Science.gov

Sample records for alaska monitoring network

  1. The Alaska Volcano Observatory - Expanded Monitoring of Volcanoes Yields Results

    USGS Publications Warehouse

    Brantley, Steven R.; McGimsey, Robert G.; Neal, Christina A.

    2004-01-01

    Recent explosive eruptions at some of Alaska's 52 historically active volcanoes have significantly affected air traffic over the North Pacific, as well as Alaska's oil, power, and fishing industries and local communities. Since its founding in the late 1980s, the Alaska Volcano Observatory (AVO) has installed new monitoring networks and used satellite data to track activity at Alaska's volcanoes, providing timely warnings and monitoring of frequent eruptions to the aviation industry and the general public. To minimize impacts from future eruptions, scientists at AVO continue to assess volcano hazards and to expand monitoring networks.

  2. Recorded earthquake responses from the integrated seismic monitoring network of the Atwood Building, Anchorage, Alaska

    USGS Publications Warehouse

    Celebi, M.

    2006-01-01

    An integrated seismic monitoring system with a total of 53 channels of accelerometers is now operating in and at the nearby free-field site of the 20-story steel-framed Atwood Building in highly seismic Anchorage, Alaska. The building has a single-story basement and a reinforced concrete foundation without piles. The monitoring system comprises a 32-channel structural array and a 21-channel site array. Accelerometers are deployed on 10 levels of the building to assess translational, torsional, and rocking motions, interstory drift (displacement) between selected pairs of adjacent floors, and average drift between floors. The site array, located approximately a city block from the building, comprises seven triaxial accelerometers, one at the surface and six in boreholes ranging in depths from 15 to 200 feet (???5-60 meters). The arrays have already recorded low-amplitude shaking responses of the building and the site caused by numerous earthquakes at distances ranging from tens to a couple of hundred kilometers. Data from an earthquake that occurred 186 km away traces the propagation of waves from the deepest borehole to the roof of the building in approximately 0.5 seconds. Fundamental structural frequencies [0.58 Hz (NS) and 0.47 Hz (EW)], low damping percentages (2-4%), mode coupling, and beating effects are identified. The fundamental site frequency at approximately 1.5 Hz is close to the second modal frequencies (1.83 Hz NS and 1.43 EW) of the building, which may cause resonance of the building. Additional earthquakes prove repeatability of these characteristics; however, stronger shaking may alter these conclusions. ?? 2006, Earthquake Engineering Research Institute.

  3. Hydrologic data and a proposed water-quality monitoring network for Kobuk River basin, gates of the Arctic National Park and Preserve, and Kobuk Valley National Park, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.

    2001-01-01

    Located in northwestern Alaska, the Kobuk River drains a watershed of approximately 12,300 square miles. Two national parks are located in the basin: the entire Kobuk Valley National Park and and a portion of Gates of the Arctic National Park and Preserve. Reconnaissance-type water-quality data collected on the Kobuk River and some of its tributaries indicate that the water is of a calcium to calcium-magnesium-bicarbonate type. To design a representative water-quality monitoring network, a geographical information system (GIS) of the Kobuk River Basin was created. The GIS was used with a statistical technique, cluster analysis, to stratify the Kobuk River Basin into different regions. Potential water-quality monitoring sites were then selected from these regions.

  4. Alaska's giant satellite network

    NASA Astrophysics Data System (ADS)

    Hills, A.

    1983-07-01

    The evolution and features of the Alaskan telecommunications network are described, with emphasis on the satellite links. The Alaskan terrain is rugged and largely unpopulated. Satcom V provides C-band (6/4 GHz) transmission with 24 transponders, each having a 40 MHz bandwidth. The Alascom company operated 105 4.5 m earth-based antennas for remote villages, which receive both telephone and television services. There are also 27 10-m dishes for regional and military applications and a 30 m dish, one of three dishes for links to the centerminous U.S. Currently, half the villages have private and business telephone communications facilities and 200 villages have access to two television stations, one educational, one entertainment. Teleconferencing is possible for government and educational purposes, and discussions are underway with NASA to establish a mobile radio communications capacity.

  5. Alaska Seismic Network Upgrade and Expansion

    NASA Astrophysics Data System (ADS)

    Sandru, J. M.; Hansen, R. A.; Estes, S. A.; Fowler, M.

    2009-12-01

    AEIC (Alaska Earthquake Information Center) has begun the task of upgrading the older regional seismic monitoring sites that have been in place for a number of years. Many of the original sites (some dating to the 1960's) are still single component analog technology. This was a very reasonable and ultra low power reliable system for its day. However with the advanced needs of today's research community, AEIC has begun upgrading to Broadband and Strong Motion Seismometers, 24 bit digitizers and high-speed two-way communications, while still trying to maintain the utmost reliability and maintaining low power consumption. Many sites have been upgraded or will be upgraded from single component to triaxial broad bands and triaxial accerometers. This provided much greater dynamic range over the older antiquated technology. The challenge is compounded by rapidly changing digital technology. Digitizersand data communications based on analog phone lines utilizing 9600 baud modems and RS232 are becoming increasingly difficult to maintain and increasingly expensive compared to current methods that use Ethernet, TCP/IP and UDP connections. Gaining a reliable Internet connection can be as easy as calling up an ISP and having a DSL connection installed or may require installing our own satellite uplink, where other options don't exist. LANs are accomplished with a variety of communications devices such as spread spectrum 900 MHz radios or VHF radios for long troublesome shots. WANs are accomplished with a much wider variety of equipment. Traditional analog phone lines are being used in some instances, however 56K lines are much more desirable. Cellular data links have become a convenient option in semiurban environments where digital cellular coverage is available. Alaska is slightly behind the curve on cellular technology due to its low population density and vast unpopulated areas but has emerged into this new technology in the last few years. Partnerships with organizations

  6. Developing Gyrfalcon surveys and monitoring for Alaska

    USGS Publications Warehouse

    Fuller, Mark R.; Schempf, Philip F.; Booms, Travis L.

    2011-01-01

    We developed methods to monitor the status of Gyrfalcons in Alaska. Results of surveys and monitoring will be informative for resource managers and will be useful for studying potential changes in ecological communities of the high latitudes. We estimated that the probability of detecting a Gyrfalcon at an occupied nest site was between 64% and 87% depending on observer experience and aircraft type (fixed-wing or helicopter). The probability of detection is an important factor for estimating occupancy of nesting areas, and occupancy can be used as a metric for monitoring species' status. We conclude that surveys of nesting habitat to monitor occupancy during the breeding season are practical because of the high probability of seeing a Gyrfalcon from aircraft. Aerial surveys are effective for searching sample plots or index areas in the expanse of the Alaskan terrain. Furthermore, several species of cliff-nesting birds can be surveyed concurrently from aircraft. Occupancy estimation also can be applied using data from other field search methods (e.g., from boats) that have proven useful in Alaska. We believe a coordinated broad-scale, inter-agency, collaborative approach is necessary in Alaska. Monitoring can be facilitated by collating and archiving each set of results in a secure universal repository to allow for statewide meta-analysis.

  7. 77 FR 50712 - Information Collection: Southern Alaska Sharing Network and Subsistence Study; Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... Bureau of Ocean Energy Management Information Collection: Southern Alaska Sharing Network and Subsistence... in Alaska, ``Southern Alaska Sharing Network and Subsistence Study.'' DATES: Submit written comments.... Title: Southern Alaska Sharing Network and Subsistence Study. Abstract: The Bureau of Ocean...

  8. Tracking glaciers with the Alaska seismic network

    NASA Astrophysics Data System (ADS)

    West, M. E.

    2015-12-01

    More than 40 years ago it was known that calving glaciers in Alaska created unmistakable seismic signals that could be recorded tens and hundreds of kilometers away. Their long monochromatic signals invited studies that foreshadowed the more recent surge in glacier seismology. Beyond a handful of targeted studies, these signals have remained a seismic novelty. No systematic attempt has been made to catalog and track glacier seismicity across the years. Recent advances in understanding glacier sources, combined with the climate significance of tidewater glaciers, have renewed calls for comprehensive tracking of glacier seismicity in coastal Alaska. The Alaska Earthquake Center has included glacier events in its production earthquake catalog for decades. Until recently, these were best thought of as bycatch—accidental finds in the process of tracking earthquakes. Processing improvements a decade ago, combined with network improvements in the past five years, have turned this into a rich data stream capturing hundreds of events per year across 600 km of the coastal mountain range. Though the source of these signals is generally found to be iceberg calving, there are vast differences in behavior between different glacier termini. Some glaciers have strong peaks in activity during the spring, while others peak in the late summer or fall. These patterns are consistent over years pointing to fundamental differences in calving behavior. In several cases, changes in seismic activity correspond to specific process changes observed through other means at particular glacier. These observations demonstrate that the current network is providing a faithful record of the dynamic behavior of several glaciers in coastal Alaska. With this as a starting point, we examine what is possible (and not possible) going forward with dedicated detection schemes.

  9. Serial Network Flow Monitor

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.

  10. Wildlife, Snow, Coffee, and Video: The IPY Activities of the University of Alaska Young Researchers' Network

    NASA Astrophysics Data System (ADS)

    Pringle, D.; Alvarez-Aviles, L.; Carlson, D.; Harbeck, J.; Druckenmiller, M.; Newman, K.; Mueller, D.; Petrich, C.; Roberts, A.; Wang, Y.

    2007-12-01

    The University of Alaska International Polar Year (IPY) Young Researchers' Network is a group of graduate students and postdoctoral fellows. Our interdisciplinary group operates as a volunteer network to promote the International Polar Year through education and outreach aimed at the general public and Alaskan students of all ages. The Young Researchers' Network sponsors and organizes science talks or Science Cafés by guest speakers in public venues such as coffee shops and bookstores. We actively engage high school students in IPY research concerning the ionic concentrations and isotopic ratios of precipitation through Project Snowball. Our network provides hands-on science activities to encourage environmental awareness and initiate community wildlife monitoring programs such as Wildlife Day by Day. We mentor individual high school students pursuing their own research projects related to IPY through the Alaska High School Science Symposium. Our group also interacts with the general public at community events and festivals to share the excitement of IPY for example at the World Ice Art Championship and Alaska State Fair. The UA IPY Young Researchers' Network continues to explore new partnerships with educators and students in an effort to enhance science and education related to Alaska and the polar regions in general. For more information please visit: http://ipy-youth.uaf.edu or e-mail: ipy-youth@alaska.edu

  11. A network security monitor

    SciTech Connect

    Heberlein, L.T.; Dias, G.V.; Levitt, K.N.; Mukherjee, B.; Wood, J.; Wolber, D. . Dept. of Electrical Engineering and Computer Science)

    1989-11-01

    The study of security in computer networks is a rapidly growing area of interest because of the proliferation of networks and the paucity of security measures in most current networks. Since most networks consist of a collection of inter-connected local area networks (LANs), this paper concentrates on the security-related issues in a single broadcast LAN such as Ethernet. Specifically, we formalize various possible network attacks and outline methods of detecting them. Our basic strategy is to develop profiles of usage of network resources and then compare current usage patterns with the historical profile to determine possible security violations. Thus, our work is similar to the host-based intrusion-detection systems such as SRI's IDES. Different from such systems, however, is our use of a hierarchical model to refine the focus of the intrusion-detection mechanism. We also report on the development of our experimental LAN monitor currently under implementation. Several network attacks have been simulated and results on how the monitor has been able to detect these attacks are also analyzed. Initial results demonstrate that many network attacks are detectable with our monitor, although it can surely be defeated. Current work is focusing on the integration of network monitoring with host-based techniques. 20 refs., 2 figs.

  12. Self-Configuring Network Monitor

    2004-05-01

    Self-Configuring Network Monitor (SCNM) is a passive monitoring that can collect packet headers from any point in a network path. SCNM uses special activation packets to automatically activate monitors deployed at the layer three ingress and egress routers of the wide-area network, and at critical points within the site networks. Monitoring output data is sent back to the application data source or destination host. No modifications are required to the application or network routing infrastructuremore » in order to activate monitoring of traffic for an application. This ensures that the monitoring operation does not add a burden to the networks administrator.« less

  13. High Performance Network Monitoring

    SciTech Connect

    Martinez, Jesse E

    2012-08-10

    Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

  14. Distributed Permafrost Observation Network in Western Alaska: the First Results

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Cable, W.; Marchenko, S. S.; Panda, S. K.

    2014-12-01

    The area of Western Alaska including the Selawik National Wildlife Refuge (SNWR) is generally underrepresented in terms of permafrost thermal monitoring. Thus, the main objective of this study was to establish a permafrost monitoring network in Western Alaska in order to understand the spatial variability in permafrost thermal regime in the area and to have a baseline in order to detect future change. Present and future thawing of permafrost in the region will have a dramatic effect on the ecosystems and infrastructure because the permafrost here generally has a high ice content, as a result of preservation of old ground ice in these relatively cold regions even during the warmer time intervals of the Holocene. Over the summers of 2011 and 2012 a total of 26 automated monitoring stations were established to collect temperature data from the active layer and near-surface permafrost. While most of these stations were basic and only measured the temperature down to 1.5 m at 4 depths, three of the stations had higher vertical temperature resolution down to 3 m. The sites were selected using an ecotype (basic vegetation groups) map of very high resolution (30 m) that had been created for the area in 2009. We found the Upland Dwarf Birch-Tussock Shrub ecotype to be the coldest with a mean annual ground temperature at 1 meter (MAGT1.0) of -3.9 °C during the August 1st, 2012 to July 31st, 2013 measurement period. This is also the most widespread ecotype in the SNWR, covering approximately 28.4% by area. The next widespread ecotype in the SNWR is the Lowland and Upland Birch-Ericaceous Low Shrub. This ecotype had higher ground temperatures with an average MAGT1.0 of -2.4 °C during the same measurement period. We also found that within some ecotypes (White Spruce and Alder-Willow Shrub) the presence or absence of moss on the surface seems to indicate the presence or absence of near surface permafrost. In general, we found good agreement between ecotype classes and

  15. Development of Alaska Volcano Observatory Seismic Networks, 1988-2008

    NASA Astrophysics Data System (ADS)

    Tytgat, G.; Paskievitch, J. F.; McNutt, S. R.; Power, J. A.

    2008-12-01

    The number and quality of seismic stations and networks on Alaskan volcanoes have increased dramatically in the 20 years from 1988 to 2008. Starting with 28 stations on six volcanoes in 1988, the Alaska Volcano Observatory (AVO) now operates 194 stations in networks on 33 volcanoes spanning the 2000 km Aleutian Arc. All data are telemetered in real time to laboratory facilities in Fairbanks and Anchorage and recorded on digital acquisition systems. Data are used for both monitoring and research. The basic and standard network designs are driven by practical considerations including geography and terrain, access to commercial telecommunications services, and environmental vulnerability. Typical networks consist of 6 to 8 analog stations, whose data can be telemetered to fit on a single analog telephone circuit terminated ultimately in either Fairbanks or Anchorage. Towns provide access to commercial telecommunications and signals are often consolidated for telemetry by remote computer systems. Most AVO stations consist of custom made fiberglass huts that house the batteries, electronics, and antennae. Solar panels are bolted to the south facing side of the huts and the seismometers are buried nearby. The huts are rugged and have allowed for good station survivability and performance reliability. However, damage has occurred from wind, wind-blown pumice, volcanic ejecta, lightning, icing, and bears. Power is provided by multiple isolated banks of storage batteries charged by solar panels. Primary cells are used to provide backup power should the rechargable system fail or fall short of meeting the requirement. In the worst cases, snow loading blocks the solar panels for 7 months, so sufficient power storage must provide power for at least this long. Although primarily seismic stations, the huts and overall design allow additional instruments to be added, such as infrasound sensors, webcams, electric field meters, etc. Yearly maintenance visits are desirable, but some

  16. A geodetic network in the Novarupta area, Katmai National Park, Alaska

    USGS Publications Warehouse

    Kleinman, J.W.; Iwatsubo, E.Y.

    1991-01-01

    A small geodetic network was established in 1989 and 1990 to monitor ground deformation in the Novarupta area, Katmai National Park, Alaska. Slope distances and zenith angles for three lines were repeated in 1990. A comparison of the two surveys indicates changes that are within the error of the measurements. Mean mark-to-mark slope distance changes are 1.17 ?? 1.46 ppm. Two benchmarks were added to the network in 1990 to configure a five-endpoint braced quadrilateral centered about the Novarupta dome. -Authors

  17. Alaska - Russian Far East connection in volcano research and monitoring

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Eichelberger, J. C.; Gordeev, E.; Neal, C. A.; Chebrov, V. N.; Girina, O. A.; Demyanchuk, Y. V.; Rybin, A. V.

    2012-12-01

    The Kurile-Kamchatka-Alaska portion of the Pacific Rim of Fire spans for nearly 5400 km. It includes more than 80 active volcanoes and averages 4-6 eruptions per year. Resulting ash clouds travel for hundreds to thousands of kilometers defying political borders. To mitigate volcano hazard to aviation and local communities, the Alaska Volcano Observatory (AVO) and the Institute of Volcanology and Seismology (IVS), in partnership with the Kamchatkan Branch of the Geophysical Survey of the Russian Academy of Sciences (KBGS), have established a collaborative program with three integrated components: (1) volcano monitoring with rapid information exchange, (2) cooperation in research projects at active volcanoes, and (3) volcanological field schools for students and young scientists. Cooperation in volcano monitoring includes dissemination of daily information on the state of volcanic activity in neighboring regions, satellite and visual data exchange, as well as sharing expertise and technologies between AVO and the Kamchatkan Volcanic Eruption Response Team (KVERT) and Sakhalin Volcanic Eruption Response Team (SVERT). Collaboration in scientific research is best illustrated by involvement of AVO, IVS, and KBGS faculty and graduate students in mutual international studies. One of the most recent examples is the NSF-funded Partnerships for International Research and Education (PIRE)-Kamchatka project focusing on multi-disciplinary study of Bezymianny volcano in Kamchatka. This international project is one of many that have been initiated as a direct result of a bi-annual series of meetings known as Japan-Kamchatka-Alaska Subduction Processes (JKASP) workshops that we organize together with colleagues from Hokkaido University, Japan. The most recent JKASP meeting was held in August 2011 in Petropavlovsk-Kamchatsky and brought together more than 130 scientists and students from Russia, Japan, and the United States. The key educational component of our collaborative program

  18. 78 FR 3447 - Information Collection: Southern Alaska Sharing Network and Subsistence Study; Submitted for OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... notice (77 FR 50712) announcing that we would submit this ICR to OMB for approval. The notice provided... Bureau of Ocean Energy Management Information Collection: Southern Alaska Sharing Network and Subsistence... networks in coastal Alaska. This notice provides the public a second opportunity to comment on...

  19. Baseline Environmental Monitoring Program at Toolik Field Station, Alaska

    NASA Astrophysics Data System (ADS)

    Kade, A.; Bret-Harte, M. S.

    2011-12-01

    The Environmental Data Center at the Toolik Field Station, Alaska established a baseline environmental monitoring program in 2007 to provide a long-term record of key biotic and abiotic variables to the scientific community. We maintain a weather station for a long-term climate record at the field station and monitor the timing of key plant phenological events, bird migration and mammal sightings. With regards to plant phenology, we record event dates such as emergence of first leaves, open flowers and seed dispersal for twelve select species typical of the moist acidic tundra, following the ITEX plant phenology protocol. From 2007 to 2011, we observed earlier emergence of first leaves by approximately one week for species such as the dwarf birch Betula nana, sedge Carex bigelowii and evergreen lingonberry Vaccinium vitis-idaea, while seed dispersal for some of these species was delayed by more than two weeks. We also monitor the arrival and departure dates of thirty bird species common to the Toolik area. Yearlong residents included species such as the common raven, rock and willow ptarmigan, and some migrants such as yellow-billed loons and American tree sparrows could be detected for about four months at Toolik, while long-distance traveling arctic terns stayed only two months during the summer. The timing of bird migration dates did not show any clear trends over the past five years for most species. For the past two decades, we recorded climate data such as air, soil and lake temperature, radiation, wind speed and direction, relative humidity and barometric pressure. During this time period, monthly mean air temperatures varied from -31.7 to -12.8 °C in January and from 8.3 to 13.1 °C in July, with no trend over time. Our baseline data on plant phenological changes, timing of bird migration and climate variables are valuable in the light of long-term environmental monitoring efforts as they provide the context for other seasonality projects that are

  20. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    SciTech Connect

    2013-09-01

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and

  1. Monitoring population status of sea otters (Enhydra lutris) in Glacier Bay National Park and Preserve, Alaska: options and considerations

    USGS Publications Warehouse

    Esslinger, George; Esler, Daniel N.; Howlin, S.; Starcevich, L.A.

    2015-06-25

    After many decades of absence from southeast Alaska, sea otters (Enhydra lutris) are recolonizing parts of their former range, including Glacier Bay, Alaska. Sea otters are well known for structuring nearshore ecosystems and causing community-level changes such as increases in kelp abundance and changes in the size and number of other consumers. Monitoring population status of sea otters in Glacier Bay will help park researchers and managers understand and interpret sea otter-induced ecosystem changes relative to other sources of variation, including potential human-induced impacts such as ocean acidification, vessel disturbance, and oil spills. This report was prepared for the National Park Service (NPS), Southeast Alaska Inventory and Monitoring Network following a request for evaluation of options for monitoring sea otter population status in Glacier Bay National Park and Preserve. To meet this request, we provide a detailed consideration of the primary method of assessment of abundance and distribution, aerial surveys, including analyses of power to detect interannual trends and designs to reduce variation around annual abundance estimates. We also describe two alternate techniques for evaluating sea otter population status—(1) quantifying sea otter diets and energy intake rates, and (2) detecting change in ages at death. In addition, we provide a brief section on directed research to identify studies that would further our understanding of sea otter population dynamics and effects on the Glacier Bay ecosystem, and provide context for interpreting results of monitoring activities.

  2. Improved sea level monitors for measuring vertical crustal deformation in the Shumagin seismic gap, Alaska

    NASA Technical Reports Server (NTRS)

    Hurst, Ken; Beavan, John

    1987-01-01

    The relative vertical deformation detection capability of a network of sea level gauges in the Shumagin seismic gap, Alaska has been improved. An examination of the present noise levels suggests that the network is now capable of providing relative deformation data that is quieter than data from leveling, GPS, VLBI, or satellite laser ranging.

  3. NETWORK DESIGN FOR OZONE MONITORING

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks from air pollution. A major cr...

  4. Integrated Global Background Monitoring Network

    SciTech Connect

    Wiersma, G.B.; Franklin, J.F.; Kohler, A.; Croze, H.; Boelcke, C.

    1986-12-01

    One of the more significant problems when trying to determine what impact is having on global cycles is not knowing what ''natural'' levels should be for both abiotic (gases, trace elements) and biotic (ecosystem functions) processes. The authors believe that a well designed, coordinated network of baseline stations in remote areas around the world can provide a data base will allow best current estimates to be made of biotic and abiotic baseline conditions. These baseline conditions will then help us make better comparisons with more impacted areas, and thus help us more fully understand the impact man is having on his world. This paper examines the history of background pollution monitoring at the international level, describes current activities in the field of ''integrated'' background monitoring, and proposes criteria for the development of a global network of baseline stations to coordinate background monitoring for the presence, accumulation and behavior of pollutants in remote ecosystems. In this paper, this network is called the Integrated Global Background Monitoring Network.

  5. Optimal monitoring of computer networks

    SciTech Connect

    Fedorov, V.V.; Flanagan, D.

    1997-08-01

    The authors apply the ideas from optimal design theory to the very specific area of monitoring large computer networks. The behavior of these networks is so complex and uncertain that it is quite natural to use the statistical methods of experimental design which were originated in such areas as biology, behavioral sciences and agriculture, where the random character of phenomena is a crucial component and systems are too complicated to be described by some sophisticated deterministic models. They want to emphasize that only the first steps have been completed, and relatively simple underlying concepts about network functions have been used. Their immediate goal is to initiate studies focused on developing efficient experimental design techniques which can be used by practitioners working with large networks operating and evolving in a random environment.

  6. Geographic Information Network of Alaska: Real-Time Synoptic Satellite Data for Alaska and the High Arctic, Best Available DEMs, and Highest Available Resolution Imagery for Alaska

    NASA Astrophysics Data System (ADS)

    Heinrichs, T. A.; Sharpton, V. L.; Engle, K. E.; Ledlow, L. L.; Seman, L. E.

    2006-12-01

    In support of the International Polar Year, the Geographic Information Network of Alaska (GINA) intends to make available to researchers three important Arctic data sets. The first is near-real-time synoptic scale data from GINA and NOAA/NESDIS satellite ground stations. GINA operates ground stations that receive direct readout from the AVHRR (1.1-km per pixel resolution) and MODIS (250- to 1000-meter) sensors carried on NOAA and NASA satellites. GINA works in partnership with NOAA/NESDIS's Fairbanks Command and Data Acquisition Station (FCDAS) to distribute real-time data captured by FCDAS facilities in Fairbanks and Barrow, Alaska. AVHRR and Feng Yun 1D (1.1-km) sensors are captured in Fairbanks by FCDAS and distributed by GINA. AVHRR data is captured by FCDAS in Barrow and distributed by GINA. Due to its high latitude, the station mask of the Barrow station extends well beyond the Pole, showing the status in real-time of Arctic basin cloud and sea ice conditions. Second, digital elevation models (DEM) for Alaska vary greatly in quality and availability. The best available DEMs for Alaska will be combined and served through a GINA gateway. Third, the best available imagery for more than three quarters of Alaska is 15-meter pan-sharpened Landsat data. Less than a quarter of the state is covered by 5-meter or better data. The best available imagery for Alaska will be combined and served through a GINA gateway. In accordance with the IPY Subcommittee on Data Policy and Management recommendations, all data will be made available via Open Geospatial Consortium protocols, including Web Mapping, Feature, and Coverage Services. Data will also be made available for download in georeferenced formats such as GeoTIFF, MrSID, or GRID. Metadata will be available though the National Spatial Data Infrastructure via Z39.50 GEO protocols and through evolving web-based metadata standards.

  7. Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Though it's not quite spring, waters in the Gulf of Alaska (right) appear to be blooming with plant life in this true-color MODIS image from March 4, 2002. East of the Alaska Peninsula (bottom center), blue-green swirls surround Kodiak Island. These colors are the result of light reflecting off chlorophyll and other pigments in tiny marine plants called phytoplankton. The bloom extends southward and clear dividing line can be seen west to east, where the bloom disappears over the deeper waters of the Aleutian Trench. North in Cook Inlet, large amounts of red clay sediment are turning the water brown. To the east, more colorful swirls stretch out from Prince William Sound, and may be a mixture of clay sediment from the Copper River and phytoplankton. Arcing across the top left of the image, the snow-covered Brooks Range towers over Alaska's North Slope. Frozen rivers trace white ribbons across the winter landscape. The mighty Yukon River traverses the entire state, beginning at the right edge of the image (a little way down from the top) running all the way over to the Bering Sea, still locked in ice. In the high-resolution image, the circular, snow-filled calderas of two volcanoes are apparent along the Alaska Peninsula. In Bristol Bay (to the west of the Peninsula) and in a couple of the semi-clear areas in the Bering Sea, it appears that there may be an ice algae bloom along the sharp ice edge (see high resolution image for better details). Ground-based observations from the area have revealed that an under-ice bloom often starts as early as February in this region and then seeds the more typical spring bloom later in the season.

  8. Evaluation of the streamflow-gaging network of Alaska in providing regional streamflow information

    USGS Publications Warehouse

    Brabets, Timothy P.

    1996-01-01

    In 1906, the U.S. Geological Survey (USGS) began operating a network of streamflow-gaging stations in Alaska. The primary purpose of the streamflow- gaging network has been to provide peak flow, average flow, and low-flow characteristics to a variety of users. In 1993, the USGS began a study to evaluate the current network of 78 stations. The objectives of this study were to determine the adequacy of the existing network in predicting selected regional flow characteristics and to determine if providing additional streamflow-gaging stations could improve the network's ability to predict these characteristics. Alaska was divided into six distinct hydrologic regions: Arctic, Northwest, Southcentral, Southeast, Southwest, and Yukon. For each region, historical and current streamflow data were compiled. In Arctic, Northwest, and Southwest Alaska, insufficient data were available to develop regional regression equations. In these areas, proposed locations of streamflow-gaging stations were selected by using clustering techniques to define similar areas within a region and by spatial visual analysis using the precipitation, physiographic, and hydrologic unit maps of Alaska. Sufficient data existed in Southcentral and Southeast Alaska to use generalized least squares (GLS) procedures to develop regional regression equations to estimate the 50-year peak flow, annual average flow, and a low-flow statistic. GLS procedures were also used for Yukon Alaska but the results should be used with caution because the data do not have an adequate spatial distribution. Network analysis procedures were used for the Southcentral, Southeast, and Yukon regions. Network analysis indicates the reduction in the sampling error of the regional regression equation that can be obtained given different scenarios. For Alaska, a 10-year planning period was used. One scenario showed the results of continuing the current network with no additional gaging stations and another scenario showed the results

  9. Host Event Based Network Monitoring

    SciTech Connect

    Jonathan Chugg

    2013-01-01

    The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  10. Environmental Monitoring Using Sensor Networks

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhang, C.; Li, X.; Huang, Y.; Fu, S.; Acevedo, M. F.

    2008-12-01

    Environmental observatories, consisting of a variety of sensor systems, computational resources and informatics, are important for us to observe, model, predict, and ultimately help preserve the health of the nature. The commoditization and proliferation of coin-to-palm sized wireless sensors will allow environmental monitoring with unprecedented fine spatial and temporal resolution. Once scattered around, these sensors can identify themselves, locate their positions, describe their functions, and self-organize into a network. They communicate through wireless channel with nearby sensors and transmit data through multi-hop protocols to a gateway, which can forward information to a remote data server. In this project, we describe an environmental observatory called Texas Environmental Observatory (TEO) that incorporates a sensor network system with intertwined wired and wireless sensors. We are enhancing and expanding the existing wired weather stations to include wireless sensor networks (WSNs) and telemetry using solar-powered cellular modems. The new WSNs will monitor soil moisture and support long-term hydrologic modeling. Hydrologic models are helpful in predicting how changes in land cover translate into changes in the stream flow regime. These models require inputs that are difficult to measure over large areas, especially variables related to storm events, such as soil moisture antecedent conditions and rainfall amount and intensity. This will also contribute to improve rainfall estimations from meteorological radar data and enhance hydrological forecasts. Sensor data are transmitted from monitoring site to a Central Data Collection (CDC) Server. We incorporate a GPRS modem for wireless telemetry, a single-board computer (SBC) as Remote Field Gateway (RFG) Server, and a WSN for distributed soil moisture monitoring. The RFG provides effective control, management, and coordination of two independent sensor systems, i.e., a traditional datalogger-based wired

  11. Sensor Network Architectures for Monitoring Underwater Pipelines

    PubMed Central

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669

  12. Sensor network architectures for monitoring underwater pipelines.

    PubMed

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  13. Autonomous Environment-Monitoring Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2004-01-01

    Autonomous environment-monitoring networks (AEMNs) are artificial neural networks that are specialized for recognizing familiarity and, conversely, novelty. Like a biological neural network, an AEMN receives a constant stream of inputs. For purposes of computational implementation, the inputs are vector representations of the information of interest. As long as the most recent input vector is similar to the previous input vectors, no action is taken. Action is taken only when a novel vector is encountered. Whether a given input vector is regarded as novel depends on the previous vectors; hence, the same input vector could be regarded as familiar or novel, depending on the context of previous input vectors. AEMNs have been proposed as means to enable exploratory robots on remote planets to recognize novel features that could merit closer scientific attention. AEMNs could also be useful for processing data from medical instrumentation for automated monitoring or diagnosis. The primary substructure of an AEMN is called a spindle. In its simplest form, a spindle consists of a central vector (C), a scalar (r), and algorithms for changing C and r. The vector C is constructed from all the vectors in a given continuous stream of inputs, such that it is minimally distant from those vectors. The scalar r is the distance between C and the most remote vector in the same set. The construction of a spindle involves four vital parameters: setup size, spindle-population size, and the radii of two novelty boundaries. The setup size is the number of vectors that are taken into account before computing C. The spindle-population size is the total number of input vectors used in constructing the spindle counting both those that arrive before and those that arrive after the computation of C. The novelty-boundary radii are distances from C that partition the neighborhood around C into three concentric regions (see Figure 1). During construction of the spindle, the changing spindle radius

  14. An Integrated Hydrologic Monitoring Network

    NASA Astrophysics Data System (ADS)

    Tedesco, L. P.; Baker, M. P.; Hall, B. E.

    2004-12-01

    Ecological studies depend on the ability to monitor an environment, collect data at appropriate spatial and temporal scales, and analyze that data from the diverse viewpoints of many relevant disciplines. Historically, environmental studies have been conducted by small teams of researchers, usually collecting data by hand at some set but low frequency, and organizing it according to ad hoc, project-specific goals. Recent years have seen dramatic advancement in the ability to gather environmental data remotely and therefore at much higher frequency. We are working to create a dynamic and integrated network of environmental sensors in natural environments to acquire real time data and create tools for visualization appropriate for different audiences to promote scientific exploration. Instrumentation includes an array of water quality and water level sondes and probes distributed throughout three Central Indiana counties. Instrument platforms currently include five river monitoring platforms utilizing YSI water quality and level probes; a lake buoy array that includes three YSI sonde packages monitoring physical, chemical and biological parameters; and over fifteen YSI and Solinist groundwater probes recording both level and water quality. Many sites are providing real-time data and several additional sites are scheduled to be online in the coming months. Visualization of this real time data from remote sensors distributed throughout Central Indiana provides numerous challenges. The benefits of successfully integrating remotely deployed environmental sensors in a post 9-11 world is obvious. We are working to bridge both the extremes associated with the frequency of data collection and the lack of data coordination by creating techniques for data networking and retrieval, and data management, analysis, and visualization capabilities that operate across a range of computing platforms to make this data immediately accessible and useful to a range of interested parties

  15. New Approach to Sea Level Monitoring Tested at Shemya, Alaska

    NASA Astrophysics Data System (ADS)

    Urban, G. W.; Medbery, A. H.; Burgy, M. C.

    2003-12-01

    Due to the prohibitive installation cost to replace a storm damaged stilling well type tide gauge at Earickson Air Force Station on Shemya Island, Alaska, an alternative sea-level gauge was sought by the West Coast and Alaska Tsunami Warning Center (WCATWC). An Omart-Vega radar system was chosen as the alternative, since it had low power needs, did not require a stilling well and its design included observation of rough surface liquids. The Omart-Vega radar system works by emitting a 5 gHz radar wave which reflects off the water surface and then back to the unit at a specified rate. This information is then telemetered directly to a computer which records the sample. Although the cost of the Vega system (3500USD) was similar to that of the stilling well unit (2500USD), the comparison of the installation costs of the two different units was an issue. To install the stilling well system, two certified under-water welding divers were required at a cost of 40K-USD or more. In comparison, the installation of the Vega system simply required an arm constructed so as to hang and support the Vega unit off the pier at Shemya. This arm assembly would also house the unit to protect it from surf and weather. The arm was designed in-house and built by a local metal contractor for less than 500USD. This portable unit was sent to Shemya via C-130 aircraft. The arm assembly and housed radar tide gauge was installed by one person. The circuitry to run the Vega was developed and tested at the WCATWC. Software was designed and tested there as well, although the software was written by Omart at no cost to the Warning Center. The circuitry allows for direct remote reconfiguration from Palmer to the radar system. The Vega is accessed by software directly from the WCATWC computer to sample the water level at numerous settable sample rates, which include one second, five second, fifteen second, and thirty second. After nearly one year of operation at Earickson, which included many major

  16. Healy Clean Coal Project, Healy, Alaska final Environmental Monitoring Plan

    SciTech Connect

    Not Available

    1994-06-14

    This Environmental Monitoring Plan (EMP) provides the mechanism to evaluate the integrated coal combustion/emission control system being demonstrated by the Healy Clean Coal Project (HCCP) as part-of the third solicitation of the US Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCT-III). The EMP monitoring is intended to satisfy two objectives: (1) to develop the information base necessary for identification, assessment, and mitigation of potential environmental problems arising from replication of the technology and (2) to identify and quantify project-specific and site-specific environmental impacts predicted in the National Environmental Policy Act (NEPA) documents (Environmental Impact Statement and Record of Decision). The EMP contains a description of the background and history of development of the project technologies and defines the processes that will take place in the combustion and spray dryer absorber systems, including the formation of flash-calcined material (FCM) and its use in sulfur dioxide (SO{sub 2}) removal from the flue gases. It also contains a description of the existing environmental resources of the project area. The EMP includes two types of environmental monitoring that are to be used to demonstrate the technologies of the HCCP: compliance monitoring and supplemental monitoring. Compliance monitoring activities include air emissions, wastewater effluents, and visibility. Monitoring of these resources provide the data necessary to demonstrate that the power plant can operate under the required state and federal statutes, regulations, and permit requirements.

  17. Remote Energy Monitoring System via Cellular Network

    NASA Astrophysics Data System (ADS)

    Yunoki, Shoji; Tamaki, Satoshi; Takada, May; Iwaki, Takashi

    Recently, improvement on power saving and cost efficiency by monitoring the operation status of various facilities over the network has gained attention. Wireless network, especially cellular network, has advantage in mobility, coverage, and scalability. On the other hand, it has disadvantage of low reliability, due to rapid changes in the available bandwidth. We propose a transmission control scheme based on data priority and instantaneous available bandwidth to realize a highly reliable remote monitoring system via cellular network. We have developed our proposed monitoring system and evaluated the effectiveness of our scheme, and proved it reduces the maximum transmission delay of sensor status to 1/10 compared to best effort transmission.

  18. Functional brain networks involved in reality monitoring.

    PubMed

    Metzak, Paul D; Lavigne, Katie M; Woodward, Todd S

    2015-08-01

    Source monitoring refers to the recollection of variables that specify the context and conditions in which a memory episode was encoded. This process involves using the qualitative and quantitative features of a memory trace to distinguish its source. One specific class of source monitoring is reality monitoring, which involves distinguishing internally generated from externally generated information, that is, memories of imagined events from real events. The purpose of the present study was to identify functional brain networks that underlie reality monitoring, using an alternative type of source monitoring as a control condition. On the basis of previous studies on self-referential thinking, it was expected that a medial prefrontal cortex (mPFC) based network would be more active during reality monitoring than the control condition, due to the requirement to focus on a comparison of internal (self) and external (other) source information. Two functional brain networks emerged from this analysis, one reflecting increasing task-related activity, and one reflecting decreasing task-related activity. The second network was mPFC based, and was characterized by task-related deactivations in areas resembling the default-mode network; namely, the mPFC, middle temporal gyri, lateral parietal regions, and the precuneus, and these deactivations were diminished during reality monitoring relative to source monitoring, resulting in higher activity during reality monitoring. This result supports previous research suggesting that self-referential thinking involves the mPFC, but extends this to a network-level interpretation of reality monitoring.

  19. Monitoring Malware Activity on the LAN Network

    NASA Astrophysics Data System (ADS)

    Skrzewski, Mirosław

    Many security related organizations periodically publish current network and systems security information, with the lists of top malware programs. These lists raises the question how these threats spreads out, if the worms (the only threat with own communication abilities) are low or missing on these lists. The paper discuss the research on malware network activity, aimed to deliver the answer to the question, what is the main infection channel of modern malware, done with the usage of virtual honeypot systems on dedicated, unprotected network. Systems setup, network and systems monitoring solutions, results of over three months of network traffic and malware monitoring are presented, along with the proposed answer to our research question.

  20. Promoting Social Network Awareness: A Social Network Monitoring System

    ERIC Educational Resources Information Center

    Cadima, Rita; Ferreira, Carlos; Monguet, Josep; Ojeda, Jordi; Fernandez, Joaquin

    2010-01-01

    To increase communication and collaboration opportunities, members of a community must be aware of the social networks that exist within that community. This paper describes a social network monitoring system--the KIWI system--that enables users to register their interactions and visualize their social networks. The system was implemented in a…

  1. Physiologic monitoring. A guide to networking your monitoring systems.

    PubMed

    2011-10-01

    There are many factors to consider when choosing a physiologic monitoring system. not only should these systems perform well clinically, but they should also be able to exchange data with other information systems. We discuss some of the ins and outs of physiologic monitoring system networking and highlight eight product lines from seven suppliers.

  2. Network Monitor and Control of Disruption-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh

    2014-01-01

    For nearly a decade, NASA and many researchers in the international community have been developing Internet-like protocols that allow for automated network operations in networks where the individual links between nodes are only sporadically connected. A family of Disruption-Tolerant Networking (DTN) protocols has been developed, and many are reaching CCSDS Blue Book status. A NASA version of DTN known as the Interplanetary Overlay Network (ION) has been flight-tested on the EPOXI spacecraft and ION is currently being tested on the International Space Station. Experience has shown that in order for a DTN service-provider to set up a large scale multi-node network, a number of network monitor and control technologies need to be fielded as well as the basic DTN protocols. The NASA DTN program is developing a standardized means of querying a DTN node to ascertain its operational status, known as the DTN Management Protocol (DTNMP), and the program has developed some prototypes of DTNMP software. While DTNMP is a necessary component, it is not sufficient to accomplish Network Monitor and Control of a DTN network. JPL is developing a suite of tools that provide for network visualization, performance monitoring and ION node control software. This suite of network monitor and control tools complements the GSFC and APL-developed DTN MP software, and the combined package can form the basis for flight operations using DTN.

  3. Monitoring of oceanographic properties of Glacier Bay, Alaska 2004

    USGS Publications Warehouse

    2005-01-01

    Glacier Bay is a recently (300 years ago) deglaciated fjord estuarine system that has multiple sills, very deep basins, tidewater glaciers, and many streams. Glacier Bay experiences a large amount of runoff, high sedimentation, and large tidal variations. High freshwater discharge due to snow and ice melt and the presence of the tidewater glaciers makes the bay extremely cold. There are many small- and large-scale mixing and upwelling zones at sills, glacial faces, and streams. The complex topography and strong currents lead to highly variable salinity, temperature, sediment, primary productivity, light penetration, stratification levels, and current patterns within a small area. The oceanographic patterns within Glacier Bay drive a large portion of the spatial and temporal variability of the ecosystem. It has been widely recognized by scientists and resource managers in Glacier Bay that a program to monitor oceanographic patterns is essential for understanding the marine ecosystem and to differentiate between anthropogenic disturbance and natural variation. This year’s sampling marks the 12th continuous year of monitoring the oceanographic conditions at 23 stations along the primary axes within Glacier Bay, AK, making this a very unique and valuable data set in terms of its spatial and temporal coverage.

  4. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  5. Software For Monitoring A Computer Network

    NASA Technical Reports Server (NTRS)

    Lee, Young H.

    1992-01-01

    SNMAT is rule-based expert-system computer program designed to assist personnel in monitoring status of computer network and identifying defective computers, workstations, and other components of network. Also assists in training network operators. Network for SNMAT located at Space Flight Operations Center (SFOC) at NASA's Jet Propulsion Laboratory. Intended to serve as data-reduction system providing windows, menus, and graphs, enabling users to focus on relevant information. SNMAT expected to be adaptable to other computer networks; for example in management of repair, maintenance, and security, or in administration of planning systems, billing systems, or archives.

  6. Ground-coupled airwaves at Pavlof Volcano, Alaska, and their potential for eruption monitoring

    NASA Astrophysics Data System (ADS)

    Smith, Cassandra M.; McNutt, Stephen R.; Thompson, Glenn

    2016-07-01

    An abnormally high number of explosion quakes were noted during the monitoring effort for the 2007 eruption of Pavlof Volcano on the Alaska Peninsula. In this study, we manually cataloged the explosion quakes from their characteristic ground-coupled airwaves. This study investigates how the ground-coupled airwaves might be used in a monitoring or analysis effort by estimating energy release and gas mass release. Over 3 × 104 quakes were recorded. The energy release from the explosions is approximated to be 3 × 1011 J, and the total gas mass (assuming 100 % water) released was 450 t. The tracking of explosion quakes has the potential to estimate relative eruption intensity as a function of time and is thus a useful component of a seismic monitoring program.

  7. Earthquake locations determined by the Southern Alaska seismograph network for October 1971 through May 1989

    USGS Publications Warehouse

    Fogleman, Kent A.; Lahr, John C.; Stephens, Christopher D.; Page, Robert A.

    1993-01-01

    This report describes the instrumentation and evolution of the U.S. Geological Survey’s regional seismograph network in southern Alaska, provides phase and hypocenter data for seismic events from October 1971 through May 1989, reviews the location methods used, and discusses the completeness of the catalog and the accuracy of the computed hypocenters. Included are arrival time data for explosions detonated under the Trans-Alaska Crustal Transect (TACT) in 1984 and 1985.The U.S. Geological Survey (USGS) operated a regional network of seismographs in southern Alaska from 1971 to the mid 1990s. The principal purpose of this network was to record seismic data to be used to precisely locate earthquakes in the seismic zones of southern Alaska, delineate seismically active faults, assess seismic risks, document potential premonitory earthquake phenomena, investigate current tectonic deformation, and study the structure and physical properties of the crust and upper mantle. A task fundamental to all of these goals was the routine cataloging of parameters for earthquakes located within and adjacent to the seismograph network.The initial network of 10 stations, 7 around Cook Inlet and 3 near Valdez, was installed in 1971. In subsequent summers additions or modifications to the network were made. By the fall of 1973, 26 stations extended from western Cook Inlet to eastern Prince William Sound, and 4 stations were located to the east between Cordova and Yakutat. A year later 20 additional stations were installed. Thirteen of these were placed along the eastern Gulf of Alaska with support from the National Oceanic and Atmospheric Administration (NOAA) under the Outer Continental Shelf Environmental Assessment Program to investigate the seismicity of the outer continental shelf, a region of interest for oil exploration. Since then the region covered by the network remained relatively fixed while efforts were made to make the stations more reliable through improved electronic

  8. EMMNet: Sensor Networking for Electricity Meter Monitoring

    PubMed Central

    Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang

    2010-01-01

    Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters. PMID:22163551

  9. EMMNet: sensor networking for electricity meter monitoring.

    PubMed

    Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang

    2010-01-01

    Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.

  10. EarthScope's Plate Boundary Observatory in Alaska: Building on Existing Infrastructure to Provide a Platform for Integrated Research and Hazard-monitoring Efforts

    NASA Astrophysics Data System (ADS)

    Boyce, E. S.; Bierma, R. M.; Willoughby, H.; Feaux, K.; Mattioli, G. S.; Enders, M.; Busby, R. W.

    2014-12-01

    EarthScope's geodetic component in Alaska, the UNAVCO-operated Plate Boundary Observatory (PBO) network, includes 139 continuous GPS sites and 41 supporting telemetry relays. These are spread across a vast area, from northern AK to the Aleutians. Forty-five of these stations were installed or have been upgraded in cooperation with various partner agencies and currently provide data collection and transmission for more than one group. Leveraging existing infrastructure normally has multiple benefits, such as easier permitting requirements and costs savings through reduced overall construction and maintenance expenses. At some sites, PBO-AK power and communications systems have additional capacity beyond that which is needed for reliable acquisition of GPS data. Where permits allow, such stations could serve as platforms for additional instrumentation or real-time observing needs. With the expansion of the Transportable Array (TA) into Alaska, there is increased interest to leverage existing EarthScope resources for station co-location and telemetry integration. Because of the complexity and difficulty of long-term O&M at PBO sites, however, actual integration of GPS and seismic equipment must be considered on a case-by-case basis. UNAVCO currently operates two integrated GPS/seismic stations in collaboration with the Alaska Earthquake Center, and three with the Alaska Volcano Observatory. By the end of 2014, PBO and TA plan to install another four integrated and/or co-located geodetic and seismic systems. While three of these are designed around existing PBO stations, one will be a completely new TA installation, providing PBO with an opportunity to expand geodetic data collection in Alaska within the limited operations and maintenance phase of the project. We will present some of the design considerations, outcomes, and lessons learned from past and ongoing projects to integrate seismometers and other instrumentation at PBO-Alaska stations. Developing the PBO

  11. Meteorological Monitoring And Warning Computer Network

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.; Dianic, Allan V.; Moore, Lien N.

    1996-01-01

    Meteorological monitoring system (MMS) computer network tracks weather conditions and issues warnings when weather hazards are about to occur. Receives data from such meteorological instruments as wind sensors on towers and lightning detectors, and compares data with weather restrictions specified for outdoor activities. If weather violates restriction, network generates audible and visible alarms to alert people involved in activity. Also displays weather and toxic diffusion data and disseminates weather forecasts, advisories, and warnings to workstations.

  12. NRC TLD Direct Radiation Monitoring Network

    SciTech Connect

    Struckmeyer, R.; McNamara, N.

    1991-04-01

    This report presents the results of the NRC (Nuclear Regulatory Commission) Direct Radiation Monitoring Network for the fourth quarter of 1990. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  13. Failure monitoring in water distribution networks.

    PubMed

    Misiunas, D; Vítkovský, J; Olsson, G; Lambert, M; Simpson, A

    2006-01-01

    An algorithm for the burst detection and location in water distribution networks based on the continuous monitoring of the flow rate at the entry point of the network and the pressure at a number of points within the network is presented. The approach is designed for medium to large bursts with opening times in the order of a few minutes and is suitable for networks of relatively small size, such as district metered areas (DMAs). The burst-induced increase in the inlet flow rate is detected using the modified cumulative sum (CUSUM) change detection test. Based on parameters obtained from the CUSUM test, the burst is simulated at a number of burst candidate locations. The calculated changes in pressure at the pressure monitoring points are then compared to the measured values and the location resulting in the best fit is selected as the burst location. The EPANET steady-state hydraulic solver is utilised to simulate the flows and pressures in the network. A sensitivity-based sampling design procedure is introduced to find the optimal positions for pressure monitoring points. The proposed algorithm is tested on a case study example network and shows potential for burst detection and location in real water distribution systems.

  14. Continuous Monitoring of Soil Respiration in Black Spruce Forest Soils, Interior Alaska

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, S.; Kim, W.

    2009-12-01

    This research was carried out to estimate the continuous monitoring of soil respiration using automatic chamber system that was equipped with a control system, a compressor, and seven chambers (50 cm diameter, 30 cm high) set in sphagnum moss, feather moss, lichen, and tussock in black spruce forest soils, interior Alaska during growing season of 2008. The average daily soil respirations were 0.050±0.012 (standard deviation, CV 23%), 0.022±0.020 (91%), 0.082±0.035 (43%), and 0.027±0.010 mgCO2/m2/s (37%) in lichens, sphagnum moss, tussock and feather moss on black spruce forest soils with light chamber made by transparent material. The temporal variation of soil respiration in different vegetation types on black spruce forest soils during the growing season of 2008 is shown in Figure 1. The accumulative daily soil respiration was 5.2, 9.5, 2.3, and 2.8 mgCO2/m2/s in lichen, tussock, sphagnum moss, and feather moss of black spruce forest ground during the growing periods of 103 days, 2008 (Figure 2). Therefore, averaged regional soil respiration rate is 0.19±0.18 and 0.12±0.08 kgC/m2/(growing season) of 2007 and 2008 in black spruce forest soils, interior Alaska. The winter soil respiration was 0.049±0.013 gC/m2/(winter season), corresponding from 21±7% to 29±13% of the annual CO2 emitted from black spruce forest soils, interior Alaska.

  15. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Monitoring network completion. 58.13... (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a) The network of NCore multipollutant sites must be physically established no later than January 1,...

  16. Lake Okeechobee seepage monitoring network

    USGS Publications Warehouse

    McKenzie, Donald J.

    1973-01-01

    This report summarizes the data collected at the five original monitoring sites along the south shore of Lake Okeechobee from January 29, 1970 to June 28, 1972. In order to use the hydrographs in this report to full advantage, they should be studied in conjunction with Meyer's graphs and text (1971). During steady-state conditions, water seeps from the lake through the filtercake and through the aquifers beneath the dike. At those sites where the filtercake is missing, or has about the same permeability as the aquifers, the seepage from the lake is about equivalent to the flow through the aquifers. Present data are insufficient to determine whether or not filtercake buildup has reduced seepage. No appreciable change in drainage occurred during the observed period.

  17. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CFR part 58 appendix D paragraph 3(b), or approved alternative non-source-oriented Pb monitoring sites... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Monitoring network completion. 58.13... (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion....

  18. Operation of International Monitoring System Network

    NASA Astrophysics Data System (ADS)

    Nikolova, Svetlana; Araujo, Fernando; Aktas, Kadircan; Malakhova, Marina; Otsuka, Riyo; Han, Dongmei; Assef, Thierry; Nava, Elisabetta; Mickevicius, Sigitas; Agrebi, Abdelouaheb

    2015-04-01

    The IMS is a globally distributed network of monitoring facilities using sensors from four technologies: seismic, hydroacoustic, infrasound and radionuclide. It is designed to detect the seismic and acoustic waves produced by nuclear test explosions and the subsequently released radioactive isotopes. Monitoring stations transmit their data to the IDC in Vienna, Austria, over a global private network known as the GCI. Since 2013, the data availability (DA) requirements for IMS stations account for quality of the data, meaning that in calculation of data availability data should be exclude if: - there is no input from sensor (SHI technology); - the signal consists of constant values (SHI technology); Even more strict are requirements for the DA of the radionuclide (particulate and noble gas) stations - received data have to be analyzed, reviewed and categorized by IDC analysts. In order to satisfy the strict data and network availability requirements of the IMS Network, the operation of the facilities and the GCI are managed by IDC Operations. Operations has following main functions: - to ensure proper operation and functioning of the stations; - to ensure proper operation and functioning of the GCI; - to ensure efficient management of the stations in IDC; - to provide network oversight and incident management. At the core of the IMS Network operations are a series of tools for: monitoring the stations' state of health and data quality, troubleshooting incidents, communicating with internal and external stakeholders, and reporting. The new requirements for data availability increased the importance of the raw data quality monitoring. This task is addressed by development of additional tools for easy and fast identifying problems in data acquisition, regular activities to check compliance of the station parameters with acquired data by scheduled calibration of the seismic network, review of the samples by certified radionuclide laboratories. The DA for the networks of

  19. DATA FROM EPA'S UV MONITORING NETWORK

    EPA Science Inventory

    The U.S. Environmental Protection Agency, in cooperation with the National Park Service, has deployed 21 Brewer spectrophotometers in a national network for monitoring UV radiation from the sun. Seven of the Brewers are in urban areas, and fourteen are in National Parks (Figur...

  20. 2008 Sunflower Insect Trap Monitoring Network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A regional insect trap network was developed by the National Sunflower Association, USDA-ARS, and North Dakota State University Extension Service to monitor for two major insect pests of sunflower in 2008 including the sunflower moth, Homoeosoma electellum (Hulst) (Lepidoptera: Pyralidae) and the b...

  1. Modular Subsea Monitoring Network (MSM) - Realizing Integrated Environmental Monitoring Solutions

    NASA Astrophysics Data System (ADS)

    Mosch, Thomas; Fietzek, Peer

    2016-04-01

    In a variety of scientific and industrial application areas, ranging i.e. from the supervision of hydrate fields over the detection and localization of fugitive emissions from subsea oil and gas production to fish farming, fixed point observatories are useful and applied means. They monitor the water column and/or are placed at the sea floor over long periods of time. They are essential oceanographic platforms for providing valuable long-term time series data and multi-parameter measurements. Various mooring and observatory endeavors world-wide contribute valuable data needed for understanding our planet's ocean systems and biogeochemical processes. Continuously powered cabled observatories enable real-time data transmission from spots of interest close to the shore or to ocean infrastructures. Independent of the design of the observatories they all rely on sensors which demands for regular maintenance. This work is in most cases associated with cost-intensive maintenance on a regular time basis for the entire sensor carrying fixed platform. It is mandatory to encounter this asset for long-term monitoring by enhancing hardware efficiency. On the basis of two examples of use from the area of hydrate monitoring (off Norway and Japan) we will present the concept of the Modular Subsea Monitoring Network (MSM). The modular, scalable and networking capabilities of the MSM allow for an easy adaptation to different monitoring tasks. Providing intelligent power management, combining chemical and acoustical sensors, adaptation of the payload according to the monitoring tasks, autonomous powering, modular design for easy transportation, storage and mobilization, Vessel of Opportunity-borne launching and recovery capability with a video-guided launcher system and a rope recovery system are key facts addressed during the development of the MSM. Step by step the MSM concept applied to the observatory hardware will also be extended towards the gathered data to maximize the

  2. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    USGS Publications Warehouse

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two

  3. The Alaska Water Isotope Network (AKWIN): Precipitation, lake, river and stream dynamics

    NASA Astrophysics Data System (ADS)

    Rogers, M.; Welker, J. M.; Toohey, R.

    2011-12-01

    The hydrologic cycle is central to the structure and function of northern landscapes. The movement of water creates interactions between terrestrial, aquatic, marine and atmospheric processes. Understanding the processes and the spatial patterns that govern the isotopic (δ18O & δD) characteristics of the hydrologic cycle is especially important today as: a) modern climate/weather-isotope relations allow for more accurate interpretation of climate proxies and the calibration of atmospheric models, b) water isotopes facilitate understanding the role of storm tracks in regulating precipitation isotopic variability, c) water isotopes allow for estimates of glacial melt water inputs into aquatic systems, d) water isotopes allow for quantification of surface and groundwater interactions, e) water isotopes allow for quantification of permafrost meltwater use by plant communities, f) water isotopes aid in migratory bird forensics, g) water isotopes are critical to estimating field metabolic rates, h) water isotopes allow for crop and diet forensics and i) water isotopes can provide insight into evaporation and transpiration processes. As part of a new NSF MRI project at the Environment and Natural Resources Institute (ENRI) at the University of Alaska Anchorage and as an extension of the US Network for Isotopes in Precipitation (USNIP); we are forming AKWIN. The network will utilize long-term weekly sampling at Denali National Park and Caribou Poker Creek Watershed (USNIP sites-1989 to present), regular sampling across Alaska involving land management agencies (USGS, NPS, USFWS, EPA), educators, volunteers and citizen scientists, UA extended campuses, individual research projects, opportunistic sampling and published data to construct isoscapes and time series databases and information packages. We will be using a suite of spatial and temporal analysis methods to characterize water isotopes across Alaska and will provide web portals for data products. Our network is

  4. Integrated condition monitoring of space information network

    NASA Astrophysics Data System (ADS)

    Wang, Zhilin; Li, Xinming; Li, Yachen; Yu, Shaolin

    2015-11-01

    In order to solve the integrated condition monitoring problem in space information network, there are three works finished including analyzing the characteristics of tasks process and system health monitoring, adopting the automata modeling method, and respectively establishing the models for state inference and state determination. The state inference model is a logic automaton and is gotten by concluding engineering experiences. The state determination model is a double-layer automaton, the lower automaton is responsible for parameter judge and the upper automaton is responsible for state diagnosis. At last, the system state monitoring algorithm has been proposed, which realizes the integrated condition monitoring for task process and system health, and can avoid the false alarm.

  5. A pilot marine monitoring program in Cook Inlet, Alaska 1993--1994

    SciTech Connect

    Brown, J.S.; Boehm, P.D.; Hyland, J.L.

    1995-12-31

    Under the mandate of the Oil Pollution Act of 1990 (OPA`90) the Cook Inlet Regional Citizens Advisory Council (CIRCAC) sponsored the initiation of a pilot monitoring program in Cook Inlet, Alaska, The objectives of the pilot monitoring program were to provide baseline data on petroleum hydrocarbon concentrations in sediments and biota of Cook Inlet, and to evaluate the effectiveness of selected monitoring techniques in detecting petroleum hydrocarbon inputs from industry based sources. A sampling program was initiated in 1993 that included petroleum industry, specific sites and reference sites. Sample measurements included polynuclear aromatic hydrocarbons (PAH) in sediments, caged mussels, and semipermeable membrane devices (SPMDs), sediment toxicity using the amphipod, Ampelisca abdita, and estimates of population size and physiological condition of indigenous bivalves. Results of the 1993 sampling program indicated that (1) background levels of petrogenic, pyrogenic, and diagenetic hydrocarbons were present in sediments and indigenous bivalves, and (2) that limited amphipod toxicity and variations in bivalve measurements did not correlate with the hydrocarbons in the sediments. Modifications to the 1993 program were instituted for the 1994 sampling and included, the selection of new industry specific sites, discontinued use of caged bivalves, and design changes to SPMDs to enhance sensitivity. The results of the 1994 sampling program, and comparisons with the 1993 data are presented.

  6. Quick-look satellite imagery for Alaska: A tool for environmental monitoring

    SciTech Connect

    George, T.; Reynolds, G.; Dean, K.; Miller, J.

    1992-03-01

    Satellite imagery is a valuable tool for environmental monitoring of natural and man-made events. Analysis of imagery within a few hours is vital if these data are to be used to respond to rapidly changing conditions. Since April of 1982 Landsat imagery from the Quick-Look Project at the Geophysical Institute has been available for real-time applications. The system provides near real-time Landsat MSS imagery for applications including monitoring flood hazards, sea ice motion, forest fires and agricultural development. In the 1990s additional satellites with new sensors are being launched which will provide more opportunities for near real-time use. To take advantage of the sensors, additional facilities are needed to receive, process and deliver the data in a timely fashion. Candidate sensors and spacecraft include Enhanced Thematic Mapper (ETM) on Landsat-6; Advanced Very High Resolution Radiometer (AVHRR) on the NOAA polar orbiting satellites; SPOT; Japan's Meteorological Observation Satellite (MOS); OPS (Optical Sensor) on the Japanese Earth Resources Satellite-1 (JERS-1) and the Advanced Earth Observing Satellite (ADEOS). Ongoing projects, such as the Alaska SAR Facility, can provide some components of a multiple satellite receiving system. Such a capability will provide a valuable source of data to study global change in the Arctic. The authors will describe the capabilities required to use satellite data for environmental monitoring

  7. Analysis and monitoring design for networks

    SciTech Connect

    Fedorov, V.; Flanagan, D.; Rowan, T.; Batsell, S.

    1998-06-01

    The idea of applying experimental design methodologies to develop monitoring systems for computer networks is relatively novel even though it was applied in other areas such as meteorology, seismology, and transportation. One objective of a monitoring system should always be to collect as little data as necessary to be able to monitor specific parameters of the system with respect to assigned targets and objectives. This implies a purposeful monitoring where each piece of data has a reason to be collected and stored for future use. When a computer network system as large and complex as the Internet is the monitoring subject, providing an optimal and parsimonious observing system becomes even more important. Many data collection decisions must be made by the developers of a monitoring system. These decisions include but are not limited to the following: (1) The type data collection hardware and software instruments to be used; (2) How to minimize interruption of regular network activities during data collection; (3) Quantification of the objectives and the formulation of optimality criteria; (4) The placement of data collection hardware and software devices; (5) The amount of data to be collected in a given time period, how large a subset of the available data to collect during the period, the length of the period, and the frequency of data collection; (6) The determination of the data to be collected (for instance, selection of response and explanatory variables); (7) Which data will be retained and how long (i.e., data storage and retention issues); and (8) The cost analysis of experiments. Mathematical statistics, and, in particular, optimal experimental design methods, may be used to address the majority of problems generated by 3--7. In this study, the authors focus their efforts on topics 3--5.

  8. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    USGS Publications Warehouse

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two

  9. Potential for Expanding the Near Real Time ForWarn Regional Forest Monitoring System to Include Alaska

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Gasser, Gerald; Hargrove, William; Smoot, James; Kuper, Philip D.

    2014-01-01

    The on-line near real time (NRT) ForWarn system is currently deployed to monitor regional forest disturbances within the conterminous United States (CONUS), using daily MODIS Aqua and Terra NDVI data to derive monitoring products. The Healthy Forest Restoration Act of 2003 mandated such a system. Work on ForWarn began in 2006 with development and validation of retrospective MODIS NDVI-based forest monitoring products. Subsequently, NRT forest disturbance monitoring products were demonstrated, leading to the actual system deployment in 2010. ForWarn provides new CONUS forest disturbance monitoring products every 8 days, using USGS eMODIS data for current NDVI. ForWarn currently does not cover Alaska, which includes extensive forest lands at risk to multiple biotic and abiotic threats. This poster discusses a case study using Alaska eMODIS Terra data to derive ForWarn like forest change products during the 2010 growing season. The eMODIS system provides current MODIS Terra NDVI products for Alaska. Resulting forest change products were assessed with ground, aerial, and Landsat reference data. When cloud and snow free, these preliminary products appeared to capture regional forest disturbances from insect defoliation and fires; however, more work is needed to mitigate cloud and snow contamination, including integration of eMODIS Aqua data.

  10. Flood monitoring network in southeastern Louisiana

    USGS Publications Warehouse

    McCallum, Brian E.

    1994-01-01

    A flood monitoring network has been established to alert emergency operations personnel and the public about hydrologic conditions in the Amite River Basin. The U.S. Geological Survey (USGS), in cooperation with the Louisiana Office of Emergency Preparedness (LOEP), has installed a real-time data acquisition system to monitor rainfall and river stages in the basin. These data will be transmitted for use by emergency operations personnel to develop flood control and evacuation strategies. The current river stages at selected gaging stations in the basin also will be broadcast by local television and radio stations during a flood. Residents can record the changing river stages on a basin monitoring map, similar to a hurricane tracking map.

  11. Phenology monitoring protocol: Northeast Temperate Network

    USGS Publications Warehouse

    Tierney, Geri; Mitchell, Brian; Miller-Rushing, Abraham J.; Katz, Jonathan; Denny, Ellen; Brauer, Corinne; Donovan, Therese; Richardson, Andrew D.; Toomey, Michael; Kozlowski, Adam; Weltzin, Jake F.; Gerst, Kathy; Sharron, Ed; Sonnentag, Oliver; Dieffenbach, Fred

    2013-01-01

    historical parks and national historic sites in the northeastern US. This protocol was developed in collaboration with and relies upon the procedures and infrastructure of the USA National Phenology Network (USA-NPN), including Nature’s Notebook, USA-NPN’s online plant and animal phenology observation program (www.nn.usanpn.org). Organized in 2007, USA-NPN is a nation-wide partnership among federal agencies, schools and universities, citizen volunteers, and others to monitor and understand the influence of seasonal cycles on the nation’s biological resources. The overall goal of NETN’s phenology monitoring program is to determine trends in the phenology of key species in order to assist park managers with the detection and mitigation of the effects of climate change on park resources. An additional programmatic goal is to interest and educate park visitors and staff, as well as a cadre of volunteer monitors.

  12. Intrusion detection and monitoring for wireless networks.

    SciTech Connect

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.; Stephano, Amanda; Tabriz, Parisa; Pelon, Kristen; McCoy, Damon (University of Colorado, Boulder); Lodato, Mark; Hemingway, Franklin; Custer, Ryan P.; Averin, Dimitry; Franklin, Jason; Kilman, Dominique Marie

    2005-11-01

    municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.

  13. A watershed approach to ecosystem monitoring in Denali National Park and preserve, Alaska

    USGS Publications Warehouse

    Thorsteinson, L.K.; Taylor, D.L.

    1997-01-01

    The National Park Service and the National Biological Service initiated research in Denali National Park and Preserve, a 2.4 million-hectare park in southcentral Alaska, to develop ecological monitoring protocols for national parks in the Arctic/Subarctic biogeographic area. We are focusing pilot studies on design questions, on scaling issues and regionalization, ecosystem structure and function, indicator selection and evaluation, and monitoring technologies. Rock Creek, a headwater stream near Denali headquarters, is the ecological scale for initial testing of a watershed ecosystem approach. Our conceptual model embraces principles of the hydrological cycle, hypotheses of global climate change, and biological interactions of organisms occupying intermediate, but poorly studied, positions in Alaskan food webs. The field approach includes hydrological and depositional considerations and a suite of integrated measures linking key aquatic and terrestrial biota, environmental variables, or defined ecological processes, in order to establish ecological conditions and detect, track, and understand mechanisms of environmental change. Our sampling activities include corresponding measures of physical, chemical, and biological attributes in four Rock Creek habitats believed characteristic of the greater system diversity of Denali. This paper gives examples of data sets, program integration and scaling, and research needs.

  14. LONG-TERM MONITORING SENSOR NETWORK

    SciTech Connect

    Stephen P. Farrington; John W. Haas; Neal Van Wyck

    2003-10-16

    Long-term monitoring (LTM) associated with subsurface contamination sites is a key element of Long Term Stewardship and Legacy Management across the Department of Energy (DOE) complex. However, both within the DOE and elsewhere, LTM is an expensive endeavor, often exceeding the costs of the remediation phase of a clean-up project. The primary contributors to LTM costs are associated with labor. Sample collection, storage, preparation, analysis, and reporting can add a significant financial burden to project expense when extended over many years. Development of unattended, in situ monitoring networks capable of providing quantitative data satisfactory to regulatory concerns has the potential to significantly reduce LTM costs. But survival and dependable operation in a difficult environment is a common obstacle to widespread use across the DOE complex or elsewhere. Deploying almost any sensor in the subsurface for extended periods of time will expose it to chemical and microbial degradation. Over the time-scales required for in situ LTM, even the most advanced sensor systems may be rendered useless. Frequent replacement or servicing (cleaning) of sensors is expensive and labor intensive, offsetting most, if not all, of the cost savings realized with unattended, in situ sensors. To enable facile, remote monitoring of contaminants and other subsurface parameters over prolonged periods, Applied Research Associates, Inc has been working to develop an advanced LTM sensor network consisting of three key elements: (1) an anti-fouling sensor chamber that can accommodate a variety of chemical and physical measurement devices based on electrochemical, optical and other techniques; (2) two rapid, cost effective, and gentle means of emplacing sensor packages either at precise locations directly in the subsurface or in pre-existing monitoring wells; and (3) a web browser-based data acquisition and control system (WebDACS) utilizing field-networked microprocessor-controlled smart

  15. Developing hydrological monitoring networks with Arduino

    NASA Astrophysics Data System (ADS)

    Buytaert, Wouter; Vega, Andres; Villacis, Marcos; Moulds, Simon

    2015-04-01

    The open source hardware platform Arduino is very cost-effective and versatile for the development of sensor networks. Here we report on experiments on the use of Arduino-related technologies to develop and implement hydrological monitoring networks. Arduino Uno boards were coupled to a variety of commercially available hydrological sensors and programmed for automatic data collection. Tested sensors include water level, temperature, humidity, radiation, and precipitation. Our experiments show that most of the tested analogue sensors are quite straightforward to couple to Arduino based data loggers, especially if the electronic characteristics of the sensor are available. However, some sensors have internal digital interfaces, which are more challenging to connect. Lastly, tipping bucket rain gauges prove the most challenging because of the very specific methodology, i.e. registration of bucket tips instead of measurements at regular intervals. The typically low data generation rate of hydrological instruments is very compatible with available technologies for wireless data transmission. Mesh networks such as Xbee prove very convenient and robust for dispersed networks, while wifi is also an option for shorter distances and particular topographies. Lastly, the GSM shield of the Arduino can be used to transfer data to centralized databases. In regions where no mobile internet (i.e. 3G) connection is available, data transmission via text messages may be an option, depending on the bandwidth requirements.

  16. The Greenland Ice Sheet Monitoring Network (GLISN)

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; Beaudoin, B. C.; Butler, R.; Clinton, J. F.; Dahl-Jensen, T.; Ekstrom, G.; Giardini, D.; Govoni, A.; Hanka, W.; Kanao, M.; Larsen, T.; Lasocki, S.; McCormack, D. A.; Mykkeltveit, S.; Nettles, M.; Agostinetti, N. P.; Stutzmann, E.; Tsuboi, S.; Voss, P.

    2010-12-01

    The GreenLand Ice Sheet monitoring Network (GLISN) is an international, broadband seismic capability for Greenland, being installed and implemented through the collaboration of Denmark, Canada, Germany, Italy, Japan, Norway, Poland, Switzerland, and USA. GLISN is a real-time sensor array of seismic stations to enhance and upgrade the performance of the sparse Greenland seismic infrastructure for detecting, locating, and characterizing glacial earthquakes and other cryo-seismic phenomena, and contributing to our understanding of Ice Sheet dynamics. Complementing data from satellites, geodesy, and other sources, and in concert with these technologies, GLISN will provide a powerful tool for detecting change, and will advance new frontiers of research in the glacial systems; the underlying geological and geophysical processes affecting the Greenland Ice Sheet; interactions between oceans, climate, and the cryosphere; and other multidisciplinary areas of interest to geoscience and climate dynamics. The glacial processes that induce seismic events (internal deformation, sliding at the base, disintegration at the calving front, drainage of supra-glacial lakes) are all integral to the overall dynamics of glaciers, and seismic observations of glaciers therefore provide a quantitative means for monitoring changes in their behavior over time. Long-term seismic monitoring of the Greenland Ice Sheet will contribute to identifying possible unsuspected mechanisms and metrics relevant to ice sheet collapse, and will provide new constraints on Ice Sheet dynamic processes and their potential roles in sea-level rise during the coming decades. GLISN will provide a new, fiducial reference network in and around Greenland for monitoring these phenomena in real-time, and for the broad seismological study of Earth and earthquakes. The 2010 summer field season saw the installation or upgrade of 9 stations in the GLISN network. Sites visited under the GLISN project include Station Nord (NOR

  17. Monitoring Sea Ice Conditions and Use in Arctic Alaska to Enhance Community Adaptation to Change

    NASA Astrophysics Data System (ADS)

    Druckenmiller, M. L.; Eicken, H.

    2010-12-01

    Sea ice changes in the coastal zone, while less conspicuous in relation to the dramatic thinning and retreat of perennial Arctic sea ice, can be more readily linked to local impacts. Shorefast ice is a unique area for interdisciplinary research aimed at improving community adaptation to climate through local-scale environmental observations. Here, geophysical monitoring, local Iñupiat knowledge, and the documented use of ice by the Native hunting community of Barrow, Alaska are combined to relate coastal ice processes and morphologies in the Chukchi Sea to ice stability and community adaption strategies for travel, hunting, and risk assessment. A multi-year effort to map and survey the community’s seasonal ice trails, alongside a detailed record of shorefast ice conditions, provides insight into how hunters evaluate the evolution of ice throughout winter and spring. Various data sets are integrated to relate the annual accretion history of the local ice cover to both measurements of ice thickness and topography and hunter observations of ice types and hazards. By relating changes in the timing of shorefast ice stabilization, offshore ice conditions, and winter wind patterns to ice characteristics in locations where spring bowhead whaling occurs, we are working toward an integrated scientific product compatible with the perspective of local ice experts. A baseline for assessing future change and community climate-related vulnerabilities may not be characterized by single variables, such as ice thickness, but rather by how changes in observable variables manifest in impacts to human activities. This research matches geophysical data to ice-use to establish such a baseline. Documenting human-environment interactions will allow future monitoring to illustrate how strategies for continued community ice-use are indicative of or responsive to change, and potentially capable of incorporating science products as additional sources of useable information.

  18. The realization of network video monitoring system

    NASA Astrophysics Data System (ADS)

    Hou, Zhuo-wei; Qiu, Yue-hong

    2013-08-01

    The paper presents a network video monitoring system based on field programmable gate array to implement the real time acquisition and transmission of video signals. The system includes image acquisition module, central control module and Ethernet transmission module. According to request, Cyclone FPGA is taken as the control center in the system, using Quartus II and Nios II IDE as development tool to build the hardware development platform. A kind of embedded hardware system is built based on SOPC technic, in which the Nios II soft-core and other controllers are combined by configuration. Meanwhile, the μClinux is used as embedded operating system to make the process of acquisition and transmission of the data picture on the Internet more reliable. In order to fulfill the task of MAC and PHY, the fast Ethernet controller should be connected to the SOPC. TCP/IP protocol is used to implement data transmission. Based on TCP/IP protocol, the Web Servers should be embedded to implement the protocol of HTTP, TCP and UDP. Through the research of the thesis, with programmable logic device being the core and network being the transmission media, the design scheme of the video monitoring system is presented. The hardware's design is mainly done in the thesis. The principal and function of the system is deeply explained, so it can be the important technology and specific method.

  19. A Wireless Sensor Network For Soil Monitoring

    NASA Astrophysics Data System (ADS)

    Szlavecz, K.; Cogan, J.; Musaloiu-Elefteri, R.; Small, S.; Terzis, A.; Szalay, A.

    2005-12-01

    The most spatially complex stratum of a terrestrial ecosystem is its soil. Among the major challenges of studying the soil ecosystem are the diversity and the cryptic nature of biota, and the enormous heterogeneity of the soil substrate. Often this patchiness drives spatial distribution of soil organisms, yet our knowledge on the spatio-temporal patterns of soil conditions is limited. To monitor the environmental conditions at biologically meaningful spatial scales we have developed and deployed a wireless sensor network of thirty nodes. Each node is based on a MICAz mote connected to a custom-built sensor suite that includes a Watermark soil moisture sensor, an Irrometer soil temperature sensor, and sensors capable of recording ambient temperature and light intensity. To assess CO2 production at the ground level a subset of the nodes is equipped with Telaire 6004 CO2 sensor. We developed the software running on the motes from scratch, using the TinyOS development environment. Each mote collects measurements every minute, and stores them persistently in a non-volatile memory. The decision to store data locally at each node enables us to reliably retrieve the data in the face of network losses and premature node failures due to power depletion. Collected measurements are retrieved over the wireless network through a PC-class computer acting as a gateway between the sensor network and the Internet. Considering that motes are battery powered, the largest obstacle hindering long-term sensor network deployments is power consumption. To address this problem, our software powers down sensors between sampling cycles and turns off the radio (the most energy prohibitive mote component) when not in use. By doing so we were able to increase node lifetime by a factor of ten. We collected field data over several weeks. The data was ingested into a SQL Server database, which provides data access through a .NET web services interface. The database provides functions for spatial

  20. Wireless Sensor Networks for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liang, Y.; Navarro, M.; Zhong, X.; Villalba, G.; Li, Y.; Davis, T.; Erratt, N.

    2015-12-01

    Wireless sensor networks (WSNs) have gained an increasing interest in a broad range of new scientific research and applications. WSN technologies can provide high resolution for spatial and temporal data which has not been possible before, opening up new opportunities. On the other hand, WSNs, particularly outdoor WSNs in harsh environments, present great challenges for scientists and engineers in terms of the network design, deployment, operation, management, and maintenance. Since 2010, we have been working on the deployment of an outdoor multi-hop WSN testbed for hydrological/environmental monitoring in a forested hill-sloped region at the Audubon Society of Western Pennsylvania (ASWP), Pennsylvania, USA. The ASWP WSN testbed has continuously evolved and had more than 80 nodes by now. To our knowledge, the ASWP WSN testbed represents one of the first known long-term multi-hop WSN deployments in an outdoor environment. As simulation and laboratory methods are unable to capture the complexity of outdoor environments (e.g., forests, oceans, mountains, or glaciers), which significantly affect WSN operations and maintenance, experimental deployments are essential to investigate and understand WSN behaviors and performances as well as its maintenance characteristics under these harsh conditions. In this talk, based on our empirical studies with the ASWP WSN testbed, we will present our discoveries and investigations on several important aspects including WSN energy profile, node reprogramming, network management system, and testbed maintenance. We will then provide our insight into these critical aspects of outdoor WSN deployments and operations.

  1. Globe at Night - Sky Brightness Monitoring Network

    NASA Astrophysics Data System (ADS)

    Cheung, Sze Leung; Pun, Jason Chun Shing; SO, Chu-wing; Shibata, Yukiko; Walker, Constance Elaine; Agata, Hidehiko

    2015-08-01

    The Global at Night - Sky Brightness Monitoring Network (GaN-MN) is an international project for long-term monitoring of night sky conditions around the world. The GaN-MN consists of fixed monitoring stations each equipped with a Sky Quality Meter - Lensed Ethernet (SQM-LE), which is a specialized light sensor for night sky brightness (NSB) measurement. NSB data are continuously collected at high sampling frequency throughout the night, and these data will be instantly made available to the general public to provide a real-time snapshot of the global light pollution condition. A single data collection methodology, including data sampling frequency, data selection criteria, device design and calibration, and schemes for data quality control, was adopted to ensure uniformity in the data collected. This is essential for a systematic and global study of the level of light pollution. The data collected will also provide the scientific backbone in our efforts to contribute to dark sky conservation through education to the general public and policy makers. The GaN-MN project is endorsed by the IAU IYL Executive Committee Working Group as a major Cosmic Light program in the International Year of Light.

  2. 78 FR 19214 - Fisheries of the Exclusive Economic Zone Off Alaska; Monitoring Requirements for American...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... participating in the pollock fishery in the Bering Sea off Alaska. The workshop concerns accurate accounting of Chinook salmon bycatch in the Bering Sea pollock fishery under Amendment 91 to the Fishery Management...

  3. Intrinsic Monitoring Using Behaviour Models in IPv6 Networks

    NASA Astrophysics Data System (ADS)

    Höfig, Edzard; Coşkun, Hakan

    In conventional networks, correlating path information to resource utilisation on the granularity of packets is a hard problem when using policy-based traffic handling schemes. We introduce a new approach termed ‘intrinsic monitoring’ which relies on the use of IPv6 extension headers in combination with formal behaviour models to gather resource information along a path. This allows a network monitoring system to delegate monitoring functionality to the network devices themselves, with the result of a drastic reduction in management traffic due to the increased autonomy of the monitoring system. As monitoring information travels in-band with the network traffic, path information remains perfectly accurate.

  4. Determining ecoregions for environmental and GMO monitoring networks.

    PubMed

    Graef, F; Schmidt, G; Schröder, W; Stachow, U

    2005-09-01

    A representative environmental monitoring network at the regional scale cannot use raster-based or random sampling designs, but requires a stratified sampling procedure integrating different information layers, and it has to occur in ecologically differing homogeneous regions (ecoregions). These we have determined using a set of spatial strata with ecological variables which we analysed with classification and regression trees (CART). We present a framework for environmental monitoring, that covers different scales, and we transfer the framework to a potential GMO (genetically modified organisms) monitoring network. We use ecoregion and other environmental strata together with existing environmental monitoring networks to determine GMO monitoring sites more precisely.

  5. Wyoming groundwater-quality monitoring network

    USGS Publications Warehouse

    Boughton, Gregory K.

    2011-01-01

    A wide variety of human activities have the potential to contaminate groundwater. In addition, naturally occurring constituents can limit the suitability of groundwater for some uses. The State of Wyoming has established rules and programs to evaluate and protect groundwater quality based on identified uses. The Wyoming Groundwater-Quality Monitoring Network (WGQMN) is a cooperative program between the U.S. Geological Survey (USGS) and the Wyoming Department of Environmental Quality (WDEQ) and was implemented in 2009 to evaluate the water-quality characteristics of the State's groundwater. Representatives from USGS, WDEQ, U.S. Environmental Protection Agency (USEPA), Wyoming Water Development Office, and Wyoming State Engineer's Office formed a steering committee, which meets periodically to evaluate progress and consider modifications to strengthen program objectives. The purpose of this fact sheet is to describe the WGQMN design and objectives, field procedures, and water-quality analyses. USGS groundwater activities in the Greater Green River Basin also are described.

  6. Hydrometeorological network for flood monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Efstratiadis, Andreas; Koussis, Antonis D.; Lykoudis, Spyros; Koukouvinos, Antonis; Christofides, Antonis; Karavokiros, George; Kappos, Nikos; Mamassis, Nikos; Koutsoyiannis, Demetris

    2013-08-01

    Due to its highly fragmented geomorphology, Greece comprises hundreds of small- to medium-size hydrological basins, in which often the terrain is fairly steep and the streamflow regime ephemeral. These are typically affected by flash floods, occasionally causing severe damages. Yet, the vast majority of them lack flow-gauging infrastructure providing systematic hydrometric data at fine time scales. This has obvious impacts on the quality and reliability of flood studies, which typically use simplistic approaches for ungauged basins that do not consider local peculiarities in sufficient detail. In order to provide a consistent framework for flood design and to ensure realistic predictions of the flood risk -a key issue of the 2007/60/EC Directive- it is essential to improve the monitoring infrastructures by taking advantage of modern technologies for remote control and data management. In this context and in the research project DEUCALION, we have recently installed and are operating, in four pilot river basins, a telemetry-based hydro-meteorological network that comprises automatic stations and is linked to and supported by relevant software. The hydrometric stations measure stage, using 50-kHz ultrasonic pulses or piezometric sensors, or both stage (piezometric) and velocity via acoustic Doppler radar; all measurements are being temperature-corrected. The meteorological stations record air temperature, pressure, relative humidity, wind speed and direction, and precipitation. Data transfer is made via GPRS or mobile telephony modems. The monitoring network is supported by a web-based application for storage, visualization and management of geographical and hydro-meteorological data (ENHYDRIS), a software tool for data analysis and processing (HYDROGNOMON), as well as an advanced model for flood simulation (HYDROGEIOS). The recorded hydro-meteorological observations are accessible over the Internet through the www-application. The system is operational and its

  7. Amchitka Mud Pit Sites 2006 Post-Closure Monitoring and Inspection Report, Amchitka Island, Alaska, Rev. No.: 0

    SciTech Connect

    Matthews, Patrick

    2006-09-01

    In 2001, the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA/NSO) remediated six areas associated with Amchitka mud pit release sites located on Amchitka Island, Alaska. This included the construction of seven closure caps. To ensure the integrity and effectiveness of remedial action, the mud pit sites are to be inspected every five years as part of DOE's long-term monitoring and surveillance program. In August of 2006, the closure caps were inspected in accordance with the ''Post-Closure Monitoring and Inspection Plan for Amchitka Island Mud Pit Release Sites'' (Rev. 0, November 2005). This post-closure monitoring report provides the 2006 cap inspection results.

  8. Evolving drainage networks and nutrient fluxes in continuous permafrost zones of interior and arctic Alaska

    NASA Astrophysics Data System (ADS)

    Koch, J. C.; Smith, R. L.; Gurney, K.; Wipfli, M.; Ewing, S. A.; Jorgenson, M. T.; Striegl, R. G.; Schmutz, J.

    2012-12-01

    It is generally accepted that permafrost thaw will release carbon and nutrients into high-latitude environments. However, utilization of these additions is highly dependent on hydrologic transport within ecosystems. Here we compare two headwater catchments in the interior Alaska and two sites further north on the Arctic Coastal Plain. All sites are underlain by continuous permafrost and summer warming leads to seasonal deepening of the active layer up to 0.3 to 1 m in early August. This annual thaw cycle promotes water and solute infiltration and storage, and often allows rapid movement of water and solutes near the organic/mineral and freeze/thaw soil boundaries. We present data from laboratory incubations, runoff and interflow sampling, and natural and manipulative stream nutrient additions. Our results indicate 1) the ability of runoff to access and thaw solute-rich water at the top of the permafrost, 2) the high concentrations of carbon, nitrogen, and phosphorous that can be delivered to aquatic ecosystems, and 3) the potential for rapid nutrient assimilation and cycling in ponds and low-order streams. We also provide evidence that rapid transport often limits actual cycling/assimilation rates. Understanding these coupled hydrological and biogeochemical processes is increasingly a focus of catchment and polar hydrology and will aid in predicting the effects of decadal-scale permafrost thaw and subsurface flowpath and drainage network evolution on nutrient fluxes and cycling.

  9. Cost-effective network design for groundwater flow monitoring

    NASA Astrophysics Data System (ADS)

    Andricevic, R.

    1990-03-01

    The extensive use of groundwater resources has increased the need for developing cost-effective monitoring networks to provide an indication of the degree to which the subsurface environment has been affected by human activities. This study presents a cost-effective approach to the design of groundwater flow monitoring networks. The groundwater network design is formulated with two problem formats: maximizing the statistical monitoring power for specified budget constraint and minimizing monitoring cost for statistical power requirement. The statistical monitoring power constraint is introduced with an information reliability threshold value. A branch and bound technique is employed to select the optimal solution from a discrete set of possible network alternatives. The method is tested to the design of groundwater flow monitoring problem in the Pomona County, California.

  10. A Learning Dashboard to Monitor an Open Networked Learning Community

    NASA Astrophysics Data System (ADS)

    Grippa, Francesca; Secundo, Giustina; de Maggio, Marco

    This chapter proposes an operational model to monitor and assess an Open Networked Learning Community. Specifically, the model is based on the Intellectual Capital framework, along the Human, Structural and Social dimensions. It relies on the social network analysis to map several and complementary perspectives of a learning network. Its application allows to observe and monitor the cognitive behaviour of a learning community, in the final perspective of tracking and obtaining precious insights for value generation.

  11. Understanding Plant Community Change in Long-term Vegetation Monitoring Sites in Northern Alaska

    NASA Astrophysics Data System (ADS)

    Liebig, J.; Hollister, R. D.

    2012-12-01

    Warming in high latitudes has been documented and is expected to continue. Observations from sites established in the mid-1990s as part of the International Tundra Experiment (ITEX) are used to predict how Arctic vegetation will change with global climate change. The four sites used in this study are in northern Alaska, where there is a wet meadow site and a dry heath site at Barrow (71°17‧44″N 156°45‧59″W) and at Atqasuk (70°28'40"N 157°25‧5″W). Each site consists of 24 experimental plots warmed by passive open-topped chambers and 24 control plots. The cover of plant species was sampled using a point-frame method four times from the establishment of the sites until the most recent sampling in 2012. The change in cover in response to warming was assessed for each species. To help understand the causes underlying species change, species responses were lumped into various groups based on information previously known about the species. A two-way ANOVA was used to compare difference in cover among groups between the warmed and control plots. If the groups within a grouping scheme responded significantly differently to the warming treatment (i.e., there was an interaction between warming treatment and grouping scheme), then that grouping scheme was considered useful for predicting change in tundra communities. Of the grouping schemes used for this analysis, some were based on geographic distribution, such as distribution zones defined by Young 1971, some were based on phenology of the species, such date of flower opening as observed in these sites, and some were based on other morphological and life history traits, such as the wintering state of buds as defined by Sørensen 1971. The response to warming by species often varied from site to site, thus the usefulness of an individual grouping scheme also varied by site. The observed changes were often driven by the increase or decrease in cover of a few abundant species, Carex aquatilis in particular. The

  12. Monitoring Ecosystem Dynamics Ecosystem Using Hyperspectral Reflectance and a Robotic Tram System in Barrow Alaska

    NASA Astrophysics Data System (ADS)

    Goswami, S.; Gamon, J. A.; Tweedie, C. E.

    2012-12-01

    Understanding the future state of the earth system requires improved knowledge of ecosystem dynamics and long term observations of how ecosystem structures and functions are being impacted by global change. Improving remote sensing methods is essential for such advancement because satellite remote sensing is the only means by which landscape to continental-scale change can be observed. The Arctic appears to be impacted by climate change more than any other region on Earth. Arctic terrestrial ecosystems comprise only 6% of the land surface area on Earth yet contain an estimated 25% of global soil organic carbon, most of which is stored in permafrost. If projected increases in plant productivity do not offset forecast losses of soil carbon to the atmosphere as greenhouse gases, regional to global greenhouse warming could be enhanced. Soil moisture is an important control of land-atmosphere carbon exchange in arctic terrestrial ecosystems. However, few studies to date have examined using remote sensing, or developed remote sensing methods for observing the complex interplay between soil moisture and plant phenology and productivity in arctic landscapes. This study was motivated by this knowledge gap and addressed the following questions as a contribution to a large scale, multi investigator flooding and draining experiment funded by the National Science Foundation near Barrow, Alaska from 2005 - 2009. 1. How can optical remote sensing be used to monitor the surface hydrology of arctic landscapes? 2. What are the spatio-temporal dynamics of land-surface phenology (NDVI) in the study area and do hydrological treatment has any effect on inter-annual patterns? A new spectral index, the normalized difference surface water index (NDSWI) was developed and tested at multiple spatial and temporal scales. NDSWI uses the 460nm (blue) and 1000nm (IR) bands and was developed to capture surface hydrological dynamics in the study area using the robotic tram system. When applied to

  13. Real-time Scintillation Monitoring in Alaska from a Longitudinal Chain of ASTRA's SM-211 GPS TEC and Scintillation Receivers

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Azeem, S. I.; Reynolds, A.; Santana, J.; Hampton, D. L.

    2013-12-01

    Amplitude and phase scintillation can cause serious difficulties for GPS receivers. Intense scintillation can cause loss of lock. High latitude studies generally show that phase scintillation can be severe, but the amplitude scintillation tends to be small. The reason for this is not yet understood. Furthermore, the actual causes of the ionospheric irregularities that produce high latitude scintillation are not well understood. While the gradient drift instability is thought to be important in the F-region, there may be other structures present in either the E- or F-regions. The role of particle precipitation is also not well understood. Four of ASTRA's CASES GPS receivers were deployed in Alaska to demonstrate our ability to map scintillation in realtime, to provide space weather services to GPS users, and to initiate a detailed investigation of these effects. These dual-frequency GPS receivers measure total electron content (TEC) and scintillation. The scintillation monitors were deployed in a longitudinal chain at sites in Kaktovic, Fort Yukon, Poker Flat, and Gakona. Scintillation statistics show phase scintillations to be largest at Kaktovic and smallest at Gakona. We present GPS phase scintillation and auroral emission results from the Alaska chain to characterize the correspondence between scintillation and auroral features, and to investigate the role of high latitude auroral features in driving the phase scintillations. We will also present data showing how phase scintillation can cause other GPS receivers to lose lock. The data and results are particularly valuable because they illustrate some of the challenges of using GPS systems for positioning and navigation in an auroral region like Alaska. These challenges for snowplough drivers were recently highlighted, along with the CASES SM-211 space weather monitor, in a special video in which ASTRA and three other small businesses were presented with an entrepreneurial award from William Shatner (http://youtu.be/bIVKEQH_YPk).

  14. Air quality monitor and acid rain networks

    NASA Technical Reports Server (NTRS)

    Rudolph, H.

    1980-01-01

    The air quality monitor program which consists of two permanent air monitor stations (PAMS's) and four mobile shuttle pollutant air monitor stations (SPAMS's) is evaluated. The PAMS measures SO sub X, NO sub X particulates, CO, O3, and nonmethane hydrocarbons. The SPAMS measures O3, SO2, HCl, and particulates. The collection and analysis of data in the rain monitor program are discussed.

  15. Characterizing and Monitoring Hazardous Air Pollution Caused by Wildfire in Interior Alaska in Summer 2005 Using MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Li, S.; Cobb, P.; Sassen, K.; Engle, K.

    2005-12-01

    By mid-August 2005, about 600 fires had burned more than 3 million acres in Alaska. Approximately 90-95 percent of the Interior Alaska was impacted by smoke and air quality reached "very unhealthy" to "dangerous" levels between August 12, and 17, 2005. MODIS level 1B images are used study the spectral characteristics of the Wildfires. All 36 MODIS spectral bands are used to analyze the spectral characteristics of background forest and tundra, fires, clouds and smoke plumes. Analysis indicates that clouds have high reflectance at visible and near infrared wavelengths and low emission at thermal infrared wavelengths. Fires have high emission at middle infrared, especially at MODIS Band 21 (3.959 microns). Vegetation covered ground has lowest reflectance at visible wavelengths. Smoke plumes from forest fires have intermediate reflectance at visible wavelengths. The spatial coverage and temporal evolution of the wildfire patches and smoke plumes are monitored using MODIS time series. The characteristics of the smoke plumes are also studied using both ground based remote sensing instrument and MODIS derived aerosol product (MOD04), which monitors aerosol type, aerosol optical thickness, particle size distribution, aerosol mass concentration, optical properties.

  16. Long-term autonomous volcanic gas monitoring with Multi-GAS at Mount St. Helens, Washington, and Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Ketner, D. M.; Kern, C.; Lahusen, R. G.; Lockett, C.; Parker, T.; Paskievitch, J.; Pauk, B.; Rinehart, A.; Werner, C. A.

    2015-12-01

    In recent years, the USGS Volcano Hazards Program has worked to implement continuous real-time in situ volcanic gas monitoring at volcanoes in the Cascade Range and Alaska. The main goal of this ongoing effort is to better link the compositions of volcanic gases to other real-time monitoring data, such as seismicity and deformation, in order to improve baseline monitoring and early detection of volcanic unrest. Due to the remote and difficult-to-access nature of volcanic-gas monitoring sites in the Cascades and Alaska, we developed Multi-GAS instruments that can operate unattended for long periods of time with minimal direct maintenance from field personnel. Our Multi-GAS stations measure H2O, CO2, SO2, and H2S gas concentrations, are comprised entirely of commercial off-the-shelf components, and are powered by small solar energy systems. One notable feature of our Multi-GAS stations is that they include a unique capability to perform automated CO2, SO2, and H2S sensor verifications using portable gas standards while deployed in the field, thereby allowing for rigorous tracking of sensor performances. In addition, we have developed novel onboard data-processing routines that allow diagnostic and monitoring data - including gas ratios (e.g. CO2/SO2) - to be streamed in real time to internal observatory and public web pages without user input. Here we present over one year of continuous data from a permanent Multi-GAS station installed in August 2014 in the crater of Mount St. Helens, Washington, and several months of data from a station installed near the summit of Augustine Volcano, Alaska in June 2015. Data from the Mount St. Helens Multi-GAS station has been streaming to a public USGS site since early 2015, a first for a permanent Multi-GAS site. Neither station has detected significant changes in gas concentrations or compositions since they were installed, consistent with low levels of seismicity and deformation.

  17. Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.

    1996-01-01

    During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).

  18. Reduction of streamflow monitoring networks by a reference point approach

    NASA Astrophysics Data System (ADS)

    Cetinkaya, Cem P.; Harmancioglu, Nilgun B.

    2014-05-01

    Adoption of an integrated approach to water management strongly forces policy and decision-makers to focus on hydrometric monitoring systems as well. Existing hydrometric networks need to be assessed and revised against the requirements on water quantity data to support integrated management. One of the questions that a network assessment study should resolve is whether a current monitoring system can be consolidated in view of the increased expenditures in time, money and effort imposed on the monitoring activity. Within the last decade, governmental monitoring agencies in Turkey have foreseen an audit on all their basin networks in view of prevailing economic pressures. In particular, they question how they can decide whether monitoring should be continued or terminated at a particular site in a network. The presented study is initiated to address this question by examining the applicability of a method called “reference point approach” (RPA) for network assessment and reduction purposes. The main objective of the study is to develop an easily applicable and flexible network reduction methodology, focusing mainly on the assessment of the “performance” of existing streamflow monitoring networks in view of variable operational purposes. The methodology is applied to 13 hydrometric stations in the Gediz Basin, along the Aegean coast of Turkey. The results have shown that the simplicity of the method, in contrast to more complicated computational techniques, is an asset that facilitates the involvement of decision makers in application of the methodology for a more interactive assessment procedure between the monitoring agency and the network designer. The method permits ranking of hydrometric stations with regard to multiple objectives of monitoring and the desired attributes of the basin network. Another distinctive feature of the approach is that it also assists decision making in cases with limited data and metadata. These features of the RPA approach

  19. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  20. Home medical monitoring network based on embedded technology

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Deng, Wenyi; Yan, Bixi; Lv, Naiguang

    2006-11-01

    Remote medical monitoring network for long-term monitoring of physiological variables would be helpful for recovery of patients as people are monitored at more comfortable conditions. Furthermore, long-term monitoring would be beneficial to investigate slowly developing deterioration in wellness status of a subject and provide medical treatment as soon as possible. The home monitor runs on an embedded microcomputer Rabbit3000 and interfaces with different medical monitoring module through serial ports. The network based on asymmetric digital subscriber line (ADSL) or local area network (LAN) is established and a client - server model, each embedded home medical monitor is client and the monitoring center is the server, is applied to the system design. The client is able to provide its information to the server when client's request of connection to the server is permitted. The monitoring center focuses on the management of the communications, the acquisition of medical data, and the visualization and analysis of the data, etc. Diagnosing model of sleep apnea syndrome is built basing on ECG, heart rate, respiration wave, blood pressure, oxygen saturation, air temperature of mouth cavity or nasal cavity, so sleep status can be analyzed by physiological data acquired as people in sleep. Remote medical monitoring network based on embedded micro Internetworking technology have advantages of lower price, convenience and feasibility, which have been tested by the prototype.

  1. Spatio-Temporal Clustering of Monitoring Network

    NASA Astrophysics Data System (ADS)

    Hussain, I.; Pilz, J.

    2009-04-01

    Pakistan has much diversity in seasonal variation of different locations. Some areas are in desserts and remain very hot and waterless, for example coastal areas are situated along the Arabian Sea and have very warm season and a little rainfall. Some areas are covered with mountains, have very low temperature and heavy rainfall; for instance Karakoram ranges. The most important variables that have an impact on the climate are temperature, precipitation, humidity, wind speed and elevation. Furthermore, it is hard to find homogeneous regions in Pakistan with respect to climate variation. Identification of homogeneous regions in Pakistan can be useful in many aspects. It can be helpful for prediction of the climate in the sub-regions and for optimizing the number of monitoring sites. In the earlier literature no one tried to identify homogeneous regions of Pakistan with respect to climate variation. There are only a few papers about spatio-temporal clustering of monitoring network. Steinhaus (1956) presented the well-known K-means clustering method. It can identify a predefined number of clusters by iteratively assigning centriods to clusters based. Castro et al. (1997) developed a genetic heuristic algorithm to solve medoids based clustering. Their method is based on genetic recombination upon random assorting recombination. The suggested method is appropriate for clustering the attributes which have genetic characteristics. Sap and Awan (2005) presented a robust weighted kernel K-means algorithm incorporating spatial constraints for clustering climate data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data. Soltani and Modarres (2006) used hierarchical and divisive cluster analysis to categorize patterns of rainfall in Iran. They only considered rainfall at twenty-eight monitoring sites and concluded that eight clusters

  2. Wide area network monitoring system for HEP experiments at Fermilab

    SciTech Connect

    Grigoriev, Maxim; Cottrell, Les; Logg, Connie; /SLAC

    2004-12-01

    Large, distributed High Energy Physics (HEP) collaborations, such as D0, CDF and US-CMS, depend on stable and robust network paths between major world research centers. The evolving emphasis on data and compute Grids increases the reliance on network performance. Fermilab's experimental groups and network support personnel identified a critical need for WAN monitoring to ensure the quality and efficient utilization of such network paths. This has led to the development of the Network Monitoring system we will present in this paper. The system evolved from the IEPM-BW project, started at SLAC three years ago. At Fermilab this system has developed into a fully functional infrastructure with bi-directional active network probes and path characterizations. It is based on the Iperf achievable throughput tool, Ping and Synack to test ICMP/TCP connectivity. It uses Pipechar and Traceroute to test, compare and report hop-by-hop network path characterization. It also measures real file transfer performance by BBFTP and GridFTP. The Monitoring system has an extensive web-interface and all the data is available through standalone SOAP web services or by a MonaLISA client. Also in this paper we will present a case study of network path asymmetry and abnormal performance between FNAL and SDSC, which was discovered and resolved by utilizing the Network Monitoring system.

  3. Wide Area Network Monitoring System for HEP Experiments at Fermilab

    SciTech Connect

    Grigoriev, M.

    2004-11-23

    Large, distributed High Energy Physics (HEP) collaborations, such as D0, CDF and US-CMS, depend on stable and robust network paths between major world research centres. The evolving emphasis on data and compute Grids increases the reliance on network performance. Fermilab's experimental groups and network support personnel identified a critical need for WAN monitoring to ensure the quality and efficient utilization of such network paths. This has led to the development of the Network Monitoring system we will present in this paper. The system evolved from the IEPM-BW project, started at SLAC three years ago. At Fermilab this system has developed into a fully functional infrastructure with bi-directional active network probes and path characterizations. It is based on the Iperf achievable throughput tool, Ping and Synack to test ICMP/TCP connectivity. It uses Pipechar and Traceroute to test, compare and report hop-by-hop network path characterization. It also measures real file transfer performance by BBFTP and GridFTP. The Monitoring system has an extensive web-interface and all the data is available through standalone SOAP web services or by a MonaLISA client. Also in this paper we will present a case study of network path asymmetry and abnormal performance between FNAL and SDSC, which was discovered and resolved by utilizing the Network Monitoring system.

  4. Establishing a baseline for regional scale monitoring of eelgrass (Zostera marina) habitat on the lower Alaska Peninsula

    USGS Publications Warehouse

    Hogrefe, Kyle R.; Ward, David H.; Donnelly, Tyrone F.; Dau, Niels

    2014-01-01

    Seagrass meadows, one of the world’s most widespread and productive ecosystems, provide a wide range of services with real economic value. Worldwide declines in the distribution and abundance of seagrasses and increased threats to coastal ecosystems from climate change have prompted a need to acquire baseline data for monitoring and protecting these important habitats. We assessed the distribution and abundance of eelgrass (Zostera marina) along nearly 1200 km of shoreline on the lower Alaska Peninsula, a region of expansive eelgrass meadows whose status and trends are poorly understood. We demonstrate the effectiveness of a multi-scale approach by using Landsat satellite imagery to map the total areal extent of eelgrass while integrating field survey data to improve map accuracy and describe the physical and biological condition of the meadows. Innovative use of proven methods and processing tools was used to address challenges inherent to remote sensing in high latitude, coastal environments. Eelgrass was estimated to cover ~31,000 ha, 91% of submerged aquatic vegetation on the lower Alaska Peninsula, nearly doubling the known spatial extent of eelgrass in the region. Mapping accuracy was 80%–90% for eelgrass distribution at locations containing adequate field survey data for error analysis.

  5. Some aspects of remote sensing for consideration in planning for environmental monitoring of the Alyeska Pipeline, Alaska

    USGS Publications Warehouse

    Skibitzke, Herbert E.

    1974-01-01

    Remote sensing data were taken along a line surveyed for the building of the Alyeska Pipeline, Alaska, in the winter of 1973-74. The portion considered in this report is the area from the Yukon River south to Isabel Pass in the Alaska Range. The occurrences of aufeis gave the appearance of four rather distinct modes of formation. In the area south of Big Delta, the icings occurred as seepage at the toes of the terraces and along the bottoms of the stream channels cutting into the terraces. In the Yukon-Tanana uplands, the icings occurred generally as seepage at the lowest points in the U-shaped valleys and along the surfaces of the streams in the tributary valleys incised into the rolling hills. The icings formed in the stream channels in both regions have similar hydraulic considerations as do the icings formed in the lower part of the valleys at the toes of the terraces. Aerial techniques of collecting data by photography and thermal imagery were tested in this setting as a basis for consideration in planning for potential environmental monitoring of the pipeline.

  6. ZigBee wireless sensor network for environmental monitoring system

    NASA Astrophysics Data System (ADS)

    Chai, Shun-qi; Ji, Lei; Wu, Hong

    2009-11-01

    ZigBee is a new close-up, low-complexity, low-power, low data rate, low-cost wireless networking technology, mainly used for short distance wireless transmission. It is based on IEEE802.15.4 standards, thousands of tiny sensors form a network through mutual coordination to communications. This paper introduces the ZigBee wireless sensor networks in environmental monitoring applications. The hardware design, including microprocessor, data acquisition, antenna and peripheral circuits of the chips, and through software design composed ZigBee mesh network that can make data acquisition and communication. This network has low power consumption, low cost, the effective area is big, and information transfers reliable merits. And have confirmed the network's communication applicability by the Serial Com Assistant, also testified the network have very good pragmatism by the NS2 emulation the network's operation.

  7. 1994 Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Doukas, Michael P.; McGimsey, Robert G.

    1995-01-01

    During 1994, the Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, or false alarms at nine volcanic centers-- Mount Sanford, Iliamna, the Katmai group, Kupreanof, Mount Veniaminof, Shishaldin, Makushin, Mount Cleveland and Kanaga (table 1). Of these volcanoes, AVO has a real time, continuously recording seismic network only at Iliamna, which is located in the Cook Inlet area of south-central Alaska (fig. 1). AVO has dial-up access to seismic data from a 5-station network in the general region of the Katmai group of volcanoes. The remaining unmonitored volcanoes are located in sparsely populated areas of the Wrangell Mountains, the Alaska Peninsula, and the Aleutian Islands (fig. 1). For these volcanoes, the AVO monitoring program relies chiefly on receipt of pilot reports, observations of local residents and analysis of satellite imagery.

  8. A new method for monitoring global volcanic activity. [Alaska, Hawaii, Washington, California, Iceland, Guatemala, El Salvador, and Nicaragua

    NASA Technical Reports Server (NTRS)

    Ward, P. L.; Endo, E.; Harlow, D. H.; Allen, R.; Eaton, J. P.

    1974-01-01

    The ERTS Data Collection System makes it feasible for the first time to monitor the level of activity at widely separated volcanoes and to relay these data rapidly to one central office for analysis. While prediction of specific eruptions is still an evasive goal, early warning of a reawakening of quiescent volcanoes is now a distinct possibility. A prototypical global volcano surveillance system was established under the ERTS program. Instruments were installed in cooperation with local scientists on 15 volcanoes in Alaska, Hawaii, Washington, California, Iceland, Guatemala, El Salvador and Nicaragua. The sensors include 19 seismic event counters that count four different sizes of earthquakes and six biaxial borehole tiltmeters that measure ground tilt with a resolution of 1 microradian. Only seismic and tilt data are collected because these have been shown in the past to indicate most reliably the level of volcano activity at many different volcanoes. Furthermore, these parameters can be measured relatively easily with new instrumentation.

  9. NASA Integrated Network Monitor and Control Software Architecture

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.

  10. Is a salinity monitoring network "Worth its salt"?

    USGS Publications Warehouse

    Prinos, Scott T.

    2013-01-01

    Saltwater intrusion threatens the water supplies of many coastal communities. Management of these water supplies requires well-designed and properly maintained and operated salinity monitoring networks. Long-standing deficiencies identified in a salinity monitoring network in southwest Florida during a 2013 study (Prinos, 2013) help to illustrate the types of problems that can occur in aging and poorly maintained networks. This cooperative U.S. Geological Survey (USGS) and South Florida Water Management District (SFWMD) study also describes improvements that can be implemented to overcome these deficiencies.

  11. Georgia's Stream-Water-Quality Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.; ,

    2006-01-01

    The USGS stream-water-quality monitoring network for Georgia is an aggregation of smaller networks and individual monitoring stations that have been established in cooperation with Federal, State, and local agencies. These networks collectively provide data from 130 sites, 62 of which are monitored continuously in real time using specialized equipment that transmits these data via satellite to a centralized location for processing and storage. These data are made available on the Web in near real time at http://waterdata.usgs.gov/ga/nwis/ Ninety-eight stations are sampled periodically for a more extensive suite of chemical and biological constituents that require laboratory analysis. Both the continuous and the periodic water-quality data are archived and maintained in the USGS National Water Information System and are available to cooperators, water-resource managers, and the public. The map at right shows the USGS stream-water-quality monitoring network for Georgia and major watersheds. The network represents an aggregation of smaller networks and individual monitoring stations that collectively provide data from 130 sites.

  12. Full monitoring for long-reach TWDM passive optical networks.

    PubMed

    Cen, Min; Chen, Jiajia; Moeyaert, Véronique; Mégret, Patrice; Wuilpart, Marc

    2016-07-11

    This paper presents a novel and simple fiber monitoring system based on multi-wavelength transmission-reflection analysis for long-reach time and wavelength division multiplexing passive optical networks. For the first time, the full localization functionality of long-reach passive optical networks is possible with the proposed monitoring scheme, including supporting fault detection, identification, and localization in both feeder and distribution fiber segments. By measuring the transmitted and reflected/backscattered optical powers launched by an unmodulated continuous-wave optical source, the proposed solution is able to supervise the network with good spatial accuracy, a high detection speed and a low impact on data traffic. Both the theoretical analysis and experimental validation show that the proposed scheme is capable of providing an accurate fault monitoring functionality for long-reach time and wavelength division multiplexing passive optical networks. PMID:27410849

  13. Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.; ,

    2006-01-01

    The U.S. Geological Survey (USGS) network of 223 real-time monitoring stations, the 'Georgia HydroWatch,' provides real-time water-stage data, with streamflow computed at 198 locations, and rainfall recorded at 187 stations. These sites continuously record data on 15-minute intervals and transmit the data via satellite to be incorporated into the USGS National Water Information System database. These data are automatically posted to the USGS Web site for public dissemination (http://waterdata.usgs.gov/ga/nwis/nwis). The real-time capability of this network provides information to help emergency-management officials protect human life and property during floods, and mitigate the effects of prolonged drought. The map at right shows the USGS streamflow monitoring network for Georgia and major watersheds. Streamflow is monitored at 198 sites statewide, more than 80 percent of which include precipitation gages. Various Federal, State, and local agencies fund these streamflow monitoring stations.

  14. Alaska telemedicine: growth through collaboration.

    PubMed

    Patricoski, Chris

    2004-12-01

    The last thirty years have brought the introduction and expansion of telecommunications to rural and remote Alaska. The intellectual and financial investment of earlier projects, the more recent AFHCAN Project and the Universal Service Administrative Company Rural Health Care Division (RHCD) has sparked a new era in telemedicine and telecommunication across Alaska. This spark has been flamed by the dedication and collaboration of leaders at he highest levels of organizations such as: AFHCAN member organizations, AFHCAN Office, Alaska Clinical Engineering Services, Alaska Federal Health Care Partnership, Alaska Federal Health Care Partnership Office, Alaska Native health Board, Alaska Native Tribal health Consortium, Alaska Telehealth Advisory Council, AT&T Alascom, GCI Inc., Health care providers throughout the state of Alaska, Indian Health Service, U.S. Department of Health and Human Services, Office of U.S. Senator Ted Steens, State of Alaska, U.S. Department of Homeland Security--United States Coast Guard, United States Department of Agriculture, United States Department of Defense--Air Force and Army, United States Department of Veterans Affairs, University of Alaska, and University of Alaska Anchorage. Alaska now has one of the largest telemedicine programs in the world. As Alaska moves system now in place become self-sustaining, and 2) collaborating with all stakeholders in promoting the growth of an integrated, state-wide telemedicine network.

  15. Implementation of medical monitor system based on networks

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Cao, Yuzhen; Zhang, Lixin; Ding, Mingshi

    2006-11-01

    In this paper, the development trend of medical monitor system is analyzed and portable trend and network function become more and more popular among all kinds of medical monitor devices. The architecture of medical network monitor system solution is provided and design and implementation details of medical monitor terminal, monitor center software, distributed medical database and two kind of medical information terminal are especially discussed. Rabbit3000 system is used in medical monitor terminal to implement security administration of data transfer on network, human-machine interface, power management and DSP interface while DSP chip TMS5402 is used in signal analysis and data compression. Distributed medical database is designed for hospital center according to DICOM information model and HL7 standard. Pocket medical information terminal based on ARM9 embedded platform is also developed to interactive with center database on networks. Two kernels based on WINCE are customized and corresponding terminal software are developed for nurse's routine care and doctor's auxiliary diagnosis. Now invention patent of the monitor terminal is approved and manufacture and clinic test plans are scheduled. Applications for invention patent are also arranged for two medical information terminals.

  16. Wireless Sensor Networks for Oceanographic Monitoring: A Systematic Review

    PubMed Central

    Albaladejo, Cristina; Sánchez, Pedro; Iborra, Andrés; Soto, Fulgencio; López, Juan A.; Torres, Roque

    2010-01-01

    Monitoring of the marine environment has come to be a field of scientific interest in the last ten years. The instruments used in this work have ranged from small-scale sensor networks to complex observation systems. Among small-scale networks, Wireless Sensor Networks (WSNs) are a highly attractive solution in that they are easy to deploy, operate and dismantle and are relatively inexpensive. The aim of this paper is to identify, appraise, select and synthesize all high quality research evidence relevant to the use of WSNs in oceanographic monitoring. The literature is systematically reviewed to offer an overview of the present state of this field of study and identify the principal resources that have been used to implement networks of this kind. Finally, this article details the challenges and difficulties that have to be overcome if these networks are to be successfully deployed. PMID:22163583

  17. Integrating wireless sensor network for monitoring subsidence phenomena

    NASA Astrophysics Data System (ADS)

    Marturià, Jordi; Lopez, Ferran; Gigli, Giovanni; Intrieri, Emanuele; Mucchi, Lorenzo; Fornaciai, Alessandro

    2016-04-01

    An innovative wireless sensor network (WSN) for the 3D superficial monitoring of deformations (such as landslides and subsidence) is being developed in the frame of the Wi-GIM project (Wireless sensor network for Ground Instability Monitoring - LIFE12 ENV/IT/001033). The surface movement is detected acquiring the position (x, y and z) by integrating large bandwidth technology able to detect the 3D coordinates of the sensor with a sub-meter error, with continuous wave radar, which allows decreasing the error down to sub-cm. The Estació neighborhood in Sallent is located over the old potassium mine Enrique. This zone has been affected by a subsidence process over more than twenty years. The implementation of a wide network for ground auscultation has allowed monitoring the process of subsidence since 1997. This network consists of: i) a high-precision topographic leveling network to control the subsidence in surface; ii) a rod extensometers network to monitor subsurface deformation; iii) an automatic Leica TCA Total Station to monitor building movements; iv) an inclinometers network to measure the horizontal displacements on subsurface and v) a piezometer to measure the water level. Those networks were implemented within an alert system for an organized an efficient response of the civil protection authorities in case of an emergency. On 23rd December 2008, an acceleration of subsoil movements (of approx. 12-18 cm/year) provoked the activation of the emergency plan by the Catalan Civil Protection. This implied the preventive and scheduled evacuation of the neighbours (January 2009) located in the area with a higher risk of collapse: around 120 residents of 43 homes. As a consequence, the administration implemented a compensation plan for the evacuation of the whole neighbourhood residents and the demolition of 405 properties. In this work, the adaptation and integration process of Wi-GIM system with those conventional monitoring network are presented for its testing

  18. Leveraging network connectivity for quality assurance of clinical display monitors.

    PubMed

    Gersten, Jennifer

    2012-01-01

    The VA Midwest Health Care Network, VISN 23, is one of 21 veteran integrated health service networks (VISN) under the Department of Veterans Affairs. There are approximately 300,000 imaging studies generated per year and currently more than 14,000 picture archiving and communication system (PACS) users in VISN 23. Biomedical Engineering Services within VISN 23 coordinates the provision of medical technology support. One emerging technology leverages network connectivity as a method of calibrating and continuously monitoring clinical display monitors in support of PACS. Utilizing a continuous calibration monitoring system, clinical displays can be identified as out of Digital Imaging and Communications in Medicine (DICOM) compliance through a centralized server. The technical group can receive immediate notification via e-mail and respond proactively. Previously, this problem could go unnoticed until the next scheduled preventive maintenance was performed. This system utilizes simple network management protocols (SNMP) and simple mail transfer protocols (SMTP) across a wide area network for real-time alerts from a centralized location. This central server supports and monitors approximately 320 clinical displays deployed across five states. Over the past three years of implementation in VISN 23, the remote calibration and monitoring capability has allowed for more efficient support of clinical displays and has enhanced patient safety by ensuring a consistent display of images on these clinical displays. PMID:22239357

  19. ASSESSING THE COMPARABILITY OF AMMONIUM, NITRATE AND SULFATE CONCENTRATIONS MEASURED BY THREE AIR QUALITY MONITORING NETWORKS

    EPA Science Inventory

    Airborne fine particulate matter across the United States is monitored by different networks, the three prevalent ones presently being the Clean Air Status and Trend Network (CASTNet), the Interagency Monitoring of PROtected Visual Environment Network (IMPROVE) and the Speciati...

  20. DATA FROM A SOLAR ULTRAVIOLET MONITORING NETWORK

    EPA Science Inventory

    The U.S. Environmental Protection Agency, in conjunction with the National Park Service, operates a network of 21 spectrophotometers, measuring spectrally-resolved, surface UV radiation of wavelengths 290-363 nanometers. Fourteen of the measurement sites are in National Parks,...

  1. Pollution monitoring using networks of honey bees

    SciTech Connect

    Bromenshenk, J.J.; Dewart, M.L.; Thomas, J.M.

    1983-08-01

    Each year thousands of chemicals in large quantities are introduced into the global environment and the need for effective methods of monitoring these substances has steadily increased. Most monitoring programs rely upon instrumentation to measure specific contaminants in air, water, or soil. However, it has become apparent that humans and their environment are exposed to complex mixtures of chemicals rather than single entities. As our ability to detect ever smaller quantities of pollutants has increased, the biological significance of these findings has become more uncertain. Also, it is clear that monitoring efforts should shift from short-term studies of easily identifiable sources in localized areas to long-term studies of multiple sources over widespread regions. Our investigations aim at providing better tools to meet these exigencies. Honey bees are discussed as an effective, long-term, self-sustaining system for monitoring environmental impacts. Our results indicate that the use of regional, and possibly national or international, capability can be realized with the aid of beekeepers in obtaining samples and conducting measurements. This approach has the added advantage of public involvement in environmental problem solving and protection of human health and environmental quality.

  2. A Great Lakes Atmospheric Mercury Monitoring network: Evaluation and design

    NASA Astrophysics Data System (ADS)

    Risch, Martin R.; Kenski, Donna M.; Gay, David A.

    2014-03-01

    As many as 51 mercury (Hg) wet-deposition-monitoring sites from 4 networks were operated in 8 USA states and Ontario, Canada in the North American Great Lakes Region from 1996 to 2010. By 2013, 20 of those sites were no longer in operation and approximately half the geographic area of the Region was represented by a single Hg-monitoring site. In response, a Great Lakes Atmospheric Mercury Monitoring (GLAMM) network is needed as a framework for regional collaboration in Hg-deposition monitoring. The purpose of the GLAMM network is to detect changes in regional atmospheric Hg deposition related to changes in Hg emissions. An optimized design for the network was determined to be a minimum of 21 sites in a representative and approximately uniform geographic distribution. A majority of the active and historic Hg-monitoring sites in the Great Lakes Region are part of the National Atmospheric Deposition Program (NADP) Mercury Deposition Network (MDN) in North America and the GLAMM network is planned to be part of the MDN. To determine an optimized network design, active and historic Hg-monitoring sites in the Great Lakes Region were evaluated with a rating system of 21 factors that included characteristics of the monitoring locations and interpretations of Hg data. Monitoring sites were rated according to the number of Hg emissions sources and annual Hg emissions in a geographic polygon centered on each site. Hg-monitoring data from the sites were analyzed for long-term averages in weekly Hg concentrations in precipitation and weekly Hg-wet deposition, and on significant temporal trends in Hg concentrations and Hg deposition. A cluster analysis method was used to group sites with similar variability in their Hg data in order to identify sites that were unique for explaining Hg data variability in the Region. The network design included locations in protected natural areas, urban areas, Great Lakes watersheds, and in proximity to areas with a high density of annual Hg

  3. A Great Lakes atmospheric mercury monitoring network: evaluation and design

    USGS Publications Warehouse

    Risch, Martin R.; Kenski, Donna M.; ,; David, A.

    2014-01-01

    As many as 51 mercury (Hg) wet-deposition-monitoring sites from 4 networks were operated in 8 USA states and Ontario, Canada in the North American Great Lakes Region from 1996 to 2010. By 2013, 20 of those sites were no longer in operation and approximately half the geographic area of the Region was represented by a single Hg-monitoring site. In response, a Great Lakes Atmospheric Mercury Monitoring (GLAMM) network is needed as a framework for regional collaboration in Hg-deposition monitoring. The purpose of the GLAMM network is to detect changes in regional atmospheric Hg deposition related to changes in Hg emissions. An optimized design for the network was determined to be a minimum of 21 sites in a representative and approximately uniform geographic distribution. A majority of the active and historic Hg-monitoring sites in the Great Lakes Region are part of the National Atmospheric Deposition Program (NADP) Mercury Deposition Network (MDN) in North America and the GLAMM network is planned to be part of the MDN. To determine an optimized network design, active and historic Hg-monitoring sites in the Great Lakes Region were evaluated with a rating system of 21 factors that included characteristics of the monitoring locations and interpretations of Hg data. Monitoring sites were rated according to the number of Hg emissions sources and annual Hg emissions in a geographic polygon centered on each site. Hg-monitoring data from the sites were analyzed for long-term averages in weekly Hg concentrations in precipitation and weekly Hg-wet deposition, and on significant temporal trends in Hg concentrations and Hg deposition. A cluster analysis method was used to group sites with similar variability in their Hg data in order to identify sites that were unique for explaining Hg data variability in the Region. The network design included locations in protected natural areas, urban areas, Great Lakes watersheds, and in proximity to areas with a high density of annual Hg

  4. Western regional visibility monitoring: teleradiometer and camera network

    SciTech Connect

    Not Available

    1984-06-01

    The 1977 Clean Air Act Amendment provides for protection of visual air quality of certain federally managed lands. In support of these provisions the U.S. Environmental Protection Agency, in cooperation with the National Park Service, has sponsored a number of visibility research programs. One program involves development and operation of a western regional visibility monitoring network. The objectives of this network are to develop visibility monitoring methods, to characterize visibility in this region, and to provide data that can be used to identify sources of visibility impairment. This report describes the western network and methods used to collect and process data, the results for the period of record and quality assurance procedures. A visibility theory section is provided to define terms and concepts. Seasonal and monthly mean standard visual range values with 90 percent confidence intervals and cumulative frequency plots for each monitoring location are reported. This report covers the data collection period from summer of 1978 through fall of 1981.

  5. Semantic Visualization of Wireless Sensor Networks for Elderly Monitoring

    NASA Astrophysics Data System (ADS)

    Stocklöw, Carsten; Kamieth, Felix

    In the area of Ambient Intelligence, Wireless Sensor Networks are commonly used for user monitoring purposes like health monitoring and user localization. Existing work on visualization of wireless sensor networks focuses mainly on displaying individual nodes and logical, graph-based topologies. This way, the relation to the real-world deployment is lost. This paper presents a novel approach for visualization of wireless sensor networks and interaction with complex services on the nodes. The environment is realized as a 3D model, and multiple nodes, that are worn by a single individual, are grouped together to allow an intuitive interface for end users. We describe application examples and show that our approach allows easier access to network information and functionality by comparing it with existing solutions.

  6. AIRS Remote Sensing of Ammonia Species Preceding the Alaska Fire of 2004 Compared to Ground Monitoring in New York City

    NASA Astrophysics Data System (ADS)

    Padilla, D.; Steiner, J.; Menzel, P.

    2008-05-01

    Ammonia and ammonium sulfate are common industrial and agricultural byproducts. A widespread pollution event recorded by the Environmental Protection Agency July 2004 in the northeastern United States was overprinted and replaced in New York City by a down-trending of a smoke-laden aerosol tracked from the 2004 Alaska fire. Background subtraction of the absorption bands for ammonia (A) using the AIRS band at 966 cm-1 identifies a possible ammonia-rich plume that followed a westerly transect from the Midwest to New York City. The transition from ammonium sulfate (AS)-dominated to organic-derived carbon is documented at CCNY/NYC using x-ray diffraction (XRD) analysis of ribbons from an Environmental Beta Attenuation Monitor. XRD peaks are consistent with crystalline PM2.5 AS increasing dramatically over the interval July 17-21, being replaced by smoke particulates on July 22. Scanning electron microscope and energy dispersive analysis (SEM/EDS) of the smoke particulates show significant potassium and calcium enrichment in the complex ash, as do analysis of fractions of the ribbon analyzed by induced coupled plasma emission (ICP). This conforms to laboratory investigation of the byproducts of the combustion of pine and fir that show similar K- and Ca-enrichment. The laboratory data and the AIRS remote sensing measurements are combined with the MODIS Aerosol Optical Depth product to develop a method for monitoring industrial and agricultural ammonia-concentrated air masses for climate modeling.

  7. Design development of a neural network-based telemetry monitor

    NASA Technical Reports Server (NTRS)

    Lembeck, Michael F.

    1992-01-01

    This paper identifies the requirements and describes an architectural framework for an artificial neural network-based system that is capable of fulfilling monitoring and control requirements of future aerospace missions. Incorporated into this framework are a newly developed training algorithm and the concept of cooperative network architectures. The feasibility of such an approach is demonstrated for its ability to identify faults in low frequency waveforms.

  8. Monitoring air quality in mountains: Designing an effective network

    USGS Publications Warehouse

    Peterson, D.L.

    2000-01-01

    A quantitatively robust yet parsimonious air-quality monitoring network in mountainous regions requires special attention to relevant spatial and temporal scales of measurement and inference. The design of monitoring networks should focus on the objectives required by public agencies, namely: 1) determine if some threshold has been exceeded (e.g., for regulatory purposes), and 2) identify spatial patterns and temporal trends (e.g., to protect natural resources). A short-term, multi-scale assessment to quantify spatial variability in air quality is a valuable asset in designing a network, in conjunction with an evaluation of existing data and simulation-model output. A recent assessment in Washington state (USA) quantified spatial variability in tropospheric ozone distribution ranging from a single watershed to the western third of the state. Spatial and temporal coherence in ozone exposure modified by predictable elevational relationships ( 1.3 ppbv ozone per 100 m elevation gain) extends from urban areas to the crest of the Cascade Range. This suggests that a sparse network of permanent analyzers is sufficient at all spatial scales, with the option of periodic intensive measurements to validate network design. It is imperative that agencies cooperate in the design of monitoring networks in mountainous regions to optimize data collection and financial efficiencies.

  9. Analog neural network-based helicopter gearbox health monitoring system.

    PubMed

    Monsen, P T; Dzwonczyk, M; Manolakos, E S

    1995-12-01

    The development of a reliable helicopter gearbox health monitoring system (HMS) has been the subject of considerable research over the past 15 years. The deployment of such a system could lead to a significant saving in lives and vehicles as well as dramatically reduce the cost of helicopter maintenance. Recent research results indicate that a neural network-based system could provide a viable solution to the problem. This paper presents two neural network-based realizations of an HMS system. A hybrid (digital/analog) neural system is proposed as an extremely accurate off-line monitoring tool used to reduce helicopter gearbox maintenance costs. In addition, an all analog neural network is proposed as a real-time helicopter gearbox fault monitor that can exploit the ability of an analog neural network to directly compute the discrete Fourier transform (DFT) as a sum of weighted samples. Hardware performance results are obtained using the Integrated Neural Computing Architecture (INCA/1) analog neural network platform that was designed and developed at The Charles Stark Draper Laboratory. The results indicate that it is possible to achieve a 100% fault detection rate with 0% false alarm rate by performing a DFT directly on the first layer of INCA/1 followed by a small-size two-layer feed-forward neural network and a simple post-processing majority voting stage.

  10. Augmenting groundwater monitoring networks near landfills with slurry cutoff walls.

    PubMed

    Hudak, Paul F

    2004-01-01

    This study investigated the use of slurry cutoff walls in conjunction with monitoring wells to detect contaminant releases from a solid waste landfill. The 50 m wide by 75 m long landfill was oriented oblique to regional groundwater flow in a shallow sand aquifer. Computer models calculated flow fields and the detection capability of six monitoring networks, four including a 1 m wide by 50 m long cutoff wall at various positions along the landfill's downgradient boundaries and upgradient of the landfill. Wells were positioned to take advantage of convergent flow induced downgradient of the cutoff walls. A five-well network with no cutoff wall detected 81% of contaminant plumes originating within the landfill's footprint before they reached a buffer zone boundary located 50 m from the landfill's downgradient corner. By comparison, detection efficiencies of networks augmented with cutoff walls ranged from 81 to 100%. The most efficient network detected 100% of contaminant releases with four wells, with a centrally located, downgradient cutoff wall. In general, cutoff walls increased detection efficiency by delaying transport of contaminant plumes to the buffer zone boundary, thereby allowing them to increase in size, and by inducing convergent flow at downgradient areas, thereby funneling contaminant plumes toward monitoring wells. However, increases in detection efficiency were too small to offset construction costs for cutoff walls. A 100% detection efficiency was also attained by an eight-well network with no cutoff wall, at approximately one-third the cost of the most efficient wall-augmented network. PMID:15887367

  11. Ocean breeze monitoring network at the Oyster Creek Nuclear Plant

    SciTech Connect

    Heck, W.

    1987-01-01

    The Oyster Creek Nuclear Generating Station (OCNGS) is located in New Jersey 10 km west of the Atlantic Ocean. Routine meteorological monitoring at the station has consisted of a single meteorological tower 120 m high and instrumented at the 10-m, 46-m, and 116-m levels. An analysis of 5 yr of data from this tower showed the OCNGS is affected by an ocean breeze approx. 1 day out of 4 during May through August. This suggested the need for meteorological monitoring in addition to the single met tower at OCNGS. As a result of the 1985 OCNGS meteorological monitoring study, GPU Nuclear established an ocean breeze monitoring network in the fall of 1986. It is a permanent part of OCNGS meteorological monitoring and consists of the same sites as used in the 1985 field study. Meteorological towers are located at the ocean site, the inland site, and at OCNGS. The ocean tower is 13 m (43 ft) high, the inland tower 10 m (33 ft), and the OCNGS tower 116 m (380 ft). Wind speed, wind direction, and temperature are measured on each tower; delta-temperature is also measured on the main tower. The instruments are calibrated in the spring, summer, and fall. The network is operated and maintained by GPU Nuclear Environmental Controls. The ocean breeze monitoring network and meteorological information system forms the basis for including the effects of the ocean breeze in OCNGS emergency off-site dose assessment.

  12. Diffuse gas emissions at the Ukinrek Maars, Alaska: Implications for magmatic degassing and volcanic monitoring

    USGS Publications Warehouse

    Evans, William C.; Bergfeld, D.; McGimsey, R.G.; Hunt, A.G.

    2009-01-01

    Diffuse CO2 efflux near the Ukinrek Maars, two small volcanic craters that formed in 1977 in a remote part of the Alaska Peninsula, was investigated using accumulation chamber measurements. High CO2 efflux, in many places exceeding 1000 g m-2 d-1, was found in conspicuous zones of plant damage or kill that cover 30,000-50,000 m2 in area. Total diffuse CO2 emission was estimated at 21-44 t d-1. Gas vents 3-km away at The Gas Rocks produce 0.5 t d-1 of CO2 that probably derives from the Ukinrek Maars basalt based on similar ??13C values (???-6???), 3He/4He ratios (5.9-7.2 RA), and CO2/3He ratios (1-2 ?? 109) in the two areas. A lower 3He/4He ratio (2.7 RA) and much higher CO2/3He ratio (9 ?? 1010) in gas from the nearest arc-front volcanic center (Mount Peulik/Ugashik) provide a useful comparison. The large diffuse CO2 emission at Ukinrek has important implications for magmatic degassing, subsurface gas transport, and local toxicity hazards. Gas-water-rock interactions play a major role in the location, magnitude and chemistry of the emissions.

  13. Monitoring change in the Bering Glacier region, Alaska: Using Landsat TM and ERS-1 imagery

    SciTech Connect

    Payne, J.F.; Coffeen, M.; Macleod, R.D.

    1997-06-01

    The Bering Glacier is the largest (5,180 km{sup 2}) and longest (191 km) glacier in continental North America. This glacier is one of about 200 temperate glaciers in the Alaska/Canada region that are known to surge. Surges at the Bering Glacier typically occur on a 20-30 year cycle. The objective of this project was to extract information regarding the position of the terminus of the glacier from historic aerial photography, early 20{sup th} century ground photography, Landsat Thematic Mapper (TM) satellite data, and European Space Agency, Synthetic Aperture RADAR (ERS-1 SAR) data and integrate it into a single digital database that would lend itself to change detection analysis. ERS-1 SAR data was acquired from six dates between 1992-95 and was terrain corrected and co-registered A single Landsat TM image from June 1991 was used as the base image for classifying land cover types. Historic locations of the glacier terminus were generated using traditional photo interpretation techniques from aerial and ground photography. The result of this platform combination, along with the historical data, is providing land managers with the unique opportunity to generate complete assessments of glacial movement this century and determine land cover changes which may impact wildlife and recreational opportunities.

  14. Vital signs monitoring and patient tracking over a wireless network.

    PubMed

    Gao, Tia; Greenspan, Dan; Welsh, Matt; Juang, Radford; Alm, Alex

    2005-01-01

    Patients at a disaster scene can greatly benefit from technologies that continuously monitor their vital status and track their locations until they are admitted to the hospital. We have designed and developed a real-time patient monitoring system that integrates vital signs sensors, location sensors, ad-hoc networking, electronic patient records, and web portal technology to allow remote monitoring of patient status. This system shall facilitate communication between providers at the disaster scene, medical professionals at local hospitals, and specialists available for consultation from distant facilities.

  15. Wireless Sensor Network for Electric Transmission Line Monitoring

    SciTech Connect

    Alphenaar, Bruce

    2009-06-30

    Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform

  16. Network-Oriented Radiation Monitoring System (NORMS)

    SciTech Connect

    Rahmat Aryaeinejad; David F. Spencer

    2007-10-01

    We have developed a multi-functional pocket radiation monitoring system capable of detecting and storing gamma ray and neutron data and then sending the data through a wireless connection to a remote central facility upon request. The device has programmable alarm trigger levels that can be modified for specific applications. The device could be used as a stand-alone device or in conjunction with an array to cover a small or large area. The data is stored with a date/time stamp. The device may be remotely configured. Data can be transferred and viewed on a PDA via direct connection or wirelessly. Functional/bench tests have been completed successfully. The device detects low-level neutron and gamma sources within a shielded container in a radiation field of 10 uR/hr above the ambient background level.

  17. GENASIS national and international monitoring networks for persistent organic pollutants

    NASA Astrophysics Data System (ADS)

    Brabec, Karel; Dušek, Ladislav; Holoubek, Ivan; Hřebíček, Jiří; Kubásek, Miroslav; Urbánek, Jaroslav

    2010-05-01

    Persistent organic pollutants (POPs) remain in the centre of scientific attention due to their slow rates of degradation, their toxicity, and potential for both long-range transport and bioaccumulation in living organisms. This group of compounds covers large number of various chemicals from industrial products, such as polychlorinated biphenyls, etc. The GENASIS (Global Environmental Assessment and Information System) information system utilizes data from national and international monitoring networks to obtain as-complete-as-possible set of information and a representative picture of environmental contamination by persistent organic pollutants (POPs). There are data from two main datasets on POPs monitoring: 1.Integrated monitoring of POPs in Košetice Observatory (Czech Republic) which is a long term background site of the European Monitoring and Evaluation Programme (EMEP) for the Central Europe; the data reveals long term trends of POPs in all environmental matrices. The Observatory is the only one in Europe where POPs have been monitored not only in ambient air, but also in wet atmospheric deposition, surface waters, sediments, soil, mosses and needles (integrated monitoring). Consistent data since the year 1996 are available, earlier data (up to 1998) are burdened by high variability and high detection limits. 2.MONET network is ambient air monitoring activities in the Central and Eastern European region (CEEC), Central Asia, Africa and Pacific Islands driven by RECETOX as the Regional Centre of the Stockholm Convention for the region of Central and Eastern Europe under the common name of the MONET networks (MONitoring NETwork). For many of the participating countries these activities generated first data on the atmospheric levels of POPs. The MONET network uses new technologies of air passive sampling, which was developed, tested, and calibrated by RECETOX in cooperation with Environment Canada and Lancaster University, and was originally launched as a

  18. Using a Neural Network to Determine the Hatch Status of the AERI at the ARM North Slope of Alaska Site

    SciTech Connect

    Zwink, AB; Turner, DD

    2012-03-19

    The fore-optics of the Atmospheric Emitted Radiance Interferometer (AERI) are protected by an automated hatch to prevent precipitation from fouling the instrument's scene mirror (Knuteson et al. 2004). Limit switches connected with the hatch controller provide a signal of the hatch state: open, closed, undetermined (typically associated with the hatch being between fully open or fully closed during the instrument's sky view period), or an error condition. The instrument then records the state of the hatch with the radiance data so that samples taken when the hatch is not open can be removed from any subsequent analysis. However, the hatch controller suffered a multi-year failure for the AERI located at the ARM North Slope of Alaska (NSA) Central Facility in Barrow, Alaska, from July 2006-February 2008. The failure resulted in misreporting the state of the hatch in the 'hatchOpen' field within the AERI data files. With this error there is no simple solution to translate what was reported back to the correct hatch status, thereby making it difficult for an analysis to determine when the AERI was actually viewing the sky. As only the data collected when the hatch is fully open are scientifically useful, an algorithm was developed to determine whether the hatch was open or closed based on spectral radiance data from the AERI. Determining if the hatch is open or closed in a scene with low clouds is non-trivial, as low opaque clouds may look very similar spectrally as the closed hatch. This algorithm used a backpropagation neural network; these types of neural networks have been used with increasing frequency in atmospheric science applications.

  19. Dual Use Global Tsunami Monitoring Network and Underwater GNSS

    NASA Astrophysics Data System (ADS)

    Bernard, E. N.

    2015-12-01

    Earthquakes, volcanoes, landslides, slumps, meteorological events and asteroid impacts can generate tsunamis. However, the present tsunami monitoring network is designed to detect tsunamis generated only by subduction zone earthquakes. A global tsunami monitoring system will be presented to detect tsunamis from ANY source within 20 minutes of origin time. Real-time tsunami data from the monitoring system can be used to forecast coastal flooding in advance of tsunami arrival, thus saving lives through early warnings. The global tsunami monitoring system could also be used to expand the coverage of global navigation by satellites to the seafloor of the world's oceans. Since oceans cover over 70% of the surface planet earth, such an expansion of coverage would revolutionize earth sciences as well as tsunami monitoring for all generation mechanisms. A demonstration project is proposed to test and evaluate the dual use concept.

  20. Wireless sensor network for monitoring soil moisture and weather conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  1. DESIGN OF LARGE-SCALE AIR MONITORING NETWORKS

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks to air pollution. A major crit...

  2. PLUME-SCALER-EVALUATING LONG-TERM MONITORING WELL NETWORKS

    EPA Science Inventory

    EPA's Subsurface Protection and Remediation Division is developing a new computer application called PLUME-SCALER to evaluate long term monitoring well networks using typically available historical site water level data. PLUME-SCALER can be used to determine if there are enough ...

  3. A proposed ground-water quality monitoring network for Idaho

    USGS Publications Warehouse

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  4. Combine harvester monitor system based on wireless sensor network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  5. Sensorcope: A Urban Environmental Monitoring Network

    NASA Astrophysics Data System (ADS)

    Barrenetxea, G.; Mezzo, J.; Dubois-Ferriere, H.; Couach, O.; Krichane, M.; Tromp, M.; Huwald, H.; Vetterli, M.; Parlanges, M.; Selker, J.

    2006-12-01

    The SensorScope project is a collaboration between environmental scientists and hardware/software engineers at Ecole Polytechnique Fédérale de Lausanne (EPFL) that aims to study the energy exchanges and balances at the earth/atmosphere boundary. It consists in a large scale Wireless Sensor Network (WSN) deployed in the EPFL campus that measures key environmental quantities at high spatial resolution for the purpose of modeling and understanding this energy exchange. A broad environmental sensing platform has been developed for this project. The design considers the entire chain of requirements for a scientific atmospheric measurement campaign, including packaging, energy autonomy, sensor placement, and a diverse set of sensors. This sensing unit is centered around a TinyNode module, consisting of a TI MSP430 microcontroller running TinyOS, and a Xemics XE1205 radio. Around this core module we have designed an autonomous solar energy power system. The system has bi-directional multi-hop communication allowing for automatic re-configuration of the network and over-the-air reprogramming. A data base and web interface were developed to organize and present the data. The station includes also a sensor interface board accommodating seven external sensors, which makes the station capable of measuring nine different data inputs: ambient temperature and humidity, IR surface temperature, solar radiation, wind speed and direction, precipitation, soil moisture, and soil pressure. The system has been tested with external multiplexers which allow for multi-sensor configurations for each parameter. The system is mounted on an aluminum frame with a weatherproof housing containing the core module, solar energy board, and interface board. This weather station has been deployed at over one hundred locations distributed over the EPFL campus as part of a high-resolution measurement and modeling campaign with a goal of better understanding urban environmental processes. This system

  6. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  7. Pipelining in structural health monitoring wireless sensor network

    NASA Astrophysics Data System (ADS)

    Li, Xu; Dorvash, Siavash; Cheng, Liang; Pakzad, Shamim

    2010-04-01

    Application of wireless sensor network (WSN) for structural health monitoring (SHM), is becoming widespread due to its implementation ease and economic advantage over traditional sensor networks. Beside advantages that have made wireless network preferable, there are some concerns regarding their performance in some applications. In long-span Bridge monitoring the need to transfer data over long distance causes some challenges in design of WSN platforms. Due to the geometry of bridge structures, using multi-hop data transfer between remote nodes and base station is essential. This paper focuses on the performances of pipelining algorithms. We summarize several prevent pipelining approaches, discuss their performances, and propose a new pipelining algorithm, which gives consideration to both boosting of channel usage and the simplicity in deployment.

  8. Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network

    DOE Data Explorer

    The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from November 1985 through December 1996. The six-station network provided 5-minute averaged measurements of global and diffuse horizontal solar irradiance. The data were processed at the National Renewable Energy Laboratory (NREL) to improve the assessment of the solar radiation resources in the southeastern United States. Three of the stations also measured the direct-normal solar irradiance with a pyrheliometer mounted in an automatic sun tracker. All data are archived in the Standard Broadband Format (SBF) with quality-assessment indicators. Monthly data summaries and plots are also available for each month. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network.

  9. Method for image quality monitoring on digital television networks

    NASA Astrophysics Data System (ADS)

    Bretillon, Pierre; Baina, Jamal; Jourlin, Michel; Goudezeune, Gabriel

    1999-11-01

    This paper presents a method designed to monitor image quality. The emphasis is given here to the monitoring in digital television broadcasting networks, in order for the providers to ensure a 'user-oriented' Quality of Service. Most objective image quality assessment methods are technically very difficult to apply in this context because of bandwidth limitations. We propose a parametric, reduced reference method that relies on the evaluation of characteristic coding and transmission impairments with a set of features. We show that quality can be predicted with a satisfying correlation to a subjective evaluation by the combination of several impairment features in an appropriate model. The method has been implemented and tested in a range of situations on simulated and real DVB networks. This allows to conclude on the usefulness of the approach and our future developments for quality of service monitoring in digital television.

  10. Wireless sensor networks for monitoring physiological signals of multiple patients.

    PubMed

    Dilmaghani, R S; Bobarshad, H; Ghavami, M; Choobkar, S; Wolfe, C

    2011-08-01

    This paper presents the design of a novel wireless sensor network structure to monitor patients with chronic diseases in their own homes through a remote monitoring system of physiological signals. Currently, most of the monitoring systems send patients' data to a hospital with the aid of personal computers (PC) located in the patients' home. Here, we present a new design which eliminates the need for a PC. The proposed remote monitoring system is a wireless sensor network with the nodes of the network installed in the patients' homes. These nodes are then connected to a central node located at a hospital through an Internet connection. The nodes of the proposed wireless sensor network are created by using a combination of ECG sensors, MSP430 microcontrollers, a CC2500 low-power wireless radio, and a network protocol called the SimpliciTI protocol. ECG signals are first sampled by a small portable device which each patient carries. The captured signals are then wirelessly transmitted to an access point located within the patients' home. This connectivity is based on wireless data transmission at 2.4-GHz frequency. The access point is also a small box attached to the Internet through a home asynchronous digital subscriber line router. Afterwards, the data are sent to the hospital via the Internet in real time for analysis and/or storage. The benefits of this remote monitoring are wide ranging: the patients can continue their normal lives, they do not need a PC all of the time, their risk of infection is reduced, costs significantly decrease for the hospital, and clinicians can check data in a short time. PMID:23851949

  11. Wireless sensor networks for monitoring physiological signals of multiple patients.

    PubMed

    Dilmaghani, R S; Bobarshad, H; Ghavami, M; Choobkar, S; Wolfe, C

    2011-08-01

    This paper presents the design of a novel wireless sensor network structure to monitor patients with chronic diseases in their own homes through a remote monitoring system of physiological signals. Currently, most of the monitoring systems send patients' data to a hospital with the aid of personal computers (PC) located in the patients' home. Here, we present a new design which eliminates the need for a PC. The proposed remote monitoring system is a wireless sensor network with the nodes of the network installed in the patients' homes. These nodes are then connected to a central node located at a hospital through an Internet connection. The nodes of the proposed wireless sensor network are created by using a combination of ECG sensors, MSP430 microcontrollers, a CC2500 low-power wireless radio, and a network protocol called the SimpliciTI protocol. ECG signals are first sampled by a small portable device which each patient carries. The captured signals are then wirelessly transmitted to an access point located within the patients' home. This connectivity is based on wireless data transmission at 2.4-GHz frequency. The access point is also a small box attached to the Internet through a home asynchronous digital subscriber line router. Afterwards, the data are sent to the hospital via the Internet in real time for analysis and/or storage. The benefits of this remote monitoring are wide ranging: the patients can continue their normal lives, they do not need a PC all of the time, their risk of infection is reduced, costs significantly decrease for the hospital, and clinicians can check data in a short time.

  12. Unobstructive Body Area Networks (BAN) for efficient movement monitoring.

    PubMed

    Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António

    2012-01-01

    The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user.

  13. EPMOSt: an energy-efficient passive monitoring system for wireless sensor networks.

    PubMed

    Garcia, Fernando P; Andrade, Rossana M C; Oliveira, Carina T; de Souza, José Neuman

    2014-06-19

    Monitoring systems are important for debugging and analyzing Wireless Sensor Networks (WSN). In passive monitoring, a monitoring network needs to be deployed in addition to the network to be monitored, named the target network. The monitoring network captures and analyzes packets transmitted by the target network. An energy-efficient passive monitoring system is necessary when we need to monitor a WSN in a real scenario because the lifetime of the monitoring network is extended and, consequently, the target network benefits from the monitoring for a longer time. In this work, we have identified, analyzed and compared the main passive monitoring systems proposed for WSN. During our research, we did not identify any passive monitoring system for WSN that aims to reduce the energy consumption of the monitoring network. Therefore, we propose an Energy-efficient Passive MOnitoring SysTem for WSN named EPMOSt that provides monitoring information using a Simple Network Management Protocol (SNMP) agent. Thus, any management tool that supports the SNMP protocol can be integrated with this monitoring system. Experiments with real sensors were performed in several scenarios. The results obtained show the energy efficiency of the proposed monitoring system and the viability of using it to monitor WSN in real scenarios.

  14. Spatio-temporally continuous monitoring of surface and ground temperature in Interior Alaska forest by optical Fiber DTS

    NASA Astrophysics Data System (ADS)

    Saito, K.; Iwahana, G.; Busey, R.; Ikawa, H.

    2015-12-01

    We have employed an optical Fiber DTS (distributed temperature sensing; N4386B by AP Sensing) system at a taiga site in Interior Alaska in order to monitor the surface and subsurface thermal regime continuously in space and time. The optic fiber cable sensor (multi-mode, GI50/125 dual core; 3.4 mm) of 2.7 km was installed on or below surface, measuring temperature at the half-meter resolution and half-hour interval. The site is in Poker Flat Research Range of the University of Alaska Fairbanks (N 65˚08', W 147˚26', 491 m a.s.l), underlain by permafrost. Dominant vegetation is black spruce. Within the area in which the cable was installed, density of spruce trees varies, ranging from open area with mosses to shrubby open forest to closed forest. Measurement was done for two years (from October, 2012 to October, 2014). When incident photons of a laser pulse is scattered by molecules of optical fiber (SiO2), a certain amount is back scattered at different frequencies (Stokes and Anti-Stokes peaks). The system detects the intensity ratio of the two peaks of this Raman scattering, which depends on the temperature of the molecules. The distance of the molecules is determines by the time it takes to travel (optical time domain reflectmetry; OTDR). About 2.0 km of the entire cable sensor lies on the surface to measure horizontal variations of surface temperatures. The diurnal and seasonal components of the variations were analyzed to illustrate their relationship with the overlying canopy characteristics. Cable is also coiled around a PVC tube (outer radius of 4 inch = 10.2 cm) for 120 cm, which is half buried to the ground to measure surface (or snow, when snow-covered) and subsurface temperatures with finer vertical resolution. Five of such tubes were installed in different land cover areas (open and closed forest, shrubs, open area, and relict thermokarst). We will also discuss challenges we encountered during installations and operations.

  15. Continuous monitoring of soil gas efflux with Forced Diffusion (FD) chamber technique in a tundra ecosystem, Alaska

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Park, S. J.; Lee, B. Y.

    2015-12-01

    Continuous measurements of soil carbon dioxide (CO2) efflux provide essential information about the soil carbon budget in response to an abruptly changing climate at Arctic and Subarctic scales. The Forced Diffusion (FD) chamber technique has a gas permeable membrane, which passively regulates the mixing of atmosphere and soil air in the chamber, in place of the active pumping system inside a regular dynamics efflux chamber system (Risk et al., 2011). Here the system has been modified the sampling routine to eliminate the problem of sensor drift. After that, we deployed the FD chamber system in a tundra ecosystem over the discontinuous permafrost regime of Council, Alaska. The representative understory plants are tussock (17 %), lichen (32 %), and moss (51 %), within a 40 נ40 m plot at an interval of five meters (81 points total) for efflux-measurement by dynamic chamber. The FD chamber monitored soil CO2 efflux from moss, lichen, and tussock regimes at an interval of 30 min during the growing season of 2015. As the results, mean soil CO2 effluxes in sphagnum moss, lichen, and tussock were 1.98 ± 1.10 (coefficient of variance: 55.8 %), 3.34 ± 0.84 (CV: 25.0 %), and 5.32 ± 1.48 (CV: 27.8 %) gCO2/m2/d, respectively. The difference between the 30-min efflux interval and the average efflux of three 10-min intervals is not significant for sphagnum (n = 196), lichen (n = 918), and tussock (n = 918) under a 95 % confidence level. The deploying interval was then set to 30 min and synchronized with eddy covariance tower data. During the deployment period of 2015, soil CO2 efflux over moss, lichen, and tussock using the FD chamber system were 44 ± 24, 73 ± 18, and 117 ± 33 gCO2/m2/period, respectively. Using the dynamic chamber, mean ecosystem respiration (Re) ranges for moss, lichen, and tussock were 2.2-2.6, 1.8-2.0, and 3.3-3.6 gCO2/m2/d, respectively, during June and July of 2015. These techniques provide the representativeness of spatiotemporal variation of soil

  16. Monitoring of stability of ASG-EUPOS network coordinates

    NASA Astrophysics Data System (ADS)

    Figurski, M.; Szafranek, K.; Wrona, M.

    2009-04-01

    ASG-EUPOS (Active Geodetic Network - European Position Determination System) is the national system of precise satellite positioning in Poland, which increases a density of regional and global GNSS networks and is widely used by public administration, national institutions, entrepreneurs and citizens (especially surveyors). In near future ASG-EUPOS is to take role of main national network. Control of proper activity of stations and realization of ETRS'89 is a necessity. User of the system needs to be sure that observations quality and coordinates accuracy are high enough. Coordinates of IGS (International GNSS Service) and EPN (European Permanent Network) stations are precisely determined and any changes are monitored all the time. Observations are verified before they are archived in regional and global databases. The same applies to ASG-EUPOS. This paper concerns standardization of GNSS observations from different stations (uniform adjustment), examination of solutions correctness according to IGS and EPN standards and stability of solutions and sites activity

  17. 77 FR 35925 - Fisheries of the Exclusive Economic Zone Off Alaska; Monitoring and Enforcement Requirements in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... sea with hook-and-line gear in the Bering Sea and Aleutian Islands Management Area (BSAI). If approved... need for enhanced catch accounting, monitoring, and enforcement created by the formation of a voluntary... precision of the accounting for allocated quota species. This action is intended to promote the goals...

  18. Fluid and Rock Property Controls On Production And Seismic Monitoring Alaska Heavy Oils

    SciTech Connect

    Liberatore, Matthew; Herring, Andy; Prasad, Manika; Dorgan, John; Batzle, Mike

    2012-10-30

    The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formation's vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations.

  19. 77 FR 59053 - Fisheries of the Exclusive Economic Zone Off Alaska; Monitoring and Enforcement Requirements in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... National Oceanic and Atmospheric Administration 15 CFR Part 902 50 CFR Part 679 RIN 0648-BB67 Fisheries of... and Atmospheric Administration (NOAA), Commerce. ACTION: Final rule. SUMMARY: NMFS issues regulations... proposed rule (77 FR 35925, June 15, 2012) and is not repeated here. NMFS requires new monitoring...

  20. The Alaska Lake Ice and Snow Observatory Network (ALISON): Hands-on Experiential K- 12 Learning in the North

    NASA Astrophysics Data System (ADS)

    Morris, K.; Jeffries, M.

    2008-12-01

    The Alaska Lake Ice and Snow Observatory Network (ALISON) was initiated by Martin Jeffries (UAF polar scientist), Delena Norris-Tull (UAF education professor) and Ron Reihl (middle school science teacher, Fairbanks North Star Borough School District). The snow and ice measurement protocols were developed in 1999-2000 at the Poker Flat Research Range (PFRR) by Geophysical Institute, University of Alaska scientists and tested by home school teacher/students in winter 2001-2002 in Fairbanks, AK. The project was launched in 2002 with seven sites around the state (PFRR, Fairbanks, Barrow, Mystic Lake, Nome, Shageluk and Wasilla). The project reached its broadest distribution in 2005-2006 with 22 sites. The schools range from urban (Wasilla) to primarily Alaska native villages (Shageluk). They include public schools, charter schools, home schooled students and parents, informal educators and citizen scientists. The grade levels range from upper elementary to high school. Well over a thousand students have participated in ALISON since its inception. Equipment is provided to the observers at each site. Measurements include ice thickness (with a hot wire ice thickness gauge), snow depth and snow temperature (surface and base). Snow samples are taken and snow density derived. Snow variables are used to calculate the conductive heat flux through the ice and snow cover to the atmosphere. All data are available on the Web site. The students and teachers are scientific partners in the study of lake ice processes, contributing to new scientific knowledge and understanding while also learning science by doing science with familiar and abundant materials. Each autumn, scientists visit each location to work with the teachers and students, helping them to set up the study site, showing them how to make the measurements and enter the data into the computer, and discussing snow, ice and polar environmental change. A number of 'veteran' teachers are now setting up the study sites on

  1. Social network diagnostics: a tool for monitoring group interventions

    PubMed Central

    2013-01-01

    Background Many behavioral interventions designed to improve health outcomes are delivered in group settings. To date, however, group interventions have not been evaluated to determine if the groups generate interaction among members and how changes in group interaction may affect program outcomes at the individual or group level. Methods This article presents a model and practical tool for monitoring how social ties and social structure are changing within the group during program implementation. The approach is based on social network analysis and has two phases: collecting network measurements at strategic intervention points to determine if group dynamics are evolving in ways anticipated by the intervention, and providing the results back to the group leader to guide implementation next steps. This process aims to initially increase network connectivity and ultimately accelerate the diffusion of desirable behaviors through the new network. This article presents the Social Network Diagnostic Tool and, as proof of concept, pilot data collected during the formative phase of a childhood obesity intervention. Results The number of reported advice partners and discussion partners increased during program implementation. Density, the number of ties among people in the network expressed as a percentage of all possible ties, increased from 0.082 to 0.182 (p < 0.05) in the advice network, and from 0.027 to 0.055 (p > 0.05) in the discussion network. Conclusions The observed two-fold increase in network density represents a significant shift in advice partners over the intervention period. Using the Social Network Tool to empirically guide program activities of an obesity intervention was feasible. PMID:24083343

  2. Optical performance monitoring (OPM) in next-generation optical networks

    NASA Astrophysics Data System (ADS)

    Neuhauser, Richard E.

    2002-09-01

    DWDM transmission is the enabling technology currently pushing the transmission bandwidths in core networks towards the multi-Tb/s regime with unregenerated transmission distances of several thousand km. Such systems represent the basic platform for transparent DWDM networks enabling both the transport of client signals with different data formats and bit rates (e.g. SDH/SONET, IP over WDM, Gigabit Ethernet, etc.) and dynamic provisioning of optical wavelength channels. Optical Performance Monitoring (OPM) will be one of the key elements for providing the capabilities of link set-up/control, fault localization, protection/restoration and path supervisioning for stable network operation becoming the major differentiator in next-generation networks. Currently, signal quality is usually characterized by DWDM power levels, spectrum-interpolated Optical Signal-to-Noise-Ratio (OSNR), and channel wavelengths. On the other hand there is urgent need for new OPM technologies and strategies providing solutions for in-channel OSNR, signal quality measurement, fault localization and fault identification. Innovative research and product activities include polarization nulling, electrical and optical amplitude sampling, BER estimation, electrical spectrum analysis, and pilot tone technologies. This presentation focuses on reviewing the requirements and solution concepts in current and next-generation networks with respect to Optical Performance Monitoring.

  3. Ten Years of Monitoring the Eruption of Shrub Mud Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    McGimsey, R. G.; Evans, W. C.; Bergfeld, D.; McCarthy, S. H.; Hagstrum, J. T.

    2007-12-01

    Shrub mud volcano, one of three in the Klawasi group on the eastern flank of Mount Drum volcano in the Wrangell volcanic field of eastern Alaska, has been erupting warm, saline mud and CO2-rich gas continuously since at least the summer of 1997, following 40 years of repose. The initial eruption in early summer of 1997, documented by Richter and others (1998), involved violent fountaining of mud, up to 6-8 m high, from nearly a dozen vents located near the summit, and quiet effusion from vents located about mid-way down the north flank of the 100-m-high cone. Guided by topography, early emissions of copious amounts of CO2 gas flowed in narrow streams through brushy foliage leaving behind stripes of brown, dead vegetation along the flow paths. The hazard posed by the CO2 emissions was evident from dead birds and mammals found near the vents. Initial surveys of the activity in 1997 recorded water temperatures up to 46°C. A survey in 1999 by Sorey and others (2000) found numerous active vents-many in different locations than those two years earlier-a maximum water temperature of 54°C, and an estimated total discharge of warm water of 50 l/s. Measured CO2 emissions were extrapolated to a discharge rate of 6-12 tonnes/day. The highest water temperature recorded was 57.3°C in 2000, with temperatures gradually declining since. From year to year, we found that eruptive activity migrated amongst clusters of vents, some new and some continuing from 1997. Between the summer of 2003 and the spring of 2004, the system changed dramatically when a large collapse pit formed a few tens of meters from the main summit vents and all previously active vents became inactive. This water-filled circular pit measured 28 m in diameter, up to 9 m deep, and encompassed an area that had previously been unaffected by the eruptive activity. In July 2004, water temperature and discharge at the outlet channel was 37.2°C and 9.4 l/s, respectively. The total CO2 discharge from the roiling pool

  4. How minimum detectable displacement in a GNSS Monitoring Network change?

    NASA Astrophysics Data System (ADS)

    Hilmi Erkoç, Muharrem; Doǧan, Uǧur; Aydın, Cüneyt

    2016-04-01

    The minimum detectable displacement in a geodetic monitoring network shows the displacement magnitude which may be just discriminated with known error probabilities. This displacement, which is originally deduced from sensitivity analysis, depends on network design, observation accuracy, datum of the network, direction of the displacement and power of the statistical test used for detecting the displacements. One may investigate how different scenarios on network design and observation accuracies influence the minimum detectable displacements for the specified datum, a-priorly forecasted directions and assumed power of the test and decide which scenario is the best or most optimum. It is sometimes difficult to forecast directions of the displacements. In that case, the minimum detectable displacements in a geodetic monitoring network are derived on the eigen-directions associated with the maximum eigen-values of the network stations. This study investigates how minimum detectable displacements in a GNSS monitoring network change depending on the accuracies of the network stations. For this, CORS-TR network in Turkey with 15 stations (a station fixed) is used. The data with 4h, 6h, 12 h and 24 h observing session duration in three sequential days of 2011, 2012 and 2013 were analyzed with Bernese 5.2 GNSS software. The repeatabilities of the daily solutions belonging to each year were analyzed carefully to scale the Bernese cofactor matrices properly. The root mean square (RMS) values for daily repeatability with respect to the combined 3-day solution are computed (the RMS values are generally less than 2 mm in the horizontal directions (north and east) and < 5 mm in the vertical direction for 24 h observing session duration). With the obtained cofactor matrices for these observing sessions, the minimum detectable displacements along the (maximum) eigen directions are compared each other. According to these comparisons, more session duration less minimum detectable

  5. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and

  6. Automated monitor and control for deep space network subsystems

    NASA Technical Reports Server (NTRS)

    Smyth, P.

    1989-01-01

    The problem of automating monitor and control loops for Deep Space Network (DSN) subsystems is considered and an overview of currently available automation techniques is given. The use of standard numerical models, knowledge-based systems, and neural networks is considered. It is argued that none of these techniques alone possess sufficient generality to deal with the demands imposed by the DSN environment. However, it is shown that schemes that integrate the better aspects of each approach and are referenced to a formal system model show considerable promise, although such an integrated technology is not yet available for implementation. Frequent reference is made to the receiver subsystem since this work was largely motivated by experience in developing an automated monitor and control loop for the advanced receiver.

  7. A versatile and interoperable network sensors for water resources monitoring

    NASA Astrophysics Data System (ADS)

    Ortolani, Alberto; Brandini, Carlo; Costantini, Roberto; Costanza, Letizia; Innocenti, Lucia; Sabatini, Francesco; Gozzini, Bernardo

    2010-05-01

    Monitoring systems to assess water resources quantity and quality require extensive use of in-situ measurements, that have great limitations like difficulties to access and share data, and to customise and easy reconfigure sensors network to fulfil end-users needs during monitoring or crisis phases. In order to address such limitations Sensor Web Enablement technologies for sensors management have been developed and applied to different environmental context under the EU-funded OSIRIS project (Open architecture for Smart and Interoperable networks in Risk management based on In-situ Sensors, www.osiris-fp6.eu). The main objective of OSIRIS was to create a monitoring system to manage different environmental crisis situations, through an efficient data processing chain where in-situ sensors are connected via an intelligent and versatile network infrastructure (based on web technologies) that enables end-users to remotely access multi-domain sensors information. Among the project application, one was focused on underground fresh-water monitoring and management. With this aim a monitoring system to continuously and automatically check water quality and quantity has been designed and built in a pilot test, identified as a portion of the Amiata aquifer feeding the Santa Fiora springs (Grosseto, Italy). This aquifer present some characteristics that make it greatly vulnerable under some conditions. It is a volcanic aquifer with a fractured structure. The volcanic nature in Santa Fiora causes levels of arsenic concentrations that normally are very close to the threshold stated by law, but that sometimes overpass such threshold for reasons still not fully understood. The presence of fractures makes the infiltration rate very inhomogeneous from place to place and very high in correspondence of big fractures. In case of liquid-pollutant spills (typically hydrocarbons spills from tanker accidents or leakage from house tanks containing fuel for heating), these fractures can act

  8. Toward implementation of a national ground water monitoring network

    USGS Publications Warehouse

    Schreiber, Robert P.; Cunningham, William L.; Copeland, Rick; Frederick, Kevin D.

    2008-01-01

    The Federal Advisory Committee on Water Information's (ACWI) Subcommittee on Ground Water (SOGW) has been working steadily to develop and encourage implementation of a nationwide, long-term ground-water quantity and quality monitoring framework. Significant progress includes the planned submission this fall of a draft framework document to the full committee. The document will include recommendations for implementation of the network and continued acknowledgment at the federal and state level of ACWI's potential role in national monitoring toward an improved assessment of the nation's water reserves. The SOGW mission includes addressing several issues regarding network design, as well as developing plans for concept testing, evaluation of costs and benefits, and encouraging the movement from pilot-test results to full-scale implementation within a reasonable time period. With the recent attention to water resource sustainability driven by severe droughts, concerns over global warming effects, and persistent water supply problems, the SOGW mission is now even more critical.

  9. On a Monitoring Network of Territory Elements for Emergency Management

    NASA Astrophysics Data System (ADS)

    Teramo, A.; Marino, A.; Termini, D.; Teramo, M.; Saccà, C.; Romeo, M.; de Domenico, D.; Lupò, D.

    2010-12-01

    The proposed methodological approach, based on the implementation of innovative monitoring networks of territories falling within high seismicity areas, aims at the arrangement of tools for a reduction of urban and territorial seismic vulnerability through procedures of territorial diagnostics with early warning thresholds. In this preliminary phase of the study, several problems have been analysed and solved related to wireless sensor typology to be used and data to be acquired for the realization of a expert system for a real time check of escape route conditions in case of a catastrophe, and the structural reliability of buildings, also strategic type, for preliminary damage evaluations. Specific analysis tools of acquired data by monitoring networks have been arranged for an analysis in relation to main territorial risk factors of a given area, arranging GIS maps in real time for the reduction of territorial system criticalities also during the emergencies.

  10. Assessing the weather monitoring capabilities of cellular microwave link networks

    NASA Astrophysics Data System (ADS)

    Fencl, Martin; Vrzba, Miroslav; Rieckermann, Jörg; Bareš, Vojtěch

    2016-04-01

    Using of microwave links for rainfall monitoring was suggested already by (Atlas and Ulbrich, 1977). However, this technique attracted broader attention of scientific community only in the recent decade, with the extensive growth of cellular microwave link (CML) networks, which form the backbone of today's cellular telecommunication infrastructure. Several studies have already shown that CMLs can be conveniently used as weather sensors and have potential to provide near-ground path-integrated observations of rainfall but also humidity or fog. However, although research is still focusing on algorithms to improve the weather sensing capabilities (Fencl et al., 2015), it is not clear how to convince cellular operators to provide the power levels of their network. One step in this direction is to show in which regions or municipalities the networks are sufficiently dense to provide/develop good services. In this contribution we suggest a standardized approach to evaluate CML networks in terms of rainfall observation and to identify suitable regions for CML rainfall monitoring. We estimate precision of single CML based on its sensitivity to rainfall, i.e. as a function of frequency, polarization and path length. Capability of a network to capture rainfall spatial patterns is estimated from the CML coverage and path lengths considering that single CML provides path-integrated rain rates. We also search for suitable predictors for regions where no network topologies are available. We test our approach on several European networks and discuss the results. Our results show that CMLs are very dense in urban areas (> 1 CML/km2), but less in rural areas (< 0.02 CML/km2). We found a strong correlation between a population and CML network density (e.g. R2 = 0.97 in Czech Republic), thus population could be a simple proxy to identify suitable regions for CML weather monitoring. To enable a simple and efficient assessment of the CML monitoring potential for any region worldwide

  11. On-site monitoring of construction of Terror Lake hydroelectric project, Kodiak, Alaska. Final report

    SciTech Connect

    Hosking, H.

    1984-09-01

    The report describes the effort by the Fish and Wildlife Service to monitor the construction of the first hydroelectric project built on national wildlife refuge lands under license by the Federal Energy Regulatory Commission. Recommendations are offered for use in planning other projects. Fish and wildlife species of concern included brown bears, Sitka black-tailed deer, mountain goats, raptors (including bald eagles), and several species of salmonid fish. Construction practices relating to erosion control, contaminant management, culvert placement, and siting of project structures are covered.

  12. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    NASA Astrophysics Data System (ADS)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized

  13. Network Monitoring and Fault Detection on the University of Illinois at Urbana-Champaign Campus Computer Network.

    ERIC Educational Resources Information Center

    Sng, Dennis Cheng-Hong

    The University of Illinois at Urbana-Champaign (UIUC) has a large campus computer network serving a community of about 20,000 users. With such a large network, it is inevitable that there are a wide variety of technologies co-existing in a multi-vendor environment. Effective network monitoring tools can help monitor traffic and link usage, as well…

  14. Design of national groundwater quality monitoring network in Egypt.

    PubMed

    Dawoud, Mohamed A

    2004-01-01

    In the Nile Valley and Delta the protection of groundwater resources is high priority environmental concern. Many groundwater quality problems are already dispersed and may be widespread and frequent in occurrence. Examples include problems associated with the extensive application of chemical fertilizers in agricultural specially in the new reclaimed areas, leaks in sewers, septic tanks, the aggregate effects of many different points source pollution in urban areas and natural, geologically related water quality problems. A national groundwater quality monitoring has been designed and implemented based on the stepwise procedure. The national groundwater quality monitoring network is used to quantify the quality changes in long run, either caused by pollution activities or by salt water intrusion and to describe the overall current groundwater quality status on a national scale of the main aquifers. The monitoring tools and methodologies developed in this research can be used to assure protection of public health and determine the sustainability of groundwater in various purposes. This national monitoring network plays important roles for decision makers in developing the groundwater resources management plans in different aquifers systems in Egypt.

  15. Hydrogeological modeling for improving groundwater monitoring network and strategies

    NASA Astrophysics Data System (ADS)

    Thakur, Jay Krishna

    2016-09-01

    The research aimed to investigate a new approach for spatiotemporal groundwater monitoring network optimization using hydrogeological modeling to improve monitoring strategies. Unmonitored concentrations were incorporated at different potential monitoring locations into the groundwater monitoring optimization method. The proposed method was applied in the contaminated megasite, Bitterfeld/Wolfen, Germany. Based on an existing 3-D geological model, 3-D groundwater flow was obtained from flow velocity simulation using initial and boundary conditions. The 3-D groundwater transport model was used to simulate transport of α-HCH with an initial ideal concentration of 100 mg/L injected at various hydrogeological layers in the model. Particle tracking for contaminant and groundwater flow velocity realizations were made. The spatial optimization result suggested that 30 out of 462 wells in the Quaternary aquifer (6.49 %) and 14 out of 357 wells in the Tertiary aquifer (3.92 %) were redundant. With a gradual increase in the width of the particle track path line, from 0 to 100 m, the number of redundant wells remarkably increased, in both aquifers. The results of temporal optimization showed different sampling frequencies for monitoring wells. The groundwater and contaminant flow direction resulting from particle tracks obtained from hydrogeological modeling was verified by the variogram modeling through α-HCH data from 2003 to 2009. Groundwater monitoring strategies can be substantially improved by removing the existing spatio-temporal redundancy as well as incorporating unmonitored network along with sampling at recommended interval of time. However, the use of this model-based method is only recommended in the areas along with site-specific experts' knowledge.

  16. Network Optimization for Induced Seismicity Monitoring in Urban Areas

    NASA Astrophysics Data System (ADS)

    Kraft, T.; Husen, S.; Wiemer, S.

    2012-12-01

    With the global challenge to satisfy an increasing demand for energy, geological energy technologies receive growing attention and have been initiated in or close to urban areas in the past several years. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential to the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquake at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental

  17. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Bennington, Ninfa L.; Haney, Matthew; De Angelis, Silvio; Thurber, Clifford H.; Freymueller, Jeffrey

    2015-08-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok's caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. The magnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/or magmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation source may be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  18. Dual instrument passive acoustic monitoring of belugas in Cook Inlet, Alaska.

    PubMed

    Castellote, Manuel; Small, Robert J; Lammers, Marc O; Jenniges, Justin J; Mondragon, Jeff; Atkinson, Shannon

    2016-05-01

    As part of a long-term research program, Cook Inlet beluga (Delphinapterus leucas) presence was acoustically monitored with two types of acoustic sensors utilized in tandem in moorings deployed year-round: an ecological acoustic recorder (EAR) and a cetacean and porpoise detector (C-POD). The EAR was used primarily to record the calls, whistles, and buzzes produced by belugas and killer whales (Orcinus orca). The C-POD was used to log and classify echolocation clicks from belugas, killer whales, and porpoises. This paper describes mooring packages that maximized the chances of successful long-term data collection in the particularly challenging Cook Inlet environment, and presents an analytical comparison of odontocete detections obtained by the collocated EAR and C-POD instruments from two mooring locations in the upper inlet. Results from this study illustrate a significant improvement in detecting beluga and killer whale presence when the different acoustic signals detected by EARs and C-PODs are considered together. Further, results from concurrent porpoise detections indicating prey competition and feeding interference with beluga, and porpoise displacement due to ice formation are described. PMID:27250163

  19. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    USGS Publications Warehouse

    Bennington, Ninfa; Haney, Matt; De Angelis, Silvio; Thurber, Clifford; Freymueller, Jeff

    2015-01-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok’s caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. Themagnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/ormagmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation sourcemay be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  20. Erosional history of Cape Halkett and contemporary monitoring of bluff retreat, Beaufort Sea coast, Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Arp, Christopher D.; Beck, Richard A.; Grosse, Guido; Webster, James M.; Urban, Frank E.

    2009-01-01

    Cape Halkett is located along the Beaufort Sea at the end of a low-lying tundra landscape. The area has been subject to major modifications over the last century as a result of erosion and migration of the coastline inland. Long-term mean annual erosion rates (1955-2009) for the entire cape are 7.6 m/yr, with a gradual increase in rates over the first five time periods of remotely sensed imagery analyzed and a large increase during the most recent time period. Division of the cape into three distinct coastal zones shows very different erosional patterns: the northeast-facing segment (Zone 1) showing a consistent and large increase; the southeast-facing segment (Zone 3) showing a gradual increase with recent, heightened erosion rates; and the east-facing segment (Zone 2) showing decreased rates due to the reformation of a sand and gravel spit. Monitoring of bluff erosion with time-lapse photography, differential GPS surveys, terrestrial and bathymetric surveys, and water level, sea and permafrost temperature data provide insights into the processes driving contemporary patterns of erosion and will provide valuable information for the prediction of future shoreline positions.

  1. Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Wang, Shin-Ywan

    2012-01-01

    The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.

  2. Three neural network based sensor systems for environmental monitoring

    SciTech Connect

    Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1994-05-01

    Compact, portable systems capable of quickly identifying contaminants in the field are of great importance when monitoring the environment. One of the missions of the Pacific Northwest Laboratory is to examine and develop new technologies for environmental restoration and waste management at the Hanford Site. In this paper, three prototype sensing systems are discussed. These prototypes are composed of sensing elements, data acquisition system, computer, and neural network implemented in software, and are capable of automatically identifying contaminants. The first system employs an array of tin-oxide gas sensors and is used to identify chemical vapors. The second system employs an array of optical sensors and is used to identify the composition of chemical dyes in liquids. The third system contains a portable gamma-ray spectrometer and is used to identify radioactive isotopes. In these systems, the neural network is used to identify the composition of the sensed contaminant. With a neural network, the intense computation takes place during the training process. Once the network is trained, operation consists of propagating the data through the network. Since the computation involved during operation consists of vector-matrix multiplication and application of look-up tables unknown samples can be rapidly identified in the field.

  3. Low-power wireless sensor networks for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Musaloiu-Elefteri, Razvan

    Significant progress has been made in the field of Wireless Sensor Networks in the decade that passed since its inception. This thesis presents several advances intended to make these networks a suitable instrument for environmental monitoring. The thesis first describes Koala, a low-power data-retrieval system that can achieve duty cycles below 1% by using bulk transfers, and Low Power Probing, a novel mechanism to efficiently wake up a network. The second contribution is Serendipity, another data-retrieval system, which takes advantage of the random rendezvous inherent in the Low Power Probing mechanism to achieve a very low duty cycle for low data rate networks. The third part explores the problem of and presents a solution for the interference between WSNs using IEEE 802.15.4 radios and the ubiquitous WiFi networks in the 2.4 GHz spectrum bandwidth. The last contribution of this thesis is Latte, a restricted version of the JavaScript language, that not only can be compiled to C and dynamically loaded on a sensing node, but can also be simulated and debugged in a JavaScript-enabled browser.

  4. A wireless sensor network for monitoring volcano-seismic signals

    NASA Astrophysics Data System (ADS)

    Lopes Pereira, R.; Trindade, J.; Gonçalves, F.; Suresh, L.; Barbosa, D.; Vazão, T.

    2014-12-01

    Monitoring of volcanic activity is important for learning about the properties of each volcano and for providing early warning systems to the population. Monitoring equipment can be expensive, and thus the degree of monitoring varies from volcano to volcano and from country to country, with many volcanoes not being monitored at all. This paper describes the development of a wireless sensor network (WSN) capable of collecting geophysical measurements on remote active volcanoes. Our main goals were to create a flexible, easy-to-deploy and easy-to-maintain, adaptable, low-cost WSN for temporary or permanent monitoring of seismic tremor. The WSN enables the easy installation of a sensor array in an area of tens of thousands of m2, allowing the location of the magma movements causing the seismic tremor to be calculated. This WSN can be used by recording data locally for later analysis or by continuously transmitting it in real time to a remote laboratory for real-time analyses. We present a set of tests that validate different aspects of our WSN, including a deployment on a suspended bridge for measuring its vibration.

  5. Prairie Monitoring Protocol Development: North Coast and Cascades Network

    USGS Publications Warehouse

    McCoy, Allen; Dalby, Craig

    2009-01-01

    The purpose of the project was to conduct research that will guide development of a standard approach to monitoring several components of prairies within the North Coast and Cascades Network (NCCN) parks. Prairies are an important element of the natural environment at many parks, including San Juan Island National Historical Park (NHP) and Ebey's Landing National Historical Reserve (NHR). Forests have been encroaching on these prairies for many years, and so monitoring of the prairies is an important resource issue. This project specifically focused on San Juan Island NHP. Prairies at Ebey's Landing NHR will be monitored in the future, but that park was not mapped as part of this prototype project. In the interest of efficiency, the Network decided to investigate two main issues before launching a full protocol development effort: (1) the imagery requirements for monitoring prairie components, and (2) the effectiveness of software to assist in extracting features from the imagery. Several components of prairie monitoring were initially identified as being easily tracked using aerial imagery. These components included prairie/forest edge, broad prairie composition (for example, shrubs, scattered trees), and internal exclusions (for example, shrubs, bare ground). In addition, we believed that it might be possible to distinguish different grasses in the prairies if the imagery were of high enough resolution. Although the areas in question at San Juan Island NHP are small enough that mapping on the ground with GPS (Global Positioning System) would be feasible, other applications could benefit from aerial image acquisition on a regular, recurring basis and thereby make the investment in aerial imagery worthwhile. The additional expense of orthorectifying the imagery also was determined to be cost-effective.

  6. Common murre restoration monitoring in the Barren Islands, Alaska, 1993. Restoration project 93049. Exxon Valdez oil spill restoration project final report

    SciTech Connect

    Roseneau, D.G.; Kettle, A.B.; Byrd, G.V.

    1995-06-01

    This report summarizes the results of the second year of common murre (Uria aalge) restoration monitoring work conducted in the northern Gulf of Alaska for the Exxon Valdez Oil Spill Trustee Council. Information on population numbers, nesting chronology, and productivity of murres were collected by U.S. Fish and Wildlife Service (FWS) biologists at the injured East of Amatuli Island - Light Rock and Nord Island - Northwest Islet colonies in the Barren Islands during the 1993 breeding season. These data are presented and statistically compared with information reported in the 1989-1992 FWS murre damage assessment and restoration studies.

  7. Deploying optical performance monitoring in TeliaSonera's network

    NASA Astrophysics Data System (ADS)

    Svensson, Torbjorn K.; Karlsson, Per-Olov E.

    2004-09-01

    This paper reports on the first steps taken by TeliaSonera towards deploying optical performance monitoring (OPM) in the company"s transport network, in order to assure increasingly reliable communications on the physical layer. The big leap, a world-wide deployment of OPM still awaits a breakthrough. There is required very obvious benefits from using OPM in order to change this stalemate. Reasons may be the anaemic economy of many telecom operators, shareholders" pushing for short-term payback, and reluctance to add complexity and to integrate a system management. Technically, legacy digital systems do already have a proven ability of monitoring, so adding OPM to the dense wavelength division multiplexed (DWDM) systems in operation should be judged with care. Duly installed, today"s DWDM systems do their job well, owing to rigorous rules for link design and a prosperous power budget, a power management inherent to the system, and a reliable supplier"s support. So what may bring this stalemate to an end? -A growing number of appliances of OPM, for enhancing network operation and maintenance, and enabling new customer services, will most certainly bring momentum to a change. The first employment of OPM in TeliaSonera"s network is launched this year, 2004. The preparedness of future OPM dependent services and transport technologies will thereby be granted.

  8. An International Haze-Monitoring Network for Students.

    NASA Astrophysics Data System (ADS)

    Mims, Forrest M., III

    1999-07-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) Program is an international network of schools in 71 countries that monitors up to 20 environmental parameters. Recently GLOBE added a haze-monitoring program to its measurement protocols. This network has the potential of providing important data about changes in the aerosol optical depth of the atmosphere caused by weather fronts, industrial and automobile pollution, and smoke from forest and brush fires and volcanic eruptions. Initially, monitoring will be conducted with an inexpensive, single-channel (520 nm) sun photometer. Unlike conventional sun photometers that use interference filters that are subject to unpredictable and rapid degradation, the GLOBE instrument uses a common light-emitting diode (LED) as a spectrally selective detector. Annual calibrations of two LED sun photometers at Mauna Loa Observatory since 1992 show that these instruments have insignificant degradation when compared to filter sun photometers. Some 175 prototype versions of a kit LED sun photometer have been assembled and tested by students from 16 countries at the University of the Nations and by more than 130 high school teachers in various pilot studies. These studies have demonstrated that even inexperienced students and teachers can quickly assemble a sun photometer from a kit of parts and perform a reliable angley calibration. The pilot studies have also demonstrated that sun photometery provides a convenient means for allowing students to perform hands-on science while they learn about various topics in history, electronics, algebra, statistics, graphing, and meteorology.

  9. Georgia's Ground-Water Resources and Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.

    2006-01-01

    The U.S. Geological Survey (USGS) ground-water network for Georgia currently consists of 170 wells in which ground-water levels are continuously monitored. Most of the wells are locatedin the Coastal Plain in the southern part of the State where ground-water pumping stress is high. In particular, there are large concentrations of wells in coastal and southwestern Georgia areas, where there are issues related to ground-water pumping, saltwater intrusion along the coast, and diminished streamflow in southwestern Georgia due to irrigation pumping. The map at right shows the USGS ground-water monitoring network for Georgia. Ground-water levels are monitored in 170 wells statewide, of which 19 transmit data in real time via satellite and posted on the World Wide Web at http://waterdata.usgs.gov/ga/nwis/current/?type=gw . A greater concentration of wells occurs in the Coastal Plain where there are several layers of aquifers and in coastal and southwestern Georgia areas, which are areas with specific ground-water issues.

  10. A Compression Algorithm in Wireless Sensor Networks of Bearing Monitoring

    NASA Astrophysics Data System (ADS)

    Bin, Zheng; Qingfeng, Meng; Nan, Wang; Zhi, Li

    2011-07-01

    The energy consumption of wireless sensor networks (WSNs) is always an important problem in the application of wireless sensor networks. This paper proposes a data compression algorithm to reduce amount of data and energy consumption during the data transmission process in the on-line WSNs-based bearing monitoring system. The proposed compression algorithm is based on lifting wavelets, Zerotree coding and Hoffman coding. Among of that, 5/3 lifting wavelets is used for dividing data into different frequency bands to extract signal characteristics. Zerotree coding is applied to calculate the dynamic thresholds to retain the attribute data. The attribute data are then encoded by Hoffman coding to further enhance the compression ratio. In order to validate the algorithm, simulation is carried out by using Matlab. The result of simulation shows that the proposed algorithm is very suitable for the compression of bearing monitoring data. The algorithm has been successfully used in online WSNs-based bearing monitoring system, in which TI DSP TMS320F2812 is used to realize the algorithm.

  11. Intelligent Wireless Sensor Networks for System Health Monitoring

    NASA Technical Reports Server (NTRS)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  12. Self-organizing wireless sensor networks for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Basheer, Mohammed R.; Rao, Vittal S.; Derriso, Mark M.

    2003-07-01

    A smart sensor node has been developed which has (a) the ability to sense strain of the structure under observation, (b) process this raw sensor data in cooperation with its neighbors and (c) transmit the information to the end user. This network is designed to be self organizing in the sense of establishing and maintaining the inter node connectivity without the need for human intervention. For the envisioned application of structural health monitoring, wireless communication is the most practical solution for node interconnectivity not only because they eliminate interconnecting cables but also for their ability to establish communication links even in inaccessible regions. But wireless nework brings with it a number of issues such as interference, fault tolerant self organizing, multi-hop communication, energy effieiciency, routing and finally reliable operation in spite of massive complexity of the sysetm. This paper addresses the issue of fault tolerant self organiing in wireless sensor networks. We propose a new architecture called the Redundant Tree Network (RTN). RTN is a hierarchical network which exploits redundant links between nodes to provide reliability.

  13. A survey of geosensor networks: advances in dynamic environmental monitoring.

    PubMed

    Nittel, Silvia

    2009-01-01

    In the recent decade, several technology trends have influenced the field of geosciences in significant ways. The first trend is the more readily available technology of ubiquitous wireless communication networks and progress in the development of low-power, short-range radio-based communication networks, the miniaturization of computing and storage platforms as well as the development of novel microsensors and sensor materials. All three trends have changed the type of dynamic environmental phenomena that can be detected, monitored and reacted to. Another important aspect is the real-time data delivery of novel platforms today. In this paper, I will survey the field of geosensor networks, and mainly focus on the technology of small-scale geosensor networks, example applications and their feasibility and lessons learnt as well as the current research questions posed by using this technology today. Furthermore, my objective is to investigate how this technology can be embedded in the current landscape of intelligent sensor platforms in the geosciences and identify its place and purpose. PMID:22346721

  14. A climatological network for regional climate monitoring in Sardinia.

    NASA Astrophysics Data System (ADS)

    Delitala, Alessandro M. S.

    2016-04-01

    In recent years the Region of Sardinia has been working to set-up a Regional Climatological Network of surface stations, in order to monitor climate (either stationary or changing) at sub-synoptic scale and in order to make robust climatological information available to researchers and to local stake-holders. In order to do that, an analysis of long climatological time series has been performed on the different historical networks of meteorological stations that existed over the past two centuries. A set of some hundreds of stations, with about a century of observations of daily precipitation, was identified. An important subset of them was also defined, having long series of observations of temperature, wind, pressure and other quantities. Specific investments were made on important stations sites where observations had been carried for decades, but where the climatological stations did not exist anymore. In the present talk, the Regional Climatological Network of Sardinia will be presented and its consistency discussed. Specific attention will be given to the most important climatological stations which have got more than a century of observations of meteorological quantities. Critical issues of the Regional Climatological Network, like relocation of stations and inhomogeneity of data due to instrumental changes or environmental modifications, will be discussed.

  15. Wearable and implantable wireless sensor network solutions for healthcare monitoring.

    PubMed

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper.

  16. An efficient network for interconnecting remote monitoring instruments and computers

    SciTech Connect

    Halbig, J.K.; Gainer, K.E.; Klosterbuer, S.F.

    1994-08-01

    Remote monitoring instrumentation must be connected with computers and other instruments. The cost and intrusiveness of installing cables in new and existing plants presents problems for the facility and the International Atomic Energy Agency (IAEA). The authors have tested a network that could accomplish this interconnection using mass-produced commercial components developed for use in industrial applications. Unlike components in the hardware of most networks, the components--manufactured and distributed in North America, Europe, and Asia--lend themselves to small and low-powered applications. The heart of the network is a chip with three microprocessors and proprietary network software contained in Read Only Memory. In addition to all nonuser levels of protocol, the software also contains message authentication capabilities. This chip can be interfaced to a variety of transmission media, for example, RS-485 lines, fiber topic cables, rf waves, and standard ac power lines. The use of power lines as the transmission medium in a facility could significantly reduce cabling costs.

  17. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    PubMed Central

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper. PMID:22163914

  18. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  19. Network Analytical Tool for Monitoring Global Food Safety Highlights China

    PubMed Central

    Nepusz, Tamás; Petróczi, Andrea; Naughton, Declan P.

    2009-01-01

    Background The Beijing Declaration on food safety and security was signed by over fifty countries with the aim of developing comprehensive programs for monitoring food safety and security on behalf of their citizens. Currently, comprehensive systems for food safety and security are absent in many countries, and the systems that are in place have been developed on different principles allowing poor opportunities for integration. Methodology/Principal Findings We have developed a user-friendly analytical tool based on network approaches for instant customized analysis of food alert patterns in the European dataset from the Rapid Alert System for Food and Feed. Data taken from alert logs between January 2003 – August 2008 were processed using network analysis to i) capture complexity, ii) analyze trends, and iii) predict possible effects of interventions by identifying patterns of reporting activities between countries. The detector and transgressor relationships are readily identifiable between countries which are ranked using i) Google's PageRank algorithm and ii) the HITS algorithm of Kleinberg. The program identifies Iran, China and Turkey as the transgressors with the largest number of alerts. However, when characterized by impact, counting the transgressor index and the number of countries involved, China predominates as a transgressor country. Conclusions/Significance This study reports the first development of a network analysis approach to inform countries on their transgressor and detector profiles as a user-friendly aid for the adoption of the Beijing Declaration. The ability to instantly access the country-specific components of the several thousand annual reports will enable each country to identify the major transgressors and detectors within its trading network. Moreover, the tool can be used to monitor trading countries for improved detector/transgressor ratios. PMID:19688088

  20. Analysis of the Monitoring Network at the Salmon, Mississippi, Site

    SciTech Connect

    2013-08-01

    The Salmon site in southern Mississippi was the location of two underground nuclear tests and two methane-oxygen gas explosion tests conducted in the Tatum Salt Dome at a depth of 2,715 feet below ground surface. The U.S. Atomic Energy Commission (a predecessor agency of the U.S. Department of Energy [DOE]) and the U.S. Department of Defense jointly conducted the tests between 1964 and 1970. The testing operations resulted in surface contamination at multiple locations on the site and contamination of shallow aquifers. No radionuclides from the nuclear tests were released to the surface or to groundwater, although radionuclide-contaminated drill cuttings were brought to the surface during re-entry drilling. Drilling operations generated the largest single volume of waste materials, including radionuclide-contaminated drill cuttings and drilling fluids. Nonradioactive wastes were also generated as part of the testing operations. Site cleanup and decommissioning began in 1971 and officially ended in 1972. DOE conducted additional site characterization between 1992 and 1999. The historical investigations have provided a reasonable understanding of current surface and shallow subsurface conditions at the site, although some additional investigation is desirable. For example, additional hydrologic data would improve confidence in assigning groundwater gradients and flow directions in the aquifers. The U.S. Environmental Protection Agency monitored groundwater at the site as part of its Long-Term Hydrologic Monitoring Program from 1972 through 2007, when DOE's Office of Legacy Management (LM) assumed responsibility for site monitoring. The current monitoring network consists of 28 monitoring wells and 11 surface water locations. Multiple aquifers which underlie the site are monitored. The current analyte list includes metals, radionuclides, and volatile organic compounds (VOCs).

  1. Contribution of Geodetic Datum in GNSS Networks to Monitored Displacements

    NASA Astrophysics Data System (ADS)

    Ozdemir, Alpay; Dogan, Ugur; Aydin, Cuneyt

    2016-04-01

    The aim of this study is to investigate the effects of datum definition on the monitored displacements of GNSS networks. The datum definition is a significant problem in terms of reliable deformation analysis and interpretation on determining the deformation in GNSS networks. The observations have been analyzed to show the reliability analysis of a group of station in the network and the influence of datum definition on the deformations of GNSS monitoring networks. For this purpose, we studied GPS observations in the CORS-TR network collected on a set of 13 station to detect co-seismic deformation of the 23 October 2011 (Mw=7.2) Van earthquake in the eastern of Turkey. The GPS observations were processed in the ITRF 2008 reference frame using the Bernese 5.2 GNSS software. Seven datum configuration modes which depend on the number of datum stations, which are selected from 9 IGS stations, were defined to determine co-seismic deformation of the Van earthquake and the deformations of GPS stations were computed for every datum definition. Our results indicate that each station showed different temporal behavior and significant relative motions with respect to datum definition. On the other hand, the distribution of the datum stations around the monitored region seems to be very important factor for determining the displacements. To show the effect of datum station distribution, we compare the displacements obtained from two different datum configuration modes (mode 1: 4 datum station "BUCU, GRAZ, MATE, SOFI" located at Eurasian plate, which are far away from the region, and mode 2: 9 datum station "BUCU, GRAZ, MATE, SOFI, TUBI, CRAO, ZECK, NICO, DRAG" located around the region). For instance, co-seismic displacements for station MURA, which is the closest station to the earthquake epicenter (˜43 km), amounted to -82.24 ± 0.60 mm for the north component, 12.01 ± 0.76 mm for the east component and -25.19 ± 2.49 mm for the up component with respect to mode 1, -89

  2. Monitoring system of arch bridge for safety network management

    NASA Astrophysics Data System (ADS)

    Joo, Bong Chul; Yoo, Young Jun; Lee, Chin Hyung; Park, Ki Tae; Hwang, Yoon Koog

    2010-03-01

    Korea has constructed the safety management network monitoring test systems for the civil infrastructure since 2006 which includes airport structure, irrigation structure, railroad structure, road structure, and underground structure. Bridges among the road structure include the various superstructure types which are Steel box girder bridge, suspension bridge, PSC-box-girder bridge, and arch bridge. This paper shows the process of constructing the real-time monitoring system for the arch bridge and the measured result by the system. The arch type among various superstructure types has not only the structural efficiency but the visual beauty, because the arch type superstructure makes full use of the feature of curve. The main measuring points of arch bridges composited by curved members make a difference to compare with the system of girder bridges composited by straight members. This paper also shows the method to construct the monitoring system that considers the characteristic of the arch bridge. The system now includes strain gauges and thermometers, and it will include various sensor types such as CCTV, accelerometers and so on additionally. For the long term and accuracy monitoring, the latest optical sensors and equipments are applied to the system.

  3. Representativeness-Based Sampling Network Design for the State of Alaska

    SciTech Connect

    Hoffman, Forrest M; Kumar, Jitendra; Mills, Richard T; HargroveJr., William Walter

    2013-01-01

    Resource and logistical constraints limit the frequency and extent of environmental observations, particularly in the Arctic, necessitating the development of a systematic sampling strategy to maximize coverage and objectively represent environmental variability at desired scales. A quantitative methodology for stratifying sampling domains, informing site selection, and determining the representativeness of measurement sites and networks is described here.

  4. Monitoring the natural attenuation of petroleum in ground water at the former naval complex, Operable Unit A, Adak Island, Alaska, May and June 2003

    USGS Publications Warehouse

    Dinicola, R.S.; Simonds, F.W.; Defawe, Rose

    2005-01-01

    During May and June 2003, the U.S. Geological Survey installed monitoring wells and collected data to characterize the effectiveness of natural attenuation processes for remediating petroleum-contaminated ground water at Operable Unit A of the former Naval complex on Adak Island, Alaska. In addition, the evidence for petroleum biodegradation in ground water was evaluated at selected petroleum sites, plans for future natural attenuation monitoring were suggested for the selected petroleum sites, and the natural attenuation monitoring strategy for the Downtown area of Adak Island was reviewed and refinements were suggested. U.S. Geological Survey personnel measured water levels and collected ground-water samples from about 100 temporary boreholes and 50 monitoring wells. Most samples were analyzed on-site for concentrations of selected petroleum compounds and natural attenuation parameters such as dissolved oxygen, ferrous iron, and carbon dioxide. The U.S. Geological Survey evaluated the data on-site, selected new monitoring well locations, and installed, developed, and sampled 10 monitoring wells. The review and suggestions for the natural attenuation monitoring strategy focused on how to better achieve monitoring objectives specified in the Record of Decision for Adak Island petroleum sites. To achieve the monitoring objective of verifying that natural attenuation is occurring, the monitoring plans for each monitored natural attenuation site need to include sampling of at least one strategically placed well at the downgradient margin of the contaminant plume margin, preferably where contaminant concentrations are detectable but less than the cleanup level. Collection of natural attenuation parameter data and sampling background wells is no longer needed to achieve the monitoring objective of demonstrating the occurrence of natural attenuation. To achieve the objective of monitoring locations where chemical concentrations exceed specified cleanup levels, at least

  5. A High-Resolution Sensor Network for Monitoring Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Edwards, S.; Murray, T.; O'Farrell, T.; Rutt, I. C.; Loskot, P.; Martin, I.; Selmes, N.; Aspey, R.; James, T.; Bevan, S. L.; Baugé, T.

    2013-12-01

    Changes in Greenland and Antarctic ice sheets due to ice flow/ice-berg calving are a major uncertainty affecting sea-level rise forecasts. Latterly GNSS (Global Navigation Satellite Systems) have been employed extensively to monitor such glacier dynamics. Until recently however, the favoured methodology has been to deploy sensors onto the glacier surface, collect data for a period of time, then retrieve and download the sensors. This approach works well in less dynamic environments where the risk of sensor loss is low. In more extreme environments e.g. approaching the glacial calving front, the risk of sensor loss and hence data loss increases dramatically. In order to provide glaciologists with new insights into flow dynamics and calving processes we have developed a novel sensor network to increase the robustness of data capture. We present details of the technological requirements for an in-situ Zigbee wireless streaming network infrastructure supporting instantaneous data acquisition from high resolution GNSS sensors thereby increasing data capture robustness. The data obtained offers new opportunities to investigate the interdependence of mass flow, uplift, velocity and geometry and the network architecture has been specifically designed for deployment by helicopter close to the calving front to yield unprecedented detailed information. Following successful field trials of a pilot three node network during 2012, a larger 20 node network was deployed on the fast-flowing Helheim glacier, south-east Greenland over the summer months of 2013. The utilisation of dual wireless transceivers in each glacier node, multiple frequencies and four ';collector' stations located on the valley sides creates overlapping networks providing enhanced capacity, diversity and redundancy of data 'back-haul', even close to ';floor' RSSI (Received Signal Strength Indication) levels around -100 dBm. Data loss through radio packet collisions within sub-networks are avoided through the

  6. National Stream Quality Accounting Network and National Monitoring Network Basin Boundary Geospatial Dataset, 2008–13

    USGS Publications Warehouse

    Baker, Nancy T.

    2011-01-01

    This report and the accompanying geospatial data were created to assist in analysis and interpretation of water-quality data provided by the U.S. Geological Survey's National Stream Quality Accounting Network (NASQAN) and by the U.S. Coastal Waters and Tributaries National Monitoring Network (NMN), which is a cooperative monitoring program of Federal, regional, and State agencies. The report describes the methods used to develop the geospatial data, which was primarily derived from the National Watershed Boundary Dataset. The geospatial data contains polygon shapefiles of basin boundaries for 33 NASQAN and 5 NMN streamflow and water-quality monitoring stations. In addition, 30 polygon shapefiles of the closed and noncontributing basins contained within the NASQAN or NMN boundaries are included. Also included is a point shapefile of the NASQAN and NMN monitoring stations and associated basin and station attributes. Geospatial data for basin delineations, associated closed and noncontributing basins, and monitoring station locations are available at http://water.usgs.gov/GIS/metadata/usgswrd/XML/ds641_nasqan_wbd12.xml.

  7. Delay-tolerant mobile network protocol for rice field monitoring using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Guitton, Alexandre; Andres, Frédéric; Cardoso, Jarbas Lopes; Kawtrakul, Asanee; Barbin, Silvio E.

    2015-10-01

    The monitoring of rice fields can improve productivity by helping farmers throughout the rice cultivation cycle, on various issues: when to harvest, when to treat the crops against disease, when to increase the water level, how to share observations and decisions made in a collaborative way, etc. In this paper, we propose an architecture to monitor a rice field by a wireless sensor network. Our architecture is based on static sensor nodes forming a disconnected network, and mobile nodes communicating with the sensor nodes in a delay-tolerant manner. The data collected by the static sensor nodes are transmitted to mobile nodes, which in turn transmit them to a gateway, connected to a database, for further analysis. We focus on the related architecture, as well as on the energy-efficient protocols intended to perform the data collection.

  8. The Community Environmental Monitoring Program in the 21st Century: The Evolution of a Monitoring Network

    SciTech Connect

    Hartwell, W.T.; Tappen, J.; Karr, L.

    2007-01-19

    This paper focuses on the evolution of the various operational aspects of the Community Environmental Monitoring Program (CEMP) network following the transfer of program administration from the U.S. Environmental Protection Agency (EPA) to the Desert Research Institute (DRI) of the Nevada System of Higher Education in 1999-2000. The CEMP consists of a network of 29 fixed radiation and weather monitoring stations located in Nevada, Utah, and California. Its mission is to involve stakeholders directly in monitoring for airborne radiological releases to the off site environment as a result of past or ongoing activities on the Nevada Test Site (NTS) and to make data as transparent and accessible to the general public as feasible. At its inception in 1981, the CEMP was a cooperative project of the U.S. Department of Energy (DOE), DRI, and EPA. In 1999-2000, technical administration of the CEMP transitioned from EPA to DRI. Concurrent with and subsequent to this transition, station and program operations underwent significant enhancements that furthered the mission of the program. These enhancements included the addition of a full suite of meteorological instrumentation, state-of-the-art electronic data collectors, on-site displays, and communications hardware. A public website was developed. Finally, the DRI developed a mobile monitoring station that can be operated entirely on solar power in conjunction with a deep-cell battery, and includes all meteorological sensors and a pressurized ion chamber for detecting background gamma radiation. Final station configurations have resulted in the creation of a platform that is well suited for use as an in-field multi-environment test-bed for prototype environmental sensors and in interfacing with other scientific and educational programs. Recent and near-future collaborators have included federal, state, and local agencies in both the government and private sectors. The CEMP also serves as a model for other programs wishing to

  9. The Monitoring Network of the Vancouver 2010 Olympics

    NASA Astrophysics Data System (ADS)

    Joe, Paul; Scott, Bill; Doyle, Chris; Isaac, George; Gultepe, Ismail; Forsyth, Douglas; Cober, Stewart; Campos, Edwin; Heckman, Ivan; Donaldson, Norman; Hudak, David; Rasmussen, Roy; Kucera, Paul; Stewart, Ron; Thériault, Julie M.; Fisico, Teresa; Rasmussen, Kristen L.; Carmichael, Hannah; Laplante, Alex; Bailey, Monika; Boudala, Faisal

    2014-01-01

    An innovative monitoring network was implemented to support the operational and science programs for the Vancouver 2010 Winter Olympics. It consisted of in situ weather stations on custom-designed platforms. The sensors included an HMP45C for temperature, humidity and pressure, a tipping bucket rain gauge, an acoustic snow depth sensor, a Pluvio 1 precipitation gauge and an anemometer placed at gauge height and at 10 m height. Modifications to commercial automated precipitation gauges were necessary for the heavy snowfall conditions. Advanced or emerging technologies were deployed to support scientific and nowcasting studies into precipitation intensity, typing, visibility and wind. The sensors included an FD12P visibility and precipitation sensor, a precipitation occurrence sensing system (POSS) present weather sensor, a Hotplate precipitation sensor and a Parsivel disdrometer. Data were collected at 1 min sampling intervals. A Doppler weather radar was deployed in a valley location and provided critical detailed low-level data. An X-band dual-polarized radar was deployed by the National Oceanic and Atmospheric Administration to monitor Vancouver and Cypress Mountain. Three remote sensing stations for vertical profiling were established. At the base of Whistler Mountain, a micro-rain radar, a 22-channel radiometer, a ceilometer, a Parsivel and a POSS were installed. At the base of Cypress Mountain, a micro-rain radar, a ceilometer, a low cost rain sensor (LCR by ATTEX) and a POSS were installed. At Squamish, a wind profiler and a POSS were installed. Weather sensors were mounted on the Whistler Village Gondola and on the Peak to Peak gondola. Sites were established along the Whistler Mountain slope and at other key locations. The combination of sites and instruments formed a comprehensive network to provide observations appropriate for nowcasting in winter complex terrain and investigate precipitation, visibility and wind processes. The contribution provides a

  10. Sensor Networking Testbed with IEEE 1451 Compatibility and Network Performance Monitoring

    NASA Technical Reports Server (NTRS)

    Gurkan, Deniz; Yuan, X.; Benhaddou, D.; Figueroa, F.; Morris, Jonathan

    2007-01-01

    Design and implementation of a testbed for testing and verifying IEEE 1451-compatible sensor systems with network performance monitoring is of significant importance. The performance parameters measurement as well as decision support systems implementation will enhance the understanding of sensor systems with plug-and-play capabilities. The paper will present the design aspects for such a testbed environment under development at University of Houston in collaboration with NASA Stennis Space Center - SSST (Smart Sensor System Testbed).

  11. Drainage network structure and hydrologic behavior of three lake-rich watersheds on the Arctic Coastal Plain, Alaska

    USGS Publications Warehouse

    Arp, C.D.; Whitman, M.S.; Jones, Benjamin M.; Kemnitz, R.; Grosse, G.; Urban, F.E.

    2012-01-01

    Watersheds draining the Arctic Coastal Plain (ACP) of Alaska are dominated by permafrost and snowmelt runoff that create abundant surface storage in the form of lakes, wetlands, and beaded streams. These surface water elements compose complex drainage networks that affect aquatic ecosystem connectivity and hydrologic behavior. The 4676 km2 Fish Creek drainage basin is composed of three watersheds that represent a gradient of the ACP landscape with varying extents of eolian, lacustrine, and fluvial landforms. In each watershed, we analyzed 2.5-m-resolution aerial photography, a 5-m digital elevation model, and river gauging and climate records to better understand ACP watershed structure and processes. We show that connected lakes accounted for 19 to 26% of drainage density among watersheds and most all channels initiate from lake basins in the form of beaded streams. Of the > 2500 lakes in these watersheds, 33% have perennial streamflow connectivity, and these represent 66% of total lake area extent. Deeper lakes with over-wintering habitat were more abundant in the watershed with eolian sand deposits, while the watershed with marine silt deposits contained a greater extent of beaded streams and shallow thermokarst lakes that provide essential summer feeding habitat. Comparison of flow regimes among watersheds showed that higher lake extent and lower drained lake-basin extent corresponded with lower snowmelt and higher baseflow runoff. Variation in baseflow runoff among watersheds was most pronounced during drought conditions in 2007 with corresponding reduction in snowmelt peak flows the following year. Comparison with other Arctic watersheds indicates that lake area extent corresponds to slower recession of both snowmelt and baseflow runoff. These analyses help refine our understanding of how Arctic watersheds are structured and function hydrologically, emphasizing the important role of lake basins and suggesting how future lake change may impact hydrologic

  12. Design of a ground-water-quality monitoring network for the Salinas River basin, California

    USGS Publications Warehouse

    Showalter, P.K.; Akers, J.P.; Swain, L.A.

    1984-01-01

    A regional ground-water quality monitoring network for the entire Salinas River drainage basin was designed to meet the needs of the California State Water Resources Control Board. The project included phase 1--identifying monitoring networks that exist in the region; phase 2--collecting information about the wells in each network; and phase 3--studying the factors--such as geology, land use, hydrology, and geohydrology--that influence the ground-water quality, and designing a regional network. This report is the major product of phase 3. Based on the authors ' understanding of the ground-water-quality monitoring system and input from local offices, an ideal network was designed. The proposed network includes 317 wells and 8 stream-gaging stations. Because limited funds are available to implement the monitoring network, the proposed network is designed to correspond to the ideal network insofar as practicable, and is composed mainly of 214 wells that are already being monitored by a local agency. In areas where network wells are not available, arrangements will be made to add wells to local networks. The data collected by this network will be used to assess the ground-water quality of the entire Salinas River drainage basin. After 2 years of data are collected, the network will be evaluated to test whether it is meeting the network objectives. Subsequent network evaluations will be done very 5 years. (USGS)

  13. A Neural Network Approach to Smarter Sensor Networks for Water Quality Monitoring

    PubMed Central

    O'Connor, Edel; Smeaton, Alan F.; O'Connor, Noel E.; Regan, Fiona

    2012-01-01

    Environmental monitoring is evolving towards large-scale and low-cost sensor networks operating reliability and autonomously over extended periods of time. Sophisticated analytical instrumentation such as chemo-bio sensors present inherent limitations because of the number of samples that they can take. In order to maximize their deployment lifetime, we propose the coordination of multiple heterogeneous information sources. We use rainfall radar images and information from a water depth sensor as input to a neural network (NN) to dictate the sampling frequency of a phosphate analyzer at the River Lee in Cork, Ireland. This approach shows varied performance for different times of the year but overall produces output that is very satisfactory for the application context in question. Our study demonstrates that even with limited training data, a system for controlling the sampling rate of the nutrient sensor can be set up and can improve the efficiency of the more sophisticated nodes of the sensor network. PMID:22666048

  14. A ground-water-quality monitoring network for the Lower Mojave River Valley, California

    USGS Publications Warehouse

    Woolfenden, L.R.

    1984-01-01

    A ground-water-quality monitoring network was developed for the Lower Mojave River valley to define the ground-water quality of the valley. Basin geohydrology, geology, land use and water-level and water-quality data were factors considered in developing objectives for an ideal network. These objectives were used in selecting well locations for the conceptual ground-water-quality monitoring network. The conceptual network was used as a guide in the design of the ground-water-quality monitoring network. Active monitoring sites are wells that are currently being monitored by some agency and were selected whenever possible because of budgetary constraints. In areas where no wells are currently being monitored, new well locations were selected and are considered proposed monitoring sites. A sampling regimen is also included. (USGS)

  15. NOVAC - A global network for volcanic gas monitoring

    NASA Astrophysics Data System (ADS)

    Galle, B.

    2010-03-01

    This paper presents the global network, NOVAC (Network for Observation of Volcanic and Atmospheric Change), aiming at automatic gas emission monitoring at active volcanoes worldwide. Data from the network will primarily be used for volcanic risk assessment but also for geophysical research, studies of atmospheric change and ground validation of satellite instruments. A novel type of instrument, the Scanning miniaturized Differential Optical Absorption Spectroscopy (mini-DOAS) instrument, is applied in the network to measure volcanic gas emissions by UV absorption spectroscopy. The instrument is set up 5-10 km downwind of the volcano under study and typically 2-4 instruments are deployed at each volcano in order to cover different wind directions and facilitate measurements of plume height and plume direction. Two different versions of the instrument have been developed. Version I was designed to be a robust and simple instrument for measurement of volcanic SO2 emissions at high time-resolution with minimal power consumption. Version II was designed to allow the best possible spectroscopy, and enhanced flexibility in regard to measurement geometry at the cost of larger complexity, power consumption and price. In the paper the project is described as well as the developed software, the hardware of the two instrument versions, measurement strategies, data communication and archiving routines. As of December 2008 a total of 46 instruments have been installed at 18 volcanoes worldwide. As a typical example the installation at Tungurahua Volcano in Ecuador is described, together with some results from the first 21 months of operation at this volcano.

  16. Monitoring network-design influence on assessment of ecological condition in wadeable streams

    EPA Science Inventory

    We investigated outcomes of three monitoring networks for assessing ecological character and condition of wadeable streams in the Waikato region, New Zealand. Sites were selected 1) based on a professional judgment network, 2) within categories of stream and watershed characteris...

  17. Monitoring the Earth's Atmosphere with the Global IMS Infrasound Network

    NASA Astrophysics Data System (ADS)

    Brachet, Nicolas; Brown, David; Mialle, Pierrick; Le Bras, Ronan; Coyne, John; Given, Jeffrey

    2010-05-01

    The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is tasked with monitoring compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) which bans nuclear weapon explosions underground, in the oceans, and in the atmosphere. The verification regime includes a globally distributed network of seismic, hydroacoustic, infrasound and radionuclide stations which collect and transmit data to the International Data Centre (IDC) in Vienna, Austria shortly after the data are recorded at each station. The infrasound network defined in the Protocol of the CTBT comprises 60 infrasound array stations. Each array is built according to the same technical specifications, it is typically composed of 4 to 9 sensors, with 1 to 3 km aperture geometry. At the end of 2000 only one infrasound station was transmitting data to the IDC. Since then, 41 additional stations have been installed and 70% of the infrasound network is currently certified and contributing data to the IDC. This constitutes the first global infrasound network ever built with such a large and uniform distribution of stations. Infrasound data at the IDC are processed at the station level using the Progressive Multi-Channel Correlation (PMCC) method for the detection and measurement of infrasound signals. The algorithm calculates the signal correlation between sensors at an infrasound array. If the signal is sufficiently correlated and consistent over an extended period of time and frequency range a detection is created. Groups of detections are then categorized according to their propagation and waveform features, and a phase name is assigned for infrasound, seismic or noise detections. The categorization complements the PMCC algorithm to avoid overwhelming the IDC automatic association algorithm with false alarm infrasound events. Currently, 80 to 90% of the detections are identified as noise by the system. Although the noise detections are not used to build events in the context of CTBT monitoring

  18. Precision gravity network for monitoring the Lassen geothermal system, Northern California

    USGS Publications Warehouse

    Jachens, Robert C.; Saltus, R.W.

    1983-01-01

    A precision gravity network consisting of approximately 50 stations was established to monitor the Lassen geothermal system. The network was surveyed during the summer of 1982 and tied to a similar network established in 1981. Measurements yielded relative gravity values at the network stations with average uncertainties of 0.007 mGal (1 computed standard error).

  19. Environmental Monitoring using Measurements from Cellular Network Infrastructure

    NASA Astrophysics Data System (ADS)

    David, N.; Gao, O. H.

    2015-12-01

    Accurate measurements of atmospheric parameters at ground level are fundamentally essential for hazard warning, meteorological forecasting and for various applications in agriculture, hydrology, transportation and more. The accuracy of existing instruments, however, is often limited as a result of technical and practical constraints. Existing technologies such as satellite systems cover large areas but may experience lack of precision at near surface level. On the other hand, ground based in-situ sensors often suffer from low spatial representativity. In addition, these conventional monitoring instruments are costly to implement and maintain. At frequencies of tens of GHz, various atmospheric hydrometeors affect microwave beams, causing perturbations to radio signals. Consequently, commercial wireless links that constitute the infrastructure for data transport between cellular base stations can be considered as a built in environmental monitoring facility (Messer et al., Science, 2006). These microwave links are widely deployed worldwide at surface level altitudes and can provide measurements of various atmospheric phenomena. The implementation costs are minimal since the infrastructure is already situated in the field. This technique has been shown to be applicable for 2D rainfall monitoring (e.g. Overeem et al., PNAS, 2013; Liberman et al., AMT, 2014) and potentially for water vapor observations (David et al., ACP, 2009; Chwala et al., Atmos. Res., 2013). Moreover, it has been recently shown that the technology has strong potential for detection of fog and estimation of its intensity (David et al., JGR-Atmos., 2013; David et al., BAMS, 2014). The research conducted to this point forms the basis for the initiation of a research project in this newly emerging field at the School of Civil and Environmental Engineering of Cornell University. The presentation will provide insights into key capabilities of the novel approach. The potential to monitor various

  20. Near-Road Air Quality Monitoring: Factors Affecting Network Design and Interpretation of Data

    EPA Science Inventory

    The growing number of health studies identifying adverse health effects for populations spending significant amounts of time near large roadways has increased the interest in monitoring air quality in this microenvironment. Designing near-road air monitoring networks or interpret...

  1. Variability of multifractal parameters in an urban precipitation monitoring network

    NASA Astrophysics Data System (ADS)

    Licznar, Paweł; De Michele, Carlo; Dżugaj, Dagmara; Niesobska, Maria

    2014-05-01

    Precipitation especially over urban areas is considered a highly non-linear process, with wide variability over a broad range of temporal and spatial scales. Despite obvious limitations of rainfall gauges location at urban sites, rainfall monitoring by gauge networks is a standard solution of urban hydrology. Often urban precipitation gauge networks are formed by modern electronic gauges and connected to control units of centralized urban drainage systems. Precipitation data, recorded online through these gauge networks, are used in so called Real-Time-Control (RTC) systems for the development of optimal strategies of urban drainage outflows management. As a matter of fact, the operation of RTC systems is motivated mainly by the urge of reducing the severity of urban floods and combined sewerage overflows, but at the same time, it creates new valuable precipitation data sources. The variability of precipitation process could be achieved by investigating multifractal behavior displayed by the temporal structure of precipitation data. There are multiply scientific communications concerning multifractal properties of point-rainfall data from different worldwide locations. However, very little is known about the close variability of multifractal parameters among closely located gauges, at the distances of single kilometers. Having this in mind, here we assess the variability of multifractal parameters among gauges of the urban precipitation monitoring network in Warsaw, Poland. We base our analysis on the set of 1-minute rainfall time series recorded in the period 2008-2011 by 25 electronic weighing type gauges deployed around the city by the Municipal Water Supply and Sewerage Company in Warsaw as a part of local RTC system. The presence of scale invariance and multifractal properties in the precipitation process was investigated with spectral analysis, functional box counting method and studying the probability distributions and statistical moments of the rainfall

  2. Seabirds in Alaska

    USGS Publications Warehouse

    Hatch, Scott A.; Piatt, John F.

    1995-01-01

    Techniques for monitoring seabird populations vary according to habitat types and the breeding behavior of individual species (Hatch and Hatch 1978, 1989; Byrd et al. 1983). An affordable monitoring program can include but a few of the 1,300 seabird colonies identified in Alaska, and since the mid-1970's, monitoring effotrts have emphasized a small selection of surface-feeding and diving species, primarily kittiwakes (Rissa spp.) and murres (Uria spp.). Little or no information on trends is available for other seabirds (Hatch 1993a). The existing monitoring program occurs largely on sites within the Alaska Maritime National Wildlife Refuge, which was established primarily for the conservation of marine birds. Data are collected by refuge staff, other state and federal agencies, private organizations, university faculty, and students.

  3. Plan for an integrated, long-term water-monitoring network for Wisconsin

    USGS Publications Warehouse

    ,

    1998-01-01

    Wisconsin's water-monitoring network is in danger of losing critical ground-water, surface-water, and water-quality monitoring stations. Since 1995, the ground-water network has decreased by 43 observation wells, the surface-water network by 7 stations, and the surface-water- quality network by 30 stations. Reductions in Wisconsin's water-monitoring network could cause serious risk to the residents of Wisconsin. This reduction increases the uncertainty of water-resource plans and decisions, which ultimately could increase the potential for damages from extreme events and increase construction costs of water-related facilities.

  4. February 2012 workshop jumpstarts the Mekong Fish Monitoring Network

    USGS Publications Warehouse

    Andersen, Matthew E.; Ainsley, Shaara M.

    2012-01-01

    , Cambodia, and Vietnam. Representatives from the governments, universities, nongovernmental organizations, and the Mekong River Commission discussed current and potential methods and mechanisms of the Mekong Fish Monitoring Network. The goals of the workshop were to determine if the Network and associated databases were of interest and value to the LMB nations, to determine if future fisheries monitoring data would be comparable among the nations, and to establish methods and an organizational structure for collaborating on future monitoring and research. The participants in this international workshop agreed that the Network would be useful but would require additional funding to secure their full participation. The USGS and FISHBIO are collaboratively seeking additional funding to expand research participation and projects in all four LMB nations. If the Network can facilitate cooperation among many fisheries researchers in the LMB, the basin would become a model of cooperative international fishery studies and would increase the understanding of a river basin rich in natural resources.

  5. SSME Condition Monitoring Using Neural Networks and Plume Spectral Signatures

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall; Benzing, Daniel

    1996-01-01

    For a variety of reasons, condition monitoring of the Space Shuttle Main Engine (SSME) has become an important concern for both ground tests and in-flight operation. The complexities of the SSME suggest that active, real-time condition monitoring should be performed to avoid large-scale or catastrophic failure of the engine. In 1986, the SSME became the subject of a plume emission spectroscopy project at NASA's Marshall Space Flight Center (MSFC). Since then, plume emission spectroscopy has recorded many nominal tests and the qualitative spectral features of the SSME plume are now well established. Significant discoveries made with both wide-band and narrow-band plume emission spectroscopy systems led MSFC to develop the Optical Plume Anomaly Detection (OPAD) system. The OPAD system is designed to provide condition monitoring of the SSME during ground-level testing. The operational health of the engine is achieved through the acquisition of spectrally resolved plume emissions and the subsequent identification of abnormal emission levels in the plume indicative of engine erosion or component failure. Eventually, OPAD, or a derivative of the technology, could find its way on to an actual space vehicle and provide in-flight engine condition monitoring. This technology step, however, will require miniaturized hardware capable of processing plume spectral data in real-time. An objective of OPAD condition monitoring is to determine how much of an element is present in the SSME plume. The basic premise is that by knowing the element and its concentration, this could be related back to the health of components within the engine. For example, an abnormal amount of silver in the plume might signify increased wear or deterioration of a particular bearing in the engine. Once an anomaly is identified, the engine could be shut down before catastrophic failure occurs. Currently, element concentrations in the plume are determined iteratively with the help of a non-linear computer

  6. Uncertainty based optimal monitoring network design for a chlorinated hydrocarbon contaminated site.

    PubMed

    Chadalavada, Sreenivasulu; Datta, Bithin; Naidu, Ravi

    2011-02-01

    An application of a newly developed optimal monitoring network for the delineation of contaminants in groundwater is demonstrated in this study. Designing a monitoring network in an optimal manner helps to delineate the contaminant plume with a minimum number of monitoring wells at optimal locations at a contaminated site. The basic principle used in this study is that the wells are installed where the measurement uncertainties are minimum at the potential monitoring locations. The development of the optimal monitoring network is based on the utilization of contaminant concentration data from an existing initial arbitrary monitoring network. The concentrations at the locations that were not sampled in the study area are estimated using geostatistical tools. The uncertainty in estimating the contaminant concentrations at such locations is used as design criteria for the optimal monitoring network. The uncertainty in the study area was quantified by using the concentration estimation variances at all the potential monitoring locations. The objective function for the monitoring network design minimizes the spatial concentration estimation variances at all potential monitoring well locations where a monitoring well is not to be installed as per the design criteria. In the proposed methodology, the optimal monitoring network is designed for the current management period and the contaminant concentration data estimated at the potential observation locations are then used as the input to the network design model. The optimal monitoring network is designed for the consideration of two different cases by assuming different initial arbitrary existing data. Three different scenarios depending on the limit of the maximum number of monitoring wells that can be allowed at any period are considered for each case. In order to estimate the efficiency of the developed optimal monitoring networks, mass estimation errors are compared for all the three different scenarios of the two

  7. A conceptual ground-water-quality monitoring network for San Fernando Valley, California

    USGS Publications Warehouse

    Setmire, J.G.

    1985-01-01

    A conceptual groundwater-quality monitoring network was developed for San Fernando Valley to provide the California State Water Resources Control Board with an integrated, basinwide control system to monitor the quality of groundwater. The geology, occurrence and movement of groundwater, land use, background water quality, and potential sources of pollution were described and then considered in designing the conceptual monitoring network. The network was designed to monitor major known and potential point and nonpoint sources of groundwater contamination over time. The network is composed of 291 sites where wells are needed to define the groundwater quality. The ideal network includes four specific-purpose networks to monitor (1) ambient water quality, (2) nonpoint sources of pollution, (3) point sources of pollution, and (4) line sources of pollution. (USGS)

  8. Human Mobility Monitoring in Very Low Resolution Visual Sensor Network

    PubMed Central

    Bo Bo, Nyan; Deboeverie, Francis; Eldib, Mohamed; Guan, Junzhi; Xie, Xingzhe; Niño, Jorge; Van Haerenborgh, Dirk; Slembrouck, Maarten; Van de Velde, Samuel; Steendam, Heidi; Veelaert, Peter; Kleihorst, Richard; Aghajan, Hamid; Philips, Wilfried

    2014-01-01

    This paper proposes an automated system for monitoring mobility patterns using a network of very low resolution visual sensors (30 × 30 pixels). The use of very low resolution sensors reduces privacy concern, cost, computation requirement and power consumption. The core of our proposed system is a robust people tracker that uses low resolution videos provided by the visual sensor network. The distributed processing architecture of our tracking system allows all image processing tasks to be done on the digital signal controller in each visual sensor. In this paper, we experimentally show that reliable tracking of people is possible using very low resolution imagery. We also compare the performance of our tracker against a state-of-the-art tracking method and show that our method outperforms. Moreover, the mobility statistics of tracks such as total distance traveled and average speed derived from trajectories are compared with those derived from ground truth given by Ultra-Wide Band sensors. The results of this comparison show that the trajectories from our system are accurate enough to obtain useful mobility statistics. PMID:25375754

  9. Low-power hybrid wireless network for monitoring infant incubators.

    PubMed

    Shin, D I; Shin, K H; Kim, I K; Park, K S; Lee, T S; Kim, S I; Lim, K S; Huh, S J

    2005-10-01

    We have created a pilot wireless network for the convenient monitoring of temperature and humidity of infant incubators. This system combines infrared and radio frequency (RF) communication in order to minimize the power consumption of slave devices, and we therefore call it a hybrid wireless network. The slave module installed in the infant incubator receives the calling signal from the host with an infrared receiver, and sends temperature and humidity data to the host with an RF transmitter. The power consumption of the host system is not critical, and hence it uses the maximum power of infrared transmission and continuously operating RF receiver. In our test implementation, we included four slave devices. The PC calls each slave device every second and then waits for 6 s, resulting in a total scan period of 10 s. Slave devices receive the calling signals and transmit three data values (temperature, moisture, and skin temperature); their power demand is 1 mW, and can run for about 1000 h on four AA-size nickel-hydride batteries.

  10. Energy Harvesting for Structural Health Monitoring Sensor Networks

    SciTech Connect

    Park, G.; Farrar, C. R.; Todd, M. D.; Hodgkiss, T.; Rosing, T.

    2007-02-26

    This report has been developed based on information exchanges at a 2.5-day workshop on energy harvesting for embedded structural health monitoring (SHM) sensing systems that was held June 28-30, 2005, at Los Alamos National Laboratory. The workshop was hosted by the LANL/UCSD Engineering Institute (EI). This Institute is an education- and research-focused collaboration between Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD), Jacobs School of Engineering. A Statistical Pattern Recognition paradigm for SHM is first presented and the concept of energy harvesting for embedded sensing systems is addressed with respect to the data acquisition portion of this paradigm. Next, various existing and emerging sensing modalities used for SHM and their respective power requirements are summarized, followed by a discussion of SHM sensor network paradigms, power requirements for these networks and power optimization strategies. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. This discussion also addresses current energy harvesting applications and system integration issues. The report concludes by defining some future research directions and possible technology demonstrations that are aimed at transitioning the concept of energy harvesting for embedded SHM sensing systems from laboratory research to field-deployed engineering prototypes.

  11. Development of wireless sensor network for monitoring indoor air pollutant

    NASA Astrophysics Data System (ADS)

    Saad, Shaharil Mad; Shakaff, Ali Yeon Md; Saad, Abdul Rahman Mohd; Yusof @ Kamarudin, Azman Muhamad

    2015-05-01

    The air that we breathe with everyday contains variety of contaminants and particles. Some of these contaminants and particles are hazardous to human health. Most of the people don't realize that the content of air they being exposed to whether it was a good or bad air quality. The air quality whether in indoor or outdoor environment can be influenced by physical factors like dust particles, gaseous pollutants (including carbon dioxide, carbon monoxide and volatile organic compounds) and biological like molds and bacteria growth which largely depend on temperature and humidity condition of a room. These kinds of pollutants can affect human health, physical reaction, comfort or work performance. In this study, a wireless sensor network (WSN) monitoring system for monitor air pollutant in indoor environment was developed. The system was divided into three parts: web-based interface program, sensing module and a base station. The measured data was displayed on the web which is can be accessed by the user. The result shows that the overall measured parameters were meet the acceptable limit, requirement and criteria of indoor air pollution inside the building. The research can be used to improve the indoor air quality level in order to create a comfortable working and healthy environment for the occupants inside the building.

  12. Network of LAMP systems for atmospheric monitoring in India

    NASA Astrophysics Data System (ADS)

    Yellapragada, Bhavani Kumar; Jayaraman, Achuthan

    2012-07-01

    A systematic knowledge of the vertical distribution of aerosol particles in the atmosphere is required for understanding many atmospheric processes such as dynamics of boundary layer, pollution transport, modification of cloud microphysics etc. At present, the information on the particle distribution in the atmosphere is far from sufficient to estimate properly the load of aerosols in the atmosphere. Light detection and ranging (LIDAR) has been demonstrated to be a reliable remote sensing technique to obtain altitude profiles of atmospheric cloud and aerosol scattering. A LIDAR network is being implemented by National Atmospheric Research Laboratory (NARL), a Department of Space unit, in India for the measurement and monitoring of the atmospheric aerosols and clouds. Towards this, the technology of boundary layer lidar (BLL) (Bhavani Kumar, 2006) has been exploited. Several industrial grade BLL systems are being fabricated at a private industry in India through technological transfer from NARL. The industrial BLL lidar is named as LAMP, stands for LIDAR for Atmospheric Measurement and Probing. Five LAMP systems have already been fabricated and deployed at several locations of the country for continuous monitoring of aerosols and clouds under the Indian Lidar network (I-LINK) programme. The LAMP system employs a single barrel construction so that no realignment is required in future. Moreover, the network lidar system employs several features like rotation facility about the elevation (EL) axis, a provision of front window for environmental protection to the telescope optics and a silica gel pocket for desiccation (for transmit and receive assembly) and a provision of nitrogen purging to overcome the humidity effects. The LAMP system is an autonomous system equipped with a diode pumped Nd-YAG laser, a PMT for the detection of the backscattered photons, and a PC based photon counting electronics for recording the photon returns. In this paper, a report describing

  13. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  14. ERS-1 SAR monitoring of ice growth on shallow lakes to determine water depth and availability in north west Alaska

    NASA Technical Reports Server (NTRS)

    Jeffries, Martin; Morris, Kim; Liston, Glen

    1996-01-01

    Images taken by the ERS-1 synthetic aperture radar (SAR) were used to identify and to differentiate between the lakes that freeze completely to the bottom and those that do not, on the North Slope, in northwestern Alaska. The ice thickness at the time each lake froze completely is determined with numerical ice growth model that gives a maximum simulated thickness of 2.2 m. A method combining the ERS-1 SAR images and numerical ice growth model was used to determine the ice growth and the water availability in these regions.

  15. Nondestructive monitoring of a pipe network using a MEMS-based wireless network

    NASA Astrophysics Data System (ADS)

    Shinozuka, Masanobu; Chou, Pai H.; Kim, Sehwan; Kim, Hong Rok; Yoon, Eunbae; Mustafa, Hadil; Karmakar, Debasis; Pul, Selim

    2010-04-01

    A MEMS-based wireless sensor network (WSN) is developed for nondestructive monitoring of pipeline systems. It incorporates MEMS accelerometers for measuring vibration on the surface of a pipe to determine the change in water pressure caused by rupture and the damage location. This system enables various sensor boards and camera modules to be daisychained underground and to transmit data with a shared radio board for data uplink. Challenges include reliable long-range communication, precise time synchronization, effective bandwidth usage, and power management. The low-cost MEMS technology, saved wiring cost, and simple installation without destructive modification enable large-scale deployment at an affordable cost.

  16. Overview of the new National Near-Road Air Quality Monitoring Network

    EPA Science Inventory

    In 2010, EPA promulgated new National Ambient Air Quality Standards (NAAQS) for nitrogen dioxide (NO2). As part of this new NAAQS, EPA required the establishment of a national near-road air quality monitoring network. This network will consist of one NO2 near-road monitoring st...

  17. Monitoring and analyses of volcanic activity using remote sensing data at the Alaska Volcano Observatory: Case study for Kamchatka, Russia, December 1997

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Dean, K., G.; Dehn, J.; Miller, T., P.; Kirianov, V. Yu.

    There are about 100 potentially active volcanoes in the North Pacific Ocean region that includes Alaska, the Kamchatka Peninsula, and the Kurile Islands, but fewer than 25% are monitored seismically. The region averages about five volcanic eruptions per year, and more than 20,000 passengers and millions of dollars of cargo fly the air routes in this region each day. One of the primary public safety objectives of the Alaska Volcano Observatory (AVO) is to mitigate the hazard posed by volcanic ash clouds drifting into these busy air traffic routes. The AVO uses real-time remote sensing data (AVHRR, GOES, and GMS) in conjunction with other methods (primarily seismic) to monitor and analyze volcanic activity in the region. Remote sensing data can be used to detect volcanic thermal anomalies and to provide unique information on the location, movement, and composition of volcanic eruption clouds. Satellite images are routinely analyzed twice each day at AVO and many times per day during crisis situations. As part of its formal working relationship with the Kamchatka Volcanic Eruption Response Team (KVERT), the AVO provides satellite observations of volcanic activity in Kamchatka and distributes notices of volcanic eruptions from KVERT to non-Russian users in the international aviation community. This paper outlines the current remote sensing capabilities and operations of the AVO and describes the responsibilities and procedures of federal agencies and international aviation organizations for volcanic eruptions in the North Pacific region. A case study of the December 4, 1997, eruption of Bezymianny volcano, Russia, is used to illustrate how real-time remote sensing and hazard communication are used to mitigate the threat of volcanic ash to aircraft.

  18. Assessment Of Errors In Long-Term Mass Balance Records From Alaska, USA

    NASA Astrophysics Data System (ADS)

    March, R. S.; van Beusekom, A. E.; O'Neel, S.

    2009-12-01

    The USGS maintains a long-term glacier mass balance monitoring program at Gulkana and Wolverine glaciers in Alaska. The records produced by this program are a major component of the world’s mountain glacier balance inventory due to the scarcity of such long-term measurements. Recent data that show rapid glacier volume loss in Alaska further emphasize the importance of these records. An integral part of the long-term mass balance program is repeated assessment of the validity of the methods because bias errors in mass balance data are cumulative. Long-term glacier mass balance records in Alaska have previously been shown to be in good agreement with geodetically determined volume changes despite a minimal network of mass balance stakes. Because the rates of negative mass balance and change in glacier geometry have recently increased, this work reassess whether or not the existing stake networks and method of determining glacier-average balance are still working adequately.

  19. Extending permanent volcano monitoring networks into Iceland's ice caps

    NASA Astrophysics Data System (ADS)

    Vogfjörd, Kristín S.; Bergsson, Bergur H.; Kjartansson, Vilhjálmur; Jónsson, Thorsteinn; Ófeigsson, Benedikt G.; Roberts, Matthew J.; Jóhannesson, Tómas; Pálsson, Finnur; Magnússon, Eyjólfur; Erlendsson, Pálmi; Ingvarsson, Thorgils; Pálssson, Sighvatur K.

    2015-04-01

    The goals of the FUTUREVOLC project are the establishment of a volcano Supersite in Iceland to enable access to volcanological data from the country's many volcanoes and the development of a multiparametric volcano monitoring and early warning system. However, the location of some of Iceland's most active volcanoes inside the country's largest ice cap, Vatnajökull, makes these goals difficult to achieve as it hinders access and proper monitoring of seismic and deformation signals from the volcanoes. To overcome these obstacles, one of the developments in the project involves experimenting with extending the permanent real-time networks into the ice cap, including installation of stations in the glacier ice. At the onset of the project, only one permanent seismic and GPS site existed within Vatnajökull, on the caldera rim of the Grímsvötn volcano. Two years into the project both seismic and GPS stations have been successfully installed and operated inside the glacier; on rock outcrops as well as on the glacier surface. The specific problems to overcome are (i) harsh weather conditions requiring sturdy and resilient equipment and site installations, (ii) darkness during winter months shutting down power generation for several weeks, (iii) high snow accumulation burying the instruments, solar panels and communication and GPS antennae, and in some locations (iv) extreme icing conditions blocking transmission signals and connection to GPS satellites, as well as excluding the possibility of power generation by wind generators. In 2013, two permanent seismic stations and one GPS station were installed on rock outcrops within the ice cap in locations with 3G connections and powered by solar panels and enough battery storage to sustain operation during the darkest winter months. These sites have successfully operated for over a year with mostly regular maintenance requirements, transmitting data in real-time to IMO for analysis. Preparations for two permanent seismic

  20. G-NetMon: a GPU-accelerated network performance monitoring system

    SciTech Connect

    Wu, Wenji; DeMar, Phil; Holmgren, Don; Singh, Amitoj; /Fermilab

    2011-06-01

    At Fermilab, we have prototyped a GPU-accelerated network performance monitoring system, called G-NetMon, to support large-scale scientific collaborations. In this work, we explore new opportunities in network traffic monitoring and analysis with GPUs. Our system exploits the data parallelism that exists within network flow data to provide fast analysis of bulk data movement between Fermilab and collaboration sites. Experiments demonstrate that our G-NetMon can rapidly detect sub-optimal bulk data movements.

  1. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks.

    PubMed

    Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi

    2016-01-01

    Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance. PMID:27006977

  2. Infrasonic Monitoring Network on the Big Island of Hawaii

    NASA Astrophysics Data System (ADS)

    Thelen, Weston; Garces, Milton; Cooper, Jennifer; Badger, Nickles; Perttu, Anna; Williams, Brian

    2013-04-01

    The USGS Hawaiian Volcano Observatory (HVO) with the participation of the University of Hawaii Infrasound Lab (ISLA) installed three new permanent infrasound arrays on the south half of the Island of Hawaii. Together with three existing permanent arrays maintained by ISLA, the current infrasound network around Kīlauea and Mauna Loa volcanoes is one of the most advanced of any volcano in the world. Open-vent volcanoes such as Kīlauea are particularly good infrasound emitters as lava spattering and unsteady gas release is common. The network was designed with two main goals in mind: 1) to monitor and study the infrasound sources associated with the ongoing Pu`u `Ō`ō and Halema'u'mau eruption, and 2) to detect in near real-time new eruptions at Mauna Loa or Kīlauea volcanoes. Each HVO array consists of 4 sensors, which form an equilateral triangle ~100 m on a side surrounding a central sensor. Three other permanent arrays maintained by ISLA (I59US, MENE, KHLU) have been operational since 2000, 2006, and 2009, respectively, and consist of a combination of Chaparral 25 and 50 sensors. Each infrasound instrument within the HVO arrays is built around an low- cost AllSensor MEMS sensor, which has higher noise characteristics than a Chaparral 25, but similar frequency response. ISLA also operates stations on Maui and Kauai that provide --statewide coverage. Since the full network has been established, we have recorded several infrasound signals including infrasonic tremor from Halema`uma`u, collapses from the craters of Halema`uma`u and Pu`u `Ō`ō, and other natural and anthropogenic infrasound from diverse sources on- island, offshore, and aloft. Future developments will include real-time detection, location, and identification of infrasonic signals for eruption notification. We hope to increase public awareness of volcanic infrasound by posting real-time locations on an interactive display, similar to how seismicity is currently reported. MENE data is presently

  3. Optimal design of river monitoring network in Taizihe River by matter element analysis.

    PubMed

    Wang, Hui; Liu, Zhe; Sun, Lina; Luo, Qing

    2015-01-01

    The objective of this study is to optimize the river monitoring network in Taizihe River, Northeast China. The situation of the network and water characteristics were studied in this work. During this study, water samples were collected once a month during January 2009 - December 2010 from seventeen sites. Futhermore, the 16 monitoring indexes were analyzed in the field and laboratory. The pH value of surface water sample was found to be in the range of 6.83 to 9.31, and the average concentrations of NH4(+)-N, chemical oxygen demand (COD), volatile phenol and total phosphorus (TP) were found decreasing significantly. The water quality of the river has been improved from 2009 to 2010. Through the calculation of the data availability and the correlation between adjacent sections, it was found that the present monitoring network was inefficient as well as the optimization was indispensable. In order to improve the situation, the matter element analysis and gravity distance were applied in the optimization of river monitoring network, which were proved to be a useful method to optimize river quality monitoring network. The amount of monitoring sections were cut from 17 to 13 for the monitoring network was more cost-effective after being optimized. The results of this study could be used in developing effective management strategies to improve the environmental quality of Taizihe River. Also, the results show that the proposed model can be effectively used for the optimal design of monitoring networks in river systems.

  4. Optimal Design of River Monitoring Network in Taizihe River by Matter Element Analysis

    PubMed Central

    Wang, Hui; Liu, Zhe; Sun, Lina; Luo, Qing

    2015-01-01

    The objective of this study is to optimize the river monitoring network in Taizihe River, Northeast China. The situation of the network and water characteristics were studied in this work. During this study, water samples were collected once a month during January 2009 - December 2010 from seventeen sites. Futhermore, the 16 monitoring indexes were analyzed in the field and laboratory. The pH value of surface water sample was found to be in the range of 6.83 to 9.31, and the average concentrations of NH4+-N, chemical oxygen demand (COD), volatile phenol and total phosphorus (TP) were found decreasing significantly. The water quality of the river has been improved from 2009 to 2010. Through the calculation of the data availability and the correlation between adjacent sections, it was found that the present monitoring network was inefficient as well as the optimization was indispensable. In order to improve the situation, the matter element analysis and gravity distance were applied in the optimization of river monitoring network, which were proved to be a useful method to optimize river quality monitoring network. The amount of monitoring sections were cut from 17 to 13 for the monitoring network was more cost-effective after being optimized. The results of this study could be used in developing effective management strategies to improve the environmental quality of Taizihe River. Also, the results show that the proposed model can be effectively used for the optimal design of monitoring networks in river systems. PMID:26023785

  5. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication. PMID:27562484

  6. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  7. Sensor network infrastructure for a home care monitoring system.

    PubMed

    Palumbo, Filippo; Ullberg, Jonas; Stimec, Ales; Furfari, Francesco; Karlsson, Lars; Coradeschi, Silvia

    2014-02-25

    This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose) and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage). The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL) tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus.

  8. Sensor Network Infrastructure for a Home Care Monitoring System

    PubMed Central

    Palumbo, Filippo; Ullberg, Jonas; Štimec, Ales; Furfari, Francesco; Karlsson, Lars; Coradeschi, Silvia

    2014-01-01

    This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose) and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage). The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL) tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus. PMID:24573309

  9. Identifying Trends in Deep Space Network Monitor Data

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program has been developed that analyzes Deep Space Network monitor data, looking for changes of trends in critical parameters. This program represents a significant improvement over the previous practice of manually plotting data and visually inspecting the resulting graphs to identify trends. This program uses proven numerical techniques to identify trends. When a statistically significant trend is detected, then it is characterized by means of a symbol that can be used by pre-existing model-based reasoning software. The program can perform any of the following functions: Given an expectation that data in a given list should exhibit an upward, downward, constant, or unknown trend, it can determine whether the data do or do not follow such a trend. Given a list of data, it can identify which of the aforementioned trends the data follow. Given two lists of data, it can determine whether or not both follow the same trend. This program can be executed on a variety of computers. It can be distributed in either source code or binary code form. It must be run in conjunction with any one of a number of Lisp compilers that are available commercially or as shareware.

  10. Revisiting Notable Earthquakes and Seismic Patterns of the Past Decade in Alaska

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Macpherson, K. A.; Holtkamp, S. G.

    2015-12-01

    Alaska, the most seismically active region of the United States, has produced five earthquakes with magnitudes greater than seven since 2005. The 2007 M7.2 and 2013 M7.0 Andreanof Islands earthquakes were representative of the most common source of significant seismic activity in the region, the Alaska-Aleutian megathrust. The 2013 M7.5 Craig earthquake, a strike-slip event on the Queen-Charlotte fault, occurred along the transform plate boundary in southeast Alaska. The largest earthquake of the past decade, the 2014 M7.9 Little Sitkin event in the western Aleutians, occurred at an intermediate depth and ruptured along a gently dipping fault through nearly the entire thickness of the subducted Pacific plate. Along with these major earthquakes, the Alaska Earthquake Center reported over 250,000 seismic events in the state over the last decade, and its earthquake catalog surpassed 500,000 events in mid-2015. Improvements in monitoring networks and processing techniques allowed an unprecedented glimpse into earthquake patterns in Alaska. Some notable recent earthquake sequences include the 2008 Kasatochi eruption, the 2006-2008 M6+ crustal earthquakes in the central and western Aleutians, the 2010 and 2015 Bering Sea earthquakes, the 2014 Noatak swarm, and the 2014 Minto earthquake sequence. In 2013, the Earthscope USArray project made its way into Alaska. There are now almost 40 new Transportable Array stations in Alaska along with over 20 upgraded sites. This project is changing the earthquake-monitoring scene in Alaska, lowering magnitude of completeness across large, newly instrumented parts of the state.

  11. Precise Time-Tag Generator For A Local-Area-Network Monitor

    NASA Technical Reports Server (NTRS)

    Stauffer, David R.; Tran, Khoa Duy

    1995-01-01

    Time-tag-generating circuit designed for use in LAN monitor, monitors frames of data transmitted among computers on local-area network (LAN). To each frame of data that LAN monitor receives from LAN, time-tag generator appends ancillary data on time of arrival of frame, precise to within 1 microsecond of centrally generated time signal. Inserts ancillary time data in place of already used frame-check data before frames of data stored in memory of LAN monitor.

  12. The perceived impacts of monitoring activities on intergovernmental relationships: some lessons from the Ecological Monitoring Network and Water in Focus.

    PubMed

    de Kool, Dennis

    2015-11-01

    An increasing stream of monitoring activities is entering the public sector. This article analyzes the perceived impacts of monitoring activities on intergovernmental relationships. Our theoretical framework is based on three approaches to monitoring and intergovernmental relationships, namely, a rational, a political, and a cultural perspective. Our empirical insights are based on two Dutch case studies, namely, the Ecological Monitoring Network and the Water in Focus reports. The conclusion is that monitoring activities have an impact on intergovernmental relationships in terms of standardizing working processes and methods, formalizing information relationships, ritualizing activities, and developing shared concepts ("common grammar"). An important challenge is to deal with the politicization of intergovernmental relationships, because monitoring reports can also stimulate political discussions about funding, the design of the instrument, administrative burdens, and supervisory relationships.

  13. Evaluating the North American In-Situ Carbon Dioxide Monitoring Network

    NASA Astrophysics Data System (ADS)

    Shiga, Y. P.; Michalak, A. M.; Hammerling, D.; Chatterjee, A.; Kawa, S. R.; Engelen, R. J.

    2010-12-01

    A method for evaluating the North America in-situ atmospheric carbon dioxide (CO2) monitoring network is presented. In-situ atmospheric CO2 measurements represent an integral component of inverse modeling and data assimilation studies aimed at estimating North American terrestrial CO2 sources and sinks. The sparse network of monitoring locations has been a limiting factor in the ability to constrain CO2 flux estimates at sub-continental scales. Furthermore, the number of additional monitoring stations needed to achieve this goal, and their optimal placement, is difficult to assess. Recently, the number of continuous cross-calibrated in-situ measurement sites in North America has increased from 9 towers in 2004 to 42 towers in 2008. Despite the tremendous effort put forth in bringing new tower sites and data products online, there is still no systematic method for selecting the optimal placement of new measurement sites, or evaluating the effectiveness of the existing network. The tool proposed is a relatively simple, flexible and computationally inexpensive method used to achieve two goals:(1)examine the current North American CO2 monitoring network and (2)offer insights into the expansion and design of future atmospheric CO2 monitoring networks. The approach taken is based upon the simple criterion that a network must be able to sufficiently capture the "signal" of concern, namely the variability in the atmospheric CO2 distribution. Modeled surface-level CO2 concentrations, produced using the PCTM/GEOS-4 model, are used to represent a simulated atmospheric CO2 concentration field over North America. Through a local geostatistical variogram analysis, the spatial variability of the CO2 field is quantified as a function of location and time, and used to develop a correlation length criterion to asses changing network coverage from 2004 to 2008. While the 2008 network shows a marked increase in coverage relative to 2004, large portions of the continent remain "unseen

  14. Distance Learning in Alaska's Rural Schools.

    ERIC Educational Resources Information Center

    Bramble, William J.

    1986-01-01

    The distance education and instructional technology projects that have been undertaken in Alaska over the last decade are detailed in this paper. The basic services offered by the "Learn Alaska Network" are described in relation to three user groups: K-12 education; postsecondary education; and general public education and information. The audio…

  15. The status of streamflow and ground-water-level monitoring networks in Maryland, 2005

    USGS Publications Warehouse

    Gerhart, James M.; Cleaves, Emery T.

    2005-01-01

    The monitoring of streamflow and ground-water levels in Maryland is vitally important to the effective management and protection of the State?s water resources. Streamflow and ground-water-level monitoring networks have been operated for many years in Maryland, and in recent years, these networks have been redesigned to improve their efficiency. Unfortunately, these networks are increasingly at risk due to reduced and fluctuating funding from Federal, State, and local agencies. Stable, long-term funding is necessary to ensure that these networks will continue to provide valuable water data for use by State and local water-resources managers.

  16. Designing optimal greenhouse gas monitoring networks for Australia

    NASA Astrophysics Data System (ADS)

    Ziehn, T.; Law, R. M.; Rayner, P. J.; Roff, G.

    2016-01-01

    Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG) flux estimates from concentration measurements. The optimal location of ground-based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM) in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2) performed by Ziehn et al. (2014) to also minimise the uncertainty on the flux estimates for methane (CH4) and nitrous oxide (N2O), both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to five new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that, while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.

  17. Spatial assessment of monitoring network in coastal waters: a case study of Kuwait Bay.

    PubMed

    Al-Mutairi, Nawaf; AbaHussain, Asma; El-Battay, Ali

    2015-10-01

    Spatial analyses of water-quality-monitoring networks in coastal waters are important because pollution sources vary temporally and spatially. This study was conducted to evaluate the spatial distribution of the water-quality-monitoring network of Kuwait Bay using both geostatistical and multivariate techniques. Three years of monthly data collected from six existing monitoring stations covering Kuwait Bay between 2009 and 2011 were employed in conjunction with data collected from 20 field sampling sites. Field sampling locations were selected based on a stratified random sampling scheme oriented by an existing classification map of Kuwait Bay. Two water quality datasets obtained from different networks were compared by cluster analysis applied to the Water Quality Index (WQI) and other water quality parameters, after which the Kriging method was used to generate distribution maps of water quality for spatial assessment. Cluster analysis showed that the current monitoring network does not represent water quality patterns in Kuwait Bay. Specifically, the distribution maps revealed that the existing monitoring network is inadequate for heavily polluted areas such as Sulaibikhat Bay and the northern portion of Kuwait Bay. Accordingly, the monitoring system in Kuwait Bay must be revised or redesigned. The geostatistical approach and cluster analysis employed in this study will be useful for evaluating future proposed modifications to the monitoring stations network in Kuwait Bay. PMID:26362877

  18. Experimental validation of optical layer performance monitoring using an all-optical network testbed

    NASA Astrophysics Data System (ADS)

    Vukovic, Alex; Savoie, Michel J.; Hua, Heng

    2004-11-01

    Communication transmission systems continue to evolve towards higher data rates, increased wavelength densities, longer transmission distances and more intelligence. Further development of dense wavelength division multiplexing (DWDM) and all-optical networks (AONs) will demand ever-tighter monitoring to assure a specified quality of service (QoS). Traditional monitoring methods have been proven to be insufficient. Higher degree of self-control, intelligence and optimization for functions within next generation networks require new monitoring schemes to be developed and deployed. Both perspective and challenges of performance monitoring, its techniques, requirements and drivers are discussed. It is pointed out that optical layer monitoring is a key enabler for self-control of next generation optical networks. Aside from its real-time feedback and the safeguarding of neighbouring channels, optical performance monitoring ensures the ability to build and control complex network topologies while maintaining an efficiently high QoS. Within an all-optical network testbed environment, key performance monitoring parameters are identified, assessed through real-time proof-of-concept, and proposed for network applications for the safeguarding of neighbouring channels in WDM systems.

  19. Long-term monitoring of airborne pollen in Alaska and the Yukon: Possible implications for global change

    SciTech Connect

    Anderson, J.H.

    1992-03-01

    Airborne pollen and spores have been sampled since 1978 in Fairbanks and 1982 Anchorage and other Alaska-Yukon locations for medical and ecological purposes. Comparative analyses of pre- and post-1986 data subsets reveal that after 1986 (1) pollen is in the air earlier, (2) the multiyear average of degree-days promoting pollen onset is little changed while (3) annual variation in degree-days at onset is greater, (4) pollen and spore annual productions are considerably higher, and (5) there is more year-to-year variation in pollen production. These changes probably reflect directional changes in certain weather variables, and there is some indication that they are of global change significance, i.e., related to increasing atmospheric greenhouse gases. Correlations with pollen data suggest that weather variables of high influence are temperatures during specific periods following pollen dispersal in the preceding year and the average temperature in April of the current year. Annual variations in pollen dispersal might be roughly linked to the 11 year sunspot cycle through air temperature mediators. Weather in 1990, apparent pollen production cycles under endogenous control, and the impending sunspot maximum portend a very severe pollen season in 199 existing but unfunded sampling projects.

  20. Monitoring Recovery of Prince William Sound, Alaska, Following the Exxon Valdez Oil Spill: Bioavailability of PAH in Offshore Sediments

    SciTech Connect

    Neff, Jerry M.; Boehm, Paul D.; Kropp, Roy K.; Stubblefield, William A.; Page, David S.

    2004-11-02

    We determined the bioavailability to sediment dwelling marine worms of polycyclic aromatic hydrocarbons (PAHs) associated with offshore sediments from 3 spill path and 3 non-spill path areas of Prince William Sound (PWS), Alaska, 12 years after the Exxon Valdez oil spill. The PAHs in sediments from 4 sites sampled in 2001 were primarily from a regional natural petrogenic background derived from organic-rich shales and natural oil seeps associated with sources southeast of PWS. Pyrogenic (combustion) PAHs, primarily from former human and industrial activities, were more abundant than petrogenic PAHs in nearshore sediments from 2 bays associated with past and current human activities. We performed sediment bioaccumulation tests with the six sediments and polychaete worms according to standard EPA protocols. All the PAHs had a very low bioavailability, as indicated by low values for biota/sediment accumulation factors (BSAFs) in the worms. Mean BSAFs for total PAHs (sum of 41 analyte groups) ranged from 0.002 to 0.009. The worms exposed to spill path and non-spill path sediments bioaccumulated small amounts of 4- and 5-ring PAHs, particularly fluoranthene and pyrene; these higher molecular weight PAHs are responsible for induction of mixed function oxygenase (MFO) activity in marine fish, birds, and mammals. These results may help to explain in part why fish from throughout PWS exhibit induced MFO activity. Elevated levels of MFO activity cannot be used as evidence of recent exposure by marine fish, birds, and mammals in the sound to Exxon Valdez oil.

  1. Overview of Regional Monitoring Networks to Detect Climate Change in Streams

    EPA Science Inventory

    In partnership with states, tribes, and other organizations, the U.S. Environmental Protection Agency has worked to establish regional monitoring networks (RMNs) at which biological, thermal, and hydrologic data are collected from freshwater wadeable streams to quantify and monit...

  2. NRC TLD Direct Radiation Monitoring Network: Volume 15, No. 1. Progress report, January--March 1995

    SciTech Connect

    Struckmeyer, R.

    1995-05-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facilities throughout the country for the first quarter of 1995.

  3. NRC TLD direct radiation monitoring network: Progress report, April--June 1997. Volume 17, Number 2

    SciTech Connect

    Struckmeyer, R.

    1997-09-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facilities throughout the country for the second quarter of 1997.

  4. A Real-time Monitoring System for the Pipeline Network of Coalmine

    NASA Astrophysics Data System (ADS)

    Zhao, H. L.; Wang, J. K.; Jiang, X.

    2012-05-01

    The pipeline network of coalmine has the characteristics of widespread distribution and complex structure. It is difficult to detect abnormalities in time by manual when the faults occurred, which often lead to reduction in production. In this paper, a monitoring system is developed to monitor the operating conditions of the pipeline network in real-time. The system has abilities to dynamic monitoring, real-time display, and failure alarm and leakage location. Therefore, the faults detection and maintenance can be implemented timely to ensure the safety of coalmine production due to the real-time condition monitoring of the pipeline network. Moreover, the resources allocation, production efficiency and management level can also be improved obviously. In addition, this real-time monitoring system has shown significant performance in applying it in Dongtan Coal Mine, Yanzhou Coal Mining Co., Ltd and Wennan Coal Mine, Shandong Energy Xinwen Mining Group Co., Ltd, China.

  5. Plan for a groundwater monitoring network in Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, Shiang-Kueen

    In Taiwan, rapid economic growth, rising standards of living, and an altered societal structure have in recent years put severe demands on water supplies. Because of its stable quantity and quality, groundwater has long been a reliable source of water for domestic, agricultural, and industrial users, but the establishment of a management program that integrates groundwater and surface-water use has been hampered by the lack of groundwater data. In 1992, the Department of Water Resources (DWR) initiated a program entitled "Groundwater Monitoring Network Plan in Taiwan." Under this program, basic groundwater data, including water-level and water-quality data, are being collected, and a reliable database is being established for the purpose of managing total water resources. This paper introduces the goals, implementation stages, and scope of that plan. The plan calls for constructing 517 hydrogeologic survey stations and 990 groundwater monitoring wells within 17 years. Under this program, water-level fluctuations are continuously monitored, whereas water-quality samples are taken for analysis only at the initial drilling stage and, subsequently, at the time when a monitoring well is being serviced. In 1996, the DWR and the Water Resources Planning Commission were merged to form today's Water Resources Bureau. Résumé A Taïwan, l'expansion économique rapide, l'amélioration des conditions de vie et la transformation de la structure sociale ont provoqué, ces dernières années, une très forte demande en eau. Du fait de sa constance en qualité et en quantité, l'eau souterraine a longtemps été considérée comme une ressource en eau sûre pour les usages domestiques, agricoles et industriels. Mais la mise en place d'un programme de gestion intégrant les utilisations d'eaux souterraines et de surface a été gênée par l'absence de données sur les eaux souterraines. En 1992, le Département des Ressources en Eau a lancé le programme "Plan pour un réseau de

  6. Plan for a groundwater monitoring network in Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, Shiang-Kueen

    In Taiwan, rapid economic growth, rising standards of living, and an altered societal structure have in recent years put severe demands on water supplies. Because of its stable quantity and quality, groundwater has long been a reliable source of water for domestic, agricultural, and industrial users, but the establishment of a management program that integrates groundwater and surface-water use has been hampered by the lack of groundwater data. In 1992, the Department of Water Resources (DWR) initiated a program entitled "Groundwater Monitoring Network Plan in Taiwan." Under this program, basic groundwater data, including water-level and water-quality data, are being collected, and a reliable database is being established for the purpose of managing total water resources. This paper introduces the goals, implementation stages, and scope of that plan. The plan calls for constructing 517 hydrogeologic survey stations and 990 groundwater monitoring wells within 17 years. Under this program, water-level fluctuations are continuously monitored, whereas water-quality samples are taken for analysis only at the initial drilling stage and, subsequently, at the time when a monitoring well is being serviced. In 1996, the DWR and the Water Resources Planning Commission were merged to form today's Water Resources Bureau. Résumé A Taïwan, l'expansion économique rapide, l'amélioration des conditions de vie et la transformation de la structure sociale ont provoqué, ces dernières années, une très forte demande en eau. Du fait de sa constance en qualité et en quantité, l'eau souterraine a longtemps été considérée comme une ressource en eau sûre pour les usages domestiques, agricoles et industriels. Mais la mise en place d'un programme de gestion intégrant les utilisations d'eaux souterraines et de surface a été gênée par l'absence de données sur les eaux souterraines. En 1992, le Département des Ressources en Eau a lancé le programme "Plan pour un réseau de

  7. Complex network theory, streamflow, and hydrometric monitoring system design

    NASA Astrophysics Data System (ADS)

    Halverson, M. J.; Fleming, S. W.

    2015-07-01

    Network theory is applied to an array of streamflow gauges located in the Coast Mountains of British Columbia (BC) and Yukon, Canada. The goal of the analysis is to assess whether insights from this branch of mathematical graph theory can be meaningfully applied to hydrometric data, and, more specifically, whether it may help guide decisions concerning stream gauge placement so that the full complexity of the regional hydrology is efficiently captured. The streamflow data, when represented as a complex network, have a global clustering coefficient and average shortest path length consistent with small-world networks, which are a class of stable and efficient networks common in nature, but the observed degree distribution did not clearly indicate a scale-free network. Stability helps ensure that the network is robust to the loss of nodes; in the context of a streamflow network, stability is interpreted as insensitivity to station removal at random. Community structure is also evident in the streamflow network. A network theoretic community detection algorithm identified separate communities, each of which appears to be defined by the combination of its median seasonal flow regime (pluvial, nival, hybrid, or glacial, which in this region in turn mainly reflects basin elevation) and geographic proximity to other communities (reflecting shared or different daily meteorological forcing). Furthermore, betweenness analyses suggest a handful of key stations which serve as bridges between communities and might be highly valued. We propose that an idealized sampling network should sample high-betweenness stations, small-membership communities which are by definition rare or undersampled relative to other communities, and index stations having large numbers of intracommunity links, while retaining some degree of redundancy to maintain network robustness.

  8. A New Network Modeling Tool for the Ground-based Nuclear Explosion Monitoring Community

    NASA Astrophysics Data System (ADS)

    Merchant, B. J.; Chael, E. P.; Young, C. J.

    2013-12-01

    Network simulations have long been used to assess the performance of monitoring networks to detect events for such purposes as planning station deployments and network resilience to outages. The standard tool has been the SAIC-developed NetSim package. With correct parameters, NetSim can produce useful simulations; however, the package has several shortcomings: an older language (FORTRAN), an emphasis on seismic monitoring with limited support for other technologies, limited documentation, and a limited parameter set. Thus, we are developing NetMOD (Network Monitoring for Optimal Detection), a Java-based tool designed to assess the performance of ground-based networks. NetMOD's advantages include: coded in a modern language that is multi-platform, utilizes modern computing performance (e.g. multi-core processors), incorporates monitoring technologies other than seismic, and includes a well-validated default parameter set for the IMS stations. NetMOD is designed to be extendable through a plugin infrastructure, so new phenomenological models can be added. Development of the Seismic Detection Plugin is being pursued first. Seismic location and infrasound and hydroacoustic detection plugins will follow. By making NetMOD an open-release package, it can hopefully provide a common tool that the monitoring community can use to produce assessments of monitoring networks and to verify assessments made by others.

  9. Groundwater Monitoring Network Design Using a Space-Filling/ Bias-Reduction Heuristic

    NASA Astrophysics Data System (ADS)

    Yan, T.; Singh, A.; Kelley, V.; Deeds, N.

    2012-12-01

    Groundwater monitoring network design is one of the primary goals of groundwater management. In this study, a heuristic method for selecting wells to monitor groundwater flow is developed. The approach selects wells to a) maximize spread within the monitoring area (space-filling objective), b) reduce bias in estimate of groundwater level (drawdown objective) by selecting pairs of well proximal and distant from pumping areas. By selecting pairs of monitoring wells, this method is able to capture the largest and smallest drawdown in the study area while ensuring the newly added monitoring wells are at the greatest distance from existing monitoring wells. One of the advantages of this method is that it does not require water level information, obtained either from field measurements or groundwater model runs, which might be unavailable at the time of the monitoring network design; instead, this method utilizes pumping rates and locations thus can take future planning into consideration. If water level data is available then that may be included by considering it in the drawdown objective. A FORTRAN code is developed to implement this method. By changing the weighting factors, users have the flexibility on deciding the importance of pumping and spatial information to their network designs. The method has been successfully applied to monitoring network design in Upper Trinity County Groundwater Conservation District in Texas. Monitoring wells were selected from thousands of existing wells and added to the current monitoring network. The results support the decision maker on the number and distribution of a new groundwater network using existing wells. The study can be extended to improve the application of desired future condition (DFC) for Groundwater Conservation Districts in Texas.

  10. A Mobile Sensor Network System for Monitoring of Unfriendly Environments

    PubMed Central

    Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo

    2008-01-01

    Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.

  11. Long term volcano monitoring by using advanced Persistent Scatterer SAR Interferometry technique: A case study at Unimak Island, Alaska

    NASA Astrophysics Data System (ADS)

    Gong, W.; Meyer, F. J.; Freymueller, J. T.; Lu, Z.

    2012-12-01

    Unimak Island, the largest island in the eastern Aleutians of Alaska, is home to three major active volcanoes: Shishaldin, Fisher, and Westdahl. Shishaldin and Westdahl erupted within the past 2 decades and Fisher has shown persistent hydrothermal activity (Mann and Freymueller, 2003). Therefore, Unimak Island is of particular interest to geoscientists. Surface deformation on Unimak Island has been studied in several previous efforts. Lu et al. (2000, 2003) applied conventional InSAR techniques to study surface inflation at Westdahl during 1991 and 2000. Mann and Freymueller (2003) used GPS measurements to analyze inflation at Westdahl and subsidence at Fisher during 1998-2001. Moran et al., ( 2006) reported that Shishaldin, the most active volcano in the island , experienced no significant deformation during the 1993 to 2003 period bracketing two eruptions. In this paper, we present deformation measurements at Unimak Islank during 2003-2010 using advanced persistent scatterer InSAR (PSI). Due to the non-urban setting in a subarctic environment and the limited data acquisition, the number of images usable for PSI processing is limited to about 1-3 acquisitions per year. The relatively smaller image stack and the irregular acquisition distribution in time pose challenges in the PSI time-series processing. Therefore, we have developed a modified PSI technique that integrates external atmospheric information from numerical weather predication models to assist in the removal of atmospheric artifacts [1]. Deformation modeling based on PSI results will be also presented. Our new results will be combined with previous findings to address the magma plumbing system at Unimak Island. 1) W. Gong, F. J. Meyer (2012): Optimized filter design for irregular acquired data stack in Persistent Scatterers Synthetic Aperture Radar Interferometry, Proceeding of Geosciences and Remote Sensing Symposium (IGARSS), 2012 IEEE International, Munich, Germany.

  12. A simple and fractal analysis of the European on-line network for airborne radioactivity monitoring.

    PubMed

    Raes, F; Graziani, G; Girardi, F

    1991-09-01

    We introduce two simple descriptors and use the fractal dimension to characterize the capability of a monitoring network to either 'spot', 'delineate' or 'track' a pollution cloud moving across a territory. The descriptors are applied to the 'European' monitoring network for radioactive aerosol (i.e. the sum of the national networks). Simple analysis shows that on average the time and space resolution of the network are well balanced for tracking the movement of a radioactive cloud. Such tracking, however, can only be started one or two days after the release. The geographical inhomogeneity of the network is quantified by a fractal dimension of 1.6, implying that radioactive clouds with a dimension less than 0.4 might not be detected by the network.

  13. The National Ambient Air Monitoring Stategy: Rethinking the Role of National Networks

    EPA Science Inventory

    A current re-engineering of the United States routine ambient monitoring networks intended to improve the balance in addressing both regulatory and scientific objectives is addressed in this paper. Key attributes of these network modifications include the addition of collocated ...

  14. 40 CFR Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Air Quality Standards (NAAQS) levels and forms are defined in 40 CFR part 50. 4 These minimum... approved as part of the annual monitoring network plan required in 40 CFR 58.10. 1 Daily or with an... nitrogen, VOC, and meteorology. 5.1PAMS Monitoring Objectives. PAMS design criteria are site...

  15. 40 CFR Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Air Quality Standards (NAAQS) levels and forms are defined in 40 CFR part 50. 4 These minimum... approved as part of the annual monitoring network plan required in 40 CFR 58.10. 1 Daily or with an... nitrogen, VOC, and meteorology. 5.1PAMS Monitoring Objectives. PAMS design criteria are site...

  16. Deploying perfSONAR-based End-2-End monitoring for production US CMS networking

    SciTech Connect

    Grigoriev, Maxim; Bobyshev, Andrey; Crawford, Matt; DeMar, Phil; Grigaliunas, Vyto; Petravick, Don; /Fermilab

    2007-09-01

    Fermilab is the US Tier-1 Center for CMS data storage and analysis. End-2-End (E2E) circuits are utilized to support high impact data movement into and out of the Tier-1 Center. E2E circuits have been implemented to facilitate the movement of raw experiment data from the Tier-0 Center at CERN, as well as processed data to a number of the US Tier-2 sites. Troubleshooting and monitoring of those circuits presents a significant challenge, since the circuits typically cross multiple research & education networks, each with its own management domain and customized monitoring capabilities. The perfSONAR Monitoring Project was established to facilitate development and deployment of a common monitoring infrastructure across multiple network management domains. Fermilab has deployed perfSONAR across its E2E circuit infrastructure and enhanced the product with several tools that ease the monitoring and management of those circuits. This paper will present the current state of perfSONAR monitoring at Fermilab and detail our experiences using perfSONAR to manage our current E2E circuit infrastructure. We will describe how production network circuits are monitored by perfSONAR E2E Monitoring Points (MPs), and the benefits it has brought to production US CMS networking support.

  17. NRC TLD Direct Radiation Monitoring Network. Progress report, October-December 1985. Volume 5, No. 4

    SciTech Connect

    Jang, J.; Rabatin, K.; Cohen, L.

    1986-05-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1985. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  18. NRC TLD Direct Radiation Monitoring Network progress report, October--December 1994. Volume 14, No. 4

    SciTech Connect

    Struckmeyer, R.

    1995-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1994. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  19. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    SciTech Connect

    Struckmeyer, R.

    1997-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  20. Synthesize, optimize, analyze, repeat (SOAR): Application of neural network tools to ECG patient monitoring

    SciTech Connect

    Watrous, R.; Towell, G.; Glassman, M.S.

    1995-12-31

    Results are reported from the application of tools for synthesizing, optimizing and analyzing neural networks to an ECG Patient Monitoring task. A neural network was synthesized from a rule-based classifier and optimized over a set of normal and abnormal heartbeats. The classification error rate on a separate and larger test set was reduced by a factor of 2. When the network was analyzed and reduced in size by a factor of 40%, the same level of performance was maintained.

  1. Detailed hydrochemical studies as a useful extension of national ground-water monitoring networks

    SciTech Connect

    Frapporti, G.; Hoogendoorn, J.H.; Vriend, S.P.

    1995-09-01

    Regional and national ground-water monitoring networks are used to inventory and to monitor diffusive (nonpoint) sources of ground-water contamination. The Dutch National Ground Water Quality Monitoring Network (LMG) is an example of such a network and monitors the shallow ground water of The Netherlands at two depths (10 and 25 m below land surface) in 350 wells, giving an average density of one monitoring well per 100 km{sup 2}. Once water-quality changes have been observed in time and space, the regional network is less suited to the study of the detailed chemistry, dynamics, and scale of the observed changes, because of the low density of sampling points. Two important threats to the quality of ground water that were identified by the regional network were studied in greater detail by use of multilevel observation wells along cross sections parallel to the direction of ground-water flow. The first detailed study evaluates the fate of nitrate and other agricultural contaminants in a sandy aquifer recharged by precipitation. the second detailed study evaluates the effects of recharge from IJsssel river water in a sandy aquifer. The varying compositions of ground water are controlled by the hydrological flow patterns, the composition of the aquifer sediments and the composition of the source water. These controlling factors locally lead to relatively rapid transitions and heterogeneity of ground-water compositions. The transition zones are considerably smaller than the density of observation wells in the Dutch ground-water monitoring network, which limits the usefulness of regional monitoring networks for identifying chemically similar hydrologic zones or for effectively evaluating physical and chemical processes that affect the water quality. Regional patterns may evolve as a result of selective placement of monitoring wells, which show a specific fact of the ground-water quality of that region.

  2. Establishment of a hydrological monitoring network in a tropical African catchment: An integrated participatory approach

    NASA Astrophysics Data System (ADS)

    Gomani, M. C.; Dietrich, O.; Lischeid, G.; Mahoo, H.; Mahay, F.; Mbilinyi, B.; Sarmett, J.

    Sound decision making for water resources management has to be based on good knowledge of the dominant hydrological processes of a catchment. This information can only be obtained through establishing suitable hydrological monitoring networks. Research catchments are typically established without involving the key stakeholders, which results in instruments being installed at inappropriate places as well as at high risk of theft and vandalism. This paper presents an integrated participatory approach for establishing a hydrological monitoring network. We propose a framework with six steps beginning with (i) inception of idea; (ii) stakeholder identification; (iii) defining the scope of the network; (iv) installation; (v) monitoring; and (vi) feedback mechanism integrated within the participatory framework. The approach is illustrated using an example of the Ngerengere catchment in Tanzania. In applying the approach, the concept of establishing the Ngerengere catchment monitoring network was initiated in 2008 within the Resilient Agro-landscapes to Climate Change in Tanzania (ReACCT) research program. The main stakeholders included: local communities; Sokoine University of Agriculture; Wami Ruvu Basin Water Office and the ReACCT Research team. The scope of the network was based on expert experience in similar projects and lessons learnt from literature review of similar projects from elsewhere integrated with local expert knowledge. The installations involved reconnaissance surveys, detailed surveys, and expert consultations to identify best sites. First, a Digital Elevation Model, land use, and soil maps were used to identify potential monitoring sites. Local and expert knowledge was collected on flow regimes, indicators of shallow groundwater plant species, precipitation pattern, vegetation, and soil types. This information was integrated and used to select sites for installation of an automatic weather station, automatic rain gauges, river flow gauging stations

  3. A system for ubiquitous health monitoring in the bedroom via a Bluetooth network and wireless LAN.

    PubMed

    Choi, J M; Choi, B H; Seo, J W; Sohn, R H; Ryu, M S; Yi, W; Park, K S

    2004-01-01

    Advances in information technology have enabled ubiquitous health monitoring at home, which is particularly useful for patients, who have to live alone. We have focused on the automatic and unobtrusive measurement of biomedical signals and activities of patients. We have constructed wireless communication networks in order to transfer data. The networks consist of Bluetooth and Wireless Local Area Network (WLAN). In this paper, we present the concept of a ubiquitous-Bedroom (u-Bedroom) which is a part of a ubiquitous-House (u-House) and we present our systems for ubiquitous health monitoring.

  4. Managing landslide monitoring networks with near real time Geo-browsers

    NASA Astrophysics Data System (ADS)

    Giordan, Daniele; Dell'Anese, Federico; Manconi, Andrea; Allasia, Paolo

    2015-04-01

    Monitoring applications are an extremely important task for the analysis and understanding geo-hazards, as well as for promptly recognizing and eventually warn about their potential paroxysmal evolution. Nowadays, a wide range of monitoring strategies and instruments can be applied in operative monitoring scenarios, and the technological evolution of last decades has considerably increased the possibility of managing complex multi-parametric networks. The effectiveness of a monitoring network in geo-hazard scenarios is usually directly associated to the type of instruments considered, the suitability and completeness of the monitoring network, and the frequency of acquisition of measurements (revisit time). However, especially during emergency scenarios, another fundamental parameter to consider is the possibility to achieve an easy and clear access to all the available information. The Geohazard Monitoring Group of CNR IRPI exploited the Google Earth® plugin to organize and present the information obtained d from a monitoring network installed on a landslide scenario in a straightforward fashion. The system restitutes all the available information on the monitored area as different layers, which are superimposed to the base map and digital elevation models provided by Google. The layers include data as raster (ortophotos, shaded relieves, etc.) and point information (position of instruments, monitored targets, etc.), as well as the most recent results obtained from the monitoring network in near real time. The resulting geo-browser is hosted on a dedicated website, where authorized end-users can select between several thematic visualizations. The system has been developed and tested in the Mont de La Saxe landslide scenario, a large instable slope located in the northwestern Italian. This new data exploitation modality has demonstrated to be an efficient tool to support the decision makers in particular during emergency phases.

  5. Monitoring industrial facilities using principles of integration of fiber classifier and local sensor networks

    NASA Astrophysics Data System (ADS)

    Korotaev, Valery V.; Denisov, Victor M.; Rodrigues, Joel J. P. C.; Serikova, Mariya G.; Timofeev, Andrey V.

    2015-05-01

    The paper deals with the creation of integrated monitoring systems. They combine fiber-optic classifiers and local sensor networks. These systems allow for the monitoring of complex industrial objects. Together with adjacent natural objects, they form the so-called geotechnical systems. An integrated monitoring system may include one or more spatially continuous fiber-optic classifiers based on optic fiber and one or more arrays of discrete measurement sensors, which are usually combined in sensor networks. Fiber-optic classifiers are already widely used for the control of hazardous extended objects (oil and gas pipelines, railways, high-rise buildings, etc.). To monitor local objects, discrete measurement sensors are generally used (temperature, pressure, inclinometers, strain gauges, accelerometers, sensors measuring the composition of impurities in the air, and many others). However, monitoring complex geotechnical systems require a simultaneous use of continuous spatially distributed sensors based on fiber-optic cable and connected local discrete sensors networks. In fact, we are talking about integration of the two monitoring methods. This combination provides an additional way to create intelligent monitoring systems. Modes of operation of intelligent systems can automatically adapt to changing environmental conditions. For this purpose, context data received from one sensor (e.g., optical channel) may be used to change modes of work of other sensors within the same monitoring system. This work also presents experimental results of the prototype of the integrated monitoring system.

  6. Operation IceBridge Alaska

    NASA Astrophysics Data System (ADS)

    Larsen, C.

    2015-12-01

    The University of Alaska Fairbanks (UAF) has flown LiDAR missions for Operation IceBridge in Alaska each year since 2009, expanding upon UAF's airborne laser altimetry program which started in 1994. These observations show that Alaska's regional mass balance is -75+11/-16 Gt yr-1 (1994-2013) (Larsen et al., 2015). A surprising result is that the rate of surface mass loss observed on non-tidewater glaciers in Alaska is extremely high. At these rates, Alaska contributes ~1 mm to global sea level rise every 5 years. Given the present lack of adequate satellite resources, Operation IceBridge airborne surveys by UAF are the most effective and efficient method to monitor this region's impact on global sea level rise. Ice depth measurements using radar sounding have been part of these airborne surveys since 2012. Many of Alaska's tidewater glaciers are bedded significantly below sea level. The depth and extent of glacier beds below sea level are critical factors in the dynamics of tidewater retreat. Improved radar processing tools are being used to predict clutter using forward simulation. This is essential to properly sort out true bed returns, which are often masked or obscured by valley wall returns. This presentation will provide an overview of the program, highlighting recent findings and observations from the most recent campaigns, and focusing on techniques used for the extrapolation of surface elevation changes to regional mass balances.

  7. On a digital wireless impact-monitoring network for large-scale composite structures

    NASA Astrophysics Data System (ADS)

    Yuan, Shenfang; Mei, Hanfei; Qiu, Lei; Ren, Yuanqiang

    2014-08-01

    Impact, which may occur during manufacture, service or maintenance, is one of the major concerns to be monitored throughout the lifetime of aircraft composite structures. Aiming at monitoring impacts online while minimizing the weight added to the aircraft to meet the strict limitations of aerospace engineering, this paper puts forward a new digital wireless network based on miniaturized wireless digital impact-monitoring nodes developed for large-scale composite structures. In addition to investigations on the design methods of the network architecture, time synchronization and implementation method, a conflict resolution method based on the feature parameters of digital sequences is first presented to address impact localization conflicts when several nodes are arranged close together. To verify the feasibility and stability of the wireless network, experiments are performed on a complex aircraft composite wing box and an unmanned aerial vehicle (UAV) composite wing. Experimental results show the successful design of the presented network.

  8. [The Development of Information Centralization and Management Integration System for Monitors Based on Wireless Sensor Network].

    PubMed

    Xu, Xiu; Zhang, Honglei; Li, Yiming; Li, Bin

    2015-07-01

    Developed the information centralization and management integration system for monitors of different brands and models with wireless sensor network technologies such as wireless location and wireless communication, based on the existing wireless network. With adaptive implementation and low cost, the system which possesses the advantages of real-time, efficiency and elaboration is able to collect status and data of the monitors, locate the monitors, and provide services with web server, video server and locating server via local network. Using an intranet computer, the clinical and device management staffs can access the status and parameters of monitors. Applications of this system provide convenience and save human resource for clinical departments, as well as promote the efficiency, accuracy and elaboration for the device management. The successful achievement of this system provides solution for integrated and elaborated management of the mobile devices including ventilator and infusion pump. PMID:26665944

  9. NRC TLD direct radiation monitoring network: Progress report, July--September 1997. Volume 17, Number 3

    SciTech Connect

    Struckmeyer, R.

    1998-01-01

    The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring Network is operated by the NRC in cooperation with participating states to provide continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. Ambient radiation levels result from naturally occurring radionuclides present in the soil, cosmic radiation constantly bombarding the earth from outer space, and the contribution, if any, from the monitored facilities and other man-made sources. The Network is intended to measure radiation levels during routine facility operations and to establish background radiation levels used to assess the radiological impact of an unusual condition, such as an accident. This report presents the radiation levels measured around all facilities in the Network for the third quarter of 1996. A complete listing of the site facilities monitored is included. In some instances, two power reactor facilities are monitored by the same set of dosimeters (e.g., Kewaunee and Point Beach).

  10. The Operational Use of Suomi National Polar-Orbiting Partnership (S-NPP) Satellite Information in Alaska

    NASA Astrophysics Data System (ADS)

    Scott, C. A.; Goldberg, M.

    2014-12-01

    The National Weather Service (NWS), Alaska Region (AR) provides warnings, forecasts and information for an area greater than 20% of the size of the continental United States. This region experiences an incredible diversity of weather phenomena, yet ironically is one of the more data-sparse areas in the world. Polar orbiting satellite-borne sensors offer one of the most cost effective means of gaining repetitive information over this data-sparse region to provide insight on Alaskan weather and the environment on scales ranging from synoptic to mesoscale in a systematic manner. Because of Alaska's high latitude location, polar orbiting satellites can provide coverage about every two hours at high resolution. The Suomi National Polar-orbiting Partnership (S-NPP) Satellite, equipped with a new generation of satellite sensors to better monitor, detect, and track weather and the environment was launched October 2011. Through partnership through the with NESDIS JPSS, the University of Alaska - Geographical Information Network of Alaska (GINA), the NWS Alaska Region was able to gain timely access to the Visible Infrared Imaging Radiometer Suite (VIIRS) imagery from S-NPP. The imagery was quickly integrated into forecast operations across the spectrum of NWS Alaska areas of responsibility. The VIIRS has provided a number of new or improved capabilities for detecting low cloud/fog, snow cover, volcanic ash, fire hotspots/smoke, flooding due to river ice break up, and sea ice and ice-free passages. In addition the Alaska Region has successfully exploited the 750 m spatial resolution of the VIIRS/Near Constant Contrast (NCC) low-light visible measurements. Forecasters have also begun the integration of NOAA Unique Cross-track Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) Processing System (NUCAPS) Soundings in AWIPS-II operations at WFO Fairbanks and Anchorage, the Alaska Aviation Weather Unit (AAWU) and the Alaska Region, Regional Operations Center (ROC

  11. REVIEW OF THE RADNET AIR MONITORING NETWORK UPGRADE AND EXPANSION

    EPA Science Inventory

    RadNet, formerly known as ERAMS, has been operating since the 1970's, monitoring environmental radiation across the country, supporting responses to radiological emergencies, and providing important information on background levels of radiation in the environment. The original ...

  12. U.S. National PM2.5 Chemical Speciation Monitoring Networks – CSN and IMPROVE: Description of Networks

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) initiated the national PM2.5 Chemical Speciation Monitoring Network (CSN) in 2000 to support evaluation of long-term trends and to better quantify the impact of sources on particulate matter (PM) concentrations in the size range belo...

  13. Development of a Monitoring Protocol to Detect Ecological Change in the Intertidal Zone of Sitka National Historical Park, Alaska

    USGS Publications Warehouse

    Irvine, Gail V.; Madison, Erica N.

    2008-01-01

    A pilot study to develop and test a probability-based intertidal monitoring protocol for Sitka National Historical Park was conducted from 1999 to 2003. In 1999, the basic design, with a focus on sampling the whole of the designated intertidal was created, and sampling was conducted for sessile species and large mobile invertebrates by point-intercept sampling of vertical transects and band surveys along transects, respectively. In 2002 and 2003, the same types of sampling were conducted, but quadrat sampling for small mobile invertebrates was added and then modified. This project has produced basic data on the presence, abundance, and spatial distribution of substrates and intertidal biota. Additionally, statistical power analyses conducted on the biological data have allowed assessment of the ability of the sampling to detect trends in the abundance of the predominant species. Current sampling has an 80 percent probability to detect +10 percent annual changes in abundance of all targeted species with an a = 0.05; the ability to detect -10 percent trends is not as uniformly high. Various options are discussed for decreasing the spatial variance of the data. The information presented provides a basis for discussion of the major questions being asked, how the sampling design might be reconfigured to be consistent in approach, and how the intertidal monitoring should interface with other potential intertidal monitoring.

  14. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    PubMed Central

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  15. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    PubMed

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-07-21

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  16. Detectable Aspects Of Alaska, and the Southwests Kokopelli, Indicate That Environmental Monitoring By Native Americans Utilized Several Sensory Modes, and That Their Conservation Held Moral Value Within Their Traditional Culture.

    NASA Astrophysics Data System (ADS)

    Ochs, Michael Ann; Mc Leod, Roger D.

    2004-03-01

    Place-names of Alaska and the Americas, in names like Natick, MA, Matagamon, ME, Matacumbe Key, FL, Tecate Mt, CA, and Tacoma, WA as well as Allapatah, FL, and Issaqua, WA indicate Native Americans all monitored equivalent aspects of the earths EMF. Former coastal and island areas of Native American activity and culture in Alaska show a traditional, historic leader climbed the mountain of one cliff-like island area for weather prediction. We suggest that the ascent onto the mountain and the subsequent significant stay there was for purposes of cultural and religious reverence associated with direct observation of phenomena associated with known weather sequences. Similar cultural awareness of EMF phenomena and weather-making could be related to practices of the MiKmaw/Micmac Indians of the northeast, and the so-called rain-dance of the Hopi of the southwest. *This paper does not necessarily represent the views of the U.S. E.P.A

  17. Medical Toxicology and Public Health-Update on Research and Activities at the Centers for Disease Control and Prevention and the Agency for Toxic Substances and Disease Registry : Environmental Exposures among Arctic Populations: The Maternal Organics Monitoring Study in Alaska.

    PubMed

    Anwar, Mehruba; Ridpath, Alison; Berner, James; Schier, Joshua G

    2016-09-01

    Evidence suggests that in-utero exposure to environmental chemicals, such as persistent organic pollutants (POPs), heavy metals, and radionuclides, that might bioaccumulate in the mother may increase a newborn's risk of adverse developmental, neurological, and immunologic effects. Chemical contamination of bodies of water and strong ocean currents worldwide can drive these chemicals from lower latitudes to Arctic waters where they accumulate in common traditional subsistence foods. In response to concerns of the people from Alaska of the effects of bio-accumulated chemicals on their children, the Maternal Organics Monitoring Study(MOMS) was developed. The objective of the study was to assess the risks and benefits associated with the population's subsistence diet. Data analysis of biological samples at the CDC's NCEH laboratory and maternal questionnaires is ongoing. Results will be provided to Alaska Native communities to help support public health actions and inform future interventions and research. PMID:27379884

  18. Medical Toxicology and Public Health-Update on Research and Activities at the Centers for Disease Control and Prevention and the Agency for Toxic Substances and Disease Registry : Environmental Exposures among Arctic Populations: The Maternal Organics Monitoring Study in Alaska.

    PubMed

    Anwar, Mehruba; Ridpath, Alison; Berner, James; Schier, Joshua G

    2016-09-01

    Evidence suggests that in-utero exposure to environmental chemicals, such as persistent organic pollutants (POPs), heavy metals, and radionuclides, that might bioaccumulate in the mother may increase a newborn's risk of adverse developmental, neurological, and immunologic effects. Chemical contamination of bodies of water and strong ocean currents worldwide can drive these chemicals from lower latitudes to Arctic waters where they accumulate in common traditional subsistence foods. In response to concerns of the people from Alaska of the effects of bio-accumulated chemicals on their children, the Maternal Organics Monitoring Study(MOMS) was developed. The objective of the study was to assess the risks and benefits associated with the population's subsistence diet. Data analysis of biological samples at the CDC's NCEH laboratory and maternal questionnaires is ongoing. Results will be provided to Alaska Native communities to help support public health actions and inform future interventions and research.

  19. Detectable Aspects Of Alaska, and the Southwests Kokopelli, Indicate That Environmental Monitoring By Native Americans Utilized Several Sensory Modes, and That Their Conservation Held Moral Value Within Their Traditional Culture.

    NASA Astrophysics Data System (ADS)

    Ochs, Michael Ann; Mc Leod, Roger D.

    2004-03-01

    Place-names of Alaska and the Americas, in names like Natick, MA, Matagamon, ME, Matacumbe Key, FL, Tecate Mt, CA, and Tacoma, WA as well as Allapatah, FL, and Issaqua, WA indicate Native Americans all monitored equivalent aspects of the earths EMF. Former coastal and island areas of Native American activity and culture in Alaska show a traditional, historic leader climbed the mountain of one cliff-like island area for weather prediction. We suggest that the ascent onto the mountain and the subsequent significant stay there was for purposes of cultural and religious reverence associated with direct observation of phenomena associated with known weather sequences. Similar cultural awareness of EMF phenomena and weather-making could be related to practices of the MiKmaw/Micmac Indians of the northeast, and the so-called rain-dance of the Hopi of the southwest. *This paper does not necessarily represent the views of the U.S. E.P.A

  20. The 2007 Eruption of Pavlof Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    McNutt, S. R.

    2007-12-01

    Pavlof Volcano on the Alaska Peninsula began to erupt on August 15, 2007 after a 10.7 year repose. Precursor signals consisted of low-frequency earthquakes that began on August 14 and thermal anomalies that were likely coincident with the beginning of the eruption. The mainly strombolian eruptions are occurring from a new vent high on the SE flank of the volcano, separate from the NNE vent that had been active over the last several decades. Seismic activity, monitored by a network of 6 local instruments, consists of low-frequency events, explosion earthquakes, volcanic tremor, and lahar-generated signals. One station, PVV, is located only 220 m from a lahar channel, and lahars generate an easily distinguished high-frequency seismic signal. A commonly observed sequence is an increase in eruptive activity at the vent, accompanied by stronger tremor visible on all stations, and followed 12-30 minutes later by a lahar at PVV. This suggests that the eruption pulse ejects fresh hot material, which melts additional ice and snow to form new lahars. Steam and ash plumes have generally been below 15,000 ft, but rose as high as 20,000 ft on August 29 and 30. AVHRR remote sensing data showed an ash signal on these days, consistent with pilot reports. On August 30 lightning was observed in the plume from Cold Bay, 59 km SW. In response to the eruptions, AVO has been conducting 24 hr per day surveillance. Fieldwork to date has fortified seismic stations, and installed a new webcam, pressure sensor, and electric field meter. Collaborating scientists from the University of Alaska Fairbanks have installed aerosol sampling equipment at four locations, and collaborating scientists from New Mexico Tech have installed lightning detection equipment at four stations surrounding the volcano. Based on recent eruptions of Pavlof in 1981, 1986, 1996, etc., the eruptive activity is likely to last several months and may include one or more episodes of ash columns to heights of 30,000 ft or

  1. Object-oriented Approach to High-level Network Monitoring and Management

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi

    2000-01-01

    An absolute prerequisite for the management of large investigating methods to build high-level monitoring computer networks is the ability to measure their systems that are built on top of existing monitoring performance. Unless we monitor a system, we cannot tools. Due to the heterogeneous nature of the hope to manage and control its performance. In this underlying systems at NASA Langley Research Center, paper, we describe a network monitoring system that we use an object-oriented approach for the design, we are currently designing and implementing. Keeping, first, we use UML (Unified Modeling Language) to in mind the complexity of the task and the required model users' requirements. Second, we identify the flexibility for future changes, we use an object-oriented existing capabilities of the underlying monitoring design methodology. The system is built using the system. Third, we try to map the former with the latter. APIs offered by the HP OpenView system.

  2. A wireless smart sensor network for automated monitoring of cable tension

    NASA Astrophysics Data System (ADS)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo

    2014-02-01

    As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.

  3. Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey

    PubMed Central

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-01-01

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942

  4. Lidar network for atmosphere environment monitoring of the city

    NASA Astrophysics Data System (ADS)

    Dai, Yongjiang; Zhao, Hongwei; Sun, Fuxing; Zhao, Yu; Chen, Xiangjun

    2000-10-01

    The big city is a center of the economic and political for every country and territory. The population is coarctation$DALindustry is focus and traffic is developed in the city. Especially, there are a lot of factories and cars. Burning coal for heating and life garbage are more too. It is a mostly cause beget atmosphere polluted. The Network can be availability inspects the buildup of the atmosphere, it's 3-D static state distributing and dynamic distributing. Also can be coarsely inspect at the car and helicopter. The network is low cost, high capability and facility using. It is commendably expand for every city.

  5. Deployment of a WLCG network monitoring infrastructure based on the perfSONAR-PS technology

    NASA Astrophysics Data System (ADS)

    Campana, S.; Brown, A.; Bonacorsi, D.; Capone, V.; De Girolamo, D.; Casani, A. F.; Flix, J.; Forti, A.; Gable, I.; Gutsche, O.; Hesnaux, A.; Liu, S.; Lopez Munoz, F.; Magini, N.; McKee, S.; Mohammed, K.; Rand, D.; Reale, M.; Roiser, S.; Zielinski, M.; Zurawski, J.

    2014-06-01

    The WLCG infrastructure moved from a very rigid network topology, based on the MONARC model, to a more relaxed system, where data movement between regions or countries does not necessarily need to involve T1 centres. While this evolution brought obvious advantages, especially in terms of flexibility for the LHC experiment's data management systems, it also opened the question of how to monitor the increasing number of possible network paths, in order to provide a global reliable network service. The perfSONAR network monitoring system has been evaluated and agreed as a proper solution to cover the WLCG network monitoring use cases: it allows WLCG to plan and execute latency and bandwidth tests between any instrumented endpoint through a central scheduling configuration, it allows archiving of the metrics in a local database, it provides a programmatic and a web based interface exposing the tests results; it also provides a graphical interface for remote management operations. In this contribution we will present our activity to deploy a perfSONAR based network monitoring infrastructure, in the scope of the WLCG Operations Coordination initiative: we will motivate the main choices we agreed in terms of configuration and management, describe the additional tools we developed to complement the standard packages and present the status of the deployment, together with the possible future evolution.

  6. Network Monitoring in the age of the Cloud

    NASA Astrophysics Data System (ADS)

    Ciuffoletti, Augusto

    Network virtualization plays a relevant role in provisioning an Infrastructure as a Service (IaaS), implementing the fabric that interconnects virtual components. We identify the standard protocol IEEE802.1Q, that describes Virtual LAN (VLAN) functionalities, as a cornerstone in this architecture.

  7. Cell specific electrodes for neuronal network reconstruction and monitoring.

    PubMed

    Bendali, Amel; Bouguelia, Sihem; Roupioz, Yoann; Forster, Valérie; Mailley, Pascal; Benosman, Ryad; Livache, Thierry; Sahel, José-Alain; Picaud, Serge

    2014-07-01

    Direct interfacing of neurons with electronic devices has been investigated for both prosthetic and neuro-computing applications. In vitro neuronal networks provide great tools not only for improving neuroprostheses but also to take advantage of their computing abilities. However, it is often difficult to organize neuronal networks according to specific cell distributions. Our aim was to develop a cell-type specific immobilization of neurons on individual electrodes to produce organized in vitro neuronal networks on multi-electrode arrays (MEAs). We demonstrate the selective capture of retinal neurons on antibody functionalized surfaces following the formation of self-assembled monolayers from protein-thiol conjugates by simple contact and protein-polypyrrole deposits by electrochemical functionalization. This neuronal selection was achieved on gold for either cone photoreceptors or retinal ganglion neurons using a PNA lectin or a Thy1 antibody, respectively. Anti-fouling of un-functionalized gold surfaces was optimized to increase the capture efficiencies. The technique was extended to electrode arrays by addressing electropolymerization of pyrrole monomers and pyrrole-protein conjugates to active electrodes. Retinal ganglion cell recording on the array further demonstrated the integrity of these neurons following their selection on polypyrrole-coated electrodes. Therefore, this protein-polypyrrole electrodeposition could provide a new approach to generate organized in vitro neuronal networks.

  8. Network Quality of Service Monitoring for IP Telephony.

    ERIC Educational Resources Information Center

    Ghita, B. V.; Furnell, S. M.; Lines, B. M.; Le-Foll, D.; Ifeachor, E. C.

    2001-01-01

    Discusses the development of real-time applications on the Internet for telecommunications and presents a non-intrusive way of determining network performance parameters for voice packet flows within a voice over IP (Internet Protocol), or Internet telephony call. Considers measurement of quality of service and describes results of a preliminary…

  9. Linking Geophysical Networks to International Economic Development Through Integration of Global and National Monitoring

    NASA Astrophysics Data System (ADS)

    Lerner-Lam, A.

    2007-05-01

    Outside of the research community and mission agencies, global geophysical monitoring rarely receives sustained attention except in the aftermath of a humanitarian disaster. The recovery and rebuilding period focuses attention and resources for a short time on regional needs for geophysical observation, often at the national or sub-national level. This can result in the rapid deployment of national monitoring networks, but may overlook the longer-term benefits of integration with global networks. Even in the case of multinational disasters, such as the Indian Ocean tsunami, it has proved difficult to promote the integration of national solutions with global monitoring, research and operations infrastructure. More importantly, continuing operations at the national or sub-national scale are difficult to sustain once the resources associated with recovery and rebuilding are depleted. Except for some notable examples, the vast infrastructure associated with global geophysical monitoring is not utilized constructively to promote the integration of national networks with international efforts. This represents a missed opportunity not only for monitoring, but for developing the international research and educational collaborations necessary for technological transfer and capacity building. The recent confluence of highly visible disasters, global multi-hazard risk assessments, evaluations of the relationships between natural disasters and socio-economic development, and shifts in development agency policies, provides an opportunity to link global geophysical monitoring initiatives to central issues in international development. Natural hazard risk reduction has not been the first priority of international development agendas for understandable, mainly humanitarian reasons. However, it is now recognized that the so-called risk premium associated with making development projects more risk conscious or risk resilient is relatively small relative to potential losses. Thus

  10. An International Haze-Monitoring Network for Students.

    ERIC Educational Resources Information Center

    Mims, Forrest M.

    1999-01-01

    Describes the haze-monitoring program that was added to the protocols of the Global Learning and Observations to Benefit the Environment (GLOBE) Program. Finds that sun photometry provides a convenient means for allowing students to perform hands-on science while learning about various topics in history, electronics, algebra, statistics, graphing,…

  11. 40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (including new monitoring sites, new determinations that data are not of sufficient quality to be compared to... to be operational by January 1, 2017. (6) A plan for establishing SO2 monitoring sites in accordance... for these required monitoring stations to be operational by January 1, 2017. (b) The annual...

  12. 40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (including new monitoring sites, new determinations that data are not of sufficient quality to be compared to... to be operational by January 1, 2017. (6) A plan for establishing SO2 monitoring sites in accordance... for these required monitoring stations to be operational by January 1, 2017. (b) The annual...

  13. CMOS: Efficient Clustered Data Monitoring in Sensor Networks

    PubMed Central

    2013-01-01

    Tiny and smart sensors enable applications that access a network of hundreds or thousands of sensors. Thus, recently, many researchers have paid attention to wireless sensor networks (WSNs). The limitation of energy is critical since most sensors are battery-powered and it is very difficult to replace batteries in cases that sensor networks are utilized outdoors. Data transmission between sensor nodes needs more energy than computation in a sensor node. In order to reduce the energy consumption of sensors, we present an approximate data gathering technique, called CMOS, based on the Kalman filter. The goal of CMOS is to efficiently obtain the sensor readings within a certain error bound. In our approach, spatially close sensors are grouped as a cluster. Since a cluster header generates approximate readings of member nodes, a user query can be answered efficiently using the cluster headers. In addition, we suggest an energy efficient clustering method to distribute the energy consumption of cluster headers. Our simulation results with synthetic data demonstrate the efficiency and accuracy of our proposed technique. PMID:24459444

  14. The development of wireless sensor network for ECG monitoring.

    PubMed

    Lin, Jun-Liang; Liu, Hsien-Chieh; Tai, Yu-Ting; Wu, Hsin-Hsien; Hsu, Shuo-Jen; Jaw, Fu-Shan; Chen, You-Yin

    2006-01-01

    The main problem we want to solve contains two subjects: The first one is the patient's pressure due to wired physiological signal estimation. With wireless sensor network technique, patients only need to carry a few small nodes, and then the physiological signal can be transmitted in the air. The other subject of the vital problem is that some protocols, like Bluetooth, provide a peer to peer wireless communication technique, but such peer to peer network may need a complex algorithm to find the best data transmission path. In this study, we use the hierarchy routing as network topology that three-layer architecture contains PAN coordinator, router and device. The study focuses on implementation of a prototype electrocardiography (ECG) system which replaces wired connections between sensor points and a central node with wireless links. Successful implementation of the final system would be of benefit to all involved in the use of ECG as access to and movement of the patient would not be impeded by the physical constraints imposed by the cables. Most aspects of the design would also be portable to other sensor applications, making the work relevant to a vast range of systems where movement of sensors is desirable and constrained by hard-wired links. PMID:17946570

  15. Alaska Resource Data File, Noatak Quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.; Dumoulin, Julie A.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Noatak 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  16. The Growing Network of Arctic Atmospheric Observatories Now Allows for Better Monitoring of Arctic Air Pollution

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.

    2008-12-01

    The NOAA Barrow, Alaska, Atmospheric Baseline Observatory has been in continuous operation for 35 years monitoring a wide range of atmospheric parameters. Clear trends in concentrations of radiatively important trace gases such as carbon dioxide, methane, HFCs and CFCs, and nitrous oxide have been established at Barrow. In addition, measurements of both general background and episodic gas and aerosol events from industrial and forest fire sources in Russia, China, Europe and North America have been observed. Along with atmospheric stations in Alert and Eureka, Canada,and Summit, Greenland, individual air pollution events flowing into and across the Arctic Basin are being tracked in time and space. The large gap in similar monitoring across the Russian Arctic is being addressed by new stations/programs at Tiksi and Cherskiy, Russia that were upgraded in 2007/8. There is special interest in monitoring methane at Tiksi and Cherskiy as there is speculation that permafrost melting in the Arctic will release accelerating amounts of methane further driving greenhouse warming.

  17. Spatiotemporal Variability in Potential Evapotranspiration across an Urban Monitoring Network

    NASA Astrophysics Data System (ADS)

    Miller, G. R.; Long, M. R.; Fipps, G.; Swanson, C.; Traore, S.

    2015-12-01

    Evapotranspiration in urban and peri-urban environments is difficult to measure and predict. Barriers to accurate assessment include: the wide range of microclimates caused by urban canyons, heat islands, and park cooling; limited instrument fetch; and the patchwork of native soils, engineered soils, and hardscape. These issues combine to make an accurate assessment of the urban water balance difficult, as evapotranspiration calculations require accurate meteorological data. This study examines nearly three years of data collected by a network of 18 weather stations in Dallas, Texas, designed to measure potential evapotranspiration (ETo) in support of the WaterMyYard conservation program (http://WaterMyYard.org). Variability amongst stations peaked during the summer irrigation months, with a maximum standard deviation of 0.3 mm/hr and 4 mm/d. However, we found a significant degree of information overlap in the network. Most stations had a high correlation (>0.75) with at least one other station in the network, and many had a high correlation with at least 10 others. Correlation strength between station ETo measurements did not necessarily decrease with Euclidean distance, as expected, but was more closely related to differences in station elevation and longitude. Stations that had low correlations with others in the network typically had siting and fetch issues. ETo showed a strong temporal persistence; average station autocorrelation was 0.79 at a 1-hour lag and 0.70 at a 24-hour lag. To supplement the larger-scale network data, we deployed a mobile, vehicle-mounted weather station to quantify deviations present in the atmospheric drivers of evapotranspiration: temperature, humidity, wind, and solar radiation. Data were collected at mid-day during the irrigation season. We found differences in mobile and station ETo predictions up to 0.2 mm/hr, primarily driven by wind speed variations. These results suggest that ETo variation at the neighborhood to municipality

  18. The role of SANSA's geomagnetic observation network in space weather monitoring: A review

    NASA Astrophysics Data System (ADS)

    Kotzé, P. B.; Cilliers, P. J.; Sutcliffe, P. R.

    2015-10-01

    Geomagnetic observations play a crucial role in the monitoring of space weather events. In a modern society relying on the efficient functioning of its technology network such observations are important in order to determine the potential hazard for activities and infrastructure. Until recently, it was the perception that geomagnetic storms had no or very little adverse effect on radio communication and electric power infrastructure at middle- and low-latitude regions like southern Africa. The 2003 Halloween storm changed this perception. In this paper we discuss the role of the geomagnetic observation network operated by the South African National Space Agency (SANSA) in space weather monitoring. The primary objective is to describe the geomagnetic data sets available to characterize and monitor the various types of solar-driven disturbances, with the aim to better understand the physics of these processes in the near-Earth space environment and to provide relevant space weather monitoring and prediction.

  19. Warm summer nights and the growth decline of shore pine in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Sullivan, Patrick F.; Mulvey, Robin L.; Brownlee, Annalis H.; Barrett, Tara M.; Pattison, Robert R.

    2015-12-01

    Shore pine, which is a subspecies of lodgepole pine, was a widespread and dominant tree species in Southeast Alaska during the early Holocene. At present, the distribution of shore pine in Alaska is restricted to coastal bogs and fens, likely by competition with Sitka spruce and Western hemlock. Monitoring of permanent plots as part of the United States Forest Service Forest Inventory and Analysis program identified a recent loss of shore pine biomass in Southeast Alaska. The apparent loss of shore pine is concerning, because its presence adds a vertical dimension to coastal wetlands, which are the richest plant communities of the coastal temperate rainforest in Alaska. In this study, we examined the shore pine tree-ring record from a newly established plot network throughout Southeast Alaska and explored climate-growth relationships. We found a steep decline in shore pine growth from the early 1960s to the present. Random Forest regression revealed a strong correlation between the decline in shore pine growth and the rise in growing season diurnal minimum air temperature. Warm summer nights, cool daytime temperatures and a reduced diurnal temperature range are associated with greater cloud cover in Southeast Alaska. This suite of conditions could lead to unfavorable tree carbon budgets (reduced daytime photosynthesis and greater nighttime respiration) and/or favor infection by foliar pathogens, such as Dothistroma needle blight, which has recently caused widespread tree mortality on lodgepole pine plantations in British Columbia. Further field study that includes experimental manipulation (e.g., fungicide application) will be necessary to identify the proximal cause(s) of the growth decline. In the meantime, we anticipate continuation of the shore pine growth decline in Southeast Alaska.

  20. Cost-effective and monitoring-active technique for TDM-passive optical networks

    NASA Astrophysics Data System (ADS)

    Chi, Chang-Chia; Lin, Hong-Mao; Tarn, Chen-Wen; Lin, Huang-Liang

    2014-08-01

    A reliable, detection-active and cost-effective method which employs the hello and heartbeat signals for branched node distinguishing to monitor fiber fault in any branch of distribution fibers of a time division multiplexing passive optical network (TDM-PON) is proposed. With this method, the material cost of building an optical network monitor system for a TDM-PON with 168 ONUs and the time of identifying a multiple branch faults is significantly reduced in a TDM-PON system of any scale. A fault location in a 1 × 32 TDM-PON system using this method to identify the fault branch is demonstrated.

  1. Development of a decision-making methodology to design a water quality monitoring network.

    PubMed

    Keum, Jongho; Kaluarachchi, Jagath J

    2015-07-01

    The number of water quality monitoring stations in the USA has decreased over the past few decades. Scarcity of observations can easily produce prediction uncertainty due to unreliable model calibration. An effective water quality monitoring network is important not only for model calibration and water quality prediction but also for resources management. Redundant or improperly located monitoring stations may cause increased monitoring costs without improvement to the understanding of water quality in watersheds. In this work, a decision-making methodology is proposed to design a water quality monitoring network by providing an adequate number of monitoring stations and their approximate locations at the eight-digit hydrologic unit codes (HUC8) scale. The proposed methodology is demonstrated for an example at the Upper Colorado River Basin (UCRB), where salinity is a serious concern. The level of monitoring redundancy or scarcity is defined by an index, station ratio (SR), which represents a monitoring density based on water quality load originated within a subbasin. By comparing the number of stations from a selected target SR with the available number of stations including the actual and the potential stations, the suggested number of stations in each subbasin was decided. If monitoring stations are primarily located in the low salinity loading subbasins, the average actual SR tends to increase, and vice versa. Results indicate that the spatial distribution of monitoring locations in 2011 is concentrated on low salinity loading subbasins, and therefore, additional monitoring is required for the high salinity loading subbasins. The proposed methodology shows that the SR is a simple and a practical indicator for monitoring density.

  2. Development of a decision-making methodology to design a water quality monitoring network.

    PubMed

    Keum, Jongho; Kaluarachchi, Jagath J

    2015-07-01

    The number of water quality monitoring stations in the USA has decreased over the past few decades. Scarcity of observations can easily produce prediction uncertainty due to unreliable model calibration. An effective water quality monitoring network is important not only for model calibration and water quality prediction but also for resources management. Redundant or improperly located monitoring stations may cause increased monitoring costs without improvement to the understanding of water quality in watersheds. In this work, a decision-making methodology is proposed to design a water quality monitoring network by providing an adequate number of monitoring stations and their approximate locations at the eight-digit hydrologic unit codes (HUC8) scale. The proposed methodology is demonstrated for an example at the Upper Colorado River Basin (UCRB), where salinity is a serious concern. The level of monitoring redundancy or scarcity is defined by an index, station ratio (SR), which represents a monitoring density based on water quality load originated within a subbasin. By comparing the number of stations from a selected target SR with the available number of stations including the actual and the potential stations, the suggested number of stations in each subbasin was decided. If monitoring stations are primarily located in the low salinity loading subbasins, the average actual SR tends to increase, and vice versa. Results indicate that the spatial distribution of monitoring locations in 2011 is concentrated on low salinity loading subbasins, and therefore, additional monitoring is required for the high salinity loading subbasins. The proposed methodology shows that the SR is a simple and a practical indicator for monitoring density. PMID:26113203

  3. Vital signs monitoring plan for the Klamath Network: Phase I report

    USGS Publications Warehouse

    Sarr, Daniel; Odion, Dennis; Truitt, Robert E.; Beever, Erik A.; Shafer, Sarah; Duff, Andrew; Smith, Sean B.; Bunn, Windy; Rocchio, Judy; Sarnat, Eli; Alexander, John; Jessup, Steve

    2004-01-01

    This report chronicles the Phase 1 stage of the vital signs monitoring program for the Klamath Network. It consists of two chapters and eleven appendixes. The purposes of Chapter One are to 1) describe the network administrative structure and approach to planning; 2) introduce the Klamath Network parks, their resources, and environmental settings; 3) explain the need for monitoring changes in resources and supporting environments; 4) identify key information gaps that limit understanding of how to best achieve these monitoring goals. The purpose of Chapter Two is to develop the descriptive information provided in Chapter One into a conceptual basis for vital signs monitoring and to present the Network’s initial suite of conceptual models. The Report Appendices provide in-depth information on a variety of topics researched in preparation of the report, including: detailed natural resource profiles for each park, supporting policies and guidelines, regional fire regimes, vegetation types of the parks, exotic species threats, interagency monitoring programs, air issues, water quality (Phase 1 Report), Network vital signs (Scoping Summary Report), rare species, and rare habitats of the parks.

  4. Monitoring network design for phytoremediation systems using primary and secondary data sources.

    PubMed

    Gopalakrishnan, Gayathri; Minsker, Barbara S; Valocchi, Albert J

    2011-06-01

    Phytoremediation, or contaminant removal using plants, has been deployed at many sites to remediate contaminated soil and groundwater. Research has shown that trees are low-cost, rapid, and relatively simple-to-use monitoring systems as well as inexpensive alternatives to traditional pump-and-treat systems. However, tree monitoring is also an indirect measure of subsurface contamination and inherently more uncertain than conventional techniques such as wells or soil borings that measure contaminant concentrations directly. This study explores the implications for monitoring network design at real-world sites where scarce primary data such as monitoring wells or soil borings are supplemented by extensive secondary data such as trees. In this study, we combined secondary and primary data into a composite data set using models to transform secondary data to primary, as primary data were too sparse to attempt cokriging. Optimal monitoring networks using both trees and conventional techniques were determined using genetic algorithms, and trade-off curves between cost and uncertainty are presented for a phytoremediation system at Argonne National Laboratory. Optimal solutions found at this site indicate that increasing the number of secondary data sampled resulted in a significant decrease in global uncertainty with a minimal increase in cost. The choice of the data transformation model had an impact on the optimal designs and uncertainty estimated at the site. Using a data transformation model with a higher error resulted in monitoring network designs where primary data were favored over colocated secondary data. The spatial configuration of the monitoring network design was similar with regard to the areas sampled, irrespective of the data transformation model used. Overall, this study shows that using a composite data set, with primary and secondary data, results in effective monitoring designs, even at sites where the only data transformation model available is one

  5. Entropy-based heavy tailed distribution transformation and visual analytics for monitoring massive network traffic

    NASA Astrophysics Data System (ADS)

    Han, Keesook J.; Hodge, Matthew; Ross, Virginia W.

    2011-06-01

    For monitoring network traffic, there is an enormous cost in collecting, storing, and analyzing network traffic datasets. Data mining based network traffic analysis has a growing interest in the cyber security community, but is computationally expensive for finding correlations between attributes in massive network traffic datasets. To lower the cost and reduce computational complexity, it is desirable to perform feasible statistical processing on effective reduced datasets instead of on the original full datasets. Because of the dynamic behavior of network traffic, traffic traces exhibit mixtures of heavy tailed statistical distributions or overdispersion. Heavy tailed network traffic characterization and visualization are important and essential tasks to measure network performance for the Quality of Services. However, heavy tailed distributions are limited in their ability to characterize real-time network traffic due to the difficulty of parameter estimation. The Entropy-Based Heavy Tailed Distribution Transformation (EHTDT) was developed to convert the heavy tailed distribution into a transformed distribution to find the linear approximation. The EHTDT linearization has the advantage of being amenable to characterize and aggregate overdispersion of network traffic in realtime. Results of applying the EHTDT for innovative visual analytics to real network traffic data are presented.

  6. Group Monitoring in Mobile Ad-Hoc Networks

    NASA Astrophysics Data System (ADS)

    Gaba, Albana; Voulgaris, Spyros; van Steen, Maarten

    Maintaining bonds of cohesion between members of small groups in densely populated venues (e.g., a family in an amusement park, or some friends in a stadium) is increasingly gaining interest, both as a safety measure against malicious activity and as a convenient tool to prevent group splitting. Note that the use of mobile phones is often ruled out in such scenarios, due to extreme network load. Current solutions are typically based on custom installations of antennas, centralized control, and user devices with high transmission power.

  7. Global Ionospheric Perturbations Monitored by the Worldwide GPS Network

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Mannucci, A. T.; Lindqwister, U. J.; Pi, X. Q.

    1996-01-01

    Based on the delays of these (Global Positioning System-GPS)signals, we have generated high resolution global ionospheric TEC (Total Electronic Changes) maps at 15-minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that the ionopshere during this time storm has increased significantly (the percentage change relative to quiet times is greater than 150 percent) ...These preliminary results (those mentioned above plus other in the paper)indicate that the differential maping method, which is based on GPS network measurements appears to be a useful tool for studying the global pattern and evolution process of the entire ionospheric perturbation.

  8. Real-Time GPS Network Monitors Bayou Corne Sinkhole Event

    NASA Astrophysics Data System (ADS)

    Kent, Joshua D.; Dunaway, Larry

    2013-10-01

    In August 2012 a sinkhole developed in the swampy marshland near the rural community of Bayou Corne in Assumption Parish (i.e., county), Louisiana. The area was evacuated, and some residents have still not been able to return. The sinkhole—which now measures about 450 meters wide and is continuing to grow—is being monitored by multiple systems, including four rapid-response GPS continuously operating reference stations (CORS) called CORS911. The real-time data provided by this system are used by scientists and decision makers to help ensure public safety.

  9. Wireless soil moisture sensor networks for environmental monitoring and irrigation

    NASA Astrophysics Data System (ADS)

    Hübner, Christof; Cardell-Oliver, Rachel; Becker, Rolf; Spohrer, Klaus; Jotter, Kai; Wagenknecht, Tino

    2010-05-01

    Dependable spatial-temporal soil parameter data is required for informed decision making in precision farming and hydrological applications. Wireless sensor networks are seen as a key technology to satisfy these demands. Hence, research and development focus is on reliable outdoor applications. This comprises sensor design improvement, more robust communication protocols, less power consumption as well as better deployment strategies and tools. Field trials were performed to investigate and iteratively improve wireless sensor networks in the above-mentioned areas. They accounted for different climate conditions, soil types and salinity, irrigation practices, solar power availability and also for different radio spectrum use which affects the reliability of the wireless links. E.g. 868 MHz and 2.4 GHz wireless nodes were compared in the field with regard to range. Furthermore a low-cost soil moisture sensor was developed to allow for large-scale field experiments. It is based on the measurement of the high frequency dielectric properties of the soil. Two agricultural sites were equipped with 80 sensors and 20 wireless nodes each. The soil moisture data is collected in regular intervals, aggregated in a base station and visualized through a web-based geographical information system. The complete system and results of field experiments are presented.

  10. Design of a multimedia PC-based telemedicine network for the monitoring of renal dialysis patients

    NASA Astrophysics Data System (ADS)

    Tohme, Walid G.; Winchester, James F.; Dai, Hailei L.; Khanafer, Nassib; Meissner, Marion C.; Collmann, Jeff R.; Schulman, Kevin A.; Johnson, Ayah E.; Freedman, Matthew T.; Mun, Seong K.

    1997-05-01

    This paper investigates the design and implementation of a multimedia telemedicine application being undertaken by the Imaging Science and Information Systems Center of the Department of Radiology and the Division of Nephrology of the Department of Medicine at the Georgetown University Medical Center (GUMC). The Renal Dialysis Patient Monitoring network links GUMC, a remote outpatient dialysis clinic, and a nephrologist's home. The primary functions of the network are to provide telemedicine services to renal dialysis patients, to create, manage, transfer and use electronic health data, and to provide decision support and information services for physicians, nurses and health care workers. The technical parameters for designing and implementing such a network are discussed.

  11. Neural-network-based signal monitoring in a smart structural system

    NASA Astrophysics Data System (ADS)

    Chen, Stuart S.; Kim, Sungkon

    1994-05-01

    This paper focuses on the signal processing aspect of a smart structure computational support environment for health monitoring, investigating the use of neural networks to identify and locate structural damage in a steel truss structure instrumented with accelerometers and strain gauges. Cracking damage is simulated by introducing sawcuts into the main members of the structure. Results using accelerometer data alone indicate that Quickprop backpropagation neural networks constitute a promising tool for these purposes, although network performance in locating damage should be improved by use of strain data as well.

  12. Network Centric Approach to Protection, Control and Monitoring for Power Systems

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Katsuhiko; Shirota, Yoshihiro; Shimoo, Manabu; Sugiura, Hideaki; Kagami, Toshiro; Nakamura, Tadashi

    Due to the explosion in use of the Internet, it is expected that a variety of services will be provided through the communication network in the near future. Protection and control systems using the latest communication and information technology also allow for innovative solution to a wide range of power system problems. This paper describes a network centric approach to protection, control and monitoring systems. When the proposed “Network” devices, server and browser can communicate with each other, they can share information which can enhance the overall protection and control of the power systems. The paper includes: overview of network devices, key technologies, protection and control applications, issues, conclusion.

  13. Use of hierarchical cluster analysis to assess the representativeness of a baseline groundwater quality monitoring network: comparison of New Zealand's national and regional groundwater monitoring programs

    NASA Astrophysics Data System (ADS)

    Daughney, Christopher J.; Raiber, Matthias; Moreau-Fournier, Magali; Morgenstern, Uwe; van der Raaij, Rob

    2012-02-01

    Baseline monitoring of groundwater quality aims to characterize the ambient condition of the resource and identify spatial or temporal trends. Sites comprising any baseline monitoring network must be selected to provide a representative perspective of groundwater quality across the aquifer(s) of interest. Hierarchical cluster analysis (HCA) has been used as a means of assessing the representativeness of a groundwater quality monitoring network, using example datasets from New Zealand. HCA allows New Zealand's national and regional monitoring networks to be compared in terms of the number of water-quality categories identified in each network, the hydrochemistry at the centroids of these water-quality categories, the proportions of monitoring sites assigned to each water-quality category, and the range of concentrations for each analyte within each water-quality category. Through the HCA approach, the National Groundwater Monitoring Programme (117 sites) is shown to provide a highly representative perspective of groundwater quality across New Zealand, relative to the amalgamated regional monitoring networks operated by 15 different regional authorities (680 sites have sufficient data for inclusion in HCA). This methodology can be applied to evaluate the representativeness of any subset of monitoring sites taken from a larger network.

  14. Subsidence monitoring network: an Italian example aimed at a sustainable hydrocarbon E&P activity

    NASA Astrophysics Data System (ADS)

    Dacome, M. C.; Miandro, R.; Vettorel, M.; Roncari, G.

    2015-11-01

    According to the Italian law in order to start-up any new hydrocarbon exploitation activity, an Environmental Impact Assessment study has to be presented, including a monitoring plan, addressed to foresee, measure and analyze in real time any possible impact of the project on the coastal areas and on those ones in the close inland located. The occurrence of subsidence, that could partly be related to hydrocarbon production, both on-shore and off-shore, can generate great concern in those areas where its occurrence may have impacts on the local environment. ENI, following the international scientific community recommendations on the matter, since the beginning of 90's years, implemented a cutting-edge monitoring network, with the aim to prevent, mitigate and control geodynamics phenomena generated in the activity areas, with a particular attention to conservation and protection of environmental and territorial equilibrium, taking care of what is known as "sustainable development". The current ENI implemented monitoring surveys can be divided as: - Shallow monitoring: spirit levelling surveys, continuous GPS surveys in permanent stations, SAR surveys, assestimeter subsurface compaction monitoring, ground water level monitoring, LiDAR surveys, bathymetrical surveys. - Deep monitoring: reservoir deep compaction trough radioactive markers, reservoir static (bottom hole) pressure monitoring. All the information, gathered through the monitoring network, allow: 1. to verify if the produced subsidence is evolving accordingly with the simulated forecast. 2. to provide data to revise and adjust the prediction compaction models 3. to put in place the remedial actions if the impact exceeds the threshold magnitude originally agreed among the involved parties. ENI monitoring plan to measure and monitor the subsidence process, during field production and also after the field closure, is therefore intended to support a sustainable field development and an acceptable exploitation

  15. A novel Smart Routing Protocol for remote health monitoring in Medical Wireless Networks.

    PubMed

    Sundararajan, T V P; Sumithra, M G; Maheswar, R

    2014-01-01

    In a Medical Wireless Network (MWN), sensors constantly monitor patient's physiological condition and movement. Inter-MWN communications are set up between the Patient Server and one or more Centralized Coordinators. However, MWNs require protocols with little energy consumption and the self-organizing attribute perceived in ad-hoc networks. The proposed Smart Routing Protocol (SRP) selects only the nodes with a higher residual energy and lower traffic density for routing. This approach enhances cooperation among the nodes of a Mobile Ad Hoc Network. Consequently, SRP produces better results than the existing protocols, namely Conditional Min-Max Battery Cost Routing, Min-Max Battery Cost Routing and AdHoc On-demand Distance Vector in terms of network parameters. The performance of the erstwhile schemes for routing protocols is evaluated using the network simulator Qualnet v 4.5.

  16. Neural network classification of clinical neurophysiological data for acute care monitoring

    NASA Technical Reports Server (NTRS)

    Sgro, Joseph

    1994-01-01

    The purpose of neurophysiological monitoring of the 'acute care' patient is to allow the accurate recognition of changing or deteriorating neurological function as close to the moment of occurrence as possible, thus permitting immediate intervention. Results confirm that: (1) neural networks are able to accurately identify electroencephalogram (EEG) patterns and evoked potential (EP) wave components, and measuring EP waveform latencies and amplitudes; (2) neural networks are able to accurately detect EP and EEG recordings that have been contaminated by noise; (3) the best performance was obtained consistently with the back propagation network for EP and the HONN for EEG's; (4) neural network performed consistently better than other methods evaluated; and (5) neural network EEG and EP analyses are readily performed on multichannel data.

  17. Protocol for Landsat-Based Monitoring of Landscape Dynamics at North Coast and Cascades Network Parks

    USGS Publications Warehouse

    Kennedy, Robert E.; Cohen, Warren B.; Kirschbaum, Alan A.; Haunreiter, Erik

    2007-01-01

    Background and Objectives As part of the National Park Service's larger goal of developing long-term monitoring programs in response to the Natural Resource Challenge of 2000, the parks of the North Coast and Cascades Network (NCCN) have determined that monitoring of landscape dynamics is necessary to track ecosystem health (Weber and others, 2005). Landscape dynamics refer to a broad suite of ecological, geomorphological, and anthropogenic processes occurring across broad spatial scales. The NCCN has sought protocols that would leverage remote-sensing technologies to aid in monitoring landscape dynamics.

  18. The BioCASe Monitor Service - A tool for monitoring progress and quality of data provision through distributed data networks

    PubMed Central

    2013-01-01

    Abstract The BioCASe Monitor Service (BMS) is a web-based tool for coordinators of distributed data networks that provide information to web-portals and data aggregators via the BioCASe Provider Software. Building on common standards and protocols, it has three main purposes: (1) monitoring provider’s progress in data provision, (2) facilitating checks of data mappings with a focus on the structure, plausibility and completeness, and (3) verifying compliance of provided data for transformation into other target schemas. Herein two use cases, GBIF-D and OpenUp!, are presented in which the BMS is being applied for monitoring the progress in data provision and performing quality checks on the ABCD (Access to Biological Collection Data) schema mapping. However, the BMS can potentially be used with any conceptual data schema and protocols for querying web services. Through flexible configuration options it is highly adaptable to specific requirements and needs. Thus, the BMS can be easily implemented into coordination workflows and reporting duties within other distributed data network projects. PMID:24723764

  19. The BioCASe Monitor Service - A tool for monitoring progress and quality of data provision through distributed data networks.

    PubMed

    Glöckler, Falko; Hoffmann, Jana; Theeten, Franck

    2013-01-01

    The BioCASe Monitor Service (BMS) is a web-based tool for coordinators of distributed data networks that provide information to web-portals and data aggregators via the BioCASe Provider Software. Building on common standards and protocols, it has three main purposes: (1) monitoring provider's progress in data provision, (2) facilitating checks of data mappings with a focus on the structure, plausibility and completeness, and (3) verifying compliance of provided data for transformation into other target schemas. Herein two use cases, GBIF-D and OpenUp!, are presented in which the BMS is being applied for monitoring the progress in data provision and performing quality checks on the ABCD (Access to Biological Collection Data) schema mapping. However, the BMS can potentially be used with any conceptual data schema and protocols for querying web services. Through flexible configuration options it is highly adaptable to specific requirements and needs. Thus, the BMS can be easily implemented into coordination workflows and reporting duties within other distributed data network projects.

  20. Global Ionosphere Perturbations Monitored by the Worldwide GPS Network

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Manucci, A. T.; Lindqwister, U. J.; Pi, X.

    1996-01-01

    For the first time, measurements from the Global Positioning System (GPS) worldwide network are employed to study the global ionospheric total electron content(TEC) changes during a magnetic storm (November 26, 1994). These measurements are obtained from more than 60 world-wide GPS stations which continuously receive dual-frequency signals. Based on the delays of the signals, we have generated high resolution global ionospheric maps (GIM) of TEC at 15 minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that significant TEC increases (the positive effect ) are the major feature in the winter hemisphere during this storm (the maximum percent change relative to quiet times is about 150 percent).

  1. [Design and Implementation of a Novel Networked Sleep Monitoring System].

    PubMed

    Tian, Yu; Yan, Zhuangzhi; Tao, Jia'an

    2015-03-01

    To meet the need of cost-effective multi-biosignal monitoring devices nowadays, we designed a system based on super low power MCU. It can collect, record and transfer several signals including ECG, Oxygen saturation, thoracic and abdominal wall expansion, oronasal airflow signal. The data files can be stored on a flash chip and transferred to a computer by a USB module. In addition, the sensing data can be sent wirelessly in real time. Considering that long term work of wireless module consumes much energy, we present a low-power optimization method based on delay constraint. Lower energy consumption comes at the cost of little delay. Experimental results show that it can effectively decrease the energy consumption without changing wireless module and transfer protocol. Besides, our system is powered by two dry batteries and can work at least 8 hours throughout a whole night. PMID:26524775

  2. Primary health-care network monitoring: a hierarchical resource allocation modeling approach.

    PubMed

    Pur, Aleksander; Bohanec, Marko; Lavrac, Nada; Cestnik, Bojan

    2010-01-01

    Management of a primary health-care network (PHCN) is a difficult task in every country. A suitable monitoring system can provide useful information for PHCN management, especially given a large quantity of health-care data that is produced daily in the network. This paper proposes a methodology for structured development of monitoring systems and a PHCN resource allocation monitoring model based on this methodology. The purpose of the monitoring model is to improve the allocation of health-care resources. The proposed methodology is based on modules that are organized into a hierarchy, where each module monitors a particular aspect of the system. This methodology was used to design a PHCN monitoring model for Slovenia. Specific aspects of the Slovenian PHCN were taken into account such as varying needs of patients from different municipalities, existence of small municipalities having less than 1000 residents, the fact that many patients visit physicians in other municipalities, and that physicians may work at more than one location or organization. The main modules in the model are focused on the overall assessment of the PHCN, monitoring of patients visits to health-care providers (HCPs), physical accessibility of health services, segment of patients in municipalities who have not selected a personal physician, assessment of the availability of HCPs for patients, physicians working on more than one location, and available human resources in the PHCN. Most of the model's components are general and can be adapted for other national health-care systems.

  3. Optimal design of hydraulic head monitoring networks using space-time geostatistics

    NASA Astrophysics Data System (ADS)

    Herrera, G. S.; Júnez-Ferreira, H. E.

    2013-05-01

    This paper presents a new methodology for the optimal design of space-time hydraulic head monitoring networks and its application to the Valle de Querétaro aquifer in Mexico. The selection of the space-time monitoring points is done using a static Kalman filter combined with a sequential optimization method. The Kalman filter requires as input a space-time covariance matrix, which is derived from a geostatistical analysis. A sequential optimization method that selects the space-time point that minimizes a function of the variance, in each step, is used. We demonstrate the methodology applying it to the redesign of the hydraulic head monitoring network of the Valle de Querétaro aquifer with the objective of selecting from a set of monitoring positions and times, those that minimize the spatiotemporal redundancy. The database for the geostatistical space-time analysis corresponds to information of 273 wells located within the aquifer for the period 1970-2007. A total of 1,435 hydraulic head data were used to construct the experimental space-time variogram. The results show that from the existing monitoring program that consists of 418 space-time monitoring points, only 178 are not redundant. The implied reduction of monitoring costs was possible because the proposed method is successful in propagating information in space and time.

  4. The ripple effect of personality on social structure: self-monitoring origins of network brokerage.

    PubMed

    Oh, Hongseok; Kilduff, Martin

    2008-09-01

    Despite growing interest in social network brokerage, its psychological antecedents have been neglected. One possibility is that brokerage relates to self-monitoring personality orientation. High self-monitors, relative to low self-monitors, in adapting their self-presentations to the demands of different groups, may occupy positions as brokers between disconnected social worlds. For 162 Korean expatriate entrepreneurs in a Canadian urban area, the results showed that those high in self-monitoring tended to occupy direct brokerage roles within the Korean community--in terms of their direct acquaintances being unconnected with each other. Those high in self-monitoring also tended to occupy indirect brokerage roles--in terms of the acquaintances of their acquaintances being unconnected with each other. Finally, for recent arrivals, those high in self-monitoring tended to establish ties to a wider range of important non-Korean position holders outside the community. These results (which controlled for strongly significant effects of network size on individuals' brokerage within the community) suggest a ripple effect of self-monitoring on social structure and contribute to a clearer understanding of how personality relates to brokerage at different levels.

  5. Journal Article: Quality Assurance Considerations for An Ambient Dioxin Monitoring Network

    EPA Science Inventory

    The U.S. Environmental Protection Agency initiated the National Dioxin Air Monitoring Network (NDAMN) in 1998. NDAMN has three primary purposes:
    1. To provide measurements of background atmospheric levels of dioxin-like compounds in different geographic regions of the Unite...

  6. U.S. EPA's National Dioxin Air Monitoring Network: Analytical Issues

    EPA Science Inventory

    The U.S. EPA has established a National Dioxin Air Monitoring Network (NDAMN) to determine the temporal and geographical variability of atmospheric chlorinated dibenzo-p-dioxins (CDDs), furans (CDFs), and coplanar polychlorinated biphenyls (PCBs) at rural and non-impacted locatio...

  7. Progress towards an AIS early detection monitoring network for the Great Lakes

    EPA Science Inventory

    As an invasion prone location, the lower St. Louis River system (SLR) has been a case study for ongoing research to develop the framework for a practical Great Lakes monitoring network for early detection of aquatic invasive species (AIS). Early detection, however, necessitates f...

  8. Community Air Sensor Network (CAIRSENSE) Project: Lower Cost, Continuous Ambient Monitoring Methods

    EPA Science Inventory

    Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of numerous sensors across a small geographic area would have potential benefits to supplement existing monitoring networks and ...

  9. Fault tree analysis for data-loss in long-term monitoring networks.

    PubMed

    Dirksen, J; ten Veldhuis, J A E; Schilperoort, R P S

    2009-01-01

    Prevention of data-loss is an important aspect in the design as well as the operational phase of monitoring networks since data-loss can seriously limit intended information yield. In the literature limited attention has been paid to the origin of unreliable or doubtful data from monitoring networks. Better understanding of causes of data-loss points out effective solutions to increase data yield. This paper introduces FTA as a diagnostic tool to systematically deduce causes of data-loss in long-term monitoring networks in urban drainage systems. In order to illustrate the effectiveness of FTA, a fault tree is developed for a monitoring network and FTA is applied to analyze the data yield of a UV/VIS submersible spectrophotometer. Although some of the causes of data-loss cannot be recovered because the historical database of metadata has been updated infrequently, the example points out that FTA still is a powerful tool to analyze the causes of data-loss and provides useful information on effective data-loss prevention. PMID:19700829

  10. NRC TLD Direct Radiation Monitoring Network: Progress report January--March 1997. Volume 17, Number 1

    SciTech Connect

    Struckmeyer, R.

    1997-05-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the first quarter of 1997. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the US. In addition, it describes the recent intercomparison of environmental dosimeters and provides an analysis of the data.

  11. Journal Article: EPA's National Dioxin Air Monitoring Network (Ndamn): Design, Implementation, and Final Results

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) established the National Dioxin Air Monitoring Network (NDAMN) in June of 1998, and operated it until November of 2004. The objective of NDAMN was to determine background air concentrations of polychlorinated dibenzo-p-dioxins (...

  12. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks

    PubMed Central

    Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio

    2008-01-01

    Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.

  13. Air-dropped sensor network for real-time high-fidelity volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Huang, R.; Xu, M.; Ma, A.; Shirazi, B.; LaHusen, R.

    2009-01-01

    This paper presents the design and deployment experience of an air-dropped wireless sensor network for volcano hazard monitoring. The deployment of five stations into the rugged crater of Mount St. Helens only took one hour with a helicopter. The stations communicate with each other through an amplified 802.15.4 radio and establish a self-forming and self-healing multi-hop wireless network. The distance between stations is up to 2 km. Each sensor station collects and delivers real-time continuous seismic, infrasonic, lightning, GPS raw data to a gateway. The main contribution of this paper is the design and evaluation of a robust sensor network to replace data loggers and provide real-time long-term volcano monitoring. The system supports UTC-time synchronized data acquisition with 1ms accuracy, and is online configurable. It has been tested in the lab environment, the outdoor campus and the volcano crater. Despite the heavy rain, snow, and ice as well as gusts exceeding 120 miles per hour, the sensor network has achieved a remarkable packet delivery ratio above 99% with an overall system uptime of about 93.8% over the 1.5 months evaluation period after deployment. Our initial deployment experiences with the system have alleviated the doubts of domain scientists and prove to them that a low-cost sensor network system can support real-time monitoring in extremely harsh environments. Copyright 2009 ACM.

  14. The Deep Impact Network Experiment Operations Center Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Wang, Shin-Ywan (Cindy); Torgerson, J. Leigh; Schoolcraft, Joshua; Brenman, Yan

    2009-01-01

    The Interplanetary Overlay Network (ION) software at JPL is an implementation of Delay/Disruption Tolerant Networking (DTN) which has been proposed as an interplanetary protocol to support space communication. The JPL Deep Impact Network (DINET) is a technology development experiment intended to increase the technical readiness of the JPL implemented ION suite. The DINET Experiment Operations Center (EOC) developed by JPL's Protocol Technology Lab (PTL) was critical in accomplishing the experiment. EOC, containing all end nodes of simulated spaces and one administrative node, exercised publish and subscribe functions for payload data among all end nodes to verify the effectiveness of data exchange over ION protocol stacks. A Monitor and Control System was created and installed on the administrative node as a multi-tiered internet-based Web application to support the Deep Impact Network Experiment by allowing monitoring and analysis of the data delivery and statistics from ION. This Monitor and Control System includes the capability of receiving protocol status messages, classifying and storing status messages into a database from the ION simulation network, and providing web interfaces for viewing the live results in addition to interactive database queries.

  15. Autonomous smart sensor network for full-scale structural health monitoring

    NASA Astrophysics Data System (ADS)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  16. Research on a Banknote Printing Wastewater Monitoring System based on Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Li, B. B.; Yuan, Z. F.

    2006-10-01

    In this paper, a banknote printing wastewater monitoring system based on WSN is presented in line with the system demands and actual condition of the worksite for a banknote printing factory. In Physical Layer, the network node is a nRF9e5-centric embedded instrument, which can realize the multi-function such as data collecting, status monitoring, wireless data transmission and so on. Limited by the computing capability, memory capability, communicating energy and others factors, it is impossible for the node to get every detail information of the network, so the communication protocol on WSN couldn't be very complicated. The competitive-based MACA (Multiple Access with Collision Avoidance) Protocol is introduced in MAC, which can decide the communication process and working mode of the nodes, avoid the collision of data transmission, hidden and exposed station problem of nodes. On networks layer, the routing protocol in charge of the transmitting path of the data, the networks topology structure is arranged based on address assignation. Accompanied with some redundant nodes, the network performances stabile and expandable. The wastewater monitoring system is a tentative practice of WSN theory in engineering. Now, the system has passed test and proved efficiently.

  17. NRC TLD direct radiation monitoring network: Progress report, April--June 1996. Volume 16, Number 2

    SciTech Connect

    Struckmeyer, R.

    1996-08-01

    The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring network is operated by the NRC in cooperation with participating states to provide continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. Ambient radiation levels result from naturally occurring radionuclides present in the soil, cosmic radiation constantly bombarding the earth from outer space, and the contribution, if any, from the monitored facilities and other man-made sources. The Network is intended to measure radiation levels during routine facility operations and to establish background radiation levels used to assess the radiological impact of an unusual condition, such as an accident. This report presents the radiation levels measured around all facilities in the Network for the second quarter of 1996. A complete listing of the site facilities monitored is included. In some instances, two power reactor facilities are monitored by the same set of dosimeters. All radiation measurements are made using small, passive detectors called thermoluminescent dosimeters (TLDs), which provide a quantitative measurement of the radiation levels in the area in which they are placed. Each site is monitored by arranging approximately 40 to 50 TLD stations in two concentric rings extending to about five miles from the facility. All TLD stations are outside the site boundary of the facility.

  18. Coupling hydrodynamic models and value of information for designing stage monitoring networks

    NASA Astrophysics Data System (ADS)

    Alfonso, Leonardo; Price, Roland

    2012-08-01

    Because the collection of data in water systems is important for making informed decisions, monitoring networks are designed and installed in such systems. Traditionally, the design of hydrometric monitoring networks has been concentrated on measuring streamflow/precipitation at particular key (gauged) sites so that streamflow/precipitation can be estimated accurately at ungauged sites. Although many methods take into account a set of final users of the information, there appears to be no method that explicitly considers them in the mathematical formulation of the decision-making process. This paper presents a novel approach for designing monitoring networks in a water system using the concept of value of information (VOI). This concept takes into account three main factors: (1) the belief that the decision maker has about the state of the water system before having any information; (2) the consequences associated with the decision of having to choose among several possible management actions given the state of the water system; and (3) the evaluation and update of new information when it becomes available. The methodology uses a water level time series generated by a hydrodynamic model at every computational point, each one being a potential monitor site. The method is tested in a polder system in the Netherlands, where monitoring is required to make informed decisions about the operation of a set of hydraulic structures to reduce flood impacts.

  19. DEVELOPMENT OF A SENSOR NETWORK TEST BED FOR ISD MATERIALS AND STRUCUTRAL CONDITION MONITORING

    SciTech Connect

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-07-06

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  20. Entropy based groundwater monitoring network design considering spatial distribution of annual recharge

    NASA Astrophysics Data System (ADS)

    Leach, James M.; Coulibaly, Paulin; Guo, Yiping

    2016-10-01

    This study explores the inclusion of a groundwater recharge based design objective and the impact it has on the design of optimum groundwater monitoring networks. The study was conducted in the Hamilton, Halton, and Credit Valley regions of Ontario, Canada, in which the existing Ontario Provincial Groundwater Monitoring Network was augmented with additional monitoring wells. The Dual Entropy-Multiobjective Optimization (DEMO) model was used in these analyses. The value of using this design objective is rooted in the information contained within the estimated recharge. Recharge requires knowledge of climate, geomorphology, and geology of the area, thus using this objective function can help account for these physical characteristics. Two sources of groundwater recharge data were examined and compared, the first was calculated using the Precipitation-Runoff Modeling System (PRMS), and the second was an aggregation of recharge found using both the PRMS and Hydrological Simulation Program-Fortran (HSP-F). The entropy functions are used to identify optimal trade-offs between the maximum information content and the minimum shared information between the monitoring wells. The recharge objective will help to quantify hydrological characteristics of the vadose zone, and thus provide more information to the optimization algorithm. Results show that by including recharge as a design objective, the spatial coverage of the monitoring network can be improved. The study also highlights the flexibility of DEMO and its ability to incorporate additional design objectives such as the groundwater recharge.

  1. Entropy-based evaluation of a water level monitoring network in a wetland

    NASA Astrophysics Data System (ADS)

    Fahle, M.; Dietrich, O.; Lischeid, G.

    2012-04-01

    Existence of conclusive data is a prerequisite for water resources management in regulated wetlands. Due to economical constraints hydrological monitoring networks should be optimized with regard to their efficiency or informativeness. Various statistical approaches have been applied for this purpose, whereupon the entropy principle offers a possibility to directly measure the inherent information of a time series. While the method is used in hydrology especially for precipitation, groundwater or water quality monitoring networks, applications for water level observations are rare. The aim of this study is therefore to show the potential of this method to evaluate these monitoring systems, especially focusing on the comparison of surface water and groundwater gauges which are closely connected in wetlands. The entropy method is based on the information theory, which enables the quantification of information. By means of the definitions of the entropy, as the uncertainty inherent to a random variable, and the transinformation, as amount of information that is repeated in two variables, an assessment of the monitoring network based on the (empirical) probability distribution of the measured variables can be carried out, including the pairwise comparison of different stations. The processed data set was taken from a monitoring network launched in summer of 2011, installed in a wetland subjected to controlled drainage in Northeast Germany. Water level information, which was measured at an interval of 15 minutes, of 5 groundwater and 10 surface water gauges of a time period of 4 months was used. The results show that surface water gauges may have more commonalities with groundwater gauges than with other monitoring stations located in ditches or creeks. Also, the distance between two gauges not necessarily represents a valid measure for their correlation. For instance, the behaviour of a groundwater gauge can show more similarities to a remote creek than to an adjacent

  2. A Model for Field Deployment of Wireless Sensor Networks (WSNs) within the Domain of Microclimate Habitat Monitoring

    ERIC Educational Resources Information Center

    Sanborn, Mark

    2011-01-01

    Wireless sensor networks (WSNs) represent a class of miniaturized information systems designed to monitor physical environments. These smart monitoring systems form collaborative networks utilizing autonomous sensing, data-collection, and processing to provide real-time analytics of observed environments. As a fundamental research area in…

  3. On the Relevance of Using Open Wireless Sensor Networks in Environment Monitoring

    PubMed Central

    Bagula, Antoine B.; Inggs, Gordon; Scott, Simon; Zennaro, Marco

    2009-01-01

    This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks. PMID:22408557

  4. A mobile-agent based wireless sensing network for structural monitoring applications

    SciTech Connect

    Taylor, Stuart G; Farinholt, Kevin M; Figueiredo, Eloi; Park, Gyuhae; Farrar, Charles R; Flynn, Eric B; Mascarenas, David L; Todd, Michael D

    2008-01-01

    A new wireless sensing network paradigm is presented for structural monitoring applications. In this approach, both power and data interrogation commands are conveyed via a mobile agent that is sent to sensor nodes to perform intended interrogations, which can alleviate several limitations of the traditional sensing networks. Furthermore, the mobile agent provides computational power to make near real-time assessments on the structural conditions. This paper will discuss such prototype systems, which are used to interrogate impedance-based sensors for structural health monitoring applications. Our wireless sensor node is specifically designed to accept various energy sources, including wireless energy transmission, and to be wirelessly triggered on an as-needed basis by the mobile agent or other sensor nodes. The capabilities of this proposed sensing network paradigm are demonstrated in the laboratory and the field.

  5. Northern Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Seasonal ice in the Beaufort Sea off Alaska's North Slope has begun its spring retreat. This true color MODIS image from March 18, 2002, shows the pack ice in the Chuckchi Sea (left) and Beaufort Sea (top) backing away from its winter position snug up against Alaska's coasts, beginning its retreat into the Arctic Ocean. While not as pronounced in the Beaufort and Chukchi Seas as other part of the Arctic, scientists studying Arctic sea ice over the course of the century have documented dramatic changes in the extent of Arctic sea ice. It retreats farther in the summer and does not advance as far in the winter than it did a half-century ago. Both global warming and natural variation in regional weather systems have been proposed as causes. Along the coastal plain of the North Slope, gray-brown tracks (see high-resolution image) hint at melting rivers. South of the North Slope, the rugged mountains of the Brooks Range make a coast-to-coast arc across the state. Coming in at the lower right of the image, the Yukon River traces a frozen white path westward across half the image before veering south and out of view. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  6. Preparing for CTDMPLUS modeling analysis: Necessary enhancements to an existing meteorological monitoring network

    SciTech Connect

    Catizone, P.A.; Hoffnagle, G.F.; Murray, D.R.; Coble, T.D.

    1994-12-31

    The Clean Air Act Amendments (CAAA) promulgated by Congress in November 1990 had wide and immediate effect on numerous regulatory programs including State Implementation Plans (SIPs). The East Helena, Montana area was subject to the CAAA since a SIP had been submitted but not fully approved by EPA prior to November 1990. CTDMPLUS requires input of meteorological data previously not used by regulatory models and therefore not generally monitored in existing monitoring networks. To obtain the additional data, new instruments must be installed. This paper identifies the enhancements necessary to the existing network at the ASARCO plant to provide the requisite data for subsequent application of the refined complex terrain model. Details of the equipment and data acquisition are outlined and a summary of basic costs associated with the monitoring enhancements are provided.

  7. Nonthreshold-based event detection for 3d environment monitoring in sensor networks

    SciTech Connect

    Li, M.; Liu, Y.H.; Chen, L.

    2008-12-15

    Event detection is a crucial task for wireless sensor network applications, especially environment monitoring. Existing approaches for event detection are mainly based on some predefined threshold values and, thus, are often inaccurate and incapable of capturing complex events. For example, in coal mine monitoring scenarios, gas leakage or water osmosis can hardly be described by the overrun of specified attribute thresholds but some complex pattern in the full-scale view of the environmental data. To address this issue, we propose a nonthreshold-based approach for the real 3D sensor monitoring environment. We employ energy-efficient methods to collect a time series of data maps from the sensor network and detect complex events through matching the gathered data to spatiotemporal data patterns. Finally, we conduct trace-driven simulations to prove the efficacy and efficiency of this approach on detecting events of complex phenomena from real-life records.

  8. Low power wireless sensor networks for infrastructure monitoring

    NASA Astrophysics Data System (ADS)

    Ghaed, Mohammad Hassan; Ghahramani, Mohammad Mahdi; Chen, Gregory; Fojtik, Matthew; Blaauw, David; Flynn, Michael P.; Sylvester, Dennis

    2012-04-01

    Sensors with long lifetimes are ideal for infrastructure monitoring. Miniaturized sensor systems are only capable of storing small amounts of energy. Prior work has increased sensor lifetime through the reduction of supply voltage , necessitating voltage conversion from storage elements such as batteries. Sensor lifetime can be further extended by harvesting from solar, vibrational, or thermal energy. Since harvested energy is sporadic, it must be detected and stored. Harvesting sources do not provide voltage levels suitable for secondary power sources, necessitating DC-DC upconversion. We demonstrate a 8.75mm3 sensor system with a near-threshold ARM microcontroller, custom 3.3fW/bit SRAM, two 1mm2 solar cells, a thin-film Li-ion battery, and integrated power management unit. The 7.7μW system enters a 550pW data-retentive sleep state between measurements and harvests solar energy to enable energy autonomy. Our receiver and transmitter architectures benefit from a design strategy that employs mixed signal and digital circuit schemes that perform well in advanced CMOS integrated circuit technologies. A prototype transmitter implemented in 0.13μm CMOS satisfies the requirements for Zigbee, but consumes far less power consumption than state-of-the-art commercial devices.

  9. Power analysis and trend detection for water quality monitoring data. An application for the Greater Yellowstone Inventory and Monitoring Network

    USGS Publications Warehouse

    Irvine, Kathryn M.; Manlove, Kezia; Hollimon, Cynthia

    2012-01-01

    An important consideration for long term monitoring programs is determining the required sampling effort to detect trends in specific ecological indicators of interest. To enhance the Greater Yellowstone Inventory and Monitoring Network’s water resources protocol(s) (O’Ney 2006 and O’Ney et al. 2009 [under review]), we developed a set of tools to: (1) determine the statistical power for detecting trends of varying magnitude in a specified water quality parameter over different lengths of sampling (years) and different within-year collection frequencies (monthly or seasonal sampling) at particular locations using historical data, and (2) perform periodic trend analyses for water quality parameters while addressing seasonality and flow weighting. A power analysis for trend detection is a statistical procedure used to estimate the probability of rejecting the hypothesis of no trend when in fact there is a trend, within a specific modeling framework. In this report, we base our power estimates on using the seasonal Kendall test (Helsel and Hirsch 2002) for detecting trend in water quality parameters measured at fixed locations over multiple years. We also present procedures (R-scripts) for conducting a periodic trend analysis using the seasonal Kendall test with and without flow adjustment. This report provides the R-scripts developed for power and trend analysis, tutorials, and the associated tables and graphs. The purpose of this report is to provide practical information for monitoring network staff on how to use these statistical tools for water quality monitoring data sets.

  10. Tailoring groundwater quality monitoring to vulnerability: a GIS procedure for network design.

    PubMed

    Preziosi, E; Petrangeli, A B; Giuliano, G

    2013-05-01

    Monitoring networks aiming to assess the state of groundwater quality and detect or predict changes could increase in efficiency when fitted to vulnerability and pollution risk assessment. The main purpose of this paper is to describe a methodology aiming at integrating aquifers vulnerability and actual levels of groundwater pollution in the monitoring network design. In this study carried out in a pilot area in central Italy, several factors such as hydrogeological setting, groundwater vulnerability, and natural and anthropogenic contamination levels were analyzed and used in designing a network tailored to the monitoring objectives, namely, surveying the evolution of groundwater quality relating to natural conditions as well as to polluting processes active in the area. Due to the absence of an aquifer vulnerability map for the whole area, a proxi evaluation of it was performed through a geographic information system (GIS) methodology, leading to the so called "susceptibility to groundwater quality degradation". The latter was used as a basis for the network density assessment, while water points were ranked by several factors including discharge, actual contamination levels, maintenance conditions, and accessibility for periodical sampling in order to select the most appropriate to the network. Two different GIS procedures were implemented which combine vulnerability conditions and water points suitability, producing two slightly different networks of 50 monitoring points selected out of the 121 candidate wells and springs. The results are compared with a "manual" selection of the points. The applied GIS procedures resulted capable to select the requested number of water points from the initial set, evaluating the most confident ones and an appropriate density. Moreover, it is worth underlining that the second procedure (point distance analysis [PDA]) is technically faster and simpler to be performed than the first one (GRID + PDA).

  11. Network for Monitoring Agricultural Water Quantity and Water Quality in Arkansas

    NASA Astrophysics Data System (ADS)

    Reba, M. L.; Daniels, M.; Chen, Y.; Sharpley, A.; Teague, T. G.; Bouldin, J.

    2012-12-01

    A network of agricultural monitoring sites was established in 2010 in Arkansas. The state of Arkansas produces the most rice of any state in the US, the 3rd most cotton and the 3rd most broilers. By 2050, agriculture will be asked to produce food, feed, and fiber for the increasing world population. Arkansas agriculture is challenged with reduced water availability from groundwater decline and the associated increase in pumping costs. Excess nutrients, associated in part to agriculture, influence the hypoxic condition in the Gulf of Mexico. All sites in the network are located at the edge-of-field in an effort to relate management to water quantity and water quality. The objective of the network is to collect scientifically sound data at field scales under typical and innovative management for the region. Innovative management for the network includes, but is not limited to, variable rate fertilizer, cover crops, buffer strips, irrigation water management, irrigation planning, pumping plant monitoring and seasonal shallow water storage. Data collection at the sites includes quantifying water inputs and losses, and water quality. Measured water quality parameters include sediment and dissolved nitrate, nitrite and orthophosphate. The measurements at the edge-of-field will be incorporated into the monitoring of field ditches and larger drainage systems to result in a 3-tiered monitoring effort. Partners in the creation of this network include USDA-ARS, Arkansas State University, University of Arkansas, University of Arkansas at Pine Bluff, USDA-NRCS and agricultural producers representing the major commodities of the state of Arkansas. The network is described in detail with preliminary results presented.

  12. Never Use the Complete Search Space: a Concept to Enhance the Optimization Procedure for Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Bode, F.; Reuschen, S.; Nowak, W.

    2015-12-01

    Drinking-water well catchments include many potential sources of contaminations like gas stations or agriculture. Finding optimal positions of early-warning monitoring wells is challenging because there are various parameters (and their uncertainties) that influence the reliability and optimality of any suggested monitoring location or monitoring network.The overall goal of this project is to develop and establish a concept to assess, design and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: a high detection probability, which can be reached by maximizing the "field of vision" of the monitoring network, a long early-warning time such that there is enough time left to install counter measures after first detection, and the overall operating costs of the monitoring network, which should ideally be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, scenario analyses for real data, respectively, wrapped up within the framework of formal multi-objective optimization using a genetic algorithm.In order to speed up the optimization process and to better explore the Pareto-front, we developed a concept that forces the algorithm to search only in regions of the search space where promising solutions can be expected. We are going to show how to define these regions beforehand, using knowledge of the optimization problem, but also how to define them independently of problem attributes. With that, our method can be used with and/or without detailed knowledge of the objective functions.In summary, our study helps to improve optimization results in less optimization time by meaningful restrictions of the search space. These restrictions can be done independently of the optimization problem, but also in a problem-specific manner.

  13. An intelligent wireless sensor network applied research on dynamic physiological data monitoring of athletes

    NASA Astrophysics Data System (ADS)

    Xie, Ying; Wu, Fei-qing; Li, Lin-gong

    2008-12-01

    A wireless sensor network (WSN) monitoring system was designed, because of the big labour, time-consumption, and non-real-time monitoring of the true physiological data of athlete for wire communication, which were very important for their coach. The coach, who obtained the first material, can know the physiological sports status of althletes according to these data, can intervene on them and formulate a scientific training plan. The system has the characteristic of a random layout, arbitrary additions and combined network nodes. The performance of the system for 24 athletes who were trained has been tested in the system improved LEACH-c protocol and a threshold sensitive energy efficient protocol has been applied. The experimental results showed that, while the interval time of the contact was more than 15 seconds, the network packet loss rate was less than 3 percent. The operation of the network can be considered to be relatively stable. During the test, the MAC network capacity obtained by the actual tests in the implicit terminal mode was three packets per second. Considering the costs of a node sending routing maintenance packet, a network capacity of 2 was reasonable. Based on the performance of the system for testing, the results showed that the system was stable and reliable

  14. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    PubMed

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  15. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems

    PubMed Central

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  16. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    PubMed

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  17. 40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or non-source-oriented according to Appendix D to 40 CFR part 58. (10) Any source-oriented monitors... under paragraph 4.5(a)(ii) of Appendix D to 40 CFR part 58. (11) Any source-oriented or non-source... C to 40 CFR part 58. (12) The identification of required NO2 monitors as either near-road or...

  18. 40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-oriented according to Appendix D to 40 CFR part 58. (10) Any source-oriented monitors for which a waiver...)(ii) of Appendix D to 40 CFR part 58. (11) Any source-oriented or non-source-oriented site for which a... in lieu of Pb-TSP monitoring as allowed for under paragraph 2.10 of Appendix C to 40 CFR part 58....

  19. 40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of any Pb monitors as either source-oriented or non-source-oriented according to Appendix D to 40 CFR... Regional Administrator as allowed for under paragraph 4.5(a)(ii) of Appendix D to 40 CFR part 58. (11) Any... paragraph 2.10 of Appendix C to 40 CFR part 58. (12) The identification of required NO2 monitors as...

  20. Ocean observatory networks monitor gas hydrates systems - Updates from Cascadia

    NASA Astrophysics Data System (ADS)

    Scherwath, M.; Kelley, D. S.; Moran, K.; Philip, B. T.; Roemer, M.; Riedel, M.; Solomon, E. A.; Spence, G.; Heesemann, M.

    2015-12-01

    Seafloor observatories have been installed at the Cascadia margin with a long-term (>20 year) lifespan. These observatories consist of a variety of node locations cabled back to shore for continuous power and communication to instruments via high bandwidth internet access. Ocean Networks Canada (ONC) maintains two hydrate sites at Barkley Canyon and Clayoquot Slope off Vancouver Island, and the Ocean Observatories Initiative (OOI) Cabled Array connects to Hydrate Ridge off the Oregon coast. Together, these installations comprise a diverse suite of different experiments. For example, a seafloor crawler, operated by Jacobs University in Bremen, travels around the Barkley hydrate mounds on a daily basis and carries out a suite of measurements such as determining the rate of change of the benthic community composition. Another example is from several years of hourly sonar data showing gas bubbles rising from the seafloor near the Bullseye Vent with varying intensities, allowing statistically sound correlations with other seafloor parameters such as ground shaking, temperature and pressure variations and currents, where tidal pressure appearing as the main driver. The Southern Hydrate Ridge is now equipped with the world's first long-term seafloor mass spectrometer, co-located with a camera and lights, hydrophone, current meters, pressure sensor, autonomous dissolved oxygen and fluid samplers, and is surrounded by a seismometer array for local seismicity. In the future, long-term data will be continuously captured and made available throughout the year covering the full range of variations of the dynamic hydrate system, and expect additional experiments to be connected to the observatories from the broader research community.

  1. STDAS: sensing task and data aggregation scheduling for astronaut health monitoring using wireless mesh networks.

    PubMed

    Shen, Jian; Liu, Haoying; Yuan, Xiaojing; Moges, Mequanint

    2008-01-01

    Astronaut health monitoring (AHM) during long durations of space missions will play a significant role in mission success. Designing networked healthcare systems for aerospace exploration that will enable continual surveillance and timely notification of astronaut health information to terrestrial healthcare providers at minimal deployment and operation cost is an extremely challenging problem. However, such capabilities will enhance the opportunities for remote medical assistance during space missions. In this paper, we extend our task and data aggregation scheduling from single-hop and multi-hop network to mesh network. The algorithm aims to optimize the network performance with respect to response time and network delay. The upper and lower bounds are derived to provide certain guarantee on data delivery time. The performance of a wireless mesh network with 25 sensor nodes is examined by varying network bandwidth and sensing power of sensor nodes. Basic recursive equations for sensing and data reporting are developed for the case of homogeneous and heterogeneous mesh networks and the performance results of two representative data sensing and reporting strategies are presented.

  2. Pacific Rim Partnerships: Alaska's Bold Initiative.

    ERIC Educational Resources Information Center

    Parrett, William H.; Calkins, Annie

    1989-01-01

    Describes the Alaska Sister Schools Network, formed in 1985 to create opportunities for Alaskan students to experience more directly the cultural and economic perspectives of their Pacific Rim neighbors. Network organizers go beyond the "pen-pal" approach to encourage three partnership levels: initial acquaintance, curriculum development, and…

  3. Multicriteria relocation analysis of an off-site radioactive monitoring network for a nuclear power plant.

    PubMed

    Chang, Ni-Bin; Ning, Shu-Kuang; Chen, Jen-Chang

    2006-08-01

    Due to increasing environmental consciousness in most countries, every utility that owns a commercial nuclear power plant has been required to have both an on-site and off-site emergency response plan since the 1980s. A radiation monitoring network, viewed as part of the emergency response plan, can provide information regarding the radiation dosage emitted from a nuclear power plant in a regular operational period and/or abnormal measurements in an emergency event. Such monitoring information might help field operators and decision-makers to provide accurate responses or make decisions to protect the public health and safety. This study aims to conduct an integrated simulation and optimization analysis looking for the relocation strategy of a long-term regular off-site monitoring network at a nuclear power plant. The planning goal is to downsize the current monitoring network but maintain its monitoring capacity as much as possible. The monitoring sensors considered in this study include the thermoluminescence dosimetry (TLD) and air sampling system (AP) simultaneously. It is designed for detecting the radionuclide accumulative concentration, the frequency of violation, and the possible population affected by a long-term impact in the surrounding area regularly while it can also be used in an accidental release event. With the aid of the calibrated Industrial Source Complex-Plume Rise Model Enhancements (ISC-PRIME) simulation model to track down the possible radionuclide diffusion, dispersion, transport, and transformation process in the atmospheric environment, a multiobjective evaluation process can be applied to achieve the screening of monitoring stations for the nuclear power plant located at Hengchun Peninsula, South Taiwan. To account for multiple objectives, this study calculated preference weights to linearly combine objective functions leading to decision-making with exposure assessment in an optimization context. Final suggestions should be useful for

  4. Local seismic network for monitoring of a potential nuclear power plant area

    NASA Astrophysics Data System (ADS)

    Tiira, Timo; Uski, Marja; Kortström, Jari; Kaisko, Outi; Korja, Annakaisa

    2016-04-01

    This study presents a plan for seismic monitoring of a region around a potential nuclear power plant. Seismic monitoring is needed to evaluate seismic risk. The International Atomic Energy Agency has set guidelines on seismic hazard evaluation and monitoring of such areas. According to these guidelines, we have made a plan for a local network of seismic stations to collect data for seismic source characterization and seismotectonic interpretations, as well as to monitor seismic activity and natural hazards. The detection and location capability of the network were simulated using different station configurations by computing spatial azimuthal coverages and detection threshold magnitudes. Background noise conditions around Pyhäjoki were analyzed by comparing data from different stations. The annual number of microearthquakes that should be detected with a dense local network centered around Pyhäjoki was estimated. The network should be dense enough to fulfill the requirements of azimuthal coverage better than 180° and automatic event location capability down to ML ˜ 0 within a distance of 25 km from the site. A network of 10 stations should be enough to reach these goals. With this setup, the detection threshold magnitudes are estimated to be ML = -0.1 and ML = 0.1 within a radius of 25 and 50 km from Pyhäjoki, respectively. The annual number of earthquakes detected by the network is estimated to be 2 (ML ≥ ˜ -0.1) within 25 km radius and 5 (ML ≥ ˜-0.1 to ˜0.1) within 50 km radius. The location accuracy within 25 km radius is estimated to be 1-2 and 4 km for horizontal coordinates and depth, respectively. Thus, the network is dense enough to map out capable faults with horizontal accuracy of 1-2 km within 25 km radius of the site. The estimation is based on the location accuracies of five existing networks in northern Europe. Local factors, such as seismic noise sources, geology and infrastructure might limit the station configuration and detection and

  5. SeaDataNet network services monitoring: Definition and Implementation of Service availability index

    NASA Astrophysics Data System (ADS)

    Lykiardopoulos, Angelos; Mpalopoulou, Stavroula; Vavilis, Panagiotis; Pantazi, Maria; Iona, Sissy

    2014-05-01

    SeaDataNet (SDN) is a standardized system for managing large and diverse data sets collected by the oceanographic fleets and the automatic observation systems. The SeaDataNet network is constituted of national oceanographic data centres of 35 countries, active in data collection. SeaDataNetII project's objective is to upgrade the present SeaDataNet infrastructure into an operationally robust and state-of-the-art infrastructure; therefore Network Monitoring is a step to this direction. The term Network Monitoring describes the use of system that constantly monitors a computer network for slow or failing components and that notifies the network administrator in case of outages. Network monitoring is crucial when implementing widely distributed systems over the Internet and in real-time systems as it detects malfunctions that may occur and notifies the system administrator who can immediately respond and correct the problem. In the framework of SeaDataNet II project a monitoring system was developed in order to monitor the SeaDataNet components. The core system is based on Nagios software. Some plug-ins were developed to support SeaDataNet modules. On the top of Nagios Engine a web portal was developed in order to give access to local administrators of SeaDataNet components, to view detailed logs of their own service(s). Currently the system monitors 35 SeaDataNet Download Managers, 9 SeaDataNet Services, 25 GeoSeas Download Managers and 23 UBSS Download Managers . Taking advantage of the continuous monitoring of SeaDataNet system components a total availability index will be implemented. The term availability can be defined as the ability of a functional unit to be in a state to perform a required function under given conditions at a given instant of time or over a given time interval, assuming that the required external resources are provided. Availability measures can be considered as a are very important benefit becauseT - The availability trends that can be

  6. Concept of Complex Environmental Monitoring Network - Vardzia Rock Cut City Case Study

    NASA Astrophysics Data System (ADS)

    Elashvili, Mikheil; Vacheishvili, Nikoloz; Margottini, Claudio; Basilaia, Giorgi; Chkhaidze, Davit; Kvavadze, Davit; Spizzichino, Daniele; Boscagli, Franceso; Kirkitadze, Giorgi; Adikashvili, Luka; Navrozashvili, Levan

    2016-04-01

    Vardzia represents an unique cultural heritage monument - rock cut city, which unites architectural monument and Natural-Geological complex. Such monuments are particularly vulnerable and their restoration and conservation requires complex approach. It is curved in various layers of volcanic tuffs and covers several hectares of area, with chronologically different segments of construction. This monument, as many similar monuments worldwide, is subjected to slow but permanent process of destruction, expressed in following factors: surface weathering of rock, active tectonics (aseismic displacement along the active faults and earthquakes), interaction between lithologically different rock layers, existence of major cracks and associated complex block structure, surface rainwater runoff and infiltrated ground water, temperature variations, etc. During its lifetime, Vardzia was heavily damaged by Historical Earthquake of 1283 and only partly restored afterwards. The technological progress together with the increased knowledge about ongoing environmental processes, established the common understanding that the complex monitoring of the environment represents the essential component for resolving such a principal issues, as: Proper management and prevention of natural disasters; Modeling of environmental processes, their short and long term prognosis; Monitoring of macro and micro climate; Safe functioning and preservation of important constructions. Research Center of Cultural Heritage and Environment of Ilia State University in cooperation with Experts from ISPRA, with the funding from the State agency of Cultural Heritage, has developed a concept of Vardzia complex monitoring network. Concept of the network includes: monitoring local meteorological conditions (meteorological station), monitoring microclimate in caves (temperature and humidity in the air and rock), monitoring microtremors and ambient seismic noise in Vardzia (local strong motion network), monitoring

  7. Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant

    SciTech Connect

    Kumar, Rajeeva; Kumar, Aditya; Dai, Dan; Seenumani, Gayathri; Down, John; Lopez, Rodrigo

    2012-12-31

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a general model-based sensor network design methodology and tools to address key issues in the design of an optimal sensor network configuration: the type, location and number of sensors used in a network, for online condition monitoring. In particular, the focus in this work is to develop software tools for optimal sensor placement (OSP) and use these tools to design optimal sensor network configuration for online condition monitoring of gasifier refractory wear and radiant syngas cooler (RSC) fouling. The methodology developed will be applicable to sensing system design for online condition monitoring for broad range of applications. The overall approach consists of (i) defining condition monitoring requirement in terms of OSP and mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-off of alternate OSP algorithms, down selecting the most relevant ones and developing them for IGCC applications (iii) enhancing the gasifier and RSC models as required by OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor network required for the condition monitoring of an IGCC gasifier refractory and RSC fouling. Two key requirements for OSP for condition monitoring are desired precision for the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor network in the presence of expected sensor failures. The OSP problem is naturally posed within a Kalman filtering approach as an integer programming problem where the key requirements of precision and reliability are imposed as constraints. The optimization is performed over the overall network cost. Based on extensive literature survey two formulations were identified as being relevant to OSP for condition monitoring; one based on LMI formulation and the other being standard INLP formulation. Various algorithms to solve

  8. A Distributed Multiagent System Architecture for Body Area Networks Applied to Healthcare Monitoring

    PubMed Central

    Laza, Rosalía; Pereira, António

    2015-01-01

    In the last years the area of health monitoring has grown significantly, attracting the attention of both academia and commercial sectors. At the same time, the availability of new biomedical sensors and suitable network protocols has led to the appearance of a new generation of wireless sensor networks, the so-called wireless body area networks. Nowadays, these networks are routinely used for continuous monitoring of vital parameters, movement, and the surrounding environment of people, but the large volume of data generated in different locations represents a major obstacle for the appropriate design, development, and deployment of more elaborated intelligent systems. In this context, we present an open and distributed architecture based on a multiagent system for recognizing human movements, identifying human postures, and detecting harmful activities. The proposed system evolved from a single node for fall detection to a multisensor hardware solution capable of identifying unhampered falls and analyzing the users' movement. The experiments carried out contemplate two different scenarios and demonstrate the accuracy of our proposal as a real distributed movement monitoring and accident detection system. Moreover, we also characterize its performance, enabling future analyses and comparisons with similar approaches. PMID:25874202

  9. Gastric bypass patients' goal-strategy-monitoring networks for long-term dietary management.

    PubMed

    Lynch, Amanda; Bisogni, Carole A

    2014-10-01

    Following gastric bypass surgery, patients must make dramatic dietary changes, but little is known about patients' perspectives on long-term dietary management after this surgery. This grounded theory, qualitative study sought to advance conceptual understanding of food choice by examining how gastric bypass patients constructed personal food systems to guide food and eating behaviors 12 months post-surgery. Two in-depth interviews were conducted with each of 16 adults, purposively sampled from bariatric support groups. Using constant comparative analysis of verbatim interview transcripts, researchers identified participants' goal-strategy-monitoring networks representing how participants used specific food and eating behaviors towards their main goals of: Weight Management, Overall Health, Avoiding Negative Reactions to Eating, and Integrating Dietary Changes with Daily Life. Linked to each main goal was a hierarchy of intermediary goals, strategies, and tactics. Participants used monitoring behaviors to assess strategy effectiveness towards goal achievement. Individuals' Weight Management networks were compared to uncover similarities and differences among strategy use and monitoring methods among those who maintained weight loss and those who regained weight. The complex, multilevel goal-strategy-monitoring networks identified illustrate the "work" involved in constructing new personal food systems after surgery, as well as advance understanding of strategies as a component of people's personal food systems. These findings provide researchers and practitioners with insight into the long-term dietary issues that gastric bypass patients face and a potential method for representing how people relate deliberate dietary behaviors to their goals.

  10. A Design of Wireless Sensor Networks for a Power Quality Monitoring System

    PubMed Central

    Lim, Yujin; Kim, Hak-Man; Kang, Sanggil

    2010-01-01

    Power grids deal with the business of generation, transmission, and distribution of electric power. Recently, interest in power quality in electrical distribution systems has increased rapidly. In Korea, the communication network to deliver voltage, current, and temperature measurements gathered from pole transformers to remote monitoring centers employs cellular mobile technology. Due to high cost of the cellular mobile technology, power quality monitoring measurements are limited and data gathering intervals are large. This causes difficulties in providing the power quality monitoring service. To alleviate the problems, in this paper we present a communication infrastructure to provide low cost, reliable data delivery. The communication infrastructure consists of wired connections between substations and monitoring centers, and wireless connections between pole transformers and substations. For the wireless connection, we employ a wireless sensor network and design its corresponding data forwarding protocol to improve the quality of data delivery. For the design, we adopt a tree-based data forwarding protocol in order to customize the distribution pattern of the power quality information. We verify the performance of the proposed data forwarding protocol quantitatively using the NS-2 network simulator. PMID:22163436

  11. Monitoring Architectural Heritage by Wireless Sensors Networks: San Gimignano — A Case Study

    PubMed Central

    Mecocci, Alessandro; Abrardo, Andrea

    2014-01-01

    This paper describes a wireless sensor network (WSN) used to monitor the health state of architectural heritage in real-time. The WSN has been deployed and tested on the “Rognosa” tower in the medieval village of San Gimignano, Tuscany, Italy. This technology, being non-invasive, mimetic, and long lasting, is particularly well suited for long term monitoring and on-line diagnosis of the conservation state of heritage buildings. The proposed monitoring system comprises radio-equipped nodes linked to suitable sensors capable of monitoring crucial parameters like: temperature, humidity, masonry cracks, pouring rain, and visual light. The access to data is granted by a user interface for remote control. The WSN can autonomously send remote alarms when predefined thresholds are reached. PMID:24394600

  12. A Low-Cost, Real-Time Network for Radiological Monitoring Around Nuclear Facilities

    SciTech Connect

    Bertoldo, N A

    2004-08-13

    A low-cost, real-time radiological sensor network for emergency response has been developed and deployed at the Lawrence Livermore National Laboratory (LLNL). The Real-Time Radiological Area Monitoring (RTRAM) network is comprised of 16 Geiger-Mueller (GM) sensors positioned on the site perimeter to continuously monitor radiological conditions as part of LLNL's comprehensive environment/safety/health protection program. The RTRAM network sensor locations coincide with wind sector directions to provide thorough coverage of the one square mile site. These low-power sensors transmit measurement data back to a central command center (CCC) computer through the LLNL telecommunications infrastructure. Alarm conditions are identified by comparing current data to predetermined threshold parameters and are validated by comparison with plausible dispersion modeling scenarios and prevailing meteorological conditions. Emergency response personnel are notified of alarm conditions by automatic radio- and computer- based notifications. A secure intranet provides emergency response personnel with current condition assessment data that enable them to direct field response efforts remotely. This system provides a low-cost real-time radiation monitoring solution that is easily converted to incorporate both a hard-wired interior perimeter with strategically positioned wireless secondary and tertiary concentric remote locations. These wireless stations would be configured with solar voltaic panels that provide current to recharge batteries and power the sensors and radio transceivers. These platforms would supply data transmission at a range of up to 95 km from a single transceiver location. As necessary, using radio transceivers in repeater mode can extend the transmission range. The RTRAM network as it is presently configured at LLNL has proven to be a reliable system since initial deployment in August 2001 and maintains stability during inclement weather conditions. With the proposed

  13. Alternatives for Monitoring and Limiting Network Access to Students in Network-Connected Classrooms

    ERIC Educational Resources Information Center

    Almeroth, Kevin; Zhang, Hangjin

    2013-01-01

    With the advent of laptop computers and network technology, many classrooms are now being equipped with Internet connections, either through wired connections or wireless infrastructure. Internet access provides students an additional source from which to obtain course-related information. However, constant access to the Internet can be a…

  14. An agronomic field-scale sensor network for monitoring soil water and temperature variation

    NASA Astrophysics Data System (ADS)

    Brown, D. J.; Gasch, C.; Brooks, E. S.; Huggins, D. R.; Campbell, C. S.; Cobos, D. R.

    2014-12-01

    Environmental sensor networks have been deployed in a variety of contexts to monitor plant, air, water and soil properties. To date, there have been relatively few such networks deployed to monitor dynamic soil properties in cropped fields. Here we report on experience with a distributed soil sensor network that has been deployed for seven years in a research farm with ongoing agronomic field operations. The Washington State University R. J. Cook Agronomy Farm (CAF), Pullman, WA, USA has recently been designated a United States Department of Agriculture (USDA) Long-Term Agro-Ecosystem Research (LTAR) site. In 2007, 12 geo-referenced locations at CAF were instrumented, then in 2009 this network was expended to 42 locations distributed across the 37-ha farm. At each of this locations, Decagon 5TE probes (Decagon Devices Inc., Pullman, WA, USA) were installed at five depths (30, 60, 90, 120, and 150 cm), with temperature and volumetric soil moisture content recorded hourly. Initially, data loggers were wirelessly connected to a data station that could be accessed through a cell connection, but due to the logistics of agronomic field operations, we later buried the dataloggers at each site and now periodically download data via local radio transmission. In this presentation, we share our experience with the installation, maintenance, calibration and data processing associated with an agronomic soil monitoring network. We also present highlights of data derived from this network, including seasonal fluctuations of soil temperature and volumetric water content at each depth, and how these measurements are influenced by crop type, soil properties, landscape position, and precipitation events.

  15. Multifunctional sensor network for structural state sensing and structural health monitoring

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Ikegami, Roy; Beard, Shawn J.; Zhang, David; Das, Samik; Banerjee, Sourav; Chang, Fu-Kuo

    2010-04-01

    In order to take full advantages of composites and enable future composite structures to operate at their physical limits rather than limits predetermined from computational design assumptions and safety factors, there is a need to develop an embeddable sensing system to allow a structure to "feel" and "think" its structural state. In this paper, the concept of multi-modal sensing capabilities using a network of multifunctional sensors integrated with a structure has been developed. Utilizing this revolutionary concept, future structures can be designed and manufactured to provide multiple modes of information that when synthesized together can provide capabilities for intelligent sensing, environmental adaptation and multi-functionality. To demonstrate the feasibility of multi-modal sensing capabilities with built-in sensor network, one single type of piezoelectric sensor was selected to perform the measurements of dynamic strain, temperature, damage detection and impact monitoring. The uniqueness of the sensing system includes (1) Flexible, multifunctional sensor networks for integration with any type of composite structural component, (2) Scalable sensor network for monitoring of a large composite structure, (3) Reduced number of connecting wires for sensors, (4) Hybrid diagnostics with multiple sensing capabilities, (5) Sensor network self-diagnostics and self-repair for damaged sensor system.

  16. Report on the Dagstuhl Seminar on Visualization and Monitoring of Network Traffic

    SciTech Connect

    Keim, Daniel; Pras, Aiko; Schonwalder, Jurgen; Wong, Pak C.; Mansmann, Florian

    2011-01-26

    The Dagstuhl Seminar on Visualization and Monitoring of Network Traffic [1] took place May 17-20, 2009 in Dagstuhl, Germany. Dagstuhl seminars promote personal interaction and open discussion of results as well as new ideas. Unlike at most conferences, the focus is not solely on the presentation of established results but to equal parts on results, ideas, sketches, and open problems. The aim of this particular seminar was to bring together experts from the information visualization community and the networking community in order to discuss the state of the art of monitoring and visualization of network traffic. People from the different research communities involved jointly organized the seminar. The co-chairs of the seminar from the networking community were Aiko Pras (University of Twente) and Jürgen Schönwälder (Jacobs University Bremen). The co-chairs from the visualization community were Daniel A. Keim (University of Konstanz) and Pak Chung Wong (Pacific Northwest National Lab). Florian Mansmann (University of Konstanz) helped with producing this report. The seminar was organized and supported by Schloss Dagstuhl and the EC IST-EMANICS Network of Excellence [1].

  17. Monitoring the integrity of filament-wound structures using built-in sensor networks

    NASA Astrophysics Data System (ADS)

    Lin, Mark; Kumar, Amrita; Qing, Xinlin; Beard, Shawn J.; Russell, Samuel S.; Walker, James L.; Delay, Thomas K.

    2003-08-01

    Monitoring the integrity of filament wound composite structures such as solid rocket motors and liquid fuel bottles is important in order to prevent catastrophic failures and to prolong the service life of these structures. To ensure the safety and reliability of rocket components, they require frequent inspection for structural damages that might have occurred during manufacturing, transportation, and storage. The timely and accurate detection, characterization and monitoring of structural cracking, delamination, debonding and other types of damage is a major concern in the operational environment. Utilization of a sensor network system integrated with the structure itself can greatly reduce this inspection burden through fast in-situ data collection and processing. Acellent Technologies, Inc. is currently developing integrated structural monitoring tools for continuous monitoring of composite and metal structures on aircraft and spacecraft. Acellent's integrated structural monitoring system consists of a flexible sensor/actuator network layer called the SMART Layer, supporting diagnostic hardware, and data processing/analysis software. Recently, Acellent has been working with NASA Marshall Space Flight Center to develop ways of embedding the SMART Layer inside filament wound composite bottles. SMART Layers were designed and manufactured for the filament wound bottles and embedded in them during the filament winding process. Acellent has been working on developing a complete structural health monitoring system for the filament wound bottles including data processing tools to interpret the changes in sensor signal caused by changes in the structural condition or material property. A prototype of a filament wound composite bottle with an embedded sensor network has been fabricated and preliminary data analysis tools have been developed.

  18. EarthScope's Transportable Array in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Enders, M.; Miner, J.; Bierma, R. M.; Busby, R.

    2015-12-01

    EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. As the array doubles in Alaska, IRIS continues to collaborate closely with other network operators, universities and research consortia in Alaska and Canada including the Alaska Earthquake Center (AEC), the Alaska Volcano Observatory (AVO), the UNAVCO Plate Boundary Observatory (PBO), the National Tsunami Warning Center (NTWC), Natural Resources Canada (NRCAN), Canadian Hazard Information Service (CHIS), the Yukon Geologic Survey (YGS), the Pacific Geoscience Center of the Geologic Survey, Yukon College and others. During FY14 and FY15 the TA has completed upgrade work at 20 Alaska Earthquake Center stations and 2 AVO stations, TA has co-located borehole seismometers at 5 existing PBO GPS stations to augment the EarthScope observatory. We present an overview of deployment plan and the status through 2015. The performance of new Alaska TA stations including improvements to existing stations is described.

  19. Using the Global GPS Network and Other Satellite Data to Monitor Ionospheric Total Electron Content

    NASA Technical Reports Server (NTRS)

    Mannucci, Anthony J.; Wilson, Brian D.; Yuan, Dah-Ning; Lindqwister, Ulf

    1994-01-01

    A globally distributed network of dual-frequency global positioning system (GPS) receivers is the primary source of data used to measure ionospheric total electron content (TEC) on global scales. Maps of TEC useful for calibrating propagation delays, or monitoring the solar-terrestrial environment, can be produced using this continuously operating network. The maps can also form the basis of a TEC calibration service for users around the world. Potential users may include single-frequency satellite altimetry missions, satellite tracking stations, and astronomical observatories.

  20. Development of a Wireless Sensor Network for Individual Monitoring of Panels in a Photovoltaic Plant

    PubMed Central

    Prieto, Miguel J.; Pernía, Alberto M.; Nuño, Fernando; Díaz, Juan; Villegas, Pedro J.

    2014-01-01

    With photovoltaic (PV) systems proliferating in the last few years due to the high prices of fossil fuels and pollution issues, among others, it is extremely important to monitor the efficiency of these plants and optimize the energy production process. This will also result in improvements related to the maintenance and security of the installation. In order to do so, the main parameters in the plant must be continuously monitored so that the appropriate actions can be carried out. This monitoring should not only be carried out at a global level, but also at panel-level, so that a better understanding of what is actually happening in the PV plant can be obtained. This paper presents a system based on a wireless sensor network (WSN) that includes all the components required for such monitoring as well as a power supply obtaining the energy required by the sensors from the photovoltaic panels. The system proposed succeeds in identifying all the nodes in the network and provides real-time monitoring while tracking efficiency, features, failures and weaknesses from a single cell up to the whole infrastructure. Thus, the decision-making process is simplified, which contributes to reducing failures, wastes and, consequently, costs. PMID:24487622

  1. Development of a wireless sensor network for individual monitoring of panels in a photovoltaic plant.

    PubMed

    Prieto, Miguel J; Pernía, Alberto M; Nuño, Fernando; Díaz, Juan; Villegas, Pedro J

    2014-01-30

    With photovoltaic (PV) systems proliferating in the last few years due to the high prices of fossil fuels and pollution issues, among others, it is extremely important to monitor the efficiency of these plants and optimize the energy production process. This will also result in improvements related to the maintenance and security of the installation. In order to do so, the main parameters in the plant must be continuously monitored so that the appropriate actions can be carried out. This monitoring should not only be carried out at a global level, but also at panel-level, so that a better understanding of what is actually happening in the PV plant can be obtained. This paper presents a system based on a wireless sensor network (WSN) that includes all the components required for such monitoring as well as a power supply obtaining the energy required by the sensors from the photovoltaic panels. The system proposed succeeds in identifying all the nodes in the network and provides real-time monitoring while tracking efficiency, features, failures and weaknesses from a single cell up to the whole infrastructure. Thus, the decision-making process is simplified, which contributes to reducing failures, wastes and, consequently, costs.

  2. SIMAC: development and implementation of a coral reef monitoring network in Colombia.

    PubMed

    Garzón-Ferreira, Jaime; Rodríguez-Ramírez, Alberto

    2010-05-01

    Significant coral reef decline has been observed in Colombia during the last three decades. However, due to the lack of monitoring activities, most of the information about health and changes was fragmentary or inadequate. To develop an expanded nation-wide reef-monitoring program, in 1998 INVEMAR (Instituto de Investigaciones Marinas y Costeras: "Colombian Institute of Marine and Coastal Research") designed and implemented SIMAC (Sistema Nacional de Monitorco de Arrecifes Coralinos en Colombia: "National Monitoring System of Coral Reefs in Colombia") with the participation of other institutions. By the end of 2003 the SIMAC network reached more than twice its initial size, covering ten reef areas (seven in the Caribbean and three in the Pacific), 63 reef sites and 263 permanent transects. SIMAC monitoring continued without interruption until 2008 and should persist in the long-term. The SIMAC has a large database and consists basically of water quality measurements (temperature, salinity, turbidity) and a yearly estimation of benthic reef cover, coral disease prevalence, gorgonian density, abundance of important mobile invertebrates, fish diversity and abundance of important fish species. A methods manual is available in the Internet. Data and results of SIMAC have been widely circulated through a summary report published annually since 2000 for the Colombian environmental agencies and the general public, as well as numerous national and international scientific papers and presentations at meetings. SIMAC information has contributed to support regional and global reef monitoring networks and databases (i.e. CARICOMP, GCRMN, ReefBase).

  3. Monitoring the consequences of decreased ozone protection: The NSF ultraviolet radiation monitoring network

    SciTech Connect

    Not Available

    1993-03-01

    The effects of decreased protection from ultraviolet radiation are as troubling as the continuing depletion of stratospheric ozone. Evidence exists to clearly link ozone depletion to changes in the antarctic marine environment. Results of two 1992 papers are summarized here. Enhanced exposure to mid-range UV radiation was found to be affecting marine ecosystems with a recorded 6-12 percent reduction in primary productivity directly related to the ozone layer depletion. In another experiment, a model was developed indicating that the ozone hole could reduce near-surface photosynthesis by as much as 12-15 percent. The NSF UV monitoring system in place for these and other experiments uses a spectroradiometer, making hourly, high-resolution measurements of the distribution of UV surface irradiance.

  4. Study on an agricultural environment monitoring server system using Wireless Sensor Networks.

    PubMed

    Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun

    2010-01-01

    This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.

  5. The implementation method of stage video monitoring system based on network

    NASA Astrophysics Data System (ADS)

    Li, Yihua; Zhang, Xiaodong; Feng, Zhicong; Luan, Zhenhui

    2016-01-01

    In view of the problems of inflexible saving and calling data and low reliability and being difficult to compatiable with other system for domestic stage video monitoring system, the authors proposed a video supervision and scheduling system of stage based on IP camera. Audio and video technology, multimedia technology and computer network technology were used in the stage video surveillance and scheduling system. The structure of the system were designed and the main functions of the system were tested. The results show that this system can satisfy the modern stage performance effect and monitoring requirements.

  6. Optimal design of hydrometric monitoring networks with dynamic components based on Information Theory

    NASA Astrophysics Data System (ADS)

    Alfonso, Leonardo; Chacon, Juan; Solomatine, Dimitri

    2016-04-01

    The EC-FP7 WeSenseIt project proposes the development of a Citizen Observatory of Water, aiming at enhancing environmental monitoring and forecasting with the help of citizens equipped with low-cost sensors and personal devices such as smartphones and smart umbrellas. In this regard, Citizen Observatories may complement the limited data availability in terms of spatial and temporal density, which is of interest, among other areas, to improve hydraulic and hydrological models. At this point, the following question arises: how can citizens, who are part of a citizen observatory, be optimally guided so that the data they collect and send is useful to improve modelling and water management? This research proposes a new methodology to identify the optimal location and timing of potential observations coming from moving sensors of hydrological variables. The methodology is based on Information Theory, which has been widely used in hydrometric monitoring design [1-4]. In particular, the concepts of Joint Entropy, as a measure of the amount of information that is contained in a set of random variables, which, in our case, correspond to the time series of hydrological variables captured at given locations in a catchment. The methodology presented is a step forward in the state of the art because it solves the multiobjective optimisation problem of getting simultaneously the minimum number of informative and non-redundant sensors needed for a given time, so that the best configuration of monitoring sites is found at every particular moment in time. To this end, the existing algorithms have been improved to make them efficient. The method is applied to cases in The Netherlands, UK and Italy and proves to have a great potential to complement the existing in-situ monitoring networks. [1] Alfonso, L., A. Lobbrecht, and R. Price (2010a), Information theory-based approach for location of monitoring water level gauges in polders, Water Resour. Res., 46(3), W03528 [2] Alfonso, L., A

  7. Feasibility study for the modernization of the air quality monitoring network in Venezuela

    SciTech Connect

    1997-11-01

    The project is part of the Ministry of Environment and Recoverable Resources`s (MARNR) goal of establishing a consolidated and effective monitoring program nationwide, which would allow for evaluations of air quality, identification of pollution sources and provide a basis for future air quality management decisions. The bilingual Spanish/English report consists of: (1) work plan; (2) evaluation of current monitoring stations and recommendations for improvement; (3) field evaluation report for existing MARNR network; (4) institutional analysis, revenue requirements, selection of funding mechanism, and three sets of attachments.

  8. 1997 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Wallace, Kristi L.

    1999-01-01

    The Alaska Volcano Observatory (AVO) monitors over 40 historically active volcanoes along the Aleutian Arc. Twenty are seismically monitored and for the rest, the AVO monitoring program relies mainly on pilot reports, observations of local residents and ship crews, and daily analysis of satellite images. In 1997, AVO responded to eruptive activity or suspect volcanic activity at 11 volcanic centers: Wrangell, Sanford, Shrub mud volcano, Iliamna, the Katmai group (Martin, Mageik, Snowy, and Kukak volcanoes), Chiginagak, Pavlof, Shishaldin, Okmok, Cleveland, and Amukta. Of these, AVO has real-time, continuously recording seismic networks at Iliamna, the Katmai group, and Pavlof. The phrase “suspect volcanic activity” (SVA), used to characterize several responses, is an eruption report or report of unusual activity that is subsequently determined to be normal or enhanced fumarolic activity, weather-related phenomena, or a non-volcanic event. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) about the 1997 activity of 5 Russian volcanoes--Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Alaid (SVA). This report summarizes volcanic activity and SVA in Alaska during 1997 and the AVO response, as well as information on the reported activity at the Russian volcanoes. Only those reports or inquiries that resulted in a “significant” investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of reports throughout the year of steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1997 response record.

  9. Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS

    NASA Astrophysics Data System (ADS)

    McKee, Shawn; Lake, Andrew; Laurens, Philippe; Severini, Horst; Wlodek, Tomasz; Wolff, Stephen; Zurawski, Jason

    2012-12-01

    Global scientific collaborations, such as ATLAS, continue to push the network requirements envelope. Data movement in this collaboration is routinely including the regular exchange of petabytes of datasets between the collection and analysis facilities in the coming years. These requirements place a high emphasis on networks functioning at peak efficiency and availability; the lack thereof could mean critical delays in the overall scientific progress of distributed data-intensive experiments like ATLAS. Network operations staff routinely must deal with problems deep in the infrastructure; this may be as benign as replacing a failing piece of equipment, or as complex as dealing with a multi-domain path that is experiencing data loss. In either case, it is crucial that effective monitoring and performance analysis tools are available to ease the burden of management. We will report on our experiences deploying and using the perfSONAR-PS Performance Toolkit at ATLAS sites in the United States. This software creates a dedicated monitoring server, capable of collecting and performing a wide range of passive and active network measurements. Each independent instance is managed locally, but able to federate on a global scale; enabling a full view of the network infrastructure that spans domain boundaries. This information, available through web service interfaces, can easily be retrieved to create customized applications. The US ATLAS collaboration has developed a centralized “dashboard” offering network administrators, users, and decision makers the ability to see the performance of the network at a glance. The dashboard framework includes the ability to notify users (alarm) when problems are found, thus allowing rapid response to potential problems and making perfSONAR-PS crucial to the operation of our distributed computing infrastructure.

  10. Seamonster: A Smart Sensor Web in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Heavner, M. J.; Hood, E.; Connor, C.; Nagorski, S.

    2006-12-01

    The NASA Research Opportunities in Space and Earth Science (ROSES) program is supporting a wireless sensor network project as part of its Advanced Information Systems Technology "Smart Sensor Web" initiative. The project, entitled Seamonster (for SouthEast Alaska MONitoring Network for Science, Telecomm, and Education Research) is led by the University of Alaska Southeast (Juneau) in collaboration with Microsoft- Vexcel in Boulder Colorado. This paper describes both the data acquisition components and science research objectives of Seamonster. The underlying data acquisition concept is to facilitate geophysics data acquisition by providing a wireless backbone for data recovery. Other researchers would be encouraged to emplace their own sensors together with short-range wireless (ZigBee, Bluetooth, etc). Through a common protocol the backbone will receive data from these sensors and relay them to a wired server. This means that the investigator can receive their data via email on a daily basis thereby cutting cost and monitoring sensor health. With environmental hardening and fairly high bandwidth and long range (100kbps/50km to 5mpbs/15km per hop) the network is intended to cover large areas and operate in harsh environments. Low power sensors and intelligent power management within the backbone are the dual ideas to contend with typical power/cost/data dilemmas. Seamonster science will focus over the next three years on hydrology and glaciology in a succession of valleys near Juneau in various stages of deglaciation, in effect providing a synopsis of a millennium-timescale process in a single moment. The instrumentation will include GPS, geophones, digital photography, met stations, and a suite of stream state and water quality sensors. Initial focus is on the Lemon Creek watershed with expansion to follow in subsequent years. The project will ideally expand to include marine and biological monitoring components.

  11. Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA.

    PubMed

    Bhat, Shirish; Motz, Louis H; Pathak, Chandra; Kuebler, Laura

    2015-01-01

    A geostatistical method was applied to optimize an existing groundwater-level monitoring network in the Upper Floridan aquifer for the South Florida Water Management District in the southeastern United States. Analyses were performed to determine suitable numbers and locations of monitoring wells that will provide equivalent or better quality groundwater-level data compared to an existing monitoring network. Ambient, unadjusted groundwater heads were expressed as salinity-adjusted heads based on the density of freshwater, well screen elevations, and temperature-dependent saline groundwater density. The optimization of the numbers and locations of monitoring wells is based on a pre-defined groundwater-level prediction error. The newly developed network combines an existing network with the addition of new wells that will result in a spatial distribution of groundwater monitoring wells that better defines the regional potentiometric surface of the Upper Floridan aquifer in the study area. The network yields groundwater-level predictions that differ significantly from those produced using the existing network. The newly designed network will reduce the mean prediction standard error by 43% compared to the existing network. The adoption of a hexagonal grid network for the South Florida Water Management District is recommended to achieve both a uniform level of information about groundwater levels and the minimum required accuracy. It is customary to install more monitoring wells for observing groundwater levels and groundwater quality as groundwater development progresses. However, budget constraints often force water managers to implement cost-effective monitoring networks. In this regard, this study provides guidelines to water managers concerned with groundwater planning and monitoring.

  12. Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA.

    PubMed

    Bhat, Shirish; Motz, Louis H; Pathak, Chandra; Kuebler, Laura

    2015-01-01

    A geostatistical method was applied to optimize an existing groundwater-level monitoring network in the Upper Floridan aquifer for the South Florida Water Management District in the southeastern United States. Analyses were performed to determine suitable numbers and locations of monitoring wells that will provide equivalent or better quality groundwater-level data compared to an existing monitoring network. Ambient, unadjusted groundwater heads were expressed as salinity-adjusted heads based on the density of freshwater, well screen elevations, and temperature-dependent saline groundwater density. The optimization of the numbers and locations of monitoring wells is based on a pre-defined groundwater-level prediction error. The newly developed network combines an existing network with the addition of new wells that will result in a spatial distribution of groundwater monitoring wells that better defines the regional potentiometric surface of the Upper Floridan aquifer in the study area. The network yields groundwater-level predictions that differ significantly from those produced using the existing network. The newly designed network will reduce the mean prediction standard error by 43% compared to the existing network. The adoption of a hexagonal grid network for the South Florida Water Management District is recommended to achieve both a uniform level of information about groundwater levels and the minimum required accuracy. It is customary to install more monitoring wells for observing groundwater levels and groundwater quality as groundwater development progresses. However, budget constraints often force water managers to implement cost-effective monitoring networks. In this regard, this study provides guidelines to water managers concerned with groundwater planning and monitoring. PMID:25433546

  13. On the Relevancy of Efficient, Integrated Computer and Network Monitoring in HEP Distributed Online Environment

    NASA Astrophysics Data System (ADS)

    Carvalho, D.; Gavillet, Ph.; Delgado, V.; Albert, J. N.; Bellas, N.; Javello, J.; Miere, Y.; Ruffinoni, D.; Smith, G.

    Large Scientific Equipments are controlled by Computer Systems whose complexity is growing driven, on the one hand by the volume and variety of the information, its distributed nature, the sophistication of its treatment and, on the other hand by the fast evolution of the computer and network market. Some people call them genetically Large-Scale Distributed Data Intensive Information Systems or Distributed Computer Control Systems (DCCS) for those systems dealing more with real time control. Taking advantage of (or forced by) the distributed architecture, the tasks are more and more often implemented as Client-Server applications. In this framework the monitoring of the computer nodes, the communications network and the applications becomes of primary importance for ensuring the safe running and guaranteed performance of the system. With the future generation of HEP experiments, such as those at the LHC in view, it is proposed to integrate the various functions of DCCS monitoring into one general purpose Multi-layer System.

  14. Monitoring Network and Interfacial Healing Processes by Broadband Dielectric Spectroscopy: A Case Study on Natural Rubber.

    PubMed

    Hernández, M; Grande, A M; van der Zwaag, S; García, S J

    2016-04-27

    Broadband dielectric spectroscopy (BDS) is introduced as a new and powerful technique to monitor network and macroscale damage healing in an elastomer. For the proof of concept, a partially cured sulfur-cured natural rubber (NR) containing reversible disulfides as the healing moiety was employed. The forms of damage healed and monitored were an invisible damage in the rubber network due to multiple straining and an imposed macroscopic crack. The relaxation times of pristine, damaged, and healed samples were determined and fitted to the Havriliak-Negami equation to obtain the characteristic polymer parameters. It is shown that seemingly full mechanical healing occurred regardless the type of damage, while BDS demonstrates that the polymer architecture in the healed material differs from that in the original one. These results represent a step forward in the understanding of damage and healing processes in intrinsic self-healing polymer systems with prospective applications such as coatings, tires, seals, and gaskets. PMID:27057588

  15. Bluetooth-based sensor networks for remotely monitoring the physiological signals of a patient.

    PubMed

    Zhang, Ying; Xiao, Hannan

    2009-11-01

    Integrating intelligent medical microsensors into a wireless communication network makes it possible to remotely collect physiological signals of a patient, release the patient from being tethered to monitoring medical instrumentations, and facilitate the patient's early hospital discharge. This can further improve life quality by providing continuous observation without the need of disrupting the patient's normal life, thus reducing the risk of infection significantly, and decreasing the cost of the hospital and the patient. This paper discusses the implementation issues, and describes the overall system architecture of our developed Bluetooth sensor network for patient monitoring and the corresponding heart activity sensors. It also presents our approach to developing the intelligent physiological sensor nodes involving integration of Bluetooth radio technology, hardware and software organization, and our solutions for onboard signal processing.

  16. Monitoring of Thermal Protection Systems Using Robust Self-Organizing Optical Fiber Sensing Networks

    NASA Technical Reports Server (NTRS)

    Richards, Lance

    2013-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, and an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during re-entry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry

  17. Trend Analysis for Groundwater Quality at Different Depths for National Groundwater Quality Monitoring Network of Korea

    NASA Astrophysics Data System (ADS)

    An, Hyeonsil; Jeen, Sung-Wook; Hyun, Yunjung; Lee, Soo Jae; Yoon, Heesung; Kim, Rak-Hyeon

    2015-04-01

    Continuous groundwater monitoring is necessary to investigate the changes of groundwater quality with time, and trend analysis using a statistical method can be used to evaluate if the changes are significant. While groundwater quality is typically monitored and evaluated at one depth, in many cases groundwater quality can be different with depths; thus it is required that monitoring and assessment of trends of groundwater quality should be performed at different depths. In this study, we carried out trend analysis for groundwater quality data of National Groundwater Quality Monitoring Network of Korea to investigate the changes of groundwater quality between 2007 and 2013. The monitoring network has wells with different depths at each site, of which screens are located at about 10 m, 30 m, and 80 m. We analyzed three of the groundwater quality parameters that have sufficient time series data: pH, nitrate-nitrogen, and chloride ion. Sen's test, a non-parametric statistical method for trend analysis, was used to determine the linear trend of groundwater quality data. The trend analyses were conducted at different confidence levels (i.e., at 70, 80, 90, 95, and 99 % confidence levels). The results of groundwater monitoring and trend analysis at each location were compared with groundwater quality management standards and were classified to establish a new groundwater quality management framework of Korea. The results were further plotted in a regional scale to identify whether the trends, if any, can be grouped regionally. The results showed that wells with significant increasing or decreasing trends are far less than wells with no trends, and chloride ion has more wells with significant trends compared to pH and nitrate-nitrogen. The trends were more or less affected by local characteristics rather than reflecting a regional trend. The number of wells with trends decreased as the confidence level increased as expected, indicating that it is necessary to set an

  18. Long term country-wide rainfall monitoring employing cellular communication networks

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2013-04-01

    Accurate rainfall observations with high spatial and temporal resolutions are needed for hydrological applications, agriculture, meteorology, and climate monitoring. However, the majority of the land surface of the earth lacks accurate rainfall information and the number of rain gauges is even severely declining in Europe, South-America, and Africa. This calls for alternative sources of rainfall information. Various studies have shown that microwave links from operational cellular telecommunication networks may be employed for rainfall monitoring. Such networks cover 20% of the land surface of the earth and have a high density, especially in urban areas. The basic principle of rainfall monitoring using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated. Previous studies have shown that average rainfall intensities over the length of a link can be derived from the path-integrated attenuation. This is particularly interesting for those countries where few surface rainfall observations are available. Here we present preliminary results of long term country-wide rainfall monitoring employing cellular communication networks. A dataset from a commercial microwave link network over the Netherlands is analyzed, containing data from an unprecedented number of links (~ 2000) covering the land surface of the Netherlands (35500 square kilometres). This dataset spans from January 2011 through October 2012. Daily rainfall maps (1 km spatial resolution) are derived from the microwave link data and compared to maps from a gauge-adjusted radar dataset. The performance of the rainfall retrieval algorithm will be investigated, particularly a possible seasonal dependence.

  19. Ground-water-level monitoring network, Hollister and San Juan Valleys, San Benito County, California

    USGS Publications Warehouse

    Farrar, C.D.

    1981-01-01

    The addition of 17 wells to the existing 86-well network is proposed to improve the ground-water monitoring in the Hollister and San Juan Valleys in California. The new wells were selected on the basis of well-construction data, availability, location, accessibility, use, and condition, either to replace wells that are no longer accessible or to furnish needed additional data for planning artificial recharge, preparing water-level-contour maps, and digital ground-water modeling. (USGS)

  20. Energy efficient wireless sensor network for structural health monitoring using distributed embedded piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Li, Peng; Olmi, Claudio; Song, Gangbing

    2010-04-01

    Piezoceramic based transducers are widely researched and used for structural health monitoring (SHM) systems due to the piezoceramic material's inherent advantage of dual sensing and actuation. Wireless sensor network (WSN) technology benefits from advances made in piezoceramic based structural health monitoring systems, allowing easy and flexible installation, low system cost, and increased robustness over wired system. However, piezoceramic wireless SHM systems still faces some drawbacks, one of these is that the piezoceramic based SHM systems require relatively high computational capabilities to calculate damage information, however, battery powered WSN sensor nodes have strict power consumption limitation and hence limited computational power. On the other hand, commonly used centralized processing networks require wireless sensors to transmit all data back to the network coordinator for analysis. This signal processing procedure can be problematic for piezoceramic based SHM applications as it is neither energy efficient nor robust. In this paper, we aim to solve these problems with a distributed wireless sensor network for piezoceramic base structural health monitoring systems. Three important issues: power system, waking up from sleep impact detection, and local data processing, are addressed to reach optimized energy efficiency. Instead of sweep sine excitation that was used in the early research, several sine frequencies were used in sequence to excite the concrete structure. The wireless sensors record the sine excitations and compute the time domain energy for each sine frequency locally to detect the energy change. By comparing the data of the damaged concrete frame with the healthy data, we are able to find out the damage information of the concrete frame. A relative powerful wireless microcontroller was used to carry out the sampling and distributed data processing in real-time. The distributed wireless network dramatically reduced the data

  1. A neural network approach for monitoring of volcanic SO2 and cloud height using hyperspectral measurements

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; Carboni, Elisa; Del Frate, Fabio; Grainger, Roy Gordon

    2014-10-01

    In this study two neural networks were implemented in order to emulate a retrieval model and to estimate the sulphur dioxide (SO2) columnar content and cloud height from volcanic eruption. ANNs were trained using all Infrared Atmospheric Sounding Interferometer (IASI) channels in Thermal Infrared (TIR) as inputs, and the corresponding values of SO2 content and height of volcanic cloud obtained using the Oxford SO2 retrievals as target outputs. The retrieval is demonstrated for the eruption of the Eyjafjallajökull volcano (Iceland) occurred in 2010 and to three IASI images of the Grímsvötn volcanic eruption that occurred in May 2011, in order to evaluate the networks for an unknown eruption. The results of validation, both for Eyjafjallajökull independent data-sets, provided root mean square error (RMSE) values between neural network outputs and targets lower than 20 DU for SO2 total column and 200 mb for cloud height, therefore demonstrating the feasibility to estimate SO2 values using a neural network approach, and its importance in near real time monitoring activities, owing to its fast application. Concerning the validation carried out with neural networks on images from the Grímsvötn eruption, the RMSE of the outputs remained lower than the Standard Deviation (STD) of targets, and the neural network underestimated retrieval only where target outputs showed different statistics than those used during the training phase.

  2. Forecasts using neural network versus Box-Jenkins methodology for ambient air quality monitoring data.

    PubMed

    Kao, J J; Huang, S S

    2000-02-01

    This study explores ambient air quality forecasts using the conventional time-series approach and a neural network. Sulfur dioxide and ozone monitoring data collected from two background stations and an industrial station are used. Various learning methods and varied numbers of hidden layer processing units of the neural network model are tested. Results obtained from the time-series and neural network models are discussed and compared on the basis of their performance for 1-step-ahead and 24-step-ahead forecasts. Although both models perform well for 1-step-ahead prediction, some neural network results reveal a slightly better forecast without manually adjusting model parameters, according to the results. For a 24-step-ahead forecast, most neural network results are as good as or superior to those of the time-series model. With the advantages of self-learning, self-adaptation, and parallel processing, the neural network approach is a promising technique for developing an automated short-term ambient air quality forecast system.

  3. The community seismic network and quake-catcher network: enabling structural health monitoring through instrumentation by community participants

    NASA Astrophysics Data System (ADS)

    Kohler, Monica D.; Heaton, Thomas H.; Cheng, Ming-Hei

    2013-04-01

    A new type of seismic network is in development that takes advantage of community volunteers to install low-cost accelerometers in houses and buildings. The Community Seismic Network and Quake-Catcher Network are examples of this, in which observational-based structural monitoring is carried out using records from one to tens of stations in a single building. We have deployed about one hundred accelerometers in a number of buildings ranging between five and 23 stories in the Los Angeles region. In addition to a USB-connected device which connects to the host's computer, we have developed a stand-alone sensor-plug-computer device that directly connects to the internet via Ethernet or wifi. In the case of the Community Seismic Network, the sensors report both continuous data and anomalies in local acceleration to a cloud computing service consisting of data centers geographically distributed across the continent. Visualization models of the instrumented buildings' dynamic linear response have been constructed using Google SketchUp and an associated plug-in to matlab with recorded shaking data. When data are available from only one to a very limited number of accelerometers in high rises, the buildings are represented as simple shear beam or prismatic Timoshenko beam models with soil-structure interaction. Small-magnitude earthquake records are used to identify the first set of horizontal vibrational frequencies. These frequencies are then used to compute the response on every floor of the building, constrained by the observed data. These tools are resulting in networking standards that will enable data sharing among entire communities, facility managers, and emergency response groups.

  4. Geochemical Monitoring Of The Gas Hydrate Production By CO2/CH4 Exchange In The Ignik Sikumi Gas Hydrate Production Test Well, Alaska North Slope

    NASA Astrophysics Data System (ADS)

    Lorenson, T. D.; Collett, T. S.; Ignik Sikumi, S.

    2012-12-01

    Hydrocarbon gases, nitrogen, carbon dioxide and water were collected from production streams at the Ignik Sikumi gas hydrate production test well (TD, 791.6 m), drilled on the Alaska North Slope. The well was drilled to test the feasibility of producing methane by carbon dioxide injection that replaces methane in the solid gas hydrate. The Ignik Sikumi well penetrated a stratigraphically-bounded prospect within the Eileen gas hydrate accumulation. Regionally, the Eileen gas hydrate accumulation overlies the more deeply buried Prudhoe Bay, Milne Point, and Kuparuk River oil fields and is restricted to the up-dip portion of a series of nearshore deltaic sandstone reservoirs in the Sagavanirktok Formation. Hydrate-bearing sandstones penetrated by Ignik Sikumi well occur in three primary horizons; an upper zone, ("E" sand, 579.7 - 597.4 m) containing 17.7 meters of gas hydrate-bearing sands, a middle zone ("D" sand, 628.2 - 648.6 m) with 20.4 m of gas hydrate-bearing sands and a lower zone ("C" sand, 678.8 - 710.8 m), containing 32 m of gas hydrate-bearing sands with neutron porosity log-interpreted average gas hydrate saturations of 58, 76 and 81% respectively. A known volume mixture of 77% nitrogen and 23% carbon dioxide was injected into an isolated section of the upper part of the "C" sand to start the test. Production flow-back part of the test occurred in three stages each followed by a period of shut-in: (1) unassisted flowback; (2) pumping above native methane gas hydrate stability conditions; and (3) pumping below the native methane gas hydrate stability conditions. Methane production occurred immediately after commencing unassisted flowback. Methane concentration increased from 0 to 40% while nitrogen and carbon dioxide concentrations decreased to 48 and 12% respectively. Pumping above the hydrate stability phase boundary produced gas with a methane concentration climbing above 80% while the carbon dioxide and nitrogen concentrations fell to 2 and 18

  5. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    PubMed

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  6. Landbird Monitoring Protocol for National Parks in the North Coast and Cascades Network

    USGS Publications Warehouse

    Siegel, Rodney B.; Wilkerson, Robert L.; Jenkins, Kurt J.; Kuntz, Robert C.; Boetsch, John R.; Schaberl, James P.; Happe, Patricia J.

    2007-01-01

    This protocol narrative outlines the rationale, sampling design and methods for monitoring landbirds in the North Coast and Cascades Network (NCCN) during the breeding season. The NCCN, one of 32 networks of parks in the National Park System, comprises seven national park units in the Pacific Northwest, including three large, mountainous, natural area parks (Mount Rainier [MORA] and Olympic [OLYM] National Parks, North Cascades National Park Service Complex [NOCA]), and four small historic cultural parks (Ebey's Landing National Historical Reserve [EBLA], Lewis and Clark National Historical Park [LEWI], Fort Vancouver National Historical Park [FOVA], and San Juan Island National Historical Park [SAJH]). The protocol reflects decisions made by the NCCN avian monitoring group, which includes NPS representatives from each of the large parks in the Network as well as personnel from the U.S. Geological Survey Forest and Rangeland Ecosystem Science Center (USGS-FRESC) Olympic Field Station, and The Institute for Bird Populations, at meetings held between 2000 (Siegel and Kuntz, 2000) and 2005. The protocol narrative describes the monitoring program in relatively broad terms, and its structure and content adhere to the outline and recommendations developed by Oakley and others (2003) and adopted by NPS. Finer details of the methodology are addressed in a set of standard operating procedures (SOPs) that accompany the protocol narrative. We also provide appendixes containing additional supporting materials that do not clearly belong in either the protocol narrative or the standard operating procedures.

  7. Searchlight Correlation Detectors: Optimal Seismic Monitoring Using Regional and Global Networks

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Kværna, Tormod; Näsholm, Sven Peter

    2015-04-01

    The sensitivity of correlation detectors increases greatly when the outputs from multiple seismic traces are considered. For single-array monitoring, a zero-offset stack of individual correlation traces will provide significant noise suppression and enhanced sensitivity for a source region surrounding the hypocenter of the master event. The extent of this region is limited only by the decrease in waveform similarity with increasing hypocenter separation. When a regional or global network of arrays and/or 3-component stations is employed, the zero-offset approach is only optimal when the master and detected events are co-located exactly. In many monitoring situations, including nuclear test sites and geothermal fields, events may be separated by up to many hundreds of meters while still retaining sufficient waveform similarity for correlation detection on single channels. However, the traveltime differences resulting from the hypocenter separation may result in significant beam loss on the zero-offset stack and a deployment of many beams for different hypothetical source locations in geographical space is required. The beam deployment necessary for optimal performance of the correlation detectors is determined by an empirical network response function which is most easily evaluated using the auto-correlation functions of the waveform templates from the master event. The correlation detector beam deployments for providing optimal network sensitivity for the North Korea nuclear test site are demonstrated for both regional and teleseismic monitoring configurations.

  8. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    PubMed

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-01-01

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions. PMID:25171121

  9. A Data Acquisition Protocol for a Reactive Wireless Sensor Network Monitoring Application

    PubMed Central

    Aderohunmu, Femi A.; Brunelli, Davide; Deng, Jeremiah D.; Purvis, Martin K.

    2015-01-01

    Limiting energy consumption is one of the primary aims for most real-world deployments of wireless sensor networks. Unfortunately, attempts to optimize energy efficiency are often in conflict with the demand for network reactiveness to transmit urgent messages. In this article, we propose SWIFTNET: a reactive data acquisition scheme. It is built on the synergies arising from a combination of the data reduction methods and energy-efficient data compression schemes. Particularly, it combines compressed sensing, data prediction and adaptive sampling strategies. We show how this approach dramatically reduces the amount of unnecessary data transmission in the deployment for environmental monitoring and surveillance networks. SWIFTNET targets any monitoring applications that require high reactiveness with aggressive data collection and transmission. To test the performance of this method, we present a real-world testbed for a wildfire monitoring as a use-case. The results from our in-house deployment testbed of 15 nodes have proven to be favorable. On average, over 50% communication reduction when compared with a default adaptive prediction method is achieved without any loss in accuracy. In addition, SWIFTNET is able to guarantee reactiveness by adjusting the sampling interval from 5 min up to 15 s in our application domain. PMID:25942642

  10. CTFS/ForestGEO: A global network to monitor forest interactions with a changing climate

    NASA Astrophysics Data System (ADS)

    Anderson-Teixeira, K. J.; Muller-Landau, H.; McMahon, S.; Davies, S. J.

    2013-12-01

    Forests are an influential component of the global carbon cycle and strongly influence Earth's climate. Climate change is altering the dynamics of forests globally, which may result in significant climate feedbacks. Forest responses to climate change entail both short-term ecophysiological responses and longer-term directional shifts in community composition. These short- and long-term responses of forest communities to climate change may be better understood through long-term monitoring of large forest plots globally using standardized methodology. Here, we describe a global network of forest research plots (CTFS/ForestGEO) of utility for understanding forest responses to climate change and consequent feedbacks to the climate system. CTFS/ForestGEO is an international network consisting of 51 sites ranging in size from 2-150 ha (median size: 25 ha) and spanning from 25°S to 52°N latitude. At each site, every individual > 1cm DBH is mapped and identified, and recruitment, growth, and mortality are monitored every 5 years. Additional measurements include aboveground productivity, carbon stocks, soil nutrients, plant functional traits, arthropod and vertebrates monitoring, DNA barcoding, airborne and ground-based LiDAR, micrometeorology, and weather monitoring. Data from this network are useful for understanding how forest ecosystem structure and function respond to spatial and temporal variation in abiotic drivers, parameterizing and evaluating ecosystem and earth system models, aligning airborne and ground-based measurements, and identifying directional changes in forest productivity and composition. For instance, CTFS/ForestGEO data have revealed that solar radiation and night-time temperature are important drivers of aboveground productivity in moist tropical forests; that tropical forests are mixed in terms of productivity and biomass trends over the past couple decades; and that the composition of Panamanian forests has shifted towards more drought

  11. NRC TLD direct radiation monitoring network: Volume 15, No. 3. Progress report, July--September 1995

    SciTech Connect

    Struckmeyer, R.

    1995-12-01

    The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring Network is operated by the NRC in cooperation with participating states to provide continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. Ambient radiation levels result from naturally occurring radionuclides present in the soil, cosmic radiation constantly bombarding the earth from outer space, and the contribution, if any, from the monitored facilities and other man-made sources. The Network is intended to measure radiation levels during routine facility operations and to establish background radiation levels used to assess the radiological impact of an unusual condition, such as an accident. This report presents the radiation levels measured around all facilities in the Network for the third quarter of 1995. A complete listing of the site facilities monitored is included. In some instances, two power reactor facilities are monitored by the same set of dosimeters (e.g., Kewaunee and Point Beach). All radiation measurements are made using small, passive detectors called therinoluminescent dosimeters (TLDs), which provide a quantitative measurement of the radiation levels in the area in which they are placed. Each site is monitored by arranging approximately 40 to 50 TLD stations in two concentric rings extending to about five miles from the facility. All TLD stations are outside the site boundary of the facility. A complete description of the program can be found in NUREG-0837, Volume 2, Number 4. A similar description can also be found in the fourth quarter report of each subsequent year. The National Institute of Standards and Technology (formerly the National Bureau of Standards) has performed an independent study of the following characteristics of the NRC dosimetry system; energy response, angular dependence, temperature and humidity sensitivity, fading, light dependence, self-irradiation, and reproducibility.

  12. Monitoring Network Design for Discriminating and Reducing Models in Bayesian Model Averaging Paradigm

    NASA Astrophysics Data System (ADS)

    Tsai, F. T.; Pham, H. V.

    2013-12-01

    Bayesian model averaging (BMA) is often adopted to quantify model prediction and uncertainty using multiple models generated from various sources of uncertainty. Due to the lack of data and knowledge, the number of models with non-dominant posterior model probabilities can be overwhelming. Conducting prediction and uncertainty analysis using a great deal of computationally intensive simulation models (e.g., groundwater models) can become intractable under the BMA framework. Moreover, prediction results using the BMA can be useless when prediction uncertainty is very high. This study implements a monitoring network design under the BMA framework to discriminate groundwater models and in turn reduce the number of models. The posterior model probabilities are re-evaluated by using BMA prediction as 'future observation data' and historical data. Given a design criterion of posterior model probability (e.g. 85%), the monitoring network design aims to find the optimal number and location of monitoring wells at existing wells for continuous observation. If using existing wells cannot achieve the design criterion, then exploration of new monitoring well location is necessary. Once the design criterion is met, other models will be discriminated from the best model. Between-model variance will be significantly reduced. We use the monitoring network design to discriminate 18 complex groundwater models that include the '1,200-foot', '1,500-foot', and '1,700-foot' sands in the Baton Rouge area, southeastern Louisiana. The sources of uncertainty that creates the groundwater models are from hydrostratigraphic architecture, fault permeability architecture, and boundary conditions. To speed up model calibration, we develop a parallel version of CMA-ES and implement it to SuperMike II cluster at Louisiana State University. Results show that in the model calibration period from 1975 to 2010, eleven models have posterior model probabilities ranging from 3.5% to 17.4%. The purpose of

  13. Environmental networks for large-scale monitoring of Earth and atmosphere

    NASA Astrophysics Data System (ADS)

    Maurodimou, Olga; Kolios, Stavros; Konstantaras, Antonios; Georgoulas, George; Stylios, Chrysostomos

    2013-04-01

    Installation and operation of instrument/sensor networks are proven fundamental in the monitoring of the physical environment from local to global scale. The advances in electronics, wireless communications and informatics has led to the development of a huge number of networks at different spatial scales that measure, collect and store a wide range of environmental parameters. These networks have been gradually evolved into integrated information systems that provide real time monitoring, forecasts and different products from the initial collected datasets. Instrument/sensor networks have nowadays become important solutions for environmental monitoring, comprising a basic component of fully automated systems developing worldwide that contribute in the efforts for a sustainable Earth's environment (e.g. Hart et al., 2006, Othman et al., 2012). They are also used as a source of data for models parameterization and as verification tools for accuracy assessment techniques of the satellite imagery. Environmental networks can be incorporated into decision support systems (e.g Rizzi et al., 2012) providing informational background along with data from satellites for decision making, manage problems, suggest solutions and best practices for a sustainable management of the environment. This is a comparative study aiming to examine and highlight the significant role of existing instrument/sensor networks for large-scale monitoring of environmental issues, especially atmospheric and marine environment as well as weather and climate. We provide characteristic examples of integrated systems based on large scale instrument/sensor networks along with other sources of data (like satellite datasets) as informational background to measure, identify, monitor, analyze and forecast a vast series of atmospheric parameters (like CO2, O3, particle matter and solar irradiance), weather, climate and their impacts (e.g., cloud systems, lightnings, rainfall, air and surface temperature

  14. Expanding Fisheye Webcam Network Now Capable of Monitoring Most of the Night Sky

    NASA Astrophysics Data System (ADS)

    Nemiroff, R. J.; Schwarz, H. E.; CONCAM Collaboration; TASCA Collaboration

    2003-05-01

    The growing global network of astronomical fisheye web cameras is now capable of monitoring most of the night sky all of the time. The increased coverage has been made possible by two new CONtinuous CAMeras (CONCAMs) deployed in Earth's southern hemisphere, and the on-line capability of a similar southern hemisphere camera. The new CONCAM sites include the Siding Springs Observatory in Australia and the future site of the South Africa Large Telescope in Sutherland, South Africa. The Tololo All Sky Camera (TASCA) now provides four filter high resolution images, including light pollution bands from Cerro Tololo in Chile, completing global coverage. Potential scientific and educational uses for the growing network of cameras in the Night Sky Live network will be discussed. This work is supported by grants from the National Science Foundation

  15. Design of pathway-level bioprocess monitoring and control strategies supported by metabolic networks.

    PubMed

    Isidro, Inês A; Ferreira, Ana R; Clemente, João J; Cunha, António E; Dias, João M L; Oliveira, Rui

    2013-01-01

    In this chapter we explore the basic tools for the design of bioprocess monitoring, optimization, and control algorithms that incorporate a priori knowledge of metabolic networks. The main advantage is that this ultimately enables the targeting of intracellular control variables such as metabolic reactions or metabolic pathways directly linked with productivity and product quality. We analyze in particular design methods that target elementary modes of metabolic networks. The topics covered include the analysis of the structure of metabolic networks, computation and reduction of elementary modes, measurement methods for the envirome, envirome-guided metabolic reconstruction, and macroscopic dynamic modeling and control. These topics are illustrated with applications to a cultivation process of a recombinant Pichia pastoris X33 strain expressing a single-chain antibody fragment (scFv).

  16. Artificial Neural Networks Applications: from Aircraft Design Optimization to Orbiting Spacecraft On-board Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2002-01-01

    This paper reviews some of the recent applications of artificial neural networks taken from various works performed by the authors over the last four years at the NASA Glenn Research Center. This paper focuses mainly on two areas. First, artificial neural networks application in design and optimization of aircraft/engine propulsion systems to shorten the overall design cycle. Out of that specific application, a generic design tool was developed, which can be used for most design optimization process. Second, artificial neural networks application in monitoring the microgravity quality onboard the International Space Station, using on-board accelerometers for data acquisition. These two different applications are reviewed in this paper to show the broad applicability of artificial intelligence in various disciplines. The intent of this paper is not to give in-depth details of these two applications, but to show the need to combine different artificial intelligence techniques or algorithms in order to design an optimized or versatile system.

  17. Information Fusion in Ad hoc Wireless Sensor Networks for Aircraft Health Monitoring

    NASA Astrophysics Data System (ADS)

    Fragoulis, Nikos; Tsagaris, Vassilis; Anastassopoulos, Vassilis

    In this paper the use of an ad hoc wireless sensor network for implementing a structural health monitoring system is discussed. The network is consisted of sensors deployed throughout the aircraft. These sensors being in the form of a microelectronic chip and consisted of sensing, data processing and communicating components could be easily embedded in any mechanical aircraft component. The established sensor network, due to its ad hoc nature is easily scalable, allowing adding or removing any number of sensors. The position of the sensor nodes need not necessarily to be engineered or predetermined, giving this way the ability to be deployed in inaccessible points. Information collected from various sensors of different modalities throughout the aircraft is then fused in order to provide a more comprehensive image of the aircraft structural health. Sensor level fusion along with decision quality information is used, in order to enhance detection performance.

  18. An Emergency-Adaptive Routing Scheme for Wireless Sensor Networks for Building Fire Hazard Monitoring

    PubMed Central

    Zeng, Yuanyuan; Sreenan, Cormac J.; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin

    2011-01-01

    Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work. PMID:22163774

  19. An Emergency-Adaptive Routing Scheme for Wireless Sensor Networks for Building Fire Hazard Monitoring

    PubMed Central

    Zeng, Yuanyuan; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin

    2010-01-01

    Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work. PMID:22219706

  20. A quantitative method for groundwater surveillance monitoring network design at the Hanford Site

    SciTech Connect

    Meyer, P.D.

    1993-12-01

    As part of the Environmental Surveillance Program at the Hanford Site, mandated by the US Department of Energy, hundreds of groundwater wells are sampled each year, with each sample typically analyzed for a variety of constituents. The groundwater sampling program must satisfy several broad objectives. These objectives include an integrated assessment of the condition of groundwater and the identification and quantification of existing, emerging, or potential groundwater problems. Several quantitative network desip objectives are proposed and a mathematical optimization model is developed from these objectives. The model attempts to find minimum cost network alternatives that maximize the amount of information generated by the network. Information is measured both by the rats of change with respect to time of the contaminant concentration and the uncertainty in contaminant concentration. In an application to tritium monitoring at the Hanford Site, both information measures were derived from historical data using time series analysis.

  1. Alaska's Children, 1997.

    ERIC Educational Resources Information Center

    Douglas, Dorothy, Ed.

    1997-01-01

    These four issues of the "Alaska's Children" provide information on the activities of the Alaska Head Start State Collaboration Project and other Head Start activities. Legal and policy changes affecting the education of young children in Alaska are also discussed. The Spring 1997 issue includes articles on brain development and the "I Am Your…

  2. Alaska's Economy: What's Ahead?

    ERIC Educational Resources Information Center

    Alaska Review of Social and Economic Conditions, 1987

    1987-01-01

    This review describes Alaska's economic boom of the early 1980s, the current recession, and economic projections for the 1990s. Alaska's economy is largely influenced by oil prices, since petroleum revenues make up 80% of the state government's unrestricted general fund revenues. Expansive state spending was responsible for most of Alaska's…

  3. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  4. Alaska Women: A Databook.

    ERIC Educational Resources Information Center

    White, Karen; Baker, Barbara

    This data book uses survey and census information to record social and economic changes of the past three decades and their effects upon the role of Alaska women in society. Results show Alaska women comprise 47% of the state population, an increase of 9% since 1950. Marriage continues as the predominant living arrangement for Alaska women,…

  5. Atmospheric deposition and critical loads for nitrogen and metals in Arctic Alaska: Review and current status

    USGS Publications Warehouse

    Linder, Greg L.; Brumbaugh, William G.; Neitlich, Peter; Little, Edward

    2013-01-01

    To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being col- lected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.

  6. Atmospheric Deposition and Critical Loads for Nitrogen and Metals in Arctic Alaska: Review and Current Status

    USGS Publications Warehouse

    Linder, Greg L.; Brumbaugh, William G.; Neitlich, Peter; Little, Edward

    2013-01-01

    To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being col- lected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.

  7. Monitoring Anthropogenic Ocean Sound from Shipping Using an Acoustic Sensor Network and a Compressive Sensing Approach.

    PubMed

    Harris, Peter; Philip, Rachel; Robinson, Stephen; Wang, Lian

    2016-03-22

    Monitoring ocean acoustic noise has been the subject of considerable recent study, motivated by the desire to assess the impact of anthropogenic noise on marine life. A combination of measuring ocean sound using an acoustic sensor network and modelling sources of sound and sound propagation has been proposed as an approach to estimating the acoustic noise map within a region of interest. However, strategies for developing a monitoring network are not well established. In this paper, considerations for designing a network are investigated using a simulated scenario based on the measurement of sound from ships in a shipping lane. Using models for the sources of the sound and for sound propagation, a noise map is calculated and measurements of the noise map by a sensor network within the region of interest are simulated. A compressive sensing algorithm, which exploits the sparsity of the representation of the noise map in terms of the sources, is used to estimate the locations and levels of the sources and thence the entire noise map within the region of interest. It is shown that although the spatial resolution to which the sound sources can be identified is generally limited, estimates of aggregated measures of the noise map can be obtained that are more reliable compared with those provided by other approaches.

  8. Point source influence on observed extreme pollution levels in a monitoring network

    NASA Astrophysics Data System (ADS)

    Ensor, Katherine B.; Ray, Bonnie K.; Charlton, Sarah J.

    2014-08-01

    This paper presents a strategy to quantify the influence major point sources in a region have on extreme pollution values observed at each of the monitors in the network. We focus on the number of hours in a day the levels at a monitor exceed a specified health threshold. The number of daily exceedances are modeled using observation-driven negative binomial time series regression models, allowing for a zero-inflation component to characterize the probability of no exceedances in a particular day. The spatial nature of the problem is addressed through the use of a Gaussian plume model for atmospheric dispersion computed at locations of known emissions, creating covariates that impact exceedances. In order to isolate the influence of emitters at individual monitors, we fit separate regression models to the series of counts from each monitor. We apply a final model clustering step to group monitor series that exhibit similar behavior with respect to mean, variability, and common contributors to support policy decision making. The methodology is applied to eight benzene pollution series measured at air quality monitors around the Houston ship channel, a major industrial port.

  9. Assessing and optimizing infrasound network performance: application to remote volcano monitoring

    NASA Astrophysics Data System (ADS)

    Tailpied, D.; LE Pichon, A.; Marchetti, E.; Kallel, M.; Ceranna, L.

    2014-12-01

    Infrasound is an efficient monitoring technique to remotely detect and characterize explosive sources such as volcanoes. Simulation methods incorporating realistic source and propagation effects have been developed to quantify the detection capability of any network. These methods can also be used to optimize the network configuration (number of stations, geographical location) in order to reduce the detection thresholds taking into account seasonal effects in infrasound propagation. Recent studies have shown that remote infrasound observations can provide useful information about the eruption chronology and the released acoustic energy. Comparisons with near-field recordings allow evaluating the potential of these observations to better constrain source parameters when other monitoring techniques (satellite, seismic, gas) are not available or cannot be made. Because of its regular activity, the well-instrumented Mount Etna is in Europe a unique natural repetitive source to test and optimize detection and simulation methods. The closest infrasound station part of the International Monitoring System is located in Tunisia (IS48). In summer, during the downwind season, it allows an unambiguous identification of signals associated with Etna eruptions. Under the European ARISE project (Atmospheric dynamics InfraStructure in Europe, FP7/2007-2013), experimental arrays have been installed in order to characterize infrasound propagation in different ranges of distance and direction. In addition, a small-aperture array, set up on the flank by the University of Firenze, has been operating since 2007. Such an experimental setting offers an opportunity to address the societal benefits that can be achieved through routine infrasound monitoring.

  10. A Mountain-Scale Monitoring Network for Yucca Mountain PerformanceConfirmation

    SciTech Connect

    Freifeld, Barry; Tsang, Yvonne

    2006-01-20

    Confirmation of the performance of Yucca Mountain is required by 10 CFR Part 63.131 to indicate, where practicable, that the natural system acts as a barrier, as intended. Hence, performance confirmation monitoring and testing would provide data for continued assessment during the pre-closure period. In general, to carry out testing at a relevant scale is always important, and in the case of performance confirmation, it is particularly important to be able to test at the scale of the repository. We view the large perturbation caused by construction of the repository at Yucca Mountain as a unique opportunity to study the large-scale behavior of the natural barrier system. Repository construction would necessarily introduce traced fluids and result in the creation of leachates. A program to monitor traced fluids and construction leachates permits evaluation of transport through the unsaturated zone and potentially downgradient through the saturated zone. A robust sampling and monitoring network for continuous measurement of important parameters, and for periodic collection of agrochemical samples, is proposed to observe thermo-hydrogeochemical changes near the repository horizon and down to the water table. The sampling and monitoring network can be used to provide data to (1) assess subsurface conditions encountered and changes in those conditions during construction and waste emplacement operations; and (2) for modeling to determine that the natural system is functioning as intended.

  11. Development of an In-Situ Decommissioning Sensor Network Test Bed for Structural Condition Monitoring - 12156

    SciTech Connect

    Zeigler, Kristine E.; Ferguson, Blythe A.

    2012-07-01

    The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials and condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors

  12. A Wireless Sensor Network-Based Approach with Decision Support for Monitoring Lake Water Quality.

    PubMed

    Huang, Xiaoci; Yi, Jianjun; Chen, Shaoli; Zhu, Xiaomin

    2015-01-01

    Online monitoring and water quality analysis of lakes are urgently needed. A feasible and effective approach is to use a Wireless Sensor Network (WSN). Lake water environments, like other real world environments, present many changing and unpredictable situations. To ensure flexibility in such an environment, the WSN node has to be prepared to deal with varying situations. This paper presents a WSN self-configuration approach for lake water quality monitoring. The approach is based on the integration of a semantic framework, where a reasoner can make decisions on the configuration of WSN services. We present a WSN ontology and the relevant water quality monitoring context information, which considers its suitability in a pervasive computing environment. We also propose a rule-based reasoning engine that is used to conduct decision support through reasoning techniques and context-awareness. To evaluate the approach, we conduct usability experiments and performance benchmarks. PMID:26610496

  13. WiSPH: A Wireless Sensor Network-Based Home Care Monitoring System

    PubMed Central

    Magaña-Espinoza, Pedro; Aquino-Santos, Raúl; Cárdenas-Benítez, Néstor; Aguilar-Velasco, José; Buenrostro-Segura, César; Edwards-Block, Arthur; Medina-Cass, Aldo

    2014-01-01

    This paper presents a system based on WSN technology capable of monitoring heart rate and the rate of motion of seniors within their homes. The system is capable of remotely alerting specialists, caretakers or family members via a smartphone of rapid physiological changes due to falls, tachycardia or bradycardia. This work was carried out using our workgroup's WiSe platform, which we previously developed for use in WSNs. The proposed WSN architecture is flexible, allowing for greater scalability to better allow event-based monitoring. The architecture also provides security mechanisms to assure that the monitored and/or stored data can only be accessed by authorized individuals or devices. The aforementioned characteristics provide the network versatility and solidity required for use in health applications. PMID:24759112

  14. A Real-Time Monitoring System of Industry Carbon Monoxide Based on Wireless Sensor Networks.

    PubMed

    Yang, Jiachen; Zhou, Jianxiong; Lv, Zhihan; Wei, Wei; Song, Houbing

    2015-01-01

    Carbon monoxide (CO) burns or explodes at over-standard concentration. Hence, in this paper, a Wifi-based, real-time monitoring of a CO system is proposed for application in the construction industry, in which a sensor measuring node is designed by low-frequency modulation method to acquire CO concentration reliably, and a digital filtering method is adopted for noise filtering. According to the triangulation, the Wifi network is constructed to transmit information and determine the position of nodes. The measured data are displayed on a computer or smart phone by a graphical interface. The experiment shows that the monitoring system obtains excellent accuracy and stability in long-term continuous monitoring. PMID:26610511

  15. Incorpoaration of Geosensor Networks Into Internet of Things for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Habibi, R.; Alesheikh, A. A.

    2015-12-01

    Thanks to the recent advances of miniaturization and the falling costs for sensors and also communication technologies, Internet specially, the number of internet-connected things growth tremendously. Moreover, geosensors with capability of generating high spatial and temporal resolution data, measuring a vast diversity of environmental data and automated operations provide powerful abilities to environmental monitoring tasks. Geosensor nodes are intuitively heterogeneous in terms of the hardware capabilities and communication protocols to take part in the Internet of Things scenarios. Therefore, ensuring interoperability is an important step. With this respect, the focus of this paper is particularly on incorporation of geosensor networks into Internet of things through an architecture for monitoring real-time environmental data with use of OGC Sensor Web Enablement standards. This approach and its applicability is discussed in the context of an air pollution monitoring scenario.

  16. A Wireless Sensor Network-Based Approach with Decision Support for Monitoring Lake Water Quality

    PubMed Central

    Huang, Xiaoci; Yi, Jianjun; Chen, Shaoli; Zhu, Xiaomin

    2015-01-01

    Online monitoring and water quality analysis of lakes are urgently needed. A feasible and effective approach is to use a Wireless Sensor Network (WSN). Lake water environments, like other real world environments, present many changing and unpredictable situations. To ensure flexibility in such an environment, the WSN node has to be prepared to deal with varying situations. This paper presents a WSN self-configuration approach for lake water quality monitoring. The approach is based on the integration of a semantic framework, where a reasoner can make decisions on the configuration of WSN services. We present a WSN ontology and the relevant water quality monitoring context information, which considers its suitability in a pervasive computing environment. We also propose a rule-based reasoning engine that is used to conduct decision support through reasoning techniques and context-awareness. To evaluate the approach, we conduct usability experiments and performance benchmarks. PMID:26610496

  17. Climatological summary of wind and temperature data for the Hanford Meteorology Monitoring Network

    SciTech Connect

    Glantz, C.S.; Schwartz, M.N.; Burk, K.W.; Kasper, R.B.; Ligotke, M.W.; Perrault, P.J.

    1990-09-01

    This document presents climatological summaries of wind and temperature data collected at the twenty-five monitoring stations operated by the Hanford Meteorology Monitoring Network. The climatological analyses presented here involve hourly averaged wind data collected over an 8-year period beginning in 1982 (fewer wind data are available for the several monitoring stations that began full-time operation after 1982) and hourly averaged air temperature data collected over 2-year period beginning in mid-1988. The tables and figures presented in this document illustrate the spatial and temporal variation of meteorological parameters across the Hanford Site and the surrounding areas. This information is useful for emergency response applications, routine meteorological forecasting, planning and scheduling operations, facility design, and environmental impact studies.

  18. A Real-Time Monitoring System of Industry Carbon Monoxide Based on Wireless Sensor Networks

    PubMed Central

    Yang, Jiachen; Zhou, Jianxiong; Lv, Zhihan; Wei, Wei; Song, Houbing

    2015-01-01

    Carbon monoxide (CO) burns or explodes at over-standard concentration. Hence, in this paper, a Wifi-based, real-time monitoring of a CO system is proposed for application in the construction industry, in which a sensor measuring node is designed by low-frequency modulation method to acquire CO concentration reliably, and a digital filtering method is adopted for noise filtering. According to the triangulation, the Wifi network is constructed to transmit information and determine the position of nodes. The measured data are displayed on a computer or smart phone by a graphical interface. The experiment shows that the monitoring system obtains excellent accuracy and stability in long-term continuous monitoring. PMID:26610511

  19. Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing

    PubMed Central

    Handcock, Rebecca N.; Swain, Dave L.; Bishop-Hurley, Greg J.; Patison, Kym P.; Wark, Tim; Valencia, Philip; Corke, Peter; O'Neill, Christopher J.

    2009-01-01

    Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle. PMID:22412327

  20. A Real-Time Monitoring System of Industry Carbon Monoxide Based on Wireless Sensor Networks.

    PubMed

    Yang, Jiachen; Zhou, Jianxiong; Lv, Zhihan; Wei, Wei; Song, Houbing

    2015-11-20

    Carbon monoxide (CO) burns or explodes at over-standard concentration. Hence, in this paper, a Wifi-based, real-time monitoring of a CO system is proposed for application in the construction industry, in which a sensor measuring node is designed by low-frequency modulation method to acquire CO concentration reliably, and a digital filtering method is adopted for noise filtering. According to the triangulation, the Wifi network is constructed to transmit information and determine the position of nodes. The measured data are displayed on a computer or smart phone by a graphical interface. The experiment shows that the monitoring system obtains excellent accuracy and stability in long-term continuous monitoring.

  1. Remote Monitoring for Solar Photovoltaic Systems in Rural Application Using GSM Network

    NASA Astrophysics Data System (ADS)

    Ahmad, Tanveer; Hasan, Qadeer Ul; Malik, A.; Awan, N. S.

    2015-10-01

    This paper presents design and development of solar power monitoring and control through GSM network in rural application. This system includes a GSM mobile and GSM hardware installed at solar system with 12VDC power for solar power monitoring along with temperatures (ambient and battery). This system is designed to conceptualizing how much solar power transferred to batteries and temperature conditions for that instant of time. Hardware is developed for the continuous update to the targeted station using GSM. The developed hardware gets the signal from the installed location calculate the real time power and temperature parameters. This information transferred to targeted mobile station through GSM interface using texting service (SMS). At the receiving end, power monitoring system is used to maintain the power to batteries profile locally. An easy, cost proficient and consistent working model of whole system has been developed which may be incorporated for data acquisition. Also the same system can use for uninterrupted power supply (UPS) systems.

  2. An optimized network for phosphorus load monitoring for Lake Okeechobee, Florida

    USGS Publications Warehouse

    Gain, W.S.

    1997-01-01

    Phosphorus load data were evaluated for Lake Okeechobee, Florida, for water years 1982 through 1991. Standard errors for load estimates were computed from available phosphorus concentration and daily discharge data. Components of error were associated with uncertainty in concentration and discharge data and were calculated for existing conditions and for 6 alternative load-monitoring scenarios for each of 48 distinct inflows. Benefit-cost ratios were computed for each alternative monitoring scenario at each site by dividing estimated reductions in load uncertainty by the 5-year average costs of each scenario in 1992 dollars. Absolute and marginal benefit-cost ratios were compared in an iterative optimization scheme to determine the most cost-effective combination of discharge and concentration monitoring scenarios for the lake. If the current (1992) discharge-monitoring network around the lake is maintained, the water-quality sampling at each inflow site twice each year is continued, and the nature of loading remains the same, the standard error of computed mean-annual load is estimated at about 98 metric tons per year compared to an absolute loading rate (inflows and outflows) of 530 metric tons per year. This produces a relative uncertainty of nearly 20 percent. The standard error in load can be reduced to about 20 metric tons per year (4 percent) by adopting an optimized set of monitoring alternatives at a cost of an additional $200,000 per year. The final optimized network prescribes changes to improve both concentration and discharge monitoring. These changes include the addition of intensive sampling with automatic samplers at 11 sites, the initiation of event-based sampling by observers at another 5 sites, the continuation of periodic sampling 12 times per year at 1 site, the installation of acoustic velocity meters to improve discharge gaging at 9 sites, and the improvement of a discharge rating at 1 site.

  3. Air Monitoring Network at Tonopah Test Range: Network Description, Capabilities, and Analytical Results

    SciTech Connect

    Hartwell, William T.; Daniels, Jeffrey; Nikolich, George; Shadel, Craig; Giles, Ken; Karr, Lynn; Kluesner, Tammy

    2012-01-01

    During the period April to June 2008, at the behest of the Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Activity. DRI has operated these stations since that time. A third station was deployed in the period May to September 2011. The TTR is located within the northwest corner of the Nevada Test and Training Range (NTTR), and covers an area of approximately 725.20 km2 (280 mi2). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from Soils Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

  4. Air Monitoring Network at Tonopah Test Range: Network Description and Capabilities

    SciTech Connect

    Jeffrey Tappen; George Nikolich; Ken Giles; David Shafer; Tammy Kluesner

    2010-05-18

    During the period April to June 2008, at the behest of the U.S. Department of Energy (DOE) National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Sub-Project. The TTR is located within the boundaries of the Nevada Test and Training Range (NTTR) near the northern edge, and covers an area of approximately 725.20 km2 (179,200 acres). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from one of the three Soil Sub-Project Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

  5. Coupling of ground biosensor networks for water monitoring with satellite observations in assessing Leptospirosis

    NASA Astrophysics Data System (ADS)

    Skouloudis, A. N.; Rickerby, D. G.

    2012-12-01

    Leptospirosis became recently a major public-health problem that is closely related with the environment (Nature review Oct 2009, Vol 7, pp 736-747). This disease originates from zoonotic pathogens associated with asymptomatic rodent carriers. Unfortunately, it effects human populations via various direct and indirect routes. This disease can claim many victims with large outbreaks during natural disasters or floods occurring during seasonal conditions. The severity of the illness ranges from subclinical infection to a fulminating fatal disease. Improved water quality monitoring techniques based on biosensor, optical, micro-fluidic and information technologies are leading to radical changes in our ability to perceive and monitor the aquatic environment. Biosensors are capable of providing specific, high spatial resolution information and allow unattended operation that will be particularly useful for water borne related diseases. Current research on biosensors is leading to solutions to problems for several contaminants that were previously irresolvable due to their high degree of complexity. Networking of the sensors enables sensitive monitoring systems allowing real-time monitoring of pollutants and facilitates data transmission between the measurement points and central control stations for continuous surveillance and to provide an early warning capability. The application of intelligent biosensor networks for water quality monitoring and detection of localized sources of pollution are discussed together with the setting up of a methodology that utilizes images from satellite coupled with in-situ sensors for anticipating the zones of potential evolution of this disease and assessing the population at risk. Environmental and climatic conditions that are associated the outbreaks are described and the rational of combining earth observations coupled with advanced in-situ biosensors is explained. The implementation of sensor networks for data collection and exposure

  6. Remote monitoring of soldier safety through body posture identification using wearable sensor networks

    NASA Astrophysics Data System (ADS)

    Biswas, Subir; Quwaider, Muhannad

    2008-04-01

    The physical safety and well being of the soldiers in a battlefield is the highest priority of Incident Commanders. Currently, the ability to track and monitor soldiers rely on visual and verbal communication which can be somewhat limited in scenarios where the soldiers are deployed inside buildings and enclosed areas that are out of visual range of the commanders. Also, the need for being stealth can often prevent a battling soldier to send verbal clues to a commander about his or her physical well being. Sensor technologies can remotely provide various data about the soldiers including physiological monitoring and personal alert safety system functionality. This paper presents a networked sensing solution in which a body area wireless network of multi-modal sensors can monitor the body movement and other physiological parameters for statistical identification of a soldier's body posture, which can then be indicative of the physical conditions and safety alerts of the soldier in question. The specific concept is to leverage on-body proximity sensing and a Hidden Markov Model (HMM) based mechanism that can be applied for stochastic identification of human body postures using a wearable sensor network. The key idea is to collect relative proximity information between wireless sensors that are strategically placed over a subject's body to monitor the relative movements of the body segments, and then to process that using HMM in order to identify the subject's body postures. The key novelty of this approach is a departure from the traditional accelerometry based approaches in which the individual body segment movements, rather than their relative proximity, is used for activity monitoring and posture detection. Through experiments with body mounted sensors we demonstrate that while the accelerometry based approaches can be used for differentiating activity intensive postures such as walking and running, they are not very effective for identification and

  7. The aquatic real-time monitoring network; in-situ optical sensors for monitoring the nation's water quality

    USGS Publications Warehouse

    Pellerin, Brian A.; Bergamaschi, Brian A.; Murdoch, Peter S.; Downing, Bryan D.; Saraceno, John Franco; Aiken, George R.; Striegl, Robert G.

    2011-01-01

    Floods, hurricanes, and longer-term changes in climate and land use can have profound effects on water quality due to shifts in hydrologic flow paths, water residence time, precipitation patterns, connectivity between rivers and uplands, and many other factors. In order to understand and respond to changes in hydrology and water quality, resource managers and policy makers have a need for accurate and early indicators, as well as the ability to assess possible mechanisms and likely outcomes. In-situ optical sensors-those making continuous measurements of constituents by absorbance or fluorescence properties in the environment at timescales of minutes to years-have a long history in oceanography for developing highly resolved concentrations and fluxes, but are not commonly used in freshwater systems. The United States Geological Survey (USGS) has developed the Aquatic Real-Time Monitoring Network, with high-resolution optical data collection for organic carbon, nutrients, and sediment in large coastal rivers, along with continuous measurements of discharge, water temperature, and dissolved inorganic carbon. The collecting of continuous water-quality data in the Nation?s waterways has revealed temporal trends and spatial patterns in constituents that traditional sampling approaches fail to capture, and will serve a critical role in monitoring, assessment and decision-making in a rapidly changing landscape.

  8. Monitoring of persistent organic pollutants in Africa. Part 2: design of a network to monitor the continental and intercontinental background.

    PubMed

    Lammel, G; Dobrovolný, P; Dvorská, A; Chromá, K; Brázdil, R; Holoubek, I; Hosek, J

    2009-11-01

    A network for the study of long-term trends of the continental background in Africa and the intercontinental background of persistent organic pollutants as resulting from long-range transport of contaminants from European, South Asian, and other potential source regions, as well as by watching supposedly pristine regions, i.e. the Southern Ocean and Antarctica is designed. The results of a pilot phase sampling programme in 2008 and meteorological and climatological information from the period 1961-2007 was used to apply objective criteria for the selection of stations for the monitoring network: out the original 26 stations six have been rejected because of suggested strong local sources of POPs and three others because of local meteorological effects, which may prevent part of the time long-range transported air to reach the sampling site. Representativeness of the meteorological patterns during the pilot phase with respect to climatology was assessed by comparison of the more local airflow situation as given by climatological vs. observed wind roses and by comparison of backward trajectories with the climatological wind (NCEP/NCAR re-analyses). With minor exceptions advection to nine inspected stations was typical for present-day climate during the pilot phase, 2008. Six to nine stations would cover satisfyingly large and densely populated regions of North-eastern, West and East Africa and its neighbouring seas, the Mediterranean, Northern and Equatorial Atlantic Ocean, the Western Indian Ocean and the Southern Ocean. Among the more densely populated areas Southern Cameroon, parts of the Abessinian plateau and most of the Great Lakes area would not be covered. The potential of the network is not hampered by on-going long-term changes of the advection to the selected stations, as these do hardly affect the coverage of target areas.

  9. Optimization of a Coastal Environmental Monitoring Network Based on the Kriging Method: A Case Study of Quanzhou Bay, China

    PubMed Central

    Chen, Kai; Ni, Minjie; Wang, Jun; Huang, Dongren; Chen, Huorong; Wang, Xiao; Liu, Mengyang

    2016-01-01

    Environmental monitoring is fundamental in assessing environmental quality and to fulfill protection and management measures with permit conditions. However, coastal environmental monitoring work faces many problems and challenges, including the fact that monitoring information cannot be linked up with evaluation, monitoring data cannot well reflect the current coastal environmental condition, and monitoring activities are limited by cost constraints. For these reasons, protection and management measures cannot be developed and implemented well by policy makers who intend to solve this issue. In this paper, Quanzhou Bay in southeastern China was selected as a case study; and the Kriging method and a geographic information system were employed to evaluate and optimize the existing monitoring network in a semienclosed bay. This study used coastal environmental monitoring data from 15 sites (including COD, DIN, and PO4-P) to adequately analyze the water quality from 2009 to 2012 by applying the Trophic State Index. The monitoring network in Quanzhou Bay was evaluated and optimized, with the number of sites increased from 15 to 24, and the monitoring precision improved by 32.9%. The results demonstrated that the proposed advanced monitoring network optimization was appropriate for environmental monitoring in Quanzhou Bay. It might provide technical support for coastal management and pollutant reduction in similar areas. PMID:27777951

  10. Strain Analysis in Horizontal Geodetic Network of Dams for Control of Stability and Monitoring Deformation

    NASA Astrophysics Data System (ADS)

    Roohi, S.; Ardalan, A. A.; Khodakarami, M.

    2009-04-01

    Dams as one of the engineering structures play very important role in human life. Because, from primary human needs such as providing drinking water to professional needs such as water powerhouse creation in order to provide power for industrial centers, hospitals, manufactures and agriculture, have considerable dependent on dams. In addition destruction of a dam can be as dangerous as earthquake. Therefore maintenance, stability control and monitoring deformation of them is indispensable. In order to control stability of dams and their around lands and monitoring deformation a network is created by surveyor, geologist and dam experts on crest and body of dam or on land near the dam. Geodetic observations are done in this network by precise surveying instrument in deferent time then by using linear least square parametric adjustment method, adjusted coordinates with their variance- covariance matrix and error ellipses, redundancy numbers for observation, blunders and … are estimated in each epoch. Then displacement vectors are computed in each point of network, After that by use of Lagrangeian deformation idea and constitution of deformation equations movement, displacement model is determined and strain tensor is computed. we can induce deformation information from strain tensor in different ways such as strain ellipse then interpret deformation that happen in each point of network. Also we can compute rigid rotation from anti-symmetric part of displacement gradient tensor. After processing tow consequence epochs observations of horzontal geodetic network of Hnna dam in southwest of Esfahan, the most semi-major axis of error ellipse is estimated about 0.9mm for point D10, largest displacement is 1.4mm for point C3 that it's semimajor axis of displacement error ellipse is 1.3mm and there is different shear in all of network points exceptional points D2,C3 and C2. There is different dilatation in most of points. These amount of maximum shear and dilatation are

  11. Novel method for water vapour monitoring using wireless communication networks measurements

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2009-04-01

    We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Water vapour plays a crucial part in a variety of atmospheric processes. As the most influential of greenhouse gases, it absorbs long-wave terrestrial radiation. The water vapour cycle of evaporation and recondensation is a major energy redistributing mechanism transferring heat energy from the Earth's surface to the atmosphere. Additionally, humidity has an important role in weather forecasting as a key variable required for initialization of atmospheric models and hazard warning techniques. However, current methods of monitoring humidity suffer from low spatial resolution, high cost or a lack of precision when measuring near ground levels. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, the proposed method can provide moisture observations at high temporal and spatial resolution. Further, the implementation cost is minimal, since the data used is already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which include absence of rain, fog or clouds along the propagation path. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good agreement with surface

  12. Infrasound network implementation in Iceland - examples of volcano monitoring in an extreme environment

    NASA Astrophysics Data System (ADS)

    Jónsdóttir, Kristín; Ripepe, Maurizio; Barsotti, Sara; Björnsson, Halldór; Del Donne, Dario; Vogfjörð, Kristín

    2015-04-01

    The installation of a network of infrasound arrays for volcano monitoring has been initiated in Iceland. In collaboration with the University of Florence (UNIFI), The Icelandic Meteorological Office (IMO) has been operating infrasound arrays since the Eyjafjallajökull eruption in 2010. An important support came through the 26 partner FP7 FUTUREVOLC project which runs from 2012 - 2016. This project which is relevant to the EU "Supersite concept" for long term monitoring in geologically active regions of Europe, is led by the University of Iceland together with IMO which leads long-term monitoring of geohazards in Iceland and is responsible for maintaining instrument networks for this purpose. As a part of the ground based FUTUREVOLC network, infrasound arrays, are used to monitor volcanic eruptive activity. The arrays are composed of 4 elements with a triangular geometry and an aperture of 120 m where each element has a differential pressure transducer with a sensitivity of 25 mV/Pa in the frequency band 0.001-50 Hz and a noise level of 10-2 Pa. Infrasound is recorded on site at 100 Hz and 24 bits and transmitted via Internet link both to the IMO and UNIFI. Three arrays are installed in South Iceland, one in Gunnarsholt, one in Þjórsárdalur and one in Kirkjubæjarklaustur. These places were chosen with the aim to optimize wind noice reduction (onsite bushes and trees) and close proximity to volcanoes such as Hekla, Katla, Torfajökull, Eyjafjallajökull, Vestmannaeyjar and the Vatnajökull ice cap which covers four central volcanoes known for explosive eruptions. In September 2014, the fourth array was installed a few km north of Vatnajökull glacier, just north of the large effusive eruption in Holuhraun which started on 29 August 2014 and is still ongoing in January 2015. The eruption is associated with the ongoing Bárðarbunga volcanic unrest and caldera collapse which is being monitored closely by the IMO and FUTUREVOLC partners. The new array has the

  13. The use of existing environmental networks for the post-market monitoring of GM crop cultivation in the EU.

    PubMed

    Smets, G; Alcalde, E; Andres, D; Carron, D; Delzenne, P; Heise, A; Legris, G; Martinez Parrilla, M; Verhaert, J; Wandelt, C; Ilegems, M; Rüdelsheim, P

    2014-07-01

    The European Union (EU) Directive 2001/18/EC on the deliberate release of genetically modified organisms (GMOs) into the environment requires that both Case-Specific Monitoring (CSM) and General Surveillance (GS) are considered as post-market implementing measures. Whereas CSM is directed to monitor potential adverse effects of GMOs or their use identified in the environmental risk assessment, GS aims to detect un-intended adverse effects of GMOs or their use on human and animal health or the environment. Guidance documents on the monitoring of genetically modified (GM) plants from the Commission and EFSA clarify that, as appropriate, GS can make use of established routine surveillance practices. Networks involved in routine surveillance offer recognised expertise in a particular domain and are designed to collect information on important environmental aspects over a large geographical area. However, as the suitability of existing monitoring networks to provide relevant data for monitoring impacts of GMOs is not known, plant biotechnology companies developed an approach to describe the processes and criteria that will be used for selecting and evaluating existing monitoring systems. In this paper, the availability of existing monitoring networks for this purpose is evaluated. By cataloguing the existing environmental monitoring networks in the EU, it can be concluded that they can only be used, in the context of GMO cultivation monitoring, as secondary tools to collect baseline information. PMID:24836113

  14. The use of existing environmental networks for the post-market monitoring of GM crop cultivation in the EU.

    PubMed

    Smets, G; Alcalde, E; Andres, D; Carron, D; Delzenne, P; Heise, A; Legris, G; Martinez Parrilla, M; Verhaert, J; Wandelt, C; Ilegems, M; Rüdelsheim, P

    2014-07-01

    The European Union (EU) Directive 2001/18/EC on the deliberate release of genetically modified organisms (GMOs) into the environment requires that both Case-Specific Monitoring (CSM) and General Surveillance (GS) are considered as post-market implementing measures. Whereas CSM is directed to monitor potential adverse effects of GMOs or their use identified in the environmental risk assessment, GS aims to detect un-intended adverse effects of GMOs or their use on human and animal health or the environment. Guidance documents on the monitoring of genetically modified (GM) plants from the Commission and EFSA clarify that, as appropriate, GS can make use of established routine surveillance practices. Networks involved in routine surveillance offer recognised expertise in a particular domain and are designed to collect information on important environmental aspects over a large geographical area. However, as the suitability of existing monitoring networks to provide relevant data for monitoring impacts of GMOs is not known, plant biotechnology companies developed an approach to describe the processes and criteria that will be used for selecting and evaluating existing monitoring systems. In this paper, the availability of existing monitoring networks for this purpose is evaluated. By cataloguing the existing environmental monitoring networks in the EU, it can be concluded that they can only be used, in the context of GMO cultivation monitoring, as secondary tools to collect baseline information.

  15. Application of adaptive and neural network computational techniques to Traffic Volume and Classification Monitoring

    SciTech Connect

    Mead, W.C.; Fisher, H.N.; Jones, R.D.; Bisset, K.R.; Lee, L.A.

    1993-09-01

    We are developing a Traffic Volume and Classification Monitoring (TVCM) system based on adaptive and neural network computational techniques. The value of neutral networks in this application lies in their ability to learn from data and to form a mapping of arbitrary topology. The piezoelectric strip and magnetic loop sensors typically used for TVCM provide signals that are complicated and variable, and that correspond in indirect ways with the desired FWHA 13-class classification system. Further, the wide variety of vehicle configurations adds to the complexity of the classification task. Our goal is to provide a TVCM system featuring high accuracy, adaptability to wide sensor and envirorunental variations, and continuous fault detection. We have instrumented an experimental TVCM site, developed PC-based on-line data acquisition software, collected a large database of vehicles` signals together with accurate ground truth determination, and analyzed the data off-line with a neural net classification system that can distinguish between class 2 (automobiles) and class 3 (utility vehicles) with better than 90% accuracy. The neural network used, called the Connectionist Hyperprism Classification (CHC) network, features simple basis functions; rapid, linear training algorithms for basis function amplitudes and widths; and basis function elimination that enhances network speed and accuracy. Work is in progress to extend the system to other classes, to quantify the system`s adaptability, and to develop automatic fault detection techniques.

  16. A Wireless Sensor Network for Vineyard Monitoring That Uses Image Processing

    PubMed Central

    Lloret, Jaime; Bosch, Ignacio; Sendra, Sandra; Serrano, Arturo

    2011-01-01

    The first step to detect when a vineyard has any type of deficiency, pest or disease is to observe its stems, its grapes and/or its leaves. To place a sensor in each leaf of every vineyard is obviously not feasible in terms of cost and deployment. We should thus look for new methods to detect these symptoms precisely and economically. In this paper, we present a wireless sensor network where each sensor node takes images from the field and internally uses image processing techniques to detect any unusual status in the leaves. This symptom could be caused by a deficiency, pest, disease or other harmful agent. When it is detected, the sensor node sends a message to a sink node through the wireless sensor network in order to notify the problem to the farmer. The wireless sensor uses the IEEE 802.11 a/b/g/n standard, which allows connections from large distances in open air. This paper describes the wireless sensor network design, the wireless sensor deployment, how the node processes the images in order to monitor the vineyard, and the sensor network traffic obtained from a test bed performed in a flat vineyard in Spain. Although the system is not able to distinguish between deficiency, pest, disease or other harmful agents, a symptoms image database and a neuronal network could be added in order learn from the experience and provide an accurate problem diagnosis. PMID:22163948

  17. Use of a Real-Time Remote Monitoring Network (RTRM) to Characterize the Guadalquivir Estuary (Spain)

    PubMed Central

    Navarro, Gabriel; Huertas, Isabel Emma; Costas, Eduardo; Flecha, Susana; Díez-Minguito, Manuel; Caballero, Isabel; López-Rodas, Victoria; Prieto, Laura; Ruiz, Javier

    2012-01-01

    The temporal variability of hydrological variables in the Guadalquivir estuary was examined during three years through a real-time remote monitoring network (RTRM). The network was developed with the aim of studying the influence of hydrodynamical and hydrological features within the estuary on the functioning of the pelagic ecosystem. Completing this data-gathering network, monthly cruises were performed in order to measure biogeochemical variables that are indicative of the trophic status of the aquatic environment. The results showed that several sources of physical forcing, such as wind, tide-associated currents and river discharge were responsible for the spatio-temporal patterns of dissolved oxygen, salinity and turbidity in the estuary. The analysis was conducted under tidal and flood regime, which allowed us to identify river discharge as the main forcing agent of the hydrology inside the estuary. In particular, episodes of elevated turbidity detected by the network, together with episodes of low salinity and dissolved oxygen were closely related to the increase in water supply from a dam located upstream. The network installed provided accurate data that can be rapidly used for research or educational applications and by policy-makers or agencies in charge of the management of the coastal area. PMID:22438716

  18. Framework and implementation of a continuous network-wide health monitoring system for roadways

    NASA Astrophysics Data System (ADS)

    Wang, Ming; Birken, Ralf; Shahini Shamsabadi, Salar

    2014-03-01

    According to the 2013 ASCE report card America's infrastructure scores only a D+. There are more than four million miles of roads (grade D) in the U.S. requiring a broad range of maintenance activities. The nation faces a monumental problem of infrastructure management in the scheduling and implementation of maintenance and repair operations, and in the prioritization of expenditures within budgetary constraints. The efficient and effective performance of these operations however is crucial to ensuring roadway safety, preventing catastrophic failures, and promoting economic growth. There is a critical need for technology that can cost-effectively monitor the condition of a network-wide road system and provide accurate, up-to-date information for maintenance activity prioritization. The Versatile Onboard Traffic Embedded Roaming Sensors (VOTERS) project provides a framework and the sensing capability to complement periodical localized inspections to continuous network-wide health monitoring. Research focused on the development of a cost-effective, lightweight package of multi-modal sensor systems compatible with this framework. An innovative software infrastructure is created that collects, processes, and evaluates these large time-lapse multi-modal data streams. A GIS-based control center manages multiple inspection vehicles and the data for further analysis, visualization, and decision making. VOTERS' technology can monitor road conditions at both the surface and sub-surface levels while the vehicle is navigating through daily traffic going about its normal business, thereby allowing for network-wide frequent assessment of roadways. This deterioration process monitoring at unprecedented time and spatial scales provides unique experimental data that can be used to improve life-cycle cost analysis models.

  19. The USA National Phenology Network: A national science and monitoring program for understanding climate change

    NASA Astrophysics Data System (ADS)

    Weltzin, J.

    2009-04-01

    Patterns of phenology for plants and animals control ecosystem processes, determine land surface properties, control biosphere-atmosphere interactions, and affect food production, health, conservation, and recreation. Although phenological data and models have applications related to scientific research, education and outreach, agriculture, tourism and recreation, human health, and natural resource conservation and management, until recently there was no coordinated effort to understand phenology at the national scale in the United States. The USA National Phenology Network (USA-NPN; www.usanpn.org), established in 2007, is an emerging and exciting partnership between federal agencies, the academic community, and the general public to establish a national science and monitoring initiative focused on phenology. The first year of operation of USA-NPN produced many new phenology products and venues for phenology research and citizen involvement. Products include a new web-site (www.usanpn.org) that went live in June 2008; the web-site includes a tool for on-line data entry, and serves as a clearinghouse for products and information to facilitate research and communication related to phenology. The new core Plant Phenology Program includes profiles for 200 vetted local, regional, and national plant species with descriptions and (BBCH-consistent) monitoring protocols, as well as templates for addition of new species. A partnership program describes how other monitoring networks can engage with USA-NPN to collect, manage or disseminate phenological information for science, health, education, management or predictive service applications. Project BudBurst, a USA-NPN field campaign for citizen scientists, went live in February 2008, and now includes over 3000 registered observers monitoring 4000 plants across the nation. For 2009 and beyond, we will initiate a new Wildlife Phenology Program, create an on-line clearing-house for phenology education and outreach, strengthen

  20. Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.

    This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and

  1. Is it me? Verbal self-monitoring neural network and clinical insight in schizophrenia.

    PubMed

    Sapara, Adegboyega; Ffytche, Dominic H; Cooke, Michael A; Williams, Steven C R; Kumari, Veena

    2015-12-30

    Self-monitoring, defined as the ability to distinguish between self-generated stimuli from other-generated ones, is known to be impaired in schizophrenia. This impairment has been theorised as the basis for many of the core psychotic symptoms, in particular, poor clinical insight. This study aimed to investigate verbal self-monitoring related neural substrates of preserved and poor clinical insight in schizophrenia. It involved 40 stable schizophrenia outpatients, 20 with preserved and 20 with poor insight, and 20 healthy participants. All participants underwent functional magnetic resonance imaging with brain coverage covering key areas in the self-monitoring network during a verbal self-monitoring task. Healthy participants showed higher performance accuracy and greater thalamic activity than both preserved and poor insight patient groups. Preserved insight patients showed higher activity in the putamen extending into the caudate, insula and inferior frontal gyrus, compared to poor insight patients, and in the anterior cingulate and medial frontal gyrus, compared to healthy participants. Poor insight patients did not show greater activity in any brain area compared to preserved insight patients or healthy participants. Future studies may pursue therapeutic avenues, such as meta-cognitive therapies to promote self-monitoring or targeted stimulation of relevant brain areas, as means of enhancing insight in schizophrenia. PMID:26549744

  2. Combining multivariate statistics and analysis of variance to redesign a water quality monitoring network.

    PubMed

    Guigues, Nathalie; Desenfant, Michèle; Hance, Emmanuel

    2013-09-01

    The objective of this paper was to demonstrate how multivariate statistics combined with the analysis of variance could support decision-making during the process of redesigning a water quality monitoring network with highly heterogeneous datasets in terms of time and space. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) were selected to optimise the selection of water quality parameters to be monitored as well as the number and location of monitoring stations. Sampling frequency was specifically investigated through the analysis of variance. The data used were obtained between 2007 and 2010 at the Long-term Environmental Research Monitoring and Testing System (OPE) located in the north-eastern part of France in relation with a geological disposal of radioactive waste project. PCA results showed that no substantial reduction among the parameters was possible as strong correlation only exists between electrical conductivity, calcium or bicarbonates. HCA results were geospatially represented for each field campaign and compared to one another in terms of similarities and differences allowing us to group the monitoring stations into 12 categories. This approach enabled us to take into account not only the spatial variability of water quality but also its temporal variability. Finally, the analysis of variances showed that three very different behaviours occurred: parameters with high temporal variability and low spatial variability (e.g. suspended matter), parameters with high spatial variability and average temporal variability (e.g. calcium) and finally parameters with both high temporal and spatial variability (e.g. nitrate).

  3. Periodic leg movement (PLM) monitoring using a distributed body sensor network.

    PubMed

    Madhushri, Priyanka; Ahmed, Beena; Penzel, Thomas; Jovanov, Emil

    2015-01-01

    Wireless sensors networks represent the architecture of choice for distributed monitoring due to the ease of deployment and configuration. We developed a distributed sleep monitoring system which combines wireless inertial sensors SP-10C by Sensoplex controlled by a custom smartphone application as an extension of the polysomnographic (PSG) monitor SOMNOscreen plus from Somnomedics. While existing activity monitors are wired to the SOMNOscreen, our system allows the use of wireless inertial sensors to improve user's comfort during sleep. The system is intended for monitoring of periodic leg movements (PLM) and user's activity during sleep. Wireless sensors are placed on ankle and toes of the foot in a customized sock. An Android app communicates with wireless sensors over Bluetooth Smart (BTS) link and streams 3D accelerometer values, 4D unit quaternion values and timestamps. In this paper we present a novel method of synchronization of data streams from PSG and inertial sensors, and original method of detection of PLM events. The system was tested using five experiments of simulated PLM, and achieved 96.51% of PLM detection accuracy. PMID:26736638

  4. Periodic leg movement (PLM) monitoring using a distributed body sensor network.

    PubMed

    Madhushri, Priyanka; Ahmed, Beena; Penzel, Thomas; Jovanov, Emil

    2015-01-01

    Wireless sensors networks represent the architecture of choice for distributed monitoring due to the ease of deployment and configuration. We developed a distributed sleep monitoring system which combines wireless inertial sensors SP-10C by Sensoplex controlled by a custom smartphone application as an extension of the polysomnographic (PSG) monitor SOMNOscreen plus from Somnomedics. While existing activity monitors are wired to the SOMNOscreen, our system allows the use of wireless inertial sensors to improve user's comfort during sleep. The system is intended for monitoring of periodic leg movements (PLM) and user's activity during sleep. Wireless sensors are placed on ankle and toes of the foot in a customized sock. An Android app communicates with wireless sensors over Bluetooth Smart (BTS) link and streams 3D accelerometer values, 4D unit quaternion values and timestamps. In this paper we present a novel method of synchronization of data streams from PSG and inertial sensors, and original method of detection of PLM events. The system was tested using five experiments of simulated PLM, and achieved 96.51% of PLM detection accuracy.

  5. Is it me? Verbal self-monitoring neural network and clinical insight in schizophrenia

    PubMed Central

    Sapara, Adegboyega; ffytche, Dominic H.; Cooke, Michael A.; Williams, Steven C.R.; Kumari, Veena

    2015-01-01

    Self-monitoring, defined as the ability to distinguish between self-generated stimuli from other-generated ones, is known to be impaired in schizophrenia. This impairment has been theorised as the basis for many of the core psychotic symptoms, in particular, poor clinical insight. This study aimed to investigate verbal self-monitoring related neural substrates of preserved and poor clinical insight in schizophrenia. It involved 40 stable schizophrenia outpatients, 20 with preserved and 20 with poor insight, and 20 healthy participants. All participants underwent functional magnetic resonance imaging with brain coverage covering key areas in the self-monitoring network during a verbal self-monitoring task. Healthy participants showed higher performance accuracy and greater thalamic activity than both preserved and poor insight patient groups. Preserved insight patients showed higher activity in the putamen extending into the caudate, insula and inferior frontal gyrus, compared to poor insight patients, and in the anterior cingulate and medial frontal gyrus, compared to healthy participants. Poor insight patients did not show greater activity in any brain area compared to preserved insight patients or healthy participants. Future studies may pursue therapeutic avenues, such as meta-cognitive therapies to promote self-monitoring or targeted stimulation of relevant brain areas, as means of enhancing insight in schizophrenia. PMID:26549744

  6. The RITMARE coastal radar network and applications to monitor marine transport infrastructures

    NASA Astrophysics Data System (ADS)

    Carrara, Paola; Corgnati, Lorenzo; Cosoli, Simone; Griffa, Annalisa; Kalampokis, Alkiviadis; Mantovani, Carlo; Oggioni, Alessandro; Pepe, Monica; Raffa, Francesco; Serafino, Francesco; Uttieri, Marco; Zambianchi, Enrico

    2014-05-01

    Coastal radars provide information on the environmental state of oceans, namely maps of surface currents at time intervals of the order of one hour with spatial coverage of the order of several km, depending on the transmission frequency. The observations are of crucial importance for monitoring ports and ship tracks close to the coast, providing support for safe navigation in densely operated areas and fast response in case of accidents at sea, such as oil spill or search and rescue. Besides these applications, coastal radar observations provide fundamental support in MPAs surveillance, connectivity and marine population circulation. In the framework of the Italian RITMARE flagship project coordinated by CNR (Consiglio Nazionale delle Ricerche), a coastal radar network has been designed and implemented with a number of innovative characteristics. The network includes both HF and X-band radars, allowing coverage of wide areas with different spatial and temporal resolutions. HF radars cover up to 80 km with a spatial resolution ranging between 1 and 5 km, while X-band radars provide 5 km coverage with a spatial resolution of 10 m. Joining these two capabilities, the RITMARE coastal radar network enables both a highly effective coverage of wide coastal areas and integrated monitoring of different phenomena, thus allowing the collection of current and wave parameters and detection of bathymetries of both open sea and coastal areas. A dedicated action to foster interoperability among data providers has been undertaken within RITMARE; an IT framework is under development to provide software tools for data collection and data sharing. It suggests standard, data format definitions, Quality Control strategies, data management and dissemination policies. In particular, the implementation of tools exploits both standards of OGC (Open Geospatial Consortium) and web services offered to manage, access and deliver geospatial data. Radar data produced in RITMARE by the coastal

  7. Monitoring lingering oil from the Exxon Valdez spill on Gulf of Alaska armored beaches and mussel beds sixteen years post-spill

    USGS Publications Warehouse

    Irvine, G.V.; Mann, D.H.; Short, J.W.

    2008-01-01

    Final Rept. ; Prepared in Cooperation With Alaska Univ., Fairbanks. Inst. of Arctic Biology. Sponsored By National Marine Fisheries Service, Juneau, Ak. AlaskaFisheries Science Center. ; Stranded Exxon Valdez Oil Has Persisted for 16 Years At Boulder-Armored Beach Sites Along National Park Coastlines Bordering the Gulf of Alaska. These Sites Are Up to 640 Km From the Spill Origin and Were Contaminated By Oil Mousse, a Viscous Water-in-Oil Emulsion. Although Surface Oil Has Continued to Decline, Subsurface Oiling Persists in Patches. Especially Striking Is the General Lack of Weathering of Stranded Oil on Armored Beaches Over the Last 16 Years. At Three of the Four Sites Where Oil Was Sampled in 2005, the Oil Was Compositionally Similar to 11-Day Old Exxon Valdez Oil, Even After 16 Years. The Formation of Mousse Allowed Less-Weathered Oil to Be Transported Long Distances. The Sequestration of the Oil Beneath a Boulder Armor, Coupled With the Stability of the Boulder Armoring (Investigated By Examining Movement of Marked Boulders), Had Contributed to the Lengthy Persistence of This Stranded Oil. Opportunistic Sampling of Several Previously Studied Oiled Mussel Beds Indicates Continued Contamination of At Least One of the Sites By Not Very Weathered Exxon Valdez Oil. Long-Term Persistence of Oil in These Habitats Should Cause Reconsideration of Response Activities After Spills, and May Influence the Environmental Sensitivity Indices Applied to These Habitats. 

  8. Sequential optimal monitoring network design and iterative spatial estimation of pollutant concentration for identification of unknown groundwater pollution source locations.

    PubMed

    Prakash, Om; Datta, Bithin

    2013-07-01

    One of the difficulties in accurate characterization of unknown groundwater pollution sources is the uncertainty regarding the number and the location of such sources. Only when the number of source locations is estimat