas A.; And Others

    The 1987 edition of the statistical abstract for the University of Alaska System offers data to be used by public officials, institutional administrators, and the Board of Regents in developing university programs and plans. In 1987 the University used its old organizational structure for the last time due to state funding reductions, and this…

  10. Space-time models based on random fields with local interactions

    NASA Astrophysics Data System (ADS)

    Hristopulos, Dionissios T.; Tsantili, Ivi C.

    2016-08-01

    The analysis of space-time data from complex, real-life phenomena requires the use of flexible and physically motivated covariance functions. In most cases, it is not possible to explicitly solve the equations of motion for the fields or the respective covariance functions. In the statistical literature, covariance functions are often based on mathematical constructions. In this paper, we propose deriving space-time covariance functions by solving “effective equations of motion”, which can be used as statistical representations of systems with diffusive behavior. In particular, we propose to formulate space-time covariance functions based on an equilibrium effective Hamiltonian using the linear response theory. The effective space-time dynamics is then generated by a stochastic perturbation around the equilibrium point of the classical field Hamiltonian leading to an associated Langevin equation. We employ a Hamiltonian which extends the classical Gaussian field theory by including a curvature term and leads to a diffusive Langevin equation. Finally, we derive new forms of space-time covariance functions.

  11. Addressing historic environmental exposures along the Alaska Highway

    PubMed Central

    Godduhn, Anna; Duffy, Lawrence

    2013-01-01

    Background A World War II defense site at Northway, Alaska, was remediated in the 1990s, leaving complex questions regarding historic exposures to toxic waste. This article describes the context, methods, limitations and findings of the Northway Wild Food and Health Project (NWFHP). Objective The NWFHP comprised 2 pilot studies: the Northway Wild Food Study (NWFS), which investigated contaminants in locally prioritized traditional foods over time, and the Northway Health Study (NHS), which investigated locally suspected links between resource uses and health problems. Design This research employed mixed methods. The NWFS reviewed remedial documents and existing data. The NHS collected household information regarding resource uses and health conditions by questionnaire and interview. NHS data represent general (yes or no) personal knowledge that was often second hand. Retrospective cohort comparisons were made of the reported prevalence of 7 general health problems between groups based on their reported (yes or no) consumption of particular resources, for 3 data sets (existing, historic and combined) with a two-tailed Fisher's Exact Test in SAS (n=325 individuals in 83 households, 24 of which no longer exist). Results The NWFS identified historic pathways of exposure to petroleum, pesticides, herbicides, chlorinated byproducts of disinfection and lead from resources that were consumed more frequently decades ago and are not retrospectively quantifiable. The NHS found complex patterns of association between reported resource uses and cancer and thyroid-, reproductive-, metabolic- and cardiac problems. Conclusion Lack of detail regarding medical conditions, undocumented histories of exposure, time lapsed since the release of pollution and changes to health and health care over the same period make this exploratory research. Rather than demonstrate causation, these results document the legitimacy of local suspicions and warrant additional investigation. This article

  12. Local constraints on cosmic string loops from photometry and pulsar timing

    SciTech Connect

    Pshirkov, M. S.; Tuntsov, A. V.

    2010-04-15

    We constrain the cosmological density of cosmic string loops using two observational signatures--gravitational microlensing and the Kaiser-Stebbins effect. Photometry from RXTE and CoRoT space missions and pulsar timing from Parkes Pulsar Timing Array, Arecibo and Green Bank radio telescopes allow us to probe cosmic strings in a wide range of tensions G{mu}/c{sup 2}=10{sup -16} divide 10{sup -10}. We find that pulsar timing data provide the most stringent constraints on the abundance of light strings at the level {Omega}{sub s{approx}}10{sup -3}. Future observational facilities such as the Square Kilometer Array will allow one to improve these constraints by orders of magnitude.

  13. Character, distribution, and tectonic significance of accretionary terranes in the Central Alaska Range

    NASA Astrophysics Data System (ADS)

    Jones, David L.; Silberling, N. J.; Gilbert, Wyatt; Coney, Peter

    1982-05-01

    The central part of the Alaska Range near Mount McKinley is composed of nine separate tectonostratigraphic terranes that were accreted in southern Alaska during late Mesozoic time. These terranes now form long, linear, fault-bounded belts that are subparallel to the Denali fault on the north but oblique to the fault on the south. The postaccretion right lateral offset along the Denali fault system is about 200 km. From north to south the major terranes are (1) Yukon-Tanana terrane, metasedimentary and metavolcanic rocks, mostly undated, but including rocks of known late Paleozoic age; polymetamorphosed with terminal events in late Mesozoic, (2) Pingston terrane, isoclinally folded Upper Triassic deep-water silty limestone, quartzite, and carbonaceous slate, folded with upper Paleozoic phyllite, chert, tuff, and minor limestone, (3) McKinley terrane, upper Paleozoic flysch, chert, and minor limestone, intruded by large gabbro sills and dikes and overlain by thick piles of Triassic porphyritic pillow lava; the top of the section is thick sequence of upper Mesozoic conglomerate, flysch, chert, and phyllite, (4) Dillinger terrane, very thick sequence of strongly folded lower Paleozoic micaceous sandstone (turbidites), graptolitic shale, and deep-water limestone, locally overlain unconformably by Jurassic fossiliferous sandstone or Triassic (?) pillow basalt, (5) Windy terrane, heterogeneous assemblage of serpentinite, basalt, tuff, and chert (= ophiolite?) with Paleozoic and Mesozoic flysch and blocks of mid-Paleozoic fossiliferous limestone, (6) Mystic terrane, predominantly upper Paleozoic flysch and conglomerate, but also includes lower Paleozoic graptolitic shale, pillow basalt, and shallow-water limestone, and upper Paleozoic fossiliferous limestone, sandstone, chert, and undated pillow basalt, (7) Chulitna terrane, Upper Devonian ophiolite overlain by upper Paleozoic chert, volcanic conglomerate, limestone, and flysch, capped by Lower Triassic limestone and Upper

  14. Alaska Pipeline Insulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Crude oil moving through the 800-mile Trans-Alaska Pipeline must be kept at a relatively high temperature, about 180 degrees Fahrenheit, to maintain the fluidity of the oil. In Arctic weather, that demands highly effective insulation. General Electric Co.'s Space Division, Valley Forge, Pennsylvania, provided it with a spinoff product called Therm-O-Trol. Shown being installed on the pipeline, Therm-O-Trol is a metal-bonded polyurethane foam especially formulated for Arctic insulation. A second GE spinoff product, Therm-O-Case, solved a related problem involved in bringing hot crude oil from 2,000-foot-deep wells to the surface without transferring oil heat to the surrounding permafrost soil; heat transfer could melt the frozen terrain and cause dislocations that might destroy expensive well casings. Therm-O-Case is a double-walled oil well casing with multi-layered insulation which provides an effective barrier to heat transfer. Therm-O-Trol and Therm-O-Case are members of a family of insulating products which stemmed from technology developed by GE Space Division in heat transferlthermal control work on Gemini, Apollo and other NASA programs.

  15. A Bayesian approach to real-time 3D tumor localization via monoscopic x-ray imaging during treatment delivery

    SciTech Connect

    Li, Ruijiang; Fahimian, Benjamin P.; Xing, Lei

    2011-07-15

    Purpose: Monoscopic x-ray imaging with on-board kV devices is an attractive approach for real-time image guidance in modern radiation therapy such as VMAT or IMRT, but it falls short in providing reliable information along the direction of imaging x-ray. By effectively taking consideration of projection data at prior times and/or angles through a Bayesian formalism, the authors develop an algorithm for real-time and full 3D tumor localization with a single x-ray imager during treatment delivery. Methods: First, a prior probability density function is constructed using the 2D tumor locations on the projection images acquired during patient setup. Whenever an x-ray image is acquired during the treatment delivery, the corresponding 2D tumor location on the imager is used to update the likelihood function. The unresolved third dimension is obtained by maximizing the posterior probability distribution. The algorithm can also be used in a retrospective fashion when all the projection images during the treatment delivery are used for 3D localization purposes. The algorithm does not involve complex optimization of any model parameter and therefore can be used in a ''plug-and-play'' fashion. The authors validated the algorithm using (1) simulated 3D linear and elliptic motion and (2) 3D tumor motion trajectories of a lung and a pancreas patient reproduced by a physical phantom. Continuous kV images were acquired over a full gantry rotation with the Varian TrueBeam on-board imaging system. Three scenarios were considered: fluoroscopic setup, cone beam CT setup, and retrospective analysis. Results: For the simulation study, the RMS 3D localization error is 1.2 and 2.4 mm for the linear and elliptic motions, respectively. For the phantom experiments, the 3D localization error is < 1 mm on average and < 1.5 mm at 95th percentile in the lung and pancreas cases for all three scenarios. The difference in 3D localization error for different scenarios is small and is not

  16. Paralytic shellfish poisoning --- southeast Alaska, May--June 2011.

    PubMed

    2011-11-18

    On June 6, 2011, the Section of Epidemiology (SOE) of the Alaska Division of Public Health was notified of a case of paralytic shellfish poisoning (PSP) in southeast Alaska. In collaboration with local partners, SOE investigated and identified a total of eight confirmed and 13 probable PSP cases that occurred during May--June 2011. Warnings to avoid noncommercially harvested shellfish were broadcast on local radio and television and displayed at beaches and in post offices, government offices, and businesses throughout the region. Commercially harvested shellfish, which are tested for the presence of PSP-causing toxins, were safe. Because the risk for PSP is unpredictable, persons who consume noncommercially harvested Alaskan shellfish should know that they are at risk for PSP, and suspected cases should be reported promptly to SOE to initiate control measures in the affected area. PMID:22089968

  17. Wavelets, period-doubling, and time-frequency localization with application to organization of convection over the tropical western Pacific

    NASA Technical Reports Server (NTRS)

    Weng, Hengyi; Lau, K.-M.

    1994-01-01

    In this paper, preliminary results in using orthogonal and continuous wavelet transform (WT) to identify period doubling and time-frequency localization in both synthetic and real data are presented. First, the Haar WT is applied to synthetic time series derived from a simple nonlinear dynamical system- a first-order quadratic difference equation. Second, the complex Morlet WT is used to study the time-frequency localization of tropical convection based on a high-resolution Japanese Geostationary Meteorological Satellite infrared (IR) radiance dataset. The Haar WT of the synthetic time series indicates the presence and distinct separation of multiple frequencies in a period-doubling sequence. The period-doubling process generates a multiplicity of intermediate frequencies, which are manifested in the nonuniformity in time with respect to the phase of oscillations in the lower frequencies. Wavelet transform also enables the detection of extremely weak signals in high-order subharmonics resulting from the period-doubling bifurcations. These signals are either undetected or considered statistically insignificant by traditional Fourier analysis. The Morlet WT of the IR radiance dataset indicates the presence of multiple timescales, which are localized in both frequency and time. There are two regimes in the variation of IR radiance, corresponding to the wet and dry periods. Multiple timescales, ranging from semidiurnal, diurnal, synoptic, to intraseasonal with embedding structures, are active in the wet regime. In particular, synoptic variability is more prominent during the wet phase of an intensive intraseasonal cycle. These are not only consistent with, but also show more details than, previous findings by using other techniques. The phase-locking relationships among the oscillations with different time-scales suggest that both synoptic and intraseasonal variations may be mixed oscillations due to the interaction of self-excited oscillations in the tropical

  18. Localized Nonlinear Waves in Systems with Time- and Space-Modulated Nonlinearities

    SciTech Connect

    Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym; Konotop, Vladimir V.

    2008-04-25

    Using similarity transformations we construct explicit nontrivial solutions of nonlinear Schroedinger equations with potentials and nonlinearities depending both on time and on the spatial coordinates. We present the general theory and use it to calculate explicitly nontrivial solutions such as periodic (breathers), resonant, or quasiperiodically oscillating solitons. Some implications to the field of matter waves are also discussed.

  19. A Conditional Joint Modeling Approach for Locally Dependent Item Responses and Response Times

    ERIC Educational Resources Information Center

    Meng, Xiang-Bin; Tao, Jian; Chang, Hua-Hua

    2015-01-01

    The assumption of conditional independence between the responses and the response times (RTs) for a given person is common in RT modeling. However, when the speed of a test taker is not constant, this assumption will be violated. In this article we propose a conditional joint model for item responses and RTs, which incorporates a covariance…

  20. Comparison of Time-Distance Local Helioseismology on GONG and MDI Data Sets

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Zhao, J.; Rajaguru, S. P.; Toner, C. G.; Kosovichev, A. G.; Thompson, M. J.; Hughes, S. J.

    2003-01-01

    We show first results derived from one rotation of GONG++ and MDI data analyzed independently by different groups with time-distance techniques. We focus on observations obtained during spring 2002 and especially on Carrington rotation 1988 (2002/3/30 - 2002/4/26) and measure flow components and wave speed inhomogeneities over a range of depths for different active regions.