Sample records for alaska monitoring network

  1. Central Alaska Network vital signs monitoring plan

    USGS Publications Warehouse

    MacCluskie, Margaret C.; Oakley, Karen L.; McDonald, Trent; Wilder, Doug

    2005-01-01

    Denali National Park and Preserve, Wrangell-St. Elias National Park and Preserve, and Yukon-Charley Rivers National Preserve have been organized into the Central Alaska Network (CAKN) for the purposes of carrying out ecological monitoring activities under the National Park Services’ Vital Signs Monitoring program. The Phase III Report is the initial draft of the Vital Signs Monitoring Plan for the Central Alaska Network. It includes updated material from the Phase I and II documents. This report, and draft protocols for 11 of the network’s Vital Signs, were peer reviewed early in 2005. Review comments were incorporated into the document bringing the network to the final stage of having a Vital Signs Monitoring Plan. Implementation of the program will formally begin in FY 2006. The broad goals of the CAKN monitoring program are to: (1) better understand the dynamic nature and condition of park ecosystems; and (2) provide reference points for comparisons with other, altered environments. The focus of the CAKN program will be to monitor ecosystems in order to detect change in ecological components and in the relationships among the components. Water quality monitoring is fully integrated within the CAKN monitoring program. A monitoring program for lentic (non-moving water) has been determined, and the program for lotic systems (moving water) is under development.

  2. Monitoring Climate Variability and Change in Northern Alaska: Updates to the U.S. Geological Survey (USGS) Climate and Permafrost Monitoring Network

    NASA Astrophysics Data System (ADS)

    Urban, F. E.; Clow, G. D.; Meares, D. C.

    2004-12-01

    Observations of long-term climate and surficial geological processes are sparse in most of the Arctic, despite the fact that this region is highly sensitive to climate change. Instrumental networks that monitor the interplay of climatic variability and geological/cryospheric processes are a necessity for documenting and understanding climate change. Improvements to the spatial coverage and temporal scale of Arctic climate data are in progress. The USGS, in collaboration with The Bureau of Land Management (BLM) and The Fish and Wildlife Service (FWS) currently maintains two types of monitoring networks in northern Alaska: (1) A 15 site network of continuously operating active-layer and climate monitoring stations, and (2) a 21 element array of deep bore-holes in which the thermal state of deep permafrost is monitored. Here, we focus on the USGS Alaska Active Layer and Climate Monitoring Network (AK-CLIM). These 15 stations are deployed in longitudinal transects that span Alaska north of the Brooks Range, (11 in The National Petroleum Reserve Alaska, (NPRA), and 4 in The Arctic National Wildlife Refuge (ANWR)). An informative overview and update of the USGS AK-CLIM network is presented, including insight to current data, processing and analysis software, and plans for data telemetry. Data collection began in 1998 and parameters currently measured include air temperature, soil temperatures (5-120 cm), snow depth, incoming and reflected short-wave radiation, soil moisture (15 cm), wind speed and direction. Custom processing and analysis software has been written that calculates additional parameters such as active layer thaw depth, thawing-degree-days, albedo, cloudiness, and duration of seasonal snow cover. Data from selected AK-CLIM stations are now temporally sufficient to begin identifying trends, anomalies, and inter-annual variability in the climate of northern Alaska.

  3. The Alaska Volcano Observatory - Expanded Monitoring of Volcanoes Yields Results

    USGS Publications Warehouse

    Brantley, Steven R.; McGimsey, Robert G.; Neal, Christina A.

    2004-01-01

    Recent explosive eruptions at some of Alaska's 52 historically active volcanoes have significantly affected air traffic over the North Pacific, as well as Alaska's oil, power, and fishing industries and local communities. Since its founding in the late 1980s, the Alaska Volcano Observatory (AVO) has installed new monitoring networks and used satellite data to track activity at Alaska's volcanoes, providing timely warnings and monitoring of frequent eruptions to the aviation industry and the general public. To minimize impacts from future eruptions, scientists at AVO continue to assess volcano hazards and to expand monitoring networks.

  4. Alaska Volcano Observatory Seismic Network Data Availability

    NASA Astrophysics Data System (ADS)

    Dixon, J. P.; Haney, M. M.; McNutt, S. R.; Power, J. A.; Prejean, S. G.; Searcy, C. K.; Stihler, S. D.; West, M. E.

    2009-12-01

    The Alaska Volcano Observatory (AVO) established in 1988 as a cooperative program of the U.S. Geological Survey, the Geophysical Institute at the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, monitors active volcanoes in Alaska. Thirty-three volcanoes are currently monitored by a seismograph network consisting of 193 stations, of which 40 are three-component stations. The current state of AVO’s seismic network, and data processing and availability are summarized in the annual AVO seismological bulletin, Catalog of Earthquake Hypocenters at Alaska Volcanoes, published as a USGS Data Series (most recent at http://pubs.usgs.gov/ds/467). Despite a rich seismic data set for 12 VEI 2 or greater eruptions, and over 80,000 located earthquakes in the last 21 years, the volcanic seismicity in the Aleutian Arc remains understudied. Initially, AVO seismic data were only provided via a data supplement as part of the annual bulletin, or upon request. Over the last few years, AVO has made seismic data more available with the objective of increasing volcano seismic research on the Aleutian Arc. The complete AVO earthquake catalog data are now available through the annual AVO bulletin and have been submitted monthly to the on-line Advanced National Seismic System (ANSS) composite catalog since 2008. Segmented waveform data for all catalog earthquakes are available upon request and efforts are underway to make this archive web accessible as well. Continuous data were first archived using a tape backup, but the availability of low cost digital storage media made a waveform backup of continuous data a reality. Currently the continuous AVO waveform data can be found in several forms. Since late 2002, AVO has burned all continuous waveform data to DVDs, as well as storing these data in Antelope databases at the Geophysical Institute. Beginning in 2005, data have been available through a Winston Wave Server housed at the USGS in

  5. Alaska Seismic Network Upgrade and Expansion

    NASA Astrophysics Data System (ADS)

    Sandru, J. M.; Hansen, R. A.; Estes, S. A.; Fowler, M.

    2009-12-01

    AEIC (Alaska Earthquake Information Center) has begun the task of upgrading the older regional seismic monitoring sites that have been in place for a number of years. Many of the original sites (some dating to the 1960's) are still single component analog technology. This was a very reasonable and ultra low power reliable system for its day. However with the advanced needs of today's research community, AEIC has begun upgrading to Broadband and Strong Motion Seismometers, 24 bit digitizers and high-speed two-way communications, while still trying to maintain the utmost reliability and maintaining low power consumption. Many sites have been upgraded or will be upgraded from single component to triaxial broad bands and triaxial accerometers. This provided much greater dynamic range over the older antiquated technology. The challenge is compounded by rapidly changing digital technology. Digitizersand data communications based on analog phone lines utilizing 9600 baud modems and RS232 are becoming increasingly difficult to maintain and increasingly expensive compared to current methods that use Ethernet, TCP/IP and UDP connections. Gaining a reliable Internet connection can be as easy as calling up an ISP and having a DSL connection installed or may require installing our own satellite uplink, where other options don't exist. LANs are accomplished with a variety of communications devices such as spread spectrum 900 MHz radios or VHF radios for long troublesome shots. WANs are accomplished with a much wider variety of equipment. Traditional analog phone lines are being used in some instances, however 56K lines are much more desirable. Cellular data links have become a convenient option in semiurban environments where digital cellular coverage is available. Alaska is slightly behind the curve on cellular technology due to its low population density and vast unpopulated areas but has emerged into this new technology in the last few years. Partnerships with organizations

  6. Wildlife, Snow, Coffee, and Video: The IPY Activities of the University of Alaska Young Researchers' Network

    NASA Astrophysics Data System (ADS)

    Pringle, D.; Alvarez-Aviles, L.; Carlson, D.; Harbeck, J.; Druckenmiller, M.; Newman, K.; Mueller, D.; Petrich, C.; Roberts, A.; Wang, Y.

    2007-12-01

    The University of Alaska International Polar Year (IPY) Young Researchers' Network is a group of graduate students and postdoctoral fellows. Our interdisciplinary group operates as a volunteer network to promote the International Polar Year through education and outreach aimed at the general public and Alaskan students of all ages. The Young Researchers' Network sponsors and organizes science talks or Science Cafés by guest speakers in public venues such as coffee shops and bookstores. We actively engage high school students in IPY research concerning the ionic concentrations and isotopic ratios of precipitation through Project Snowball. Our network provides hands-on science activities to encourage environmental awareness and initiate community wildlife monitoring programs such as Wildlife Day by Day. We mentor individual high school students pursuing their own research projects related to IPY through the Alaska High School Science Symposium. Our group also interacts with the general public at community events and festivals to share the excitement of IPY for example at the World Ice Art Championship and Alaska State Fair. The UA IPY Young Researchers' Network continues to explore new partnerships with educators and students in an effort to enhance science and education related to Alaska and the polar regions in general. For more information please visit: http://ipy-youth.uaf.edu or e-mail: ipy-youth@alaska.edu

  7. Developing Gyrfalcon surveys and monitoring for Alaska

    USGS Publications Warehouse

    Fuller, Mark R.; Schempf, Philip F.; Booms, Travis L.

    2011-01-01

    We developed methods to monitor the status of Gyrfalcons in Alaska. Results of surveys and monitoring will be informative for resource managers and will be useful for studying potential changes in ecological communities of the high latitudes. We estimated that the probability of detecting a Gyrfalcon at an occupied nest site was between 64% and 87% depending on observer experience and aircraft type (fixed-wing or helicopter). The probability of detection is an important factor for estimating occupancy of nesting areas, and occupancy can be used as a metric for monitoring species' status. We conclude that surveys of nesting habitat to monitor occupancy during the breeding season are practical because of the high probability of seeing a Gyrfalcon from aircraft. Aerial surveys are effective for searching sample plots or index areas in the expanse of the Alaskan terrain. Furthermore, several species of cliff-nesting birds can be surveyed concurrently from aircraft. Occupancy estimation also can be applied using data from other field search methods (e.g., from boats) that have proven useful in Alaska. We believe a coordinated broad-scale, inter-agency, collaborative approach is necessary in Alaska. Monitoring can be facilitated by collating and archiving each set of results in a secure universal repository to allow for statewide meta-analysis.

  8. Evaluation of the streamflow-gaging network of Alaska in providing regional streamflow information

    USGS Publications Warehouse

    Brabets, Timothy P.

    1996-01-01

    In 1906, the U.S. Geological Survey (USGS) began operating a network of streamflow-gaging stations in Alaska. The primary purpose of the streamflow- gaging network has been to provide peak flow, average flow, and low-flow characteristics to a variety of users. In 1993, the USGS began a study to evaluate the current network of 78 stations. The objectives of this study were to determine the adequacy of the existing network in predicting selected regional flow characteristics and to determine if providing additional streamflow-gaging stations could improve the network's ability to predict these characteristics. Alaska was divided into six distinct hydrologic regions: Arctic, Northwest, Southcentral, Southeast, Southwest, and Yukon. For each region, historical and current streamflow data were compiled. In Arctic, Northwest, and Southwest Alaska, insufficient data were available to develop regional regression equations. In these areas, proposed locations of streamflow-gaging stations were selected by using clustering techniques to define similar areas within a region and by spatial visual analysis using the precipitation, physiographic, and hydrologic unit maps of Alaska. Sufficient data existed in Southcentral and Southeast Alaska to use generalized least squares (GLS) procedures to develop regional regression equations to estimate the 50-year peak flow, annual average flow, and a low-flow statistic. GLS procedures were also used for Yukon Alaska but the results should be used with caution because the data do not have an adequate spatial distribution. Network analysis procedures were used for the Southcentral, Southeast, and Yukon regions. Network analysis indicates the reduction in the sampling error of the regional regression equation that can be obtained given different scenarios. For Alaska, a 10-year planning period was used. One scenario showed the results of continuing the current network with no additional gaging stations and another scenario showed the results

  9. Monitoring Start of Season in Alaska

    NASA Astrophysics Data System (ADS)

    Robin, J.; Dubayah, R.; Sparrow, E.; Levine, E.

    2006-12-01

    In biomes that have distinct winter seasons, start of spring phenological events, specifically timing of budburst and green-up of leaves, coincides with transpiration. Seasons leave annual signatures that reflect the dynamic nature of the hydrologic cycle and link the different spheres of the Earth system. This paper evaluates whether continuity between AVHRR and MODIS normalized difference vegetation index (NDVI) is achievable for monitoring land surface phenology, specifically start of season (SOS), in Alaska. Additionally, two thresholds, one based on NDVI and the other on accumulated growing degree-days (GDD), are compared to determine which most accurately predicts SOS for Fairbanks. Ratio of maximum greenness at SOS was computed from biweekly AVHRR and MODIS composites for 2001 through 2004 for Anchorage and Fairbanks regions. SOS dates were determined from annual green-up observations made by GLOBE students. Results showed that different processing as well as spectral characteristics of each sensor restrict continuity between the two datasets. MODIS values were consistently higher and had less inter-annual variability during the height of the growing season than corresponding AVHRR values. Furthermore, a threshold of 131-175 accumulated GDD was a better predictor of SOS for Fairbanks than a NDVI threshold applied to AVHRR and MODIS datasets. The NDVI threshold was developed from biweekly AVHRR composites from 1982 through 2004 and corresponding annual green-up observations at University of Alaska-Fairbanks (UAF). The GDD threshold was developed from 20+ years of historic daily mean air temperature data and the same green-up observations. SOS dates computed with the GDD threshold most closely resembled actual green-up dates observed by GLOBE students and UAF researchers. Overall, biweekly composites and effects of clouds, snow, and conifers limit the ability of NDVI to monitor phenological changes in Alaska.

  10. Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.

    1996-01-01

    During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).

  11. Monitoring population status of sea otters (Enhydra lutris) in Glacier Bay National Park and Preserve, Alaska: options and considerations

    USGS Publications Warehouse

    Esslinger, George G.; Esler, Daniel N.; Howlin, S.; Starcevich, L.A.

    2015-06-25

    After many decades of absence from southeast Alaska, sea otters (Enhydra lutris) are recolonizing parts of their former range, including Glacier Bay, Alaska. Sea otters are well known for structuring nearshore ecosystems and causing community-level changes such as increases in kelp abundance and changes in the size and number of other consumers. Monitoring population status of sea otters in Glacier Bay will help park researchers and managers understand and interpret sea otter-induced ecosystem changes relative to other sources of variation, including potential human-induced impacts such as ocean acidification, vessel disturbance, and oil spills. This report was prepared for the National Park Service (NPS), Southeast Alaska Inventory and Monitoring Network following a request for evaluation of options for monitoring sea otter population status in Glacier Bay National Park and Preserve. To meet this request, we provide a detailed consideration of the primary method of assessment of abundance and distribution, aerial surveys, including analyses of power to detect interannual trends and designs to reduce variation around annual abundance estimates. We also describe two alternate techniques for evaluating sea otter population status—(1) quantifying sea otter diets and energy intake rates, and (2) detecting change in ages at death. In addition, we provide a brief section on directed research to identify studies that would further our understanding of sea otter population dynamics and effects on the Glacier Bay ecosystem, and provide context for interpreting results of monitoring activities.

  12. Alaska Job Center Network

    Science.gov Websites

    Job Centers Toll-free in Alaska (877)724-2539 *Workshop Schedules are linked under participating Job : midtown.jobcenter@alaska.gov Employers: anchorage.employers@alaska.gov Toll free Anchorage Employer Phone: 1-888-830 -1149 Phone: 842-5579 Fax: 842-5679, Toll Free: 1-800-478-5579 Job Seekers & Employers

  13. Satellite monitoring of remote volcanoes improves study efforts in Alaska

    NASA Astrophysics Data System (ADS)

    Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K.

    Satellite monitoring of remote volcanoes is greatly benefitting the Alaska Volcano Observatory (AVO), and last year's eruption of the Okmok Volcano in the Aleutian Islands is a good case in point. The facility was able to issue and refine warnings of the eruption and related activity quickly, something that could not have been done using conventional seismic surveillance techniques, since seismometers have not been installed at these locations.AVO monitors about 100 active volcanoes in the North Pacific (NOPAC) region, but only a handful are observed by costly and logistically complex conventional means. The region is remote and vast, about 5000 × 2500 km, extending from Alaska west to the Kamchatka Peninsula in Russia (Figure 1). Warnings are transmitted to local communities and airlines that might be endangered by eruptions. More than 70,000 passenger and cargo flights fly over the region annually, and airborne volcanic ash is a threat to them. Many remote eruptions have been detected shortly after the initial magmatic activity using satellite data, and eruption clouds have been tracked across air traffic routes. Within minutes after eruptions are detected, information is relayed to government agencies, private companies, and the general public using telephone, fax, and e-mail. Monitoring of volcanoes using satellite image data involves direct reception, real-time monitoring, and data analysis. Two satellite data receiving stations, located at the Geophysical Institute, University of Alaska Fairbanks (UAF), are capable of receiving data from the advanced very high resolution radiometer (AVHRR) on National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from synthetic aperture radar (SAR) equipped satellites.

  14. Framework for ecological monitoring on lands of Alaska National Wildlife Refuges and their partners

    USGS Publications Warehouse

    Woodward, Andrea; Beever, Erik A.

    2010-01-01

    National Wildlife Refuges in Alaska and throughout the U.S. have begun developing a spatially comprehensive monitoring program to inform management decisions, and to provide data to broader research projects. In an era of unprecedented rates of climate change, monitoring is essential to detecting, understanding, communicating and mitigating climate-change effects on refuge and other resources under the protection of U.S. Fish and Wildlife Service, and requires monitoring results to address spatial scales broader than individual refuges. This document provides guidance for building a monitoring program for refuges in Alaska that meets refuge-specific management needs while also allowing synthesis and summary of ecological conditions at the ecoregional and statewide spatial scales.

  15. Protocols for long-term monitoring of seabird ecology in the Gulf of Alaska

    USGS Publications Warehouse

    Piatt, John F.; Byrd, G. Vernon; Harding, Ann M.A.; Kettle, Arthur B.; Kitaysky, Sasha; Litzow, Michael A.; Roseneau, David G.; Shultz, Michael T.; van Pelt, Thomas I.

    2003-01-01

    Seabird populations will need to be monitored for many years to assess both recovery and ecological conditions affecting recovery. Detailed studies of individual seabird colonies and marine ecosystems in the Gulf of Alaska have been conducted by the U.S. Geological Survey and U.S. Fish and Wildlife Service under the auspices of damage assessment and restoration programs of the Trustee Council. Much has been learned about factors influencing seabird populations and their capacity to recover from the spill in the Gulf of Alaska. As the restoration program moves toward long-term monitoring of populations, however, protocols and long-term monitoring strategies that focus on key parameters of interest and that are inexpensive, practical, and applicable over a large geographic area need to be developed.

  16. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  17. United States Postal Service Hovercraft Transport of Alaska Bypass Mail Ecological Monitoring Summary Report

    DOT National Transportation Integrated Search

    2000-03-01

    The Alaska Hovercraft Ecological Monitoring Program evaluated the nature and extent of impacts, if any, from use of the hovercraft to fish, waterfowl, and subsistence efforts. This report documents monitoring methods, and presents results of the data...

  18. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and

  19. Potential for Expanding the Near Real Time ForWarn Regional Forest Monitoring System to Include Alaska

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Gasser, Gerald; Hargrove, William; Smoot, James; Kuper, Philip D.

    2014-01-01

    The on-line near real time (NRT) ForWarn system is currently deployed to monitor regional forest disturbances within the conterminous United States (CONUS), using daily MODIS Aqua and Terra NDVI data to derive monitoring products. The Healthy Forest Restoration Act of 2003 mandated such a system. Work on ForWarn began in 2006 with development and validation of retrospective MODIS NDVI-based forest monitoring products. Subsequently, NRT forest disturbance monitoring products were demonstrated, leading to the actual system deployment in 2010. ForWarn provides new CONUS forest disturbance monitoring products every 8 days, using USGS eMODIS data for current NDVI. ForWarn currently does not cover Alaska, which includes extensive forest lands at risk to multiple biotic and abiotic threats. This poster discusses a case study using Alaska eMODIS Terra data to derive ForWarn like forest change products during the 2010 growing season. The eMODIS system provides current MODIS Terra NDVI products for Alaska. Resulting forest change products were assessed with ground, aerial, and Landsat reference data. When cloud and snow free, these preliminary products appeared to capture regional forest disturbances from insect defoliation and fires; however, more work is needed to mitigate cloud and snow contamination, including integration of eMODIS Aqua data.

  20. EarthScope's Plate Boundary Observatory in Alaska: Building on Existing Infrastructure to Provide a Platform for Integrated Research and Hazard-monitoring Efforts

    NASA Astrophysics Data System (ADS)

    Boyce, E. S.; Bierma, R. M.; Willoughby, H.; Feaux, K.; Mattioli, G. S.; Enders, M.; Busby, R. W.

    2014-12-01

    EarthScope's geodetic component in Alaska, the UNAVCO-operated Plate Boundary Observatory (PBO) network, includes 139 continuous GPS sites and 41 supporting telemetry relays. These are spread across a vast area, from northern AK to the Aleutians. Forty-five of these stations were installed or have been upgraded in cooperation with various partner agencies and currently provide data collection and transmission for more than one group. Leveraging existing infrastructure normally has multiple benefits, such as easier permitting requirements and costs savings through reduced overall construction and maintenance expenses. At some sites, PBO-AK power and communications systems have additional capacity beyond that which is needed for reliable acquisition of GPS data. Where permits allow, such stations could serve as platforms for additional instrumentation or real-time observing needs. With the expansion of the Transportable Array (TA) into Alaska, there is increased interest to leverage existing EarthScope resources for station co-location and telemetry integration. Because of the complexity and difficulty of long-term O&M at PBO sites, however, actual integration of GPS and seismic equipment must be considered on a case-by-case basis. UNAVCO currently operates two integrated GPS/seismic stations in collaboration with the Alaska Earthquake Center, and three with the Alaska Volcano Observatory. By the end of 2014, PBO and TA plan to install another four integrated and/or co-located geodetic and seismic systems. While three of these are designed around existing PBO stations, one will be a completely new TA installation, providing PBO with an opportunity to expand geodetic data collection in Alaska within the limited operations and maintenance phase of the project. We will present some of the design considerations, outcomes, and lessons learned from past and ongoing projects to integrate seismometers and other instrumentation at PBO-Alaska stations. Developing the PBO

  1. Earthquake locations determined by the Southern Alaska seismograph network for October 1971 through May 1989

    USGS Publications Warehouse

    Fogleman, Kent A.; Lahr, John C.; Stephens, Christopher D.; Page, Robert A.

    1993-01-01

    This report describes the instrumentation and evolution of the U.S. Geological Survey’s regional seismograph network in southern Alaska, provides phase and hypocenter data for seismic events from October 1971 through May 1989, reviews the location methods used, and discusses the completeness of the catalog and the accuracy of the computed hypocenters. Included are arrival time data for explosions detonated under the Trans-Alaska Crustal Transect (TACT) in 1984 and 1985.The U.S. Geological Survey (USGS) operated a regional network of seismographs in southern Alaska from 1971 to the mid 1990s. The principal purpose of this network was to record seismic data to be used to precisely locate earthquakes in the seismic zones of southern Alaska, delineate seismically active faults, assess seismic risks, document potential premonitory earthquake phenomena, investigate current tectonic deformation, and study the structure and physical properties of the crust and upper mantle. A task fundamental to all of these goals was the routine cataloging of parameters for earthquakes located within and adjacent to the seismograph network.The initial network of 10 stations, 7 around Cook Inlet and 3 near Valdez, was installed in 1971. In subsequent summers additions or modifications to the network were made. By the fall of 1973, 26 stations extended from western Cook Inlet to eastern Prince William Sound, and 4 stations were located to the east between Cordova and Yakutat. A year later 20 additional stations were installed. Thirteen of these were placed along the eastern Gulf of Alaska with support from the National Oceanic and Atmospheric Administration (NOAA) under the Outer Continental Shelf Environmental Assessment Program to investigate the seismicity of the outer continental shelf, a region of interest for oil exploration. Since then the region covered by the network remained relatively fixed while efforts were made to make the stations more reliable through improved electronic

  2. Alaska - Russian Far East connection in volcano research and monitoring

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Eichelberger, J. C.; Gordeev, E.; Neal, C. A.; Chebrov, V. N.; Girina, O. A.; Demyanchuk, Y. V.; Rybin, A. V.

    2012-12-01

    The Kurile-Kamchatka-Alaska portion of the Pacific Rim of Fire spans for nearly 5400 km. It includes more than 80 active volcanoes and averages 4-6 eruptions per year. Resulting ash clouds travel for hundreds to thousands of kilometers defying political borders. To mitigate volcano hazard to aviation and local communities, the Alaska Volcano Observatory (AVO) and the Institute of Volcanology and Seismology (IVS), in partnership with the Kamchatkan Branch of the Geophysical Survey of the Russian Academy of Sciences (KBGS), have established a collaborative program with three integrated components: (1) volcano monitoring with rapid information exchange, (2) cooperation in research projects at active volcanoes, and (3) volcanological field schools for students and young scientists. Cooperation in volcano monitoring includes dissemination of daily information on the state of volcanic activity in neighboring regions, satellite and visual data exchange, as well as sharing expertise and technologies between AVO and the Kamchatkan Volcanic Eruption Response Team (KVERT) and Sakhalin Volcanic Eruption Response Team (SVERT). Collaboration in scientific research is best illustrated by involvement of AVO, IVS, and KBGS faculty and graduate students in mutual international studies. One of the most recent examples is the NSF-funded Partnerships for International Research and Education (PIRE)-Kamchatka project focusing on multi-disciplinary study of Bezymianny volcano in Kamchatka. This international project is one of many that have been initiated as a direct result of a bi-annual series of meetings known as Japan-Kamchatka-Alaska Subduction Processes (JKASP) workshops that we organize together with colleagues from Hokkaido University, Japan. The most recent JKASP meeting was held in August 2011 in Petropavlovsk-Kamchatsky and brought together more than 130 scientists and students from Russia, Japan, and the United States. The key educational component of our collaborative program

  3. Filling the monitoring gaps across the US Arctic by permanently adopting USArray stations

    NASA Astrophysics Data System (ADS)

    Buurman, H.; West, M. E.

    2017-12-01

    The USArray project represents a truly unique opportunity to fundamentally change geophysical monitoring in the US Arctic. The addition of more than 200 stations capable of recording seismic, infrasound, ground temperature and meteorologic data has brought a diverse group of organizations to the table, fostering new connections and collaborations between scientists whose paths otherwise would not cross. With the array slated for removal beginning in 2019, there is a window of opportunity to advocate for permanently retaining a subset of the USArray stations. The Alaska Earthquake Center has drafted a plan to permanently adopt a subset of the USArray stations and maintain them as part of the seismic network in Alaska. The expanded seismic network would substantially improve on the Alaska Earthquake Center's ongoing mission to advance Alaska's resilience to earthquake hazards. By continuing to provide public climate and infrasound data, the Alaska Earthquake Center would also fill important gaps in the weather, wildfire and climate research monitoring networks across Alaska. The many challenges in adopting USArray stations include choosing which stations to retain, upgrading the power systems to have 24/7 data transmission through the long Alaskan winter months, and lowering the costs of continuous telemetry.

  4. The Alaska Water Isotope Network (AKWIN): Precipitation, lake, river and stream dynamics

    NASA Astrophysics Data System (ADS)

    Rogers, M.; Welker, J. M.; Toohey, R.

    2011-12-01

    The hydrologic cycle is central to the structure and function of northern landscapes. The movement of water creates interactions between terrestrial, aquatic, marine and atmospheric processes. Understanding the processes and the spatial patterns that govern the isotopic (δ18O & δD) characteristics of the hydrologic cycle is especially important today as: a) modern climate/weather-isotope relations allow for more accurate interpretation of climate proxies and the calibration of atmospheric models, b) water isotopes facilitate understanding the role of storm tracks in regulating precipitation isotopic variability, c) water isotopes allow for estimates of glacial melt water inputs into aquatic systems, d) water isotopes allow for quantification of surface and groundwater interactions, e) water isotopes allow for quantification of permafrost meltwater use by plant communities, f) water isotopes aid in migratory bird forensics, g) water isotopes are critical to estimating field metabolic rates, h) water isotopes allow for crop and diet forensics and i) water isotopes can provide insight into evaporation and transpiration processes. As part of a new NSF MRI project at the Environment and Natural Resources Institute (ENRI) at the University of Alaska Anchorage and as an extension of the US Network for Isotopes in Precipitation (USNIP); we are forming AKWIN. The network will utilize long-term weekly sampling at Denali National Park and Caribou Poker Creek Watershed (USNIP sites-1989 to present), regular sampling across Alaska involving land management agencies (USGS, NPS, USFWS, EPA), educators, volunteers and citizen scientists, UA extended campuses, individual research projects, opportunistic sampling and published data to construct isoscapes and time series databases and information packages. We will be using a suite of spatial and temporal analysis methods to characterize water isotopes across Alaska and will provide web portals for data products. Our network is

  5. Seismic envelope-based detection and location of ground-coupled airwaves from volcanoes in Alaska

    USGS Publications Warehouse

    Fee, David; Haney, Matt; Matoza, Robin S.; Szuberla, Curt A.L.; Lyons, John; Waythomas, Christopher F.

    2016-01-01

    Volcanic explosions and other infrasonic sources frequently produce acoustic waves that are recorded by seismometers. Here we explore multiple techniques to detect, locate, and characterize ground‐coupled airwaves (GCA) on volcano seismic networks in Alaska. GCA waveforms are typically incoherent between stations, thus we use envelope‐based techniques in our analyses. For distant sources and planar waves, we use f‐k beamforming to estimate back azimuth and trace velocity parameters. For spherical waves originating within the network, we use two related time difference of arrival (TDOA) methods to detect and localize the source. We investigate a modified envelope function to enhance the signal‐to‐noise ratio and emphasize both high energies and energy contrasts within a spectrogram. We apply these methods to recent eruptions from Cleveland, Veniaminof, and Pavlof Volcanoes, Alaska. Array processing of GCA from Cleveland Volcano on 4 May 2013 produces robust detection and wave characterization. Our modified envelopes substantially improve the short‐term average/long‐term average ratios, enhancing explosion detection. We detect GCA within both the Veniaminof and Pavlof networks from the 2007 and 2013–2014 activity, indicating repeated volcanic explosions. Event clustering and forward modeling suggests that high‐resolution localization is possible for GCA on typical volcano seismic networks. These results indicate that GCA can be used to help detect, locate, characterize, and monitor volcanic eruptions, particularly in difficult‐to‐monitor regions. We have implemented these GCA detection algorithms into our operational volcano‐monitoring algorithms at the Alaska Volcano Observatory.

  6. Distributed Permafrost Observation Network in Western Alaska: the First Results

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Cable, W.; Marchenko, S. S.; Panda, S. K.

    2014-12-01

    The area of Western Alaska including the Selawik National Wildlife Refuge (SNWR) is generally underrepresented in terms of permafrost thermal monitoring. Thus, the main objective of this study was to establish a permafrost monitoring network in Western Alaska in order to understand the spatial variability in permafrost thermal regime in the area and to have a baseline in order to detect future change. Present and future thawing of permafrost in the region will have a dramatic effect on the ecosystems and infrastructure because the permafrost here generally has a high ice content, as a result of preservation of old ground ice in these relatively cold regions even during the warmer time intervals of the Holocene. Over the summers of 2011 and 2012 a total of 26 automated monitoring stations were established to collect temperature data from the active layer and near-surface permafrost. While most of these stations were basic and only measured the temperature down to 1.5 m at 4 depths, three of the stations had higher vertical temperature resolution down to 3 m. The sites were selected using an ecotype (basic vegetation groups) map of very high resolution (30 m) that had been created for the area in 2009. We found the Upland Dwarf Birch-Tussock Shrub ecotype to be the coldest with a mean annual ground temperature at 1 meter (MAGT1.0) of -3.9 °C during the August 1st, 2012 to July 31st, 2013 measurement period. This is also the most widespread ecotype in the SNWR, covering approximately 28.4% by area. The next widespread ecotype in the SNWR is the Lowland and Upland Birch-Ericaceous Low Shrub. This ecotype had higher ground temperatures with an average MAGT1.0 of -2.4 °C during the same measurement period. We also found that within some ecotypes (White Spruce and Alder-Willow Shrub) the presence or absence of moss on the surface seems to indicate the presence or absence of near surface permafrost. In general, we found good agreement between ecotype classes and

  7. Monitoring start of season in Alaska with GLOBE, AVHRR, and MODIS data

    Treesearch

    Jessica Robin; Ralph Dubayah; Elena Sparrow; Elissa Levine

    2008-01-01

    This work evaluates whether continuity between Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) is achievable for monitoring phenological changes in Alaska. This work also evaluates whether NDVI can detect changes in start of the growing season (SOS) in this region....

  8. Inventory of montane-nesting birds in the Arctic Network of National Parks, Alaska

    USGS Publications Warehouse

    Tibbitts, T.L.; Ruthrauff, D.R.; Gill, Robert E.; Handel, Colleen M.

    2006-01-01

    The Alaska Science Center of the U.S. Geological Survey conducted an inventory of birds in montane areas of the four northern parks in the Arctic Network of National Parks, Alaska. This effort represents the first comprehensive assessment of breeding range and habitat associations for the majority of avian species in the Arctic Network. Ultimately, these data provide a framework upon which to design future monitoring programs.A stratified random sampling design was used to select sample plots (n = 73 plots) that were allocated in proportion to the availability of ecological subsections. Point counts (n = 1,652) were conducted to quantify abundance, distribution, and habitat associations of birds. Field work occurred over three years (2001 to 2003) during two-week-long sessions in late May through early June that coincided with peak courtship activity of breeding birds.Totals of 53 species were recorded in Cape Krusenstern National Monument, 91 in Noatak National Preserve, 57 in Kobuk Valley National Park, and 96 in Gates of the Arctic National Park and Preserve. Substantial proportions of species in individual parks are considered species of conservation concern (18 to 26%) or species of stewardship responsibility of the land managers in the region (8 to 18%). The most commonly detected passerines on point counts included Redpoll spp. (Carduelis flammea and C. hornemanni), Savannah Sparrow (Passerculus sandwichensis), and American Tree Sparrow (Spizella arborea). The most numerous shorebirds were American Golden-Plover (Pluvialis dominica), Wilson’s Snipe (Gallinago delicata), and Whimbrel (Numenius phaeopus). Most species were detected at low rates, reflecting the low breeding densities (and/or low detectabilities) of birds in the montane Arctic. Suites of species were associated with particular ranges of elevation and showed strong associations with particular habitat types.

  9. Presentation from 2016 STAR Tribal Research Meeting: ANTHC Rural Alaska Monitoring Program (RAMP): Assessing, Monitoring, and Adapting to Emerging Environmental Human and Wildlife Health Threats

    EPA Pesticide Factsheets

    This presentation, ANTHC Rural Alaska Monitoring Program (RAMP): Assessing, Monitoring, and Adapting to Emerging Environmental Human and Wildlife Health Threats, was given at the 2016 STAR Tribal Research Meeting held on Sept. 20-21, 2016.

  10. Serial Network Flow Monitor

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.

  11. Revisiting Notable Earthquakes and Seismic Patterns of the Past Decade in Alaska

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Macpherson, K. A.; Holtkamp, S. G.

    2015-12-01

    Alaska, the most seismically active region of the United States, has produced five earthquakes with magnitudes greater than seven since 2005. The 2007 M7.2 and 2013 M7.0 Andreanof Islands earthquakes were representative of the most common source of significant seismic activity in the region, the Alaska-Aleutian megathrust. The 2013 M7.5 Craig earthquake, a strike-slip event on the Queen-Charlotte fault, occurred along the transform plate boundary in southeast Alaska. The largest earthquake of the past decade, the 2014 M7.9 Little Sitkin event in the western Aleutians, occurred at an intermediate depth and ruptured along a gently dipping fault through nearly the entire thickness of the subducted Pacific plate. Along with these major earthquakes, the Alaska Earthquake Center reported over 250,000 seismic events in the state over the last decade, and its earthquake catalog surpassed 500,000 events in mid-2015. Improvements in monitoring networks and processing techniques allowed an unprecedented glimpse into earthquake patterns in Alaska. Some notable recent earthquake sequences include the 2008 Kasatochi eruption, the 2006-2008 M6+ crustal earthquakes in the central and western Aleutians, the 2010 and 2015 Bering Sea earthquakes, the 2014 Noatak swarm, and the 2014 Minto earthquake sequence. In 2013, the Earthscope USArray project made its way into Alaska. There are now almost 40 new Transportable Array stations in Alaska along with over 20 upgraded sites. This project is changing the earthquake-monitoring scene in Alaska, lowering magnitude of completeness across large, newly instrumented parts of the state.

  12. Relationship of Social Network to Protective Factors in Suicide and Alcohol Use Disorder Intervention for Rural Yup’ik Alaska Native Youth

    PubMed Central

    Philip, Jacques; Ford, Tara; Henry, David; Rasmus, Stacy; Allen, James

    2015-01-01

    Suicide and alcohol use disorders are significant Alaska Native health disparities, yet there is limited understanding of protection and no studies of social network factors in protection in this or other populations. The Qungasvik intervention enhances protective factors from suicide and alcohol use disorders through activities grounded in Yup’ik cultural practices and values. Identification of social network factors associated with protection within the cultural context of these tight, close knit, and high density rural Yup’ik Alaska Native communities in southwest Alaska can help identify effective prevention strategies for suicide and alcohol use disorder risk. Using data from ego-centered social network and protective factors from suicide and alcohol use disorders surveys with 50 Yup’ik adolescents, we provide descriptive data on structural and network composition variables, identify key network variables that explain major proportions of the variance in a four principal component structure of these network variables, and demonstrate the utility of these key network variables as predictors of family and community protective factors from suicide and alcohol use disorder risk. Connections to adults and connections to elders, but not peer connections, emerged as predictors of family and community level protection, suggesting these network factors as important intervention targets for intervention. PMID:27110094

  13. A network security monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heberlein, L.T.; Dias, G.V.; Levitt, K.N.

    1989-11-01

    The study of security in computer networks is a rapidly growing area of interest because of the proliferation of networks and the paucity of security measures in most current networks. Since most networks consist of a collection of inter-connected local area networks (LANs), this paper concentrates on the security-related issues in a single broadcast LAN such as Ethernet. Specifically, we formalize various possible network attacks and outline methods of detecting them. Our basic strategy is to develop profiles of usage of network resources and then compare current usage patterns with the historical profile to determine possible security violations. Thus, ourmore » work is similar to the host-based intrusion-detection systems such as SRI's IDES. Different from such systems, however, is our use of a hierarchical model to refine the focus of the intrusion-detection mechanism. We also report on the development of our experimental LAN monitor currently under implementation. Several network attacks have been simulated and results on how the monitor has been able to detect these attacks are also analyzed. Initial results demonstrate that many network attacks are detectable with our monitor, although it can surely be defeated. Current work is focusing on the integration of network monitoring with host-based techniques. 20 refs., 2 figs.« less

  14. Proceedings of the Alaska forest soil productivity workshop.

    Treesearch

    C.W. Slaughter; T. Gasbarro

    1988-01-01

    The Alaska Forest Soil Productivity Workshop addressed (1) the role of soil information for forest management in Alaska; (2) assessment, monitoring, and enhancement of soil productivity; and (3) Alaska research projects involved in studies of productivity of forests and soils. This proceedings includes 27 papers in five categories: agency objectives in monitoring and...

  15. Evaluation of Unmanned Aircraft System (UAS) to Monitor Forest Health Conditions in Alaska

    NASA Astrophysics Data System (ADS)

    Webley, P. W.; Hatfield, M. C.; Heutte, T. M.; Winton, L. M.

    2017-12-01

    US Forest Service Alaska Region Forest Health Protection (FHP) and University of Alaska Fairbanks (UAF), Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) are evaluating the capability of Unmanned Aerial Systems (UAS, "drone" informally) to monitor forest health conditions in Alaska's Interior Region. On July 17-20 2017, FHP and ACUASI deployed two different UAS at permanent forest inventory plots managed by the UAF programs Bonanza Creek Long Term Ecological Research (LTER) and Cooperative Alaska Forest Inventory (CAFI). The purpose of the mission was to explore capabilities of UAS for evaluating aspen tree mortality at inaccessible locations and at a scale and precision not generally achievable with currently used ground- or air-based methods. Drawing from experience gained during the initial 2016 campaign, this year emphasized the efficient use of UAS to accomplish practical field research in a variety of realistic situations. The vehicles selected for this years' effort included the DJI Matrice quadcopter with the Zenmuse-X3 camera to quickly capture initial video of the site and tree conditions; followed by the ING Responder (single rotor electric helicopter based on the Gaui X7 airframe) outfitted with a Nikon D810 camera to collect high-resolution stills suitable for construction of orthomosaic models. A total of 12 flights were conducted over the campaign, with two full days dedicated to the Delta Junction Gerstle River Intermediate (GRI) sites and the remaining day at the Bonanza Creek site. In addition to demonstrating the ability of UAS to operate safely and effectively in various canopy conditions, the effort also validated the ability of teams to deliver UAS and scientific payloads into challenging terrain using all-terrain vehicles (ATV) and foot traffic. Analysis of data from the campaign is underway. Because the permanent plots have been recently evaluated it is known that nearly all aspen mortality is caused by an aggressive canker

  16. Monitoring air quality in Southeast Alaska’s National Parks and Forests: Linking atmospheric pollutants with ecological effects

    Treesearch

    D. Schirokauer; L. Geiser; A. Bytnerowicz; M. Fenn; K. Dillman

    2014-01-01

    Air quality and air quality related values are important resources to the National Park Service (NPS) units and Wilderness areas in northern Southeast Alaska. Air quality monitoring was prioritized as a high-priority Vital Sign at the Southeast Alaska Network’s (SEAN) Inventory and Monitoring Program’s terrestrial scoping workshop (Derr and Fastie 2006). Air quality...

  17. 1997 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Wallace, Kristi L.

    1999-01-01

    The Alaska Volcano Observatory (AVO) monitors over 40 historically active volcanoes along the Aleutian Arc. Twenty are seismically monitored and for the rest, the AVO monitoring program relies mainly on pilot reports, observations of local residents and ship crews, and daily analysis of satellite images. In 1997, AVO responded to eruptive activity or suspect volcanic activity at 11 volcanic centers: Wrangell, Sanford, Shrub mud volcano, Iliamna, the Katmai group (Martin, Mageik, Snowy, and Kukak volcanoes), Chiginagak, Pavlof, Shishaldin, Okmok, Cleveland, and Amukta. Of these, AVO has real-time, continuously recording seismic networks at Iliamna, the Katmai group, and Pavlof. The phrase “suspect volcanic activity” (SVA), used to characterize several responses, is an eruption report or report of unusual activity that is subsequently determined to be normal or enhanced fumarolic activity, weather-related phenomena, or a non-volcanic event. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) about the 1997 activity of 5 Russian volcanoes--Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Alaid (SVA). This report summarizes volcanic activity and SVA in Alaska during 1997 and the AVO response, as well as information on the reported activity at the Russian volcanoes. Only those reports or inquiries that resulted in a “significant” investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of reports throughout the year of steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1997 response record.

  18. Network Monitor and Control of Disruption-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh

    2014-01-01

    For nearly a decade, NASA and many researchers in the international community have been developing Internet-like protocols that allow for automated network operations in networks where the individual links between nodes are only sporadically connected. A family of Disruption-Tolerant Networking (DTN) protocols has been developed, and many are reaching CCSDS Blue Book status. A NASA version of DTN known as the Interplanetary Overlay Network (ION) has been flight-tested on the EPOXI spacecraft and ION is currently being tested on the International Space Station. Experience has shown that in order for a DTN service-provider to set up a large scale multi-node network, a number of network monitor and control technologies need to be fielded as well as the basic DTN protocols. The NASA DTN program is developing a standardized means of querying a DTN node to ascertain its operational status, known as the DTN Management Protocol (DTNMP), and the program has developed some prototypes of DTNMP software. While DTNMP is a necessary component, it is not sufficient to accomplish Network Monitor and Control of a DTN network. JPL is developing a suite of tools that provide for network visualization, performance monitoring and ION node control software. This suite of network monitor and control tools complements the GSFC and APL-developed DTN MP software, and the combined package can form the basis for flight operations using DTN.

  19. Recorded earthquake responses from the integrated seismic monitoring network of the Atwood Building, Anchorage, Alaska

    USGS Publications Warehouse

    Celebi, M.

    2006-01-01

    An integrated seismic monitoring system with a total of 53 channels of accelerometers is now operating in and at the nearby free-field site of the 20-story steel-framed Atwood Building in highly seismic Anchorage, Alaska. The building has a single-story basement and a reinforced concrete foundation without piles. The monitoring system comprises a 32-channel structural array and a 21-channel site array. Accelerometers are deployed on 10 levels of the building to assess translational, torsional, and rocking motions, interstory drift (displacement) between selected pairs of adjacent floors, and average drift between floors. The site array, located approximately a city block from the building, comprises seven triaxial accelerometers, one at the surface and six in boreholes ranging in depths from 15 to 200 feet (???5-60 meters). The arrays have already recorded low-amplitude shaking responses of the building and the site caused by numerous earthquakes at distances ranging from tens to a couple of hundred kilometers. Data from an earthquake that occurred 186 km away traces the propagation of waves from the deepest borehole to the roof of the building in approximately 0.5 seconds. Fundamental structural frequencies [0.58 Hz (NS) and 0.47 Hz (EW)], low damping percentages (2-4%), mode coupling, and beating effects are identified. The fundamental site frequency at approximately 1.5 Hz is close to the second modal frequencies (1.83 Hz NS and 1.43 EW) of the building, which may cause resonance of the building. Additional earthquakes prove repeatability of these characteristics; however, stronger shaking may alter these conclusions. ?? 2006, Earthquake Engineering Research Institute.

  20. Seamonster: A Smart Sensor Web in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Heavner, M. J.; Hood, E.; Connor, C.; Nagorski, S.

    2006-12-01

    The NASA Research Opportunities in Space and Earth Science (ROSES) program is supporting a wireless sensor network project as part of its Advanced Information Systems Technology "Smart Sensor Web" initiative. The project, entitled Seamonster (for SouthEast Alaska MONitoring Network for Science, Telecomm, and Education Research) is led by the University of Alaska Southeast (Juneau) in collaboration with Microsoft- Vexcel in Boulder Colorado. This paper describes both the data acquisition components and science research objectives of Seamonster. The underlying data acquisition concept is to facilitate geophysics data acquisition by providing a wireless backbone for data recovery. Other researchers would be encouraged to emplace their own sensors together with short-range wireless (ZigBee, Bluetooth, etc). Through a common protocol the backbone will receive data from these sensors and relay them to a wired server. This means that the investigator can receive their data via email on a daily basis thereby cutting cost and monitoring sensor health. With environmental hardening and fairly high bandwidth and long range (100kbps/50km to 5mpbs/15km per hop) the network is intended to cover large areas and operate in harsh environments. Low power sensors and intelligent power management within the backbone are the dual ideas to contend with typical power/cost/data dilemmas. Seamonster science will focus over the next three years on hydrology and glaciology in a succession of valleys near Juneau in various stages of deglaciation, in effect providing a synopsis of a millennium-timescale process in a single moment. The instrumentation will include GPS, geophones, digital photography, met stations, and a suite of stream state and water quality sensors. Initial focus is on the Lemon Creek watershed with expansion to follow in subsequent years. The project will ideally expand to include marine and biological monitoring components.

  1. The Indigenous Observation Network: Collaborative, Community-Based Monitoring in the Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Herman-Mercer, N. M.; Mutter, E. A.; Wilson, N. J.; Toohey, R.; Schuster, P. F.

    2017-12-01

    The Indigenous Observation Network (ION) is a collaborative Community-Based Monitoring (CBM) program with both permafrost and water-quality monitoring components operating in the Yukon River Basin (YRB) of Alaska and Canada. ION is jointly facilitated by the Yukon River Inter-Tribal Watershed Council (YRITWC), an indigenous non-profit organization, and the US Geological Survey (USGS), a federal agency. The YRB is the fourth largest drainage basin in North America encompassing 855,000 square kilometers in northwestern Canada and central Alaska and is essential to the ecosystems of the Bering and Chuckchi Seas. Water is also fundamental to the subsistence and culture of the 76 Tribes and First Nations that live in the YRB providing sustenance in the form of drinking water, fish, wildlife, and vegetation. Despite the ecological and cultural significance of the YRB, the remote geography of sub-Arctic and Arctic Alaska and Canada make it difficult to collect scientific data in these locations and led to a lack of baseline data characterizing this system until recently. In response to community concerns about the quality of the YR and a desire by USGS scientists to create a long term water-quality database, the USGS and YRITWC collaborated to create ION in 2005. Surface water samples are collected by trained community technicians from Tribal Environmental Programs or First Nation Lands and Resources staff from over 35 Alaska Native Tribes and First Nations that reside along the YR and/or one of the major tributaries. Samples are analyzed at USGS laboratories in Boulder, CO and results are disseminated to participating YRB communities and the general public. This presentation will focus on the factors that have enabled the longevity and success of this program over the last decade, as well as the strategies ION uses to ensure the credibility of the data collected by community members and best practices that have facilitated the collection of surface water data in remote

  2. Alaska telemedicine: growth through collaboration.

    PubMed

    Patricoski, Chris

    2004-12-01

    The last thirty years have brought the introduction and expansion of telecommunications to rural and remote Alaska. The intellectual and financial investment of earlier projects, the more recent AFHCAN Project and the Universal Service Administrative Company Rural Health Care Division (RHCD) has sparked a new era in telemedicine and telecommunication across Alaska. This spark has been flamed by the dedication and collaboration of leaders at he highest levels of organizations such as: AFHCAN member organizations, AFHCAN Office, Alaska Clinical Engineering Services, Alaska Federal Health Care Partnership, Alaska Federal Health Care Partnership Office, Alaska Native health Board, Alaska Native Tribal health Consortium, Alaska Telehealth Advisory Council, AT&T Alascom, GCI Inc., Health care providers throughout the state of Alaska, Indian Health Service, U.S. Department of Health and Human Services, Office of U.S. Senator Ted Steens, State of Alaska, U.S. Department of Homeland Security--United States Coast Guard, United States Department of Agriculture, United States Department of Defense--Air Force and Army, United States Department of Veterans Affairs, University of Alaska, and University of Alaska Anchorage. Alaska now has one of the largest telemedicine programs in the world. As Alaska moves system now in place become self-sustaining, and 2) collaborating with all stakeholders in promoting the growth of an integrated, state-wide telemedicine network.

  3. Shear-wave splitting observations of mantle anisotropy beneath Alaska

    NASA Astrophysics Data System (ADS)

    Bellesiles, A. K.; Christensen, D. H.; Entwistle, E.; Litherland, M.; Abers, G. A.; Song, X.

    2009-12-01

    Observations of seismic anisotropy were obtained from three different PASSCAL broadband experiments throughout Alaska, using shear-wave splitting from teleseismic SKS phases. The MOOS (Multidisciplinary Observations Of Subduction), BEAAR (Broadband Experiment Across the Alaska Range), and ARCTIC (Alaska Receiving Cross-Transects for the Inner Core) networks were used along with selected permanent broadband stations operated by AEIC (Alaska Earthquake Information Center) to produce seismic anisotropy results for the state of Alaska along a north south transect from the active subduction zone in the south, through continental Alaska, to the passive margin in the north. The BEAAR network is in-between the ARCTIC and MOOS networks above the subducting Pacific Plate and mantle wedge and shows a tight ~90 degree rotation of anisotropy above the 70km contour of the subducting plate. The southern stations in BEAAR yield anisotropy results that are subparallel to the Pacific Plate motion as it subducts under North America. These stations have an average fast direction of -45 degrees and 1.03 seconds of delay on average. The MOOS network in south central Alaska yielded similar results with an average fast direction of -30 degrees and delay times of .9 seconds. In the north portion of the BEAAR network the anisotropy is along strike of the subduction zone and has an average fast direction of 27 degrees with an average delay time of 1.4 seconds, although the delay times above the mantle wedge range from 1 to 2.5 seconds and are directly correlated to the length of ray path in the mantle wedge. This general trend NE/SW is seen in the ARCTIC stations to the north although the furthest north stations are oriented more NNE compared to those in BEAAR. The average fast direction for the ARCTIC network is 40 degrees with an average delay time of 1.05 seconds. These results show two distinct orientations of anisotropy in Alaska separated by the subducting Pacific Plate.

  4. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Monitoring network completion. 58.13... (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a) The network of NCore multipollutant sites must be physically established no later than January 1, 2011...

  5. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Monitoring network completion. 58.13... (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a) The network of NCore multipollutant sites must be physically established no later than January 1, 2011...

  6. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Monitoring network completion. 58.13 Section 58.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a...

  7. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Monitoring network completion. 58.13 Section 58.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a...

  8. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Monitoring network completion. 58.13 Section 58.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a...

  9. Monitoring start of season in Alaska with GLOBE, AVHRR, and MODIS data

    NASA Astrophysics Data System (ADS)

    Robin, Jessica; Dubayah, Ralph; Sparrow, Elena; Levine, Elissa

    2008-03-01

    This work evaluates whether continuity between Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) is achievable for monitoring phenological changes in Alaska. This work also evaluates whether NDVI can detect changes in start of the growing season (SOS) in this region. Six quadratic regression models with NDVI as a function of accumulated growing degree days (AGDD) were developed from 2001 through 2004 AVHRR and MODIS NDVI data sets for urban, mixed, and forested land covers. Model parameters determined NDVI values for start of the observational period as well as peak and length of the growing season. NDVI values for start of the growing season were determined from the model equations and field observations of SOS made by GLOBE students and researchers at University of Alaska Fairbanks. AGDD was computed from daily air temperature. AVHRR and MODIS models were significantly different from one another with differences in the start of the observational season as well as start, peak, and length of the growing season. Furthermore, AGDD for SOS was significantly lower during the 1990s than the 1980s. NDVI values at SOS did not detect this change. There are limitations with using NDVI to monitor phenological changes in these regions because of snow, the large extent of conifers, and clouds, which restrict the composite period. In addition, differing processing and spectral characteristics restrict continuity between AVHRR and MODIS NDVI data sets.

  10. Long-term autonomous volcanic gas monitoring with Multi-GAS at Mount St. Helens, Washington, and Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Ketner, D. M.; Kern, C.; Lahusen, R. G.; Lockett, C.; Parker, T.; Paskievitch, J.; Pauk, B.; Rinehart, A.; Werner, C. A.

    2015-12-01

    In recent years, the USGS Volcano Hazards Program has worked to implement continuous real-time in situ volcanic gas monitoring at volcanoes in the Cascade Range and Alaska. The main goal of this ongoing effort is to better link the compositions of volcanic gases to other real-time monitoring data, such as seismicity and deformation, in order to improve baseline monitoring and early detection of volcanic unrest. Due to the remote and difficult-to-access nature of volcanic-gas monitoring sites in the Cascades and Alaska, we developed Multi-GAS instruments that can operate unattended for long periods of time with minimal direct maintenance from field personnel. Our Multi-GAS stations measure H2O, CO2, SO2, and H2S gas concentrations, are comprised entirely of commercial off-the-shelf components, and are powered by small solar energy systems. One notable feature of our Multi-GAS stations is that they include a unique capability to perform automated CO2, SO2, and H2S sensor verifications using portable gas standards while deployed in the field, thereby allowing for rigorous tracking of sensor performances. In addition, we have developed novel onboard data-processing routines that allow diagnostic and monitoring data - including gas ratios (e.g. CO2/SO2) - to be streamed in real time to internal observatory and public web pages without user input. Here we present over one year of continuous data from a permanent Multi-GAS station installed in August 2014 in the crater of Mount St. Helens, Washington, and several months of data from a station installed near the summit of Augustine Volcano, Alaska in June 2015. Data from the Mount St. Helens Multi-GAS station has been streaming to a public USGS site since early 2015, a first for a permanent Multi-GAS site. Neither station has detected significant changes in gas concentrations or compositions since they were installed, consistent with low levels of seismicity and deformation.

  11. EarthScope's Transportable Array in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Enders, M.; Miner, J.; Bierma, R. M.; Busby, R.

    2015-12-01

    EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. As the array doubles in Alaska, IRIS continues to collaborate closely with other network operators, universities and research consortia in Alaska and Canada including the Alaska Earthquake Center (AEC), the Alaska Volcano Observatory (AVO), the UNAVCO Plate Boundary Observatory (PBO), the National Tsunami Warning Center (NTWC), Natural Resources Canada (NRCAN), Canadian Hazard Information Service (CHIS), the Yukon Geologic Survey (YGS), the Pacific Geoscience Center of the Geologic Survey, Yukon College and others. During FY14 and FY15 the TA has completed upgrade work at 20 Alaska Earthquake Center stations and 2 AVO stations, TA has co-located borehole seismometers at 5 existing PBO GPS stations to augment the EarthScope observatory. We present an overview of deployment plan and the status through 2015. The performance of new Alaska TA stations including improvements to existing stations is described.

  12. Georgia's Stream-Water-Quality Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.; ,

    2006-01-01

    The USGS stream-water-quality monitoring network for Georgia is an aggregation of smaller networks and individual monitoring stations that have been established in cooperation with Federal, State, and local agencies. These networks collectively provide data from 130 sites, 62 of which are monitored continuously in real time using specialized equipment that transmits these data via satellite to a centralized location for processing and storage. These data are made available on the Web in near real time at http://waterdata.usgs.gov/ga/nwis/ Ninety-eight stations are sampled periodically for a more extensive suite of chemical and biological constituents that require laboratory analysis. Both the continuous and the periodic water-quality data are archived and maintained in the USGS National Water Information System and are available to cooperators, water-resource managers, and the public. The map at right shows the USGS stream-water-quality monitoring network for Georgia and major watersheds. The network represents an aggregation of smaller networks and individual monitoring stations that collectively provide data from 130 sites.

  13. 40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Annual monitoring network plan and periodic network assessment. 58.10 Section 58.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.10 Annual...

  14. 40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Annual monitoring network plan and periodic network assessment. 58.10 Section 58.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.10 Annual...

  15. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been usedmore » by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected

  16. Facts About Alaska, Alaska Kids' Corner, State of Alaska

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees State of Alaska Search Home Quick Links Departments Commissioners Employee Whitepages State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  17. A network monitor for HTTPS protocol based on proxy

    NASA Astrophysics Data System (ADS)

    Liu, Yangxin; Zhang, Lingcui; Zhou, Shuguang; Li, Fenghua

    2016-10-01

    With the explosive growth of harmful Internet information such as pornography, violence, and hate messages, network monitoring is essential. Traditional network monitors is based mainly on bypass monitoring. However, we can't filter network traffic using bypass monitoring. Meanwhile, only few studies focus on the network monitoring for HTTPS protocol. That is because HTTPS data is in the encrypted traffic, which makes it difficult to monitor. This paper proposes a network monitor for HTTPS protocol based on proxy. We adopt OpenSSL to establish TLS secure tunes between clients and servers. Epoll is used to handle a large number of concurrent client connections. We also adopt Knuth- Morris-Pratt string searching algorithm (or KMP algorithm) to speed up the search process. Besides, we modify request packets to reduce the risk of errors and modify response packets to improve security. Experiments show that our proxy can monitor the content of all tested HTTPS websites efficiently with little loss of network performance.

  18. Sensor Network Architectures for Monitoring Underwater Pipelines

    PubMed Central

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669

  19. Sensor network architectures for monitoring underwater pipelines.

    PubMed

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  20. Remote Energy Monitoring System via Cellular Network

    NASA Astrophysics Data System (ADS)

    Yunoki, Shoji; Tamaki, Satoshi; Takada, May; Iwaki, Takashi

    Recently, improvement on power saving and cost efficiency by monitoring the operation status of various facilities over the network has gained attention. Wireless network, especially cellular network, has advantage in mobility, coverage, and scalability. On the other hand, it has disadvantage of low reliability, due to rapid changes in the available bandwidth. We propose a transmission control scheme based on data priority and instantaneous available bandwidth to realize a highly reliable remote monitoring system via cellular network. We have developed our proposed monitoring system and evaluated the effectiveness of our scheme, and proved it reduces the maximum transmission delay of sensor status to 1/10 compared to best effort transmission.

  1. New Coastal Tsunami Gauges: Application at Augustine Volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    Burgy, M.; Bolton, D. K.

    2006-12-01

    Recent eruptive activity at Augustine Volcano and its associated tsunami threat to lower Cook Inlet pointed out the need for a quickly deployable tsunami detector which could be installed on Augustine Island's coast. The detector's purpose would be to verify tsunami generation by direct observation of the wave at the source to support tsunami warning decisions along populated coastlines. To fill this need the Tsunami Mobile Alert Real-Time (TSMART) system was developed at NOAA's West Coast/Alaska Tsunami Warning Center with support from the University of Alaska Tsunami Warning and Environmental Observatory for Alaska program (TWEAK) and the Alaska Volcano Observatory (AVO). The TSMART system consists of a pressure sensor installed as near as possible to the low tide line. The sensor is enclosed in a water-tight hypalon bag filled with propylene-glycol to prevent silt damage to the sensor and freezing. The bag is enclosed in a perforated, strong plastic pipe about 16 inches long and 8 inches in diameter enclosed at both ends for protection. The sensor is cabled to a data logger/radio/power station up to 300 feet distant. Data are transmitted to a base station and made available to the warning center in real-time through the internet. This data telemetry system can be incorporated within existing AVO and Plate Boundary Observatory networks which makes it ideal for volcano-tsunami monitoring. A TSMART network can be utilized anywhere in the world within 120 miles of an internet connection. At Augustine, two test stations were installed on the east side of the island in August 2006. The sensors were located very near the low tide limit and covered with rock, and the cable was buried to the data logger station which was located well above high tide mark. Data logger, radio, battery and other electronics are housed in an enclosure mounted to a pole which also supports an antenna and solar panel. Radio signal is transmitted to a repeater station higher up on the island

  2. Monitoring winter flow conditions on the Ivishak River, Alaska : final report.

    DOT National Transportation Integrated Search

    2017-09-01

    The Sagavanirktok River, a braided river on the Alaska North Slope, flows adjacent to the trans-Alaska pipeline for approximately 100 miles south of Prudhoe Bay. During an unprecedented flooding event in mid-May 2015, the pipeline was exposed in an a...

  3. EPMOSt: An Energy-Efficient Passive Monitoring System for Wireless Sensor Networks

    PubMed Central

    Garcia, Fernando P.; Andrade, Rossana M. C.; Oliveira, Carina T.; de Souza, José Neuman

    2014-01-01

    Monitoring systems are important for debugging and analyzing Wireless Sensor Networks (WSN). In passive monitoring, a monitoring network needs to be deployed in addition to the network to be monitored, named the target network. The monitoring network captures and analyzes packets transmitted by the target network. An energy-efficient passive monitoring system is necessary when we need to monitor a WSN in a real scenario because the lifetime of the monitoring network is extended and, consequently, the target network benefits from the monitoring for a longer time. In this work, we have identified, analyzed and compared the main passive monitoring systems proposed for WSN. During our research, we did not identify any passive monitoring system for WSN that aims to reduce the energy consumption of the monitoring network. Therefore, we propose an Energy-efficient Passive MOnitoring SysTem for WSN named EPMOSt that provides monitoring information using a Simple Network Management Protocol (SNMP) agent. Thus, any management tool that supports the SNMP protocol can be integrated with this monitoring system. Experiments with real sensors were performed in several scenarios. The results obtained show the energy efficiency of the proposed monitoring system and the viability of using it to monitor WSN in real scenarios. PMID:24949639

  4. Enabling end-user network monitoring via the multicast consolidated proxy monitor

    NASA Astrophysics Data System (ADS)

    Kanwar, Anshuman; Almeroth, Kevin C.; Bhattacharyya, Supratik; Davy, Matthew

    2001-07-01

    The debugging of problems in IP multicast networks relies heavily on an eclectic set of stand-alone tools. These tools traditionally neither provide a consistent interface nor do they generate readily interpretable results. We propose the ``Multicast Consolidated Proxy Monitor''(MCPM), an integrated system for collecting, analyzing and presenting multicast monitoring results to both the end user and the network operator at the user's Internet Service Provider (ISP). The MCPM accesses network state information not normally visible to end users and acts as a proxy for disseminating this information. Functionally, through this architecture, we aim to a) provide a view of the multicast network at varying levels of granularity, b) provide end users with a limited ability to query the multicast infrastructure in real time, and c) protect the infrastructure from overwhelming amount of monitoring load through load control. Operationally, our scheme allows scaling to the ISPs dimensions, adaptability to new protocols (introduced as multicast evolves), threshold detection for crucial parameters and an access controlled, customizable interface design. Although the multicast scenario is used to illustrate the benefits of consolidated monitoring, the ultimate aim is to scale the scheme to unicast IP networks.

  5. Promoting Social Network Awareness: A Social Network Monitoring System

    ERIC Educational Resources Information Center

    Cadima, Rita; Ferreira, Carlos; Monguet, Josep; Ojeda, Jordi; Fernandez, Joaquin

    2010-01-01

    To increase communication and collaboration opportunities, members of a community must be aware of the social networks that exist within that community. This paper describes a social network monitoring system--the KIWI system--that enables users to register their interactions and visualize their social networks. The system was implemented in a…

  6. Using Integrated Ecosystem Observations from Gulf Watch Alaska to Assess the Effects of the 2014/2015 Pacific Warm Anomaly in the Northern Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Holderied, K.; Neher, T. H.; McCammon, M.; Hoffman, K.; Hopcroft, R. R.; Lindeberg, M.; Ballachey, B.; Coletti, H.; Esler, D.; Weingartner, T.

    2016-02-01

    The response of nearshore and coastal pelagic ecosystems in the northern Gulf of Alaska to the 2014-2015 Pacific Ocean warm anomaly is being assessed with multi-disciplinary observations of the Gulf Watch Alaska long-term ecosystem monitoring program. Gulf Watch Alaska is an integrated, multi-agency program, funded by the Exxon Valdez oil spill Trustee Council to track populations of nearshore and pelagic species injured by the 1989 oil spill, as well as the marine conditions that affect those species. While the primary program goals are to support management and sustained recovery of species injured directly and indirectly by the spill, the integration of oceanographic observations with monitoring of nearshore and pelagic food webs also facilitates detection and assessment of ecosystem changes. The initial 5-year phase of the Gulf Watch Alaska program was started in 2012 and has provided marine ecosystem observations through the transition in late 2013 from anomalously cool to anomalously warm ocean conditions in the Gulf of Alaska. We review results from and linkages between oceanographic, whale, seabird, intertidal, and plankton monitoring projects in Prince William Sound, Cook Inlet and the northern Gulf of Alaska shelf. We also assess the different ecosystem responses observed between the summers of 2014 and 2015, with the region experiencing unusual amounts of seabird and marine mammal mortalities and harmful algal bloom events in 2015.

  7. Amchitka Mud Pit Sites 2006 Post-Closure Monitoring and Inspection Report, Amchitka Island, Alaska, Rev. No.: 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Patrick

    2006-09-01

    In 2001, the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA/NSO) remediated six areas associated with Amchitka mud pit release sites located on Amchitka Island, Alaska. This included the construction of seven closure caps. To ensure the integrity and effectiveness of remedial action, the mud pit sites are to be inspected every five years as part of DOE's long-term monitoring and surveillance program. In August of 2006, the closure caps were inspected in accordance with the ''Post-Closure Monitoring and Inspection Plan for Amchitka Island Mud Pit Release Sites'' (Rev. 0, November 2005). This post-closure monitoring report provides themore » 2006 cap inspection results.« less

  8. Progress and lessons learned from water-quality monitoring networks

    USGS Publications Warehouse

    Myers, Donna N.; Ludtke, Amy S.

    2017-01-01

    Stream-quality monitoring networks in the United States were initiated and expanded after passage of successive federal water-pollution control laws from 1948 to 1972. The first networks addressed information gaps on the extent and severity of stream pollution and served as early warning systems for spills. From 1965 to 1972, monitoring networks expanded to evaluate compliance with stream standards, track emerging issues, and assess water-quality status and trends. After 1972, concerns arose regarding the ability of monitoring networks to determine if water quality was getting better or worse and why. As a result, monitoring networks adopted a hydrologic systems approach targeted to key water-quality issues, accounted for human and natural factors affecting water quality, innovated new statistical methods, and introduced geographic information systems and models that predict water quality at unmeasured locations. Despite improvements, national-scale monitoring networks have declined over time. Only about 1%, or 217, of more than 36,000 US Geological Survey monitoring sites sampled from 1975 to 2014 have been operated throughout the four decades since passage of the 1972 Clean Water Act. Efforts to sustain monitoring networks are important because these networks have collected information crucial to the description of water-quality trends over time and are providing information against which to evaluate future trends.

  9. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    USGS Publications Warehouse

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two

  10. Spatial and temporal variation in marine birds in the north Gulf of Alaska: The value of marine bird monitoring within Gulf Watch Alaska

    USGS Publications Warehouse

    Kuletz, Kathy J.; Esler, Daniel N.

    2015-01-01

    lingering oil, varied widely among species (see Esler et al., this report). Research and monitoring directed at documenting the timelines and mechanisms of wildlife recovery following the Exxon Valdez oil spill led to an unprecedented understanding of oil spill effects on marine birds, as well as previously unknown information about marine bird ecology in the northern GOA. Quantifying effects of anthropogenic influences requires an understanding of variation in marine bird abundance, distribution, and productivity, in relation to naturally occurring dynamics in marine environments continued marine bird work as part of Gulf Watch Alaska will facilitate this. In addition to their value as indicators of marine conditions and anthropogenic influences, marine birds are protected under the Migratory Bird Treaty Act and are managed by the U.S. Fish and Wildlife Service (USFWS). Marine birds have high societal value from a wide variety of interests (e.g., tourism, bird watching, hunting, mythology), and are an important source of subsistence foods in Alaska (Naves and Braem 2014). Because of the conservation interest in marine birds, as well as their value for indicating the status of marine ecosystems, monitoring of marine birds is an important component of many ocean monitoring programs, including Gulf Watch Alaska.

  11. Atmospheric deposition and critical loads for nitrogen and metals in Arctic Alaska: Review and current status

    USGS Publications Warehouse

    Linder, Greg L.; Brumbaugh, William G.; Neitlich, Peter; Little, Edward

    2013-01-01

    To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being col- lected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.

  12. Integrating wireless sensor network for monitoring subsidence phenomena

    NASA Astrophysics Data System (ADS)

    Marturià, Jordi; Lopez, Ferran; Gigli, Giovanni; Intrieri, Emanuele; Mucchi, Lorenzo; Fornaciai, Alessandro

    2016-04-01

    An innovative wireless sensor network (WSN) for the 3D superficial monitoring of deformations (such as landslides and subsidence) is being developed in the frame of the Wi-GIM project (Wireless sensor network for Ground Instability Monitoring - LIFE12 ENV/IT/001033). The surface movement is detected acquiring the position (x, y and z) by integrating large bandwidth technology able to detect the 3D coordinates of the sensor with a sub-meter error, with continuous wave radar, which allows decreasing the error down to sub-cm. The Estació neighborhood in Sallent is located over the old potassium mine Enrique. This zone has been affected by a subsidence process over more than twenty years. The implementation of a wide network for ground auscultation has allowed monitoring the process of subsidence since 1997. This network consists of: i) a high-precision topographic leveling network to control the subsidence in surface; ii) a rod extensometers network to monitor subsurface deformation; iii) an automatic Leica TCA Total Station to monitor building movements; iv) an inclinometers network to measure the horizontal displacements on subsurface and v) a piezometer to measure the water level. Those networks were implemented within an alert system for an organized an efficient response of the civil protection authorities in case of an emergency. On 23rd December 2008, an acceleration of subsoil movements (of approx. 12-18 cm/year) provoked the activation of the emergency plan by the Catalan Civil Protection. This implied the preventive and scheduled evacuation of the neighbours (January 2009) located in the area with a higher risk of collapse: around 120 residents of 43 homes. As a consequence, the administration implemented a compensation plan for the evacuation of the whole neighbourhood residents and the demolition of 405 properties. In this work, the adaptation and integration process of Wi-GIM system with those conventional monitoring network are presented for its testing

  13. Technology and Engineering Advances Supporting EarthScope's Alaska Transportable Array

    NASA Astrophysics Data System (ADS)

    Miner, J.; Enders, M.; Busby, R.

    2015-12-01

    EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer of 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. Continued development of battery systems using LiFePO4 chemistries, integration of BGAN, Iridium, Cellular and VSAT technologies for real time data transfer, and modifications to electronic systems are a driving force for year two of the Alaska Transportable Array. Station deployment utilizes custom heliportable drills for sensor emplacement in remote regions. The autonomous station design evolution include hardening the sites for Arctic, sub-Arctic and Alpine conditions as well as the integration of rechargeable Lithium Iron Phosphate batteries with traditional AGM batteries We will present new design aspects, outcomes, and lessons learned from past and ongoing deployments, as well as efforts to integrate TA stations with other existing networks in Alaska including the Plate Boundary Observatory and the Alaska Volcano Observatory.

  14. Home medical monitoring network based on embedded technology

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Deng, Wenyi; Yan, Bixi; Lv, Naiguang

    2006-11-01

    Remote medical monitoring network for long-term monitoring of physiological variables would be helpful for recovery of patients as people are monitored at more comfortable conditions. Furthermore, long-term monitoring would be beneficial to investigate slowly developing deterioration in wellness status of a subject and provide medical treatment as soon as possible. The home monitor runs on an embedded microcomputer Rabbit3000 and interfaces with different medical monitoring module through serial ports. The network based on asymmetric digital subscriber line (ADSL) or local area network (LAN) is established and a client - server model, each embedded home medical monitor is client and the monitoring center is the server, is applied to the system design. The client is able to provide its information to the server when client's request of connection to the server is permitted. The monitoring center focuses on the management of the communications, the acquisition of medical data, and the visualization and analysis of the data, etc. Diagnosing model of sleep apnea syndrome is built basing on ECG, heart rate, respiration wave, blood pressure, oxygen saturation, air temperature of mouth cavity or nasal cavity, so sleep status can be analyzed by physiological data acquired as people in sleep. Remote medical monitoring network based on embedded micro Internetworking technology have advantages of lower price, convenience and feasibility, which have been tested by the prototype.

  15. Implementation of medical monitor system based on networks

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Cao, Yuzhen; Zhang, Lixin; Ding, Mingshi

    2006-11-01

    In this paper, the development trend of medical monitor system is analyzed and portable trend and network function become more and more popular among all kinds of medical monitor devices. The architecture of medical network monitor system solution is provided and design and implementation details of medical monitor terminal, monitor center software, distributed medical database and two kind of medical information terminal are especially discussed. Rabbit3000 system is used in medical monitor terminal to implement security administration of data transfer on network, human-machine interface, power management and DSP interface while DSP chip TMS5402 is used in signal analysis and data compression. Distributed medical database is designed for hospital center according to DICOM information model and HL7 standard. Pocket medical information terminal based on ARM9 embedded platform is also developed to interactive with center database on networks. Two kernels based on WINCE are customized and corresponding terminal software are developed for nurse's routine care and doctor's auxiliary diagnosis. Now invention patent of the monitor terminal is approved and manufacture and clinic test plans are scheduled. Applications for invention patent are also arranged for two medical information terminals.

  16. Engaging Local Communities in Arctic Observing Networks: A Collaborative Shoreline Change Risk WebGIS for Alaska's Arctic Slope Region

    NASA Astrophysics Data System (ADS)

    Brady, M.

    2017-12-01

    This study engaged local community stakeholders in Alaska's Arctic Slope Region to develop a web-based shoreline change risk geographic information system (WebGIS) in collaboration with the North Slope Borough and its residents. The value of the effort includes rich spatial documentation of local risks across the vast, remote, and rapidly changing shoreline, and identification of local manager information needs to direct WebGIS development. The study advances our understanding of shoreline change problems from the perspective of local Arctic communities beyond municipal impacts while building decision support. Over fifty local residents in three communities with collective coastal knowledge that extends across the National Petroleum Reserve - Alaska and Arctic National Wildlife Refuge shared their perspectives on hard copy maps. Sixteen managers provided usability perceptions of a beta WebGIS with shoreline change susceptibility information summarized at relevant asset locations such as subsistence camps. The hard copy maps with 300 "problem places" were digitized for analysis, which revealed problems across the coastline, especially challenges to boating for subsistence hunting such as shoaling cutting off access and creating hazards. The usability workshop revealed specific information needs including the need to monitor impacts at decommissioned national defense radar sites repurposed by locals to centralize oil and gas activity. These results were analyzed using an Instructional Systems Design (ISD) framework consisting of front-end and formative WebGIS evaluation phases. The front-end evaluation is the local input on hard copy maps, which provided local verification of coastal risks. The formative evaluation is the usability workshop with managers, which informed WebGIS development while promoting user buy-in. In terms of product and process, the local knowledge and information needs collected are significant because they establish local engagement with the

  17. Monitoring Malware Activity on the LAN Network

    NASA Astrophysics Data System (ADS)

    Skrzewski, Mirosław

    Many security related organizations periodically publish current network and systems security information, with the lists of top malware programs. These lists raises the question how these threats spreads out, if the worms (the only threat with own communication abilities) are low or missing on these lists. The paper discuss the research on malware network activity, aimed to deliver the answer to the question, what is the main infection channel of modern malware, done with the usage of virtual honeypot systems on dedicated, unprotected network. Systems setup, network and systems monitoring solutions, results of over three months of network traffic and malware monitoring are presented, along with the proposed answer to our research question.

  18. Malaspina Glacier, Alaska

    NASA Image and Video Library

    2002-02-26

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating. This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03475

  19. Physiologic monitoring. A guide to networking your monitoring systems.

    PubMed

    2011-10-01

    There are many factors to consider when choosing a physiologic monitoring system. not only should these systems perform well clinically, but they should also be able to exchange data with other information systems. We discuss some of the ins and outs of physiologic monitoring system networking and highlight eight product lines from seven suppliers.

  20. Noise Characteristics of EarthScope Transportable Array Posthole Sensor Emplacements in Alaska and Canada

    NASA Astrophysics Data System (ADS)

    Aderhold, K.; Frassetto, A.; Busby, R. W.; Enders, M.; Bierma, R. M.; Miner, J.; Woodward, R.

    2016-12-01

    From 2011 to 2015, IRIS has built or upgraded 67 broadband seismic stations in Alaska and western Canada as part of the EarthScope Transportable Array (TA) program. An additional 72 stations will be completed by the fall of 2016. Nearly all use new posthole seismometers, emplaced at 3 m depth in cased holes within fractured bedrock outcrops, permafrost, or soil. Based on initial tests in Alaska, New Mexico, and California, this emplacement technique was chosen to streamline logistics in challenging, remote conditions as well as optimize station performance. A versatile drill capable of operating with a hammer bit or auger was developed specifically for the TA and is light enough to be transported by helicopter in a single load. The drilling system is ideal for TA deployment logistics in Alaska, but could be adapted to many regional or permanent network operations because it is easily transported on a flatbed truck and manuevered into tight working locations. The TA will complete another 73 installations in 2017 and operate the full network of 268 real-time stations through at least 2019. The removal of some TA stations is planned for 2020, but upgrades to existing stations are permanent contributions to these networks. The TA stations are a proof of concept for a new approach to emplacement of seismometers across a large network and will enable high-quality scientific research as well as advances in hazard monitoring. To evaluate the new and upgraded stations, we use probability density functions of hourly power spectral density computed by the IRIS DMC MUSTANG metric service for the continuous data recorded through 2016. Our results show that the noise performance of TA postholes in Alaska and Canada show significant improvement over the tank vaults of the lower-48 TA. With an ideal posthole drilled into bedrock or permafrost, noise levels can approach the quality of GSN stations particularly on the horizontal channels at long periods [>70 seconds]. Stations also

  1. Alaska Department of Revenue - Alaska Film Office

    Science.gov Websites

    State Employees Alaska Film Office Alaska Film Office State of Alaska HOME CREDIT PROGRAM PUBLIC REPORTING CPA ECONOMIC DEVELOPMENT CONTACT US State of Alaska > Department of Revenue > Alaska Film Office > Text Size: A+ | A- | A Text Only Effective July 1, 2015, the film production incentive

  2. Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Wang, Shin-Ywan

    2012-01-01

    The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.

  3. EMMNet: sensor networking for electricity meter monitoring.

    PubMed

    Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang

    2010-01-01

    Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.

  4. EMMNet: Sensor Networking for Electricity Meter Monitoring

    PubMed Central

    Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang

    2010-01-01

    Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters. PMID:22163551

  5. Network architecture for global biomedical monitoring service.

    PubMed

    Lopez-Casado, Carmen; Tejero-Calado, Juan; Bernal-Martin, Antonio; Lopez-Gomez, Miguel; Romero-Romero, Marco; Quesada, Guillermo; Lorca, Julio; Garcia, Eugenia

    2005-01-01

    Most of the patients who are in hospitals and, increasingly, patients controlled remotely from their homes, at-home monitoring, are continuously monitored in order to control their evolution. The medical devices used up to now, force the sanitary staff to go to the patients' room to control the biosignals that are being monitored, although in many cases, patients are in perfect conditions. If patient is at home, it is he or she who has to go to the hospital to take the record of the monitored signal. New wireless technologies, such as BlueTooth and WLAN, make possible the deployment of systems that allow the display and storage of those signals in any place where the hospital intranet is accessible. In that way, unnecessary displacements are avoided. This paper presents a network architecture that allows the identification of the biosignal acquisition device as IP network nodes. The system is based on a TCP/IP architecture which is scalable and avoids the deployment of a specific purpose network.

  6. Clustering and Flow Conservation Monitoring Tool for Software Defined Networks

    PubMed Central

    Puente Fernández, Jesús Antonio

    2018-01-01

    Prediction systems present some challenges on two fronts: the relation between video quality and observed session features and on the other hand, dynamics changes on the video quality. Software Defined Networks (SDN) is a new concept of network architecture that provides the separation of control plane (controller) and data plane (switches) in network devices. Due to the existence of the southbound interface, it is possible to deploy monitoring tools to obtain the network status and retrieve a statistics collection. Therefore, achieving the most accurate statistics depends on a strategy of monitoring and information requests of network devices. In this paper, we propose an enhanced algorithm for requesting statistics to measure the traffic flow in SDN networks. Such an algorithm is based on grouping network switches in clusters focusing on their number of ports to apply different monitoring techniques. Such grouping occurs by avoiding monitoring queries in network switches with common characteristics and then, by omitting redundant information. In this way, the present proposal decreases the number of monitoring queries to switches, improving the network traffic and preventing the switching overload. We have tested our optimization in a video streaming simulation using different types of videos. The experiments and comparison with traditional monitoring techniques demonstrate the feasibility of our proposal maintaining similar values decreasing the number of queries to the switches. PMID:29614049

  7. Clustering and Flow Conservation Monitoring Tool for Software Defined Networks.

    PubMed

    Puente Fernández, Jesús Antonio; García Villalba, Luis Javier; Kim, Tai-Hoon

    2018-04-03

    Prediction systems present some challenges on two fronts: the relation between video quality and observed session features and on the other hand, dynamics changes on the video quality. Software Defined Networks (SDN) is a new concept of network architecture that provides the separation of control plane (controller) and data plane (switches) in network devices. Due to the existence of the southbound interface, it is possible to deploy monitoring tools to obtain the network status and retrieve a statistics collection. Therefore, achieving the most accurate statistics depends on a strategy of monitoring and information requests of network devices. In this paper, we propose an enhanced algorithm for requesting statistics to measure the traffic flow in SDN networks. Such an algorithm is based on grouping network switches in clusters focusing on their number of ports to apply different monitoring techniques. Such grouping occurs by avoiding monitoring queries in network switches with common characteristics and then, by omitting redundant information. In this way, the present proposal decreases the number of monitoring queries to switches, improving the network traffic and preventing the switching overload. We have tested our optimization in a video streaming simulation using different types of videos. The experiments and comparison with traditional monitoring techniques demonstrate the feasibility of our proposal maintaining similar values decreasing the number of queries to the switches.

  8. Operation of International Monitoring System Network

    NASA Astrophysics Data System (ADS)

    Nikolova, Svetlana; Araujo, Fernando; Aktas, Kadircan; Malakhova, Marina; Otsuka, Riyo; Han, Dongmei; Assef, Thierry; Nava, Elisabetta; Mickevicius, Sigitas; Agrebi, Abdelouaheb

    2015-04-01

    The IMS is a globally distributed network of monitoring facilities using sensors from four technologies: seismic, hydroacoustic, infrasound and radionuclide. It is designed to detect the seismic and acoustic waves produced by nuclear test explosions and the subsequently released radioactive isotopes. Monitoring stations transmit their data to the IDC in Vienna, Austria, over a global private network known as the GCI. Since 2013, the data availability (DA) requirements for IMS stations account for quality of the data, meaning that in calculation of data availability data should be exclude if: - there is no input from sensor (SHI technology); - the signal consists of constant values (SHI technology); Even more strict are requirements for the DA of the radionuclide (particulate and noble gas) stations - received data have to be analyzed, reviewed and categorized by IDC analysts. In order to satisfy the strict data and network availability requirements of the IMS Network, the operation of the facilities and the GCI are managed by IDC Operations. Operations has following main functions: - to ensure proper operation and functioning of the stations; - to ensure proper operation and functioning of the GCI; - to ensure efficient management of the stations in IDC; - to provide network oversight and incident management. At the core of the IMS Network operations are a series of tools for: monitoring the stations' state of health and data quality, troubleshooting incidents, communicating with internal and external stakeholders, and reporting. The new requirements for data availability increased the importance of the raw data quality monitoring. This task is addressed by development of additional tools for easy and fast identifying problems in data acquisition, regular activities to check compliance of the station parameters with acquired data by scheduled calibration of the seismic network, review of the samples by certified radionuclide laboratories. The DA for the networks of

  9. Network monitoring in the Tier2 site in Prague

    NASA Astrophysics Data System (ADS)

    Eliáš, Marek; Fiala, Lukáš; Horký, Jiří; Chudoba, Jiří; Kouba, Tomáš; Kundrát, Jan; Švec, Jan

    2011-12-01

    Network monitoring provides different types of view on the network traffic. It's output enables computing centre staff to make qualified decisions about changes in the organization of computing centre network and to spot possible problems. In this paper we present network monitoring framework used at Tier-2 in Prague in Institute of Physics (FZU). The framework consists of standard software and custom tools. We discuss our system for hardware failures detection using syslog logging and Nagios active checks, bandwidth monitoring of physical links and analysis of NetFlow exports from Cisco routers. We present tool for automatic detection of network layout based on SNMP. This tool also records topology changes into SVN repository. Adapted weathermap4rrd is used to visualize recorded data to get fast overview showing current bandwidth usage of links in network.

  10. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  11. Interim report on the St. Elias, Alaska earthquake of 28 February 1979

    USGS Publications Warehouse

    Lahr, John C.; Plafker, George; Stephens, C.D.; Foglean, K.A.; Blackford, M.E.

    1979-01-01

    On 28 February 1979 an earthquake with surface wave magnitude (Ms) of 7.7 (W. Person, personal communication, 1979) occurred beneath the Chugach and St. Elias mountains of southern Alaska (fig. 1). This is a region of complex tectonics resulting from northwestward convergence between the Pacific and North American plates. To the east, the northwest-trending Fairweather fault accommodates the movement with dextral slip of about 5.5 cm/yr (Plafker, Hudson, and others, 1978); to the west, the Pacific plate underthrusts Alaska at the Aleutian trench, which trends southwestward (Plafker 1969). The USGS has operated a telemetered seismic network in southern Alaska since 1971 and it was greatly expanded along the eastern Gulf of Alaska in September 1974. The current configuration of stations is shown in Figure 9. Technical details of the network are available in published earthquake catalogs (Lahr, Page, and others, 1974; Fogleman, Stephens, and others, 1978). Preliminary analysis of the data from this network covering the time period September 1, 1978 through March 10, 1979, as well as worldwide data for the main shock will be discussed in this paper.

  12. Development of a long-term ecological monitoring program in Denali National Park and Preserve, Alaska (USA)

    USGS Publications Warehouse

    Oakley, Karen L.; Debevec, Edward M.; Rexstad, Eric A.; Aguirre-Bravo, Celedonio; Franco, Carlos Rodriguez

    1999-01-01

    A Long-term Ecological Monitoring (LTEM) program began at Denali National Park and Preserve, Alaska (USA) in 1992, as a prototype for subarctic parks. The early history of the Denali LTEM program provides insight into the challenges that can arise during monitoring program development. The Denali program has thus far taken a watershed approach, involving collocation of study effort for a mix of abiotic and biotic attributes within a small, headwater stream (Rock Creek) which crosses the tundra-taiga boundary. An initial effort at integration and synthesis of meteorological, vegetation, small mammal and passerine bird data for the first 7 years of the program found few correlations, but power was low. We will now attempt to balance the intensive work in Rock Creek by developing a cost-effective sampling design that includes more of the park. We are also working to improve linkages between the monitoring program and park management decision-making and to strengthen data management and reporting mechanisms.

  13. A network model to help land managers predict and prevent spread of invasive plants from roads to river systems in Alaska

    Treesearch

    Matthew J. Macander; Tricia L. Wurtz

    2007-01-01

    Alaska has relatively few invasive plants, and most of them are found only along the state's limited road system. Melilotus alba, or sweetclover, is one of the most widely distributed invasives in the state. Melilotus has recently moved from roadsides to the flood plains of at least three glacial rivers. We developed a network...

  14. Assessment of SRS ambient air monitoring network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, K.; Jannik, T.

    Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, ifmore » any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the air monitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned« less

  15. Modeling soil temperature change in Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Debolskiy, M. V.; Nicolsky, D.; Romanovsky, V. E.; Muskett, R. R.; Panda, S. K.

    2017-12-01

    Increasing demand for assessment of climate change-induced permafrost degradation and its consequences promotes creation of high-resolution modeling products of soil temperature changes. This is especially relevant for areas with highly vulnerable warm discontinuous permafrost in the Western Alaska. In this study, we apply ecotype-based modeling approach to simulate high-resolution permafrost distribution and its temporal dynamics in Seward Peninsula, Alaska. To model soil temperature dynamics, we use a transient soil heat transfer model developed at the Geophysical Institute Permafrost Laboratory (GIPL-2). The model solves one dimensional nonlinear heat equation with phase change. The developed model is forced with combination of historical climate and different future scenarios for 1900-2100 with 2x2 km resolution prepared by Scenarios Network for Alaska and Arctic Planning (2017). Vegetation, snow and soil properties are calibrated by ecotype and up-scaled by using Alaska Existing Vegetation Type map for Western Alaska (Flemming, 2015) with 30x30 m resolution provided by Geographic Information Network of Alaska (UAF). The calibrated ecotypes cover over 75% of the study area. We calibrate the model using a data assimilation technique utilizing available observations of air, surface and sub-surface temperatures and snow cover collected by various agencies and research groups (USGS, Geophysical Institute, USDA). The calibration approach takes into account a natural variability between stations in the same ecotype and finds an optimal set of model parameters (snow and soil properties) within the study area. This approach allows reduction in microscale heterogeneity and aggregated soil temperature data from shallow boreholes which is highly dependent on local conditions. As a result of this study we present a series of preliminary high resolution maps for the Seward Peninsula showing changes in the active layer depth and ground temperatures for the current climate

  16. A Great Lakes atmospheric mercury monitoring network: evaluation and design

    USGS Publications Warehouse

    Risch, Martin R.; Kenski, Donna M.; ,; David, A.

    2014-01-01

    As many as 51 mercury (Hg) wet-deposition-monitoring sites from 4 networks were operated in 8 USA states and Ontario, Canada in the North American Great Lakes Region from 1996 to 2010. By 2013, 20 of those sites were no longer in operation and approximately half the geographic area of the Region was represented by a single Hg-monitoring site. In response, a Great Lakes Atmospheric Mercury Monitoring (GLAMM) network is needed as a framework for regional collaboration in Hg-deposition monitoring. The purpose of the GLAMM network is to detect changes in regional atmospheric Hg deposition related to changes in Hg emissions. An optimized design for the network was determined to be a minimum of 21 sites in a representative and approximately uniform geographic distribution. A majority of the active and historic Hg-monitoring sites in the Great Lakes Region are part of the National Atmospheric Deposition Program (NADP) Mercury Deposition Network (MDN) in North America and the GLAMM network is planned to be part of the MDN. To determine an optimized network design, active and historic Hg-monitoring sites in the Great Lakes Region were evaluated with a rating system of 21 factors that included characteristics of the monitoring locations and interpretations of Hg data. Monitoring sites were rated according to the number of Hg emissions sources and annual Hg emissions in a geographic polygon centered on each site. Hg-monitoring data from the sites were analyzed for long-term averages in weekly Hg concentrations in precipitation and weekly Hg-wet deposition, and on significant temporal trends in Hg concentrations and Hg deposition. A cluster analysis method was used to group sites with similar variability in their Hg data in order to identify sites that were unique for explaining Hg data variability in the Region. The network design included locations in protected natural areas, urban areas, Great Lakes watersheds, and in proximity to areas with a high density of annual Hg

  17. Reduction of streamflow monitoring networks by a reference point approach

    NASA Astrophysics Data System (ADS)

    Cetinkaya, Cem P.; Harmancioglu, Nilgun B.

    2014-05-01

    Adoption of an integrated approach to water management strongly forces policy and decision-makers to focus on hydrometric monitoring systems as well. Existing hydrometric networks need to be assessed and revised against the requirements on water quantity data to support integrated management. One of the questions that a network assessment study should resolve is whether a current monitoring system can be consolidated in view of the increased expenditures in time, money and effort imposed on the monitoring activity. Within the last decade, governmental monitoring agencies in Turkey have foreseen an audit on all their basin networks in view of prevailing economic pressures. In particular, they question how they can decide whether monitoring should be continued or terminated at a particular site in a network. The presented study is initiated to address this question by examining the applicability of a method called “reference point approach” (RPA) for network assessment and reduction purposes. The main objective of the study is to develop an easily applicable and flexible network reduction methodology, focusing mainly on the assessment of the “performance” of existing streamflow monitoring networks in view of variable operational purposes. The methodology is applied to 13 hydrometric stations in the Gediz Basin, along the Aegean coast of Turkey. The results have shown that the simplicity of the method, in contrast to more complicated computational techniques, is an asset that facilitates the involvement of decision makers in application of the methodology for a more interactive assessment procedure between the monitoring agency and the network designer. The method permits ranking of hydrometric stations with regard to multiple objectives of monitoring and the desired attributes of the basin network. Another distinctive feature of the approach is that it also assists decision making in cases with limited data and metadata. These features of the RPA approach

  18. Software For Monitoring A Computer Network

    NASA Technical Reports Server (NTRS)

    Lee, Young H.

    1992-01-01

    SNMAT is rule-based expert-system computer program designed to assist personnel in monitoring status of computer network and identifying defective computers, workstations, and other components of network. Also assists in training network operators. Network for SNMAT located at Space Flight Operations Center (SFOC) at NASA's Jet Propulsion Laboratory. Intended to serve as data-reduction system providing windows, menus, and graphs, enabling users to focus on relevant information. SNMAT expected to be adaptable to other computer networks; for example in management of repair, maintenance, and security, or in administration of planning systems, billing systems, or archives.

  19. Geologic map of Mount Gareloi, Gareloi Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2012-01-01

    As part of an effort to both monitor and study all historically active volcanoes in Alaska, the Alaska Volcano Observatory (AVO) undertook a field program at Mount Gareloi in the summer of 2003. During a month-long period, seismic networks were installed at Mount Gareloi and the neighboring Tanaga volcanic cluster. During this time, we undertook the first geologic field study of the volcano since Robert Coats visited Gareloi Island for four days in 1946. Understanding the geology of this relatively small island is important from a hazards perspective, because Mount Gareloi lies beneath a heavily trafficked air route between North America and Asia and has frequently erupted airborne ash since 1760. At least two landslides from the island have deposited debris on the sea floor; thus, landslide-generated tsunamis are also a potential hazard. Since seismic instruments were installed in 2003, they have detected small but consistent seismic signals from beneath Mount Gareloi's edifice, suggesting an active hydrothermal system. Mount Gareloi is also important from the standpoint of understanding subduction-related volcanism, because it lies in the western portion of the volcanically active arc, where subduction is oblique to the arc front. Understanding the compositional evolution of Mount Gareloi fills a spatial gap in along-arc studies.

  20. Optical Network Virtualisation Using Multitechnology Monitoring and SDN-Enabled Optical Transceiver

    NASA Astrophysics Data System (ADS)

    Ou, Yanni; Davis, Matthew; Aguado, Alejandro; Meng, Fanchao; Nejabati, Reza; Simeonidou, Dimitra

    2018-05-01

    We introduce the real-time multi-technology transport layer monitoring to facilitate the coordinated virtualisation of optical and Ethernet networks supported by optical virtualise-able transceivers (V-BVT). A monitoring and network resource configuration scheme is proposed to include the hardware monitoring in both Ethernet and Optical layers. The scheme depicts the data and control interactions among multiple network layers under the software defined network (SDN) background, as well as the application that analyses the monitored data obtained from the database. We also present a re-configuration algorithm to adaptively modify the composition of virtual optical networks based on two criteria. The proposed monitoring scheme is experimentally demonstrated with OpenFlow (OF) extensions for a holistic (re-)configuration across both layers in Ethernet switches and V-BVTs.

  1. 2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Manevich, Alexander; Rybin, Alexander

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2006. A significant explosive eruption at Augustine Volcano in Cook Inlet marked the first eruption within several hundred kilometers of principal population centers in Alaska since 1992. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the fall of 2006 and continued to emit copious amounts of volcanic gas into 2007. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  2. Real-time Scintillation Monitoring in Alaska from a Longitudinal Chain of ASTRA's SM-211 GPS TEC and Scintillation Receivers

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Azeem, S. I.; Reynolds, A.; Santana, J.; Hampton, D. L.

    2013-12-01

    Amplitude and phase scintillation can cause serious difficulties for GPS receivers. Intense scintillation can cause loss of lock. High latitude studies generally show that phase scintillation can be severe, but the amplitude scintillation tends to be small. The reason for this is not yet understood. Furthermore, the actual causes of the ionospheric irregularities that produce high latitude scintillation are not well understood. While the gradient drift instability is thought to be important in the F-region, there may be other structures present in either the E- or F-regions. The role of particle precipitation is also not well understood. Four of ASTRA's CASES GPS receivers were deployed in Alaska to demonstrate our ability to map scintillation in realtime, to provide space weather services to GPS users, and to initiate a detailed investigation of these effects. These dual-frequency GPS receivers measure total electron content (TEC) and scintillation. The scintillation monitors were deployed in a longitudinal chain at sites in Kaktovic, Fort Yukon, Poker Flat, and Gakona. Scintillation statistics show phase scintillations to be largest at Kaktovic and smallest at Gakona. We present GPS phase scintillation and auroral emission results from the Alaska chain to characterize the correspondence between scintillation and auroral features, and to investigate the role of high latitude auroral features in driving the phase scintillations. We will also present data showing how phase scintillation can cause other GPS receivers to lose lock. The data and results are particularly valuable because they illustrate some of the challenges of using GPS systems for positioning and navigation in an auroral region like Alaska. These challenges for snowplough drivers were recently highlighted, along with the CASES SM-211 space weather monitor, in a special video in which ASTRA and three other small businesses were presented with an entrepreneurial award from William Shatner (http://youtu.be/bIVKEQH_YPk).

  3. NASA Integrated Network Monitor and Control Software Architecture

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.

  4. Aerosols in Alaska

    NASA Astrophysics Data System (ADS)

    Shaw, G. E.; Quinn, P. K.

    2008-12-01

    We are measuring the latitudinal gradient and time variation of aerosol chemical composition across Alaska looking for drifts that might be attributable to alteration in sources and chemical signatures that might allow the identification of sources. Alaska is a very clean region in the sense that the state has a low population density with little polluting emission sources. However it "receives" anthropogenic chemical signals from areas upstream in the westerly's, such as from China, and impacts of Arctic Haze. The region also generates sometime copious amounts of aerosol from wildfire in its boreal forests and condensed compounds from gases emitted by its surrounding oceans. The time series of aerosol composition from this small network goes back about a decade and shows clearly the spring peaking of anthropogenic signal known as Arctic Haze. This signal peaks year after year in spring months at all stations, but is most concentrated at north most stations. On the other hand, a signal indicative of products from the ocean, mainly sulfate with large fractional amounts of MSA peaks, year after year, in the summer and is strongest at the lower latitudes. We have identified not only chemical signatures associated with wildfire smoke from wildfires in Alaska, but the changed signatures from wildfires in far away regions, from Mongolia for example.

  5. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-08-14

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  6. A conceptual ground-water-quality monitoring network for San Fernando Valley, California

    USGS Publications Warehouse

    Setmire, J.G.

    1985-01-01

    A conceptual groundwater-quality monitoring network was developed for San Fernando Valley to provide the California State Water Resources Control Board with an integrated, basinwide control system to monitor the quality of groundwater. The geology, occurrence and movement of groundwater, land use, background water quality, and potential sources of pollution were described and then considered in designing the conceptual monitoring network. The network was designed to monitor major known and potential point and nonpoint sources of groundwater contamination over time. The network is composed of 291 sites where wells are needed to define the groundwater quality. The ideal network includes four specific-purpose networks to monitor (1) ambient water quality, (2) nonpoint sources of pollution, (3) point sources of pollution, and (4) line sources of pollution. (USGS)

  7. ANZA Seismic Network- From Monitoring to Science

    NASA Astrophysics Data System (ADS)

    Vernon, F.; Eakin, J.; Martynov, V.; Newman, R.; Offield, G.; Hindley, A.; Astiz, L.

    2007-05-01

    The ANZA Seismic Network (http:eqinfo.ucsd.edu) utilizes broadband and strong motion sensors with 24-bit dataloggers combined with real-time telemetry to monitor local and regional seismicity in southernmost California. The ANZA network provides real-time data to the IRIS DMC, California Integrated Seismic Network (CISN), other regional networks, and the Advanced National Seismic System (ANSS), in addition to providing near real-time information and monitoring to the greater San Diego community. Twelve high dynamic range broadband and strong motion sensors adjacent to the San Jacinto Fault zone contribute data for earthquake source studies and continue the monitoring of the seismic activity of the San Jacinto fault initiated 24 years ago. Five additional stations are located in the San Diego region with one more station on San Clemente Island. The ANZA network uses the advance wireless networking capabilities of the NSF High Performance Wireless Research and Education Network (http:hpwren.ucsd.edu) to provide the communication infrastructure for the real-time telemetry of Anza seismic stations. The ANZA network uses the Antelope data acquisition software. The combination of high quality hardware, communications, and software allow for an annual network uptime in excess of 99.5% with a median annual station real-time data return rate of 99.3%. Approximately 90,000 events, dominantly local sources but including regional and teleseismic events, comprise the ANZA network waveform database. All waveform data and event data are managed using the Datascope relational database. The ANZA network data has been used in a variety of scientific research including detailed structure of the San Jacinto Fault Zone, earthquake source physics, spatial and temporal studies of aftershocks, array studies of teleseismic body waves, and array studies on the source of microseisms. To augment the location, detection, and high frequency observations of the seismic source spectrum from local

  8. A watershed approach to ecosystem monitoring in Denali National Park and preserve, Alaska

    USGS Publications Warehouse

    Thorsteinson, L.K.; Taylor, D.L.

    1997-01-01

    The National Park Service and the National Biological Service initiated research in Denali National Park and Preserve, a 2.4 million-hectare park in southcentral Alaska, to develop ecological monitoring protocols for national parks in the Arctic/Subarctic biogeographic area. We are focusing pilot studies on design questions, on scaling issues and regionalization, ecosystem structure and function, indicator selection and evaluation, and monitoring technologies. Rock Creek, a headwater stream near Denali headquarters, is the ecological scale for initial testing of a watershed ecosystem approach. Our conceptual model embraces principles of the hydrological cycle, hypotheses of global climate change, and biological interactions of organisms occupying intermediate, but poorly studied, positions in Alaskan food webs. The field approach includes hydrological and depositional considerations and a suite of integrated measures linking key aquatic and terrestrial biota, environmental variables, or defined ecological processes, in order to establish ecological conditions and detect, track, and understand mechanisms of environmental change. Our sampling activities include corresponding measures of physical, chemical, and biological attributes in four Rock Creek habitats believed characteristic of the greater system diversity of Denali. This paper gives examples of data sets, program integration and scaling, and research needs.

  9. 2007 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Dixon, James P.; Malik, Nataliya; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2007. The year was highlighted by the eruption of Pavlof, one of Alaska's most frequently active volcanoes. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the autumn of 2006 and continued to emit copious amounts of steam and volcanic gas into 2007. Redoubt Volcano showed the first signs of the unrest that would unfold in 2008-09. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  10. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  11. Network based sky Brightness Monitor

    NASA Astrophysics Data System (ADS)

    McKenna, Dan; Pulvermacher, R.; Davis, D. R.

    2009-01-01

    We have developed and are currently testing an autonomous 2 channel photometer designed to measure the night sky brightness in the visual wavelengths over a multi-year campaign. The photometer uses a robust silicon sensor filtered with Hoya CM500 glass. The Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The Sky Brightness monitor consists of two units, the remote photometer and a network interface. Currently these devices use 2.4 Ghz transceivers with a free space range of 100 meters. The remote unit is battery powered with day time recharging using a solar panel. Data received by the network interface transmits data via standard POP Email protocol. A second version is under development for radio sensitive areas using an optical fiber for data transmission. We will present the current comparison with the National Park Service sky monitoring camera. We will also discuss the calibration methods used for standardization and temperature compensation. This system is expected to be deployed in the next year and be operated by the International Dark Sky Association SKYMONITOR project.

  12. An approach to online network monitoring using clustered patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinoh; Sim, Alex; Suh, Sang C.

    Network traffic monitoring is a core element in network operations and management for various purposes such as anomaly detection, change detection, and fault/failure detection. In this study, we introduce a new approach to online monitoring using a pattern-based representation of the network traffic. Unlike the past online techniques limited to a single variable to summarize (e.g., sketch), the focus of this study is on capturing the network state from the multivariate attributes under consideration. To this end, we employ clustering with its benefit of the aggregation of multidimensional variables. The clustered result represents the state of the network with regardmore » to the monitored variables, which can also be compared with the previously observed patterns visually and quantitatively. Finally, we demonstrate the proposed method with two popular use cases, one for estimating state changes and the other for identifying anomalous states, to confirm its feasibility.« less

  13. An approach to online network monitoring using clustered patterns

    DOE PAGES

    Kim, Jinoh; Sim, Alex; Suh, Sang C.; ...

    2017-03-13

    Network traffic monitoring is a core element in network operations and management for various purposes such as anomaly detection, change detection, and fault/failure detection. In this study, we introduce a new approach to online monitoring using a pattern-based representation of the network traffic. Unlike the past online techniques limited to a single variable to summarize (e.g., sketch), the focus of this study is on capturing the network state from the multivariate attributes under consideration. To this end, we employ clustering with its benefit of the aggregation of multidimensional variables. The clustered result represents the state of the network with regardmore » to the monitored variables, which can also be compared with the previously observed patterns visually and quantitatively. Finally, we demonstrate the proposed method with two popular use cases, one for estimating state changes and the other for identifying anomalous states, to confirm its feasibility.« less

  14. Network Monitoring and Fault Detection on the University of Illinois at Urbana-Champaign Campus Computer Network.

    ERIC Educational Resources Information Center

    Sng, Dennis Cheng-Hong

    The University of Illinois at Urbana-Champaign (UIUC) has a large campus computer network serving a community of about 20,000 users. With such a large network, it is inevitable that there are a wide variety of technologies co-existing in a multi-vendor environment. Effective network monitoring tools can help monitor traffic and link usage, as well…

  15. GENASIS national and international monitoring networks for persistent organic pollutants

    NASA Astrophysics Data System (ADS)

    Brabec, Karel; Dušek, Ladislav; Holoubek, Ivan; Hřebíček, Jiří; Kubásek, Miroslav; Urbánek, Jaroslav

    2010-05-01

    Persistent organic pollutants (POPs) remain in the centre of scientific attention due to their slow rates of degradation, their toxicity, and potential for both long-range transport and bioaccumulation in living organisms. This group of compounds covers large number of various chemicals from industrial products, such as polychlorinated biphenyls, etc. The GENASIS (Global Environmental Assessment and Information System) information system utilizes data from national and international monitoring networks to obtain as-complete-as-possible set of information and a representative picture of environmental contamination by persistent organic pollutants (POPs). There are data from two main datasets on POPs monitoring: 1.Integrated monitoring of POPs in Košetice Observatory (Czech Republic) which is a long term background site of the European Monitoring and Evaluation Programme (EMEP) for the Central Europe; the data reveals long term trends of POPs in all environmental matrices. The Observatory is the only one in Europe where POPs have been monitored not only in ambient air, but also in wet atmospheric deposition, surface waters, sediments, soil, mosses and needles (integrated monitoring). Consistent data since the year 1996 are available, earlier data (up to 1998) are burdened by high variability and high detection limits. 2.MONET network is ambient air monitoring activities in the Central and Eastern European region (CEEC), Central Asia, Africa and Pacific Islands driven by RECETOX as the Regional Centre of the Stockholm Convention for the region of Central and Eastern Europe under the common name of the MONET networks (MONitoring NETwork). For many of the participating countries these activities generated first data on the atmospheric levels of POPs. The MONET network uses new technologies of air passive sampling, which was developed, tested, and calibrated by RECETOX in cooperation with Environment Canada and Lancaster University, and was originally launched as a

  16. MAJOR MONITORING NETWORKS: A FOUNDATION TO PRESERVE, PROTECT AND RESTORE

    EPA Science Inventory

    MAJOR MONITORING NETWORKS: A FOUNDATION TO PRESERVE, PROTECT, AND RESTORE

    Ideally, major human and environmental monitoring networks should provide the scientific information needed for policy and management decision-making processes. It is widely recognized that reliable...

  17. Index to limnological data for southcentral Alaska Lakes

    USGS Publications Warehouse

    Maurer, M.A.; Woods, P.F.

    1987-01-01

    South-central Alaska lakes are a valuable natural resource and provide a variety of recreational opportunities to the public. Lakeside development has increased significantly in the past 10 years and several south-central Alaskan lakes have documented pollution problems. Cultural eutrophication, the process by which man-induced nutrient loading to a lake results in large increases in biological productivity, can also produce noxious algae blooms, dissolved oxygen depletion at depth, reduced water transparency, and fish kills. The potential for cultural eutrophication of south-central Alaska lakes prompted the U.S. Geological Survey (USGS) Water Resources Division and the Alaska Department of Natural Resources-Division of Geological and Geophysical Surveys (ADGGS) to provide lake researchers, managers, and the public with this index of published historical and current limnological references. The purpose of the index is to provide reference to the data which can be used to identify and monitor cultural eutrophication of south-central Alaska lakes. (Lantz-PTT)

  18. Sonification of network traffic flow for monitoring and situational awareness

    PubMed Central

    2018-01-01

    Maintaining situational awareness of what is happening within a computer network is challenging, not only because the behaviour happens within machines, but also because data traffic speeds and volumes are beyond human ability to process. Visualisation techniques are widely used to present information about network traffic dynamics. Although they provide operators with an overall view and specific information about particular traffic or attacks on the network, they often still fail to represent the events in an understandable way. Also, because they require visual attention they are not well suited to continuous monitoring scenarios in which network administrators must carry out other tasks. Here we present SoNSTAR (Sonification of Networks for SiTuational AwaReness), a real-time sonification system for monitoring computer networks to support network administrators’ situational awareness. SoNSTAR provides an auditory representation of all the TCP/IP traffic within a network based on the different traffic flows between between network hosts. A user study showed that SoNSTAR raises situational awareness levels by enabling operators to understand network behaviour and with the benefit of lower workload demands (as measured by the NASA TLX method) than visual techniques. SoNSTAR identifies network traffic features by inspecting the status flags of TCP/IP packet headers. Combinations of these features define particular traffic events which are mapped to recorded sounds to generate a soundscape that represents the real-time status of the network traffic environment. The sequence, timing, and loudness of the different sounds allow the network to be monitored and anomalous behaviour to be detected without the need to continuously watch a monitor screen. PMID:29672543

  19. Sonification of network traffic flow for monitoring and situational awareness.

    PubMed

    Debashi, Mohamed; Vickers, Paul

    2018-01-01

    Maintaining situational awareness of what is happening within a computer network is challenging, not only because the behaviour happens within machines, but also because data traffic speeds and volumes are beyond human ability to process. Visualisation techniques are widely used to present information about network traffic dynamics. Although they provide operators with an overall view and specific information about particular traffic or attacks on the network, they often still fail to represent the events in an understandable way. Also, because they require visual attention they are not well suited to continuous monitoring scenarios in which network administrators must carry out other tasks. Here we present SoNSTAR (Sonification of Networks for SiTuational AwaReness), a real-time sonification system for monitoring computer networks to support network administrators' situational awareness. SoNSTAR provides an auditory representation of all the TCP/IP traffic within a network based on the different traffic flows between between network hosts. A user study showed that SoNSTAR raises situational awareness levels by enabling operators to understand network behaviour and with the benefit of lower workload demands (as measured by the NASA TLX method) than visual techniques. SoNSTAR identifies network traffic features by inspecting the status flags of TCP/IP packet headers. Combinations of these features define particular traffic events which are mapped to recorded sounds to generate a soundscape that represents the real-time status of the network traffic environment. The sequence, timing, and loudness of the different sounds allow the network to be monitored and anomalous behaviour to be detected without the need to continuously watch a monitor screen.

  20. Conceptual ecological models to support detection of ecological change on Alaska National Wildlife Refuges

    USGS Publications Warehouse

    Woodward, Andrea; Beever, Erik A.

    2011-01-01

    More than 31 million hectares of land are protected and managed in 16 refuges by the U.S. Fish and Wildlife Service (USFWS) in Alaska. The vastness and isolation of Alaskan refuges give rise to relatively intact and complete ecosystems. The potential for these lands to provide habitat for trust species is likely to be altered, however, due to global climate change, which is having dramatic effects at high latitudes. The ability of USFWS to effectively manage these lands in the future will be enhanced by a regional inventory and monitoring program that integrates and supplements monitoring currently being implemented by individual refuges. Conceptual models inform monitoring programs in a number of ways, including summarizing important ecosystem components and processes as well as facilitating communication, discussion and debate about the nature of the system and important management issues. This process can lead to hypotheses regarding future changes, likely results of alternative management actions, identification of monitoring indicators, and ultimately, interpretation of monitoring results. As a first step towards developing a monitoring program, the 16 refuges in Alaska each created a conceptual model of their refuge and the landscape context. Models include prominent ecosystem components, drivers, and processes by which components are linked or altered. The Alaska refuge system also recognizes that designing and implementing monitoring at regional and ecoregional extents has numerous scientific, fiscal, logistical, and political advantages over monitoring conducted exclusively at refuge-specific scales. Broad-scale monitoring is particularly advantageous for examining phenomena such as climate change because effects are best interpreted at broader spatial extents. To enable an ecoregional perspective, a rationale was developed for deriving ecoregional boundaries for four ecoregions (Polar, Interior Alaska, Bering Coast, and North Pacific Coast) from the

  1. Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.

    This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and

  2. Wireless Sensor Network for Electric Transmission Line Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alphenaar, Bruce

    Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and costmore » effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a

  3. NETWORK DESIGN FOR OZONE MONITORING

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks from air pollution. A major cr...

  4. Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.; ,

    2006-01-01

    The U.S. Geological Survey (USGS) network of 223 real-time monitoring stations, the 'Georgia HydroWatch,' provides real-time water-stage data, with streamflow computed at 198 locations, and rainfall recorded at 187 stations. These sites continuously record data on 15-minute intervals and transmit the data via satellite to be incorporated into the USGS National Water Information System database. These data are automatically posted to the USGS Web site for public dissemination (http://waterdata.usgs.gov/ga/nwis/nwis). The real-time capability of this network provides information to help emergency-management officials protect human life and property during floods, and mitigate the effects of prolonged drought. The map at right shows the USGS streamflow monitoring network for Georgia and major watersheds. Streamflow is monitored at 198 sites statewide, more than 80 percent of which include precipitation gages. Various Federal, State, and local agencies fund these streamflow monitoring stations.

  5. Broadening the Quality and Capabilities of the EarthScope Alaska Transportable Array

    NASA Astrophysics Data System (ADS)

    Busby, R. W.

    2016-12-01

    In 2016, the EarthScope Transportable Array (TA) program will have 195 broadband seismic stations operating in Alaska and western Canada. This ambitious project will culminate in a network of 268 new or upgraded real-time seismic stations operating through 2019. The challenging environmental conditions and the remoteness of Alaska have motivated a new method for constructing a high-quality, temporary seismic network. The Alaska TA station design builds on experience of the Lower 48 TA deployment and adds design requirements because most stations are accessible only by helicopter. The stations utilize new high-performance posthole sensors, a specially built hammer/auger drill, and lightweight lithium ion batteries to minimize sling loads. A uniform station design enables a modest crew to build the network on a short timeline and operate them through the difficult conditions of rural Alaska. The Alaska TA deployment has increased the quality of seismic data, with some well-sited 2-3 m posthole stations approaching the performance of permanent Global Seismic Network stations emplaced in 100 m boreholes. The real-time data access, power budget, protective enclosure and remote logistics of these TA stations has attracted collaborations with NASA, NOAA, USGS, AVO and other organizations to add auxiliary sensors to the suite of instruments at many TA stations. Strong motion sensors have been added to (18) stations near the subduction trench to complement SM stations operated by AEC, ANSS and GSN. All TA and most upgraded stations have pressure and infrasound sensors, and 150 TA stations are receiving a Vaisala weather sensor, supplied by the National Weather Service Alaska Region and NASA, capable of measuring temperature, pressure, relative humidity, wind speed/direction, and precipitation intensity. We are also installing about (40) autonomous soil temperature profile kits adjacent to northern stations. While the priority continues to be collecting seismic data, these

  6. Alaska Air National Guard

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Symbol Visit 168th Wing Website State of Alaska myAlaska My Government Resident Business in Alaska

  7. Modular Subsea Monitoring Network (MSM) - Realizing Integrated Environmental Monitoring Solutions

    NASA Astrophysics Data System (ADS)

    Mosch, Thomas; Fietzek, Peer

    2016-04-01

    In a variety of scientific and industrial application areas, ranging i.e. from the supervision of hydrate fields over the detection and localization of fugitive emissions from subsea oil and gas production to fish farming, fixed point observatories are useful and applied means. They monitor the water column and/or are placed at the sea floor over long periods of time. They are essential oceanographic platforms for providing valuable long-term time series data and multi-parameter measurements. Various mooring and observatory endeavors world-wide contribute valuable data needed for understanding our planet's ocean systems and biogeochemical processes. Continuously powered cabled observatories enable real-time data transmission from spots of interest close to the shore or to ocean infrastructures. Independent of the design of the observatories they all rely on sensors which demands for regular maintenance. This work is in most cases associated with cost-intensive maintenance on a regular time basis for the entire sensor carrying fixed platform. It is mandatory to encounter this asset for long-term monitoring by enhancing hardware efficiency. On the basis of two examples of use from the area of hydrate monitoring (off Norway and Japan) we will present the concept of the Modular Subsea Monitoring Network (MSM). The modular, scalable and networking capabilities of the MSM allow for an easy adaptation to different monitoring tasks. Providing intelligent power management, combining chemical and acoustical sensors, adaptation of the payload according to the monitoring tasks, autonomous powering, modular design for easy transportation, storage and mobilization, Vessel of Opportunity-borne launching and recovery capability with a video-guided launcher system and a rope recovery system are key facts addressed during the development of the MSM. Step by step the MSM concept applied to the observatory hardware will also be extended towards the gathered data to maximize the

  8. 76 FR 41763 - Proposed Information Collection; Comment Request; Alaska Region Logbook Family of Forms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... (NMFS) Alaska Region manages the United States (U.S.) groundfish fisheries of the Exclusive Economic... monitoring of the groundfish fisheries of the EEZ off Alaska. II. Method of Collection Paper and electronic logbooks, paper and electronic reports, and telephone calls are required from participants, and methods of...

  9. A Decade of Shear-Wave Splitting Observations in Alaska

    NASA Astrophysics Data System (ADS)

    Bellesiles, A. K.; Christensen, D. H.; Abers, G. A.; Hansen, R. A.; Pavlis, G. L.; Song, X.

    2010-12-01

    Over the last decade four PASSCAL experiments have been conducted in different regions of Alaska. ARCTIC, BEAAR and MOOS form a north-south transect across the state, from the Arctic Ocean to Price Williams Sound, while the STEEP experiment is currently deployed to the east of that line in the St Elias Mountains of Southeastern Alaska. Shear-wave splitting observations from these networks in addition to several permanent stations of the Alaska Earthquake Information Center were determined in an attempt to understand mantle flow under Alaska in a variety of different geologic settings. Results show two dominant splitting patterns in Alaska, separated by the subducted Pacific Plate. North of the subducted Pacific Plate fast directions are parallel to the trench (along strike of the subducted Pacific Plate) indicating large scale mantle flow in the northeast-southwest direction with higher anisotropy (splitting times) within the mantle wedge. Within or below the Pacific Plate fast directions are normal to the trench in the direction of Pacific Plate convergence. In addition to these two prominent splitting patterns there are several regions that do not match either of these trends. These more complex regions which include the results from STEEP could be due to several factors including effects from the edge of the Pacific Plate. The increase of station coverage that Earthscope will bring to Alaska will aid in developing a more complete model for anisotropy and mantle flow in Alaska.

  10. Statistical approaches used to assess and redesign surface water-quality-monitoring networks.

    PubMed

    Khalil, B; Ouarda, T B M J

    2009-11-01

    An up-to-date review of the statistical approaches utilized for the assessment and redesign of surface water quality monitoring (WQM) networks is presented. The main technical aspects of network design are covered in four sections, addressing monitoring objectives, water quality variables, sampling frequency and spatial distribution of sampling locations. This paper discusses various monitoring objectives and related procedures used for the assessment and redesign of long-term surface WQM networks. The appropriateness of each approach for the design, contraction or expansion of monitoring networks is also discussed. For each statistical approach, its advantages and disadvantages are examined from a network design perspective. Possible methods to overcome disadvantages and deficiencies in the statistical approaches that are currently in use are recommended.

  11. Response of the Alaska Volcano Observatory to Public Inquiry Concerning the 2006 Eruption of Augustine Volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    Adleman, J. N.

    2006-12-01

    The 2006 eruption of Augustine Volcano provided the Alaska Volcano Observatory (AVO) with an opportunity to test its newly renovated Operations Center (Ops) at the Alaska Science Center in Anchorage. Because of the demand for interagency operations and public communication, Ops became the hub of Augustine monitoring activity, twenty-four hours a day, seven days a week, from January 10 through May 19, 2006. During this time, Ops was staffed by 17 USGS AVO staff, and over two dozen Fairbanks-based AVO staff from the Alaska Department of Geological and Geophysical Surveys and the University of Alaska Fairbanks Geophysical Institute and USGS Volcano Hazards Program staff from outside Alaska. This group engaged in communicating with the public, media, and other responding agencies throughout the eruption. Before and during the eruption, reference sheets - ;including daily talking - were created, vetted, and distributed to prepare staff for questions about the volcano. These resources were compiled into a binder stationed at each Ops phone and available through the AVO computer network. In this way, AVO was able to provide a comprehensive, uniform, and timely response to callers and emails at all three of its cooperative organizations statewide. AVO was proactive in scheduling an Information Scientist for interviews on-site with Anchorage television stations and newspapers several times a week. Scientists available, willing, and able to speak clearly about the current activity were crucial to AVO's response. On January 19, 2006, two public meetings were held in Homer, 120 kilometers northeast of Augustine Volcano. AVO, the West Coast Alaska Tsunami Warning Center, and the Kenai Peninsula Borough Office of Emergency Management gave brief presentations explaining their roles in eruption response. Representatives from several local, state, and federal agencies were also available. In addition to communicating with the public by daily media interviews and phone calls to Ops

  12. State of Alaska

    Science.gov Websites

    Alaska Railroad Alaska Maps Alaska Travel Safety Information Alaska Fish and Game Alaska Facts & Month Services How Do I? Education Health Jobs Safety How Do I? Apply for a Permanent Fund Dividend File Information More Dept. of Commerce, Comm... More Dept. of Labor & Workforce Dev. Safety 511 - Traveler

  13. Monitoring air quality in mountains: Designing an effective network

    USGS Publications Warehouse

    Peterson, D.L.

    2000-01-01

    A quantitatively robust yet parsimonious air-quality monitoring network in mountainous regions requires special attention to relevant spatial and temporal scales of measurement and inference. The design of monitoring networks should focus on the objectives required by public agencies, namely: 1) determine if some threshold has been exceeded (e.g., for regulatory purposes), and 2) identify spatial patterns and temporal trends (e.g., to protect natural resources). A short-term, multi-scale assessment to quantify spatial variability in air quality is a valuable asset in designing a network, in conjunction with an evaluation of existing data and simulation-model output. A recent assessment in Washington state (USA) quantified spatial variability in tropospheric ozone distribution ranging from a single watershed to the western third of the state. Spatial and temporal coherence in ozone exposure modified by predictable elevational relationships ( 1.3 ppbv ozone per 100 m elevation gain) extends from urban areas to the crest of the Cascade Range. This suggests that a sparse network of permanent analyzers is sufficient at all spatial scales, with the option of periodic intensive measurements to validate network design. It is imperative that agencies cooperate in the design of monitoring networks in mountainous regions to optimize data collection and financial efficiencies.

  14. Environmental monitoring network for India

    Treesearch

    P.V. Sundareshwar; R. Murtugudde; G. Srinivasan; S. Singh; K.J. Ramesh; R. Ramesh; S.B. Verma; D. Agarwal; D. Baldocchi; C.K. Baru; K.K. Baruah; G.R. Chowdhury; V.K. Dadhwal; C.B.S. Dutt; J. Fuentes; Prabhat Gupta; W.W. Hardgrove; M. Howard; C.S. Jha; S. Lal; W.K. Michener; A.P. Mitra; J.T. Morris; R.R. Myneni; M. Naja; R. Nemani; R. Purvaja; S. Raha; S.K. Santhana Vanan; M. Sharma; A. Subramaniam; R. Sukumar; R.R. Twilley; P.R. Zimmerman

    2007-01-01

    Understanding the consequences of global environmental change and its mitigation will require an integrated global effort of comprehensive long-term data collection, synthesis, and action (1). The last decade has seen a dramatic global increase in the number of networked monitoring sites. For example, FLUXNET is a global collection of >300 micrometeorological...

  15. Transient Volcano Deformation Event Detection over Variable Spatial Scales in Alaska

    NASA Astrophysics Data System (ADS)

    Li, J. D.; Rude, C. M.; Gowanlock, M.; Herring, T.; Pankratius, V.

    2016-12-01

    Transient deformation events driven by volcanic activity can be monitored using increasingly dense networks of continuous Global Positioning System (GPS) ground stations. The wide spatial extent of GPS networks, the large number of GPS stations, and the spatially and temporally varying scale of deformation events result in the mixing of signals from multiple sources. Typical analysis then necessitates manual identification of times and regions of volcanic activity for further study and the careful tuning of algorithmic parameters to extract possible transient events. Here we present a computer-aided discovery system that facilitates the discovery of potential transient deformation events at volcanoes by providing a framework for selecting varying spatial regions of interest and for tuning the analysis parameters. This site specification step in the framework reduces the spatial mixing of signals from different volcanic sources before applying filters to remove interfering signals originating from other geophysical processes. We analyze GPS data recorded by the Plate Boundary Observatory network and volcanic activity logs from the Alaska Volcano Observatory to search for and characterize transient inflation events in Alaska. We find 3 transient inflation events between 2008 and 2015 at the Akutan, Westdahl, and Shishaldin volcanoes in the Aleutian Islands. The inflation event detected in the first half of 2008 at Akutan is validated other studies, while the inflation events observed in early 2011 at Westdahl and in early 2013 at Shishaldin are previously unreported. Our analysis framework also incorporates modelling of the transient inflation events and enables a comparison of different magma chamber inversion models. Here, we also estimate the magma sources that best describe the deformation observed by the GPS stations at Akutan, Westdahl, and Shishaldin. We acknowledge support from NASA AIST-NNX15AG84G (PI: V. Pankratius).

  16. Crustal Structure beneath Alaska from Receiver Functions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, A.

    2017-12-01

    The crustal structure in Alaska has not been well resolved due to the remote nature of much of the state. The USArray Transportable Array (TA), which is operating in Alaska and northwestern Canada, significantly increases the coverage of broadband seismic stations in the region and allows for a more comprehensive study of the crust. We have analyzed P-receiver functions from earthquake data recorded by 76 stations of the TA and AK networks. Both common conversion point (CCP) and H-K methods are used to estimate the mean crustal thickness. The results from the CCP stacking method show that the Denali fault marks a sharp transition from thick crust in the south to thin crust in the north. The thickest crust up to 52 km is located in the St. Elias Range, which has been formed by oblique collision between the Yakutat microplate and North America. A thick crust of 48 km is also observed beneath the eastern Alaska Range. These observations suggest that high topography in Alaska is largely compensated by the thick crust root. The Moho depth ranges from 28 km to 35 km beneath the northern lowlands and increases to 40-45 km under the Books Range. The preliminary crustal thickness from the H-K method generally agrees with that from the CCP stacking with thicker crust beneath high mountain ranges and thinner crust beneath lowlands and basins. However, the offshore part is not well constrained due to the limited coverage of stations. The mean Vp/Vs ratio is around 1.7 in the Yukon-Tanana terrane and central-northern Alaska. The ratio is about 1.9 in central and southern Alaska with higher values at the Alaska Range, Wrangell Mountains, and St. Elias Range. Further data analyses are needed for obtaining more details of the crustal structure in Alaska to decipher the origin and development of different tectonic terranes.

  17. Autonomous smart sensor network for full-scale structural health monitoring

    NASA Astrophysics Data System (ADS)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  18. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    DTIC Science & Technology

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  19. Applications of ERTS-1 imagery to terrestrial and marine environmental analyses in Alaska

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; Mckim, H. L.; Crowder, W. K.; Haugen, R. K.; Gatto, L. W.; Marlar, T. L.

    1974-01-01

    ERTS-1 imagery provides a means of distinguishing and monitoring estuarine surface water circulation patterns and changes in the relative sediment load of discharging rivers on a regional basis. It also will aid local fishing industries by augmenting currently available hydrologic and navigation charts. The interpretation of geologic and vegetation features resulted in preparation of improved surficial geology, vegetation and permafrost terrain maps at a scale of 1:1 million utilizing ERTS-1 band 7 imagery. This information will be further utilized in a route and site selection study for the Nome to Kobuk Road in central Alaska. Large river icings along the proposed Alaska pipeline route have been monitored. Sea ice deformation and drift northeast of Point Barrow, Alaska has been measured and shorefast ice accumulation and ablation along the west coast of Alaska is being mapped for the spring and early summer seasons. These data will be used for route and site selection, regional environmental analysis, identification and inventory of natural resources, land use planning, and in land use regulation and management.

  20. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2012-12-01

    Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native

  1. How are your berries? Perspectives of Alaska's environmental managers on trends in wild berry abundance.

    PubMed

    Hupp, Jerry; Brubaker, Michael; Wilkinson, Kira; Williamson, Jennifer

    2015-01-01

    Wild berries are a valued traditional food in Alaska. Phytochemicals in wild berries may contribute to the prevention of vascular disease, cancer and cognitive decline, making berry consumption important to community health in rural areas. Little was known regarding which species of berries were important to Alaskan communities, the number of species typically picked in communities and whether recent environmental change has affected berry abundance or quality. To identify species of wild berries that were consumed by people in different ecological regions of Alaska and to determine if perceived berry abundance was changing for some species or in some regions. We asked tribal environmental managers throughout Alaska for their views on which among 12 types of wild berries were important to their communities and whether berry harvests over the past decade were different than in previous years. We received responses from 96 individuals in 73 communities. Berries that were considered very important to communities differed among ecological regions of Alaska. Low-bush blueberry (Vaccinium uliginosum and V. caespitosum), cloudberry (Rubus chamaemorus) and salmonberry (Rubus spectabilis) were most frequently identified as very important berries for communities in the boreal, polar and maritime ecoregions, respectively. For 7 of the 12 berries on the survey, a majority of respondents indicated that in the past decade abundance had either declined or become more variable. Our study is an example of how environmental managers and participants in local observer networks can report on the status of wild resources in rural Alaska. Their observations suggest that there have been changes in the productivity of some wild berries in the past decade, resulting in greater uncertainty among communities regarding the security of berry harvests. Monitoring and experimental studies are needed to determine how environmental change may affect berry abundance.

  2. How are your berries? Perspectives of Alaska's environmental managers on trends in wild berry abundance.

    PubMed

    Hupp, Jerry; Brubaker, Michael; Wilkinson, Kira; Williamson, Jennifer

    2015-01-01

    Background Wild berries are a valued traditional food in Alaska. Phytochemicals in wild berries may contribute to the prevention of vascular disease, cancer and cognitive decline, making berry consumption important to community health in rural areas. Little was known regarding which species of berries were important to Alaskan communities, the number of species typically picked in communities and whether recent environmental change has affected berry abundance or quality. Objective To identify species of wild berries that were consumed by people in different ecological regions of Alaska and to determine if perceived berry abundance was changing for some species or in some regions. Design We asked tribal environmental managers throughout Alaska for their views on which among 12 types of wild berries were important to their communities and whether berry harvests over the past decade were different than in previous years. We received responses from 96 individuals in 73 communities. Results Berries that were considered very important to communities differed among ecological regions of Alaska. Low-bush blueberry (Vaccinium uliginosum and V. caespitosum), cloudberry (Rubus chamaemorus) and salmonberry (Rubus spectabilis) were most frequently identified as very important berries for communities in the boreal, polar and maritime ecoregions, respectively. For 7 of the 12 berries on the survey, a majority of respondents indicated that in the past decade abundance had either declined or become more variable. Conclusions Our study is an example of how environmental managers and participants in local observer networks can report on the status of wild resources in rural Alaska. Their observations suggest that there have been changes in the productivity of some wild berries in the past decade, resulting in greater uncertainty among communities regarding the security of berry harvests. Monitoring and experimental studies are needed to determine how environmental change may affect

  3. How are your berries? Perspectives of Alaska's environmental managers on trends in wild berry abundance

    PubMed Central

    Hupp, Jerry; Brubaker, Michael; Wilkinson, Kira; Williamson, Jennifer

    2015-01-01

    Background Wild berries are a valued traditional food in Alaska. Phytochemicals in wild berries may contribute to the prevention of vascular disease, cancer and cognitive decline, making berry consumption important to community health in rural areas. Little was known regarding which species of berries were important to Alaskan communities, the number of species typically picked in communities and whether recent environmental change has affected berry abundance or quality. Objective To identify species of wild berries that were consumed by people in different ecological regions of Alaska and to determine if perceived berry abundance was changing for some species or in some regions. Design We asked tribal environmental managers throughout Alaska for their views on which among 12 types of wild berries were important to their communities and whether berry harvests over the past decade were different than in previous years. We received responses from 96 individuals in 73 communities. Results Berries that were considered very important to communities differed among ecological regions of Alaska. Low-bush blueberry (Vaccinium uliginosum and V. caespitosum), cloudberry (Rubus chamaemorus) and salmonberry (Rubus spectabilis) were most frequently identified as very important berries for communities in the boreal, polar and maritime ecoregions, respectively. For 7 of the 12 berries on the survey, a majority of respondents indicated that in the past decade abundance had either declined or become more variable. Conclusions Our study is an example of how environmental managers and participants in local observer networks can report on the status of wild resources in rural Alaska. Their observations suggest that there have been changes in the productivity of some wild berries in the past decade, resulting in greater uncertainty among communities regarding the security of berry harvests. Monitoring and experimental studies are needed to determine how environmental change may affect

  4. Pipelining in structural health monitoring wireless sensor network

    NASA Astrophysics Data System (ADS)

    Li, Xu; Dorvash, Siavash; Cheng, Liang; Pakzad, Shamim

    2010-04-01

    Application of wireless sensor network (WSN) for structural health monitoring (SHM), is becoming widespread due to its implementation ease and economic advantage over traditional sensor networks. Beside advantages that have made wireless network preferable, there are some concerns regarding their performance in some applications. In long-span Bridge monitoring the need to transfer data over long distance causes some challenges in design of WSN platforms. Due to the geometry of bridge structures, using multi-hop data transfer between remote nodes and base station is essential. This paper focuses on the performances of pipelining algorithms. We summarize several prevent pipelining approaches, discuss their performances, and propose a new pipelining algorithm, which gives consideration to both boosting of channel usage and the simplicity in deployment.

  5. MONET: a MOnitoring NEtwork of Telescopes

    NASA Astrophysics Data System (ADS)

    Hessman, F. V.; Beuermann, K.

    2002-01-01

    MONET is a planned network of two 1m-class robotic telescopes which will be used for various photometric monitoring projects -- variable stars, planet searches, AGN's, GRB's -- as well as by school children in Germany and over the world. The two host partners, the Univ. of Texas' McDonald Observatory and the South African Astronomical Observatory, will operate the telescopes in exchange for observing time on the network. MONET will be one of the first robotic telescope networks offering 1-m class telescopes, complete coverage of the sky, good longitude coverage for long observing sequences on objects near the celestial equator, and a heavy educational emphasis.

  6. Semantic Visualization of Wireless Sensor Networks for Elderly Monitoring

    NASA Astrophysics Data System (ADS)

    Stocklöw, Carsten; Kamieth, Felix

    In the area of Ambient Intelligence, Wireless Sensor Networks are commonly used for user monitoring purposes like health monitoring and user localization. Existing work on visualization of wireless sensor networks focuses mainly on displaying individual nodes and logical, graph-based topologies. This way, the relation to the real-world deployment is lost. This paper presents a novel approach for visualization of wireless sensor networks and interaction with complex services on the nodes. The environment is realized as a 3D model, and multiple nodes, that are worn by a single individual, are grouped together to allow an intuitive interface for end users. We describe application examples and show that our approach allows easier access to network information and functionality by comparing it with existing solutions.

  7. Spatial and temporal ecological variability in the northern Gulf of Alaska: What have we learned since the Exxon Valdez oil spill?

    NASA Astrophysics Data System (ADS)

    Aderhold, Donna G. R.; Lindeberg, Mandy R.; Holderied, Kris; Pegau, W. Scott

    2018-01-01

    This special issue examines oceanographic and biological variability in the northern Gulf of Alaska region with an emphasis on recent monitoring efforts of the Gulf Watch Alaska (GWA) and Herring Research and Monitoring (HRM) programs funded by the Exxon Valdez Oil Spill Trustee Council (EVOSTC). These programs are designed to improve our understanding of how changing environmental conditions affect Gulf of Alaska ecosystems and the long-term status of resources injured by the Exxon Valdez oil spill.

  8. Improved security monitoring method for network bordary

    NASA Astrophysics Data System (ADS)

    Gao, Liting; Wang, Lixia; Wang, Zhenyan; Qi, Aihua

    2013-03-01

    This paper proposes a network bordary security monitoring system based on PKI. The design uses multiple safe technologies, analysis deeply the association between network data flow and system log, it can detect the intrusion activities and position invasion source accurately in time. The experiment result shows that it can reduce the rate of false alarm or missing alarm of the security incident effectively.

  9. Establishing a baseline for regional scale monitoring of eelgrass (Zostera marina) habitat on the lower Alaska Peninsula

    USGS Publications Warehouse

    Hogrefe, Kyle R.; Ward, David H.; Donnelly, Tyrone F.; Dau, Niels

    2014-01-01

    Seagrass meadows, one of the world’s most widespread and productive ecosystems, provide a wide range of services with real economic value. Worldwide declines in the distribution and abundance of seagrasses and increased threats to coastal ecosystems from climate change have prompted a need to acquire baseline data for monitoring and protecting these important habitats. We assessed the distribution and abundance of eelgrass (Zostera marina) along nearly 1200 km of shoreline on the lower Alaska Peninsula, a region of expansive eelgrass meadows whose status and trends are poorly understood. We demonstrate the effectiveness of a multi-scale approach by using Landsat satellite imagery to map the total areal extent of eelgrass while integrating field survey data to improve map accuracy and describe the physical and biological condition of the meadows. Innovative use of proven methods and processing tools was used to address challenges inherent to remote sensing in high latitude, coastal environments. Eelgrass was estimated to cover ~31,000 ha, 91% of submerged aquatic vegetation on the lower Alaska Peninsula, nearly doubling the known spatial extent of eelgrass in the region. Mapping accuracy was 80%–90% for eelgrass distribution at locations containing adequate field survey data for error analysis.

  10. Wireless Sensor Networks: Monitoring and Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  11. Home - Gold mining in Alaska - Libraries, Archives, & Museums at Alaska

    Science.gov Websites

    State Library Skip to main content State of Alaska myAlaska Departments State Employees Statewide Links × Upcoming Holiday Closure for Memorial Day The Alaska State Libraries, Archives, & Tuesday, May 29. Department of Education and Early Development Alaska State Libraries, Archives, and

  12. Toward a Scalable Visualization System for Network Traffic Monitoring

    NASA Astrophysics Data System (ADS)

    Malécot, Erwan Le; Kohara, Masayoshi; Hori, Yoshiaki; Sakurai, Kouichi

    With the multiplication of attacks against computer networks, system administrators are required to monitor carefully the traffic exchanged by the networks they manage. However, that monitoring task is increasingly laborious because of the augmentation of the amount of data to analyze. And that trend is going to intensify with the explosion of the number of devices connected to computer networks along with the global rise of the available network bandwidth. So system administrators now heavily rely on automated tools to assist them and simplify the analysis of the data. Yet, these tools provide limited support and, most of the time, require highly skilled operators. Recently, some research teams have started to study the application of visualization techniques to the analysis of network traffic data. We believe that this original approach can also allow system administrators to deal with the large amount of data they have to process. In this paper, we introduce a tool for network traffic monitoring using visualization techniques that we developed in order to assist the system administrators of our corporate network. We explain how we designed the tool and some of the choices we made regarding the visualization techniques to use. The resulting tool proposes two linked representations of the network traffic and activity, one in 2D and the other in 3D. As 2D and 3D visualization techniques have different assets, we resulted in combining them in our tool to take advantage of their complementarity. We finally tested our tool in order to evaluate the accuracy of our approach.

  13. Alaska Tidal Datum Portal - Alaska Tidal Datum Calculator | Alaska Division

    Science.gov Websites

    Coastal Hazards Program Guide to Geologic Hazards in Alaska MAPTEACH Tsunami Inundation Mapping Energy Portal main content Alaska Tidal Datum Portal Unambiguous vertical datums in the coastal environment are projects to ensure protection of human life, property, and the coastal environment. January 2017 - Update

  14. Wireless Sensor Networks for Oceanographic Monitoring: A Systematic Review

    PubMed Central

    Albaladejo, Cristina; Sánchez, Pedro; Iborra, Andrés; Soto, Fulgencio; López, Juan A.; Torres, Roque

    2010-01-01

    Monitoring of the marine environment has come to be a field of scientific interest in the last ten years. The instruments used in this work have ranged from small-scale sensor networks to complex observation systems. Among small-scale networks, Wireless Sensor Networks (WSNs) are a highly attractive solution in that they are easy to deploy, operate and dismantle and are relatively inexpensive. The aim of this paper is to identify, appraise, select and synthesize all high quality research evidence relevant to the use of WSNs in oceanographic monitoring. The literature is systematically reviewed to offer an overview of the present state of this field of study and identify the principal resources that have been used to implement networks of this kind. Finally, this article details the challenges and difficulties that have to be overcome if these networks are to be successfully deployed. PMID:22163583

  15. Vital signs monitoring plan for the Klamath Network: Phase I report

    USGS Publications Warehouse

    Sarr, Daniel; Odion, Dennis; Truitt, Robert E.; Beever, Erik A.; Shafer, Sarah; Duff, Andrew; Smith, Sean B.; Bunn, Windy; Rocchio, Judy; Sarnat, Eli; Alexander, John; Jessup, Steve

    2004-01-01

    This report chronicles the Phase 1 stage of the vital signs monitoring program for the Klamath Network. It consists of two chapters and eleven appendixes. The purposes of Chapter One are to 1) describe the network administrative structure and approach to planning; 2) introduce the Klamath Network parks, their resources, and environmental settings; 3) explain the need for monitoring changes in resources and supporting environments; 4) identify key information gaps that limit understanding of how to best achieve these monitoring goals. The purpose of Chapter Two is to develop the descriptive information provided in Chapter One into a conceptual basis for vital signs monitoring and to present the Network’s initial suite of conceptual models. The Report Appendices provide in-depth information on a variety of topics researched in preparation of the report, including: detailed natural resource profiles for each park, supporting policies and guidelines, regional fire regimes, vegetation types of the parks, exotic species threats, interagency monitoring programs, air issues, water quality (Phase 1 Report), Network vital signs (Scoping Summary Report), rare species, and rare habitats of the parks.

  16. NASA SPoRT JPSS PG Activities in Alaska

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Molthan, Andrew; Fuell, Kevin; McGrath, Kevin; Smith, Matt; LaFontaine, Frank; Leroy, Anita; White, Kris

    2018-01-01

    SPoRT (NASA's Short-term Prediction Research and Transition Center) has collaboratively worked with Alaska WFOs (Weather Forecast Offices) to introduce RGB (Red/Green/Blue false color image) imagery to prepare for NOAA-20 (National Oceanic and Atmospheric Administration, JPSS (Joint Polar Satellite System) series-20 satellite) VIIRS (Visible Infrared Imaging Radiometer Suite) and improve forecasting aviation-related hazards. Last R2O/O2R (Research-to-Operations/Operations-to-Research) steps include incorporating NOAA-20 VIIRS in RGB suite and fully transitioning client-side RGB processing to GINA (Geographic Information Network of Alaska) and Alaska Region. Alaska Region WFOs have been part of the successful R2O/O2R story to assess the use of NESDIS (National Environmental Satellite, Data, and Information Service) Snowfall Rate product in operations. SPoRT introduced passive microwave rain rate and IMERG (Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement)) (IMERG) to Alaska WFOs for use in radar-void areas and assessing flooding potential. SPoRT has been part of the multi-organization collaborative effort to introduce Gridded NUCAPS (NOAA Unique CrIS/ATMS (Crosstrack Infrared Sounder/Advanced Technology Microwave Sounder) Processing System) to the Anchorage CWSU (Center Weather Service Unit) to assess Cold Air Aloft events, [and as part of NOAA's PG (Product Generation) effort].

  17. Smoke monitoring network on 2006 Northern California fires

    Treesearch

    Brenda Belongie; Suraj Ahuja

    2007-01-01

    Long-duration fire activity during the 2006 northern California fire season presented an excellent opportunity to create a temporary air-quality/smoke-monitoring network in the complex terrain across northwestern California. The network was established through cooperative interagency coordination of Federal officials, the California Air Resources Board (CARB), and...

  18. Sensitivity Analysis of Genetic Algorithm Parameters for Optimal Groundwater Monitoring Network Design

    NASA Astrophysics Data System (ADS)

    Abdeh-Kolahchi, A.; Satish, M.; Datta, B.

    2004-05-01

    A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of

  19. Measurement of horizontal motions in Alaska using very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Ma, C.; Sauber, J. M.; Clark, T. A.; Ryan, J. W.; Bell, L. J.; Gordon, D.; Himwich, W. E.

    1990-01-01

    Results are presented on an analysis of VLBI measurements performed between 1984 and 1990 by means of a network of 53 sites in Alaska, the Yukon Territory, and the conterminous United States to determine the extent of horizontal motions in Alaska. Results are presented in two ways, one showing the evolution of individual baselines and the other yielding site velocities; both approaches use VLBI data from other permanent stations in order to define a global reference frame. It was found that VLBI sites within the Alaska-Aleutian subduction boundary zone (Yakataga, Kodiak, and Sand Point) had higher instantaneous velocities relative to eastern North America than the interior sites of Alaska. The results of Yakataga data modeling suggests that the observed motion is the result of elastic straining of the overriding plate due to a locked main thrust zone with a component of oblique slip.

  20. Home, Alaska Oil and Gas Conservation Commission, State of Alaska

    Science.gov Websites

    State logo Alaska Department of Administration Alaska Oil and Gas Conservation Commission Administration AOGCC Alaska Oil and Gas Conservation Commission Javascript is required to run this webpage

  1. Earthquakes in Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Plafker, George

    1995-01-01

    Earthquake risk is high in much of the southern half of Alaska, but it is not the same everywhere. This map shows the overall geologic setting in Alaska that produces earthquakes. The Pacific plate (darker blue) is sliding northwestward past southeastern Alaska and then dives beneath the North American plate (light blue, green, and brown) in southern Alaska, the Alaska Peninsula, and the Aleutian Islands. Most earthquakes are produced where these two plates come into contact and slide past each other. Major earthquakes also occur throughout much of interior Alaska as a result of collision of a piece of crust with the southern margin.

  2. DATA FROM EPA'S UV MONITORING NETWORK

    EPA Science Inventory

    The U.S. Environmental Protection Agency, in cooperation with the National Park Service, has deployed 21 Brewer spectrophotometers in a national network for monitoring UV radiation from the sun. Seven of the Brewers are in urban areas, and fourteen are in National Parks (Figur...

  3. Warm summer nights and the growth decline of shore pine in Southeast Alaska

    Treesearch

    Patrick F Sullivan; Robin L Mulvey; Annalis H Brownlee; Tara M Barrett; Robert R Pattison

    2015-01-01

    Shore pine, which is a subspecies of lodgepole pine, was a widespread and dominant tree species in Southeast Alaska during the early Holocene. At present, the distribution of shore pine in Alaska is restricted to coastal bogs and fens, likely by competition with Sitka spruce and Western hemlock. Monitoring of permanent plots as part of the United States Forest Service...

  4. Overview of the new National Near-Road Air Quality Monitoring Network

    EPA Science Inventory

    In 2010, EPA promulgated new National Ambient Air Quality Standards (NAAQS) for nitrogen dioxide (NO2). As part of this new NAAQS, EPA required the establishment of a national near-road air quality monitoring network. This network will consist of one NO2 near-road monitoring st...

  5. A proposed ground-water quality monitoring network for Idaho

    USGS Publications Warehouse

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  6. Fault tree analysis for data-loss in long-term monitoring networks.

    PubMed

    Dirksen, J; ten Veldhuis, J A E; Schilperoort, R P S

    2009-01-01

    Prevention of data-loss is an important aspect in the design as well as the operational phase of monitoring networks since data-loss can seriously limit intended information yield. In the literature limited attention has been paid to the origin of unreliable or doubtful data from monitoring networks. Better understanding of causes of data-loss points out effective solutions to increase data yield. This paper introduces FTA as a diagnostic tool to systematically deduce causes of data-loss in long-term monitoring networks in urban drainage systems. In order to illustrate the effectiveness of FTA, a fault tree is developed for a monitoring network and FTA is applied to analyze the data yield of a UV/VIS submersible spectrophotometer. Although some of the causes of data-loss cannot be recovered because the historical database of metadata has been updated infrequently, the example points out that FTA still is a powerful tool to analyze the causes of data-loss and provides useful information on effective data-loss prevention.

  7. Design of a ground-water-quality monitoring network for the Salinas River basin, California

    USGS Publications Warehouse

    Showalter, P.K.; Akers, J.P.; Swain, L.A.

    1984-01-01

    A regional ground-water quality monitoring network for the entire Salinas River drainage basin was designed to meet the needs of the California State Water Resources Control Board. The project included phase 1--identifying monitoring networks that exist in the region; phase 2--collecting information about the wells in each network; and phase 3--studying the factors--such as geology, land use, hydrology, and geohydrology--that influence the ground-water quality, and designing a regional network. This report is the major product of phase 3. Based on the authors ' understanding of the ground-water-quality monitoring system and input from local offices, an ideal network was designed. The proposed network includes 317 wells and 8 stream-gaging stations. Because limited funds are available to implement the monitoring network, the proposed network is designed to correspond to the ideal network insofar as practicable, and is composed mainly of 214 wells that are already being monitored by a local agency. In areas where network wells are not available, arrangements will be made to add wells to local networks. The data collected by this network will be used to assess the ground-water quality of the entire Salinas River drainage basin. After 2 years of data are collected, the network will be evaluated to test whether it is meeting the network objectives. Subsequent network evaluations will be done very 5 years. (USGS)

  8. Optimal Design of Multitype Groundwater Monitoring Networks Using Easily Accessible Tools.

    PubMed

    Wöhling, Thomas; Geiges, Andreas; Nowak, Wolfgang

    2016-11-01

    Monitoring networks are expensive to establish and to maintain. In this paper, we extend an existing data-worth estimation method from the suite of PEST utilities with a global optimization method for optimal sensor placement (called optimal design) in groundwater monitoring networks. Design optimization can include multiple simultaneous sensor locations and multiple sensor types. Both location and sensor type are treated simultaneously as decision variables. Our method combines linear uncertainty quantification and a modified genetic algorithm for discrete multilocation, multitype search. The efficiency of the global optimization is enhanced by an archive of past samples and parallel computing. We demonstrate our methodology for a groundwater monitoring network at the Steinlach experimental site, south-western Germany, which has been established to monitor river-groundwater exchange processes. The target of optimization is the best possible exploration for minimum variance in predicting the mean travel time of the hyporheic exchange. Our results demonstrate that the information gain of monitoring network designs can be explored efficiently and with easily accessible tools prior to taking new field measurements or installing additional measurement points. The proposed methods proved to be efficient and can be applied for model-based optimal design of any type of monitoring network in approximately linear systems. Our key contributions are (1) the use of easy-to-implement tools for an otherwise complex task and (2) yet to consider data-worth interdependencies in simultaneous optimization of multiple sensor locations and sensor types. © 2016, National Ground Water Association.

  9. EarthScope Transportable Array Siting Outreach Activities in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Dorr, P. M.; Gardine, L.; Tape, C.; McQuillan, P.; Cubley, J. F.; Samolczyk, M. A.; Taber, J.; West, M. E.; Busby, R.

    2015-12-01

    The EarthScope Transportable Array is deploying about 260 stations in Alaska and western Canada. IRIS and EarthScope are partnering with the Alaska Earthquake Center, part of the University of Alaska's Geophysical Institute, and Yukon College to spread awareness of earthquakes in Alaska and western Canada and the benefits of the Transportable Array for people living in these regions. We provide an update of ongoing education and outreach activities in Alaska and Canada as well as continued efforts to publicize the Transportable Array in the Lower 48. Nearly all parts of Alaska and portions of western Canada are tectonically active. The tectonic and seismic variability of Alaska, in particular, requires focused attention at the regional level, and the remoteness and inaccessibility of most Alaskan and western Canadian villages and towns often makes frequent visits difficult. When a community is accessible, every opportunity to engage the residents is made. Booths at state fairs and large cultural gatherings, such as the annual convention of the Alaska Federation of Natives, are excellent venues to distribute earthquake information and to demonstrate a wide variety of educational products and web-based applications related to seismology and the Transportable Array that residents can use in their own communities. Meetings and interviews with Alaska Native Elders and tribal councils discussing past earthquakes has led to a better understanding of how Alaskans view and understand earthquakes. Region-specific publications have been developed to tie in a sense of place for residents of Alaska and the Yukon. The Alaska content for IRIS's Active Earth Monitor emphasizes the widespread tectonic and seismic features and offers not just Alaska residents, but anyone interested in Alaska, a glimpse into what is going on beneath their feet. The concerted efforts of the outreach team will have lasting effects on Alaskan and Canadian understanding of the seismic hazard and

  10. Flood monitoring network in southeastern Louisiana

    USGS Publications Warehouse

    McCallum, Brian E.

    1994-01-01

    A flood monitoring network has been established to alert emergency operations personnel and the public about hydrologic conditions in the Amite River Basin. The U.S. Geological Survey (USGS), in cooperation with the Louisiana Office of Emergency Preparedness (LOEP), has installed a real-time data acquisition system to monitor rainfall and river stages in the basin. These data will be transmitted for use by emergency operations personnel to develop flood control and evacuation strategies. The current river stages at selected gaging stations in the basin also will be broadcast by local television and radio stations during a flood. Residents can record the changing river stages on a basin monitoring map, similar to a hurricane tracking map.

  11. An Efficient Wireless Sensor Network for Industrial Monitoring and Control.

    PubMed

    Aponte-Luis, Juan; Gómez-Galán, Juan Antonio; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel

    2018-01-10

    This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management.

  12. Volcanic Thunder From Explosive Eruptions at Bogoslof Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Haney, Matthew M.; Van Eaton, Alexa R.; Lyons, John J.; Kramer, Rebecca L.; Fee, David; Iezzi, Alexandra M.

    2018-04-01

    Lightning often occurs during ash-producing eruptive activity, and its detection is now being used in volcano monitoring for rapid alerts. We report on infrasonic and sonic recordings of the related, but previously undocumented, phenomenon of volcanic thunder. We observe volcanic thunder during the waning stages of two explosive eruptions at Bogoslof volcano, Alaska, on a microphone array located 60 km away. Thunder signals arrive from a different direction than coeruptive infrasound generated at the vent following an eruption on 10 June 2017, consistent with locations from lightning networks. For the 8 March 2017 eruption, arrival times and amplitudes of high-frequency thunder signals correlate well with the timing and strength of lightning detections. In both cases, the thunder is associated with lightning that continues after significant eruptive activity has ended. Infrasonic and sonic observations of volcanic thunder offer a new avenue for studying electrification processes in volcanic plumes.

  13. Alaska and the Alaska Federal Health Care Partnership

    DTIC Science & Technology

    2002-08-01

    SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT The intent of the Alaska Federal Healthcare Partnership is to expand clinical and... intent of the Alaska Federal Healthcare Partnership is to expand clinical and support capabilities of the Alaska Native Medical Center (ANMC), Third...the formation of the Partnership. Although lengthy, the information is essential to appreciate the magnitude of the Partnership and the intent behind

  14. 2012 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Herrick, Julie A.; Neal, Christina A.; Cameron, Cheryl E.; Dixon, James P.; McGimsey, Robert G.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, or suspected unrest at 11 volcanic centers in Alaska during 2012. Of the two verified eruptions, one (Cleveland) was clearly magmatic and the other (Kanaga) was most likely a single phreatic explosion. Two other volcanoes had notable seismic swarms that probably were caused by magmatic intrusions (Iliamna and Little Sitkin). For each period of clear volcanic unrest, AVO staff increased monitoring vigilance as needed, reviewed eruptive histories of the volcanoes in question to help evaluate likely outcomes, and shared observations and interpretations with the public. 2012 also was the 100th anniversary of Alaska’s Katmai-Novarupta eruption of 1912, the largest eruption on Earth in the 20th century and one of the most important volcanic eruptions in modern times. AVO marked this occasion with several public events.

  15. Optimal Design of River Monitoring Network in Taizihe River by Matter Element Analysis

    PubMed Central

    Wang, Hui; Liu, Zhe; Sun, Lina; Luo, Qing

    2015-01-01

    The objective of this study is to optimize the river monitoring network in Taizihe River, Northeast China. The situation of the network and water characteristics were studied in this work. During this study, water samples were collected once a month during January 2009 - December 2010 from seventeen sites. Futhermore, the 16 monitoring indexes were analyzed in the field and laboratory. The pH value of surface water sample was found to be in the range of 6.83 to 9.31, and the average concentrations of NH4 +-N, chemical oxygen demand (COD), volatile phenol and total phosphorus (TP) were found decreasing significantly. The water quality of the river has been improved from 2009 to 2010. Through the calculation of the data availability and the correlation between adjacent sections, it was found that the present monitoring network was inefficient as well as the optimization was indispensable. In order to improve the situation, the matter element analysis and gravity distance were applied in the optimization of river monitoring network, which were proved to be a useful method to optimize river quality monitoring network. The amount of monitoring sections were cut from 17 to 13 for the monitoring network was more cost-effective after being optimized. The results of this study could be used in developing effective management strategies to improve the environmental quality of Taizihe River. Also, the results show that the proposed model can be effectively used for the optimal design of monitoring networks in river systems. PMID:26023785

  16. Developing A National Groundwater-Monitoring Network In Korea

    NASA Astrophysics Data System (ADS)

    Kim, N. J.; Cho, M. J.; Woo, N. C.

    1995-04-01

    Since the 1960's, the groundwater resources of Korea have been developed without a proper regulatory system for monitoring and preservation, resulting in significant source depletion, land subsidence, water contamination, and sea-water intrusion. With the activation of the "Groundwater Law" in June 1994, the government initiated a project to develop a groundwater-monitoring network to describe general groundwater quality, to define its long-term changes, and to identify major factors affecting changes in groundwater quality and yield. In selecting monitoring locations nationwide, criteria considered are 1) spatial distribution, 2) aquifer characteristics of hydrogeologic units, 3) local groundwater flow regime, 4) linkage with surface hydrology observations, 5) site accessibility, and 6) financial situations. A total of 310 sites in 78 small hydrologic basins were selected to compose the monitoring network. Installation of monitoring wells is scheduled to start in 1995 for 15 sites; the remainder are scheduled to be completed by 2001. At each site, a nest of monitoring wells was designed; shallow and deep groundwater will be monitored for water temperature, pH, EC, DO and TDS every month. Water-level fluctuations will also be measured by automatic recorders equipped with pressure transducers. As a next step, the government plans to develop a groundwater-database management system, which could be linked with surface hydrologic data.

  17. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    USGS Publications Warehouse

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  18. Environmental networks for large-scale monitoring of Earth and atmosphere

    NASA Astrophysics Data System (ADS)

    Maurodimou, Olga; Kolios, Stavros; Konstantaras, Antonios; Georgoulas, George; Stylios, Chrysostomos

    2013-04-01

    Installation and operation of instrument/sensor networks are proven fundamental in the monitoring of the physical environment from local to global scale. The advances in electronics, wireless communications and informatics has led to the development of a huge number of networks at different spatial scales that measure, collect and store a wide range of environmental parameters. These networks have been gradually evolved into integrated information systems that provide real time monitoring, forecasts and different products from the initial collected datasets. Instrument/sensor networks have nowadays become important solutions for environmental monitoring, comprising a basic component of fully automated systems developing worldwide that contribute in the efforts for a sustainable Earth's environment (e.g. Hart et al., 2006, Othman et al., 2012). They are also used as a source of data for models parameterization and as verification tools for accuracy assessment techniques of the satellite imagery. Environmental networks can be incorporated into decision support systems (e.g Rizzi et al., 2012) providing informational background along with data from satellites for decision making, manage problems, suggest solutions and best practices for a sustainable management of the environment. This is a comparative study aiming to examine and highlight the significant role of existing instrument/sensor networks for large-scale monitoring of environmental issues, especially atmospheric and marine environment as well as weather and climate. We provide characteristic examples of integrated systems based on large scale instrument/sensor networks along with other sources of data (like satellite datasets) as informational background to measure, identify, monitor, analyze and forecast a vast series of atmospheric parameters (like CO2, O3, particle matter and solar irradiance), weather, climate and their impacts (e.g., cloud systems, lightnings, rainfall, air and surface temperature

  19. An open and reconfigurable wireless sensor network for pervasive health monitoring.

    PubMed

    Triantafyllidis, A; Koutkias, V; Chouvarda, I; Maglaveras, N

    2008-01-01

    Sensor networks constitute the backbone for the construction of personalized monitoring systems. Up to now, several sensor networks have been proposed for diverse pervasive healthcare applications, which are however characterized by a significant lack of open architectures, resulting in closed, non-interoperable and difficult to extend solutions. In this context, we propose an open and reconfigurable wireless sensor network (WSN) for pervasive health monitoring, with particular emphasis in its easy extension with additional sensors and functionality by incorporating embedded intelligence mechanisms. We consider a generic WSN architecture comprised of diverse sensor nodes (with communication and processing capabilities) and a mobile base unit (MBU) operating as the gateway between the sensors and the medical personnel, formulating this way a body area network (BAN). The primary focus of this work is on the intra-BAN data communication issues, adopting SensorML as the data representation mean, including the encoding of the monitoring patterns and the functionality of the sensor network. In our prototype implementation two sensor nodes are emulated; one for heart rate monitoring and the other for blood glucose observations, while the MBU corresponds to a personal digital assistant (PDA) device. Java 2 Micro Edition (J2ME) is used to implement both the sensor nodes and the MBU components. Intra-BAN wireless communication relies on the Blue-tooth protocol. Via an adaptive user interface in the MBU, health professionals may specify the monitoring parameters of the WSN and define the monitoring patterns of interest in terms of rules. This work constitutes an essential step towards the construction of open, extensible, inter-operable and intelligent WSNs for pervasive health monitoring.

  20. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi

    2017-09-28

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  1. Real-time indoor monitoring system based on wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Wu, Zhengzhong; Liu, Zilin; Huang, Xiaowei; Liu, Jun

    2008-10-01

    Wireless sensor networks (WSN) greatly extend our ability to monitor and control the physical world. It can collaborate and aggregate a huge amount of sensed data to provide continuous and spatially dense observation of environment. The control and monitoring of indoor atmosphere conditions represents an important task with the aim of ensuring suitable working and living spaces to people. However, the comprehensive air quality, which includes monitoring of humidity, temperature, gas concentrations, etc., is not so easy to be monitored and controlled. In this paper an indoor WSN monitoring system was developed. In the system several sensors such as temperature sensor, humidity sensor, gases sensor, were built in a RF transceiver board for monitoring indoor environment conditions. The indoor environmental monitoring parameters can be transmitted by wireless to database server and then viewed throw PC or PDA accessed to the local area networks by administrators. The system, which was also field-tested and showed a reliable and robust characteristic, is significant and valuable to people.

  2. Resident, State of Alaska

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees State of Alaska Search Home Quick Links Departments Commissioners Employee Whitepages State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  3. Visitor, State of Alaska

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees State of Alaska Search Home Quick Links Departments Commissioners Employee Whitepages State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  4. A New Network Modeling Tool for the Ground-based Nuclear Explosion Monitoring Community

    NASA Astrophysics Data System (ADS)

    Merchant, B. J.; Chael, E. P.; Young, C. J.

    2013-12-01

    Network simulations have long been used to assess the performance of monitoring networks to detect events for such purposes as planning station deployments and network resilience to outages. The standard tool has been the SAIC-developed NetSim package. With correct parameters, NetSim can produce useful simulations; however, the package has several shortcomings: an older language (FORTRAN), an emphasis on seismic monitoring with limited support for other technologies, limited documentation, and a limited parameter set. Thus, we are developing NetMOD (Network Monitoring for Optimal Detection), a Java-based tool designed to assess the performance of ground-based networks. NetMOD's advantages include: coded in a modern language that is multi-platform, utilizes modern computing performance (e.g. multi-core processors), incorporates monitoring technologies other than seismic, and includes a well-validated default parameter set for the IMS stations. NetMOD is designed to be extendable through a plugin infrastructure, so new phenomenological models can be added. Development of the Seismic Detection Plugin is being pursued first. Seismic location and infrasound and hydroacoustic detection plugins will follow. By making NetMOD an open-release package, it can hopefully provide a common tool that the monitoring community can use to produce assessments of monitoring networks and to verify assessments made by others.

  5. The Imperial County Community Air Monitoring Network: A Model for Community-based Environmental Monitoring for Public Health Action

    PubMed Central

    Olmedo, Luis; Bejarano, Ester; Lugo, Humberto; Murillo, Eduardo; Seto, Edmund; Wong, Michelle; King, Galatea; Wilkie, Alexa; Meltzer, Dan; Carvlin, Graeme; Jerrett, Michael; Northcross, Amanda

    2017-01-01

    Summary: The Imperial County Community Air Monitoring Network (the Network) is a collaborative group of community, academic, nongovernmental, and government partners designed to fill the need for more detailed data on particulate matter in an area that often exceeds air quality standards. The Network employs a community-based environmental monitoring process in which the community and researchers have specific, well-defined roles as part of an equitable partnership that also includes shared decision-making to determine study direction, plan research protocols, and conduct project activities. The Network is currently producing real-time particulate matter data from 40 low-cost sensors throughout Imperial County, one of the largest community-based air networks in the United States. Establishment of a community-led air network involves engaging community members to be citizen-scientists in the monitoring, siting, and data collection process. Attention to technical issues regarding instrument calibration and validation and electronic transfer and storage of data is also essential. Finally, continued community health improvements will be predicated on facilitating community ownership and sustainability of the network after research funds have been expended. https://doi.org/10.1289/EHP1772 PMID:28886604

  6. Optimal river monitoring network using optimal partition analysis: a case study of Hun River, Northeast China.

    PubMed

    Wang, Hui; Liu, Chunyue; Rong, Luge; Wang, Xiaoxu; Sun, Lina; Luo, Qing; Wu, Hao

    2018-01-09

    River monitoring networks play an important role in water environmental management and assessment, and it is critical to develop an appropriate method to optimize the monitoring network. In this study, an effective method was proposed based on the attainment rate of National Grade III water quality, optimal partition analysis and Euclidean distance, and Hun River was taken as a method validation case. There were 7 sampling sites in the monitoring network of the Hun River, and 17 monitoring items were analyzed once a month during January 2009 to December 2010. The results showed that the main monitoring items in the surface water of Hun River were ammonia nitrogen (NH 4 + -N), chemical oxygen demand, and biochemical oxygen demand. After optimization, the required number of monitoring sites was reduced from seven to three, and 57% of the cost was saved. In addition, there were no significant differences between non-optimized and optimized monitoring networks, and the optimized monitoring networks could correctly represent the original monitoring network. The duplicate setting degree of monitoring sites decreased after optimization, and the rationality of the monitoring network was improved. Therefore, the optimal method was identified as feasible, efficient, and economic.

  7. Water quality monitoring for high-priority water bodies in the Sonoran Desert network

    Treesearch

    Terry W. Sprouse; Robert M. Emanuel; Sara A. Strorrer

    2005-01-01

    This paper describes a network monitoring program for “high priority” water bodies in the Sonoran Desert Network of the National Park Service. Protocols were developed for monitoring selected waters for ten of the eleven parks in the Network. Park and network staff assisted in identifying potential locations of testing sites, local priorities, and how water quality...

  8. United States National seismograph network

    USGS Publications Warehouse

    Masse, R.P.; Filson, J.R.; Murphy, A.

    1989-01-01

    The USGS National Earthquake Information Center (NEIC) has planned and is developing a broadband digital seismograph network for the United States. The network will consist of approximately 150 seismograph stations distributed across the contiguous 48 states and across Alaska, Hawaii, Puerto Rico and the Virgin Islands. Data transmission will be via two-way satellite telemetry from the network sites to a central recording facility at the NEIC in Golden, Colorado. The design goal for the network is the on-scale recording by at least five well-distributed stations of any seismic event of magnitude 2.5 or greater in all areas of the United States except possibly part of Alaska. All event data from the network will be distributed to the scientific community on compact disc with read-only memory (CD-ROM). ?? 1989.

  9. Applications of wireless sensor networks in marine environment monitoring: a survey.

    PubMed

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-09-11

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring.

  10. Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey

    PubMed Central

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-01-01

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942

  11. EarthScope Transportable Array Siting Outreach Activities in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Gardine, L.; Dorr, P. M.; Tape, C.; McQuillan, P.; Taber, J.; West, M. E.; Busby, R. W.

    2014-12-01

    The EarthScopeTransportable Array is working to locate over 260 stations in Alaska and western Canada. In this region, new tactics and partnerships are needed to increase outreach exposure. IRIS and EarthScope are partnering with the Alaska Earthquake Center, part of University of Alaska Geophysical Institute, to spread awareness of Alaska earthquakes and the benefits of the Transportable Array for Alaskans. Nearly all parts of Alaska are tectonically active. The tectonic and seismic variability of Alaska requires focused attention at the regional level, and the remoteness and inaccessibility of most Alaska villages and towns often makes frequent visits difficult. For this reason, Alaska outreach most often occurs at community events. When a community is accessible, every opportunity to engage the residents is made. Booths at state fairs and large cultural gatherings, such as the annual convention of the Alaska Federation of Natives, are excellent venues to distribute earthquake information and to demonstrate a wide variety of educational products and web-based applications related to seismology and the Transportable Array that residents can use in their own communities. Region-specific publications have been developed to tie in a sense of place for residents of Alaska. The Alaska content for IRIS's Active Earth Monitor will emphasize the widespread tectonic and seismic features and offer not just Alaska residents, but anyone interested in Alaska, a glimpse into what is going on beneath their feet. The concerted efforts of the outreach team will have lasting effects on Alaskan understanding of the seismic hazard and tectonics of the region. Efforts to publicize the presence of the Transportable Array in Alaska, western Canada, and the Lower 48 also continue. There have been recent articles published in university, local and regional newspapers; stories appearing in national and international print and broadcast media; and documentaries produced by some of the world

  12. Mosaicked Historic Airborne Imagery from Seward Peninsula, Alaska, Starting in the 1950's

    DOE Data Explorer

    Cherry, Jessica; Wirth, Lisa

    2016-12-06

    Historical airborne imagery for each Seward Peninsula NGEE Arctic site - Teller, Kougarok, Council - with multiple years for each site. This dataset includes mosaicked, geolocated and, where possible, orthorectified, historic airborne and recent satellite imagery. The older photos were sourced from USGS's Earth Explorer site and the newer, satellite imagery is from the Statewide Digital Mapping Initiative (SDMI) project managed by the Geographic Information Network of Alaska on behalf of the state of Alaska.

  13. An Unmanned Aerial Vehicle Cluster Network Cruise System for Monitor

    NASA Astrophysics Data System (ADS)

    Jiang, Jirong; Tao, Jinpeng; Xin, Guipeng

    2018-06-01

    The existing maritime cruising system mainly uses manned motorboats to monitor the quality of coastal water and patrol and maintenance of the navigation -aiding facility, which has the problems of high energy consumption, small range of cruise for monitoring, insufficient information control and low visualization. In recent years, the application of UAS in the maritime field has alleviated the phenomenon above to some extent. A cluster-based unmanned network monitoring cruise system designed in this project uses the floating small UAV self-powered launching platform as a carrier, applys the idea of cluster, and combines the strong controllability of the multi-rotor UAV and the capability to carry customized modules, constituting a unmanned, visualized and normalized monitoring cruise network to realize the functions of maritime cruise, maintenance of navigational-aiding and monitoring the quality of coastal water.

  14. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks.

    PubMed

    Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi

    2016-01-01

    Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance.

  15. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks

    PubMed Central

    Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi

    2016-01-01

    Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance. PMID:27006977

  16. Alaska Seismic Hazards Safety Commission

    Science.gov Websites

    State Employees ASHSC State of Alaska search Alaska Seismic Hazards Safety Commission View of Anchorage and Commissions Alaska Seismic Hazards Safety Commission (ASHSC) main contant Alaska Seismic Hazards Safety Commission logo Alaska Seismic Hazards Safety Commission (ASHSC) - Mission The Alaska Seismic

  17. An Efficient Wireless Sensor Network for Industrial Monitoring and Control

    PubMed Central

    Aponte-Luis, Juan; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel

    2018-01-01

    This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management. PMID:29320466

  18. Assessing the weather monitoring capabilities of cellular microwave link networks

    NASA Astrophysics Data System (ADS)

    Fencl, Martin; Vrzba, Miroslav; Rieckermann, Jörg; Bareš, Vojtěch

    2016-04-01

    Using of microwave links for rainfall monitoring was suggested already by (Atlas and Ulbrich, 1977). However, this technique attracted broader attention of scientific community only in the recent decade, with the extensive growth of cellular microwave link (CML) networks, which form the backbone of today's cellular telecommunication infrastructure. Several studies have already shown that CMLs can be conveniently used as weather sensors and have potential to provide near-ground path-integrated observations of rainfall but also humidity or fog. However, although research is still focusing on algorithms to improve the weather sensing capabilities (Fencl et al., 2015), it is not clear how to convince cellular operators to provide the power levels of their network. One step in this direction is to show in which regions or municipalities the networks are sufficiently dense to provide/develop good services. In this contribution we suggest a standardized approach to evaluate CML networks in terms of rainfall observation and to identify suitable regions for CML rainfall monitoring. We estimate precision of single CML based on its sensitivity to rainfall, i.e. as a function of frequency, polarization and path length. Capability of a network to capture rainfall spatial patterns is estimated from the CML coverage and path lengths considering that single CML provides path-integrated rain rates. We also search for suitable predictors for regions where no network topologies are available. We test our approach on several European networks and discuss the results. Our results show that CMLs are very dense in urban areas (> 1 CML/km2), but less in rural areas (< 0.02 CML/km2). We found a strong correlation between a population and CML network density (e.g. R2 = 0.97 in Czech Republic), thus population could be a simple proxy to identify suitable regions for CML weather monitoring. To enable a simple and efficient assessment of the CML monitoring potential for any region worldwide

  19. Construct mine environment monitoring system based on wireless mesh network

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Ge, Gengyu; Liu, Yinmei; Cheng, Aimin; Wu, Jun; Fu, Jun

    2018-04-01

    The system uses wireless Mesh network as a network transmission medium, and strive to establish an effective and reliable underground environment monitoring system. The system combines wireless network technology and embedded technology to monitor the internal data collected in the mine and send it to the processing center for analysis and environmental assessment. The system can be divided into two parts: the main control network module and the data acquisition terminal, and the SPI bus technology is used for mutual communication between them. Multi-channel acquisition and control interface design Data acquisition and control terminal in the analog signal acquisition module, digital signal acquisition module, and digital signal output module. The main control network module running Linux operating system, in which the transplant SPI driver, USB card driver and AODV routing protocol. As a result, the internal data collection and reporting of the mine are realized.

  20. Alaska exceptionality hypothesis: Is Alaska wilderness really different?

    Treesearch

    Gregory Brown

    2002-01-01

    The common idiom of Alaska as “The Last Frontier” suggests that the relative remoteness and unsettled character of Alaska create a unique Alaskan identity, one that is both a “frontier” and the “last” of its kind. The frontier idiom portrays the place and people of Alaska as exceptional or different from the places and people who reside in the Lower Forty- Eight States...

  1. Georgia's Ground-Water Resources and Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.

    2006-01-01

    The U.S. Geological Survey (USGS) ground-water network for Georgia currently consists of 170 wells in which ground-water levels are continuously monitored. Most of the wells are locatedin the Coastal Plain in the southern part of the State where ground-water pumping stress is high. In particular, there are large concentrations of wells in coastal and southwestern Georgia areas, where there are issues related to ground-water pumping, saltwater intrusion along the coast, and diminished streamflow in southwestern Georgia due to irrigation pumping. The map at right shows the USGS ground-water monitoring network for Georgia. Ground-water levels are monitored in 170 wells statewide, of which 19 transmit data in real time via satellite and posted on the World Wide Web at http://waterdata.usgs.gov/ga/nwis/current/?type=gw . A greater concentration of wells occurs in the Coastal Plain where there are several layers of aquifers and in coastal and southwestern Georgia areas, which are areas with specific ground-water issues.

  2. Quality Control of The Norwegian Uv Monitoring Network.

    NASA Astrophysics Data System (ADS)

    Johnsen, B.; Mikkelborg, O.; Dahlback, A.; Høiskar, B. A.; Kylling, A.; Edvardsen, K.; Olseth, J. A.; Kjeldstad, B.; Ørbæk, J. B.

    A Norwegian UV-monitoring network of GUV multiband radiometers has been operating at locations between 59°N to 79°N since 1995-96. The purpose of the network is to obtain data of high scientific quality, to be used in further assessments related to health- and environmental issues. Maintenance of measurement quality is given priority. Spectral response functions, crucial for calibrations, have been obtained for each instrument. Calibrations are traceable to the Nordic intercomparison of UV radiometers held in Sweden in June 2000. Instruments are inspected daily or weekly. Once a year the instruments are compared to travelling standards operating side by side to the local network radiometers. This enables determination of the longterm drift in instrument responses. For the six years period of operation, the steadiest instrument performed stable within +/-3%, whereas the least steady had a response drop by 23%. Comparisons with a true cosine performing spectroradiometer demonstrate close agreement (+/- 2%) for solar zenith angles less than 80°. Good cosine performance, high spectral sensitivity and weatherproof design demonstrate that the GUV radiometers are particularly suitable for UV monitoring at high latitudes. Complete records of corrected daily CIE-effective doses and online measurements are presented on http://uvnett.nrpa.no/. Gaps in measurement series have been corrected for with a clear sky radiative transfer model and hourly UV sky transmittances estimated from pyranometer data. Measurement data and information about the monitoring network may be found by visiting websites at respectively NRPA, NILU and The University of Oslo; http://www.nrpa.no, http://www.nilu.no/uv, http://www.fys.uio.no/plasma/ozone/. At this stage the quality of the network has reached a satisfactory level and it is possible to move on using UV data in further assessments. Trend analyses and UV forecasting are topics for future work. The network is supported by the ministries of

  3. The Longitudinal Effect of Self-Monitoring and Locus of Control on Social Network Position in Friendship Networks

    DTIC Science & Technology

    2006-03-01

    equally essential to examine the antecedents that bring a person to a particular network location. The previous body of knowledge in social networks...Locus of Control on Social Network Position in Friendship Networks THESIS Gary J. Moore, Captain, USAF AFIT/GEM/ENV/06M-11 DEPARTMENT OF THE AIR...THE LONGITUDINAL EFFECTS OF SELF-MONITORING AND LOCUS OF CONTROL ON SOCIAL NETWORK POSITION IN FRIENDSHIP NETWORKS THESIS Presented to the

  4. Use of new and old technologies and methods by the Alaska Volcano Observatory during the 2006 eruption of Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Murray, T. L.; Nye, C. J.; Eichelberger, J. C.

    2006-12-01

    The recent eruption of Augustine Volcano was the first significant volcanic event in Cook Inlet, Alaska since 1992. In contrast to eruptions at remote Alaskan volcanoes that mainly affect aviation, ash from previous eruptions of Augustine has affected communities surrounding Cook Inlet, home to over half of Alaska's population. The 2006 eruption validated much of AVO's advance preparation, underscored the need to quickly react when a problem or opportunity developed, and once again demonstrated that while technology provides us with wonderful tools, professional relationships, especially during times of crisis, are still important. Long-term multi-parametric instrumental monitoring and background geological and geophysical studies represent the most fundamental aspect of preparing for any eruption. Once significant unrest was detected, AVO augmented the existing real-time network with additional instrumentation including web cameras. GPS and broadband seismometers that recorded data on site were also quickly installed as their data would be crucial for post-eruption research. Prior to 2006, most of most of AVO's eruption response plans and protocols had focused on the threat to aviation rather than ground-based hazards. However, the relationships and protocols developed for the aviation threat were sufficient to be adapted to the ash fall hazard, though it is apparent that more work, both scientific and with response procedures, is needed. Similarly, protocols were quickly developed for warning of a flank- collapse induced tsunami. Information flow within the observatory was greatly facilitated by an internal web site that had been developed and refined specifically for eruption response. Because AVO is a partnership of 3 agencies (U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys) with offices in both Fairbanks and Anchorage, web and internet-facing data servers provided

  5. Unobstructive Body Area Networks (BAN) for Efficient Movement Monitoring

    PubMed Central

    Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António

    2012-01-01

    The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user. PMID:23112726

  6. Unobstructive Body Area Networks (BAN) for efficient movement monitoring.

    PubMed

    Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António

    2012-01-01

    The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user.

  7. Summary appraisals of the Nation's ground-water resources; Alaska

    USGS Publications Warehouse

    Zenone, Chester; Anderson, Gary S.

    1978-01-01

    Present deficiencies in the ground-water information base are obvious limiting factors to ground-water development in Alaska. There is a need to extend the ground-water data-collection network and to pursue special research into the quantitative aspects of ground-water hydrology in cold regions, particularly the continuous permafrost zone.

  8. 78 FR 53137 - Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. OR13-31-000] Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc., ExxonMobil... (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc., and ExxonMobil Pipeline Company (collectively...

  9. CubeSat constellation design for air traffic monitoring

    NASA Astrophysics Data System (ADS)

    Nag, Sreeja; Rios, Joseph L.; Gerhardt, David; Pham, Camvu

    2016-11-01

    Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring. It thereby provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data were obtained from NASA's Future ATM Concepts Evaluation Tool, for the Alaskan airspace over one day. The results presented were driven by MATLAB and the satellites propagated and coverage calculated using AGI's Satellite Tool. While Ad-hoc and precession spread constellations have been quantitatively evaluated, Walker constellations show the best performance in simulation. Sixteen satellites in two perpendicular orbital planes are shown to provide more than 99% coverage over representative Alaskan airspace and the maximum time gap where any airplane in Alaska is not covered is six minutes, therefore meeting the standard set by the International Civil Aviation Organization to monitor every airplane at least once every fifteen minutes. In spite of the risk of signal collision when multiple packets arrive at the satellite receiver, the proposed constellation shows 99% cumulative probability of reception within four minutes when the airplanes are transmitting every minute, and at 100% reception probability if transmitting every second. Data downlink can be performed using any of the three ground stations of NASA Earth Network in Alaska.

  10. Environmental Monitoring Using Sensor Networks

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhang, C.; Li, X.; Huang, Y.; Fu, S.; Acevedo, M. F.

    2008-12-01

    Environmental observatories, consisting of a variety of sensor systems, computational resources and informatics, are important for us to observe, model, predict, and ultimately help preserve the health of the nature. The commoditization and proliferation of coin-to-palm sized wireless sensors will allow environmental monitoring with unprecedented fine spatial and temporal resolution. Once scattered around, these sensors can identify themselves, locate their positions, describe their functions, and self-organize into a network. They communicate through wireless channel with nearby sensors and transmit data through multi-hop protocols to a gateway, which can forward information to a remote data server. In this project, we describe an environmental observatory called Texas Environmental Observatory (TEO) that incorporates a sensor network system with intertwined wired and wireless sensors. We are enhancing and expanding the existing wired weather stations to include wireless sensor networks (WSNs) and telemetry using solar-powered cellular modems. The new WSNs will monitor soil moisture and support long-term hydrologic modeling. Hydrologic models are helpful in predicting how changes in land cover translate into changes in the stream flow regime. These models require inputs that are difficult to measure over large areas, especially variables related to storm events, such as soil moisture antecedent conditions and rainfall amount and intensity. This will also contribute to improve rainfall estimations from meteorological radar data and enhance hydrological forecasts. Sensor data are transmitted from monitoring site to a Central Data Collection (CDC) Server. We incorporate a GPRS modem for wireless telemetry, a single-board computer (SBC) as Remote Field Gateway (RFG) Server, and a WSN for distributed soil moisture monitoring. The RFG provides effective control, management, and coordination of two independent sensor systems, i.e., a traditional datalogger-based wired

  11. Object-oriented Approach to High-level Network Monitoring and Management

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi

    2000-01-01

    An absolute prerequisite for the management of large investigating methods to build high-level monitoring computer networks is the ability to measure their systems that are built on top of existing monitoring performance. Unless we monitor a system, we cannot tools. Due to the heterogeneous nature of the hope to manage and control its performance. In this underlying systems at NASA Langley Research Center, paper, we describe a network monitoring system that we use an object-oriented approach for the design, we are currently designing and implementing. Keeping, first, we use UML (Unified Modeling Language) to in mind the complexity of the task and the required model users' requirements. Second, we identify the flexibility for future changes, we use an object-oriented existing capabilities of the underlying monitoring design methodology. The system is built using the system. Third, we try to map the former with the latter. APIs offered by the HP OpenView system.

  12. Use of SAR data to study active volcanoes in Alaska

    USGS Publications Warehouse

    Dean, K.G.; Engle, K.; Lu, Z.; Eichelberger, J.; Near, T.; Doukas, M.

    1996-01-01

    Synthetic Aperture Radar (SAR) data of the Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analysed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analysed using data from the European Remote Sensing Satellites (ERS), the Japanese Earth Resources Satellite (JERS) and the US Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.

  13. Throughfall Monitoring Of Old Growth, Second Growth, And Cleared Vegetation Plots On Prince of Wales Island, Alaska

    NASA Astrophysics Data System (ADS)

    Prussian, K. M.

    2006-12-01

    The density of forest canopy affects the amount of rain reaching the forest floor in forested environments of Southeast Alaska. Less throughfall occurs in the second growth sites than in the old growth site and greater throughfall occurs in the clear-cut sites. More specifically, preliminary data show that SG sites received between 38 and 87% of the OG throughfall and the clear-cut sites experienced between 145 and 248% of the OG throughfall. Precipitation gages were used to monitor throughfall in each of the forested vegetation sites on Prince of Wales Island, Alaska, as an indicator of the amount of water reaching the forest floor in these different forest types. Data collected during 2004 and 2005 included 23 storms ranging from 0.2 to 10.6 inches of rain in the clear-cut forest. This monitoring is an effort to determine the affect, if any, that forest management could have on throughfall, and furthermore, lend information to forest management effects on the water balance within a watershed. Site selection focused on similarities in location, elevation, aspect, and accessibility while accounting for the three varying vegetation conditions. Data collected during 2004 and 2005 sampling seasons were in the same sampling plots, while data collected in 2006 is a duplicate set of sites. Twenty-three storms were used to determine the affect, if any, that forest management could have on throughfall, and furthermore, lend information to forest management effects on the water balance within a watershed. The second growth stand was harvested in 1979 and is currently in stem re-initiation phase with thick conifer regeneration. The clear-cut site was harvested in 1999 and contains conifer vegetation, blueberry, and salmonberry vegetation less than five feet in height. Storms were defined as events that were clearly delineated by lack of rainfall for a period of time, or similar antecedent conditions, and totaled at least .2 inches of rain at the CC site. Analysis of a storm

  14. Simultaneous observations of ice motion, calving and seismicity on the Yahtse Glacier, Alaska. (Invited)

    NASA Astrophysics Data System (ADS)

    Larsen, C. F.; Bartholomaus, T. C.; O'Neel, S.; West, M. E.

    2010-12-01

    We observe ice motion, calving and seismicity simultaneously and with high-resolution on an advancing tidewater glacier in Icy Bay, Alaska. Icy Bay’s tidewater glaciers dominate regional glacier-generated seismicity in Alaska. Yahtse emanates from the St. Elias Range near the Bering-Bagley-Seward-Malaspina Icefield system, the most extensive glacier cover outside the polar regions. Rapid rates of change and fast flow (>16 m/d near the terminus) at Yahtse Glacier provide a direct analog to the disintegrating outlet systems in Greenland. Our field experiment co-locates GPS and seismometers on the surface of the glacier, with a greater network of bedrock seismometers surrounding the glacier. Time-lapse photogrammetry, fjord wave height sensors, and optical survey methods monitor iceberg calving and ice velocity near the terminus. This suite of geophysical instrumentation enables us to characterize glacier motion and geometry changes while concurrently listening for seismic energy release. We are performing a close examination of calving as a seismic source, and the associated mechanisms of energy transfer to seismic waves. Detailed observations of ice motion (GPS and optical surveying), glacier geometry and iceberg calving (direct observations and timelapse photogrammetry) have been made in concert with a passive seismic network. Combined, the observations form the basis of a rigorous analysis exploring the relationship between glacier-generated seismic events and motion, glacier-fiord interactions, calving and hydraulics. Our work is designed to demonstrate the applicability and utility of seismology to study the impact of climate forcing on calving glaciers.

  15. Routine Ocean Monitoring With Synthetic Aperture Radar Imagery Obtained From the Alaska Satellite Facility

    NASA Astrophysics Data System (ADS)

    Pichel, W. G.; Clemente-Colon, P.; Li, X.; Friedman, K.; Monaldo, F.; Thompson, D.; Wackerman, C.; Scott, C.; Jackson, C.; Beal, R.; McGuire, J.; Nicoll, J.

    2006-12-01

    The Alaska Satellite Facility (ASF) has been processing synthetic aperture radar (SAR) data for research and for near-real-time applications demonstrations since shortly after the launch of the European Space Agency's ERS-1 satellite in 1991. The long coastline of Alaska, the vast extent of ocean adjacent to Alaska, a scarcity of in-situ observations, and the persistence of cloud cover all contribute to the need for all-weather ocean observations in the Alaska region. Extensive experience with SAR product processing algorithms and SAR data analysis techniques, and a growing sophistication on the part of SAR data and product users have amply demonstrated the value of SAR instruments in providing this all-weather ocean observation capability. The National Oceanic and Atmospheric Administration (NOAA) has been conducting a near-real-time applications demonstration of SAR ocean and hydrologic products in Alaska since September 1999. This Alaska SAR Demonstration (AKDEMO) has shown the value of SAR-derived, high-resolution (sub kilometer) ocean surface winds to coastal weather forecasting and the understanding of coastal wind phenomena such as gap winds, barrier jets, vortex streets, and lee waves. Vessel positions and ice information derived from SAR imagery have been used for management of fisheries, protection of the fishing fleet, enforcement of fisheries regulations, and protection of endangered marine mammals. Other ocean measurements, with potentially valuable applications, include measurement of wave state (significant wave height, dominant wave direction and wavelength, and wave spectra), mapping of oil spills, and detection of shallow-water bathymetric features. In addition to the AKDEMO, ASF-processed SAR imagery is being used: (1) in the Gulf of Mexico for hurricane wind studies, and post-hurricane oil-spill and oil-platform analyses (the latter employing ship-detection algorithms for detection of changes in oil-platform locations); (2) in the North Pacific

  16. Tsunami Warning Protocol for Eruptions of Augustine Volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    Whitmore, P.; Neal, C.; Nyland, D.; Murray, T.; Power, J.

    2006-12-01

    Augustine is an island volcano that has generated at least one tsunami. During its January 2006 eruption coastal residents of lower Cook Inlet became concerned about tsunami potential. To address this concern, NOAA's West Coast/ Alaska Tsunami Warning Center (WC/ATWC) and the Alaska Volcano Observatory (AVO) jointly developed a tsunami warning protocol for the most likely scenario for tsunami generation at Augustine: a debris avalanche into the Cook Inlet. Tsunami modeling indicates that a wave generated at Augustine volcano could reach coastal communities in approximately 55 minutes. If a shallow seismic event with magnitude greater than 4.5 occurred near Augustine and the AVO had set the level of concern color code to orange or red, the WC/ATWC would immediately issue a warning for the lower Cook Inlet. Given the short tsunami travel times involved, potentially affected communities would be provided as much lead time as possible. Large debris avalanches that could trigger a tsunami in lower Cook Inlet are expected to be accompanied by a strong seismic signal. Seismograms produced by these debris avalanches have unique spectral characteristics. After issuing a warning, the WC/ATWC would compare the observed waveform with known debris avalanches, and would consult with AVO to further evaluate the event using AVO's on-island networks (web cameras, seismic network, etc) to refine or cancel the warning. After the 2006 eruptive phase ended, WC/ATWC, with support from AVO and the University of Alaska Tsunami Warning and Environmental Observatory for Alaska program (TWEAK), developed and installed "splash-gauges" which will provide confirmation of tsunami generation.

  17. Concept of Complex Environmental Monitoring Network - Vardzia Rock Cut City Case Study

    NASA Astrophysics Data System (ADS)

    Elashvili, Mikheil; Vacheishvili, Nikoloz; Margottini, Claudio; Basilaia, Giorgi; Chkhaidze, Davit; Kvavadze, Davit; Spizzichino, Daniele; Boscagli, Franceso; Kirkitadze, Giorgi; Adikashvili, Luka; Navrozashvili, Levan

    2016-04-01

    Vardzia represents an unique cultural heritage monument - rock cut city, which unites architectural monument and Natural-Geological complex. Such monuments are particularly vulnerable and their restoration and conservation requires complex approach. It is curved in various layers of volcanic tuffs and covers several hectares of area, with chronologically different segments of construction. This monument, as many similar monuments worldwide, is subjected to slow but permanent process of destruction, expressed in following factors: surface weathering of rock, active tectonics (aseismic displacement along the active faults and earthquakes), interaction between lithologically different rock layers, existence of major cracks and associated complex block structure, surface rainwater runoff and infiltrated ground water, temperature variations, etc. During its lifetime, Vardzia was heavily damaged by Historical Earthquake of 1283 and only partly restored afterwards. The technological progress together with the increased knowledge about ongoing environmental processes, established the common understanding that the complex monitoring of the environment represents the essential component for resolving such a principal issues, as: Proper management and prevention of natural disasters; Modeling of environmental processes, their short and long term prognosis; Monitoring of macro and micro climate; Safe functioning and preservation of important constructions. Research Center of Cultural Heritage and Environment of Ilia State University in cooperation with Experts from ISPRA, with the funding from the State agency of Cultural Heritage, has developed a concept of Vardzia complex monitoring network. Concept of the network includes: monitoring local meteorological conditions (meteorological station), monitoring microclimate in caves (temperature and humidity in the air and rock), monitoring microtremors and ambient seismic noise in Vardzia (local strong motion network), monitoring

  18. The Deep Impact Network Experiment Operations Center Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Wang, Shin-Ywan (Cindy); Torgerson, J. Leigh; Schoolcraft, Joshua; Brenman, Yan

    2009-01-01

    The Interplanetary Overlay Network (ION) software at JPL is an implementation of Delay/Disruption Tolerant Networking (DTN) which has been proposed as an interplanetary protocol to support space communication. The JPL Deep Impact Network (DINET) is a technology development experiment intended to increase the technical readiness of the JPL implemented ION suite. The DINET Experiment Operations Center (EOC) developed by JPL's Protocol Technology Lab (PTL) was critical in accomplishing the experiment. EOC, containing all end nodes of simulated spaces and one administrative node, exercised publish and subscribe functions for payload data among all end nodes to verify the effectiveness of data exchange over ION protocol stacks. A Monitor and Control System was created and installed on the administrative node as a multi-tiered internet-based Web application to support the Deep Impact Network Experiment by allowing monitoring and analysis of the data delivery and statistics from ION. This Monitor and Control System includes the capability of receiving protocol status messages, classifying and storing status messages into a database from the ION simulation network, and providing web interfaces for viewing the live results in addition to interactive database queries.

  19. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks.

    PubMed

    Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio

    2008-11-24

    Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.

  20. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks

    PubMed Central

    Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio

    2008-01-01

    Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper. PMID:27873941

  1. Networking and data management for health care monitoring of mobile patients.

    PubMed

    Amato, Giuseppe; Chessa, Stefano; Conforti, Fabrizio; Macerata, Alberto; Marchesi, Carlo

    2005-01-01

    The problem of medical devices and data integration in health care is discussed and a proposal for remote monitoring of patients based on recent developments in networking and data management is presented. In particular the paper discusses the benefits of the integration of personal medical devices into a Medical Information System and how wireless sensor networks and open protocols could be employed as building blocks of a patient monitoring system.

  2. FPGA Based "Intelligent Tap" Device for Real-Time Ethernet Network Monitoring

    NASA Astrophysics Data System (ADS)

    Cupek, Rafał; Piękoś, Piotr; Poczobutt, Marcin; Ziębiński, Adam

    This paper describes an "Intelligent Tap" - hardware device dedicated to support real-time Ethernet networks monitoring. Presented solution was created as a student project realized in Institute of Informatics, Silesian University of Technology with support from Softing A.G company. Authors provide description of realized FPGA based "Intelligent Tap" architecture dedicated for Real-Time Ethernet network monitoring systems. The practical device realization and feasibility study conclusions are presented also.

  3. Alaska Energy Inventory Project: Consolidating Alaska's Energy Resources

    NASA Astrophysics Data System (ADS)

    Papp, K.; Clough, J.; Swenson, R.; Crimp, P.; Hanson, D.; Parker, P.

    2007-12-01

    Alaska has considerable energy resources distributed throughout the state including conventional oil, gas, and coal, and unconventional coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass. While much of the known large oil and gas resources are concentrated on the North Slope and in the Cook Inlet regions, the other potential sources of energy are dispersed across a varied landscape from frozen tundra to coastal settings. Despite the presence of these potential energy sources, rural Alaska is mostly dependent upon diesel fuel for both electrical power generation and space heating needs. At considerable cost, large quantities of diesel fuel are transported to more than 150 roadless communities by barge or airplane and stored in large bulk fuel tank farms for winter months when electricity and heat are at peak demands. Recent increases in the price of oil have severely impacted the price of energy throughout Alaska, and especially hard hit are rural communities and remote mines that are off the road system and isolated from integrated electrical power grids. Even though the state has significant conventional gas resources in restricted areas, few communities are located near enough to these resources to directly use natural gas to meet their energy needs. To address this problem, the Alaska Energy Inventory project will (1) inventory and compile all available Alaska energy resource data suitable for electrical power generation and space heating needs including natural gas, coal, coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass and (2) identify locations or regions where the most economic energy resource or combination of energy resources can be developed to meet local needs. This data will be accessible through a user-friendly web-based interactive map, based on the Alaska Department of Natural Resources, Land Records Information Section's (LRIS) Alaska Mapper, Google Earth, and Terrago Technologies' Geo

  4. DESIGN OF LARGE-SCALE AIR MONITORING NETWORKS

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks to air pollution. A major crit...

  5. Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Green, David N.; Le Pichon, Alexis; Shearer, Peter M.; Fee, David; Mialle, Pierrick; Ceranna, Lars

    2017-04-01

    We experiment with a new method to search systematically through multiyear data from the International Monitoring System (IMS) infrasound network to identify explosive volcanic eruption signals originating anywhere on Earth. Detecting, quantifying, and cataloging the global occurrence of explosive volcanism helps toward several goals in Earth sciences and has direct applications in volcanic hazard mitigation. We combine infrasound signal association across multiple stations with source location using a brute-force, grid-search, cross-bearings approach. The algorithm corrects for a background prior rate of coherent unwanted infrasound signals (clutter) in a global grid, without needing to screen array processing detection lists from individual stations prior to association. We develop the algorithm using case studies of explosive eruptions: 2008 Kasatochi, Alaska; 2009 Sarychev Peak, Kurile Islands; and 2010 Eyjafjallajökull, Iceland. We apply the method to global IMS infrasound data from 2005-2010 to construct a preliminary acoustic catalog that emphasizes sustained explosive volcanic activity (long-duration signals or sequences of impulsive transients lasting hours to days). This work represents a step toward the goal of integrating IMS infrasound data products into global volcanic eruption early warning and notification systems. Additionally, a better understanding of volcanic signal detection and location with the IMS helps improve operational event detection, discrimination, and association capabilities.

  6. Web-based monitoring and management system for integrated enterprise-wide imaging networks

    NASA Astrophysics Data System (ADS)

    Ma, Keith; Slik, David; Lam, Alvin; Ng, Won

    2003-05-01

    Mass proliferation of IP networks and the maturity of standards has enabled the creation of sophisticated image distribution networks that operate over Intranets, Extranets, Communities of Interest (CoI) and even the public Internet. Unified monitoring, provisioning and management of such systems at the application and protocol levels represent a challenge. This paper presents a web based monitoring and management tool that employs established telecom standards for the creation of an open system that enables proactive management, provisioning and monitoring of image management systems at the enterprise level and across multi-site geographically distributed deployments. Utilizing established standards including ITU-T M.3100, and web technologies such as XML/XSLT, JSP/JSTL, and J2SE, the system allows for seamless device and protocol adaptation between multiple disparate devices. The goal has been to develop a unified interface that provides network topology views, multi-level customizable alerts, real-time fault detection as well as real-time and historical reporting of all monitored resources, including network connectivity, system load, DICOM transactions and storage capacities.

  7. Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA.

    PubMed

    Bhat, Shirish; Motz, Louis H; Pathak, Chandra; Kuebler, Laura

    2015-01-01

    A geostatistical method was applied to optimize an existing groundwater-level monitoring network in the Upper Floridan aquifer for the South Florida Water Management District in the southeastern United States. Analyses were performed to determine suitable numbers and locations of monitoring wells that will provide equivalent or better quality groundwater-level data compared to an existing monitoring network. Ambient, unadjusted groundwater heads were expressed as salinity-adjusted heads based on the density of freshwater, well screen elevations, and temperature-dependent saline groundwater density. The optimization of the numbers and locations of monitoring wells is based on a pre-defined groundwater-level prediction error. The newly developed network combines an existing network with the addition of new wells that will result in a spatial distribution of groundwater monitoring wells that better defines the regional potentiometric surface of the Upper Floridan aquifer in the study area. The network yields groundwater-level predictions that differ significantly from those produced using the existing network. The newly designed network will reduce the mean prediction standard error by 43% compared to the existing network. The adoption of a hexagonal grid network for the South Florida Water Management District is recommended to achieve both a uniform level of information about groundwater levels and the minimum required accuracy. It is customary to install more monitoring wells for observing groundwater levels and groundwater quality as groundwater development progresses. However, budget constraints often force water managers to implement cost-effective monitoring networks. In this regard, this study provides guidelines to water managers concerned with groundwater planning and monitoring.

  8. Structural health monitoring using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  9. Long-term monitoring of blazars - the DWARF network

    NASA Astrophysics Data System (ADS)

    Backes, Michael; Biland, Adrian; Boller, Andrea; Braun, Isabel; Bretz, Thomas; Commichau, Sebastian; Commichau, Volker; Dorner, Daniela; von Gunten, Hanspeter; Gendotti, Adamo; Grimm, Oliver; Hildebrand, Dorothée; Horisberger, Urs; Krähenbühl, Thomas; Kranich, Daniel; Lustermann, Werner; Mannheim, Karl; Neise, Dominik; Pauss, Felicitas; Renker, Dieter; Rhode, Wolfgang; Rissi, Michael; Rollke, Sebastian; Röser, Ulf; Stark, Luisa Sabrina; Stucki, Jean-Pierre; Viertel, Gert; Vogler, Patrick; Weitzel, Quirin

    The variability of the very high energy (VHE) emission from blazars seems to be connected with the feeding and propagation of relativistic jets and with their origin in supermassive black hole binaries. The key to understanding their properties is measuring well-sampled gamma-ray lightcurves, revealing the typical source behavior unbiased by prior knowledge from other wavebands. Using ground-based gamma-ray observatories with exposures limited by dark-time, a global network of several telescopes is needed to carry out fulltime measurements. Obviously, such observations are time-consuming and, therefore, cannot be carried out with the present state of the art instruments. The DWARF telescope on the Canary Island of La Palma is dedicated to monitoring observations. It is currently being set up, employing a costefficient and robotic design. Part of this project is the future construction of a distributed network of small telescopes. The physical motivation of VHE long-term monitoring will be outlined in detail and the perspective for a network for 24/7 observations will be presented.

  10. Geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    USGS Publications Warehouse

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    2015-01-01

    The boundaries separating the Alaska Peninsula terrane from other terranes are commonly indistinct or poorly defined. A few boundaries have been defined at major faults, although the extensions of these faults are speculative through some areas. The west side of the Alaska Peninsula terrane is overlapped by Tertiary sedimentary and volcanic rocks and Quaternary deposits.

  11. Monitoring and Discovery for Self-Organized Network Management in Virtualized and Software Defined Networks

    PubMed Central

    Valdivieso Caraguay, Ángel Leonardo; García Villalba, Luis Javier

    2017-01-01

    This paper presents the Monitoring and Discovery Framework of the Self-Organized Network Management in Virtualized and Software Defined Networks SELFNET project. This design takes into account the scalability and flexibility requirements needed by 5G infrastructures. In this context, the present framework focuses on gathering and storing the information (low-level metrics) related to physical and virtual devices, cloud environments, flow metrics, SDN traffic and sensors. Similarly, it provides the monitoring data as a generic information source in order to allow the correlation and aggregation tasks. Our design enables the collection and storing of information provided by all the underlying SELFNET sublayers, including the dynamically onboarded and instantiated SDN/NFV Apps, also known as SELFNET sensors. PMID:28362346

  12. Monitoring and Discovery for Self-Organized Network Management in Virtualized and Software Defined Networks.

    PubMed

    Caraguay, Ángel Leonardo Valdivieso; Villalba, Luis Javier García

    2017-03-31

    This paper presents the Monitoring and Discovery Framework of the Self-Organized Network Management in Virtualized and Software Defined Networks SELFNET project. This design takes into account the scalability and flexibility requirements needed by 5G infrastructures. In this context, the present framework focuses on gathering and storing the information (low-level metrics) related to physical and virtual devices, cloud environments, flow metrics, SDN traffic and sensors. Similarly, it provides the monitoring data as a generic information source in order to allow the correlation and aggregation tasks. Our design enables the collection and storing of information provided by all the underlying SELFNET sublayers, including the dynamically onboarded and instantiated SDN/NFV Apps, also known as SELFNET sensors.

  13. An Intelligent Monitoring Network for Detection of Cracks in Anvils of High-Press Apparatus.

    PubMed

    Tian, Hao; Yan, Zhaoli; Yang, Jun

    2018-04-09

    Due to the endurance of alternating high pressure and temperature, the carbide anvils of the high-press apparatus, which are widely used in the synthetic diamond industry, are prone to crack. In this paper, an acoustic method is used to monitor the crack events, and the intelligent monitoring network is proposed to classify the sound samples. The pulse sound signals produced by such cracking are first extracted based on a short-time energy threshold. Then, the signals are processed with the proposed intelligent monitoring network to identify the operation condition of the anvil of the high-pressure apparatus. The monitoring network is an improved convolutional neural network that solves the problems that may occur in practice. The length of pulse sound excited by the crack growth is variable, so a spatial pyramid pooling layer is adopted to solve the variable-length input problem. An adaptive weighted algorithm for loss function is proposed in this method to handle the class imbalance problem. The good performance regarding the accuracy and balance of the proposed intelligent monitoring network is validated through the experiments finally.

  14. Sensor network architecture for monitoring turtles on seashore

    NASA Astrophysics Data System (ADS)

    Carvajal-Gámez, Blanca E.; Cruz, Victor; Díaz-Casco, Manuel A.; Franco, Andrea; Escobar, Carolina; Colin, Abilene; Carreto-Arellano, Chadwick

    2017-04-01

    In the last decade, advances in information and communication technologies have made it possible to diversify the use of sensor networks in different areas of knowledge (medicine, education, militia, urbanization, protection of the environment, etc.). At present, this type of tools is used to develop applications that allow the identification and monitoring of endangered animals in their natural habitat; however, there are still limitations because some of the devices used alter the behavior of the animals, as in the case of sea turtles. Research and monitoring of sea turtles is of vital importance in identifying possible threats and ensuring their preservation, the behavior of this species (migration, reproduction, and nesting) is highly related to environmental conditions. Because of this, behavioral changes information of this species can be used to monitor global climatic conditions. This work presents the design, development and implementation of an architecture for the monitoring and identification of the sea turtle using sensor networks. This will allow to obtain information for the different investigations with a greater accuracy than the conventional techniques, through non-invasive means for the species and its habitat. The proposed architecture contemplates the use of new technology devices, selfconfigurable, with low energy consumption, interconnection with various communication protocols and sustainable energy supply (solar, wind, etc.).

  15. Augmenting groundwater monitoring networks near landfills with slurry cutoff walls.

    PubMed

    Hudak, Paul F

    2004-01-01

    This study investigated the use of slurry cutoff walls in conjunction with monitoring wells to detect contaminant releases from a solid waste landfill. The 50 m wide by 75 m long landfill was oriented oblique to regional groundwater flow in a shallow sand aquifer. Computer models calculated flow fields and the detection capability of six monitoring networks, four including a 1 m wide by 50 m long cutoff wall at various positions along the landfill's downgradient boundaries and upgradient of the landfill. Wells were positioned to take advantage of convergent flow induced downgradient of the cutoff walls. A five-well network with no cutoff wall detected 81% of contaminant plumes originating within the landfill's footprint before they reached a buffer zone boundary located 50 m from the landfill's downgradient corner. By comparison, detection efficiencies of networks augmented with cutoff walls ranged from 81 to 100%. The most efficient network detected 100% of contaminant releases with four wells, with a centrally located, downgradient cutoff wall. In general, cutoff walls increased detection efficiency by delaying transport of contaminant plumes to the buffer zone boundary, thereby allowing them to increase in size, and by inducing convergent flow at downgradient areas, thereby funneling contaminant plumes toward monitoring wells. However, increases in detection efficiency were too small to offset construction costs for cutoff walls. A 100% detection efficiency was also attained by an eight-well network with no cutoff wall, at approximately one-third the cost of the most efficient wall-augmented network.

  16. Monitoring groundwater: optimising networks to take account of cost effectiveness, legal requirements and enforcement realities

    NASA Astrophysics Data System (ADS)

    Allan, A.; Spray, C.

    2013-12-01

    The quality of monitoring networks and modeling in environmental regulation is increasingly important. This is particularly true with respect to groundwater management, where data may be limited, physical processes poorly understood and timescales very long. The powers of regulators may be fatally undermined by poor or non-existent networks, primarily through mismatches between the legal standards that networks must meet, actual capacity and the evidentiary standards of courts. For example, in the second and third implementation reports on the Water Framework Directive, the European Commission drew attention to gaps in the standards of mandatory monitoring networks, where the standard did not meet the reality. In that context, groundwater monitoring networks should provide a reliable picture of groundwater levels and a ';coherent and comprehensive' overview of chemical status so that anthropogenically influenced long-term upward trends in pollutant levels can be tracked. Confidence in this overview should be such that 'the uncertainty from the monitoring process should not add significantly to the uncertainty of controlling the risk', with densities being sufficient to allow assessment of the impact of abstractions and discharges on levels in groundwater bodies at risk. The fact that the legal requirements for the quality of monitoring networks are set out in very vague terms highlights the many variables that can influence the design of monitoring networks. However, the quality of a monitoring network as part of the armory of environmental regulators is potentially of crucial importance. If, as part of enforcement proceedings, a regulator takes an offender to court and relies on conclusions derived from monitoring networks, a defendant may be entitled to question those conclusions. If the credibility, reliability or relevance of a monitoring network can be undermined, because it is too sparse, for example, this could have dramatic consequences on the ability of a

  17. A wireless smart sensor network for automated monitoring of cable tension

    NASA Astrophysics Data System (ADS)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo

    2014-02-01

    As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.

  18. Colony attendance and population monitoring of Black-legged Kittiwakes on the Semidi Islands, Alaska

    USGS Publications Warehouse

    Hatch, Scott A.; Hatch, Martha A.

    1988-01-01

    Patterns of colony attendance in Black-legged Kittiwakes (Rissa tridactyla) were studied over 5 years on the Semidi Islands, western Gulf of Alaska. A census period of 50 days, extending from first egg laying through final hatching, was appropriate because counts made then were subject to the least amount of daily variation. Five counts during that period were sufficient to detect a 25% change in numbers between years; counts made on all 50 days of the census period would detect a 5 to 7% change. There was little evidence for seasonal trends or serial correlation of counts during the census period, but attendance was negatively correlated with wind speed. Half of an apparent 17% increase in population between 1980 and 1981 was due to birds spending more time at their nest sites in the latter year, thereby increasing the mean of attendance counts. Despite such difficulties in the interpretation of attendance counts, birds were considered to be better counting units for population monitoring than nests, because nest densities were subject to large annual fluctuations in breeding effort.

  19. Exploring Options for an Integrated Water Level Observation Network in Alaska

    NASA Astrophysics Data System (ADS)

    McCammon, M.

    2016-02-01

    Portions' of Alaska's remote coastlines are among the Nation's most vulnerable to geohazards such as tsunami, extra-tropical storm surge, and erosion; and the availability of observations of water levels, ocean waves, and river discharge are severely lacking to support water level warnings and forecasts. Alaska is experiencing dramatic reductions in sea ice cover, changes in extra-tropical storm surge patterns, and thawing permafrost. These conditions are endangering coastal populations throughout the State. Gaps in the ocean observing system limit our State's ability to provide useful marine and sea ice forecasts, especially in the Arctic. A spectrum of observation platforms may provide an optimal solution for filling the most critical gaps in these coastal and ocean areas. The collaborations described in this talk and better leveraging of resources and capabilities across federal, state, and academic partners will provide the best opportunity for advancing our science capacity and capabilities in this remote region.

  20. Phenology monitoring protocol: Northeast Temperate Network

    USGS Publications Warehouse

    Tierney, Geri; Mitchell, Brian; Miller-Rushing, Abraham J.; Katz, Jonathan; Denny, Ellen; Brauer, Corinne; Donovan, Therese; Richardson, Andrew D.; Toomey, Michael; Kozlowski, Adam; Weltzin, Jake F.; Gerst, Kathy; Sharron, Ed; Sonnentag, Oliver; Dieffenbach, Fred

    2013-01-01

    historical parks and national historic sites in the northeastern US. This protocol was developed in collaboration with and relies upon the procedures and infrastructure of the USA National Phenology Network (USA-NPN), including Nature’s Notebook, USA-NPN’s online plant and animal phenology observation program (www.nn.usanpn.org). Organized in 2007, USA-NPN is a nation-wide partnership among federal agencies, schools and universities, citizen volunteers, and others to monitor and understand the influence of seasonal cycles on the nation’s biological resources. The overall goal of NETN’s phenology monitoring program is to determine trends in the phenology of key species in order to assist park managers with the detection and mitigation of the effects of climate change on park resources. An additional programmatic goal is to interest and educate park visitors and staff, as well as a cadre of volunteer monitors.

  1. A versatile and interoperable network sensors for water resources monitoring

    NASA Astrophysics Data System (ADS)

    Ortolani, Alberto; Brandini, Carlo; Costantini, Roberto; Costanza, Letizia; Innocenti, Lucia; Sabatini, Francesco; Gozzini, Bernardo

    2010-05-01

    Monitoring systems to assess water resources quantity and quality require extensive use of in-situ measurements, that have great limitations like difficulties to access and share data, and to customise and easy reconfigure sensors network to fulfil end-users needs during monitoring or crisis phases. In order to address such limitations Sensor Web Enablement technologies for sensors management have been developed and applied to different environmental context under the EU-funded OSIRIS project (Open architecture for Smart and Interoperable networks in Risk management based on In-situ Sensors, www.osiris-fp6.eu). The main objective of OSIRIS was to create a monitoring system to manage different environmental crisis situations, through an efficient data processing chain where in-situ sensors are connected via an intelligent and versatile network infrastructure (based on web technologies) that enables end-users to remotely access multi-domain sensors information. Among the project application, one was focused on underground fresh-water monitoring and management. With this aim a monitoring system to continuously and automatically check water quality and quantity has been designed and built in a pilot test, identified as a portion of the Amiata aquifer feeding the Santa Fiora springs (Grosseto, Italy). This aquifer present some characteristics that make it greatly vulnerable under some conditions. It is a volcanic aquifer with a fractured structure. The volcanic nature in Santa Fiora causes levels of arsenic concentrations that normally are very close to the threshold stated by law, but that sometimes overpass such threshold for reasons still not fully understood. The presence of fractures makes the infiltration rate very inhomogeneous from place to place and very high in correspondence of big fractures. In case of liquid-pollutant spills (typically hydrocarbons spills from tanker accidents or leakage from house tanks containing fuel for heating), these fractures can act

  2. Software Defined Network Monitoring Scheme Using Spectral Graph Theory and Phantom Nodes

    DTIC Science & Technology

    2014-09-01

    networks is the emergence of software - defined networking ( SDN ) [1]. SDN has existed for the...Chapter III for network monitoring. A. SOFTWARE DEFINED NETWORKS SDNs provide a new and innovative method to simplify network hardware by logically...and R. Giladi, “Performance analysis of software - defined networking ( SDN ),” in Proc. of IEEE 21st International Symposium on Modeling, Analysis

  3. Alaska GeoFORCE, A New Geologic Adventure in Alaska

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2011-12-01

    RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. A program of rigorous academic activity combines with social, cultural, and recreational activities. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. This summer RAHI is launching a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science as the hook because most kids get excited about dinosaurs, volcanoes and earthquakes, but it includes physics, chemistry, math, biology and other sciences. Students will be recruited, initially from the Arctic North Slope schools, in the 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The carrot on the end of the stick is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks, Arizona, Oregon and the Appalachians. All trips are focused on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska is being launched by UAF in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska will be managed by UAF's long-standing Rural Alaska Honors Insitute (RAHI) that has been successfully providing intense STEM educational opportunities for Alaskan high school students for almost 30 years. The Texas program, with adjustments for differences in culture and environment, will be

  4. Using a Neural Network to Determine the Hatch Status of the AERI at the ARM North Slope of Alaska Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwink, AB; Turner, DD

    2012-03-19

    The fore-optics of the Atmospheric Emitted Radiance Interferometer (AERI) are protected by an automated hatch to prevent precipitation from fouling the instrument's scene mirror (Knuteson et al. 2004). Limit switches connected with the hatch controller provide a signal of the hatch state: open, closed, undetermined (typically associated with the hatch being between fully open or fully closed during the instrument's sky view period), or an error condition. The instrument then records the state of the hatch with the radiance data so that samples taken when the hatch is not open can be removed from any subsequent analysis. However, the hatchmore » controller suffered a multi-year failure for the AERI located at the ARM North Slope of Alaska (NSA) Central Facility in Barrow, Alaska, from July 2006-February 2008. The failure resulted in misreporting the state of the hatch in the 'hatchOpen' field within the AERI data files. With this error there is no simple solution to translate what was reported back to the correct hatch status, thereby making it difficult for an analysis to determine when the AERI was actually viewing the sky. As only the data collected when the hatch is fully open are scientifically useful, an algorithm was developed to determine whether the hatch was open or closed based on spectral radiance data from the AERI. Determining if the hatch is open or closed in a scene with low clouds is non-trivial, as low opaque clouds may look very similar spectrally as the closed hatch. This algorithm used a backpropagation neural network; these types of neural networks have been used with increasing frequency in atmospheric science applications.« less

  5. Optimization of deformation monitoring networks using finite element strain analysis

    NASA Astrophysics Data System (ADS)

    Alizadeh-Khameneh, M. Amin; Eshagh, Mehdi; Jensen, Anna B. O.

    2018-04-01

    An optimal design of a geodetic network can fulfill the requested precision and reliability of the network, and decrease the expenses of its execution by removing unnecessary observations. The role of an optimal design is highlighted in deformation monitoring network due to the repeatability of these networks. The core design problem is how to define precision and reliability criteria. This paper proposes a solution, where the precision criterion is defined based on the precision of deformation parameters, i. e. precision of strain and differential rotations. A strain analysis can be performed to obtain some information about the possible deformation of a deformable object. In this study, we split an area into a number of three-dimensional finite elements with the help of the Delaunay triangulation and performed the strain analysis on each element. According to the obtained precision of deformation parameters in each element, the precision criterion of displacement detection at each network point is then determined. The developed criterion is implemented to optimize the observations from the Global Positioning System (GPS) in Skåne monitoring network in Sweden. The network was established in 1989 and straddled the Tornquist zone, which is one of the most active faults in southern Sweden. The numerical results show that 17 out of all 21 possible GPS baseline observations are sufficient to detect minimum 3 mm displacement at each network point.

  6. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    NASA Astrophysics Data System (ADS)

    Abas, Faizulsalihin bin; Takayama, Shigeru

    2015-02-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.

  7. A Risk-Based Multi-Objective Optimization Concept for Early-Warning Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Bode, F.; Loschko, M.; Nowak, W.

    2014-12-01

    Groundwater is a resource for drinking water and hence needs to be protected from contaminations. However, many well catchments include an inventory of known and unknown risk sources which cannot be eliminated, especially in urban regions. As matter of risk control, all these risk sources should be monitored. A one-to-one monitoring situation for each risk source would lead to a cost explosion and is even impossible for unknown risk sources. However, smart optimization concepts could help to find promising low-cost monitoring network designs.In this work we develop a concept to plan monitoring networks using multi-objective optimization. Our considered objectives are to maximize the probability of detecting all contaminations and the early warning time and to minimize the installation and operating costs of the monitoring network. A qualitative risk ranking is used to prioritize the known risk sources for monitoring. The unknown risk sources can neither be located nor ranked. Instead, we represent them by a virtual line of risk sources surrounding the production well.We classify risk sources into four different categories: severe, medium and tolerable for known risk sources and an extra category for the unknown ones. With that, early warning time and detection probability become individual objectives for each risk class. Thus, decision makers can identify monitoring networks which are valid for controlling the top risk sources, and evaluate the capabilities (or search for least-cost upgrade) to also cover moderate, tolerable and unknown risk sources. Monitoring networks which are valid for the remaining risk also cover all other risk sources but the early-warning time suffers.The data provided for the optimization algorithm are calculated in a preprocessing step by a flow and transport model. Uncertainties due to hydro(geo)logical phenomena are taken into account by Monte-Carlo simulations. To avoid numerical dispersion during the transport simulations we use the

  8. Wireless body sensor networks for health-monitoring applications.

    PubMed

    Hao, Yang; Foster, Robert

    2008-11-01

    Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system.

  9. Geohydrology of the Delta-Clearwater area, Alaska

    USGS Publications Warehouse

    Wilcox, Dorothy E.

    1980-01-01

    The alluvial aquifer in the Delta-Clearwater area, Alaska, is composed of lenticular, interbedded deposits of silt, sand, and gravel. Ground water occurs under both confined and unconfined conditions in the area. The potentiometric surface slopes approximately northward at gradients ranging from about 1 to 25 feet per mile. The aquifer is recharge by seepage through the streambeds of rivers and creeks and by infiltration of precipitation. Water is discharged from the aquifer into the Clearwater Creek network and Clearwater Lake, which are almost entirely spring-fed, at the mouth of the Delta River, and into the Tanana River along the northern boundary of the study area. Year-round ground-water discharge from the aquifer is estimated to exceed 1,200 cubic feet per second. The following ground-water flow system is hypothesized: Channel losses from the Gerstle River, several small creeks draining the Alaska Range, and the Tanana River to the east of Clearwater Creek recharge the sections of the aquifer discharging at the Clearwater Creek network. Channel losses from the Delta River and Jarvis Creek are the main source of recharge to the sections of the aquifer discharging in the vicinity of Clearwater Lake and Big Delta. Additional work is needed to verify these hypotheses. (USGS)

  10. Delay-tolerant mobile network protocol for rice field monitoring using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Guitton, Alexandre; Andres, Frédéric; Cardoso, Jarbas Lopes; Kawtrakul, Asanee; Barbin, Silvio E.

    2015-10-01

    The monitoring of rice fields can improve productivity by helping farmers throughout the rice cultivation cycle, on various issues: when to harvest, when to treat the crops against disease, when to increase the water level, how to share observations and decisions made in a collaborative way, etc. In this paper, we propose an architecture to monitor a rice field by a wireless sensor network. Our architecture is based on static sensor nodes forming a disconnected network, and mobile nodes communicating with the sensor nodes in a delay-tolerant manner. The data collected by the static sensor nodes are transmitted to mobile nodes, which in turn transmit them to a gateway, connected to a database, for further analysis. We focus on the related architecture, as well as on the energy-efficient protocols intended to perform the data collection.

  11. National Stream Quality Accounting Network and National Monitoring Network Basin Boundary Geospatial Dataset, 2008–13

    USGS Publications Warehouse

    Baker, Nancy T.

    2011-01-01

    This report and the accompanying geospatial data were created to assist in analysis and interpretation of water-quality data provided by the U.S. Geological Survey's National Stream Quality Accounting Network (NASQAN) and by the U.S. Coastal Waters and Tributaries National Monitoring Network (NMN), which is a cooperative monitoring program of Federal, regional, and State agencies. The report describes the methods used to develop the geospatial data, which was primarily derived from the National Watershed Boundary Dataset. The geospatial data contains polygon shapefiles of basin boundaries for 33 NASQAN and 5 NMN streamflow and water-quality monitoring stations. In addition, 30 polygon shapefiles of the closed and noncontributing basins contained within the NASQAN or NMN boundaries are included. Also included is a point shapefile of the NASQAN and NMN monitoring stations and associated basin and station attributes. Geospatial data for basin delineations, associated closed and noncontributing basins, and monitoring station locations are available at http://water.usgs.gov/GIS/metadata/usgswrd/XML/ds641_nasqan_wbd12.xml.

  12. The Austrian UV monitoring network

    NASA Astrophysics Data System (ADS)

    Blumthaler, Mario; Klotz, Barbara; Schwarzmann, Michael; Schreder, Josef

    2017-02-01

    The Austrian UV Monitoring network is operational since 1998 providing a large data set of erythemally weighted UV irradiance recorded with broadband UV biometer at 12 stations distributed all over Austria. In order to obtain high quality data all biometer are recalibrated once a year, the detectors are checked regularly for humidity and quality control is done routinely. The collected data are processed and then published on the website http://www.uv-index.at where the UV-Index of all measurement sites is presented in near real time together with a map of the distribution of the UV-Index over Austria. These UV-Index data together with measurements of global radiation and ozone levels from OMI are used to study long term trends for the stations of the monitoring network. Neither for all weather conditions nor for clear sky conditions is a statistically significant trend found for the UV-Index (with one exception) and for ozone. Furthermore, the radiation amplification factor (RAF) is determined experimentally from the power law correlation between UV-Index and ozone level for the site Innsbruck (577 m above sea level, 47.26°N, 11.38°E) for 19°solar elevation. A value of 0.91 ± 0.05 is found for the RAF for clear sky days with low ground albedo and a value of 1.03 ± 0.08 for days with high ground albedo (snow cover).

  13. Rayleigh Wave Phase Velocities in Alaska from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Pepin, K. S.; Li, A.; Yao, Y.

    2016-12-01

    We have analyzed ambient noise data recorded at 136 broadband stations from the USArray Transportable Array and other permanent seismic networks in Alaska and westernmost Canada. Daily cross-correlations are obtained using vertical component seismograms and are stacked to form a single trace for each station pair. Rayleigh wave signals are extracted from the stacked traces and are used to calculate phase velocities in the Alaska region. Preliminary phase velocity maps show similar trends to those from previous studies, but also yield new anomalies given the wider geographical range provided by the Transportable Array. At short periods (6-12s), a high velocity anomaly is observed directly northeast of the Fairweather-Queen Charlotte fault, and a high velocity trend appears in the eastern Yukon terrane between the Denali and Tintina fault, probably reflecting mafic igneous crustal rocks. Significantly slow anomalies are present at the Prince William Sound, Cook Inlet, and the basins in southwestern and central Alaska, indicating sediment effects. The slow anomalies gradually shift to southeastern and south-central Alaska with increasing period (up to 40s), corresponding to the Wrangell volcano belt and the volcano arc near Cook Inlet. A broad high-velocity zone is also observed in central Alaska to the north of the Denali fault at long periods (30-40s). The Yakutat terrane is characterized as a high-velocity anomaly from period 14s to 25s but not imaged at longer periods due to poor resolution.

  14. Novel method for fog monitoring using cellular networks infrastructures

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2012-08-01

    A major detrimental effect of fog is visibility limitation which can result in serious transportation accidents, traffic delays and therefore economic damage. Existing monitoring techniques including satellites, transmissometers and human observers - suffer from low spatial resolution, high cost or lack of precision when measuring near ground level. Here we show a novel technique for fog monitoring using wireless communication systems. Communication networks widely deploy commercial microwave links across the terrain at ground level. Operating at frequencies of tens of GHz they are affected by fog and are, effectively, an existing, spatially world-wide distributed sensor network that can provide crucial information about fog concentration and visibility. Fog monitoring potential is demonstrated for a heavy fog event that took place in Israel. The correlation between transmissomters and human eye observations to the visibility estimates from the nearby microwave links was found to be 0.53 and 0.61, respectively. These values indicate the high potential of the proposed method.

  15. PLUME-SCALER-EVALUATING LONG-TERM MONITORING WELL NETWORKS

    EPA Science Inventory

    EPA's Subsurface Protection and Remediation Division is developing a new computer application called PLUME-SCALER to evaluate long term monitoring well networks using typically available historical site water level data. PLUME-SCALER can be used to determine if there are enough ...

  16. Retaining Quality Teachers for Alaska.

    ERIC Educational Resources Information Center

    McDiarmid, G. Williamson; Larson, Eric; Hill, Alexandra

    This report examines the demand for teachers, teacher turnover, and teacher education in Alaska. Surveys were conducted with school district personnel directors, directors of Alaska teacher education programs, teachers who exited Alaska schools in 2001, and rural and urban instructional aides. Alaska is facing teacher shortages, but these are…

  17. Fisheries Education in Alaska. Conference Report. Alaska Sea Grant Report 82-4.

    ERIC Educational Resources Information Center

    Smoker, William W., Ed.

    This conference was an attempt to have the fishing industry join the state of Alaska in building fisheries education programs. Topics addressed in papers presented at the conference include: (1) fisheries as a part of life in Alaska, addressing participation of Alaska natives in commercial fisheries and national efforts; (2) the international…

  18. Climate Change Impact Assessment for Surface Transportation in the Pacific Northwest and Alaska

    DOT National Transportation Integrated Search

    2012-01-01

    The states in the Pacific Northwest and Alaska region share interconnected transportation networks for people, goods, and services that support the : regional economy, mobility, and human safety. Regional weather has and will continue to affect the p...

  19. Design development of a neural network-based telemetry monitor

    NASA Technical Reports Server (NTRS)

    Lembeck, Michael F.

    1992-01-01

    This paper identifies the requirements and describes an architectural framework for an artificial neural network-based system that is capable of fulfilling monitoring and control requirements of future aerospace missions. Incorporated into this framework are a newly developed training algorithm and the concept of cooperative network architectures. The feasibility of such an approach is demonstrated for its ability to identify faults in low frequency waveforms.

  20. Unmanned Aerial Systems, Moored Balloons, and the U.S. Department of Energy ARM Facilities in Alaska

    NASA Astrophysics Data System (ADS)

    Ivey, Mark; Verlinde, Johannes

    2014-05-01

    The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) Climate Research Facility, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. Facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska were established at Oliktok Point Alaska in 2013. Tethered instrumented balloons will be used in the near future to make measurements of clouds in the boundary layer including mixed-phase clouds. The DOE ARM Program has operated an atmospheric measurement facility in Barrow, Alaska, since 1998. Major upgrades to this facility, including scanning radars, were added in 2010. Arctic Observing Networks are essential to meet growing policy, social, commercial, and scientific needs. Calibrated, high-quality arctic geophysical datasets that span ten years or longer are especially important for climate studies, climate model initializations and validations, and for related climate policy activities. For example, atmospheric data and derived atmospheric forcing estimates are critical for sea-ice simulations. International requirements for well-coordinated, long-term, and sustained Arctic Observing Networks and easily-accessible data sets collected by those networks have been recognized by many high-level workshops and reports (Arctic Council Meetings and workshops, National Research Council reports, NSF workshops and others). The recent Sustaining Arctic Observation Network (SAON) initiative sponsored a series of workshops to "develop a set of recommendations on how to achieve long-term Arctic-wide observing activities that provide free, open, and timely access to high-quality data that will realize pan-Arctic and global value-added services and provide societal benefits." This poster will present information on opportunities for members of the

  1. Glaciers of North America - Glaciers of Alaska

    USGS Publications Warehouse

    Molnia, Bruce F.

    2008-01-01

    Glaciers cover about 75,000 km2 of Alaska, about 5 percent of the State. The glaciers are situated on 11 mountain ranges, 1 large island, an island chain, and 1 archipelago and range in elevation from more than 6,000 m to below sea level. Alaska's glaciers extend geographically from the far southeast at lat 55 deg 19'N., long 130 deg 05'W., about 100 kilometers east of Ketchikan, to the far southwest at Kiska Island at lat 52 deg 05'N., long 177 deg 35'E., in the Aleutian Islands, and as far north as lat 69 deg 20'N., long 143 deg 45'W., in the Brooks Range. During the 'Little Ice Age', Alaska's glaciers expanded significantly. The total area and volume of glaciers in Alaska continue to decrease, as they have been doing since the 18th century. Of the 153 1:250,000-scale topographic maps that cover the State of Alaska, 63 sheets show glaciers. Although the number of extant glaciers has never been systematically counted and is thus unknown, the total probably is greater than 100,000. Only about 600 glaciers (about 1 percent) have been officially named by the U.S. Board on Geographic Names (BGN). There are about 60 active and former tidewater glaciers in Alaska. Within the glacierized mountain ranges of southeastern Alaska and western Canada, 205 glaciers (75 percent in Alaska) have a history of surging. In the same region, at least 53 present and 7 former large ice-dammed lakes have produced jokulhlaups (glacier-outburst floods). Ice-capped volcanoes on mainland Alaska and in the Aleutian Islands have a potential for jokulhlaups caused by subglacier volcanic and geothermal activity. Because of the size of the area covered by glaciers and the lack of large-scale maps of the glacierized areas, satellite imagery and other satellite remote-sensing data are the only practical means of monitoring regional changes in the area and volume of Alaska's glaciers in response to short- and long-term changes in the maritime and continental climates of the State. A review of the

  2. Mitochondrial DNA phylogeography of least cisco Coregonus sardinella in Alaska.

    PubMed

    Padula, V M; Causey, D; López, J A

    2017-03-01

    This study presents the first detailed analysis of the mitochondrial DNA diversity of least cisco Coregonus sardinella in Alaska using a 678 bp segment of the control region (D-loop) of the mitochondrial genome. Findings suggest that the history of C. sardinella in Alaska differs from that of other species of Coregonus present in the state and surrounding regions. The examined populations of C. sardinella are genetically diverse across Alaska. Sixty-eight distinct mitochondrial haplotypes were identified among 305 individuals sampled from nine locations. The haplotype minimum spanning network and phylogeny showed a modest level of geographic segregation among haplotypes, suggesting high levels of on-going or recent connectivity among distant populations. Observed Φ ST values and the results of homogeneity and AMOVAs indicate incipient genetic differentiation between aggregations in three broad regional groups. Sites north of the Brooks Range formed one group, sites in the Yukon and Selawik Rivers formed a second group and sites south of the Yukon drainage formed the third group. Overall, the sequence data showed that a large proportion of mtDNA genetic variation in C. sardinella is shared across Alaska, but this variation is not homogeneously distributed across all regions and for all haplotype groups. © 2017 The Fisheries Society of the British Isles.

  3. Movements of a polar bear from northern Alaska to northern Greenland

    USGS Publications Warehouse

    Durner, George M.; Amstrup, Steven C.

    1995-01-01

    Using satellite telemetry, we monitored the movements of an adult female polar bear (Ursus maritimus) as she traveled from the Alaskan Beaufort Sea coast to northern Greenland. She is the first polar bear known to depart the Beaufort Sea region for an extended period, and the first polar bear known to move between Alaska and Greenland. This bear traveled for four months across the polar basin and came within 2 degrees of the North Pole. During the first year following her capture, she traveled 5256 km. Evidence to suggest her use of maternity dens in northern Alaska and in northern Greenland demonstrates the potential for genetic exchange between two widely separate populations of polar bears. The long life spans of polar bears and the rarity of their long-range movements means the significance of interpopulation movement can be assessed after long-term monitoring of individuals.

  4. Air quality measurements and monitoring network in the Republic of Latvia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinman, A.; Lyulko, J.; Dubrovskaja, R.

    1996-12-31

    The territory of Latvia is covered with a wide environmental monitoring network, that falls under 2 main categories: (1) regional network featuring the region and involved in international monitoring programs, including EMEP, GAW, IM; (2) state network providing for local pollution monitoring of the atmosphere (19 posts), precipitation (5 station) and radioactivity (46 station). In 1994, measurements were made at 20 stationary posts located in Daugavpils (2), Jekabpils (2), Jurmala, (2), Liepaja (2), Nigrande (1), Olaine (1), Rezekne (1), Riga (5), Valn-dera (2), Ventspils (2). This atmospheric air observation network covers mostly towns densely populated with industrial objects and othermore » pollutant emitting sources. Thus, the observation programs encompass measurements of pollutants that have higher concentrations in the ambient air. Results indicate that the annual pollution dynamics are closely connected with concentration fluctuations in the seasons. The sulfur dioxide and nitrogen dioxide concentrations increased during the heating season in Jekabpils, Jurmala and Valmiera, i.e., in the town that have many small heating installations. The data obtained allow to trace a dependence of measurement values upon the location of the observational posts vis-a-vis the pollutant emitting sources.« less

  5. Noninvasive monitoring of stress hormone levels in a female steller sea lion (Eumetopias jubatus) pup undergoing rehabilitation.

    PubMed

    Petrauskas, L; Tuomi, P; Atkinson, S

    2006-03-01

    Steller sea lions (Eumetopias jubatus) rarely strand in areas monitored by humans, and there is little published data on the diseases, parasites, nutritional state, and stress levels of Steller sea lions in the wild. In May 2002, a female Steller sea lion pup (EJS-02-01) was sighted separated from her mother after strong storms in Southeast Alaska. After 5 days of observations, EJS-02-01 was transferred to the Alaska SeaLife Center (ASLC) in Seward, Alaska. During 11 mo of rehabilitation at ASLC, body weight was monitored and opportunistic fecal samples (n = 86) were analyzed for corticosterone concentrations. Fecal corticosterone concentrations ranged from 15 to 3,805 ng/ g for EJS-02-01. Peak corticosterone values reflected responses to acute stressors during rehabilitation. EJS-02-01 was successfully released at Gran Point, Alaska, in April 2003. Fecal corticosterone assay monitoring provided a valuable tool to monitor various stressors and is useful in monitoring long-term situations like rehabilitation.

  6. A summary of ERTS data applications in Alaska

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Belon, A. E.

    1974-01-01

    ERTS has proven to be an exceedingly useful tool for the preparation of urgently needed resource surveys in Alaska. For this reason the wide utilization of ERTS data by federal, state and industrial agencies in Alaska is increasingly directed toward the solution of operational problems in resource inventories, environmental surveys, and land use planning. Examples of some applications are discussed in connection with surveys of potential agricultural lands; mapping of predicted archaeological sites; permafrost terrain and aufeis mapping; snow melt enhancement from Prudhoe Bay roads; geologic interpretations correlated ith possible new petroleum fields, with earthquake activity, and with plate tectonic motion along the Denali fault system; hydrology in monitoring surging glaciers and the break-up characteristics of the Chena River watershed; sea-ice morphology correlated with marine mammal distribution; and coastal sediment plume circulation patterns.

  7. Automated monitor and control for deep space network subsystems

    NASA Technical Reports Server (NTRS)

    Smyth, P.

    1989-01-01

    The problem of automating monitor and control loops for Deep Space Network (DSN) subsystems is considered and an overview of currently available automation techniques is given. The use of standard numerical models, knowledge-based systems, and neural networks is considered. It is argued that none of these techniques alone possess sufficient generality to deal with the demands imposed by the DSN environment. However, it is shown that schemes that integrate the better aspects of each approach and are referenced to a formal system model show considerable promise, although such an integrated technology is not yet available for implementation. Frequent reference is made to the receiver subsystem since this work was largely motivated by experience in developing an automated monitor and control loop for the advanced receiver.

  8. The “NetBoard”: Network Monitoring Tools Integration for INFN Tier-1 Data Center

    NASA Astrophysics Data System (ADS)

    De Girolamo, D.; dell'Agnello and, L.; Zani, S.

    2012-12-01

    The monitoring and alert system is fundamental for the management and the operation of the network in a large data center such as an LHC Tier-1. The network of the INFN Tier-1 at CNAF is a multi-vendor environment: for its management and monitoring several tools have been adopted and different sensors have been developed. In this paper, after an overview on the different aspects to be monitored and the tools used for them (i.e. MRTG, Nagios, Arpwatch, NetFlow, Syslog, etc), we will describe the “NetBoard”, a monitoring toolkit developed at the INFN Tier-1. NetBoard, developed for a multi-vendor network, is able to install and auto-configure all tools needed for its monitoring, either via network devices discovery mechanism or via configuration file or via wizard. In this way, we are also able to activate different types of sensors and Nagios checks according to the equipment vendor specifications. Moreover, when a new device is connected in the LAN, NetBoard can detect where it is plugged. Finally the NetBoard web interface allows to have the overall status of the entire network “at a glance”, both the local and the geographical (including the LHCOPN and the LHCONE) link utilization, health status of network devices (with active alerts) and flow analysis.

  9. Alaska Mental Health Board

    Science.gov Websites

    State Employees Alaska Mental Health Board DHSS State of Alaska Home Divisions and Agencies Alaska Pioneer Homes Behavioral Health Office of Children's Services Office of the Commissioner Office of Substance Misuse and Addiction Prevention Finance & Management Services Health Care Services Juvenile

  10. Publications - STATEMAP Project | Alaska Division of Geological &

    Science.gov Websites

    ., 2008, Surficial-geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska , Engineering - geologic map, Alaska Highway corridor, Delta Junction to Dot Lake, Alaska: Alaska Division of geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska Division of Geological

  11. The Denali EarthScope Education Partnership: Creating Opportunities for Learning About Solid Earth Processes in Alaska and Beyond.

    NASA Astrophysics Data System (ADS)

    Roush, J. J.; Hansen, R. A.

    2003-12-01

    The Geophysical Institute of the University of Alaska Fairbanks, in partnership with Denali National Park and Preserve, has begun an education outreach program that will create learning opportunities in solid earth geophysics for a wide sector of the public. We will capitalize upon a unique coincidence of heightened public interest in earthquakes (due to the M 7.9 Denali Fault event of Nov. 3rd, 2002), the startup of the EarthScope experiment, and the construction of the Denali Science & Learning Center, a premiere facility for science education located just 43 miles from the epicenter of the Denali Fault earthquake. Real-time data and current research results from EarthScope installations and science projects in Alaska will be used to engage students and teachers, national park visitors, and the general public in a discovery process that will enhance public understanding of tectonics, seismicity and volcanism along the boundary between the Pacific and North American plates. Activities will take place in five program areas, which are: 1) museum displays and exhibits, 2) outreach via print publications and electronic media, 3) curriculum development to enhance K-12 earth science education, 4) teacher training to develop earth science expertise among K-12 educators, and 5) interaction between scientists and the public. In order to engage the over 1 million annual visitors to Denali, as well as people throughout Alaska, project activities will correspond with the opening of the Denali Science and Learning Center in 2004. An electronic interactive kiosk is being constructed to provide public access to real-time data from seismic and geodetic monitoring networks in Alaska, as well as cutting edge visualizations of solid earth processes. A series of print publications and a website providing access to real-time seismic and geodetic data will be developed for park visitors and the general public, highlighting EarthScope science in Alaska. A suite of curriculum modules

  12. Comparative analysis of alternative co-production approaches to conservation science in Alaska

    NASA Astrophysics Data System (ADS)

    Trammell, E. J.

    2017-12-01

    Co-production has been suggested as an important tool for reducing the gap between science and management. Although co-production can require substantial investments in time and relationship building, there are a range of possible approaches that can be utilized that honor the focus and intent of co-production. I present here a comparison of three efforts that range from relatively simple, to complex and exhaustive, that illustrate diverse approaches to co-production of conservation science in Alaska. The first example highlights a workshop-based approach to identify long-term environmental monitoring needs in Alaska, while the second example describes stakeholder-driven scenarios that identified stressors to salmon in southcentral Alaska. The third example describes a 2-year cooperative agreement to develop management questions as part of a rapid ecoregional assessment in central Alaska. Results suggest that careful stakeholder selection is essential to successful co-production. Additionally, all three examples highlight the potential disconnect between management questions and specific management decisions, even when working directly with resource managers. As the focus of the Alaska Climate Science Center will be on co-production of climate science over the next 5 years, I conclude with some key pathways forward for successful co-production efforts in the future.

  13. Correlation analysis on real-time tab-delimited network monitoring data

    DOE PAGES

    Pan, Aditya; Majumdar, Jahin; Bansal, Abhay; ...

    2016-01-01

    End-End performance monitoring in the Internet, also called PingER is a part of SLAC National Accelerator Laboratory’s research project. It was created to answer the growing need to monitor network both to analyze current performance and to designate resources to optimize execution between research centers, and the universities and institutes co-operating on present and future operations. The monitoring support reflects the broad geographical area of the collaborations and requires a comprehensive number of research and financial channels. The data architecture retrieval and methodology of the interpretation have emerged over numerous years. Analyzing this data is the main challenge due tomore » its high volume. Finally, by using correlation analysis, we can make crucial conclusions about how the network data affects the performance of the hosts and how it depends from countries to countries.« less

  14. ASSESSING THE COMPARABILITY OF AMMONIUM, NITRATE AND SULFATE CONCENTRATIONS MEASURED BY THREE AIR QUALITY MONITORING NETWORKS

    EPA Science Inventory

    Airborne fine particulate matter across the United States is monitored by different networks, the three prevalent ones presently being the Clean Air Status and Trend Network (CASTNet), the Interagency Monitoring of PROtected Visual Environment Network (IMPROVE) and the Speciati...

  15. The Canarian Seismic Monitoring Network: design, development and first result

    NASA Astrophysics Data System (ADS)

    D'Auria, Luca; Barrancos, José; Padilla, Germán D.; García-Hernández, Rubén; Pérez, Aaron; Pérez, Nemesio M.

    2017-04-01

    Tenerife is an active volcanic island which experienced several eruptions of moderate intensity in historical times, and few explosive eruptions in the Holocene. The increasing population density and the consistent number of tourists are constantly raising the volcanic risk. In June 2016 Instituto Volcanologico de Canarias started the deployment of a seismological volcano monitoring network consisting of 15 broadband seismic stations. The network began its full operativity in November 2016. The aim of the network are both volcano monitoring and scientific research. Currently data are continuously recorded and processed in real-time. Seismograms, hypocentral parameters, statistical informations about the seismicity and other data are published on a web page. We show the technical characteristics of the network and an estimate of its detection threshold and earthquake location performances. Furthermore we present other near-real time procedures on the data: analysis of the ambient noise for determining the shallow velocity model and temporal velocity variations, detection of earthquake multiplets through massive data mining of the seismograms and automatic relocation of events through double-difference location.

  16. Alaska Center for Unmanned Aircraft Systems Integration (ACUASI): Operational Support and Geoscience Research

    NASA Astrophysics Data System (ADS)

    Webley, P. W.; Cahill, C. F.; Rogers, M.; Hatfield, M. C.

    2016-12-01

    Unmanned Aircraft Systems (UAS) have enormous potential for use in geoscience research and supporting operational needs from natural hazard assessment to the mitigation of critical infrastructure failure. They provide a new tool for universities, local, state, federal, and military organizations to collect new measurements not readily available from other sensors. We will present on the UAS capabilities and research of the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI, http://acuasi.alaska.edu/). Our UAS range from the Responder with its dual visible/infrared payload that can provide simultaneous data to our new SeaHunter UAS with 90 lb. payload and multiple hour flight time. ACUASI, as a designated US Federal Aviation Administration (FAA) test center, works closely with the FAA on integrating UAS into the national airspace. ACUASI covers all aspects of working with UAS from pilot training, airspace navigation, flight operations, and remote sensing analysis to payload design and integration engineers and policy experts. ACUASI's recent missions range from supporting the mapping of sea ice cover for safe passage of Alaskans across the hazardous winter ice to demonstrating how UAS can be used to provide support during oil spill response. Additionally, we will present on how ACUASI has worked with local authorities in Alaska to integrate UAS into search and rescue operations and with NASA and the FAA on their UAS Transport Management (UTM) project to fly UAS within the manned airspace. ACUASI is also working on developing new capabilities to sample volcanic plumes and clouds, map forest fire impacts and burn areas, and develop a new citizen network for monitoring snow extent and depth during Northern Hemisphere winters. We will demonstrate how UAS can be integrated in operational support systems and at the same time be used in geoscience research projects to provide high precision, accurate, and reliable observations.

  17. Alaska's Economy: What's Ahead?

    ERIC Educational Resources Information Center

    Alaska Review of Social and Economic Conditions, 1987

    1987-01-01

    This review describes Alaska's economic boom of the early 1980s, the current recession, and economic projections for the 1990s. Alaska's economy is largely influenced by oil prices, since petroleum revenues make up 80% of the state government's unrestricted general fund revenues. Expansive state spending was responsible for most of Alaska's…

  18. Cooperative Alaska Forest Inventory

    Treesearch

    Thomas Malone; Jingjing Liang; Edmond C. Packee

    2009-01-01

    The Cooperative Alaska Forest Inventory (CAFI) is a comprehensive database of boreal forest conditions and dynamics in Alaska. The CAFI consists of field-gathered information from numerous permanent sample plots distributed across interior and south-central Alaska including the Kenai Peninsula. The CAFI currently has 570 permanent sample plots on 190 sites...

  19. Appellate Courts - Alaska Court System

    Science.gov Websites

    Court Cases Appellate Case Management System Oral Argument Supreme Court Calendar, Court of Appeals , which contains the Alaska cases excerpted from P.2d and P.3d. The Pacific Reporter or the Alaska the Alaska cases excerpted from P.2d and P.3d. The Pacific Reporter or the Alaska Reporter is

  20. Alaska looks HOT!

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belcher, J.

    Production in Alaska has been sluggish in recent years, with activity in the Prudhoe Bay region in the North Slope on a steady decline. Alaska North Slope (ANS) production topped out in 1988 at 2.037 MMbo/d, with 1.6 MMbo/d from Prudhoe Bay. This year operators expect to produce 788 Mbo/d from Prudhoe Bay, falling to 739 Mbo/d next year. ANS production as a whole should reach 1.3 MMbo/d this year, sliding to 1.29 MMbo/d in 1998. These declining numbers had industry officials and politicians talking about the early death of the Trans-Alaskan Pipeline System-the vital link between ANS crude andmore » markets. But enhanced drilling technology coupled with a vastly improved relationship between the state government and industry have made development in Alaska more economical and attractive. Alaska`s Democratic Gov. Tommy Knowles is fond of telling industry {open_quotes}we`re open for business.{close_quotes} New discoveries on the North Slope and in the Cook Inlet are bringing a renewed sense of optimism to the Alaska exploration and production industry. Attempts by Congress to lift a moratorium on exploration and production activity in the Arctic National Wildlife Refuge (ANWR) have been thwarted thus far, but momentum appears to be with proponents of ANWR drilling.« less

  1. Alaska Tidal Datum Portal | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Engineering Geology Alaska Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Portal Unambiguous vertical datums in the coastal environment are critical to the evaluation of natural human life, property, and the coastal environment. January 2017 - Update Summary Alaska Tidal Datum

  2. Establishment of a hydrological monitoring network in a tropical African catchment: An integrated participatory approach

    NASA Astrophysics Data System (ADS)

    Gomani, M. C.; Dietrich, O.; Lischeid, G.; Mahoo, H.; Mahay, F.; Mbilinyi, B.; Sarmett, J.

    Sound decision making for water resources management has to be based on good knowledge of the dominant hydrological processes of a catchment. This information can only be obtained through establishing suitable hydrological monitoring networks. Research catchments are typically established without involving the key stakeholders, which results in instruments being installed at inappropriate places as well as at high risk of theft and vandalism. This paper presents an integrated participatory approach for establishing a hydrological monitoring network. We propose a framework with six steps beginning with (i) inception of idea; (ii) stakeholder identification; (iii) defining the scope of the network; (iv) installation; (v) monitoring; and (vi) feedback mechanism integrated within the participatory framework. The approach is illustrated using an example of the Ngerengere catchment in Tanzania. In applying the approach, the concept of establishing the Ngerengere catchment monitoring network was initiated in 2008 within the Resilient Agro-landscapes to Climate Change in Tanzania (ReACCT) research program. The main stakeholders included: local communities; Sokoine University of Agriculture; Wami Ruvu Basin Water Office and the ReACCT Research team. The scope of the network was based on expert experience in similar projects and lessons learnt from literature review of similar projects from elsewhere integrated with local expert knowledge. The installations involved reconnaissance surveys, detailed surveys, and expert consultations to identify best sites. First, a Digital Elevation Model, land use, and soil maps were used to identify potential monitoring sites. Local and expert knowledge was collected on flow regimes, indicators of shallow groundwater plant species, precipitation pattern, vegetation, and soil types. This information was integrated and used to select sites for installation of an automatic weather station, automatic rain gauges, river flow gauging stations

  3. Spatio-temporal statistical models for river monitoring networks.

    PubMed

    Clement, L; Thas, O; Vanrolleghem, P A; Ottoy, J P

    2006-01-01

    When introducing new wastewater treatment plants (WWTP), investors and policy makers often want to know if there indeed is a beneficial effect of the installation of a WWTP on the river water quality. Such an effect can be established in time as well as in space. Since both temporal and spatial components affect the output of a monitoring network, their dependence structure has to be modelled. River water quality data typically come from a river monitoring network for which the spatial dependence structure is unidirectional. Thus the traditional spatio-temporal models are not appropriate, as they cannot take advantage of this directional information. In this paper, a state-space model is presented in which the spatial dependence of the state variable is represented by a directed acyclic graph, and the temporal dependence by a first-order autoregressive process. The state-space model is extended with a linear model for the mean to estimate the effect of the activation of a WWTP on the dissolved oxygen concentration downstream.

  4. Low power sensor network for wireless condition monitoring

    NASA Astrophysics Data System (ADS)

    Richter, Ch.; Frankenstein, B.; Schubert, L.; Weihnacht, B.; Friedmann, H.; Ebert, C.

    2009-03-01

    For comprehensive fatigue tests and surveillance of large scale structures, a vibration monitoring system working in the Hz and sub Hz frequency range was realized and tested. The system is based on a wireless sensor network and focuses especially on the realization of a low power measurement, signal processing and communication. Regarding the development, we met the challenge of synchronizing the wireless connected sensor nodes with sufficient accuracy. The sensor nodes ware realized by compact, sensor near signal processing structures containing components for analog preprocessing of acoustic signals, their digitization, algorithms for data reduction and network communication. The core component is a digital micro controller which performs the basic algorithms necessary for the data acquisition synchronization and the filtering. As a first application, the system was installed in a rotor blade of a wind power turbine in order to monitor the Eigen modes over a longer period of time. Currently the sensor nodes are battery powered.

  5. Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring

    PubMed Central

    Gharavi, Hamid; Hu, Bin

    2018-01-01

    With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network. PMID:29503505

  6. Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring.

    PubMed

    Gharavi, Hamid; Hu, Bin

    2017-01-01

    With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network.

  7. Air temperature, wind speed, and wind direction in the National Petroleum Reserve—Alaska and the Arctic National Wildlife Refuge, 1998–2011

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2013-01-01

    This report provides air temperature, wind speed, and wind direction data collected on Federal lands in Arctic Alaska over the period August 1998 to July 2011 by the U.S. Department of the Interior's climate monitoring array, part of the Global Terrestrial Network for Permafrost. In addition to presenting data, this report also describes monitoring, data collection, and quality control methodology. This array of 16 monitoring stations spans 68.5°N to 70.5°N and 142.5°W to 161°W, an area of roughly 150,000 square kilometers. Climate summaries are presented along with provisional quality-controlled data. Data collection is ongoing and includes several additional climate variables to be released in subsequent reports, including ground temperature and soil moisture, snow depth, rainfall, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  8. An International Haze-Monitoring Network for Students.

    NASA Astrophysics Data System (ADS)

    Mims, Forrest M., III

    1999-07-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) Program is an international network of schools in 71 countries that monitors up to 20 environmental parameters. Recently GLOBE added a haze-monitoring program to its measurement protocols. This network has the potential of providing important data about changes in the aerosol optical depth of the atmosphere caused by weather fronts, industrial and automobile pollution, and smoke from forest and brush fires and volcanic eruptions. Initially, monitoring will be conducted with an inexpensive, single-channel (520 nm) sun photometer. Unlike conventional sun photometers that use interference filters that are subject to unpredictable and rapid degradation, the GLOBE instrument uses a common light-emitting diode (LED) as a spectrally selective detector. Annual calibrations of two LED sun photometers at Mauna Loa Observatory since 1992 show that these instruments have insignificant degradation when compared to filter sun photometers. Some 175 prototype versions of a kit LED sun photometer have been assembled and tested by students from 16 countries at the University of the Nations and by more than 130 high school teachers in various pilot studies. These studies have demonstrated that even inexperienced students and teachers can quickly assemble a sun photometer from a kit of parts and perform a reliable angley calibration. The pilot studies have also demonstrated that sun photometery provides a convenient means for allowing students to perform hands-on science while they learn about various topics in history, electronics, algebra, statistics, graphing, and meteorology.

  9. A wireless sensor network for monitoring volcanic tremors

    NASA Astrophysics Data System (ADS)

    Lopes Pereira, R.; Trindade, J.; Gonçalves, F.; Suresh, L.; Barbosa, D.; Vazão, T.

    2013-08-01

    Monitoring of volcanic activity is important to learn about the properties of each volcano and provide early warning systems to the population. Monitoring equipment can be expensive and thus, the degree of monitoring varies from volcano to volcano and from country to country, with many volcanoes not being monitored at all. This paper describes the development of a Wireless Sensor Network (WSN) capable of collecting geophysical measurements on remote active volcanoes. Our main goals were to create a flexible, easy to deploy and maintain, adaptable, low-cost WSN for temporary or permanent monitoring of seismic tremor. The WSN enables the easy installation of a sensor array on an area of tens of thousand of m2, allowing the location of the magma movements causing the seismic tremor to be calculated. This WSN can be used by recording data locally for latter analysis or by continuously transmitting it in real time to a remote laboratory for real-time analyses.

  10. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  11. Alaska Women: A Databook.

    ERIC Educational Resources Information Center

    White, Karen; Baker, Barbara

    This data book uses survey and census information to record social and economic changes of the past three decades and their effects upon the role of Alaska women in society. Results show Alaska women comprise 47% of the state population, an increase of 9% since 1950. Marriage continues as the predominant living arrangement for Alaska women,…

  12. Alaska Board of Forestry

    Science.gov Websites

    Natural Resources / Division of Forestry Alaska Board of Forestry The nine-member Alaska Board of Forestry advises the state on forest practices issues and provides a forum for discussion and resolution of forest management issues on state land. The board also reviews all proposed changes to the Alaska Forest Resources

  13. Locations of Sampling Stations for Water Quality Monitoring in Water Distribution Networks.

    PubMed

    Rathi, Shweta; Gupta, Rajesh

    2014-04-01

    Water quality is required to be monitored in the water distribution networks (WDNs) at salient locations to assure the safe quality of water supplied to the consumers. Such monitoring stations (MSs) provide warning against any accidental contaminations. Various objectives like demand coverage, time for detection, volume of water contaminated before detection, extent of contamination, expected population affected prior to detection, detection likelihood and others, have been independently or jointly considered in determining optimal number and location of MSs in WDNs. "Demand coverage" defined as the percentage of network demand monitored by a particular monitoring station is a simple measure to locate MSs. Several methods based on formulation of coverage matrix using pre-specified coverage criteria and optimization have been suggested. Coverage criteria is defined as some minimum percentage of total flow received at the monitoring stations that passed through any upstream node included then as covered node of the monitoring station. Number of monitoring stations increases with the increase in the value of coverage criteria. Thus, the design of monitoring station becomes subjective. A simple methodology is proposed herein which priority wise iteratively selects MSs to achieve targeted demand coverage. The proposed methodology provided the same number and location of MSs for illustrative network as an optimization method did. Further, the proposed method is simple and avoids subjectivity that could arise from the consideration of coverage criteria. The application of methodology is also shown on a WDN of Dharampeth zone (Nagpur city WDN in Maharashtra, India) having 285 nodes and 367 pipes.

  14. Earthquake Monitoring: SeisComp3 at the Swiss National Seismic Network

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Diehl, T.; Cauzzi, C.; Kaestli, P.

    2011-12-01

    The Swiss Seismological Service (SED) has an ongoing responsibility to improve the seismicity monitoring capability for Switzerland. This is a crucial issue for a country with low background seismicity but where a large M6+ earthquake is expected in the next decades. With over 30 stations with spacing of ~25km, the SED operates one of the densest broadband networks in the world, which is complimented by ~ 50 realtime strong motion stations. The strong motion network is expected to grow with an additional ~80 stations over the next few years. Furthermore, the backbone of the network is complemented by broadband data from surrounding countries and temporary sub-networks for local monitoring of microseismicity (e.g. at geothermal sites). The variety of seismic monitoring responsibilities as well as the anticipated densifications of our network demands highly flexible processing software. We are transitioning all software to the SeisComP3 (SC3) framework. SC3 is a fully featured automated real-time earthquake monitoring software developed by GeoForschungZentrum Potsdam in collaboration with commercial partner, gempa GmbH. It is in its core open source, and becoming a community standard software for earthquake detection and waveform processing for regional and global networks across the globe. SC3 was originally developed for regional and global rapid monitoring of potentially tsunamagenic earthquakes. In order to fulfill the requirements of a local network recording moderate seismicity, SED has tuned configurations and added several modules. In this contribution, we present our SC3 implementation strategy, focusing on the detection and identification of seismicity on different scales. We operate several parallel processing "pipelines" to detect and locate local, regional and global seismicity. Additional pipelines with lower detection thresholds can be defined to monitor seismicity within dense subnets of the network. To be consistent with existing processing

  15. Alaska Interagency Ecosystem Health Work Group

    USGS Publications Warehouse

    Shasby, Mark

    2009-01-01

    The Alaska Interagency Ecosystem Health Work Group is a community of practice that recognizes the interconnections between the health of ecosystems, wildlife, and humans and meets to facilitate the exchange of ideas, data, and research opportunities. Membership includes the Alaska Native Tribal Health Consortium, U.S. Geological Survey, Alaska Department of Environmental Conservation, Alaska Department of Health and Social Services, Centers for Disease Control and Prevention, U.S. Fish and Wildlife Service, Alaska Sea Life Center, U.S. Environmental Protection Agency, and Alaska Department of Fish and Game.

  16. Development and Performance of the Alaska Transportable Array Posthole Broadband Seismic Station

    NASA Astrophysics Data System (ADS)

    Aderhold, K.; Enders, M.; Miner, J.; Bierma, R. M.; Bloomquist, D.; Theis, J.; Busby, R. W.

    2017-12-01

    The final stations of the Alaska Transportable Array (ATA) will be constructed in 2017, completing the full footprint of 280 new and existing broadband seismic stations stretching across 19 degrees of latitude from western Alaska to western Canada. Through significant effort in planning, site reconnaissance, permitting and the considerable and concerted effort of field crews, the IRIS Alaska TA team is on schedule to successfully complete the construction of 194 new stations and upgrades at 28 existing stations over four field seasons. The station design and installation method was developed over the course of several years, leveraging the experience of the L48 TA deployments and existing network operators in Alaska as well as incorporating newly engineered components and procedures. A purpose-built lightweight drill was designed and fabricated to facilitate the construction of shallow boreholes to incorporate newly available posthole seismometers. This allowed for the development of a streamlined system of procedures to manufacture uniform seismic stations with minimal crew and minimal time required at each station location. A new station can typically be constructed in a single day with a four-person field crew. The ATA utilizes a hammer-drilled, cased posthole emplacement method adapted to the remote and harsh working environment of Alaska. The same emplacement design is implemented in all ground conditions to preserve uniformity across the array and eliminate the need for specialized mechanical equipment. All components for station construction are ideally suited for transport via helicopter, and can be adapted to utilize more traditional methods of transportation when available. This emplacement design delivers high quality data when embedded in bedrock or permafrost, reaching the low noise levels of benchmark permanent global broadband stations especially at long periods over 70 seconds. The TA will operate the network of real-time stations through at least

  17. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  18. Alaska's renewable energy potential.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  19. Air-dropped sensor network for real-time high-fidelity volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Huang, R.; Xu, M.; Ma, A.; Shirazi, B.; LaHusen, R.

    2009-01-01

    This paper presents the design and deployment experience of an air-dropped wireless sensor network for volcano hazard monitoring. The deployment of five stations into the rugged crater of Mount St. Helens only took one hour with a helicopter. The stations communicate with each other through an amplified 802.15.4 radio and establish a self-forming and self-healing multi-hop wireless network. The distance between stations is up to 2 km. Each sensor station collects and delivers real-time continuous seismic, infrasonic, lightning, GPS raw data to a gateway. The main contribution of this paper is the design and evaluation of a robust sensor network to replace data loggers and provide real-time long-term volcano monitoring. The system supports UTC-time synchronized data acquisition with 1ms accuracy, and is online configurable. It has been tested in the lab environment, the outdoor campus and the volcano crater. Despite the heavy rain, snow, and ice as well as gusts exceeding 120 miles per hour, the sensor network has achieved a remarkable packet delivery ratio above 99% with an overall system uptime of about 93.8% over the 1.5 months evaluation period after deployment. Our initial deployment experiences with the system have alleviated the doubts of domain scientists and prove to them that a low-cost sensor network system can support real-time monitoring in extremely harsh environments. Copyright 2009 ACM.

  20. Gravity measurements in southeastern Alaska reveal negative gravity rate of change caused by glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Sun, W.; Miura, S.; Sato, T.; Sugano, T.; Freymueller, J.; Kaufman, M.; Larsen, C. F.; Cross, R.; Inazu, D.

    2010-12-01

    For the past 300 years, southeastern Alaska has undergone rapid ice-melting and land uplift attributable to global warming. Corresponding crustal deformation (3 cm/yr) caused by the Little Ice Age retreat is detectable with modern geodetic techniques such as GPS and tidal gauge measurements. Geodetic deformation provides useful information for assessing ice-melting rates, global warming effects, and subcrustal viscosity. Nevertheless, integrated geodetic observations, including gravity measurements, are important. To detect crustal deformation caused by glacial isostatic adjustment and to elucidate the viscosity structure in southeastern Alaska, Japanese and U.S. researchers began a joint 3-year project in 2006 using GPS, Earth tide, and absolute gravity measurements. A new absolute gravity network was established, comprising five sites around Glacier Bay, near Juneau, Alaska. This paper reports the network's gravity measurements during 2006-2008. The bad ocean model in this area hindered ocean loading correction: Large tidal residuals remain in the observations. Accurate tidal correction necessitated on-site tidal observation. Results show high observation precision for all five stations: <1 μGal. The gravity rate of change was found to be -3.5 to -5.6 μGal/yr in the gravity network. Furthermore, gravity results obtained during the 3 years indicate a similar gravity change rate. These gravity data are anticipated for application in geophysical studies of southeastern Alaska. Using gravity and vertical displacement data, we constructed a quantity to remove viscoelastic effects. The observations are thus useful to constrain present-day ice thickness changes. A gravity bias of about -13.2 ± 0.1 mGal exists between the Potsdam and current FG5 gravity data.

  1. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    NASA Astrophysics Data System (ADS)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized

  2. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    PubMed Central

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  3. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    PubMed

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-07-21

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  4. College Persistence of Alaska Native Students: An Assessment of the Rural Alaska Honors Institute, 1983-88.

    ERIC Educational Resources Information Center

    Gaylord, Thomas A.; Kaul, Gitanjali

    Despite efforts by educators, full participation by Alaska native students in the state's colleges and universities has not yet been achieved. Alaska Natives are the state's only racial group that is underrepresented in enrollments at the University of Alaska (UA). This report examines the contribution of the Rural Alaska Honors Institute (RAHI)…

  5. Network Optimization for Induced Seismicity Monitoring in Urban Areas

    NASA Astrophysics Data System (ADS)

    Kraft, T.; Husen, S.; Wiemer, S.

    2012-12-01

    With the global challenge to satisfy an increasing demand for energy, geological energy technologies receive growing attention and have been initiated in or close to urban areas in the past several years. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential to the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquake at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental

  6. Trophic ecology of introduced populations of Alaska blackfish (Dallia pectoralis) in the Cook Inlet Basin, Alaska.

    PubMed

    Eidam, Dona M; von Hippel, Frank A; Carlson, Matthew L; Lassuy, Dennis R; López, J Andrés

    2016-07-01

    Introduced non-native fishes have the potential to substantially alter aquatic ecology in the introduced range through competition and predation. The Alaska blackfish ( Dallia pectoralis ) is a freshwater fish endemic to Chukotka and Alaska north of the Alaska Range (Beringia); the species was introduced outside of its native range to the Cook Inlet Basin of Alaska in the 1950s, where it has since become widespread. Here we characterize the diet of Alaska blackfish at three Cook Inlet Basin sites, including a lake, a stream, and a wetland. We analyze stomach plus esophageal contents to assess potential impacts on native species via competition or predation. Alaska blackfish in the Cook Inlet Basin consume a wide range of prey, with major prey consisting of epiphytic/benthic dipteran larvae, gastropods, and ostracods. Diets of the introduced populations of Alaska blackfish are similar in composition to those of native juvenile salmonids and stickleback. Thus, Alaska blackfish may affect native fish populations via competition. Fish ranked third in prey importance for both lake and stream blackfish diets but were of minor importance for wetland blackfish.

  7. Trophic ecology of introduced populations of Alaska blackfish (Dallia pectoralis) in the Cook Inlet Basin, Alaska

    PubMed Central

    Eidam, Dona M.; Carlson, Matthew L.; Lassuy, Dennis R.; López, J. Andrés

    2016-01-01

    Introduced non-native fishes have the potential to substantially alter aquatic ecology in the introduced range through competition and predation. The Alaska blackfish (Dallia pectoralis) is a freshwater fish endemic to Chukotka and Alaska north of the Alaska Range (Beringia); the species was introduced outside of its native range to the Cook Inlet Basin of Alaska in the 1950s, where it has since become widespread. Here we characterize the diet of Alaska blackfish at three Cook Inlet Basin sites, including a lake, a stream, and a wetland. We analyze stomach plus esophageal contents to assess potential impacts on native species via competition or predation. Alaska blackfish in the Cook Inlet Basin consume a wide range of prey, with major prey consisting of epiphytic/benthic dipteran larvae, gastropods, and ostracods. Diets of the introduced populations of Alaska blackfish are similar in composition to those of native juvenile salmonids and stickleback. Thus, Alaska blackfish may affect native fish populations via competition. Fish ranked third in prey importance for both lake and stream blackfish diets but were of minor importance for wetland blackfish. PMID:28082763

  8. Cost-effective and monitoring-active technique for TDM-passive optical networks

    NASA Astrophysics Data System (ADS)

    Chi, Chang-Chia; Lin, Hong-Mao; Tarn, Chen-Wen; Lin, Huang-Liang

    2014-08-01

    A reliable, detection-active and cost-effective method which employs the hello and heartbeat signals for branched node distinguishing to monitor fiber fault in any branch of distribution fibers of a time division multiplexing passive optical network (TDM-PON) is proposed. With this method, the material cost of building an optical network monitor system for a TDM-PON with 168 ONUs and the time of identifying a multiple branch faults is significantly reduced in a TDM-PON system of any scale. A fault location in a 1 × 32 TDM-PON system using this method to identify the fault branch is demonstrated.

  9. [Design and application of user managing system of cardiac remote monitoring network].

    PubMed

    Chen, Shouqiang; Zhang, Jianmin; Yuan, Feng; Gao, Haiqing

    2007-12-01

    According to inpatient records, data managing demand of cardiac remote monitoring network and computer, this software was designed with relative database ACCESS. Its interface, operational button and menu were designed in VBA language assistantly. Its design included collective design, amity, practicability and compatibility. Its function consisted of registering, inquiring, statisticing and printing, et al. It could be used to manage users effectively and could be helpful to exerting important action of cardiac remote monitoring network in preventing cardiac-vascular emergency ulteriorly.

  10. Triggered tremor sweet spots in Alaska

    NASA Astrophysics Data System (ADS)

    Gomberg, Joan; Prejean, Stephanie

    2013-12-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor "sweet spots"—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (< 0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  11. Triggered tremor sweet spots in Alaska

    USGS Publications Warehouse

    Gomberg, Joan; Prejean, Stephanie

    2013-01-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor “sweet spots”—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (<~0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  12. Electrifying Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinemer, V.

    Alaska's diverse systems for electric power include only 4% by private utilities. Large distances and small markets make transmission impractical for the most part. Rates are variable, although the state average is low. Energy sources, except nuclear, are abundant: half the US coal reserves are in Alaska. In addition, it has geothermal, tidal, biomass, solar, wind, and hydroelectric power. Energy construction and study programs are centered in the Alaska Power Authority and include using waste heat from village diesel generators. Hydro potential is good, but access, distances, and environmental effects must be considered. The Terror Lake, Tyee Lake, Swan Lake,more » and Susitna projects are described and transmission construction, including the 345-kW Railbelt intertie, is discussed. 1 figure.« less

  13. Estimating National-scale Emissions using Dense Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Ganesan, A.; Manning, A.; Grant, A.; Young, D.; Oram, D.; Sturges, W. T.; Moncrieff, J. B.; O'Doherty, S.

    2014-12-01

    The UK's DECC (Deriving Emissions linked to Climate Change) network consists of four greenhouse gas measurement stations that are situated to constrain emissions from the UK and Northwest Europe. These four stations are located in Mace Head (West Coast of Ireland), and on telecommunication towers at Ridge Hill (Western England), Tacolneston (Eastern England) and Angus (Eastern Scotland). With the exception of Angus, which currently only measures carbon dioxide (CO2) and methane (CH4), the remaining sites are additionally equipped to monitor nitrous oxide (N2O). We present an analysis of the network's CH4 and N2O observations from 2011-2013 and compare derived top-down regional emissions with bottom-up inventories, including a recently produced high-resolution inventory (UK National Atmospheric Emissions Inventory). As countries are moving toward national-level emissions estimation, we also address some of the considerations that need to be made when designing these national networks. One of the novel aspects of this work is that we use a hierarchical Bayesian inversion framework. This methodology, which has newly been applied to greenhouse gas emissions estimation, is designed to estimate temporally and spatially varying model-measurement uncertainties and correlation scales, in addition to fluxes. Through this analysis, we demonstrate the importance of characterizing these covariance parameters in order to properly use data from high-density monitoring networks. This UK case study highlights the ways in which this new inverse framework can be used to address some of the limitations of traditional Bayesian inverse methods.

  14. Renewable energy and sustainable communities: Alaska's wind generator experience.

    PubMed

    Konkel, R Steven

    2013-01-01

    better understanding wind energy potential through resource assessments and new tools for detailed feasibility and project planning, need for comprehensive monitoring and data analysis, and state funding requirements and opportunity costs. The energy policy choices ahead for Alaska will have important implications for Arctic population health, especially for those villages whose relatively small size and remote locations make energy a key component of subsistence lifestyles and community sustainability. Wind generation can contribute to meeting renewable energy goals and is a particularly important resource for rural and remote Alaskan communities currently dependent on diesel fuel for generating electricity and heat.

  15. Developing hydrological monitoring networks with Arduino

    NASA Astrophysics Data System (ADS)

    Buytaert, Wouter; Vega, Andres; Villacis, Marcos; Moulds, Simon

    2015-04-01

    The open source hardware platform Arduino is very cost-effective and versatile for the development of sensor networks. Here we report on experiments on the use of Arduino-related technologies to develop and implement hydrological monitoring networks. Arduino Uno boards were coupled to a variety of commercially available hydrological sensors and programmed for automatic data collection. Tested sensors include water level, temperature, humidity, radiation, and precipitation. Our experiments show that most of the tested analogue sensors are quite straightforward to couple to Arduino based data loggers, especially if the electronic characteristics of the sensor are available. However, some sensors have internal digital interfaces, which are more challenging to connect. Lastly, tipping bucket rain gauges prove the most challenging because of the very specific methodology, i.e. registration of bucket tips instead of measurements at regular intervals. The typically low data generation rate of hydrological instruments is very compatible with available technologies for wireless data transmission. Mesh networks such as Xbee prove very convenient and robust for dispersed networks, while wifi is also an option for shorter distances and particular topographies. Lastly, the GSM shield of the Arduino can be used to transfer data to centralized databases. In regions where no mobile internet (i.e. 3G) connection is available, data transmission via text messages may be an option, depending on the bandwidth requirements.

  16. Potential of a national monitoring program for forests to assess change in high-latitude ecosystems

    Treesearch

    Tara M. Barrett; Andrew N. Gray

    2011-01-01

    Broad-scale monitoring in Alaska has become of increasing interest due to uncertainty about the potential impacts of changing climate on high-latitude ecosystems. The Forest Inventory and Analysis (FIA) program is a national monitoring program for all public and private forestlands in the US, but the program is not currently implemented in the boreal region of Alaska....

  17. On the relevance of using open wireless sensor networks in environment monitoring.

    PubMed

    Bagula, Antoine B; Inggs, Gordon; Scott, Simon; Zennaro, Marco

    2009-01-01

    This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks.

  18. A computer-assisted data collection system for use in a multicenter study of American Indians and Alaska Natives: SCAPES.

    PubMed

    Edwards, Roger L; Edwards, Sandra L; Bryner, James; Cunningham, Kelly; Rogers, Amy; Slattery, Martha L

    2008-04-01

    We describe a computer-assisted data collection system developed for a multicenter cohort study of American Indian and Alaska Native people. The study computer-assisted participant evaluation system or SCAPES is built around a central database server that controls a small private network with touch screen workstations. SCAPES encompasses the self-administered questionnaires, the keyboard-based stations for interviewer-administered questionnaires, a system for inputting medical measurements, and administrative tasks such as data exporting, backup and management. Elements of SCAPES hardware/network design, data storage, programming language, software choices, questionnaire programming including the programming of questionnaires administered using audio computer-assisted self-interviewing (ACASI), and participant identification/data security system are presented. Unique features of SCAPES are that data are promptly made available to participants in the form of health feedback; data can be quickly summarized for tribes for health monitoring and planning at the community level; and data are available to study investigators for analyses and scientific evaluation.

  19. Alaska Center for Climate Assessment and Policy: Partnering with Decision-Makers in Climate Change Adaptation

    NASA Astrophysics Data System (ADS)

    White, D.; Trainor, S.; Walsh, J.; Gerlach, C.

    2008-12-01

    The Alaska Center for Climate Assessment and Policy (ACCAP; www.uaf.edu/accap) is one of several, NOAA funded, Regional Integrated Science and Policy (RISA) programs nation-wide (http://www.climate.noaa.gov/cpo_pa/risa/). Our mission is to assess the socio-economic and biophysical impacts of climate variability in Alaska, make this information available to local and regional decision-makers, and improve the ability of Alaskans to adapt to a changing climate. We partner with the University of Alaska?s Scenario Network for Alaska Planning (SNAP; http://www.snap.uaf.edu/), state and local government, state and federal agencies, industry, and non-profit organizations to communicate accurate and up-to-date climate science and assist in formulating adaptation and mitigation plans. ACCAP and SNAP scientists are members of the Governor?s Climate Change Sub-Cabinet Adaptation and Mitigation Advisory and Technical Working Groups (http://www.climatechange.alaska.gov/), and apply their scientific expertise to provide down-scaled, state-wide maps of temperature and precipitation projections for these groups. An ACCAP scientist also serves as co-chair for the Fairbanks North Star Borough Climate Change Task Force, assisting this group as they work through the five-step model for climate change planning put forward by the International Council for Local Environmental Initiatives (http://www.investfairbanks.com/Taskforces/climate.php). ACCAP scientists work closely with federal resource managers in on a range of projects including: partnering with the U.S. Fish and Wildlife Service to analyze hydrologic changes associated with climate change and related ecological impacts and wildlife management and development issues on Alaska?s North Slope; partnering with members of the Alaska Interagency Wildland Fire Coordinating Group in statistical modeling to predict seasonal wildfire activity and coordinate fire suppression resources state-wide; and working with Alaska Native Elders and

  20. Identification of Geostructures of the Continental Crust Particularly as They Relate to Mineral Resource Evaluation. [Alaska

    NASA Technical Reports Server (NTRS)

    Lathram, E. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A pattern of very old geostructures was recognized, reflecting structures in the crust. This pattern is not peculiar to Alaska, but can be recognized throughout the northern cordillera. A new metallogenic hypothesis for Alaska was developed, based on the relationship of space image linears to known mineral deposits. Using image linear analysis, regional geologic features were also recognized; these features may be used to guide in the location of undiscovered oil and/or gas accumulations in northern Alaska. The effectiveness of ERTS data in enhancing medium and small scale mapping was demonstrated. ERTS data were also used to recognize and monitor the state of large scale vehicular scars on Arctic tundra.

  1. A design of wireless sensor networks for a power quality monitoring system.

    PubMed

    Lim, Yujin; Kim, Hak-Man; Kang, Sanggil

    2010-01-01

    Power grids deal with the business of generation, transmission, and distribution of electric power. Recently, interest in power quality in electrical distribution systems has increased rapidly. In Korea, the communication network to deliver voltage, current, and temperature measurements gathered from pole transformers to remote monitoring centers employs cellular mobile technology. Due to high cost of the cellular mobile technology, power quality monitoring measurements are limited and data gathering intervals are large. This causes difficulties in providing the power quality monitoring service. To alleviate the problems, in this paper we present a communication infrastructure to provide low cost, reliable data delivery. The communication infrastructure consists of wired connections between substations and monitoring centers, and wireless connections between pole transformers and substations. For the wireless connection, we employ a wireless sensor network and design its corresponding data forwarding protocol to improve the quality of data delivery. For the design, we adopt a tree-based data forwarding protocol in order to customize the distribution pattern of the power quality information. We verify the performance of the proposed data forwarding protocol quantitatively using the NS-2 network simulator.

  2. Research on a Banknote Printing Wastewater Monitoring System based on Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Li, B. B.; Yuan, Z. F.

    2006-10-01

    In this paper, a banknote printing wastewater monitoring system based on WSN is presented in line with the system demands and actual condition of the worksite for a banknote printing factory. In Physical Layer, the network node is a nRF9e5-centric embedded instrument, which can realize the multi-function such as data collecting, status monitoring, wireless data transmission and so on. Limited by the computing capability, memory capability, communicating energy and others factors, it is impossible for the node to get every detail information of the network, so the communication protocol on WSN couldn't be very complicated. The competitive-based MACA (Multiple Access with Collision Avoidance) Protocol is introduced in MAC, which can decide the communication process and working mode of the nodes, avoid the collision of data transmission, hidden and exposed station problem of nodes. On networks layer, the routing protocol in charge of the transmitting path of the data, the networks topology structure is arranged based on address assignation. Accompanied with some redundant nodes, the network performances stabile and expandable. The wastewater monitoring system is a tentative practice of WSN theory in engineering. Now, the system has passed test and proved efficiently.

  3. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems

    PubMed Central

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  4. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    PubMed

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  5. Monitoring of stability of ASG-EUPOS network coordinates

    NASA Astrophysics Data System (ADS)

    Figurski, M.; Szafranek, K.; Wrona, M.

    2009-04-01

    ASG-EUPOS (Active Geodetic Network - European Position Determination System) is the national system of precise satellite positioning in Poland, which increases a density of regional and global GNSS networks and is widely used by public administration, national institutions, entrepreneurs and citizens (especially surveyors). In near future ASG-EUPOS is to take role of main national network. Control of proper activity of stations and realization of ETRS'89 is a necessity. User of the system needs to be sure that observations quality and coordinates accuracy are high enough. Coordinates of IGS (International GNSS Service) and EPN (European Permanent Network) stations are precisely determined and any changes are monitored all the time. Observations are verified before they are archived in regional and global databases. The same applies to ASG-EUPOS. This paper concerns standardization of GNSS observations from different stations (uniform adjustment), examination of solutions correctness according to IGS and EPN standards and stability of solutions and sites activity

  6. Radar observations of the 2009 eruption of Redoubt Volcano, Alaska: Initial deployment of a transportable Doppler radar system for volcano-monitoring

    NASA Astrophysics Data System (ADS)

    Hoblitt, R. P.; Schneider, D. J.

    2009-12-01

    The rapid detection of explosive volcanic eruptions and accurate determination of eruption-column altitude and ash-cloud movement are critical factors in the mitigation of volcanic risks to aviation and in the forecasting of ash fall on nearby communities. The U.S. Geological Survey (USGS) deployed a transportable Doppler radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska, and it provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data that it captured during the Redoubt eruption. The volcano-monitoring Doppler radar operates in the C-band (5.36 cm) and has a 2.4-m parabolic antenna with a beam width of 1.6 degrees, a transmitter power of 330 watts, and a maximum effective range of 240 km. The entire disassembled system, including a radome, fits inside a 6-m-long steel shipping container that has been modified to serve as base for the antenna/radome, and as a field station for observers and other monitoring equipment. The radar was installed at the Kenai Municipal Airport, 82 km east of Redoubt and about 100 km southwest of Anchorage. In addition to an unobstructed view of the volcano, this secure site offered the support of the airport staff and the City of Kenai. A further advantage was the proximity of a NEXRAD Doppler radar operated by the Federal Aviation Administration. This permitted comparisons with an established weather-monitoring radar system. The new radar system first became functional on March 20, roughly a day before the first of nineteen explosive ash-producing events of Redoubt between March 21 and April 4. Despite inevitable start-up problems, nearly all of the events were observed by the radar, which was remotely operated from the Alaska Volcano Observatory office in Anchorage. The USGS and NEXRAD radars both detected the eruption columns and tracked the directions of drifting ash clouds. The USGS radar scanned a 45-degree sector

  7. Vital signs monitoring and patient tracking over a wireless network.

    PubMed

    Gao, Tia; Greenspan, Dan; Welsh, Matt; Juang, Radford; Alm, Alex

    2005-01-01

    Patients at a disaster scene can greatly benefit from technologies that continuously monitor their vital status and track their locations until they are admitted to the hospital. We have designed and developed a real-time patient monitoring system that integrates vital signs sensors, location sensors, ad-hoc networking, electronic patient records, and web portal technology to allow remote monitoring of patient status. This system shall facilitate communication between providers at the disaster scene, medical professionals at local hospitals, and specialists available for consultation from distant facilities.

  8. Publications - GMC 193 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical materials: Alaska State F #1, washed cuttings (13,980' - 13,990'); West Mikkelsen State #1, Canning River

  9. Monitoring network-design influence on assessment of ecological condition in wadeable streams

    EPA Science Inventory

    We investigated outcomes of three monitoring networks for assessing ecological character and condition of wadeable streams in the Waikato region, New Zealand. Sites were selected 1) based on a professional judgment network, 2) within categories of stream and watershed characteris...

  10. The National Ambient Air Monitoring Stategy: Rethinking the Role of National Networks

    EPA Science Inventory

    A current re-engineering of the United States routine ambient monitoring networks intended to improve the balance in addressing both regulatory and scientific objectives is addressed in this paper. Key attributes of these network modifications include the addition of collocated ...

  11. Application of SNODAS and hydrologic models to enhance entropy-based snow monitoring network design

    NASA Astrophysics Data System (ADS)

    Keum, Jongho; Coulibaly, Paulin; Razavi, Tara; Tapsoba, Dominique; Gobena, Adam; Weber, Frank; Pietroniro, Alain

    2018-06-01

    Snow has a unique characteristic in the water cycle, that is, snow falls during the entire winter season, but the discharge from snowmelt is typically delayed until the melting period and occurs in a relatively short period. Therefore, reliable observations from an optimal snow monitoring network are necessary for an efficient management of snowmelt water for flood prevention and hydropower generation. The Dual Entropy and Multiobjective Optimization is applied to design snow monitoring networks in La Grande River Basin in Québec and Columbia River Basin in British Columbia. While the networks are optimized to have the maximum amount of information with minimum redundancy based on entropy concepts, this study extends the traditional entropy applications to the hydrometric network design by introducing several improvements. First, several data quantization cases and their effects on the snow network design problems were explored. Second, the applicability the Snow Data Assimilation System (SNODAS) products as synthetic datasets of potential stations was demonstrated in the design of the snow monitoring network of the Columbia River Basin. Third, beyond finding the Pareto-optimal networks from the entropy with multi-objective optimization, the networks obtained for La Grande River Basin were further evaluated by applying three hydrologic models. The calibrated hydrologic models simulated discharges using the updated snow water equivalent data from the Pareto-optimal networks. Then, the model performances for high flows were compared to determine the best optimal network for enhanced spring runoff forecasting.

  12. Monitoring industrial facilities using principles of integration of fiber classifier and local sensor networks

    NASA Astrophysics Data System (ADS)

    Korotaev, Valery V.; Denisov, Victor M.; Rodrigues, Joel J. P. C.; Serikova, Mariya G.; Timofeev, Andrey V.

    2015-05-01

    The paper deals with the creation of integrated monitoring systems. They combine fiber-optic classifiers and local sensor networks. These systems allow for the monitoring of complex industrial objects. Together with adjacent natural objects, they form the so-called geotechnical systems. An integrated monitoring system may include one or more spatially continuous fiber-optic classifiers based on optic fiber and one or more arrays of discrete measurement sensors, which are usually combined in sensor networks. Fiber-optic classifiers are already widely used for the control of hazardous extended objects (oil and gas pipelines, railways, high-rise buildings, etc.). To monitor local objects, discrete measurement sensors are generally used (temperature, pressure, inclinometers, strain gauges, accelerometers, sensors measuring the composition of impurities in the air, and many others). However, monitoring complex geotechnical systems require a simultaneous use of continuous spatially distributed sensors based on fiber-optic cable and connected local discrete sensors networks. In fact, we are talking about integration of the two monitoring methods. This combination provides an additional way to create intelligent monitoring systems. Modes of operation of intelligent systems can automatically adapt to changing environmental conditions. For this purpose, context data received from one sensor (e.g., optical channel) may be used to change modes of work of other sensors within the same monitoring system. This work also presents experimental results of the prototype of the integrated monitoring system.

  13. Alaska's State Forests

    Science.gov Websites

    Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans

  14. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications.

    PubMed

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco

    2017-02-14

    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO₂ concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.

  15. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications

    PubMed Central

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco

    2017-01-01

    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO2 concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers. PMID:28216556

  16. 49 CFR 71.11 - Alaska zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Alaska zone. 71.11 Section 71.11 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.11 Alaska zone. The sixth zone, the Alaska standard time zone, includes the entire State of Alaska, except as provided in § 71.12...

  17. Building Capacity for Earthquake Monitoring: Linking Regional Networks with the Global Community

    NASA Astrophysics Data System (ADS)

    Willemann, R. J.; Lerner-Lam, A.

    2006-12-01

    Installing or upgrading a seismic monitoring network is often among the mitigation efforts after earthquake disasters, and this is happening in response to the events both in Sumatra during December 2004 and in Pakistan during October 2005. These networks can yield improved hazard assessment, more resilient buildings where they are most needed, and emergency relief directed more quickly to the worst hit areas after the next large earthquake. Several commercial organizations are well prepared for the fleeting opportunity to provide the instruments that comprise a seismic network, including sensors, data loggers, telemetry stations, and the computers and software required for the network center. But seismic monitoring requires more than hardware and software, no matter how advanced. A well-trained staff is required to select appropriate and mutually compatible components, install and maintain telemetered stations, manage and archive data, and perform the analyses that actually yield the intended benefits. Monitoring is more effective when network operators cooperate with a larger community through free and open exchange of data, sharing information about working practices, and international collaboration in research. As an academic consortium, a facility operator and a founding member of the International Federation of Digital Seismographic Networks, IRIS has access to a broad range of expertise with the skills that are required to help design, install, and operate a seismic network and earthquake analysis center, and stimulate the core training for the professional teams required to establish and maintain these facilities. But delivering expertise quickly when and where it is unexpectedly in demand requires advance planning and coordination in order to respond to the needs of organizations that are building a seismic network, either with tight time constraints imposed by the budget cycles of aid agencies following a disastrous earthquake, or as part of more informed

  18. Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets

    NASA Astrophysics Data System (ADS)

    Wielgosz, Maciej; Skoczeń, Andrzej; Mertik, Matej

    2017-09-01

    The superconducting LHC magnets are coupled with an electronic monitoring system which records and analyzes voltage time series reflecting their performance. A currently used system is based on a range of preprogrammed triggers which launches protection procedures when a misbehavior of the magnets is detected. All the procedures used in the protection equipment were designed and implemented according to known working scenarios of the system and are updated and monitored by human operators. This paper proposes a novel approach to monitoring and fault protection of the Large Hadron Collider (LHC) superconducting magnets which employs state-of-the-art Deep Learning algorithms. Consequently, the authors of the paper decided to examine the performance of LSTM recurrent neural networks for modeling of voltage time series of the magnets. In order to address this challenging task different network architectures and hyper-parameters were used to achieve the best possible performance of the solution. The regression results were measured in terms of RMSE for different number of future steps and history length taken into account for the prediction. The best result of RMSE = 0 . 00104 was obtained for a network of 128 LSTM cells within the internal layer and 16 steps history buffer.

  19. Pan-Arctic river discharge: Prioritizing monitoring of future climate change hot spots

    NASA Astrophysics Data System (ADS)

    Bring, Arvid; Shiklomanov, Alexander; Lammers, Richard B.

    2017-01-01

    The Arctic freshwater cycle is changing rapidly, which will require adequate monitoring of river flows to detect, observe, and understand changes and provide adaptation information. There has, however, been little detail about where the greatest flow changes are projected, and where monitoring therefore may need to be strengthened. In this study, we used a set of recent climate model runs and an advanced macro-scale hydrological model to analyze how flows across the continental pan-Arctic are projected to change and where the climate models agree on significant changes. We also developed a method to identify where monitoring stations should be placed to observe these significant changes, and compared this set of suggested locations with the existing network of monitoring stations. Overall, our results reinforce earlier indications of large increases in flow over much of the Arctic, but we also identify some areas where projections agree on significant changes but disagree on the sign of change. For monitoring, central and eastern Siberia, Alaska, and central Canada are hot spots for the highest changes. To take advantage of existing networks, a number of stations across central Canada and western and central Siberia could form a prioritized set. Further development of model representation of high-latitude hydrology would improve confidence in the areas we identify here. Nevertheless, ongoing observation programs may consider these suggested locations in efforts to improve monitoring of the rapidly changing Arctic freshwater cycle.

  20. Pan-Arctic River Discharge: Where Can We Improve Monitoring of Future Change?

    NASA Astrophysics Data System (ADS)

    Bring, A.; Shiklomanov, A. I.; Lammers, R. B.

    2016-12-01

    The Arctic freshwater cycle is changing rapidly, which will require adequate monitoring of river flow to detect, observe and understand changes and provide adaptation information. There has however been little detail about where the greatest flow changes are projected, and where monitoring therefore may need to be strengthened. In this study, we used a set of recent climate model runs and an advanced macro-scale hydrological model to analyze how flows across the continental pan-Arctic are projected to change, and where the climate models agree on significant changes. We also developed a method to identify where monitoring stations should be placed to observe these significant changes, and compared this set of suggested locations with the existing network of monitoring stations. Overall, our results reinforce earlier indications of large increases in flow over much of the Arctic, but we also identify some areas where projections agree on significant changes but disagree on the sign of change. For monitoring, central and eastern Siberia, Alaska and central Canada are hot spots for the highest changes. To take advantage of existing networks, a number of stations across central Canada and western and central Siberia could form a prioritized set. Further development of model representation of high-latitude hydrology would improve confidence in the areas we identify here. Nevertheless, ongoing observation programs may consider these suggested locations in efforts to improve monitoring of the rapidly changing Arctic freshwater cycle.

  1. Informal trail monitoring protocols: Denali National Park and Preserve. Final Report, October 2011

    USGS Publications Warehouse

    Marion, Jeffrey L.; Wimpey, Jeremy F.

    2011-01-01

    Managers at Alaska?s Denali National Park and Preserve (DENA) sponsored this research to assess and monitor visitor-created informal trails (ITs). DENA is located in south-central Alaska and managed as a six million acre wilderness park. This program of research was guided by the following objectives: (1) Investigate alternative methods for monitoring the spatial distribution, aggregate lineal extent, and tread conditions of informal (visitor-created) trails within the park. (2) In consultation with park staff, develop, pilot test, and refine cost-effective and scientifically defensible trail monitoring procedures that are fully integrated with the park?s Geographic Information System. (3) Prepare a technical report that compiles and presents research results and their management implications. This report presents the protocol development and field testing process, illustrates the types of data produced by their application, and provides guidance for their application and use. The protocols described provide managers with an efficient means to document and monitor IT conditions in settings ranging from pristine to intensively visited.

  2. Sensor Networking Testbed with IEEE 1451 Compatibility and Network Performance Monitoring

    NASA Technical Reports Server (NTRS)

    Gurkan, Deniz; Yuan, X.; Benhaddou, D.; Figueroa, F.; Morris, Jonathan

    2007-01-01

    Design and implementation of a testbed for testing and verifying IEEE 1451-compatible sensor systems with network performance monitoring is of significant importance. The performance parameters measurement as well as decision support systems implementation will enhance the understanding of sensor systems with plug-and-play capabilities. The paper will present the design aspects for such a testbed environment under development at University of Houston in collaboration with NASA Stennis Space Center - SSST (Smart Sensor System Testbed).

  3. Optimization of water-level monitoring networks in the eastern Snake River Plain aquifer using a kriging-based genetic algorithm method

    USGS Publications Warehouse

    Fisher, Jason C.

    2013-01-01

    Long-term groundwater monitoring networks can provide essential information for the planning and management of water resources. Budget constraints in water resource management agencies often mean a reduction in the number of observation wells included in a monitoring network. A network design tool, distributed as an R package, was developed to determine which wells to exclude from a monitoring network because they add little or no beneficial information. A kriging-based genetic algorithm method was used to optimize the monitoring network. The algorithm was used to find the set of wells whose removal leads to the smallest increase in the weighted sum of the (1) mean standard error at all nodes in the kriging grid where the water table is estimated, (2) root-mean-squared-error between the measured and estimated water-level elevation at the removed sites, (3) mean standard deviation of measurements across time at the removed sites, and (4) mean measurement error of wells in the reduced network. The solution to the optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The network design tool was applied to optimize two observation well networks monitoring the water table of the eastern Snake River Plain aquifer, Idaho; these networks include the 2008 Federal-State Cooperative water-level monitoring network (Co-op network) with 166 observation wells, and the 2008 U.S. Geological Survey-Idaho National Laboratory water-level monitoring network (USGS-INL network) with 171 wells. Each water-level monitoring network was optimized five times: by removing (1) 10, (2) 20, (3) 40, (4) 60, and (5) 80 observation wells from the original network. An examination of the trade-offs associated with changes in the number of wells to remove indicates that 20 wells can be removed from the Co-op network with a relatively small degradation of the estimated water table map, and 40 wells

  4. SeaDataNet network services monitoring: Definition and Implementation of Service availability index

    NASA Astrophysics Data System (ADS)

    Lykiardopoulos, Angelos; Mpalopoulou, Stavroula; Vavilis, Panagiotis; Pantazi, Maria; Iona, Sissy

    2014-05-01

    SeaDataNet (SDN) is a standardized system for managing large and diverse data sets collected by the oceanographic fleets and the automatic observation systems. The SeaDataNet network is constituted of national oceanographic data centres of 35 countries, active in data collection. SeaDataNetII project's objective is to upgrade the present SeaDataNet infrastructure into an operationally robust and state-of-the-art infrastructure; therefore Network Monitoring is a step to this direction. The term Network Monitoring describes the use of system that constantly monitors a computer network for slow or failing components and that notifies the network administrator in case of outages. Network monitoring is crucial when implementing widely distributed systems over the Internet and in real-time systems as it detects malfunctions that may occur and notifies the system administrator who can immediately respond and correct the problem. In the framework of SeaDataNet II project a monitoring system was developed in order to monitor the SeaDataNet components. The core system is based on Nagios software. Some plug-ins were developed to support SeaDataNet modules. On the top of Nagios Engine a web portal was developed in order to give access to local administrators of SeaDataNet components, to view detailed logs of their own service(s). Currently the system monitors 35 SeaDataNet Download Managers, 9 SeaDataNet Services, 25 GeoSeas Download Managers and 23 UBSS Download Managers . Taking advantage of the continuous monitoring of SeaDataNet system components a total availability index will be implemented. The term availability can be defined as the ability of a functional unit to be in a state to perform a required function under given conditions at a given instant of time or over a given time interval, assuming that the required external resources are provided. Availability measures can be considered as a are very important benefit becauseT - The availability trends that can be

  5. Wavelets and Elman Neural Networks for monitoring environmental variables

    NASA Astrophysics Data System (ADS)

    Ciarlini, Patrizia; Maniscalco, Umberto

    2008-11-01

    An application in cultural heritage is introduced. Wavelet decomposition and Neural Networks like virtual sensors are jointly used to simulate physical and chemical measurements in specific locations of a monument. Virtual sensors, suitably trained and tested, can substitute real sensors in monitoring the monument surface quality, while the real ones should be installed for a long time and at high costs. The application of the wavelet decomposition to the environmental data series allows getting the treatment of underlying temporal structure at low frequencies. Consequently a separate training of suitable Elman Neural Networks for high/low components can be performed, thus improving the networks convergence in learning time and measurement accuracy in working time.

  6. A data fusion-based methodology for optimal redesign of groundwater monitoring networks

    NASA Astrophysics Data System (ADS)

    Hosseini, Marjan; Kerachian, Reza

    2017-09-01

    In this paper, a new data fusion-based methodology is presented for spatio-temporal (S-T) redesigning of Groundwater Level Monitoring Networks (GLMNs). The kriged maps of three different criteria (i.e. marginal entropy of water table levels, estimation error variances of mean values of water table levels, and estimation values of long-term changes in water level) are combined for determining monitoring sub-areas of high and low priorities in order to consider different spatial patterns for each sub-area. The best spatial sampling scheme is selected by applying a new method, in which a regular hexagonal gridding pattern and the Thiessen polygon approach are respectively utilized in sub-areas of high and low monitoring priorities. An Artificial Neural Network (ANN) and a S-T kriging models are used to simulate water level fluctuations. To improve the accuracy of the predictions, results of the ANN and S-T kriging models are combined using a data fusion technique. The concept of Value of Information (VOI) is utilized to determine two stations with maximum information values in both sub-areas with high and low monitoring priorities. The observed groundwater level data of these two stations are considered for the power of trend detection, estimating periodic fluctuations and mean values of the stationary components, which are used for determining non-uniform sampling frequencies for sub-areas. The proposed methodology is applied to the Dehgolan plain in northwestern Iran. The results show that a new sampling configuration with 35 and 7 monitoring stations and sampling intervals of 20 and 32 days, respectively in sub-areas with high and low monitoring priorities, leads to a more efficient monitoring network than the existing one containing 52 monitoring stations and monthly temporal sampling.

  7. A formalized approach to making effective natural resource management decisions for Alaska National Parks

    USGS Publications Warehouse

    MacCluskie, Margaret C.; Romito, Angela; Peterson, James T.; Lawler, James P.

    2015-01-01

    A fundamental goal of the National Park Service (NPS) is the long-term protection and management of resources in the National Park System. Reaching this goal requires multiple approaches, including the conservation of essential habitats and the identification and elimination of potential threats to biota and habitats. To accomplish these goals, the NPS has implemented the Alaska Region Vital Signs Inventory and Monitoring (I&M) Program to monitor key biological, chemical, and physical components of ecosystems at more than 270 national parks. The Alaska Region has four networks—Arctic, Central, Southeast, and Southwest. By monitoring vital signs over large spatial and temporal scales, park managers are provided with information on the status and trajectory of park resources as well as a greater understanding and insight into the ecosystem dynamics. While detecting and quantifying change is important to conservation efforts, to be useful for formulating remedial actions, monitoring data must explicitly relate to management objectives and be collected in such a manner as to resolve key uncertainties about the dynamics of the system (Nichols and Williams 2006). Formal decision making frameworks (versus more traditional processes described below) allow for the explicit integration of monitoring data into decision making processes to improve the understanding of system dynamics, thereby improving future decisions (Williams 2011).

  8. Design of a perfluorocarbon tracer based monitoring network to support monitoring verification and accounting of sequestered CO2

    NASA Astrophysics Data System (ADS)

    Watson, T.; Sullivan, T.

    2013-05-01

    The levels of CO2 in the atmosphere have been growing since the beginning of the industrial revolution. The current level is 391 ppm. If there are no efforts to mitigate CO2 emissions, the levels will rise to 750 ppm by 2100. Geologic carbon sequestration is one strategy that may be used to begin to reduce emissions. Sequestration will not be effective unless reservoir leak rates are significantly less than 1%. There must be rigorous monitoring protocols in place to ensure sequestration projects meet regulatory and environmental goals. Monitoring for CO2 leakage directly is difficult because of the large background levels and variability of CO2 in the atmosphere. Using tracers to tag the sequestered CO2 can mitigate some of the difficulties of direct measurement but a tracer monitoring network and the levels of tagging need to be carefully designed. Simple diffusion and dispersion models are used to predict the surface and atmospheric concentrations that would be seen by a network monitoring a sequestration site. Levels of tracer necessary to detect leaks from 0.01 to 1% are presented and suggestions for effective monitoring and protection of global tracer utility are presented.

  9. Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajeeva; Kumar, Aditya; Dai, Dan

    2012-12-31

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a general model-based sensor network design methodology and tools to address key issues in the design of an optimal sensor network configuration: the type, location and number of sensors used in a network, for online condition monitoring. In particular, the focus in this work is to develop software tools for optimal sensor placement (OSP) and use these tools to design optimal sensor network configuration for online condition monitoring of gasifier refractory wear and radiant syngas cooler (RSC) fouling. The methodology developedmore » will be applicable to sensing system design for online condition monitoring for broad range of applications. The overall approach consists of (i) defining condition monitoring requirement in terms of OSP and mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-off of alternate OSP algorithms, down selecting the most relevant ones and developing them for IGCC applications (iii) enhancing the gasifier and RSC models as required by OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor network required for the condition monitoring of an IGCC gasifier refractory and RSC fouling. Two key requirements for OSP for condition monitoring are desired precision for the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor network in the presence of expected sensor failures. The OSP problem is naturally posed within a Kalman filtering approach as an integer programming problem where the key requirements of precision and reliability are imposed as constraints. The optimization is performed over the overall network cost. Based on extensive literature survey two formulations were identified as being relevant to OSP for condition monitoring; one based on LMI formulation and the other being standard INLP formulation. Various algorithms to

  10. The Relationship Between Attachment Styles, Self-Monitoring and Cybercrime in Social Network Users.

    PubMed

    Yaghoobi, Abolghasem; Mohammadzade, Serwa; Chegini, Ali Asghar; Yarmohammadi Vasel, Mosaeib; Zoghi Paidar, Mohammad Reza

    2016-09-01

    The anonymity in the cyberspace environment, as well as the rapid advent of and improvements to online activities has increased cybercrime. The aim of this paper was to survey the relationship between attachment styles, self-monitoring and cybercrime in social network users. The Collins and Read Adult Attachment Scale, and the Snyder self-monitoring and cybercrime scales were sent to 500 social network users. Of these, 203 users (103 men and 100 women) filled out the questionnaires. The results showed that women achieved higher scores in self-monitoring and the anxious attachment style, and men achieved higher scores in cybercrime and the anxious attachment style. There was a negative correlation between self-monitoring and cybercrime, and the anxious attachment style had a positive correlation with cybercrime and a negative correlation with self-monitoring. The secure attachment style had a positive correlation with self-monitoring and a negative correlation with cybercrime. The dependent attachment style had a positive correlation with self-monitoring and a negative correlation with cybercrime. All correlations were significant. Attachment styles have significant relationships with both self-monitoring and cybercrime. Self-monitoring and attachment styles are significant predictors of cybercrimes.

  11. Publications - RDF 2015-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  12. Publications - RI 2009-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  13. Publications - RDF 2016-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  14. Publications - RDF 2016-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  15. Publications - RDF 2014-22 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  16. Publications - RDF 2015-8 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    from the Tonsina area, Valdez Quadrangle, Alaska: Alaska Division of Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  17. 78 FR 19214 - Fisheries of the Exclusive Economic Zone Off Alaska; Monitoring Requirements for American...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... off Alaska. The workshop concerns accurate accounting of Chinook salmon bycatch in the Bering Sea... definition of directed fishing for pollock. The meeting is open to the public, but NMFS is particularly...

  18. Publications - RDF 2015-16 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    rocks collected in 2015 in the Wrangellia mineral assessment area, Alaska: Alaska Division of Geological Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  19. Publications - RDF 2015-9 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    samples from the Zane Hills, Hughes and Shungnak quadrangles, Alaska: Alaska Division of Geological & Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  20. Alaska geology revealed

    USGS Publications Warehouse

    Wilson, Frederic H.; Labay, Keith A.

    2016-11-09

    This map shows the generalized geology of Alaska, which helps us to understand where potential mineral deposits and energy resources might be found, define ecosystems, and ultimately, teach us about the earth history of the State. Rock units are grouped in very broad categories on the basis of age and general rock type. A much more detailed and fully referenced presentation of the geology of Alaska is available in the Geologic Map of Alaska (http://dx.doi.org/10.3133/sim3340). This product represents the simplification of thousands of individual rock units into just 39 broad groups. Even with this generalization, the sheer complexity of Alaskan geology remains evident.

  1. Publications - PDF 96-17 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska the Fairbanks Mining District, Alaska, scale 1:63,360 (15.0 M) Digital Geospatial Data Digital © 2010 Webmaster State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State

  2. Publications - MP 156 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska /29446 Publication Products Report Report Information mp156.pdf (126.0 K) Digital Geospatial Data Digital State of Alaska © 2010 Webmaster State of Alaska myAlaska My Government Resident Business in Alaska

  3. Linking Geophysical Networks to International Economic Development Through Integration of Global and National Monitoring

    NASA Astrophysics Data System (ADS)

    Lerner-Lam, A.

    2007-05-01

    Outside of the research community and mission agencies, global geophysical monitoring rarely receives sustained attention except in the aftermath of a humanitarian disaster. The recovery and rebuilding period focuses attention and resources for a short time on regional needs for geophysical observation, often at the national or sub-national level. This can result in the rapid deployment of national monitoring networks, but may overlook the longer-term benefits of integration with global networks. Even in the case of multinational disasters, such as the Indian Ocean tsunami, it has proved difficult to promote the integration of national solutions with global monitoring, research and operations infrastructure. More importantly, continuing operations at the national or sub-national scale are difficult to sustain once the resources associated with recovery and rebuilding are depleted. Except for some notable examples, the vast infrastructure associated with global geophysical monitoring is not utilized constructively to promote the integration of national networks with international efforts. This represents a missed opportunity not only for monitoring, but for developing the international research and educational collaborations necessary for technological transfer and capacity building. The recent confluence of highly visible disasters, global multi-hazard risk assessments, evaluations of the relationships between natural disasters and socio-economic development, and shifts in development agency policies, provides an opportunity to link global geophysical monitoring initiatives to central issues in international development. Natural hazard risk reduction has not been the first priority of international development agendas for understandable, mainly humanitarian reasons. However, it is now recognized that the so-called risk premium associated with making development projects more risk conscious or risk resilient is relatively small relative to potential losses. Thus

  4. Alaska Administrative Manual

    Science.gov Websites

    Search the Division of Finance site DOF State of Alaska Finance Home Content Area Accounting Charge Cards Administrative Manual Table of Contents Contains State of Alaska accounting/payroll policies and information clarifying accounting and payroll procedures. Policies are carried out through standard statewide procedures

  5. Publications - GMC 410 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ) Keywords Geochemistry; Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  6. Publications - GMC 409 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ) Keywords Geochemistry; Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  7. Publications - GMC 183 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical materials: AK State C #1, Bush Federal #1, Echooka Unit #1, Fin Creek Unit #1, E. De K. Leffingwell #1, Nora

  8. DOI/GTN-P climate and active-layer data acquired in the National Petroleum Reserve-Alaska and the Arctic National Wildlife Refuge

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2014-01-01

    This report provides data collected by the climate monitoring array of the U.S. Department of the Interior on Federal lands in Arctic Alaska over the period August 1998 to July 2013; this array is part of the Global Terrestrial Network for Permafrost, (DOI/GTN-P). In addition to presenting data, this report also describes monitoring, data collection, and quality-control methods. This array of 16 monitoring stations spans lat 68.5°N. to 70.5°N. and long 142.5°W. to 161°W., an area of approximately 150,000 square kilometers. Climate summaries are presented along with quality-controlled data. Data collection is ongoing and includes the following climate- and permafrost-related variables: air temperature, wind speed and direction, ground temperature, soil moisture, snow depth, rainfall totals, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  9. Alaska Native Education: Issues in the Nineties. Alaska Native Policy Papers.

    ERIC Educational Resources Information Center

    Kleinfeld, Judith

    This booklet identifies several crucial problems in Alaska Native education, for example: (1) Fetal Alcohol Syndrome (FAS) and Fetal Alcohol Effects (FAE) occur in Alaska Native populations at relatively high rates and can produce mental retardation, hyperactivity, attention deficits, and learning disabilities; (2) while many Native rural school…

  10. Radiochemical monitoring of water after the Cannikin Event, Amchitka Island, Alaska, May 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thordarson, W.; Ballance, W.C.

    During May 1974, the U. S. Geological Survey collected water samples from Amchitka Island, Alaska. Tritium determinations were made on 99 water samples, and dissolved gross alpha and gross beta/gamma determinations were made on 34 water samples. No appreciable differences were found between the data obtained in May 1974 and the data obtained before the Cannikin nuclear explosion.

  11. Radiochemical monitoring of water after the Cannikin event, Amchitka Island, Alaska, May 1974

    USGS Publications Warehouse

    Thordarson, William; Ballance, Wilbur C.

    1976-01-01

    During May 1974, the U.S. Geological Survey collected water samples from Amchitka Island, Alaska. Tritium determinations were made on 99 water samples, and dissolved gross alpha and gross beta/gamma determinations were made on 34 water samples, No appreciable differences were found between the data obtained in May 1974 and the data obtained before the Cannikin nuclear explosion.

  12. Optimization of hydrometric monitoring network in urban drainage systems using information theory.

    PubMed

    Yazdi, J

    2017-10-01

    Regular and continuous monitoring of urban runoff in both quality and quantity aspects is of great importance for controlling and managing surface runoff. Due to the considerable costs of establishing new gauges, optimization of the monitoring network is essential. This research proposes an approach for site selection of new discharge stations in urban areas, based on entropy theory in conjunction with multi-objective optimization tools and numerical models. The modeling framework provides an optimal trade-off between the maximum possible information content and the minimum shared information among stations. This approach was applied to the main surface-water collection system in Tehran to determine new optimal monitoring points under the cost considerations. Experimental results on this drainage network show that the obtained cost-effective designs noticeably outperform the consulting engineers' proposal in terms of both information contents and shared information. The research also determined the highly frequent sites at the Pareto front which might be important for decision makers to give a priority for gauge installation on those locations of the network.

  13. Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network

    PubMed Central

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-01-01

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Jacinto Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions. PMID:25171121

  14. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    PubMed

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  15. Alaska Public Offices Commission, Department of Administration, State of

    Science.gov Websites

    Visiting Alaska State Employees State of Alaska Department of Administration Alaska Public Offices Commission Alaska Department of Administration, Alaska Public Offices Commission APOC Home Commission Filer ; AO's Contact Us Administration > Alaska Public Offices Commission Alaska Public Offices Commission

  16. Toward implementation of a national ground water monitoring network

    USGS Publications Warehouse

    Schreiber, Robert P.; Cunningham, William L.; Copeland, Rick; Frederick, Kevin D.

    2008-01-01

    The Federal Advisory Committee on Water Information's (ACWI) Subcommittee on Ground Water (SOGW) has been working steadily to develop and encourage implementation of a nationwide, long-term ground-water quantity and quality monitoring framework. Significant progress includes the planned submission this fall of a draft framework document to the full committee. The document will include recommendations for implementation of the network and continued acknowledgment at the federal and state level of ACWI's potential role in national monitoring toward an improved assessment of the nation's water reserves. The SOGW mission includes addressing several issues regarding network design, as well as developing plans for concept testing, evaluation of costs and benefits, and encouraging the movement from pilot-test results to full-scale implementation within a reasonable time period. With the recent attention to water resource sustainability driven by severe droughts, concerns over global warming effects, and persistent water supply problems, the SOGW mission is now even more critical.

  17. Prehistoric Alaska: The land

    USGS Publications Warehouse

    Wilson, Frederic H.; Weber, Florence R.; Rennick, Penny

    1994-01-01

    Many Alaskans know the dynamic nature of Alaska’s landscape firsthand. The 1964 earthquake, the 1989 eruption of Mount Redoubt volcano, the frequent earthquakes in the Aleutians and the ever-shifting meanders of the Yukon and Kuskokwim rivers remind them of constant changes to the land. These changes are part of the continuing story of the geologic growth and development of Alaska during hundreds of millions of years. By geologic time, Alaska has only recently come into existence and the dynamic processes that formed it continue to affect it. The landscape we see today has been shaped by glacier and stream erosion or their indirect effects, and to a lesser extent by volcanoes. Most prominently, if less obviously, Alaska has been built by slow movements of the Earth’s crust we call tectonic or mountain-building.During 5 billion years of geologic time, the Earth’s crust has repeatedly broken apart into plates. These plates have recombined, and have shifted positions relative to each other, to the Earth’s rotational axis and to the equator. Large parts of the Earth’s crust, including Alaska, have been built and destroyed by tectonic forces. Alaska is a collage of transported and locally formed fragments of crusts As erosion and deposition reshape the land surface, climatic changes, brought on partly by changing ocean and atmospheric circulation patterns, alter the location and extent of tropical, temperate and arctic environments. We need to understand the results of these processes as they acted upon Alaska to understand the formation of Alaska. Rocks can provide hints of previous environments because they contain traces of ocean floor and lost lands, bits and pieces of ancient history.

  18. Publications - GMC 370 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    (249.0 K) Keywords Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  19. Publications - GMC 159 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical State #1, Kuparuk Unit #1, Mikkelsen Bay State 13-09-19, Ravik State #1, Pt. Thomson Unit #2, West

  20. LearnAlaska Portal

    Science.gov Websites

    ESS (Employee Self Service) E-Travel Online Login IRIS FIN/PROC Login IRIS HRM Login LearnAlaska SFOA SharePoint Site TRIPS (Traveler Integrated Profile System) Vendor Self Service (VSS) Resources Alaska & Resources Manuals Payment Detail Report Salary Schedules SFOA SharePoint Site (SOA Only) Training

  1. Deep-seated gravitational slope deformations near the Trans-Alaska Pipeline, east-central Alaska Range, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Newman, S. D.; Clague, J. J.; Rabus, B.; Stead, D.

    2013-12-01

    Multiple, active, deep-seated gravitational slope deformations (DSGSD) are present near the Trans-Alaska Pipeline and Richardson Highway in the east-central Alaska Range, Alaska, USA. We documented spatial and temporal variations in rates of surface movement of the DSGSDs between 2003 and 2011 using RADARSAT-1 and RADARSAT-2 D-InSAR images. Deformation rates exceed 10 cm/month over very large areas (>1 km2) of many rock slopes. Recent climatic change and strong seismic shaking, especially during the 2002 M 7.9 Denali Fault earthquake, appear to have exacerbated slope deformation. We also mapped DSGSD geological and morphological characteristics using field- and GIS-based methods, and constructed a conceptual 2D distinct-element numerical model of one of the DSGSDs. Preliminary results indicate that large-scale buckling or kink-band slumping may be occurring. The DSGSDs are capable of generating long-runout landslides that might impact the Trans-Alaska Pipeline and Richardson Highway. They could also block tributary valleys, thereby impounding lakes that might drain suddenly. Wrapped 24-day RADARSAT-2 descending spotlight interferogram showing deformation north of Fels Glacier. The interferogram is partially transparent and is overlaid on a 2009 WorldView-1 panchromatic image. Acquisition interval: August 2 - August 26, 2011. UTM Zone 6N.

  2. Renewable energy and sustainable communities: Alaska's wind generator experience†

    PubMed Central

    Konkel, R. Steven

    2013-01-01

    with climate change on human health,progress in better understanding wind energy potential through resource assessments and new tools for detailed feasibility and project planning,need for comprehensive monitoring and data analysis, andstate funding requirements and opportunity costs. Conclusion The energy policy choices ahead for Alaska will have important implications for Arctic population health, especially for those villages whose relatively small size and remote locations make energy a key component of subsistence lifestyles and community sustainability. Wind generation can contribute to meeting renewable energy goals and is a particularly important resource for rural and remote Alaskan communities currently dependent on diesel fuel for generating electricity and heat. PMID:23971014

  3. Prairie Monitoring Protocol Development: North Coast and Cascades Network

    USGS Publications Warehouse

    McCoy, Allen; Dalby, Craig

    2009-01-01

    The purpose of the project was to conduct research that will guide development of a standard approach to monitoring several components of prairies within the North Coast and Cascades Network (NCCN) parks. Prairies are an important element of the natural environment at many parks, including San Juan Island National Historical Park (NHP) and Ebey's Landing National Historical Reserve (NHR). Forests have been encroaching on these prairies for many years, and so monitoring of the prairies is an important resource issue. This project specifically focused on San Juan Island NHP. Prairies at Ebey's Landing NHR will be monitored in the future, but that park was not mapped as part of this prototype project. In the interest of efficiency, the Network decided to investigate two main issues before launching a full protocol development effort: (1) the imagery requirements for monitoring prairie components, and (2) the effectiveness of software to assist in extracting features from the imagery. Several components of prairie monitoring were initially identified as being easily tracked using aerial imagery. These components included prairie/forest edge, broad prairie composition (for example, shrubs, scattered trees), and internal exclusions (for example, shrubs, bare ground). In addition, we believed that it might be possible to distinguish different grasses in the prairies if the imagery were of high enough resolution. Although the areas in question at San Juan Island NHP are small enough that mapping on the ground with GPS (Global Positioning System) would be feasible, other applications could benefit from aerial image acquisition on a regular, recurring basis and thereby make the investment in aerial imagery worthwhile. The additional expense of orthorectifying the imagery also was determined to be cost-effective.

  4. Network Monitoring and Diagnosis Based on Available Bandwidth Measurement

    DTIC Science & Technology

    2006-05-01

    Ganjam for helping me integrating the TAMI system with the ESM system, which becomes an important application of TAMI. I want to thank Ming Zhang, now...network monitoring. In Proc. ACM SIGCOMM, August 2004. [35] Yanghua Chu, Aditya Ganjam , T. S. Eugene Ng, Sanjay G. Rao, Kunwadee Sri- panidkulchai

  5. Combine harvester monitor system based on wireless sensor network

    USDA-ARS?s Scientific Manuscript database

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  6. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  7. Publications - MP 142 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  8. Publications - SR 70 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  9. Publications - MP 38 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  10. Publications - SR 45 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  11. Publications - MP 43 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  12. Publications - MP 149 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  13. Presentations - Wypych, Alicja and others, 2015 | Alaska Division of

    Science.gov Websites

    Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of (AVO) Mineral Resources Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem

  14. Assessment of Water-Quality Monitoring and a Proposed Water-Quality Monitoring Network for the Mosquito Lagoon Basin, East-Central Florida

    USGS Publications Warehouse

    Kroening, Sharon E.

    2008-01-01

    Surface- and ground-water quality data from the Mosquito Lagoon Basin were compiled and analyzed to: (1) describe historical and current monitoring in the basin, (2) summarize surface- and ground-water quality conditions with an emphasis on identifying areas that require additional monitoring, and (3) develop a water-quality monitoring network to meet the goals of Canaveral National Seashore (a National Park) and to fill gaps in current monitoring. Water-quality data were compiled from the U.S. Environmental Protection Agency's STORET system, the U.S. Geological Survey's National Water Information System, or from the agency which collected the data. Most water-quality monitoring focused on assessing conditions in Mosquito Lagoon. Significant spatial and/or seasonal variations in water-quality constituents in the lagoon were quantified for pH values, fecal coliform bacteria counts, and concentrations of dissolved oxygen, total nitrogen, total phosphorus, chlorophyll-a, and total suspended solids. Trace element, pesticide, and ground-water-quality data were more limited. Organochlorine insecticides were the major class of pesticides analyzed. A surface- and ground-water-quality monitoring network was designed for the Mosquito Lagoon Basin which emphasizes: (1) analysis of compounds indicative of human activities, including pesticides and other trace organic compounds present in domestic and industrial waste; (2) greater data collection in the southern part of Mosquito Lagoon where spatial variations in water-quality constituents were quantified; and (3) additional ground-water-quality data collection in the surficial aquifer system and Upper Floridan aquifer. Surface-water-quality data collected as part of this network would include a fixed-station monitoring network of eight sites in the southern part of the basin, including a canal draining Oak Hill. Ground-water quality monitoring should be done routinely at about 20 wells in the surficial aquifer system and Upper

  15. Sections | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    State Employees DGGS State of Alaska search Department of Natural Resources, Division of Geological & Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors' Proposals STATEMAP

  16. Autonomous Environment-Monitoring Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2004-01-01

    Autonomous environment-monitoring networks (AEMNs) are artificial neural networks that are specialized for recognizing familiarity and, conversely, novelty. Like a biological neural network, an AEMN receives a constant stream of inputs. For purposes of computational implementation, the inputs are vector representations of the information of interest. As long as the most recent input vector is similar to the previous input vectors, no action is taken. Action is taken only when a novel vector is encountered. Whether a given input vector is regarded as novel depends on the previous vectors; hence, the same input vector could be regarded as familiar or novel, depending on the context of previous input vectors. AEMNs have been proposed as means to enable exploratory robots on remote planets to recognize novel features that could merit closer scientific attention. AEMNs could also be useful for processing data from medical instrumentation for automated monitoring or diagnosis. The primary substructure of an AEMN is called a spindle. In its simplest form, a spindle consists of a central vector (C), a scalar (r), and algorithms for changing C and r. The vector C is constructed from all the vectors in a given continuous stream of inputs, such that it is minimally distant from those vectors. The scalar r is the distance between C and the most remote vector in the same set. The construction of a spindle involves four vital parameters: setup size, spindle-population size, and the radii of two novelty boundaries. The setup size is the number of vectors that are taken into account before computing C. The spindle-population size is the total number of input vectors used in constructing the spindle counting both those that arrive before and those that arrive after the computation of C. The novelty-boundary radii are distances from C that partition the neighborhood around C into three concentric regions (see Figure 1). During construction of the spindle, the changing spindle radius

  17. Metabolic syndrome: prevalence among American Indian and Alaska native people living in the southwestern United States and in Alaska.

    PubMed

    Schumacher, Catherine; Ferucci, Elizabeth D; Lanier, Anne P; Slattery, Martha L; Schraer, Cynthia D; Raymer, Terry W; Dillard, Denise; Murtaugh, Maureen A; Tom-Orme, Lillian

    2008-12-01

    Metabolic syndrome occurs commonly in the United States. The purpose of this study was to measure the prevalence of metabolic syndrome among American Indian and Alaska Native people. We measured the prevalence rates of metabolic syndrome, as defined by the National Cholesterol Education Program, among four groups of American Indian and Alaska Native people aged 20 years and older. One group was from the southwestern United States (Navajo Nation), and three groups resided within Alaska. Prevalence rates were age-adjusted to the U.S. adult 2000 population and compared to rates for U.S. whites (National Health and Nutrition Examination Survey [NHANES] 1988-1994). Among participants from the southwestern United States, metabolic syndrome was found among 43.2% of men and 47.3% of women. Among Alaska Native people, metabolic syndrome was found among 26.5% of men and 31.2% of women. In Alaska, the prevalence rate varied by region, ranging among men from 18.9% (western Alaska) to 35.1% (southeast), and among women from 22.0% (western Alaska) to 38.4 % (southeast). Compared to U.S. whites, American Indian/Alaska Native men and women from all regions except western Alaska were more likely to have metabolic syndrome; men in western Alaska were less likely to have metabolic syndrome than U.S. whites, and the prevalence among women in western Alaska was similar to that of U.S. whites. The prevalence rate of metabolic syndrome varies widely among different American Indian and Alaska Native populations. Differences paralleled differences in the prevalence rates of diabetes.

  18. A wireless medical monitoring over a heterogeneous sensor network.

    PubMed

    Yuce, Mehmet R; Ng, Peng Choong; Lee, Chin K; Khan, Jamil Y; Liu, Wentai

    2007-01-01

    This paper presents a heterogeneous sensor network system that has the capability to monitor physiological parameters from multiple patient bodies by means of different communication standards. The system uses the recently opened medical band called MICS (Medical Implant Communication Service) between the sensor nodes and a remote central control unit (CCU) that behaves as a base station. The CCU communicates with another network standard (the internet or a mobile network) for a long distance data transfer. The proposed system offers mobility to patients and flexibility to medical staff to obtain patient's physiological data on demand basis via Internet. A prototype sensor network including hardware, firmware and software designs has been implemented and tested by incorporating temperature and pulse rate sensors on nodes. The developed system has been optimized for power consumption by having the nodes sleep when there is no communication via a bidirectional communication.

  19. 75 FR 59687 - Proposed Information Collection; Comment Request; Alaska Region Bering Sea & Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... among harvesters, processors, and coastal communities and monitors the ``economic stability for... Collection; Comment Request; Alaska Region Bering Sea & Aleutian Islands (BSAI) Crab Economic Data Reports... CR Program's mandatory economic data collection report (EDR) used to assess the efficacy of the CR...

  20. Publications - RDF 2015-7 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the northeastern Alaska Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  1. Children in Crisis: A Report on Runaway and Homeless Youth in Alaska.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Health and Social Services, Juneau. Div. of Family and Youth Services.

    Participants, at a conference convened by the Division of Family and Youth Services in Alaska on November 7th and 8th, 1991, began the development of a framework for a statewide plan for runaway and homeless youth. With the assistance of Division staff and the Northwest Network of Runaway and Youth Services, over 100 professionals and citizens…

  2. Presentations - Twelker, Evan and others, 2014 | Alaska Division of

    Science.gov Websites

    magmatic Ni-Cu-Co-PGE system in the Talkeetna Mountains, central Alaska (poster): Society of Economic Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of

  3. The Relationship Between Attachment Styles, Self-Monitoring and Cybercrime in Social Network Users

    PubMed Central

    Yaghoobi, Abolghasem; Mohammadzade, Serwa; Chegini, Ali Asghar; Yarmohammadi Vasel, Mosaeib; Zoghi Paidar, Mohammad Reza

    2016-01-01

    Background The anonymity in the cyberspace environment, as well as the rapid advent of and improvements to online activities has increased cybercrime. Objectives The aim of this paper was to survey the relationship between attachment styles, self-monitoring and cybercrime in social network users. Patients and Methods The Collins and Read Adult Attachment Scale, and the Snyder self-monitoring and cybercrime scales were sent to 500 social network users. Of these, 203 users (103 men and 100 women) filled out the questionnaires. Results The results showed that women achieved higher scores in self-monitoring and the anxious attachment style, and men achieved higher scores in cybercrime and the anxious attachment style. There was a negative correlation between self-monitoring and cybercrime, and the anxious attachment style had a positive correlation with cybercrime and a negative correlation with self-monitoring. The secure attachment style had a positive correlation with self-monitoring and a negative correlation with cybercrime. The dependent attachment style had a positive correlation with self-monitoring and a negative correlation with cybercrime. All correlations were significant. Conclusions Attachment styles have significant relationships with both self-monitoring and cybercrime. Self-monitoring and attachment styles are significant predictors of cybercrimes. PMID:27818964

  4. A new method for monitoring global volcanic activity. [Alaska, Hawaii, Washington, California, Iceland, Guatemala, El Salvador, and Nicaragua

    NASA Technical Reports Server (NTRS)

    Ward, P. L.; Endo, E.; Harlow, D. H.; Allen, R.; Eaton, J. P.

    1974-01-01

    The ERTS Data Collection System makes it feasible for the first time to monitor the level of activity at widely separated volcanoes and to relay these data rapidly to one central office for analysis. While prediction of specific eruptions is still an evasive goal, early warning of a reawakening of quiescent volcanoes is now a distinct possibility. A prototypical global volcano surveillance system was established under the ERTS program. Instruments were installed in cooperation with local scientists on 15 volcanoes in Alaska, Hawaii, Washington, California, Iceland, Guatemala, El Salvador and Nicaragua. The sensors include 19 seismic event counters that count four different sizes of earthquakes and six biaxial borehole tiltmeters that measure ground tilt with a resolution of 1 microradian. Only seismic and tilt data are collected because these have been shown in the past to indicate most reliably the level of volcano activity at many different volcanoes. Furthermore, these parameters can be measured relatively easily with new instrumentation.

  5. Bedrock geologic map of the northern Alaska Peninsula area, southwestern Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Blodgett, Robert B.; Blome, Charles D.; Mohadjer, Solmaz; Preller, Cindi C.; Klimasauskas, Edward P.; Gamble, Bruce M.; Coonrad, Warren L.

    2017-03-03

    The northern Alaska Peninsula is a region of transition from the classic magmatic arc geology of the Alaska Peninsula to a Proterozoic and early Paleozoic carbonate platform and then to the poorly understood, tectonically complex sedimentary basins of southwestern Alaska. Physiographically, the region ranges from the high glaciated mountains of the Alaska-Aleutian Range to the coastal lowlands of Cook Inlet on the east and Bristol Bay on the southwest. The lower Ahklun Mountains and finger lakes on the west side of the map area show strong effects from glaciation. Structurally, a number of major faults cut the map area. Most important of these are the Bruin Bay Fault that parallels the coast of Cook Inlet, the Lake Clark Fault that cuts diagonally northeast to southwest across the eastern part of the map area, and the presently active Holitna Fault to the northwest that cuts surficial deposits.Distinctive rock packages assigned to three provinces are overlain by younger sedimentary rocks and intruded by widely dispersed latest Cretaceous and (or) early Tertiary granitic rocks. Much of the east half of the map area lies in the Alaska-Aleutian Range province; the Jurassic to Tertiary Alaska-Aleutian Range batholith and derivative Jurassic sedimentary rocks form the core of this province, which is intruded and overlain by the Aleutian magmatic arc. The Lime Hills province, the carbonate platform, occurs in the north-central part of the map area. The Paleozoic and Mesozoic Ahklun Mountains province in the western part of the map area includes abundant chert, argillite, and graywacke and lesser limestone, basalt, and tectonic mélange. The Kuskokwim Group, an Upper Cretaceous turbidite sequence, is extensively exposed and bounds all three provinces in the west-central part of the map area.

  6. 76 FR 81247 - Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment 88

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... Atmospheric Administration 50 CFR Part 679 Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of... Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment 88 AGENCY: National Marine... conservation, management, safety, and economic gains realized under the Central Gulf of Alaska Rockfish Pilot...

  7. 78 FR 11988 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ...-management process involving the Service, the Alaska Department of Fish and Game, and Alaska Native... developed under a co-management process involving the Service, the Alaska Department of Fish and Game, and... Fish and Game's request to expand the Fairbanks North Star Borough excluded area to include the Central...

  8. Geohydrology of the Antelope Valley Area, California and design for a ground-water-quality monitoring network

    USGS Publications Warehouse

    Duell, L.F.

    1987-01-01

    A basinwide ideal network and an actual network were designed to identify ambient groundwater quality, trends in groundwater quality, and degree of threat from potential pollution sources in Antelope Valley, California. In general, throughout the valley groundwater quality has remained unchanged, and no specific trends are apparent. The main source of groundwater for the valley is generally suitable for domestic, irrigation, and most industrial uses. Water quality data for selected constituents of some network wells and surface-water sites are presented. The ideal network of 77 sites was selected on the basis of site-specific criteria, geohydrology, and current land use (agricultural, residential, and industrial). These sites were used as a guide in the design of the actual network consisting of 44 existing wells. Wells are currently being monitored and were selected whenever possible because of budgetary constraints. Of the remaining ideal sites, 20 have existing wells not part of a current water quality network, and 13 are locations where no wells exist. The methodology used for the selection of sites, constituents monitored, and frequency of analysis will enable network users to make appropriate future changes to the monitoring network. (USGS)

  9. Optimization of a large-scale microseismic monitoring network in northern Switzerland

    NASA Astrophysics Data System (ADS)

    Kraft, Toni; Mignan, Arnaud; Giardini, Domenico

    2013-10-01

    We have developed a network optimization method for regional-scale microseismic monitoring networks and applied it to optimize the densification of the existing seismic network in northeastern Switzerland. The new network will build the backbone of a 10-yr study on the neotectonic activity of this area that will help to better constrain the seismic hazard imposed on nuclear power plants and waste repository sites. This task defined the requirements regarding location precision (0.5 km in epicentre and 2 km in source depth) and detection capability [magnitude of completeness Mc = 1.0 (ML)]. The goal of the optimization was to find the geometry and size of the network that met these requirements. Existing stations in Switzerland, Germany and Austria were considered in the optimization procedure. We based the optimization on the simulated annealing approach proposed by Hardt & Scherbaum, which aims to minimize the volume of the error ellipsoid of the linearized earthquake location problem (D-criterion). We have extended their algorithm to: calculate traveltimes of seismic body waves using a finite difference ray tracer and the 3-D velocity model of Switzerland, calculate seismic body-wave amplitudes at arbitrary stations assuming the Brune source model and using scaling and attenuation relations recently derived for Switzerland, and estimate the noise level at arbitrary locations within Switzerland using a first-order ambient seismic noise model based on 14 land-use classes defined by the EU-project CORINE and open GIS data. We calculated optimized geometries for networks with 10-35 added stations and tested the stability of the optimization result by repeated runs with changing initial conditions. Further, we estimated the attainable magnitude of completeness (Mc) for the different sized optimal networks using the Bayesian Magnitude of Completeness (BMC

  10. 77 FR 50712 - Information Collection: Southern Alaska Sharing Network and Subsistence Study; Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... Analysis at (703) 787-1025. You may also request a free copy of the study description. [[Page 50713... meeting of DOI/BOEM information needs on subsistence food harvest and sharing activities in various... southern Alaska as to the potential effects of offshore oil and gas development on subsistence food harvest...

  11. An intelligent service matching method for mechanical equipment condition monitoring using the fibre Bragg grating sensor network

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhou, Zude; Liu, Quan; Xu, Wenjun

    2017-02-01

    Due to the advantages of being able to function under harsh environmental conditions and serving as a distributed condition information source in a networked monitoring system, the fibre Bragg grating (FBG) sensor network has attracted considerable attention for equipment online condition monitoring. To provide an overall conditional view of the mechanical equipment operation, a networked service-oriented condition monitoring framework based on FBG sensing is proposed, together with an intelligent matching method for supporting monitoring service management. In the novel framework, three classes of progressive service matching approaches, including service-chain knowledge database service matching, multi-objective constrained service matching and workflow-driven human-interactive service matching, are developed and integrated with an enhanced particle swarm optimisation (PSO) algorithm as well as a workflow-driven mechanism. Moreover, the manufacturing domain ontology, FBG sensor network structure and monitoring object are considered to facilitate the automatic matching of condition monitoring services to overcome the limitations of traditional service processing methods. The experimental results demonstrate that FBG monitoring services can be selected intelligently, and the developed condition monitoring system can be re-built rapidly as new equipment joins the framework. The effectiveness of the service matching method is also verified by implementing a prototype system together with its performance analysis.

  12. Wood and fish residuals composting in Alaska

    Treesearch

    David Nicholls; Thomas Richard; Jesse A. Micales

    2002-01-01

    The unique climates and industrial mix in southeast and south central Alaska are challenges being met by the region's organics recyclers. OMPOSTING wood residuals in Alaska has become increasingly important in recent years as wood processors and other industrial waste managers search for environmentally sound and profitable outlets. Traditionally, Alaska?s...

  13. Dental caries in rural Alaska Native children--Alaska, 2008.

    PubMed

    2011-09-23

    In April 2008, the Arctic Investigations Program (AIP) of CDC was informed by the Alaska Department of Health and Social Services (DHSS) of a large number of Alaska Native (AN) children living in a remote region of Alaska who required full mouth dental rehabilitations (FMDRs), including extractions and/or restorations of multiple carious teeth performed under general anesthesia. In this remote region, approximately 400 FMDRs were performed in AN children aged <6 years in 2007; the region has approximately 600 births per year. Dental caries can cause pain, which can affect children's normal growth and development. AIP and Alaska DHSS conducted an investigation of dental caries and associated risk factors among children in the remote region. A convenience sample of children aged 4-15 years in five villages (two with fluoridated water and three without) was examined to estimate dental caries prevalence and severity. Risk factor information was obtained by interviewing parents. Among children aged 4-5 years and 12-15 years who were evaluated, 87% and 91%, respectively, had dental caries, compared with 35% and 51% of U.S. children in those age groups. Among children from the Alaska villages, those aged 4-5 years had a mean of 7.3 dental caries, and those aged 12-15 years had a mean of 5.0, compared with 1.6 and 1.8 dental caries in same-aged U.S. children. Of the multiple factors assessed, lack of water fluoridation and soda pop consumption were significantly associated with dental caries severity. Collaborations between tribal, state, and federal agencies to provide effective preventive interventions, such as water fluoridation of villages with suitable water systems and provision of fluoride varnishes, should be encouraged.

  14. Automated system for smoke dispersion prediction due to wild fires in Alaska

    NASA Astrophysics Data System (ADS)

    Kulchitsky, A.; Stuefer, M.; Higbie, L.; Newby, G.

    2007-12-01

    Community climate models have enabled development of specific environmental forecast systems. The University of Alaska (UAF) smoke group was created to adapt a smoke forecast system to the Alaska region. The US Forest Service (USFS) Missoula Fire Science Lab had developed a smoke forecast system based on the Weather Research and Forecasting (WRF) Model including chemistry (WRF/Chem). Following the successful experience of USFS, which runs their model operationally for the contiguous U.S., we develop a similar system for Alaska in collaboration with scientists from the USFS Missoula Fire Science Lab. Wildfires are a significant source of air pollution in Alaska because the climate and vegetation favor annual summer fires that burn huge areas. Extreme cases occurred in 2004, when an area larger than Maryland (more than 25000~km2) burned. Small smoke particles with a diameter less than 10~μm can penetrate deep into lungs causing health problems. Smoke also creates a severe restriction to air transport and has tremendous economical effect. The smoke dispersion and forecast system for Alaska was developed at the Geophysical Institute (GI) and the Arctic Region Supercomputing Center (ARSC), both at University of Alaska Fairbanks (UAF). They will help the public and plan activities a few days in advance to avoid dangerous smoke exposure. The availability of modern high performance supercomputers at ARSC allows us to create and run high-resolution, WRF-based smoke dispersion forecast for the entire State of Alaska. The core of the system is a Python program that manages the independent pieces. Our adapted Alaska system performs the following steps \\begin{itemize} Calculate the medium-resolution weather forecast using WRF/Met. Adapt the near real-time satellite-derived wildfire location and extent data that are received via direct broadcast from UAF's "Geographic Information Network of Alaska" (GINA) Calculate fuel moisture using WRF forecasts and National Fire Danger

  15. Publications - GMC 53C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Paleozoic through Tertiary sandstones, North Slope, Alaska Authors: Alaska Research Associates Publication through Tertiary sandstones, North Slope, Alaska: Alaska Division of Geological & Geophysical Surveys

  16. A Volcano Monitoring Seismo-Acoustic Network in the CNMI

    NASA Astrophysics Data System (ADS)

    Howard, J. E.; Crippen, S. E.; Hayward, C.; Quick, J. E.

    2011-12-01

    In late spring and early summer of 2011, a seismo-acoustic network was installed in the Commonwealth of the Northern Mariana Islands (CNMI) for volcano monitoring. The network consists of a seismo-acoustic array on Saipan, an acoustic array on Sarigan with one seismometer, and a seismic network on Anatahan. On Saipan the array consists of a central site and 3 embedded triangular arrays with apertures of 100 m, 300 m and 1000 m. Four 50-foot porous hoses in a clover-leaf arrangement are used for spatial filtering at each acoustic site. Broadband seismometers were installed at the central site and the 1000 m sites. The Sarigan Array consists of a central acoustic site with 5 surrounding sites evenly spaced at 50 m radius, and one broadband seismic station. Two hoses were used for each site on Sarigan. Four broadband seismic stations were also installed on Anatahan which last erupted in 2005. Data from each array is sent by radio telemetry to the Emergency Management Office on Saipan, where it is routed to the USGS and SMU. Data will be used for volcano monitoring which will allow the CNMI to resume economic activity in the uninhabited northern islands. Initial data streams show high seismic noise levels as expected for an island installation. The Sarigan acoustic sites are also noisy as a result of being more exposed to wind than the Saipan sites. Many small events have already been observed in the infrasound data. This network was installed through the collaborative efforts of CNMI, USGS and SMU.

  17. Near-Road Air Quality Monitoring: Factors Affecting Network Design and Interpretation of Data

    EPA Science Inventory

    The growing number of health studies identifying adverse health effects for populations spending significant amounts of time near large roadways has increased the interest in monitoring air quality in this microenvironment. Designing near-road air monitoring networks or interpret...

  18. Report on the Dagstuhl Seminar on Visualization and Monitoring of Network Traffic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keim, Daniel; Pras, Aiko; Schonwalder, Jurgen

    2011-01-26

    The Dagstuhl Seminar on Visualization and Monitoring of Network Traffic [1] took place May 17-20, 2009 in Dagstuhl, Germany. Dagstuhl seminars promote personal interaction and open discussion of results as well as new ideas. Unlike at most conferences, the focus is not solely on the presentation of established results but to equal parts on results, ideas, sketches, and open problems. The aim of this particular seminar was to bring together experts from the information visualization community and the networking community in order to discuss the state of the art of monitoring and visualization of network traffic. People from the differentmore » research communities involved jointly organized the seminar. The co-chairs of the seminar from the networking community were Aiko Pras (University of Twente) and Jürgen Schönwälder (Jacobs University Bremen). The co-chairs from the visualization community were Daniel A. Keim (University of Konstanz) and Pak Chung Wong (Pacific Northwest National Lab). Florian Mansmann (University of Konstanz) helped with producing this report. The seminar was organized and supported by Schloss Dagstuhl and the EC IST-EMANICS Network of Excellence [1].« less

  19. Deploying Monitoring Trails for Fault Localization in All- Optical Networks and Radio-over-Fiber Passive Optical Networks

    NASA Astrophysics Data System (ADS)

    Maamoun, Khaled Mohamed

    Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman's Problem (CPP) solution and an adapted version of the Traveling Salesman's Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of

  20. A Bayesian maximum entropy-based methodology for optimal spatiotemporal design of groundwater monitoring networks.

    PubMed

    Hosseini, Marjan; Kerachian, Reza

    2017-09-01

    This paper presents a new methodology for analyzing the spatiotemporal variability of water table levels and redesigning a groundwater level monitoring network (GLMN) using the Bayesian Maximum Entropy (BME) technique and a multi-criteria decision-making approach based on ordered weighted averaging (OWA). The spatial sampling is determined using a hexagonal gridding pattern and a new method, which is proposed to assign a removal priority number to each pre-existing station. To design temporal sampling, a new approach is also applied to consider uncertainty caused by lack of information. In this approach, different time lag values are tested by regarding another source of information, which is simulation result of a numerical groundwater flow model. Furthermore, to incorporate the existing uncertainties in available monitoring data, the flexibility of the BME interpolation technique is taken into account in applying soft data and improving the accuracy of the calculations. To examine the methodology, it is applied to the Dehgolan plain in northwestern Iran. Based on the results, a configuration of 33 monitoring stations for a regular hexagonal grid of side length 3600 m is proposed, in which the time lag between samples is equal to 5 weeks. Since the variance estimation errors of the BME method are almost identical for redesigned and existing networks, the redesigned monitoring network is more cost-effective and efficient than the existing monitoring network with 52 stations and monthly sampling frequency.

  1. Publications - MP 150 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska larger work. Please see DDS 3 for more information. Digital Geospatial Data Digital Geospatial Data Business in Alaska Visiting Alaska State Employees

  2. Publications - RI 2011-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska district, Circle Quadrangle, Alaska, scale 1:50,000 (16.0 M) Digital Geospatial Data Digital Geospatial Business in Alaska Visiting Alaska State Employees

  3. U.S. EPA's National Dioxin Air Monitoring Network: Analytical Issues

    EPA Science Inventory

    The U.S. EPA has established a National Dioxin Air Monitoring Network (NDAMN) to determine the temporal and geographical variability of atmospheric chlorinated dibenzo-p-dioxins (CDDs), furans (CDFs), and coplanar polychlorinated biphenyls (PCBs) at rural and non-impacted locatio...

  4. Publications - AR 2010 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical DGGS AR 2010 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual Report Authors: DGGS Staff Publication Date: Jan 2011 Publisher: Alaska Division of Geological &

  5. Neural network classification of clinical neurophysiological data for acute care monitoring

    NASA Technical Reports Server (NTRS)

    Sgro, Joseph

    1994-01-01

    The purpose of neurophysiological monitoring of the 'acute care' patient is to allow the accurate recognition of changing or deteriorating neurological function as close to the moment of occurrence as possible, thus permitting immediate intervention. Results confirm that: (1) neural networks are able to accurately identify electroencephalogram (EEG) patterns and evoked potential (EP) wave components, and measuring EP waveform latencies and amplitudes; (2) neural networks are able to accurately detect EP and EEG recordings that have been contaminated by noise; (3) the best performance was obtained consistently with the back propagation network for EP and the HONN for EEG's; (4) neural network performed consistently better than other methods evaluated; and (5) neural network EEG and EP analyses are readily performed on multichannel data.

  6. Design of a monitoring network over France in case of a radiological accidental release

    NASA Astrophysics Data System (ADS)

    Abida, Rachid; Bocquet, Marc; Vercauteren, Nikki; Isnard, Olivier

    The Institute of Radiation Protection and Nuclear Safety (France) is planning the set-up of an automatic nuclear aerosol monitoring network over the French territory. Each of the stations will be able to automatically sample the air aerosol content and provide activity concentration measurements on several radionuclides. This should help monitor the French and neighbouring countries nuclear power plants set. It would help evaluate the impact of a radiological incident occurring at one of these nuclear facilities. This paper is devoted to the spatial design of such a network. Here, any potential network is judged on its ability to extrapolate activity concentrations measured on the network stations over the whole domain. The performance of a network is quantitatively assessed through a cost function that measures the discrepancy between the extrapolation and the true concentration fields. These true fields are obtained through the computation of a database of dispersion accidents over one year of meteorology and originating from 20 French nuclear sites. A close to optimal network is then looked for using a simulated annealing optimisation. The results emphasise the importance of the cost function in the design of a network aimed at monitoring an accidental dispersion. Several choices of norm used in the cost function are studied and give way to different designs. The influence of the number of stations is discussed. A comparison with a purely geometric approach which does not involve simulations with a chemistry-transport model is performed.

  7. Publications - RI 2009-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska , northeastern Brooks Range, Alaska, scale 1:63,360 (129.0 M) Digital Geospatial Data Digital Geospatial Data Resident Business in Alaska Visiting Alaska State Employees

  8. Alaska State Legislature

    Science.gov Websites

    The Alaska State Legislature search menu Home Senate Current Members Past Members By Session search Home Get Started About the Legislative Branch Legislative Branch The Legislative Branch is responsible for enacting the laws of the State of Alaska and appropriating the money necessary to operate the

  9. U.S. Geological Survey Activities Related to American Indians and Alaska Natives: Fiscal Year 2005

    USGS Publications Warehouse

    Marcus, Susan M.

    2007-01-01

    ), or other Federal agencies. The USGS routinely works with its sister bureaus in the Department of the Interior to provide the scientific information and expertise needed to meet the Department's science priorities. Some USGS activities described in this report are conducted as collateral tasks that result from USGS employees identifying and responding to perceived needs. These endeavors are usually prompted by employee interests and frequently involve educational activities. The education is often a reciprocal learning and teaching experience for USGS employees and for Native participants. Through these activities, USGS employees help to fulfill a mission of the USGS - to demonstrate scientific relevance - while helping their fellow citizens. Increasingly, some of the educational activities are becoming parts of formal USGS projects. USGS employees also take initiative in assisting American Indians and Alaska Natives by participating in several organizations that promote awareness of science career opportunities among Native peoples and help build support and communication networks. One such group is the American Indian Science and Engineering Society (AISES). USGS employees join this organization on a voluntary basis, bringing the benefits of this expanded network to the USGS, as many employees do with other professional organizations. The studies briefly described in this report span subsistence issues, wildlife health, water quality, mineral resources, monitoring and modeling to gather information and predict what may happen in the future. Although each project description relates to Native Americans in some way, the projects vary widely, including who conducted the work, the goals and products, the duration of the study, and whether it was local or covered a broad area. Each major organizational unit of the USGS has identified an American Indian/Alaska Native liaison. The USGS has a regional organizational structure, with Western, Central,

  10. A pervasive health monitoring service system based on ubiquitous network technology.

    PubMed

    Lin, Chung-Chih; Lee, Ren-Guey; Hsiao, Chun-Chieh

    2008-07-01

    The phenomenon of aging society has derived problems such as shortage of medical resources and reduction of quality in healthcare services. This paper presents a system infrastructure for pervasive and long-term healthcare applications, i.e. a ubiquitous network composed of wireless local area network (WLAN) and cable television (CATV) network serving as a platform for monitoring physiological signals. Users can record vital signs including heart rate, blood pressure, and body temperature anytime either at home or at frequently visited public places in order to create a personal health file. The whole system was formally implemented in December 2004. Analysis of 2000 questionnaires indicates that 85% of users were satisfied with the provided community-wide healthcare services. Among the services provided by our system, health consultation services offered by family doctors was rated the most important service by 17.9% of respondents, and was followed by control of one's own health condition (16.4% of respondents). Convenience of data access was rated most important by roughly 14.3% of respondents. We proposed and implemented a long-term healthcare system integrating WLAN and CATV networks in the form of a ubiquitous network providing a service platform for physiological monitoring. This system can classify the health levels of the resident according to the variation tendency of his or her physiological signal for important reference of health management.

  11. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struckmeyer, R.

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  12. How to Decide? Multi-Objective Early-Warning Monitoring Networks for Water Suppliers

    NASA Astrophysics Data System (ADS)

    Bode, Felix; Loschko, Matthias; Nowak, Wolfgang

    2015-04-01

    Groundwater is a resource for drinking water and hence needs to be protected from contaminations. However, many well catchments include an inventory of known and unknown risk sources, which cannot be eliminated, especially in urban regions. As a matter of risk control, all these risk sources should be monitored. A one-to-one monitoring situation for each risk source would lead to a cost explosion and is even impossible for unknown risk sources. However, smart optimization concepts could help to find promising low-cost monitoring network designs. In this work we develop a concept to plan monitoring networks using multi-objective optimization. Our considered objectives are to maximize the probability of detecting all contaminations, to enhance the early warning time before detected contaminations reach the drinking water well, and to minimize the installation and operating costs of the monitoring network. Using multi-objectives optimization, we avoid the problem of having to weight these objectives to a single objective-function. These objectives are clearly competing, and it is impossible to know their mutual trade-offs beforehand - each catchment differs in many points and it is hardly possible to transfer knowledge between geological formations and risk inventories. To make our optimization results more specific to the type of risk inventory in different catchments we do risk prioritization of all known risk sources. Due to the lack of the required data, quantitative risk ranking is impossible. Instead, we use a qualitative risk ranking to prioritize the known risk sources for monitoring. Additionally, we allow for the existence of unknown risk sources that are totally uncertain in location and in their inherent risk. Therefore, they can neither be located nor ranked. Instead, we represent them by a virtual line of risk sources surrounding the production well. We classify risk sources into four different categories: severe, medium and tolerable for known risk

  13. Intrusion detection and monitoring for wireless networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.

    other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.« less

  14. Polar bear management in Alaska 1997-2000

    USGS Publications Warehouse

    Schliebe, Scott L.; Bridges, John W.; Evans, Thomas J.; Fischbach, Anthony S.; Kalxdorff, Susanne B.; Lierheimer, Lisa J.; Lunn, Nicholas J.; Schliebe, Scott L.; Born, Erik W.; Lunn, Nicholas J.; Schliebe, Scott L.; Born, Erik W.

    2002-01-01

    Since the Twelfth Working Meeting of the IUCN/SSC Polar Bear Specialist Group in 1997, a number of changes in the management of polar bears have occurred in Alaska. On October 16, 2000, the governments of the United States and the Russian Federation signed the “Agreement on the Conservation and Management of the Alaska-Chukotka Polar Bear Population.” This agreement provides substantial benefits for the effective conservation of polar bears shared between the U.S. and Russia. It will require enactment of enabling legislation by the U.S. Congress and other steps by Russia before the agreement has the force of law. A copy of the agreement is included as Appendix 1 to this report. Also, during this period, regulations were developed to implement 1994 amendments to the Marine Mammal Protection Act (MMPA), which allow polar bear trophies taken in approved Canadian populations by U.S. citizens to be imported into the U.S. A summary of the regulatory actions and a table listing populations approved for importation and the number of polar bears imported into the U.S. since 1997 is included in this report. Regarding oil and gas activities in polar bear habitat, three sets of regulations were published authorizing the incidental, non-intentional, taking of small numbers of polar bears concurrent to oil and gas activities.Cooperation continued with the Alaska Nanuuq Commission, representing the polar bear hunting communities in Alaska, as well as with the North Slope Borough and the Inuvialuit Game Council in their agreement for the management of the Southern Beaufort Sea polar bear population. Harvest summaries and technical assistance in designing and assistance in conducting a National Park Service/Alaska Nanuuq Commission study to collect traditional ecological knowledge of polar bear habitat use in Chukotka were provided. In addition, a long-range plan was developed to address and minimize polar bear-human conflicts in North Slope communities.We continued to monitor

  15. LANDMON a new integrated system for the management of landslide monitoring networks

    NASA Astrophysics Data System (ADS)

    Wrzesniak, Aleksandra; Giordan, Daniele; Allasia, Paolo

    2017-04-01

    Over the last decades, technological development has strongly increased the number of instruments that can be used to monitor landslide phenomena. Robotized Total Stations, GB-InSAR and GPS are only few examples of the devices that can be adapted to monitor the topographic changes due to mass movements. They are often organized in a complex network, aimed at controlling physical parameters related to the evolution of landslide activity. The level of complexity of these monitoring networks increases with the number of new available monitoring devices and this could generate a paradox: the source of data is so numerous and difficult to interpret that a full understanding of the phenomenon could be hampered. The Geohazard Monitoring Group (GMG) of Italian National Research Council (CNR) has a long experience in landslide monitoring. Over the years, GMG has developed a multidisciplinary approach for landslide management strategy called LANDMON (LANDslide MOnitoring Network). It is an automatic hybrid system focused not only on capturing and elaborating data from monitored site but also on web applications and on publishing bulletins aimed to disseminate monitoring results and to support decision makers. LANDMON is currently active in many landslide sites distributed in several areas in Italy and in Europe. LANDMON is derived from the previously developed systems like ADVICE (ADVanced dIsplaCement monitoring system for Early warning) and 3DA (three-dimensional Displacement Analysis). These systems are aimed to collect and to process monitoring dataset, to manage early warning application based on pre-defined thresholds, and to publish three-dimensional displacement maps in near real time. In addition, LANDMON integrates several new features, such as WebGIS application, modelling using inverse velocity method, and management of webcam monitoring system, meteorological parameters and borehole inclinometric data. Moreover, LANDMON is a communication strategy that focuses

  16. Assessment of the water quality monitoring network of the Piabanha River experimental watersheds in Rio de Janeiro, Brazil, using autoassociative neural networks.

    PubMed

    Villas-Boas, Mariana D; Olivera, Francisco; de Azevedo, Jose Paulo S

    2017-09-01

    Water quality monitoring is a complex issue that requires support tools in order to provide information for water resource management. Budget constraints as well as an inadequate water quality network design call for the development of evaluation tools to provide efficient water quality monitoring. For this purpose, a nonlinear principal component analysis (NLPCA) based on an autoassociative neural network was performed to assess the redundancy of the parameters and monitoring locations of the water quality network in the Piabanha River watershed. Oftentimes, a small number of variables contain the most relevant information, while the others add little or no interpretation to the variability of water quality. Principal component analysis (PCA) is widely used for this purpose. However, conventional PCA is not able to capture the nonlinearities of water quality data, while neural networks can represent those nonlinear relationships. The results presented in this work demonstrate that NLPCA performs better than PCA in the reconstruction of the water quality data of Piabanha watershed, explaining most of data variance. From the results of NLPCA, the most relevant water quality parameter is fecal coliforms (FCs) and the least relevant is chemical oxygen demand (COD). Regarding the monitoring locations, the most relevant is Poço Tarzan (PT) and the least is Parque Petrópolis (PP).

  17. Alaska Workforce Investment Board

    Science.gov Websites

    ! Looking for a job? Click here. About Us Board Member Documents Phone: (907) 269-7485 Toll Free: (888) 412 : 907-269-7485 Toll Free: 888-412-4742 Fax: 907-269-7489 State of Alaska myAlaska My Government Resident

  18. The evolving Alaska mapping program.

    USGS Publications Warehouse

    Brooks, P.D.; O'Brien, T. J.

    1986-01-01

    This paper describes the development of mapping in Alaska, the current status of the National Mapping Program, and future plans for expanding and improving the mapping coverage. Research projects with Landsat Multispectral Scanner and Return Vidicon imagery and real- and synthetic-aperture radar; image mapping programs; digital mapping; remote sensing projects; the Alaska National Interest Lands Conservation Act; and the Alaska High-Altitude Aerial Photography Program are also discussed.-from Authors

  19. Publications - GMC 16 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska's Mineral and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a

  20. Publications - RDF 2010-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Prospect; Trace Elements; Trace Metals; Triassic; Wrangellia Terrane; geoscientificInformation Top of Page Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  1. Publications - RDF 2015-6 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Sediments; Trace Elements; Trace Geochemical; Trace Metals; geoscientificInformation Top of Page Department Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  2. Resistance and resilience of floating mat fens in interior Alaska following airboat disturbance

    Treesearch

    Amy Zacheis; Kate Doran

    2009-01-01

    The floating mat fens of the Tanana Flats in interior Alaska are productive wetlands near the urban center of Fairbanks. Airboat traffic has created a network of trails through the floating vegetation mats. We established protected areas along established trails, which allowed for measurement of plant community resistance to airboat traffic and resilience following...

  3. An agronomic field-scale sensor network for monitoring soil water and temperature variation

    NASA Astrophysics Data System (ADS)

    Brown, D. J.; Gasch, C.; Brooks, E. S.; Huggins, D. R.; Campbell, C. S.; Cobos, D. R.

    2014-12-01

    Environmental sensor networks have been deployed in a variety of contexts to monitor plant, air, water and soil properties. To date, there have been relatively few such networks deployed to monitor dynamic soil properties in cropped fields. Here we report on experience with a distributed soil sensor network that has been deployed for seven years in a research farm with ongoing agronomic field operations. The Washington State University R. J. Cook Agronomy Farm (CAF), Pullman, WA, USA has recently been designated a United States Department of Agriculture (USDA) Long-Term Agro-Ecosystem Research (LTAR) site. In 2007, 12 geo-referenced locations at CAF were instrumented, then in 2009 this network was expended to 42 locations distributed across the 37-ha farm. At each of this locations, Decagon 5TE probes (Decagon Devices Inc., Pullman, WA, USA) were installed at five depths (30, 60, 90, 120, and 150 cm), with temperature and volumetric soil moisture content recorded hourly. Initially, data loggers were wirelessly connected to a data station that could be accessed through a cell connection, but due to the logistics of agronomic field operations, we later buried the dataloggers at each site and now periodically download data via local radio transmission. In this presentation, we share our experience with the installation, maintenance, calibration and data processing associated with an agronomic soil monitoring network. We also present highlights of data derived from this network, including seasonal fluctuations of soil temperature and volumetric water content at each depth, and how these measurements are influenced by crop type, soil properties, landscape position, and precipitation events.

  4. Alaska Natives assessing the health of their environment.

    PubMed

    Garza, D

    2001-11-01

    The changes in Alaska's ecosystems caused by pollution, contaminants and global climate change are negatively impacting Alaska Natives and rural residents who rely on natural resources for food, culture and community identity. While Alaska commerce has contributed little to these global changes and impacts, Alaska and its resources are nonetheless affected by the changes. While Alaska Natives have historically relied on Alaska's land, water and animals for survival and cultural identity, today their faith in the safety and quality of these resources has decreased. Alaska Natives no longer believe that these wild resources are the best and many are turning to alternative store-bought foods. Such a change in diet and activity may be contributing to a decline in traditional activities and a decline in general health. Contaminants are showing up in the animals, fish and waters that Alaska Natives use. Efforts need to be expanded to empower Alaska Native Tribes to collect and analyze local wild foods for various contaminants. In addition existing information on contaminants and pollution should be made readily available to Alaska residents. Armed with this type of information Alaska Native residents will be better prepared to make informed decisions on using wild foods and materials.

  5. Integrating Social Networks and Remote Patient Monitoring Systems to Disseminate Notifications.

    PubMed

    Ribeiro, Hugo A; Germano, Eliseu; Carvalho, Sergio T; Albuquerque, Eduardo S

    2017-01-01

    Healthcare workforce shortage can be compensated by using information and communication technologies. Remote patient monitoring systems allow us to identify and communicate complications and anomalies. Integrating social networking services into remote patient monitoring systems enables users to manage their relationships. User defined relationships may be used to disseminate healthcare related notifications. Hence this integration leads to quicker interventions and may reduce hospital readmission rate. As a proof of concept, a module was integrated to a remote patient monitoring platform. A mobile application to manage relationships and receive notifications was also developed.

  6. Publications - GMC 171 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Arco Alaska Inc. Delta State #2 well Authors: Pawlewicz, Mark Publication Date: 1990 Publisher: Alaska , Vitrinite reflectance data of cuttings (3270'-10760') from the Arco Alaska Inc. Delta State #2 well: Alaska

  7. Publications - RDF 2012-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Assessment Project; Trace Elements; geoscientificInformation Top of Page Department of Natural Resources Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  8. Publications - RDF 2005-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    District; Trace Elements; Trace Metals; Tungsten; Uranium; Vanadium; Yttrium; Zinc; Zirconium Top of Page Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  9. Publications - RDF 2016-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Major-oxide and trace-element geochemistry of mafic rocks in the Carboniferous Lisburne Group, Ivishak Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  10. Publications - RDF 2000-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Oxides; Palladium; Platinum; Rare Earth Elements; STATEMAP Project; Trace Metals Top of Page Department Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  11. Trends in Alaska's People and Economy.

    ERIC Educational Resources Information Center

    Leask, Linda; Killorin, Mary; Martin, Stephanie

    This booklet provides data on Alaska's population, economy, health, education, government, and natural resources, including specific information on Alaska Natives. Since 1960, Alaska's population has tripled and become more diverse, more stable, older, less likely to be male or married, and more concentrated. About 69 percent of the population…

  12. Monitoring the Environmental Impact of TiO2 Nanoparticles Using a Plant-Based Sensor Network

    PubMed Central

    Lenaghan, Scott C.; Li, Yuanyuan; Zhang, Hao; Burris, Jason N.; Stewart, C. Neal; Parker, Lynne E.; Zhang, Mingjun

    2016-01-01

    The increased manufacturing of nanoparticles for use in cosmetics, foods, and clothing necessitates the need for an effective system to monitor and evaluate the potential environmental impact of these nanoparticles. The goal of this research was to develop a plant-based sensor network for characterizing, monitoring, and understanding the environmental impact of TiO2 nanoparticles. The network consisted of potted Arabidopsis thaliana with a surrounding water supply, which was monitored by cameras attached to a laptop computer running a machine learning algorithm. Using the proposed plant sensor network, we were able to examine the toxicity of TiO2 nanoparticles in two systems: algae and terrestrial plants. Increased terrestrial plant growth was observed upon introduction of the nanoparticles, whereas algal growth decreased significantly. The proposed system can be further automated for high-throughput screening of nanoparticle toxicity in the environment at multiple trophic levels. The proposed plant-based sensor network could be used for more accurate characterization of the environmental impact of nanomaterials. PMID:28458617

  13. DOI/GTN-P climate and active-layer data acquired in the National Petroleum Reserve: Alaska and the Arctic National Wildlife Refuge, 1998-2011

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2014-01-01

    This report provides data collected by the climate monitoring array of the U.S. Department of the Interior on Federal lands in Arctic Alaska over the period August 1998 to July 2011; this array is part of the Global Terrestrial Network for Permafrost, (DOI/GTN-P). In addition to presenting data, this report also describes monitoring, data collection, and quality-control methodology. This array of 16 monitoring stations spans lat 68.5°N. to 70.5°N. and long 142.5°W. to 161°W., an area of approximately 150,000 square kilometers. Climate summaries are presented along with quality-controlled data. Data collection is ongoing and includes the following climate- and permafrost-related variables: air temperature, wind speed and direction, ground temperature and soil moisture, snow depth, rainfall, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  14. Alaska Native Participation in the Civilian Conservation Corps. Alaska Historical Commission Studies in History No. 206.

    ERIC Educational Resources Information Center

    Sorensen, Connor; And Others

    The report is a finding aid to the sources which document the 1937 federal policy decision mandating that 50% of the enrollees in the Civilian Conservation Corps (CCC) in Alaska must be Alaska Natives and provides a list of the Native CCC projects in Alaska. The finding aid section is organized according to the location of the collections and…

  15. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska.

    PubMed

    Sloat, Matthew R; Reeves, Gordon H; Christiansen, Kelly R

    2017-02-01

    In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach-scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9-10% and 13-16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher-gradient streams that provide only moderate-quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach-scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream

  16. 78 FR 4435 - BLM Director's Response to the Alaska Governor's Appeal of the BLM Alaska State Director's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... Bureau of Land Management (BLM) is publishing this notice to explain why the BLM Director is rejecting... Director's Response to the Alaska Governor's Appeal of the BLM Alaska State Director's Governor's... the BLM Alaska State Director. The State Director determined the Governor's Finding was outside the...

  17. Publications - SR 37 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Section; Resource Assessment; Tyonek Formation; Type Section Top of Page Department of Natural Resources State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home

  18. Presentations - Twelker, Evan and others, 2014 | Alaska Division of

    Science.gov Websites

    Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Details Title: Preliminary results from 2014 geologic mapping in the Talkeetna Mountains, Alaska Lande, Lauren, 2014, Preliminary results from 2014 geologic mapping in the Talkeetna Mountains, Alaska

  19. Publications - RDF 2004-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ; Trace Elements; Trace Metals; Tungsten; Vanadium; Yttrium; Zinc; Zirconium Top of Page Department of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  20. Publications - SR 32 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS SR 32 Publication Details Title: Oil and gas basins map of Alaska Authors: Ehm, Arlen Publication ): Alaska Statewide Bibliographic Reference Ehm, Arlen, 1983, Oil and gas basins map of Alaska: Alaska Sheets Sheet 1 Oil and gas basins map of Alaska, scale 1:2,500,000 (21.0 M) Keywords Alaska Statewide

  1. Network Monitoring Traffic Compression Using Singular Value Decomposition

    DTIC Science & Technology

    2014-03-27

    Shootouts." Workshop on Intrusion Detection and Network Monitoring. 1999. [12] Goodall , John R. "Visualization is better! a comparative evaluation...34 Visualization for Cyber Security, 2009. VizSec 2009. 6th International Workshop on IEEE, 2009. [13] Goodall , John R., and Mark Sowul. "VIAssist...Viruses and Log Visualization.” In Australian Digital Forensics Conference. Paper 54, 2008. [30] Tesone, Daniel R., and John R. Goodall . "Balancing

  2. Phase II : correlation between experimental and finite element analysis : Alaska bridge 255-Chulitna River bridge.

    DOT National Transportation Integrated Search

    2014-09-01

    In this study, we will monitor the behavior of the Alaska Chulitna Bridge for the specific purpose of assisting the DOT in performing an accurate : condition assessment of this bridge. : Based on the state-of-the-art SHM knowledge and technologies wi...

  3. Hybrid wireless sensor network for rescue site monitoring after earthquake

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Wang, Shuo; Tang, Chong; Zhao, Xiaoguang; Hu, Weijian; Tan, Min; Gao, Bowei

    2016-07-01

    This paper addresses the design of a low-cost, low-complexity, and rapidly deployable wireless sensor network (WSN) for rescue site monitoring after earthquakes. The system structure of the hybrid WSN is described. Specifically, the proposed hybrid WSN consists of two kinds of wireless nodes, i.e., the monitor node and the sensor node. Then the mechanism and the system configuration of the wireless nodes are detailed. A transmission control protocol (TCP)-based request-response scheme is proposed to allow several monitor nodes to communicate with the monitoring center. UDP-based image transmission algorithms with fast recovery have been developed to meet the requirements of in-time delivery of on-site monitor images. In addition, the monitor node contains a ZigBee module that used to communicate with the sensor nodes, which are designed with small dimensions to monitor the environment by sensing different physical properties in narrow spaces. By building a WSN using these wireless nodes, the monitoring center can display real-time monitor images of the monitoring area and visualize all collected sensor data on geographic information systems. In the end, field experiments were performed at the Training Base of Emergency Seismic Rescue Troops of China and the experimental results demonstrate the feasibility and effectiveness of the monitor system.

  4. Survey of the seasonal snow cover in Alaska

    NASA Technical Reports Server (NTRS)

    Weller, G. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 data are used together with synoptic-climatological data to describe the buildup of the seasonal snow and ice covers in a north-south transect of a total length of about 1250 km across Alaska. It has been demonstrated that the ERTS-1 data may, under favorable conditions, be used for accurate mapping of snow lines in high mountain regions. The analysis shows that especially in the Brooks Range and on the Arctic Slope where snow covers generally are relatively thin, the ERTS-1 scenes can be useful for qualitative descriptions of the snow and ice covers over wide expanses. The onset and retreat of the seasonal snow cover are sensitive indicators of climatic fluctuations and the ERTS-1 data offers a possibility to record variations of the snow and ice buildup from year to year in a practical and informative way, which should be especially useful for studies of climatic trends. This is particularly true in Alaska where the density of the station network is too low to permit interpolations between the stations.

  5. Water Quality in the Tanana River Basin, Alaska, Water Years 2004-06

    USGS Publications Warehouse

    Moran, Edward H.

    2007-01-01

    OVERVIEW This report contains water-quality data collected from 84 sites in Tanana River basin during water years 2004 through 2006 (October 2003 through September 2006) as part of a cooperative study between the U.S. Geological Survey (USGS) and Alaska Department of Environmental Conservation (ADEC) Alaska Monitoring and Assessment Program (AKMAP), supported in part through the U.S. Environmental Protection Agency (USEPA) Office of Water, Cooperative Assistance Agreement X7-97078801. A broad range of chemical analyses are presented for 93 sets of samples collected at 59 tributaries to the Tanana River and at 25 locations along the mainstem. These data are to provide a means to assess baseline characteristics and establish indicators that are ecologically important, affordable, and relevant to society.

  6. The use of hierarchical clustering for the design of optimized monitoring networks

    NASA Astrophysics Data System (ADS)

    Soares, Joana; Makar, Paul Andrew; Aklilu, Yayne; Akingunola, Ayodeji

    2018-05-01

    Associativity analysis is a powerful tool to deal with large-scale datasets by clustering the data on the basis of (dis)similarity and can be used to assess the efficacy and design of air quality monitoring networks. We describe here our use of Kolmogorov-Zurbenko filtering and hierarchical clustering of NO2 and SO2 passive and continuous monitoring data to analyse and optimize air quality networks for these species in the province of Alberta, Canada. The methodology applied in this study assesses dissimilarity between monitoring station time series based on two metrics: 1 - R, R being the Pearson correlation coefficient, and the Euclidean distance; we find that both should be used in evaluating monitoring site similarity. We have combined the analytic power of hierarchical clustering with the spatial information provided by deterministic air quality model results, using the gridded time series of model output as potential station locations, as a proxy for assessing monitoring network design and for network optimization. We demonstrate that clustering results depend on the air contaminant analysed, reflecting the difference in the respective emission sources of SO2 and NO2 in the region under study. Our work shows that much of the signal identifying the sources of NO2 and SO2 emissions resides in shorter timescales (hourly to daily) due to short-term variation of concentrations and that longer-term averages in data collection may lose the information needed to identify local sources. However, the methodology identifies stations mainly influenced by seasonality, if larger timescales (weekly to monthly) are considered. We have performed the first dissimilarity analysis based on gridded air quality model output and have shown that the methodology is capable of generating maps of subregions within which a single station will represent the entire subregion, to a given level of dissimilarity. We have also shown that our approach is capable of identifying different

  7. Publications - GMC 395 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    investigations of the diatom stratigraphy of Borehole TA8, Portage Alaska: Alaska Division of Geological & Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical DGGS GMC 395 Publication Details Title: Preliminary investigations of the diatom stratigraphy of

  8. 76 FR 45217 - Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska Rockfish Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ..., management, safety, and economic gains realized under the Rockfish Pilot Program and viability of the Gulf of...-BA97 Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska Rockfish Program... available for public review and comment. The groundfish fisheries in the exclusive economic zone of Alaska...

  9. Alaska Department of Labor and Workforce Development

    Science.gov Websites

    Market Information Alaska Job Centers Hot Topics Get Paid to Learn a Trade! Apprenticeship Alaska Career USAJOBS - Federal Gov. Jobs Apprenticeship Alaska Career Information System Veterans' Services Youth

  10. Scaling-up camera traps: monitoring the planet's biodiversity with networks of remote sensors

    USGS Publications Warehouse

    Steenweg, Robin; Hebblewhite, Mark; Kays, Roland; Ahumada, Jorge A.; Fisher, Jason T.; Burton, Cole; Townsend, Susan E.; Carbone, Chris; Rowcliffe, J. Marcus; Whittington, Jesse; Brodie, Jedediah; Royle, Andy; Switalski, Adam; Clevenger, Anthony P.; Heim, Nicole; Rich, Lindsey N.

    2017-01-01

    Countries committed to implementing the Convention on Biological Diversity's 2011–2020 strategic plan need effective tools to monitor global trends in biodiversity. Remote cameras are a rapidly growing technology that has great potential to transform global monitoring for terrestrial biodiversity and can be an important contributor to the call for measuring Essential Biodiversity Variables. Recent advances in camera technology and methods enable researchers to estimate changes in abundance and distribution for entire communities of animals and to identify global drivers of biodiversity trends. We suggest that interconnected networks of remote cameras will soon monitor biodiversity at a global scale, help answer pressing ecological questions, and guide conservation policy. This global network will require greater collaboration among remote-camera studies and citizen scientists, including standardized metadata, shared protocols, and security measures to protect records about sensitive species. With modest investment in infrastructure, and continued innovation, synthesis, and collaboration, we envision a global network of remote cameras that not only provides real-time biodiversity data but also serves to connect people with nature.

  11. Low-cost, high-density sensor network for urban emission monitoring: BEACO2N

    NASA Astrophysics Data System (ADS)

    Kim, J.; Shusterman, A.; Lieschke, K.; Newman, C.; Cohen, R. C.

    2017-12-01

    In urban environments, air quality is spatially and temporally heterogeneous as diverse emission sources create a high degree of variability even at the neighborhood scale. Conventional air quality monitoring relies on continuous measurements with limited spatial resolution or passive sampling with high-density and low temporal resolution. Either approach averages the air quality information over space or time and hinders our attempts to understand emissions, chemistry, and human exposure in the near-field of emission sources. To better capture the true spatio-temporal heterogeneity of urban conditions, we have deployed a low-cost, high-density air quality monitoring network in San Francisco Bay Area distributed at 2km horizontal spacing. The BErkeley Atmospheric CO2 Observation Network (BEACO2N) consists of approximately 50 sensor nodes, measuring CO2, CO, NO, NO2, O­3, and aerosol. Here we describe field-based calibration approaches that are consistent with the low-cost strategy of the monitoring network. Observations that allow inference of emission factors and identification of specific local emission sources will also be presented.

  12. Intelligent Wireless Sensor Networks for System Health Monitoring

    NASA Technical Reports Server (NTRS)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  13. Tourism in rural Alaska

    Treesearch

    Katrina Church-Chmielowski

    2007-01-01

    Tourism in rural Alaska is an education curriculum with worldwide relevance. Students have started small businesses, obtained employment in the tourism industry and gotten in touch with their people. The Developing Alaska Rural Tourism collaborative project has resulted in student scholarships, workshops on website development, marketing, small...

  14. Detectable Aspects Of Alaska, and the Southwests Kokopelli, Indicate That Environmental Monitoring By Native Americans Utilized Several Sensory Modes, and That Their Conservation Held Moral Value Within Their Traditional Culture.

    NASA Astrophysics Data System (ADS)

    Ochs, Michael Ann; Mc Leod, Roger D.

    2004-03-01

    Place-names of Alaska and the Americas, in names like Natick, MA, Matagamon, ME, Matacumbe Key, FL, Tecate Mt, CA, and Tacoma, WA as well as Allapatah, FL, and Issaqua, WA indicate Native Americans all monitored equivalent aspects of the earths EMF. Former coastal and island areas of Native American activity and culture in Alaska show a traditional, historic leader climbed the mountain of one cliff-like island area for weather prediction. We suggest that the ascent onto the mountain and the subsequent significant stay there was for purposes of cultural and religious reverence associated with direct observation of phenomena associated with known weather sequences. Similar cultural awareness of EMF phenomena and weather-making could be related to practices of the MiKmaw/Micmac Indians of the northeast, and the so-called rain-dance of the Hopi of the southwest. *This paper does not necessarily represent the views of the U.S. E.P.A

  15. The Wireless Sensor Network (WSN) Based Coal Ash Impoundments Safety Monitoring System

    NASA Astrophysics Data System (ADS)

    Sun, E. J.; Nieto, A.; Zhang, X. K.

    2017-01-01

    Coal ash impoundments are inevitable production of the coal-fired power plants. All coal ash impoundments in North Carolina USA that tested for groundwater contamination are leaking toxic heavy metals and other pollutants. Coal ash impoundments are toxic sources of dangerous pollutants that pose a danger to human and environmental health if the toxins spread to adjacent surface waters and drinking water wells. Coal ash impoundments failures accidents resulted in serious water contamination along with toxic heavy metals. To improve the design and stability of coal ash impoundments, the Development of a Coal Ash Impoundment Safety Monitoring System (CAISM) was proposed based on the implementation of a wireless sensor network (WSN) with the ability to monitor the stability of coal ash impoundments, water level, and saturation levels on-demand and remotely. The monitoring system based on a robust Ad-hoc network could be adapted to different safety conditions.

  16. A Model for Field Deployment of Wireless Sensor Networks (WSNs) within the Domain of Microclimate Habitat Monitoring

    ERIC Educational Resources Information Center

    Sanborn, Mark

    2011-01-01

    Wireless sensor networks (WSNs) represent a class of miniaturized information systems designed to monitor physical environments. These smart monitoring systems form collaborative networks utilizing autonomous sensing, data-collection, and processing to provide real-time analytics of observed environments. As a fundamental research area in…

  17. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  18. Teshekpuk Lake, Alaska

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This ASTER image of Teshekpuk Lake on Alaska's North Slope, within the National Petroleum Reserve, was acquired on August 15, 2000. It covers an area of 58.7 x 89.9 km, and is centered near 70.4 degrees north latitude, 153 degrees west longitude.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 58.7 by 89.9 kilometers (36.4 by 55.7 miles) Location: 70.4 degrees North latitude, 153 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: ASTER 30 meters (98.4 feet) Dates Acquired: August 15, 2000

  19. Dust storm in Alaska

    NASA Image and Video Library

    2013-11-18

    Dust storm in Alaska captured by Aqua/MODIS on Nov. 17, 2013 at 21:45 UTC. When glaciers grind against underlying bedrock, they produce a silty powder with grains finer than sand. Geologists call it “glacial flour” or “rock flour.” This iron- and feldspar-rich substance often finds its ways into rivers and lakes, coloring the water brown, grey, or aqua. When river or lake levels are low, the flour accumulates on drying riverbanks and deltas, leaving raw material for winds to lift into the air and create plumes of dust. Scientists are monitoring Arctic dust for a number of reasons. Dust storms can reduce visibility enough to disrupt air travel, and they can pose health hazards to people on the ground. Dust is also a key source of iron for phytoplankton in regional waters. Finally, there is the possibility that dust events are becoming more frequent and severe due to ongoing recession of glaciers in coastal Alaska. To read more about dust storm in this region go to: earthobservatory.nasa.gov/IOTD/view.php?id=79518 Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Presentations - Twelker, Evan and Lande, Lauren, 2015 | Alaska Division of

    Science.gov Websites

    Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of (AVO) Mineral Resources Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem

  1. Unattended wireless proximity sensor networks for counterterrorism, force protection, littoral environments, PHM, and tamper monitoring ground applications

    NASA Astrophysics Data System (ADS)

    Forcier, Bob

    2003-09-01

    This paper describes a digital-ultrasonic ground network, which forms an unique "unattended mote sensor system" for monitoring the environment, personnel, facilities, vehicles, power generation systems or aircraft in Counter-Terrorism, Force Protection, Prognostic Health Monitoring (PHM) and other ground applications. Unattended wireless smart sensor/tags continuously monitor the environment and provide alerts upon changes or disruptions to the environment. These wireless smart sensor/tags are networked utilizing ultrasonic wireless motes, hybrid RF/Ultrasonic Network Nodes and Base Stations. The network is monitored continuously with a 24/7 remote and secure monitoring system. This system utilizes physical objects such as a vehicle"s structure or a building to provide the media for two way secure communication of key metrics and sensor data and eliminates the "blind spots" that are common in RF solutions because of structural elements of buildings, etc. The digital-ultrasonic sensors have networking capability and a 32-bit identifier, which provide a platform for a robust data acquisition (DAQ) for a large amount of sensors. In addition, the network applies a unique "signature" of the environment by comparing sensor-to-sensor data to pick up on minute changes, which would signal an invasion of unknown elements or signal a potential tampering in equipment or facilities. The system accommodates satellite and other secure network uplinks in either RF or UWB protocols. The wireless sensors can be dispersed by ground or air maneuvers. In addition, the sensors can be incorporated into the structure or surfaces of vehicles, buildings, or clothing of field personnel.

  2. Long-term monitoring of climatic and nutritional affects on tree growth in interior Alaska

    Treesearch

    J. Yarie; K. Van Cleve

    2010-01-01

    The comparative analysis of a large set of long-term fertilization and thinning studies in the major forest types of interior Alaska is summarized. Results indicate that nutrient limitations may only occur during the early spring growth period, after which moisture availability is the primary control of tree growth on warm sites. The temperature dynamics of both air...

  3. Passive and Active Monitoring on a High Performance Research Network.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Warren

    2001-05-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10{sup 12}). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge hasmore » arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not!) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data.« less

  4. A combined geostatistical-optimization model for the optimal design of a groundwater quality monitoring network

    NASA Astrophysics Data System (ADS)

    Kolosionis, Konstantinos; Papadopoulou, Maria P.

    2017-04-01

    Monitoring networks provide essential information for water resources management especially in areas with significant groundwater exploitation due to extensive agricultural activities. In this work, a simulation-optimization framework is developed based on heuristic optimization methodologies and geostatistical modeling approaches to obtain an optimal design for a groundwater quality monitoring network. Groundwater quantity and quality data obtained from 43 existing observation locations at 3 different hydrological periods in Mires basin in Crete, Greece will be used in the proposed framework in terms of Regression Kriging to develop the spatial distribution of nitrates concentration in the aquifer of interest. Based on the existing groundwater quality mapping, the proposed optimization tool will determine a cost-effective observation wells network that contributes significant information to water managers and authorities. The elimination of observation wells that add little or no beneficial information to groundwater level and quality mapping of the area can be obtain using estimations uncertainty and statistical error metrics without effecting the assessment of the groundwater quality. Given the high maintenance cost of groundwater monitoring networks, the proposed tool could used by water regulators in the decision-making process to obtain a efficient network design that is essential.

  5. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA..., Waste, and Toxics, U.S. EPA, Region 10, 1200 Sixth Avenue, Suite 900, Mailstop: AWT-122, Seattle, WA...

  6. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  7. Design, implementation, and initial results from a water-quality monitoring network for Atlanta, Georgia, USA

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2005-01-01

    In cooperation with the City of Atlanta, Georgia, the US Geological Survey has designed and implemented a water-quantity and quality monitoring network that measures a variety of biological and chemical constituents in water and suspended sediment. The network consists of 20 long-term monitoring sites and is intended to assess water-quality trends in response to planned infrastructural improvements. Initial results from the network indicate that nonpoint-source contributions may be more significant than point-source contributions for selected sediment associated trace elements and nutrients. There also are indications of short-term discontinuous point-source contributions of these same constituents during baseflow.

  8. Publications - Geospatial Data | Alaska Division of Geological &

    Science.gov Websites

    from rocks collected in the Richardson mining district, Big Delta Quadrangle, Alaska: Alaska Division , 40Ar/39Ar data, Alaska Highway corridor from Delta Junction to Canada border, parts of Mount Hayes

  9. Publications - DDS 7 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Alaska DGGS DDS 7 Publication Details Title: Alaska Coastal Profile Tool (ACPT) Authors: DGGS Staff ): Alaska Statewide Bibliographic Reference DGGS Staff, 2014, Alaska Coastal Profile Tool (ACPT): Alaska

  10. Wireless sensor network for monitoring soil moisture and weather conditions

    USDA-ARS?s Scientific Manuscript database

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  11. DOI/GTN-P Climate and active-layer data acquired in the National Petroleum Reserve–Alaska and the Arctic National Wildlife Refuge, 1998–2014

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2016-03-04

    This report provides data collected by the climate monitoring array of the U.S. Department of the Interior on Federal lands in Arctic Alaska over the period August 1998 to July 2014; this array is part of the Global Terrestrial Network for Permafrost (DOI/GTN-P). In addition to presenting data, this report also describes monitoring, data collection, and quality-control methods. The array of 16 monitoring stations spans lat 68.5°N. to 70.5°N. and long 142.5°W. to 161°W., an area of approximately 150,000 square kilometers. Climate summaries are presented along with quality-controlled data. Data collection is ongoing and includes the following climate- and permafrost-related variables: air temperature, wind speed and direction, ground temperature, soil moisture, snow depth, rainfall totals, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  12. DOI/GTN-P Climate and active-layer data acquired in the National Petroleum Reserve–Alaska and the Arctic National Wildlife Refuge, 1998–2015

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2017-02-06

    This report provides data collected by the climate monitoring array of the U.S. Department of the Interior on Federal lands in Arctic Alaska over the period August 1998 to July 2015; this array is part of the Global Terrestrial Network for Permafrost (DOI/GTN-P). In addition to presenting data, this report also describes monitoring, data collection, and quality-control methods. The array of 16 monitoring stations spans lat 68.5°N. to 70.5°N. and long 142.5°W. to 161°W., an area of approximately 150,000 square kilometers. Climate summaries are presented along with quality-controlled data. Data collection is ongoing and includes the following climate- and permafrost-related variables: air temperature, wind speed and direction, ground temperature, soil moisture, snow depth, rainfall totals, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  13. Harvesting morels after wildfire in Alaska.

    Treesearch

    Tricia L. Wurtz; Amy L. Wiita; Nancy S. Weber; David Pilz

    2005-01-01

    Morels are edible, choice wild mushrooms that sometimes fruit prolifically in the years immediately after an area has been burned by wildfire. Wildfires are common in interior Alaska; an average of 708,700 acres burned each year in interior Alaska between 1961 and 2000, and in major fire years, over 2 million acres burned. We discuss Alaska's boreal forest...

  14. The State of Alaska Agency Directory

    Science.gov Websites

    State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting /Fishing License Get a Birth Certificate, Marriage License, etc. Alaska Permanent Fund Dividend Statewide Highway Conditions Take a University Class Look up Alaska Laws Recreation Find a Recreational Area Alaska

  15. Publications - AR 2006 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2006 main content DGGS AR 2006 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  16. Publications - AR 2000 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2000 main content DGGS AR 2000 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  17. Publications - AR 2003 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2003 main content DGGS AR 2003 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  18. Publications - AR 2004 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2004 main content DGGS AR 2004 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  19. ULF radio monitoring network in a seismic area

    NASA Astrophysics Data System (ADS)

    Toader, Victorin; Moldovan, Iren-Adelina; Ionescu, Constantin; Marmureanu, Alexandru

    2017-04-01

    ULF monitoring is a part of a multidisciplinary network (AeroSolSys) located in Vrancea (Curvature Carpathian Mountains). Four radio receivers (100 kHz - microwave) placed on faults in a high seismic area characterized by deep earthquakes detect fairly weak radio waves. The radio power is recorded in correlation with many other parameters related to near surface low atmosphere phenomena (seismicity, solar radiation, air ionization, electromagnetic activity, radon, CO2 concentration, atmospheric pressure, telluric currents, infrasound, seismo-acoustic emission, meteorological information). We follow variations in the earth's surface propagate radio waves avoiding reflection on ionosphere. For this reason the distance between stations is less than 60 km and the main source of emission is near (Bod broadcasting transmitter for long- and medium-wave radio, next to Brasov city). In the same time tectonic stress affects the radio propagation in air and it could generates ULF waves in ground (LAI coupling). To reduce the uncertainty is necessary to monitor a location for extended periods of time to outline local and seasonal fluctuations. Solar flares do not affect seismic activity but they produce disturbances in telecommunications networks and power grids. Our ULF monitoring correlated with two local magnetometers does not indicate this so far with our receivers. Our analysis was made during magnetic storms with Kp 7 and 8 according to NOAA satellites. To correlate the results we implemented an application that monitors the satellite EUTELSAT latency compared to WiMAX land communication in the same place. ULF band radio monitoring showed that our receiver is dependent on temperature and that it is necessary to introduce a band pass filter in data analysis. ULF data acquisition is performed by Kinemetrics and National Instruments digitizers with a sampling rate of 100 Hz in Miniseed format and then converted into text files with 1 Hz rate for analysis in very low

  20. Alaska Community Forest Council

    Science.gov Websites

    Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans