Science.gov

Sample records for alaska monitoring network

  1. Towards a Network Matched Filter Observatory for Alaska/Aleutian Volcano Monitoring and Research.

    NASA Astrophysics Data System (ADS)

    Holtkamp, S. G.

    2015-12-01

    Network Matched Filtering (NMF, commonly referred to as template matching), is a procedure which utilizes waveforms recorded from a cataloged seismic event (the "template event") to find additional seismic events by cross-correlating the template event with continuous seismic data over the time period of interest. NMF has been successfully used to populate seismic catalogs for a wide variety of seismic signals which are difficult to identify, such as tectonic low frequency earthquakes, early or triggered aftershocks, and small magnitude induced seismic sequences. NMF provides robust event detection of signals with signal to noise ratios near one, and the output of the filter is largely independent of unrelated seismic noise, making it an ideal technique for identifying events during noisy time periods, such as immediately following a large earthquake or during a volcanic eruption. We also show how NMF can be used over longer time periods, with dynamic seismic network status, to more robustly compare time periods with disparate network geometries. Here, we present efforts to develop processing infrastructure for semi-automated execution of the NMF technique applied to volcanoes in the state of Alaska. We present a series of case studies involving both monitored and unmonitored volcanoes. Given the large scope of this endeavor, we focus our preliminary efforts on cataloging deep long period (DLP) seismicity, as DLP's have high scientific interest (as well as providing a reasonable benchmark), have been cataloged at many of Alaska's volcanoes, and yet are rare enough to speed up code development and testing. At Redoubt, for example, we use NMF to develop a catalog of ~300 DLP's from 2008 through July 2015. Most cataloged DLP's and new matches from NMF occurred close in time to the 2009 eruption, but we find that DLP activity has continued through July 2015. At Kasatochi, an unmonitored volcano which erupted in 2008, we show that NMF is more effective at cataloging

  2. Monitoring Climate Variability and Change in Northern Alaska: Updates to the U.S. Geological Survey (USGS) Climate and Permafrost Monitoring Network

    NASA Astrophysics Data System (ADS)

    Urban, F. E.; Clow, G. D.; Meares, D. C.

    2004-12-01

    Observations of long-term climate and surficial geological processes are sparse in most of the Arctic, despite the fact that this region is highly sensitive to climate change. Instrumental networks that monitor the interplay of climatic variability and geological/cryospheric processes are a necessity for documenting and understanding climate change. Improvements to the spatial coverage and temporal scale of Arctic climate data are in progress. The USGS, in collaboration with The Bureau of Land Management (BLM) and The Fish and Wildlife Service (FWS) currently maintains two types of monitoring networks in northern Alaska: (1) A 15 site network of continuously operating active-layer and climate monitoring stations, and (2) a 21 element array of deep bore-holes in which the thermal state of deep permafrost is monitored. Here, we focus on the USGS Alaska Active Layer and Climate Monitoring Network (AK-CLIM). These 15 stations are deployed in longitudinal transects that span Alaska north of the Brooks Range, (11 in The National Petroleum Reserve Alaska, (NPRA), and 4 in The Arctic National Wildlife Refuge (ANWR)). An informative overview and update of the USGS AK-CLIM network is presented, including insight to current data, processing and analysis software, and plans for data telemetry. Data collection began in 1998 and parameters currently measured include air temperature, soil temperatures (5-120 cm), snow depth, incoming and reflected short-wave radiation, soil moisture (15 cm), wind speed and direction. Custom processing and analysis software has been written that calculates additional parameters such as active layer thaw depth, thawing-degree-days, albedo, cloudiness, and duration of seasonal snow cover. Data from selected AK-CLIM stations are now temporally sufficient to begin identifying trends, anomalies, and inter-annual variability in the climate of northern Alaska.

  3. The Alaska Volcano Observatory - Expanded Monitoring of Volcanoes Yields Results

    USGS Publications Warehouse

    Brantley, Steven R.; McGimsey, Robert G.; Neal, Christina A.

    2004-01-01

    Recent explosive eruptions at some of Alaska's 52 historically active volcanoes have significantly affected air traffic over the North Pacific, as well as Alaska's oil, power, and fishing industries and local communities. Since its founding in the late 1980s, the Alaska Volcano Observatory (AVO) has installed new monitoring networks and used satellite data to track activity at Alaska's volcanoes, providing timely warnings and monitoring of frequent eruptions to the aviation industry and the general public. To minimize impacts from future eruptions, scientists at AVO continue to assess volcano hazards and to expand monitoring networks.

  4. Recorded earthquake responses from the integrated seismic monitoring network of the Atwood Building, Anchorage, Alaska

    USGS Publications Warehouse

    Celebi, M.

    2006-01-01

    An integrated seismic monitoring system with a total of 53 channels of accelerometers is now operating in and at the nearby free-field site of the 20-story steel-framed Atwood Building in highly seismic Anchorage, Alaska. The building has a single-story basement and a reinforced concrete foundation without piles. The monitoring system comprises a 32-channel structural array and a 21-channel site array. Accelerometers are deployed on 10 levels of the building to assess translational, torsional, and rocking motions, interstory drift (displacement) between selected pairs of adjacent floors, and average drift between floors. The site array, located approximately a city block from the building, comprises seven triaxial accelerometers, one at the surface and six in boreholes ranging in depths from 15 to 200 feet (???5-60 meters). The arrays have already recorded low-amplitude shaking responses of the building and the site caused by numerous earthquakes at distances ranging from tens to a couple of hundred kilometers. Data from an earthquake that occurred 186 km away traces the propagation of waves from the deepest borehole to the roof of the building in approximately 0.5 seconds. Fundamental structural frequencies [0.58 Hz (NS) and 0.47 Hz (EW)], low damping percentages (2-4%), mode coupling, and beating effects are identified. The fundamental site frequency at approximately 1.5 Hz is close to the second modal frequencies (1.83 Hz NS and 1.43 EW) of the building, which may cause resonance of the building. Additional earthquakes prove repeatability of these characteristics; however, stronger shaking may alter these conclusions. ?? 2006, Earthquake Engineering Research Institute.

  5. Alaska Seismic Network Upgrade and Expansion

    NASA Astrophysics Data System (ADS)

    Sandru, J. M.; Hansen, R. A.; Estes, S. A.; Fowler, M.

    2009-12-01

    AEIC (Alaska Earthquake Information Center) has begun the task of upgrading the older regional seismic monitoring sites that have been in place for a number of years. Many of the original sites (some dating to the 1960's) are still single component analog technology. This was a very reasonable and ultra low power reliable system for its day. However with the advanced needs of today's research community, AEIC has begun upgrading to Broadband and Strong Motion Seismometers, 24 bit digitizers and high-speed two-way communications, while still trying to maintain the utmost reliability and maintaining low power consumption. Many sites have been upgraded or will be upgraded from single component to triaxial broad bands and triaxial accerometers. This provided much greater dynamic range over the older antiquated technology. The challenge is compounded by rapidly changing digital technology. Digitizersand data communications based on analog phone lines utilizing 9600 baud modems and RS232 are becoming increasingly difficult to maintain and increasingly expensive compared to current methods that use Ethernet, TCP/IP and UDP connections. Gaining a reliable Internet connection can be as easy as calling up an ISP and having a DSL connection installed or may require installing our own satellite uplink, where other options don't exist. LANs are accomplished with a variety of communications devices such as spread spectrum 900 MHz radios or VHF radios for long troublesome shots. WANs are accomplished with a much wider variety of equipment. Traditional analog phone lines are being used in some instances, however 56K lines are much more desirable. Cellular data links have become a convenient option in semiurban environments where digital cellular coverage is available. Alaska is slightly behind the curve on cellular technology due to its low population density and vast unpopulated areas but has emerged into this new technology in the last few years. Partnerships with organizations

  6. Alaska's giant satellite network

    NASA Astrophysics Data System (ADS)

    Hills, A.

    1983-07-01

    The evolution and features of the Alaskan telecommunications network are described, with emphasis on the satellite links. The Alaskan terrain is rugged and largely unpopulated. Satcom V provides C-band (6/4 GHz) transmission with 24 transponders, each having a 40 MHz bandwidth. The Alascom company operated 105 4.5 m earth-based antennas for remote villages, which receive both telephone and television services. There are also 27 10-m dishes for regional and military applications and a 30 m dish, one of three dishes for links to the centerminous U.S. Currently, half the villages have private and business telephone communications facilities and 200 villages have access to two television stations, one educational, one entertainment. Teleconferencing is possible for government and educational purposes, and discussions are underway with NASA to establish a mobile radio communications capacity.

  7. Developing Gyrfalcon surveys and monitoring for Alaska

    USGS Publications Warehouse

    Fuller, Mark R.; Schempf, Philip F.; Booms, Travis L.

    2011-01-01

    We developed methods to monitor the status of Gyrfalcons in Alaska. Results of surveys and monitoring will be informative for resource managers and will be useful for studying potential changes in ecological communities of the high latitudes. We estimated that the probability of detecting a Gyrfalcon at an occupied nest site was between 64% and 87% depending on observer experience and aircraft type (fixed-wing or helicopter). The probability of detection is an important factor for estimating occupancy of nesting areas, and occupancy can be used as a metric for monitoring species' status. We conclude that surveys of nesting habitat to monitor occupancy during the breeding season are practical because of the high probability of seeing a Gyrfalcon from aircraft. Aerial surveys are effective for searching sample plots or index areas in the expanse of the Alaskan terrain. Furthermore, several species of cliff-nesting birds can be surveyed concurrently from aircraft. Occupancy estimation also can be applied using data from other field search methods (e.g., from boats) that have proven useful in Alaska. We believe a coordinated broad-scale, inter-agency, collaborative approach is necessary in Alaska. Monitoring can be facilitated by collating and archiving each set of results in a secure universal repository to allow for statewide meta-analysis.

  8. Wildlife, Snow, Coffee, and Video: The IPY Activities of the University of Alaska Young Researchers' Network

    NASA Astrophysics Data System (ADS)

    Pringle, D.; Alvarez-Aviles, L.; Carlson, D.; Harbeck, J.; Druckenmiller, M.; Newman, K.; Mueller, D.; Petrich, C.; Roberts, A.; Wang, Y.

    2007-12-01

    The University of Alaska International Polar Year (IPY) Young Researchers' Network is a group of graduate students and postdoctoral fellows. Our interdisciplinary group operates as a volunteer network to promote the International Polar Year through education and outreach aimed at the general public and Alaskan students of all ages. The Young Researchers' Network sponsors and organizes science talks or Science Cafés by guest speakers in public venues such as coffee shops and bookstores. We actively engage high school students in IPY research concerning the ionic concentrations and isotopic ratios of precipitation through Project Snowball. Our network provides hands-on science activities to encourage environmental awareness and initiate community wildlife monitoring programs such as Wildlife Day by Day. We mentor individual high school students pursuing their own research projects related to IPY through the Alaska High School Science Symposium. Our group also interacts with the general public at community events and festivals to share the excitement of IPY for example at the World Ice Art Championship and Alaska State Fair. The UA IPY Young Researchers' Network continues to explore new partnerships with educators and students in an effort to enhance science and education related to Alaska and the polar regions in general. For more information please visit: http://ipy-youth.uaf.edu or e-mail: ipy-youth@alaska.edu

  9. Serial Network Flow Monitor

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.

  10. Distributed Permafrost Observation Network in Western Alaska: the First Results

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Cable, W.; Marchenko, S. S.; Panda, S. K.

    2014-12-01

    The area of Western Alaska including the Selawik National Wildlife Refuge (SNWR) is generally underrepresented in terms of permafrost thermal monitoring. Thus, the main objective of this study was to establish a permafrost monitoring network in Western Alaska in order to understand the spatial variability in permafrost thermal regime in the area and to have a baseline in order to detect future change. Present and future thawing of permafrost in the region will have a dramatic effect on the ecosystems and infrastructure because the permafrost here generally has a high ice content, as a result of preservation of old ground ice in these relatively cold regions even during the warmer time intervals of the Holocene. Over the summers of 2011 and 2012 a total of 26 automated monitoring stations were established to collect temperature data from the active layer and near-surface permafrost. While most of these stations were basic and only measured the temperature down to 1.5 m at 4 depths, three of the stations had higher vertical temperature resolution down to 3 m. The sites were selected using an ecotype (basic vegetation groups) map of very high resolution (30 m) that had been created for the area in 2009. We found the Upland Dwarf Birch-Tussock Shrub ecotype to be the coldest with a mean annual ground temperature at 1 meter (MAGT1.0) of -3.9 °C during the August 1st, 2012 to July 31st, 2013 measurement period. This is also the most widespread ecotype in the SNWR, covering approximately 28.4% by area. The next widespread ecotype in the SNWR is the Lowland and Upland Birch-Ericaceous Low Shrub. This ecotype had higher ground temperatures with an average MAGT1.0 of -2.4 °C during the same measurement period. We also found that within some ecotypes (White Spruce and Alder-Willow Shrub) the presence or absence of moss on the surface seems to indicate the presence or absence of near surface permafrost. In general, we found good agreement between ecotype classes and

  11. Satellite monitoring of remote volcanoes improves study efforts in Alaska

    NASA Astrophysics Data System (ADS)

    Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K.

    Satellite monitoring of remote volcanoes is greatly benefitting the Alaska Volcano Observatory (AVO), and last year's eruption of the Okmok Volcano in the Aleutian Islands is a good case in point. The facility was able to issue and refine warnings of the eruption and related activity quickly, something that could not have been done using conventional seismic surveillance techniques, since seismometers have not been installed at these locations.AVO monitors about 100 active volcanoes in the North Pacific (NOPAC) region, but only a handful are observed by costly and logistically complex conventional means. The region is remote and vast, about 5000 × 2500 km, extending from Alaska west to the Kamchatka Peninsula in Russia (Figure 1). Warnings are transmitted to local communities and airlines that might be endangered by eruptions. More than 70,000 passenger and cargo flights fly over the region annually, and airborne volcanic ash is a threat to them. Many remote eruptions have been detected shortly after the initial magmatic activity using satellite data, and eruption clouds have been tracked across air traffic routes. Within minutes after eruptions are detected, information is relayed to government agencies, private companies, and the general public using telephone, fax, and e-mail. Monitoring of volcanoes using satellite image data involves direct reception, real-time monitoring, and data analysis. Two satellite data receiving stations, located at the Geophysical Institute, University of Alaska Fairbanks (UAF), are capable of receiving data from the advanced very high resolution radiometer (AVHRR) on National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from synthetic aperture radar (SAR) equipped satellites.

  12. Development of Alaska Volcano Observatory Seismic Networks, 1988-2008

    NASA Astrophysics Data System (ADS)

    Tytgat, G.; Paskievitch, J. F.; McNutt, S. R.; Power, J. A.

    2008-12-01

    The number and quality of seismic stations and networks on Alaskan volcanoes have increased dramatically in the 20 years from 1988 to 2008. Starting with 28 stations on six volcanoes in 1988, the Alaska Volcano Observatory (AVO) now operates 194 stations in networks on 33 volcanoes spanning the 2000 km Aleutian Arc. All data are telemetered in real time to laboratory facilities in Fairbanks and Anchorage and recorded on digital acquisition systems. Data are used for both monitoring and research. The basic and standard network designs are driven by practical considerations including geography and terrain, access to commercial telecommunications services, and environmental vulnerability. Typical networks consist of 6 to 8 analog stations, whose data can be telemetered to fit on a single analog telephone circuit terminated ultimately in either Fairbanks or Anchorage. Towns provide access to commercial telecommunications and signals are often consolidated for telemetry by remote computer systems. Most AVO stations consist of custom made fiberglass huts that house the batteries, electronics, and antennae. Solar panels are bolted to the south facing side of the huts and the seismometers are buried nearby. The huts are rugged and have allowed for good station survivability and performance reliability. However, damage has occurred from wind, wind-blown pumice, volcanic ejecta, lightning, icing, and bears. Power is provided by multiple isolated banks of storage batteries charged by solar panels. Primary cells are used to provide backup power should the rechargable system fail or fall short of meeting the requirement. In the worst cases, snow loading blocks the solar panels for 7 months, so sufficient power storage must provide power for at least this long. Although primarily seismic stations, the huts and overall design allow additional instruments to be added, such as infrasound sensors, webcams, electric field meters, etc. Yearly maintenance visits are desirable, but some

  13. Baseline Environmental Monitoring Program at Toolik Field Station, Alaska

    NASA Astrophysics Data System (ADS)

    Kade, A.; Bret-Harte, M. S.

    2011-12-01

    The Environmental Data Center at the Toolik Field Station, Alaska established a baseline environmental monitoring program in 2007 to provide a long-term record of key biotic and abiotic variables to the scientific community. We maintain a weather station for a long-term climate record at the field station and monitor the timing of key plant phenological events, bird migration and mammal sightings. With regards to plant phenology, we record event dates such as emergence of first leaves, open flowers and seed dispersal for twelve select species typical of the moist acidic tundra, following the ITEX plant phenology protocol. From 2007 to 2011, we observed earlier emergence of first leaves by approximately one week for species such as the dwarf birch Betula nana, sedge Carex bigelowii and evergreen lingonberry Vaccinium vitis-idaea, while seed dispersal for some of these species was delayed by more than two weeks. We also monitor the arrival and departure dates of thirty bird species common to the Toolik area. Yearlong residents included species such as the common raven, rock and willow ptarmigan, and some migrants such as yellow-billed loons and American tree sparrows could be detected for about four months at Toolik, while long-distance traveling arctic terns stayed only two months during the summer. The timing of bird migration dates did not show any clear trends over the past five years for most species. For the past two decades, we recorded climate data such as air, soil and lake temperature, radiation, wind speed and direction, relative humidity and barometric pressure. During this time period, monthly mean air temperatures varied from -31.7 to -12.8 °C in January and from 8.3 to 13.1 °C in July, with no trend over time. Our baseline data on plant phenological changes, timing of bird migration and climate variables are valuable in the light of long-term environmental monitoring efforts as they provide the context for other seasonality projects that are

  14. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    SciTech Connect

    2013-09-01

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and

  15. Monitoring population status of sea otters (Enhydra lutris) in Glacier Bay National Park and Preserve, Alaska: options and considerations

    USGS Publications Warehouse

    Esslinger, George; Esler, Daniel N.; Howlin, S.; Starcevich, L.A.

    2015-06-25

    After many decades of absence from southeast Alaska, sea otters (Enhydra lutris) are recolonizing parts of their former range, including Glacier Bay, Alaska. Sea otters are well known for structuring nearshore ecosystems and causing community-level changes such as increases in kelp abundance and changes in the size and number of other consumers. Monitoring population status of sea otters in Glacier Bay will help park researchers and managers understand and interpret sea otter-induced ecosystem changes relative to other sources of variation, including potential human-induced impacts such as ocean acidification, vessel disturbance, and oil spills. This report was prepared for the National Park Service (NPS), Southeast Alaska Inventory and Monitoring Network following a request for evaluation of options for monitoring sea otter population status in Glacier Bay National Park and Preserve. To meet this request, we provide a detailed consideration of the primary method of assessment of abundance and distribution, aerial surveys, including analyses of power to detect interannual trends and designs to reduce variation around annual abundance estimates. We also describe two alternate techniques for evaluating sea otter population status—(1) quantifying sea otter diets and energy intake rates, and (2) detecting change in ages at death. In addition, we provide a brief section on directed research to identify studies that would further our understanding of sea otter population dynamics and effects on the Glacier Bay ecosystem, and provide context for interpreting results of monitoring activities.

  16. Alaska

    SciTech Connect

    Jones, B.C.; Sears, D.W.

    1981-10-01

    Twenty-five exploratory wells were drilled in Alaska in 1980. Five oil or gas discovery wells were drilled on the North Slope. One hundred and seventeen development and service wells were drilled and completed, primarily in the Prudhoe Bay and Kuparuk River fields on the North Slope. Geologic-geophysical field activity consisted of 115.74 crew months, an increase of almost 50% compared to 1979. These increases affected most of the major basins of the state as industry stepped up preparations for future lease sales. Federal acreage under lease increased slightly, while state lease acreage showed a slight decline. The year's oil production showed a increase of 16%, while gas production was down slightly. The federal land freeze in Alaska showed signs of thawing, as the US Department of Interior asked industry to identify areas of interest onshore for possible future leasing. National Petroleum Reserve in Alaska was opened to private exploration, and petroleum potential of the Arctic Wildlife Refuge will be studied. One outer continental shelf lease sale was held in the eastern Gulf of Alaska, and a series of state and federal lease sales were announced for the next 5 years. 5 figures, 5 tables.

  17. NETWORK DESIGN FOR OZONE MONITORING

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks from air pollution. A major cr...

  18. Evaluation of the streamflow-gaging network of Alaska in providing regional streamflow information

    USGS Publications Warehouse

    Brabets, Timothy P.

    1996-01-01

    In 1906, the U.S. Geological Survey (USGS) began operating a network of streamflow-gaging stations in Alaska. The primary purpose of the streamflow- gaging network has been to provide peak flow, average flow, and low-flow characteristics to a variety of users. In 1993, the USGS began a study to evaluate the current network of 78 stations. The objectives of this study were to determine the adequacy of the existing network in predicting selected regional flow characteristics and to determine if providing additional streamflow-gaging stations could improve the network's ability to predict these characteristics. Alaska was divided into six distinct hydrologic regions: Arctic, Northwest, Southcentral, Southeast, Southwest, and Yukon. For each region, historical and current streamflow data were compiled. In Arctic, Northwest, and Southwest Alaska, insufficient data were available to develop regional regression equations. In these areas, proposed locations of streamflow-gaging stations were selected by using clustering techniques to define similar areas within a region and by spatial visual analysis using the precipitation, physiographic, and hydrologic unit maps of Alaska. Sufficient data existed in Southcentral and Southeast Alaska to use generalized least squares (GLS) procedures to develop regional regression equations to estimate the 50-year peak flow, annual average flow, and a low-flow statistic. GLS procedures were also used for Yukon Alaska but the results should be used with caution because the data do not have an adequate spatial distribution. Network analysis procedures were used for the Southcentral, Southeast, and Yukon regions. Network analysis indicates the reduction in the sampling error of the regional regression equation that can be obtained given different scenarios. For Alaska, a 10-year planning period was used. One scenario showed the results of continuing the current network with no additional gaging stations and another scenario showed the results

  19. Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Though it's not quite spring, waters in the Gulf of Alaska (right) appear to be blooming with plant life in this true-color MODIS image from March 4, 2002. East of the Alaska Peninsula (bottom center), blue-green swirls surround Kodiak Island. These colors are the result of light reflecting off chlorophyll and other pigments in tiny marine plants called phytoplankton. The bloom extends southward and clear dividing line can be seen west to east, where the bloom disappears over the deeper waters of the Aleutian Trench. North in Cook Inlet, large amounts of red clay sediment are turning the water brown. To the east, more colorful swirls stretch out from Prince William Sound, and may be a mixture of clay sediment from the Copper River and phytoplankton. Arcing across the top left of the image, the snow-covered Brooks Range towers over Alaska's North Slope. Frozen rivers trace white ribbons across the winter landscape. The mighty Yukon River traverses the entire state, beginning at the right edge of the image (a little way down from the top) running all the way over to the Bering Sea, still locked in ice. In the high-resolution image, the circular, snow-filled calderas of two volcanoes are apparent along the Alaska Peninsula. In Bristol Bay (to the west of the Peninsula) and in a couple of the semi-clear areas in the Bering Sea, it appears that there may be an ice algae bloom along the sharp ice edge (see high resolution image for better details). Ground-based observations from the area have revealed that an under-ice bloom often starts as early as February in this region and then seeds the more typical spring bloom later in the season.

  20. Presentation from 2016 STAR Tribal Research Meeting: ANTHC Rural Alaska Monitoring Program (RAMP): Assessing, Monitoring, and Adapting to Emerging Environmental Human and Wildlife Health Threats

    EPA Pesticide Factsheets

    This presentation, ANTHC Rural Alaska Monitoring Program (RAMP): Assessing, Monitoring, and Adapting to Emerging Environmental Human and Wildlife Health Threats, was given at the 2016 STAR Tribal Research Meeting held on Sept. 20-21, 2016.

  1. Host Event Based Network Monitoring

    SciTech Connect

    Jonathan Chugg

    2013-01-01

    The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  2. Framework for ecological monitoring on lands of Alaska National Wildlife Refuges and their partners

    USGS Publications Warehouse

    Woodward, Andrea; Beever, Erik A.

    2010-01-01

    National Wildlife Refuges in Alaska and throughout the U.S. have begun developing a spatially comprehensive monitoring program to inform management decisions, and to provide data to broader research projects. In an era of unprecedented rates of climate change, monitoring is essential to detecting, understanding, communicating and mitigating climate-change effects on refuge and other resources under the protection of U.S. Fish and Wildlife Service, and requires monitoring results to address spatial scales broader than individual refuges. This document provides guidance for building a monitoring program for refuges in Alaska that meets refuge-specific management needs while also allowing synthesis and summary of ecological conditions at the ecoregional and statewide spatial scales.

  3. Network based sky Brightness Monitor

    NASA Astrophysics Data System (ADS)

    McKenna, Dan; Pulvermacher, R.; Davis, D. R.

    2009-01-01

    We have developed and are currently testing an autonomous 2 channel photometer designed to measure the night sky brightness in the visual wavelengths over a multi-year campaign. The photometer uses a robust silicon sensor filtered with Hoya CM500 glass. The Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The Sky Brightness monitor consists of two units, the remote photometer and a network interface. Currently these devices use 2.4 Ghz transceivers with a free space range of 100 meters. The remote unit is battery powered with day time recharging using a solar panel. Data received by the network interface transmits data via standard POP Email protocol. A second version is under development for radio sensitive areas using an optical fiber for data transmission. We will present the current comparison with the National Park Service sky monitoring camera. We will also discuss the calibration methods used for standardization and temperature compensation. This system is expected to be deployed in the next year and be operated by the International Dark Sky Association SKYMONITOR project.

  4. The Earthscope Plate Boundary Observatory Alaska Region an Overview of Network Operation, Maintenance and Improvement

    NASA Astrophysics Data System (ADS)

    Enders, M.; Boyce, E. S.; Bierma, R.; Walker, K.; Feaux, K.

    2011-12-01

    UNAVCO has now completed its third year of operation of the 138 continuous GPS stations, 12 tiltmeters and 31 communications relays that comprise the Alaska Region of the Earthscope Plate Boundary Observatory. Working in Alaska has been challenging due to the extreme environmental conditions encountered and logistics difficulties. Despite these challenges we have been able to complete each summer field season with network operation at 95% or better. Throughout the last three years we have analyzed both our successes and failures to improve the quality of our network and better serve the scientific community. Additionally, we continue to evaluate and deploy new technologies to improve station reliability and add to the data set available from our stations. 2011 was a busy year for the Alaska engineering team and some highlights from last year's maintenance season include the following. This spring we completed testing and deployment of the first Inmarsat BGAN satellite terminal for data telemetry at AC60 Shemya Island. Shemya Island is at the far western end of the Aleutian Islands and is one of the most remote and difficult to access stations in the PBO AK network. Until the installation of the BGAN, this station was offline with no data telemetry for almost one year. Since the installation of the BGAN in early April 2011 dataflow has been uninterrupted. This year we also completed the first deployments of Stardot NetCamSC webcams in the PBO Network. Currently, these are installed and operational at six GPS stations in Alaska, with plans to install several more next season in Alaska. Images from these cameras can be found at the station homepages linked to from the UNAVCO website. In addition to the hard work put in by PBO engineers this year, it is important that we recognize the contributions of our partners. In particular the Alaska Volcano Observatory, the Alaska Earthquake Information Center and others who have provided us with valuable engineering assistance

  5. Volcanic plumes monitored with GPS: The eruptions of Okmok 2008, and Redoubt 2009, Alaska

    NASA Astrophysics Data System (ADS)

    Grapenthin, R.; Freymueller, J. T.

    2012-12-01

    The eruptions of Okmok Volcano in 2008 and Redoubt Volcano in 2009 produced significant ash plumes reaching over 15 km of altitude. While satellite based remote sensing techniques provide good spatial coverage for the detection of volcanic plumes, slow satellite repeat times (>30 minutes) and cloud cover can prevent the detection entirely. GPS, in turn, provides excellent temporal coverage along GPS ray paths and GPS analysis tools do not model the changes of the atmosphere induced by a volcanic plume. Thus, given a favorable satellite-station-geometry such that the GPS signal pierces the plume, we can utilize the induced induced phase residuals as a volcano monitoring tool. The recent eruptions of Okmok and Redoubt volcanoes in Alaska were recorded by sparse continuous GPS networks recording at 15-30 second intervals. We analyze these records to investigate the usefulness of GPS phase residuals for plume monitoring, sensing and tracking. A straightforward result is the derivation of plume azimuths from phase residuals plotted along the sky tracks of individual satellites. However, the phase residuals are not necessarily linearly related to the phase delay as some of it is mapped into station coordinates and likely other parameters. The derivation of plume densities hence not only depends on how a plume effectively slows a signal at speed of light, but also how this error is mapped into the various parameters to be estimated when solving for a station position. To get first order estimates of how the signal is affected by the plume, we conduct experiments for stations experiencing little to no volcanic displacements during plume ejection and fix all solution parameters to reasonable a-priori parameters. Solving this forward problem allows us to track plumes and infer path delay. To derive plume densities future work needs to investigate the effects of plumes on radio signals.

  6. The Austrian UV monitoring network

    NASA Astrophysics Data System (ADS)

    Blumthaler, Mario; Klotz, Barbara; Schwarzmann, Michael; Schreder, Josef

    2017-02-01

    The Austrian UV Monitoring network is operational since 1998 providing a large data set of erythemally weighted UV irradiance recorded with broadband UV biometer at 12 stations distributed all over Austria. In order to obtain high quality data all biometer are recalibrated once a year, the detectors are checked regularly for humidity and quality control is done routinely. The collected data are processed and then published on the website http://www.uv-index.at where the UV-Index of all measurement sites is presented in near real time together with a map of the distribution of the UV-Index over Austria. These UV-Index data together with measurements of global radiation and ozone levels from OMI are used to study long term trends for the stations of the monitoring network. Neither for all weather conditions nor for clear sky conditions is a statistically significant trend found for the UV-Index (with one exception) and for ozone. Furthermore, the radiation amplification factor (RAF) is determined experimentally from the power law correlation between UV-Index and ozone level for the site Innsbruck (577 m above sea level, 47.26°N, 11.38°E) for 19°solar elevation. A value of 0.91 ± 0.05 is found for the RAF for clear sky days with low ground albedo and a value of 1.03 ± 0.08 for days with high ground albedo (snow cover).

  7. Environmental Monitoring Using Sensor Networks

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhang, C.; Li, X.; Huang, Y.; Fu, S.; Acevedo, M. F.

    2008-12-01

    Environmental observatories, consisting of a variety of sensor systems, computational resources and informatics, are important for us to observe, model, predict, and ultimately help preserve the health of the nature. The commoditization and proliferation of coin-to-palm sized wireless sensors will allow environmental monitoring with unprecedented fine spatial and temporal resolution. Once scattered around, these sensors can identify themselves, locate their positions, describe their functions, and self-organize into a network. They communicate through wireless channel with nearby sensors and transmit data through multi-hop protocols to a gateway, which can forward information to a remote data server. In this project, we describe an environmental observatory called Texas Environmental Observatory (TEO) that incorporates a sensor network system with intertwined wired and wireless sensors. We are enhancing and expanding the existing wired weather stations to include wireless sensor networks (WSNs) and telemetry using solar-powered cellular modems. The new WSNs will monitor soil moisture and support long-term hydrologic modeling. Hydrologic models are helpful in predicting how changes in land cover translate into changes in the stream flow regime. These models require inputs that are difficult to measure over large areas, especially variables related to storm events, such as soil moisture antecedent conditions and rainfall amount and intensity. This will also contribute to improve rainfall estimations from meteorological radar data and enhance hydrological forecasts. Sensor data are transmitted from monitoring site to a Central Data Collection (CDC) Server. We incorporate a GPRS modem for wireless telemetry, a single-board computer (SBC) as Remote Field Gateway (RFG) Server, and a WSN for distributed soil moisture monitoring. The RFG provides effective control, management, and coordination of two independent sensor systems, i.e., a traditional datalogger-based wired

  8. New Approach to Sea Level Monitoring Tested at Shemya, Alaska

    NASA Astrophysics Data System (ADS)

    Urban, G. W.; Medbery, A. H.; Burgy, M. C.

    2003-12-01

    Due to the prohibitive installation cost to replace a storm damaged stilling well type tide gauge at Earickson Air Force Station on Shemya Island, Alaska, an alternative sea-level gauge was sought by the West Coast and Alaska Tsunami Warning Center (WCATWC). An Omart-Vega radar system was chosen as the alternative, since it had low power needs, did not require a stilling well and its design included observation of rough surface liquids. The Omart-Vega radar system works by emitting a 5 gHz radar wave which reflects off the water surface and then back to the unit at a specified rate. This information is then telemetered directly to a computer which records the sample. Although the cost of the Vega system (3500USD) was similar to that of the stilling well unit (2500USD), the comparison of the installation costs of the two different units was an issue. To install the stilling well system, two certified under-water welding divers were required at a cost of 40K-USD or more. In comparison, the installation of the Vega system simply required an arm constructed so as to hang and support the Vega unit off the pier at Shemya. This arm assembly would also house the unit to protect it from surf and weather. The arm was designed in-house and built by a local metal contractor for less than 500USD. This portable unit was sent to Shemya via C-130 aircraft. The arm assembly and housed radar tide gauge was installed by one person. The circuitry to run the Vega was developed and tested at the WCATWC. Software was designed and tested there as well, although the software was written by Omart at no cost to the Warning Center. The circuitry allows for direct remote reconfiguration from Palmer to the radar system. The Vega is accessed by software directly from the WCATWC computer to sample the water level at numerous settable sample rates, which include one second, five second, fifteen second, and thirty second. After nearly one year of operation at Earickson, which included many major

  9. Sensor Network Architectures for Monitoring Underwater Pipelines

    PubMed Central

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669

  10. Healy Clean Coal Project, Healy, Alaska final Environmental Monitoring Plan

    SciTech Connect

    Not Available

    1994-06-14

    This Environmental Monitoring Plan (EMP) provides the mechanism to evaluate the integrated coal combustion/emission control system being demonstrated by the Healy Clean Coal Project (HCCP) as part-of the third solicitation of the US Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCT-III). The EMP monitoring is intended to satisfy two objectives: (1) to develop the information base necessary for identification, assessment, and mitigation of potential environmental problems arising from replication of the technology and (2) to identify and quantify project-specific and site-specific environmental impacts predicted in the National Environmental Policy Act (NEPA) documents (Environmental Impact Statement and Record of Decision). The EMP contains a description of the background and history of development of the project technologies and defines the processes that will take place in the combustion and spray dryer absorber systems, including the formation of flash-calcined material (FCM) and its use in sulfur dioxide (SO{sub 2}) removal from the flue gases. It also contains a description of the existing environmental resources of the project area. The EMP includes two types of environmental monitoring that are to be used to demonstrate the technologies of the HCCP: compliance monitoring and supplemental monitoring. Compliance monitoring activities include air emissions, wastewater effluents, and visibility. Monitoring of these resources provide the data necessary to demonstrate that the power plant can operate under the required state and federal statutes, regulations, and permit requirements.

  11. Autonomous Environment-Monitoring Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2004-01-01

    Autonomous environment-monitoring networks (AEMNs) are artificial neural networks that are specialized for recognizing familiarity and, conversely, novelty. Like a biological neural network, an AEMN receives a constant stream of inputs. For purposes of computational implementation, the inputs are vector representations of the information of interest. As long as the most recent input vector is similar to the previous input vectors, no action is taken. Action is taken only when a novel vector is encountered. Whether a given input vector is regarded as novel depends on the previous vectors; hence, the same input vector could be regarded as familiar or novel, depending on the context of previous input vectors. AEMNs have been proposed as means to enable exploratory robots on remote planets to recognize novel features that could merit closer scientific attention. AEMNs could also be useful for processing data from medical instrumentation for automated monitoring or diagnosis. The primary substructure of an AEMN is called a spindle. In its simplest form, a spindle consists of a central vector (C), a scalar (r), and algorithms for changing C and r. The vector C is constructed from all the vectors in a given continuous stream of inputs, such that it is minimally distant from those vectors. The scalar r is the distance between C and the most remote vector in the same set. The construction of a spindle involves four vital parameters: setup size, spindle-population size, and the radii of two novelty boundaries. The setup size is the number of vectors that are taken into account before computing C. The spindle-population size is the total number of input vectors used in constructing the spindle counting both those that arrive before and those that arrive after the computation of C. The novelty-boundary radii are distances from C that partition the neighborhood around C into three concentric regions (see Figure 1). During construction of the spindle, the changing spindle radius

  12. Functional brain networks involved in reality monitoring.

    PubMed

    Metzak, Paul D; Lavigne, Katie M; Woodward, Todd S

    2015-08-01

    Source monitoring refers to the recollection of variables that specify the context and conditions in which a memory episode was encoded. This process involves using the qualitative and quantitative features of a memory trace to distinguish its source. One specific class of source monitoring is reality monitoring, which involves distinguishing internally generated from externally generated information, that is, memories of imagined events from real events. The purpose of the present study was to identify functional brain networks that underlie reality monitoring, using an alternative type of source monitoring as a control condition. On the basis of previous studies on self-referential thinking, it was expected that a medial prefrontal cortex (mPFC) based network would be more active during reality monitoring than the control condition, due to the requirement to focus on a comparison of internal (self) and external (other) source information. Two functional brain networks emerged from this analysis, one reflecting increasing task-related activity, and one reflecting decreasing task-related activity. The second network was mPFC based, and was characterized by task-related deactivations in areas resembling the default-mode network; namely, the mPFC, middle temporal gyri, lateral parietal regions, and the precuneus, and these deactivations were diminished during reality monitoring relative to source monitoring, resulting in higher activity during reality monitoring. This result supports previous research suggesting that self-referential thinking involves the mPFC, but extends this to a network-level interpretation of reality monitoring.

  13. Bridge monitoring using heterogeneous wireless sensor network

    NASA Astrophysics Data System (ADS)

    Haran, Shivan; Kher, Shubhalaxmi; Mehndiratta, Vandana

    2010-03-01

    Wireless sensor networks (WSN) are proving to be a good fit where real time monitoring of multiple physical parameters is required. In many applications such as structural health monitoring, patient data monitoring, traffic accident monitoring and analysis, sensor networks may involve interface with conventional P2P systems and it is challenging to handle heterogeneous network systems. Heterogeneous deployments will become increasingly prevalent as it allows for systems to seamlessly integrate and interoperate especially when it comes to applications involving monitoring of large infrastructures. Such networks may have wireless sensor network overlaid on a conventional computer network to pick up data from one distant location and carry out the analysis after relaying it over to another distant location. This paper discusses monitoring of bridges using WSN. As a test bed, a heterogeneous network of WSN and conventional P2P together with a combination of sensing devices (including vibration and strain) is to be used on a bridge model. Issues related to condition assessment of the bridge for situations including faults, overloads, etc., as well as analysis of network and system performance will be discussed. When conducted under controlled conditions, this is an important step towards fine tuning the monitoring system for recommendation of permanent mounting of sensors and collecting data that can help in the development of new methods for inspection and evaluation of bridges. The proposed model, design, and issues therein will be discussed, along with its implementation and results.

  14. Promoting Social Network Awareness: A Social Network Monitoring System

    ERIC Educational Resources Information Center

    Cadima, Rita; Ferreira, Carlos; Monguet, Josep; Ojeda, Jordi; Fernandez, Joaquin

    2010-01-01

    To increase communication and collaboration opportunities, members of a community must be aware of the social networks that exist within that community. This paper describes a social network monitoring system--the KIWI system--that enables users to register their interactions and visualize their social networks. The system was implemented in a…

  15. Monitoring of oceanographic properties of Glacier Bay, Alaska 2004

    USGS Publications Warehouse

    2005-01-01

    Glacier Bay is a recently (300 years ago) deglaciated fjord estuarine system that has multiple sills, very deep basins, tidewater glaciers, and many streams. Glacier Bay experiences a large amount of runoff, high sedimentation, and large tidal variations. High freshwater discharge due to snow and ice melt and the presence of the tidewater glaciers makes the bay extremely cold. There are many small- and large-scale mixing and upwelling zones at sills, glacial faces, and streams. The complex topography and strong currents lead to highly variable salinity, temperature, sediment, primary productivity, light penetration, stratification levels, and current patterns within a small area. The oceanographic patterns within Glacier Bay drive a large portion of the spatial and temporal variability of the ecosystem. It has been widely recognized by scientists and resource managers in Glacier Bay that a program to monitor oceanographic patterns is essential for understanding the marine ecosystem and to differentiate between anthropogenic disturbance and natural variation. This year’s sampling marks the 12th continuous year of monitoring the oceanographic conditions at 23 stations along the primary axes within Glacier Bay, AK, making this a very unique and valuable data set in terms of its spatial and temporal coverage.

  16. Monitoring Churn in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Holzer, Stephan; Pignolet, Yvonne Anne; Smula, Jasmin; Wattenhofer, Roger

    Wireless networks often experience a significant amount of churn, the arrival and departure of nodes. In this paper we propose a distributed algorithm for single-hop networks that detects churn and is resilient to a worst-case adversary. The nodes of the network are notified about changes quickly, in asymptotically optimal time up to an additive logarithmic overhead. We establish a trade-off between saving energy and minimizing the delay until notification for single- and multi-channel networks.

  17. Network Monitor and Control of Disruption-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh

    2014-01-01

    For nearly a decade, NASA and many researchers in the international community have been developing Internet-like protocols that allow for automated network operations in networks where the individual links between nodes are only sporadically connected. A family of Disruption-Tolerant Networking (DTN) protocols has been developed, and many are reaching CCSDS Blue Book status. A NASA version of DTN known as the Interplanetary Overlay Network (ION) has been flight-tested on the EPOXI spacecraft and ION is currently being tested on the International Space Station. Experience has shown that in order for a DTN service-provider to set up a large scale multi-node network, a number of network monitor and control technologies need to be fielded as well as the basic DTN protocols. The NASA DTN program is developing a standardized means of querying a DTN node to ascertain its operational status, known as the DTN Management Protocol (DTNMP), and the program has developed some prototypes of DTNMP software. While DTNMP is a necessary component, it is not sufficient to accomplish Network Monitor and Control of a DTN network. JPL is developing a suite of tools that provide for network visualization, performance monitoring and ION node control software. This suite of network monitor and control tools complements the GSFC and APL-developed DTN MP software, and the combined package can form the basis for flight operations using DTN.

  18. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  19. Earthquake locations determined by the Southern Alaska seismograph network for October 1971 through May 1989

    USGS Publications Warehouse

    Fogleman, Kent A.; Lahr, John C.; Stephens, Christopher D.; Page, Robert A.

    1993-01-01

    This report describes the instrumentation and evolution of the U.S. Geological Survey’s regional seismograph network in southern Alaska, provides phase and hypocenter data for seismic events from October 1971 through May 1989, reviews the location methods used, and discusses the completeness of the catalog and the accuracy of the computed hypocenters. Included are arrival time data for explosions detonated under the Trans-Alaska Crustal Transect (TACT) in 1984 and 1985.The U.S. Geological Survey (USGS) operated a regional network of seismographs in southern Alaska from 1971 to the mid 1990s. The principal purpose of this network was to record seismic data to be used to precisely locate earthquakes in the seismic zones of southern Alaska, delineate seismically active faults, assess seismic risks, document potential premonitory earthquake phenomena, investigate current tectonic deformation, and study the structure and physical properties of the crust and upper mantle. A task fundamental to all of these goals was the routine cataloging of parameters for earthquakes located within and adjacent to the seismograph network.The initial network of 10 stations, 7 around Cook Inlet and 3 near Valdez, was installed in 1971. In subsequent summers additions or modifications to the network were made. By the fall of 1973, 26 stations extended from western Cook Inlet to eastern Prince William Sound, and 4 stations were located to the east between Cordova and Yakutat. A year later 20 additional stations were installed. Thirteen of these were placed along the eastern Gulf of Alaska with support from the National Oceanic and Atmospheric Administration (NOAA) under the Outer Continental Shelf Environmental Assessment Program to investigate the seismicity of the outer continental shelf, a region of interest for oil exploration. Since then the region covered by the network remained relatively fixed while efforts were made to make the stations more reliable through improved electronic

  20. Software For Monitoring A Computer Network

    NASA Technical Reports Server (NTRS)

    Lee, Young H.

    1992-01-01

    SNMAT is rule-based expert-system computer program designed to assist personnel in monitoring status of computer network and identifying defective computers, workstations, and other components of network. Also assists in training network operators. Network for SNMAT located at Space Flight Operations Center (SFOC) at NASA's Jet Propulsion Laboratory. Intended to serve as data-reduction system providing windows, menus, and graphs, enabling users to focus on relevant information. SNMAT expected to be adaptable to other computer networks; for example in management of repair, maintenance, and security, or in administration of planning systems, billing systems, or archives.

  1. EarthScope's Plate Boundary Observatory in Alaska: Building on Existing Infrastructure to Provide a Platform for Integrated Research and Hazard-monitoring Efforts

    NASA Astrophysics Data System (ADS)

    Boyce, E. S.; Bierma, R. M.; Willoughby, H.; Feaux, K.; Mattioli, G. S.; Enders, M.; Busby, R. W.

    2014-12-01

    EarthScope's geodetic component in Alaska, the UNAVCO-operated Plate Boundary Observatory (PBO) network, includes 139 continuous GPS sites and 41 supporting telemetry relays. These are spread across a vast area, from northern AK to the Aleutians. Forty-five of these stations were installed or have been upgraded in cooperation with various partner agencies and currently provide data collection and transmission for more than one group. Leveraging existing infrastructure normally has multiple benefits, such as easier permitting requirements and costs savings through reduced overall construction and maintenance expenses. At some sites, PBO-AK power and communications systems have additional capacity beyond that which is needed for reliable acquisition of GPS data. Where permits allow, such stations could serve as platforms for additional instrumentation or real-time observing needs. With the expansion of the Transportable Array (TA) into Alaska, there is increased interest to leverage existing EarthScope resources for station co-location and telemetry integration. Because of the complexity and difficulty of long-term O&M at PBO sites, however, actual integration of GPS and seismic equipment must be considered on a case-by-case basis. UNAVCO currently operates two integrated GPS/seismic stations in collaboration with the Alaska Earthquake Center, and three with the Alaska Volcano Observatory. By the end of 2014, PBO and TA plan to install another four integrated and/or co-located geodetic and seismic systems. While three of these are designed around existing PBO stations, one will be a completely new TA installation, providing PBO with an opportunity to expand geodetic data collection in Alaska within the limited operations and maintenance phase of the project. We will present some of the design considerations, outcomes, and lessons learned from past and ongoing projects to integrate seismometers and other instrumentation at PBO-Alaska stations. Developing the PBO

  2. EMMNet: sensor networking for electricity meter monitoring.

    PubMed

    Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang

    2010-01-01

    Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.

  3. EMMNet: Sensor Networking for Electricity Meter Monitoring

    PubMed Central

    Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang

    2010-01-01

    Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters. PMID:22163551

  4. Operation of a telemetered seismic network on the Alaska Peninsula. Annual report

    SciTech Connect

    Not Available

    1981-02-01

    A large aperture network of eleven short period seismic stations is being operated on the Alaska Peninsula and several offshore islands to acquire data for the study of the seismotectonics of a part of the Alaska-Aleutian arc-trench structure. The system operated satisfactorily during the past year and continued to provide seismic coverage at a low magnitude threshold level (M/sub L/ = 2.0). An event detection system, developed under this contract over the past years, has been field installed and is undergoing fine tuning. Focal mechanism studies of intermediate depths Benioff zone earthquakes were continued. Like a previous, smaller set, these mechanisms show predominantly down-dip extension, indicating gravitational sinking of the subducting lithosphere. Analysis of the combined data from our network and a temporary array of Ocean Bottom Seismometers, deployed under a related study, indicate that epicenters of earthquakes in the continental shelf area off Kodiak Island are shifted landward by about 15 km with respect to the epicenters determined from the combined data set. Clusters of shallow seismic activity associated with certain Alaska Peninsula volcanoes, observed over the past years, had previously been interpreted as related to shallow magmatic-geothermal reservoirs. Volcanologic-petrologic field studies conducted last year show that volcanic centers associated with such swarms do indeed have surface manifestations of hydrothermal activity.

  5. Meteorological Monitoring And Warning Computer Network

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.; Dianic, Allan V.; Moore, Lien N.

    1996-01-01

    Meteorological monitoring system (MMS) computer network tracks weather conditions and issues warnings when weather hazards are about to occur. Receives data from such meteorological instruments as wind sensors on towers and lightning detectors, and compares data with weather restrictions specified for outdoor activities. If weather violates restriction, network generates audible and visible alarms to alert people involved in activity. Also displays weather and toxic diffusion data and disseminates weather forecasts, advisories, and warnings to workstations.

  6. Stabilizing Health Monitoring for Wireless Sensor Networks

    DTIC Science & Technology

    2006-02-01

    protocol as part of enabling a network health status service that is tightly integrated with a remotely accessible wireless sensor network testbed, Kansei ...tation on a heterogenous WSN testbed, Kansei , comprising hundreds of Motes (of multiple types, specifically XSMs and TMoteSkys), Stargates, and PCs...predicted by the analysis. It is also necessary for enabling a health monitoring service that is a crucial and tightly integrated component of Kansei

  7. Lake Okeechobee seepage monitoring network

    USGS Publications Warehouse

    McKenzie, Donald J.

    1973-01-01

    This report summarizes the data collected at the five original monitoring sites along the south shore of Lake Okeechobee from January 29, 1970 to June 28, 1972. In order to use the hydrographs in this report to full advantage, they should be studied in conjunction with Meyer's graphs and text (1971). During steady-state conditions, water seeps from the lake through the filtercake and through the aquifers beneath the dike. At those sites where the filtercake is missing, or has about the same permeability as the aquifers, the seepage from the lake is about equivalent to the flow through the aquifers. Present data are insufficient to determine whether or not filtercake buildup has reduced seepage. No appreciable change in drainage occurred during the observed period.

  8. ANZA Seismic Network- From Monitoring to Science

    NASA Astrophysics Data System (ADS)

    Vernon, F.; Eakin, J.; Martynov, V.; Newman, R.; Offield, G.; Hindley, A.; Astiz, L.

    2007-05-01

    The ANZA Seismic Network (http:eqinfo.ucsd.edu) utilizes broadband and strong motion sensors with 24-bit dataloggers combined with real-time telemetry to monitor local and regional seismicity in southernmost California. The ANZA network provides real-time data to the IRIS DMC, California Integrated Seismic Network (CISN), other regional networks, and the Advanced National Seismic System (ANSS), in addition to providing near real-time information and monitoring to the greater San Diego community. Twelve high dynamic range broadband and strong motion sensors adjacent to the San Jacinto Fault zone contribute data for earthquake source studies and continue the monitoring of the seismic activity of the San Jacinto fault initiated 24 years ago. Five additional stations are located in the San Diego region with one more station on San Clemente Island. The ANZA network uses the advance wireless networking capabilities of the NSF High Performance Wireless Research and Education Network (http:hpwren.ucsd.edu) to provide the communication infrastructure for the real-time telemetry of Anza seismic stations. The ANZA network uses the Antelope data acquisition software. The combination of high quality hardware, communications, and software allow for an annual network uptime in excess of 99.5% with a median annual station real-time data return rate of 99.3%. Approximately 90,000 events, dominantly local sources but including regional and teleseismic events, comprise the ANZA network waveform database. All waveform data and event data are managed using the Datascope relational database. The ANZA network data has been used in a variety of scientific research including detailed structure of the San Jacinto Fault Zone, earthquake source physics, spatial and temporal studies of aftershocks, array studies of teleseismic body waves, and array studies on the source of microseisms. To augment the location, detection, and high frequency observations of the seismic source spectrum from local

  9. Assessment of SRS ambient air monitoring network

    SciTech Connect

    Abbott, K.; Jannik, T.

    2016-08-03

    Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, if any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the air monitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned

  10. DATA FROM EPA'S UV MONITORING NETWORK

    EPA Science Inventory

    The U.S. Environmental Protection Agency, in cooperation with the National Park Service, has deployed 21 Brewer spectrophotometers in a national network for monitoring UV radiation from the sun. Seven of the Brewers are in urban areas, and fourteen are in National Parks (Figur...

  11. Operation of International Monitoring System Network

    NASA Astrophysics Data System (ADS)

    Nikolova, Svetlana; Araujo, Fernando; Aktas, Kadircan; Malakhova, Marina; Otsuka, Riyo; Han, Dongmei; Assef, Thierry; Nava, Elisabetta; Mickevicius, Sigitas; Agrebi, Abdelouaheb

    2015-04-01

    The IMS is a globally distributed network of monitoring facilities using sensors from four technologies: seismic, hydroacoustic, infrasound and radionuclide. It is designed to detect the seismic and acoustic waves produced by nuclear test explosions and the subsequently released radioactive isotopes. Monitoring stations transmit their data to the IDC in Vienna, Austria, over a global private network known as the GCI. Since 2013, the data availability (DA) requirements for IMS stations account for quality of the data, meaning that in calculation of data availability data should be exclude if: - there is no input from sensor (SHI technology); - the signal consists of constant values (SHI technology); Even more strict are requirements for the DA of the radionuclide (particulate and noble gas) stations - received data have to be analyzed, reviewed and categorized by IDC analysts. In order to satisfy the strict data and network availability requirements of the IMS Network, the operation of the facilities and the GCI are managed by IDC Operations. Operations has following main functions: - to ensure proper operation and functioning of the stations; - to ensure proper operation and functioning of the GCI; - to ensure efficient management of the stations in IDC; - to provide network oversight and incident management. At the core of the IMS Network operations are a series of tools for: monitoring the stations' state of health and data quality, troubleshooting incidents, communicating with internal and external stakeholders, and reporting. The new requirements for data availability increased the importance of the raw data quality monitoring. This task is addressed by development of additional tools for easy and fast identifying problems in data acquisition, regular activities to check compliance of the station parameters with acquired data by scheduled calibration of the seismic network, review of the samples by certified radionuclide laboratories. The DA for the networks of

  12. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    USGS Publications Warehouse

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two

  13. A pilot marine monitoring program in Cook Inlet, Alaska 1993--1994

    SciTech Connect

    Brown, J.S.; Boehm, P.D.; Hyland, J.L.

    1995-12-31

    Under the mandate of the Oil Pollution Act of 1990 (OPA`90) the Cook Inlet Regional Citizens Advisory Council (CIRCAC) sponsored the initiation of a pilot monitoring program in Cook Inlet, Alaska, The objectives of the pilot monitoring program were to provide baseline data on petroleum hydrocarbon concentrations in sediments and biota of Cook Inlet, and to evaluate the effectiveness of selected monitoring techniques in detecting petroleum hydrocarbon inputs from industry based sources. A sampling program was initiated in 1993 that included petroleum industry, specific sites and reference sites. Sample measurements included polynuclear aromatic hydrocarbons (PAH) in sediments, caged mussels, and semipermeable membrane devices (SPMDs), sediment toxicity using the amphipod, Ampelisca abdita, and estimates of population size and physiological condition of indigenous bivalves. Results of the 1993 sampling program indicated that (1) background levels of petrogenic, pyrogenic, and diagenetic hydrocarbons were present in sediments and indigenous bivalves, and (2) that limited amphipod toxicity and variations in bivalve measurements did not correlate with the hydrocarbons in the sediments. Modifications to the 1993 program were instituted for the 1994 sampling and included, the selection of new industry specific sites, discontinued use of caged bivalves, and design changes to SPMDs to enhance sensitivity. The results of the 1994 sampling program, and comparisons with the 1993 data are presented.

  14. Potential for Expanding the Near Real Time ForWarn Regional Forest Monitoring System to Include Alaska

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Gasser, Gerald; Hargrove, William; Smoot, James; Kuper, Philip D.

    2014-01-01

    The on-line near real time (NRT) ForWarn system is currently deployed to monitor regional forest disturbances within the conterminous United States (CONUS), using daily MODIS Aqua and Terra NDVI data to derive monitoring products. The Healthy Forest Restoration Act of 2003 mandated such a system. Work on ForWarn began in 2006 with development and validation of retrospective MODIS NDVI-based forest monitoring products. Subsequently, NRT forest disturbance monitoring products were demonstrated, leading to the actual system deployment in 2010. ForWarn provides new CONUS forest disturbance monitoring products every 8 days, using USGS eMODIS data for current NDVI. ForWarn currently does not cover Alaska, which includes extensive forest lands at risk to multiple biotic and abiotic threats. This poster discusses a case study using Alaska eMODIS Terra data to derive ForWarn like forest change products during the 2010 growing season. The eMODIS system provides current MODIS Terra NDVI products for Alaska. Resulting forest change products were assessed with ground, aerial, and Landsat reference data. When cloud and snow free, these preliminary products appeared to capture regional forest disturbances from insect defoliation and fires; however, more work is needed to mitigate cloud and snow contamination, including integration of eMODIS Aqua data.

  15. Modular Subsea Monitoring Network (MSM) - Realizing Integrated Environmental Monitoring Solutions

    NASA Astrophysics Data System (ADS)

    Mosch, Thomas; Fietzek, Peer

    2016-04-01

    In a variety of scientific and industrial application areas, ranging i.e. from the supervision of hydrate fields over the detection and localization of fugitive emissions from subsea oil and gas production to fish farming, fixed point observatories are useful and applied means. They monitor the water column and/or are placed at the sea floor over long periods of time. They are essential oceanographic platforms for providing valuable long-term time series data and multi-parameter measurements. Various mooring and observatory endeavors world-wide contribute valuable data needed for understanding our planet's ocean systems and biogeochemical processes. Continuously powered cabled observatories enable real-time data transmission from spots of interest close to the shore or to ocean infrastructures. Independent of the design of the observatories they all rely on sensors which demands for regular maintenance. This work is in most cases associated with cost-intensive maintenance on a regular time basis for the entire sensor carrying fixed platform. It is mandatory to encounter this asset for long-term monitoring by enhancing hardware efficiency. On the basis of two examples of use from the area of hydrate monitoring (off Norway and Japan) we will present the concept of the Modular Subsea Monitoring Network (MSM). The modular, scalable and networking capabilities of the MSM allow for an easy adaptation to different monitoring tasks. Providing intelligent power management, combining chemical and acoustical sensors, adaptation of the payload according to the monitoring tasks, autonomous powering, modular design for easy transportation, storage and mobilization, Vessel of Opportunity-borne launching and recovery capability with a video-guided launcher system and a rope recovery system are key facts addressed during the development of the MSM. Step by step the MSM concept applied to the observatory hardware will also be extended towards the gathered data to maximize the

  16. The Alaska Water Isotope Network (AKWIN): Precipitation, lake, river and stream dynamics

    NASA Astrophysics Data System (ADS)

    Rogers, M.; Welker, J. M.; Toohey, R.

    2011-12-01

    The hydrologic cycle is central to the structure and function of northern landscapes. The movement of water creates interactions between terrestrial, aquatic, marine and atmospheric processes. Understanding the processes and the spatial patterns that govern the isotopic (δ18O & δD) characteristics of the hydrologic cycle is especially important today as: a) modern climate/weather-isotope relations allow for more accurate interpretation of climate proxies and the calibration of atmospheric models, b) water isotopes facilitate understanding the role of storm tracks in regulating precipitation isotopic variability, c) water isotopes allow for estimates of glacial melt water inputs into aquatic systems, d) water isotopes allow for quantification of surface and groundwater interactions, e) water isotopes allow for quantification of permafrost meltwater use by plant communities, f) water isotopes aid in migratory bird forensics, g) water isotopes are critical to estimating field metabolic rates, h) water isotopes allow for crop and diet forensics and i) water isotopes can provide insight into evaporation and transpiration processes. As part of a new NSF MRI project at the Environment and Natural Resources Institute (ENRI) at the University of Alaska Anchorage and as an extension of the US Network for Isotopes in Precipitation (USNIP); we are forming AKWIN. The network will utilize long-term weekly sampling at Denali National Park and Caribou Poker Creek Watershed (USNIP sites-1989 to present), regular sampling across Alaska involving land management agencies (USGS, NPS, USFWS, EPA), educators, volunteers and citizen scientists, UA extended campuses, individual research projects, opportunistic sampling and published data to construct isoscapes and time series databases and information packages. We will be using a suite of spatial and temporal analysis methods to characterize water isotopes across Alaska and will provide web portals for data products. Our network is

  17. Integrated condition monitoring of space information network

    NASA Astrophysics Data System (ADS)

    Wang, Zhilin; Li, Xinming; Li, Yachen; Yu, Shaolin

    2015-11-01

    In order to solve the integrated condition monitoring problem in space information network, there are three works finished including analyzing the characteristics of tasks process and system health monitoring, adopting the automata modeling method, and respectively establishing the models for state inference and state determination. The state inference model is a logic automaton and is gotten by concluding engineering experiences. The state determination model is a double-layer automaton, the lower automaton is responsible for parameter judge and the upper automaton is responsible for state diagnosis. At last, the system state monitoring algorithm has been proposed, which realizes the integrated condition monitoring for task process and system health, and can avoid the false alarm.

  18. Analysis and monitoring design for networks

    SciTech Connect

    Fedorov, V.; Flanagan, D.; Rowan, T.; Batsell, S.

    1998-06-01

    The idea of applying experimental design methodologies to develop monitoring systems for computer networks is relatively novel even though it was applied in other areas such as meteorology, seismology, and transportation. One objective of a monitoring system should always be to collect as little data as necessary to be able to monitor specific parameters of the system with respect to assigned targets and objectives. This implies a purposeful monitoring where each piece of data has a reason to be collected and stored for future use. When a computer network system as large and complex as the Internet is the monitoring subject, providing an optimal and parsimonious observing system becomes even more important. Many data collection decisions must be made by the developers of a monitoring system. These decisions include but are not limited to the following: (1) The type data collection hardware and software instruments to be used; (2) How to minimize interruption of regular network activities during data collection; (3) Quantification of the objectives and the formulation of optimality criteria; (4) The placement of data collection hardware and software devices; (5) The amount of data to be collected in a given time period, how large a subset of the available data to collect during the period, the length of the period, and the frequency of data collection; (6) The determination of the data to be collected (for instance, selection of response and explanatory variables); (7) Which data will be retained and how long (i.e., data storage and retention issues); and (8) The cost analysis of experiments. Mathematical statistics, and, in particular, optimal experimental design methods, may be used to address the majority of problems generated by 3--7. In this study, the authors focus their efforts on topics 3--5.

  19. A watershed approach to ecosystem monitoring in Denali National Park and preserve, Alaska

    USGS Publications Warehouse

    Thorsteinson, L.K.; Taylor, D.L.

    1997-01-01

    The National Park Service and the National Biological Service initiated research in Denali National Park and Preserve, a 2.4 million-hectare park in southcentral Alaska, to develop ecological monitoring protocols for national parks in the Arctic/Subarctic biogeographic area. We are focusing pilot studies on design questions, on scaling issues and regionalization, ecosystem structure and function, indicator selection and evaluation, and monitoring technologies. Rock Creek, a headwater stream near Denali headquarters, is the ecological scale for initial testing of a watershed ecosystem approach. Our conceptual model embraces principles of the hydrological cycle, hypotheses of global climate change, and biological interactions of organisms occupying intermediate, but poorly studied, positions in Alaskan food webs. The field approach includes hydrological and depositional considerations and a suite of integrated measures linking key aquatic and terrestrial biota, environmental variables, or defined ecological processes, in order to establish ecological conditions and detect, track, and understand mechanisms of environmental change. Our sampling activities include corresponding measures of physical, chemical, and biological attributes in four Rock Creek habitats believed characteristic of the greater system diversity of Denali. This paper gives examples of data sets, program integration and scaling, and research needs.

  20. Network developments and network monitoring in Internet2

    NASA Astrophysics Data System (ADS)

    Boyd, E.; Evett, S.

    Given that performance is excellent across backbone networks, and that performance is a problem end-to-end, it is clear that problems are concentrated towards the edge and in network transitions. To achieve good end-to-end performance, we need to diagnose (understand the limits of performance) and address (work with members and application communities to address those performance issues). We envision readily available performance information that is easy to find, ubiquitous, reliable, valuable, actionable (analysis suggests course of action), and automated (applications act on data received). The Internet2 End-to-End Performance Initative (E2Epi) currently focuses on the development and widespread deployment of perfSONAR [1][2], an international consortium developing a performance middleware architecture and a set of protocol standards for inter-operability between measurement and monitoring systems. perfSONAR is a set of open source web services that can be added, piecemeal, and extended to create a performance monitoring framework. It is designed to be standards-based, modular, decentralized, and open source. This makes it applicable to multiple generations of network monitoring systems and encourages outside development while still allowing it to be customized for individual science applications. perfSONAR is a joint effort of ESnet, GÉANT2 JRA1, Internet2, and RNP. The Internet2 Network is a hybrid optical and IP network, that offers dynamic and static wavelength services. The Internet2 Network Observatory supports three types of services: measurement, co-location, and experimental servers to support specific projects. The Observatory collects data and makes it publicly available.

  1. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Monitoring network completion. 58.13 Section 58.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion....

  2. Phenology monitoring protocol: Northeast Temperate Network

    USGS Publications Warehouse

    Tierney, Geri; Mitchell, Brian; Miller-Rushing, Abraham J.; Katz, Jonathan; Denny, Ellen; Brauer, Corinne; Donovan, Therese; Richardson, Andrew D.; Toomey, Michael; Kozlowski, Adam; Weltzin, Jake F.; Gerst, Kathy; Sharron, Ed; Sonnentag, Oliver; Dieffenbach, Fred

    2013-01-01

    historical parks and national historic sites in the northeastern US. This protocol was developed in collaboration with and relies upon the procedures and infrastructure of the USA National Phenology Network (USA-NPN), including Nature’s Notebook, USA-NPN’s online plant and animal phenology observation program (www.nn.usanpn.org). Organized in 2007, USA-NPN is a nation-wide partnership among federal agencies, schools and universities, citizen volunteers, and others to monitor and understand the influence of seasonal cycles on the nation’s biological resources. The overall goal of NETN’s phenology monitoring program is to determine trends in the phenology of key species in order to assist park managers with the detection and mitigation of the effects of climate change on park resources. An additional programmatic goal is to interest and educate park visitors and staff, as well as a cadre of volunteer monitors.

  3. Flood monitoring network in southeastern Louisiana

    USGS Publications Warehouse

    McCallum, Brian E.

    1994-01-01

    A flood monitoring network has been established to alert emergency operations personnel and the public about hydrologic conditions in the Amite River Basin. The U.S. Geological Survey (USGS), in cooperation with the Louisiana Office of Emergency Preparedness (LOEP), has installed a real-time data acquisition system to monitor rainfall and river stages in the basin. These data will be transmitted for use by emergency operations personnel to develop flood control and evacuation strategies. The current river stages at selected gaging stations in the basin also will be broadcast by local television and radio stations during a flood. Residents can record the changing river stages on a basin monitoring map, similar to a hurricane tracking map.

  4. Intrusion detection and monitoring for wireless networks.

    SciTech Connect

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.; Stephano, Amanda; Tabriz, Parisa; Pelon, Kristen; McCoy, Damon (University of Colorado, Boulder); Lodato, Mark; Hemingway, Franklin; Custer, Ryan P.; Averin, Dimitry; Franklin, Jason; Kilman, Dominique Marie

    2005-11-01

    municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.

  5. LONG-TERM MONITORING SENSOR NETWORK

    SciTech Connect

    Stephen P. Farrington; John W. Haas; Neal Van Wyck

    2003-10-16

    Long-term monitoring (LTM) associated with subsurface contamination sites is a key element of Long Term Stewardship and Legacy Management across the Department of Energy (DOE) complex. However, both within the DOE and elsewhere, LTM is an expensive endeavor, often exceeding the costs of the remediation phase of a clean-up project. The primary contributors to LTM costs are associated with labor. Sample collection, storage, preparation, analysis, and reporting can add a significant financial burden to project expense when extended over many years. Development of unattended, in situ monitoring networks capable of providing quantitative data satisfactory to regulatory concerns has the potential to significantly reduce LTM costs. But survival and dependable operation in a difficult environment is a common obstacle to widespread use across the DOE complex or elsewhere. Deploying almost any sensor in the subsurface for extended periods of time will expose it to chemical and microbial degradation. Over the time-scales required for in situ LTM, even the most advanced sensor systems may be rendered useless. Frequent replacement or servicing (cleaning) of sensors is expensive and labor intensive, offsetting most, if not all, of the cost savings realized with unattended, in situ sensors. To enable facile, remote monitoring of contaminants and other subsurface parameters over prolonged periods, Applied Research Associates, Inc has been working to develop an advanced LTM sensor network consisting of three key elements: (1) an anti-fouling sensor chamber that can accommodate a variety of chemical and physical measurement devices based on electrochemical, optical and other techniques; (2) two rapid, cost effective, and gentle means of emplacing sensor packages either at precise locations directly in the subsurface or in pre-existing monitoring wells; and (3) a web browser-based data acquisition and control system (WebDACS) utilizing field-networked microprocessor-controlled smart

  6. Representativeness of air quality monitoring networks

    NASA Astrophysics Data System (ADS)

    Duyzer, Jan; van den Hout, Dick; Zandveld, Peter; van Ratingen, Sjoerd

    2015-03-01

    The suitability of European networks to check compliance with air quality standards and to assess exposure of the population was investigated. An air quality model (URBIS) was applied to estimate and compare the spatial distribution of the concentration of nitrogen dioxide (NO2) in ambient air in four large cities. The concentrations calculated at the location of the monitoring stations, compared well with the concentrations measured at the stations indicating that the models worked well. Therefore the calculated concentration distributions were used as a proxy for the actual concentration distributions across the cities. The distributions of these proxy concentrations across the city populations was determined and cumulative population distribution curves were estimated. The calculated annual mean values at the monitoring network stations were located on the population distribution curves to estimate the fractions of the populations that the monitoring network stations represent. This macro scale procedure is used to evaluate which subgroups of the monitoring stations can be reliably used to decide on compliance or to estimate the concentration the population is exposed to. In addition, the CAR model and Computational Fluid Dynamics (CFD) models are used to investigate the effect of micro scale siting of the monitoring stations within the streets. The following observations were made: - Berlin and London networks cover the distribution of concentrations to which the population is exposed rather well, while Stuttgart and Barcelona have stations at sites with mainly the higher concentrations and the exposure is covered less well. - The networks in London and Berlin, with a substantial number of urban background stations, seem fit to monitor the average population exposure, contrary to those in Stuttgart and Barcelona with only a limited number of these stations. - The concentrations measured at street stations hardly reflect the calculated differences in street

  7. A network monitor for HTTPS protocol based on proxy

    NASA Astrophysics Data System (ADS)

    Liu, Yangxin; Zhang, Lingcui; Zhou, Shuguang; Li, Fenghua

    2016-10-01

    With the explosive growth of harmful Internet information such as pornography, violence, and hate messages, network monitoring is essential. Traditional network monitors is based mainly on bypass monitoring. However, we can't filter network traffic using bypass monitoring. Meanwhile, only few studies focus on the network monitoring for HTTPS protocol. That is because HTTPS data is in the encrypted traffic, which makes it difficult to monitor. This paper proposes a network monitor for HTTPS protocol based on proxy. We adopt OpenSSL to establish TLS secure tunes between clients and servers. Epoll is used to handle a large number of concurrent client connections. We also adopt Knuth- Morris-Pratt string searching algorithm (or KMP algorithm) to speed up the search process. Besides, we modify request packets to reduce the risk of errors and modify response packets to improve security. Experiments show that our proxy can monitor the content of all tested HTTPS websites efficiently with little loss of network performance.

  8. Geodetic measurements for monitoring rapid crustal uplift in southeastern Alaska caused by the recent deglaciation

    NASA Astrophysics Data System (ADS)

    Miura, S.; Sun, W.; Sugano, T.; Kaufman, A.; Sato, T.; Fujimoto, H.; Ohta, Y.; Larsen, C.; Freymueller, J.

    2008-12-01

    Glaciers at high latitudes are considered to be extremely sensitive to climate change and thus monitoring of glaciers is a clue to evaluate the future effect of global warming and the related phenomena. Ice mass changes also produce a time-variable surface load and give us useful data to investigate subsurface structure of the earth, especially to constrain the flow characteristics of the mantle. Larsen et al. [EPSL05] have extensively studied on vertical crustal movement in SE Alaska to reveal the world's fastest glacial isostatic uplifting, which can be attributed to the response associated with deglaciation. Displacement data, however, can only be used to constrain the sum of the elastic response to present-day ice melting (PDIM) and the viscoelastic one to past changes in ice. A Japan-US joint research project, ISEA (International geodetic research project in SouthEast Alaska), was initiated in 2005 to add new geodetic data and to refine the viscoelastic model derived by the previous studies. Absolute gravity data have been acquired at the five sites in the stdudy area using a Micro-g LaCoste absolute gravimeter, FG5#111. At each site data were collected over a 48~62 hour period. The long-term variation in absolute gravity at 2 stations, HNSG and BRM, where the measurements were performed in 1987 by Sasagawa et al. [JGR89] demonstrates rapid gravity decrease with rates of -4.4 micro-gal/yr, and -3.0 micro-gal/yr, respectively, and can be attributed to uplifting and mass-redstribution. ISEA supplements pre-existing continuous GPS (CGPS) stations operated by the U.S. Coast Guard (USCG) and the UNAVCO (Plate Boundary Observatory, PBO) and improves the spatial coverage in and around Glacier Bay. The time series of the site coordinates obtained for Queen Inlet (QUIC), which locates close to a zone of maximum uplift, shows obvious uplifting, even though there are long- term gaps because of an antenna cable trouble in 2006 and power outage in 2008 causing rather

  9. Monitoring Sea Ice Conditions and Use in Arctic Alaska to Enhance Community Adaptation to Change

    NASA Astrophysics Data System (ADS)

    Druckenmiller, M. L.; Eicken, H.

    2010-12-01

    Sea ice changes in the coastal zone, while less conspicuous in relation to the dramatic thinning and retreat of perennial Arctic sea ice, can be more readily linked to local impacts. Shorefast ice is a unique area for interdisciplinary research aimed at improving community adaptation to climate through local-scale environmental observations. Here, geophysical monitoring, local Iñupiat knowledge, and the documented use of ice by the Native hunting community of Barrow, Alaska are combined to relate coastal ice processes and morphologies in the Chukchi Sea to ice stability and community adaption strategies for travel, hunting, and risk assessment. A multi-year effort to map and survey the community’s seasonal ice trails, alongside a detailed record of shorefast ice conditions, provides insight into how hunters evaluate the evolution of ice throughout winter and spring. Various data sets are integrated to relate the annual accretion history of the local ice cover to both measurements of ice thickness and topography and hunter observations of ice types and hazards. By relating changes in the timing of shorefast ice stabilization, offshore ice conditions, and winter wind patterns to ice characteristics in locations where spring bowhead whaling occurs, we are working toward an integrated scientific product compatible with the perspective of local ice experts. A baseline for assessing future change and community climate-related vulnerabilities may not be characterized by single variables, such as ice thickness, but rather by how changes in observable variables manifest in impacts to human activities. This research matches geophysical data to ice-use to establish such a baseline. Documenting human-environment interactions will allow future monitoring to illustrate how strategies for continued community ice-use are indicative of or responsive to change, and potentially capable of incorporating science products as additional sources of useable information.

  10. Quality control in bio-monitoring networks, Spanish Aerobiology Network.

    PubMed

    Oteros, Jose; Galán, Carmen; Alcázar, Purificación; Domínguez-Vilches, Eugenio

    2013-01-15

    Several of the airborne biological particles, such as pollen grains and fungal spores, are known to generate human health problems including allergies and infections. A number of aerobiologists have focused their research on these airborne particles. The Spanish Aerobiology Network (REA) was set up in 1992, and since then dozens of research groups have worked on a range of related topics, including the standardization of study methods and the quality control of data generated by this network. In 2010, the REA started work on an inter-laboratory survey for proficiency testing purposes. The main goal of the study reported in the present paper was to determine the performance of technicians in the REA network using an analytical method that could be implemented by other bio-monitoring networks worldwide. The results recorded by each technician were compared with the scores obtained for a bounded mean of all results. The performance of each technician was expressed in terms of the relative error made in counting each of several pollen types. The method developed and implemented here proved appropriate for proficiency testing in interlaboratory studies involving bio-monitoring networks, and enabled the source of data quality problems to be pinpointed. The test revealed a variation coefficient of 10%. The relative error was significant for 3.5% of observations. In overall terms, the REA staff performed well, in accordance with the REA Management and Quality Manual. These findings serve to guarantee the quality of the data obtained, which can reliably be used for research purposes and published in the media in order to help prevent pollen-related health problems.

  11. Developing hydrological monitoring networks with Arduino

    NASA Astrophysics Data System (ADS)

    Buytaert, Wouter; Vega, Andres; Villacis, Marcos; Moulds, Simon

    2015-04-01

    The open source hardware platform Arduino is very cost-effective and versatile for the development of sensor networks. Here we report on experiments on the use of Arduino-related technologies to develop and implement hydrological monitoring networks. Arduino Uno boards were coupled to a variety of commercially available hydrological sensors and programmed for automatic data collection. Tested sensors include water level, temperature, humidity, radiation, and precipitation. Our experiments show that most of the tested analogue sensors are quite straightforward to couple to Arduino based data loggers, especially if the electronic characteristics of the sensor are available. However, some sensors have internal digital interfaces, which are more challenging to connect. Lastly, tipping bucket rain gauges prove the most challenging because of the very specific methodology, i.e. registration of bucket tips instead of measurements at regular intervals. The typically low data generation rate of hydrological instruments is very compatible with available technologies for wireless data transmission. Mesh networks such as Xbee prove very convenient and robust for dispersed networks, while wifi is also an option for shorter distances and particular topographies. Lastly, the GSM shield of the Arduino can be used to transfer data to centralized databases. In regions where no mobile internet (i.e. 3G) connection is available, data transmission via text messages may be an option, depending on the bandwidth requirements.

  12. 77 FR 63719 - Fisheries of the Exclusive Economic Zone Off Alaska; Monitoring and Enforcement Requirements in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ... operational requirements for freezer longliners (catcher/processors) named on License Limitation Program (LLP... Aleutian Islands Management Area (BSAI). This final rule removes Western Alaska Community Development Quota... for Correction In the final rule modifying equipment and operational requirements for...

  13. The realization of network video monitoring system

    NASA Astrophysics Data System (ADS)

    Hou, Zhuo-wei; Qiu, Yue-hong

    2013-08-01

    The paper presents a network video monitoring system based on field programmable gate array to implement the real time acquisition and transmission of video signals. The system includes image acquisition module, central control module and Ethernet transmission module. According to request, Cyclone FPGA is taken as the control center in the system, using Quartus II and Nios II IDE as development tool to build the hardware development platform. A kind of embedded hardware system is built based on SOPC technic, in which the Nios II soft-core and other controllers are combined by configuration. Meanwhile, the μClinux is used as embedded operating system to make the process of acquisition and transmission of the data picture on the Internet more reliable. In order to fulfill the task of MAC and PHY, the fast Ethernet controller should be connected to the SOPC. TCP/IP protocol is used to implement data transmission. Based on TCP/IP protocol, the Web Servers should be embedded to implement the protocol of HTTP, TCP and UDP. Through the research of the thesis, with programmable logic device being the core and network being the transmission media, the design scheme of the video monitoring system is presented. The hardware's design is mainly done in the thesis. The principal and function of the system is deeply explained, so it can be the important technology and specific method.

  14. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska.

    PubMed

    Sloat, Matthew R; Reeves, Gordon H; Christiansen, Kelly R

    2017-02-01

    In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach-scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9-10% and 13-16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher-gradient streams that provide only moderate-quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach-scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream

  15. A Wireless Sensor Network For Soil Monitoring

    NASA Astrophysics Data System (ADS)

    Szlavecz, K.; Cogan, J.; Musaloiu-Elefteri, R.; Small, S.; Terzis, A.; Szalay, A.

    2005-12-01

    The most spatially complex stratum of a terrestrial ecosystem is its soil. Among the major challenges of studying the soil ecosystem are the diversity and the cryptic nature of biota, and the enormous heterogeneity of the soil substrate. Often this patchiness drives spatial distribution of soil organisms, yet our knowledge on the spatio-temporal patterns of soil conditions is limited. To monitor the environmental conditions at biologically meaningful spatial scales we have developed and deployed a wireless sensor network of thirty nodes. Each node is based on a MICAz mote connected to a custom-built sensor suite that includes a Watermark soil moisture sensor, an Irrometer soil temperature sensor, and sensors capable of recording ambient temperature and light intensity. To assess CO2 production at the ground level a subset of the nodes is equipped with Telaire 6004 CO2 sensor. We developed the software running on the motes from scratch, using the TinyOS development environment. Each mote collects measurements every minute, and stores them persistently in a non-volatile memory. The decision to store data locally at each node enables us to reliably retrieve the data in the face of network losses and premature node failures due to power depletion. Collected measurements are retrieved over the wireless network through a PC-class computer acting as a gateway between the sensor network and the Internet. Considering that motes are battery powered, the largest obstacle hindering long-term sensor network deployments is power consumption. To address this problem, our software powers down sensors between sampling cycles and turns off the radio (the most energy prohibitive mote component) when not in use. By doing so we were able to increase node lifetime by a factor of ten. We collected field data over several weeks. The data was ingested into a SQL Server database, which provides data access through a .NET web services interface. The database provides functions for spatial

  16. Wireless Sensor Networks for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liang, Y.; Navarro, M.; Zhong, X.; Villalba, G.; Li, Y.; Davis, T.; Erratt, N.

    2015-12-01

    Wireless sensor networks (WSNs) have gained an increasing interest in a broad range of new scientific research and applications. WSN technologies can provide high resolution for spatial and temporal data which has not been possible before, opening up new opportunities. On the other hand, WSNs, particularly outdoor WSNs in harsh environments, present great challenges for scientists and engineers in terms of the network design, deployment, operation, management, and maintenance. Since 2010, we have been working on the deployment of an outdoor multi-hop WSN testbed for hydrological/environmental monitoring in a forested hill-sloped region at the Audubon Society of Western Pennsylvania (ASWP), Pennsylvania, USA. The ASWP WSN testbed has continuously evolved and had more than 80 nodes by now. To our knowledge, the ASWP WSN testbed represents one of the first known long-term multi-hop WSN deployments in an outdoor environment. As simulation and laboratory methods are unable to capture the complexity of outdoor environments (e.g., forests, oceans, mountains, or glaciers), which significantly affect WSN operations and maintenance, experimental deployments are essential to investigate and understand WSN behaviors and performances as well as its maintenance characteristics under these harsh conditions. In this talk, based on our empirical studies with the ASWP WSN testbed, we will present our discoveries and investigations on several important aspects including WSN energy profile, node reprogramming, network management system, and testbed maintenance. We will then provide our insight into these critical aspects of outdoor WSN deployments and operations.

  17. 40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applicable local, agency shall adopt and submit to the Regional Administrator an annual monitoring network... state and local agencies provide for the review of changes to a PM 2.5 monitoring network that impact... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Annual monitoring network plan...

  18. 40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicable local, agency shall adopt and submit to the Regional Administrator an annual monitoring network... local agencies provide for the review of changes to a PM2.5 monitoring network that impact the location... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Annual monitoring network plan...

  19. 40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applicable local, agency shall adopt and submit to the Regional Administrator an annual monitoring network... monitoring network plan must document how States and local agencies provide for the review of changes to a... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Annual monitoring network plan...

  20. Intrinsic Monitoring Using Behaviour Models in IPv6 Networks

    NASA Astrophysics Data System (ADS)

    Höfig, Edzard; Coşkun, Hakan

    In conventional networks, correlating path information to resource utilisation on the granularity of packets is a hard problem when using policy-based traffic handling schemes. We introduce a new approach termed ‘intrinsic monitoring’ which relies on the use of IPv6 extension headers in combination with formal behaviour models to gather resource information along a path. This allows a network monitoring system to delegate monitoring functionality to the network devices themselves, with the result of a drastic reduction in management traffic due to the increased autonomy of the monitoring system. As monitoring information travels in-band with the network traffic, path information remains perfectly accurate.

  1. Amchitka Mud Pit Sites 2006 Post-Closure Monitoring and Inspection Report, Amchitka Island, Alaska, Rev. No.: 0

    SciTech Connect

    Matthews, Patrick

    2006-09-01

    In 2001, the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA/NSO) remediated six areas associated with Amchitka mud pit release sites located on Amchitka Island, Alaska. This included the construction of seven closure caps. To ensure the integrity and effectiveness of remedial action, the mud pit sites are to be inspected every five years as part of DOE's long-term monitoring and surveillance program. In August of 2006, the closure caps were inspected in accordance with the ''Post-Closure Monitoring and Inspection Plan for Amchitka Island Mud Pit Release Sites'' (Rev. 0, November 2005). This post-closure monitoring report provides the 2006 cap inspection results.

  2. Determining ecoregions for environmental and GMO monitoring networks.

    PubMed

    Graef, F; Schmidt, G; Schröder, W; Stachow, U

    2005-09-01

    A representative environmental monitoring network at the regional scale cannot use raster-based or random sampling designs, but requires a stratified sampling procedure integrating different information layers, and it has to occur in ecologically differing homogeneous regions (ecoregions). These we have determined using a set of spatial strata with ecological variables which we analysed with classification and regression trees (CART). We present a framework for environmental monitoring, that covers different scales, and we transfer the framework to a potential GMO (genetically modified organisms) monitoring network. We use ecoregion and other environmental strata together with existing environmental monitoring networks to determine GMO monitoring sites more precisely.

  3. Wyoming groundwater-quality monitoring network

    USGS Publications Warehouse

    Boughton, Gregory K.

    2011-01-01

    A wide variety of human activities have the potential to contaminate groundwater. In addition, naturally occurring constituents can limit the suitability of groundwater for some uses. The State of Wyoming has established rules and programs to evaluate and protect groundwater quality based on identified uses. The Wyoming Groundwater-Quality Monitoring Network (WGQMN) is a cooperative program between the U.S. Geological Survey (USGS) and the Wyoming Department of Environmental Quality (WDEQ) and was implemented in 2009 to evaluate the water-quality characteristics of the State's groundwater. Representatives from USGS, WDEQ, U.S. Environmental Protection Agency (USEPA), Wyoming Water Development Office, and Wyoming State Engineer's Office formed a steering committee, which meets periodically to evaluate progress and consider modifications to strengthen program objectives. The purpose of this fact sheet is to describe the WGQMN design and objectives, field procedures, and water-quality analyses. USGS groundwater activities in the Greater Green River Basin also are described.

  4. Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.

    1996-01-01

    During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).

  5. Real-time Scintillation Monitoring in Alaska from a Longitudinal Chain of ASTRA's SM-211 GPS TEC and Scintillation Receivers

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Azeem, S. I.; Reynolds, A.; Santana, J.; Hampton, D. L.

    2013-12-01

    Amplitude and phase scintillation can cause serious difficulties for GPS receivers. Intense scintillation can cause loss of lock. High latitude studies generally show that phase scintillation can be severe, but the amplitude scintillation tends to be small. The reason for this is not yet understood. Furthermore, the actual causes of the ionospheric irregularities that produce high latitude scintillation are not well understood. While the gradient drift instability is thought to be important in the F-region, there may be other structures present in either the E- or F-regions. The role of particle precipitation is also not well understood. Four of ASTRA's CASES GPS receivers were deployed in Alaska to demonstrate our ability to map scintillation in realtime, to provide space weather services to GPS users, and to initiate a detailed investigation of these effects. These dual-frequency GPS receivers measure total electron content (TEC) and scintillation. The scintillation monitors were deployed in a longitudinal chain at sites in Kaktovic, Fort Yukon, Poker Flat, and Gakona. Scintillation statistics show phase scintillations to be largest at Kaktovic and smallest at Gakona. We present GPS phase scintillation and auroral emission results from the Alaska chain to characterize the correspondence between scintillation and auroral features, and to investigate the role of high latitude auroral features in driving the phase scintillations. We will also present data showing how phase scintillation can cause other GPS receivers to lose lock. The data and results are particularly valuable because they illustrate some of the challenges of using GPS systems for positioning and navigation in an auroral region like Alaska. These challenges for snowplough drivers were recently highlighted, along with the CASES SM-211 space weather monitor, in a special video in which ASTRA and three other small businesses were presented with an entrepreneurial award from William Shatner (http://youtu.be/bIVKEQH_YPk).

  6. Hydrometeorological network for flood monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Efstratiadis, Andreas; Koussis, Antonis D.; Lykoudis, Spyros; Koukouvinos, Antonis; Christofides, Antonis; Karavokiros, George; Kappos, Nikos; Mamassis, Nikos; Koutsoyiannis, Demetris

    2013-08-01

    Due to its highly fragmented geomorphology, Greece comprises hundreds of small- to medium-size hydrological basins, in which often the terrain is fairly steep and the streamflow regime ephemeral. These are typically affected by flash floods, occasionally causing severe damages. Yet, the vast majority of them lack flow-gauging infrastructure providing systematic hydrometric data at fine time scales. This has obvious impacts on the quality and reliability of flood studies, which typically use simplistic approaches for ungauged basins that do not consider local peculiarities in sufficient detail. In order to provide a consistent framework for flood design and to ensure realistic predictions of the flood risk -a key issue of the 2007/60/EC Directive- it is essential to improve the monitoring infrastructures by taking advantage of modern technologies for remote control and data management. In this context and in the research project DEUCALION, we have recently installed and are operating, in four pilot river basins, a telemetry-based hydro-meteorological network that comprises automatic stations and is linked to and supported by relevant software. The hydrometric stations measure stage, using 50-kHz ultrasonic pulses or piezometric sensors, or both stage (piezometric) and velocity via acoustic Doppler radar; all measurements are being temperature-corrected. The meteorological stations record air temperature, pressure, relative humidity, wind speed and direction, and precipitation. Data transfer is made via GPRS or mobile telephony modems. The monitoring network is supported by a web-based application for storage, visualization and management of geographical and hydro-meteorological data (ENHYDRIS), a software tool for data analysis and processing (HYDROGNOMON), as well as an advanced model for flood simulation (HYDROGEIOS). The recorded hydro-meteorological observations are accessible over the Internet through the www-application. The system is operational and its

  7. Characterizing and Monitoring Hazardous Air Pollution Caused by Wildfire in Interior Alaska in Summer 2005 Using MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Li, S.; Cobb, P.; Sassen, K.; Engle, K.

    2005-12-01

    By mid-August 2005, about 600 fires had burned more than 3 million acres in Alaska. Approximately 90-95 percent of the Interior Alaska was impacted by smoke and air quality reached "very unhealthy" to "dangerous" levels between August 12, and 17, 2005. MODIS level 1B images are used study the spectral characteristics of the Wildfires. All 36 MODIS spectral bands are used to analyze the spectral characteristics of background forest and tundra, fires, clouds and smoke plumes. Analysis indicates that clouds have high reflectance at visible and near infrared wavelengths and low emission at thermal infrared wavelengths. Fires have high emission at middle infrared, especially at MODIS Band 21 (3.959 microns). Vegetation covered ground has lowest reflectance at visible wavelengths. Smoke plumes from forest fires have intermediate reflectance at visible wavelengths. The spatial coverage and temporal evolution of the wildfire patches and smoke plumes are monitored using MODIS time series. The characteristics of the smoke plumes are also studied using both ground based remote sensing instrument and MODIS derived aerosol product (MOD04), which monitors aerosol type, aerosol optical thickness, particle size distribution, aerosol mass concentration, optical properties.

  8. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  9. Long-term autonomous volcanic gas monitoring with Multi-GAS at Mount St. Helens, Washington, and Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Ketner, D. M.; Kern, C.; Lahusen, R. G.; Lockett, C.; Parker, T.; Paskievitch, J.; Pauk, B.; Rinehart, A.; Werner, C. A.

    2015-12-01

    In recent years, the USGS Volcano Hazards Program has worked to implement continuous real-time in situ volcanic gas monitoring at volcanoes in the Cascade Range and Alaska. The main goal of this ongoing effort is to better link the compositions of volcanic gases to other real-time monitoring data, such as seismicity and deformation, in order to improve baseline monitoring and early detection of volcanic unrest. Due to the remote and difficult-to-access nature of volcanic-gas monitoring sites in the Cascades and Alaska, we developed Multi-GAS instruments that can operate unattended for long periods of time with minimal direct maintenance from field personnel. Our Multi-GAS stations measure H2O, CO2, SO2, and H2S gas concentrations, are comprised entirely of commercial off-the-shelf components, and are powered by small solar energy systems. One notable feature of our Multi-GAS stations is that they include a unique capability to perform automated CO2, SO2, and H2S sensor verifications using portable gas standards while deployed in the field, thereby allowing for rigorous tracking of sensor performances. In addition, we have developed novel onboard data-processing routines that allow diagnostic and monitoring data - including gas ratios (e.g. CO2/SO2) - to be streamed in real time to internal observatory and public web pages without user input. Here we present over one year of continuous data from a permanent Multi-GAS station installed in August 2014 in the crater of Mount St. Helens, Washington, and several months of data from a station installed near the summit of Augustine Volcano, Alaska in June 2015. Data from the Mount St. Helens Multi-GAS station has been streaming to a public USGS site since early 2015, a first for a permanent Multi-GAS site. Neither station has detected significant changes in gas concentrations or compositions since they were installed, consistent with low levels of seismicity and deformation.

  10. A Learning Dashboard to Monitor an Open Networked Learning Community

    NASA Astrophysics Data System (ADS)

    Grippa, Francesca; Secundo, Giustina; de Maggio, Marco

    This chapter proposes an operational model to monitor and assess an Open Networked Learning Community. Specifically, the model is based on the Intellectual Capital framework, along the Human, Structural and Social dimensions. It relies on the social network analysis to map several and complementary perspectives of a learning network. Its application allows to observe and monitor the cognitive behaviour of a learning community, in the final perspective of tracking and obtaining precious insights for value generation.

  11. 40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... applicable local, agency shall adopt and submit to the Regional Administrator an annual monitoring network... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Annual monitoring network plan and periodic network assessment. 58.10 Section 58.10 Protection of Environment ENVIRONMENTAL PROTECTION...

  12. Sparse sampling: Spatial design for monitoring stream networks

    EPA Science Inventory

    Spatial designs for monitoring stream networks, especially ephemeral systems, are typically non-standard, ‘sparse’ and can be very complex, reflecting the complexity of the ecosystem being monitored, the scale of the population, and the competing multiple monitoring objectives. ...

  13. Routine Ocean Monitoring With Synthetic Aperture Radar Imagery Obtained From the Alaska Satellite Facility

    NASA Astrophysics Data System (ADS)

    Pichel, W. G.; Clemente-Colon, P.; Li, X.; Friedman, K.; Monaldo, F.; Thompson, D.; Wackerman, C.; Scott, C.; Jackson, C.; Beal, R.; McGuire, J.; Nicoll, J.

    2006-12-01

    The Alaska Satellite Facility (ASF) has been processing synthetic aperture radar (SAR) data for research and for near-real-time applications demonstrations since shortly after the launch of the European Space Agency's ERS-1 satellite in 1991. The long coastline of Alaska, the vast extent of ocean adjacent to Alaska, a scarcity of in-situ observations, and the persistence of cloud cover all contribute to the need for all-weather ocean observations in the Alaska region. Extensive experience with SAR product processing algorithms and SAR data analysis techniques, and a growing sophistication on the part of SAR data and product users have amply demonstrated the value of SAR instruments in providing this all-weather ocean observation capability. The National Oceanic and Atmospheric Administration (NOAA) has been conducting a near-real-time applications demonstration of SAR ocean and hydrologic products in Alaska since September 1999. This Alaska SAR Demonstration (AKDEMO) has shown the value of SAR-derived, high-resolution (sub kilometer) ocean surface winds to coastal weather forecasting and the understanding of coastal wind phenomena such as gap winds, barrier jets, vortex streets, and lee waves. Vessel positions and ice information derived from SAR imagery have been used for management of fisheries, protection of the fishing fleet, enforcement of fisheries regulations, and protection of endangered marine mammals. Other ocean measurements, with potentially valuable applications, include measurement of wave state (significant wave height, dominant wave direction and wavelength, and wave spectra), mapping of oil spills, and detection of shallow-water bathymetric features. In addition to the AKDEMO, ASF-processed SAR imagery is being used: (1) in the Gulf of Mexico for hurricane wind studies, and post-hurricane oil-spill and oil-platform analyses (the latter employing ship-detection algorithms for detection of changes in oil-platform locations); (2) in the North Pacific

  14. Air quality monitor and acid rain networks

    NASA Technical Reports Server (NTRS)

    Rudolph, H.

    1980-01-01

    The air quality monitor program which consists of two permanent air monitor stations (PAMS's) and four mobile shuttle pollutant air monitor stations (SPAMS's) is evaluated. The PAMS measures SO sub X, NO sub X particulates, CO, O3, and nonmethane hydrocarbons. The SPAMS measures O3, SO2, HCl, and particulates. The collection and analysis of data in the rain monitor program are discussed.

  15. Optimal water quality monitoring network design for river systems.

    PubMed

    Telci, Ilker T; Nam, Kijin; Guan, Jiabao; Aral, Mustafa M

    2009-07-01

    Typical tasks of a river monitoring network design include the selection of the water quality parameters, selection of sampling and measurement methods for these parameters, identification of the locations of sampling stations and determination of the sampling frequencies. These primary design considerations may require a variety of objectives, constraints and solutions. In this study we focus on the optimal river water quality monitoring network design aspect of the overall monitoring program and propose a novel methodology for the analysis of this problem. In the proposed analysis, the locations of sampling sites are determined such that the contaminant detection time is minimized for the river network while achieving maximum reliability for the monitoring system performance. Altamaha river system in the State of Georgia, USA is chosen as an example to demonstrate the proposed methodology. The results show that the proposed model can be effectively used for the optimal design of monitoring networks in river systems.

  16. Establishing a baseline for regional scale monitoring of eelgrass (Zostera marina) habitat on the lower Alaska Peninsula

    USGS Publications Warehouse

    Hogrefe, Kyle R.; Ward, David H.; Donnelly, Tyrone F.; Dau, Niels

    2014-01-01

    Seagrass meadows, one of the world’s most widespread and productive ecosystems, provide a wide range of services with real economic value. Worldwide declines in the distribution and abundance of seagrasses and increased threats to coastal ecosystems from climate change have prompted a need to acquire baseline data for monitoring and protecting these important habitats. We assessed the distribution and abundance of eelgrass (Zostera marina) along nearly 1200 km of shoreline on the lower Alaska Peninsula, a region of expansive eelgrass meadows whose status and trends are poorly understood. We demonstrate the effectiveness of a multi-scale approach by using Landsat satellite imagery to map the total areal extent of eelgrass while integrating field survey data to improve map accuracy and describe the physical and biological condition of the meadows. Innovative use of proven methods and processing tools was used to address challenges inherent to remote sensing in high latitude, coastal environments. Eelgrass was estimated to cover ~31,000 ha, 91% of submerged aquatic vegetation on the lower Alaska Peninsula, nearly doubling the known spatial extent of eelgrass in the region. Mapping accuracy was 80%–90% for eelgrass distribution at locations containing adequate field survey data for error analysis.

  17. Reduction of streamflow monitoring networks by a reference point approach

    NASA Astrophysics Data System (ADS)

    Cetinkaya, Cem P.; Harmancioglu, Nilgun B.

    2014-05-01

    Adoption of an integrated approach to water management strongly forces policy and decision-makers to focus on hydrometric monitoring systems as well. Existing hydrometric networks need to be assessed and revised against the requirements on water quantity data to support integrated management. One of the questions that a network assessment study should resolve is whether a current monitoring system can be consolidated in view of the increased expenditures in time, money and effort imposed on the monitoring activity. Within the last decade, governmental monitoring agencies in Turkey have foreseen an audit on all their basin networks in view of prevailing economic pressures. In particular, they question how they can decide whether monitoring should be continued or terminated at a particular site in a network. The presented study is initiated to address this question by examining the applicability of a method called “reference point approach” (RPA) for network assessment and reduction purposes. The main objective of the study is to develop an easily applicable and flexible network reduction methodology, focusing mainly on the assessment of the “performance” of existing streamflow monitoring networks in view of variable operational purposes. The methodology is applied to 13 hydrometric stations in the Gediz Basin, along the Aegean coast of Turkey. The results have shown that the simplicity of the method, in contrast to more complicated computational techniques, is an asset that facilitates the involvement of decision makers in application of the methodology for a more interactive assessment procedure between the monitoring agency and the network designer. The method permits ranking of hydrometric stations with regard to multiple objectives of monitoring and the desired attributes of the basin network. Another distinctive feature of the approach is that it also assists decision making in cases with limited data and metadata. These features of the RPA approach

  18. Network monitoring in the Tier2 site in Prague

    NASA Astrophysics Data System (ADS)

    Eliáš, Marek; Fiala, Lukáš; Horký, Jiří; Chudoba, Jiří; Kouba, Tomáš; Kundrát, Jan; Švec, Jan

    2011-12-01

    Network monitoring provides different types of view on the network traffic. It's output enables computing centre staff to make qualified decisions about changes in the organization of computing centre network and to spot possible problems. In this paper we present network monitoring framework used at Tier-2 in Prague in Institute of Physics (FZU). The framework consists of standard software and custom tools. We discuss our system for hardware failures detection using syslog logging and Nagios active checks, bandwidth monitoring of physical links and analysis of NetFlow exports from Cisco routers. We present tool for automatic detection of network layout based on SNMP. This tool also records topology changes into SVN repository. Adapted weathermap4rrd is used to visualize recorded data to get fast overview showing current bandwidth usage of links in network.

  19. Alaska telemedicine: growth through collaboration.

    PubMed

    Patricoski, Chris

    2004-12-01

    The last thirty years have brought the introduction and expansion of telecommunications to rural and remote Alaska. The intellectual and financial investment of earlier projects, the more recent AFHCAN Project and the Universal Service Administrative Company Rural Health Care Division (RHCD) has sparked a new era in telemedicine and telecommunication across Alaska. This spark has been flamed by the dedication and collaboration of leaders at he highest levels of organizations such as: AFHCAN member organizations, AFHCAN Office, Alaska Clinical Engineering Services, Alaska Federal Health Care Partnership, Alaska Federal Health Care Partnership Office, Alaska Native health Board, Alaska Native Tribal health Consortium, Alaska Telehealth Advisory Council, AT&T Alascom, GCI Inc., Health care providers throughout the state of Alaska, Indian Health Service, U.S. Department of Health and Human Services, Office of U.S. Senator Ted Steens, State of Alaska, U.S. Department of Homeland Security--United States Coast Guard, United States Department of Agriculture, United States Department of Defense--Air Force and Army, United States Department of Veterans Affairs, University of Alaska, and University of Alaska Anchorage. Alaska now has one of the largest telemedicine programs in the world. As Alaska moves system now in place become self-sustaining, and 2) collaborating with all stakeholders in promoting the growth of an integrated, state-wide telemedicine network.

  20. Emissions of carbon dioxide and methane from a headwater stream network of interior Alaska

    USGS Publications Warehouse

    Crawford, John T.; Striegl, Robert G.; Wickland, Kimberly P.; Dornblaser, Mark M.; Stanley, Emily H.

    2013-01-01

    Boreal ecosystems store significant quantities of organic carbon (C) that may be vulnerable to degradation as a result of a warming climate. Despite their limited coverage on the landscape, streams play a significant role in the processing, gaseous emission, and downstream export of C, and small streams are thought to be particularly important because of their close connection with the surrounding landscape. However, ecosystem carbon studies do not commonly incorporate the role of the aquatic conduit. We measured carbon dioxide (CO2) and methane (CH4) concentrations and emissions in a headwater stream network of interior Alaska underlain by permafrost to assess the potential role of stream gas emissions in the regional carbon balance. First-order streams exhibited the greatest variability in fluxes of CO2 and CH4,and the greatest mean pCO2. High-resolution time series of stream pCO2 and discharge at two locations on one first-order stream showed opposing pCO2 responses to storm events, indicating the importance of hydrologic flowpaths connecting CO2-rich soils with surface waters. Repeated longitudinal surveys on the stream showed consistent areas of elevated pCO2 and pCH4, indicative of discrete hydrologic flowpaths delivering soil water and groundwater having varying chemistry. Up-scaled basin estimates of stream gas emissions suggest that streams may contribute significantly to catchment-wide CH4 emissions. Overall, our results indicate that while stream-specific gas emission rates are disproportionately high relative to the terrestrial landscape, both stream surface area and catchment normalized emission rates were lower than those documented for the Yukon River Basin as a whole. This may be due to limitations of C sources and/or C transport to surface waters.

  1. Home medical monitoring network based on embedded technology

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Deng, Wenyi; Yan, Bixi; Lv, Naiguang

    2006-11-01

    Remote medical monitoring network for long-term monitoring of physiological variables would be helpful for recovery of patients as people are monitored at more comfortable conditions. Furthermore, long-term monitoring would be beneficial to investigate slowly developing deterioration in wellness status of a subject and provide medical treatment as soon as possible. The home monitor runs on an embedded microcomputer Rabbit3000 and interfaces with different medical monitoring module through serial ports. The network based on asymmetric digital subscriber line (ADSL) or local area network (LAN) is established and a client - server model, each embedded home medical monitor is client and the monitoring center is the server, is applied to the system design. The client is able to provide its information to the server when client's request of connection to the server is permitted. The monitoring center focuses on the management of the communications, the acquisition of medical data, and the visualization and analysis of the data, etc. Diagnosing model of sleep apnea syndrome is built basing on ECG, heart rate, respiration wave, blood pressure, oxygen saturation, air temperature of mouth cavity or nasal cavity, so sleep status can be analyzed by physiological data acquired as people in sleep. Remote medical monitoring network based on embedded micro Internetworking technology have advantages of lower price, convenience and feasibility, which have been tested by the prototype.

  2. Spatio-Temporal Clustering of Monitoring Network

    NASA Astrophysics Data System (ADS)

    Hussain, I.; Pilz, J.

    2009-04-01

    Pakistan has much diversity in seasonal variation of different locations. Some areas are in desserts and remain very hot and waterless, for example coastal areas are situated along the Arabian Sea and have very warm season and a little rainfall. Some areas are covered with mountains, have very low temperature and heavy rainfall; for instance Karakoram ranges. The most important variables that have an impact on the climate are temperature, precipitation, humidity, wind speed and elevation. Furthermore, it is hard to find homogeneous regions in Pakistan with respect to climate variation. Identification of homogeneous regions in Pakistan can be useful in many aspects. It can be helpful for prediction of the climate in the sub-regions and for optimizing the number of monitoring sites. In the earlier literature no one tried to identify homogeneous regions of Pakistan with respect to climate variation. There are only a few papers about spatio-temporal clustering of monitoring network. Steinhaus (1956) presented the well-known K-means clustering method. It can identify a predefined number of clusters by iteratively assigning centriods to clusters based. Castro et al. (1997) developed a genetic heuristic algorithm to solve medoids based clustering. Their method is based on genetic recombination upon random assorting recombination. The suggested method is appropriate for clustering the attributes which have genetic characteristics. Sap and Awan (2005) presented a robust weighted kernel K-means algorithm incorporating spatial constraints for clustering climate data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data. Soltani and Modarres (2006) used hierarchical and divisive cluster analysis to categorize patterns of rainfall in Iran. They only considered rainfall at twenty-eight monitoring sites and concluded that eight clusters

  3. A new method for monitoring global volcanic activity. [Alaska, Hawaii, Washington, California, Iceland, Guatemala, El Salvador, and Nicaragua

    NASA Technical Reports Server (NTRS)

    Ward, P. L.; Endo, E.; Harlow, D. H.; Allen, R.; Eaton, J. P.

    1974-01-01

    The ERTS Data Collection System makes it feasible for the first time to monitor the level of activity at widely separated volcanoes and to relay these data rapidly to one central office for analysis. While prediction of specific eruptions is still an evasive goal, early warning of a reawakening of quiescent volcanoes is now a distinct possibility. A prototypical global volcano surveillance system was established under the ERTS program. Instruments were installed in cooperation with local scientists on 15 volcanoes in Alaska, Hawaii, Washington, California, Iceland, Guatemala, El Salvador and Nicaragua. The sensors include 19 seismic event counters that count four different sizes of earthquakes and six biaxial borehole tiltmeters that measure ground tilt with a resolution of 1 microradian. Only seismic and tilt data are collected because these have been shown in the past to indicate most reliably the level of volcano activity at many different volcanoes. Furthermore, these parameters can be measured relatively easily with new instrumentation.

  4. Wide Area Network Monitoring System for HEP Experiments at Fermilab

    SciTech Connect

    Grigoriev, M.

    2004-11-23

    Large, distributed High Energy Physics (HEP) collaborations, such as D0, CDF and US-CMS, depend on stable and robust network paths between major world research centres. The evolving emphasis on data and compute Grids increases the reliance on network performance. Fermilab's experimental groups and network support personnel identified a critical need for WAN monitoring to ensure the quality and efficient utilization of such network paths. This has led to the development of the Network Monitoring system we will present in this paper. The system evolved from the IEPM-BW project, started at SLAC three years ago. At Fermilab this system has developed into a fully functional infrastructure with bi-directional active network probes and path characterizations. It is based on the Iperf achievable throughput tool, Ping and Synack to test ICMP/TCP connectivity. It uses Pipechar and Traceroute to test, compare and report hop-by-hop network path characterization. It also measures real file transfer performance by BBFTP and GridFTP. The Monitoring system has an extensive web-interface and all the data is available through standalone SOAP web services or by a MonaLISA client. Also in this paper we will present a case study of network path asymmetry and abnormal performance between FNAL and SDSC, which was discovered and resolved by utilizing the Network Monitoring system.

  5. Wide area network monitoring system for HEP experiments at Fermilab

    SciTech Connect

    Grigoriev, Maxim; Cottrell, Les; Logg, Connie; /SLAC

    2004-12-01

    Large, distributed High Energy Physics (HEP) collaborations, such as D0, CDF and US-CMS, depend on stable and robust network paths between major world research centers. The evolving emphasis on data and compute Grids increases the reliance on network performance. Fermilab's experimental groups and network support personnel identified a critical need for WAN monitoring to ensure the quality and efficient utilization of such network paths. This has led to the development of the Network Monitoring system we will present in this paper. The system evolved from the IEPM-BW project, started at SLAC three years ago. At Fermilab this system has developed into a fully functional infrastructure with bi-directional active network probes and path characterizations. It is based on the Iperf achievable throughput tool, Ping and Synack to test ICMP/TCP connectivity. It uses Pipechar and Traceroute to test, compare and report hop-by-hop network path characterization. It also measures real file transfer performance by BBFTP and GridFTP. The Monitoring system has an extensive web-interface and all the data is available through standalone SOAP web services or by a MonaLISA client. Also in this paper we will present a case study of network path asymmetry and abnormal performance between FNAL and SDSC, which was discovered and resolved by utilizing the Network Monitoring system.

  6. The 1999 eruption of Shishaldin Volcano, Alaska: Monitoring a distant eruption

    USGS Publications Warehouse

    Nye, C.J.; Keith, T.E.C.; Eichelberger, J.C.; Miller, T.P.; McNutt, S.R.; Moran, S.; Schneider, D.J.; Dehn, J.; Schaefer, J.R.

    2002-01-01

    Shishaldin Volcano, in the central Aleutian volcanic arc, became seismically restless during the summer of 1998. Increasing unrest was monitored using a newly installed seismic network, weather satellites, and rare local visual observations. The unrest culminated in large eruptions on 19 April and 22-23 April 1999. The opening phase of the 19 April eruption produced a sub-Plinian column that rose to 16 km before rapidly dissipating. About 80 min into the 19 April event we infer that the eruption style transitioned to vigorous Strombolian fountaining. Exceptionally vigorous seismic tremor heralded the 23 April eruption, which produced a large thermal anomaly observable by satellite, but only a modest, 6-km-high plume. There are no ground-based visual observations of this eruption; however we infer that there was renewed, vigorous Strombolian fountaining. Smaller low-level ash-rich plumes were produced through the end of May 1999. The lava that erupted was evolved basalt with about 49% SiO2. Subsequent field investigations have been unable to find a distinction between deposits from each of the two major eruptive episodes.

  7. A Survey and Comparison of Human Monitoring of Complex Networks

    DTIC Science & Technology

    2005-06-01

    monitoring of a water network , a system was created that automatically FIGURE 1. WATER PLANT CONTROL ROOM <http... water network operation instead of focusing on local data from a limited number of SCADA sensors [2]. Additional benefits include an enhanced ability

  8. Evaluation of ground water monitoring network by principal component analysis.

    PubMed

    Gangopadhyay, S; Gupta, A; Nachabe, M H

    2001-01-01

    Principal component analysis is a data reduction technique used to identify the important components or factors that explain most of the variance of a system. This technique was extended to evaluating a ground water monitoring network where the variables are monitoring wells. The objective was to identify monitoring wells that are important in predicting the dynamic variation in potentiometric head at a location. The technique is demonstrated through an application to the monitoring network of the Bangkok area. Principal component analysis was carried out for all the monitoring wells of the aquifer, and a ranking scheme based on the frequency of occurrence of a particular well as principal well was developed. The decision maker with budget constraints can now opt to monitor principal wells which can adequately capture the potentiometric head variation in the aquifer. This was evaluated by comparing the observed potentiometric head distribution using data from all available wells and wells selected using the ranking scheme as a guideline.

  9. NASA Integrated Network Monitor and Control Software Architecture

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.

  10. Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.; ,

    2006-01-01

    The U.S. Geological Survey (USGS) network of 223 real-time monitoring stations, the 'Georgia HydroWatch,' provides real-time water-stage data, with streamflow computed at 198 locations, and rainfall recorded at 187 stations. These sites continuously record data on 15-minute intervals and transmit the data via satellite to be incorporated into the USGS National Water Information System database. These data are automatically posted to the USGS Web site for public dissemination (http://waterdata.usgs.gov/ga/nwis/nwis). The real-time capability of this network provides information to help emergency-management officials protect human life and property during floods, and mitigate the effects of prolonged drought. The map at right shows the USGS streamflow monitoring network for Georgia and major watersheds. Streamflow is monitored at 198 sites statewide, more than 80 percent of which include precipitation gages. Various Federal, State, and local agencies fund these streamflow monitoring stations.

  11. Implementation of medical monitor system based on networks

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Cao, Yuzhen; Zhang, Lixin; Ding, Mingshi

    2006-11-01

    In this paper, the development trend of medical monitor system is analyzed and portable trend and network function become more and more popular among all kinds of medical monitor devices. The architecture of medical network monitor system solution is provided and design and implementation details of medical monitor terminal, monitor center software, distributed medical database and two kind of medical information terminal are especially discussed. Rabbit3000 system is used in medical monitor terminal to implement security administration of data transfer on network, human-machine interface, power management and DSP interface while DSP chip TMS5402 is used in signal analysis and data compression. Distributed medical database is designed for hospital center according to DICOM information model and HL7 standard. Pocket medical information terminal based on ARM9 embedded platform is also developed to interactive with center database on networks. Two kernels based on WINCE are customized and corresponding terminal software are developed for nurse's routine care and doctor's auxiliary diagnosis. Now invention patent of the monitor terminal is approved and manufacture and clinic test plans are scheduled. Applications for invention patent are also arranged for two medical information terminals.

  12. REVIEW OF THE RADNET AIR MONITORING NETWORK ...

    EPA Pesticide Factsheets

    RadNet, formerly known as ERAMS, has been operating since the 1970's, monitoring environmental radiation across the country, supporting responses to radiological emergencies, and providing important information on background levels of radiation in the environment. The original purpose of the system was to monitor fallout from weapons testing. Even though upgrades to and reconfiguration of the system have been planned for some time, the events of 9/11/01 gave impetus to a thorough upgrade of RadNet, primarily directed at providing more timely data and covering a larger portion of the nation's population. Moreover, the demands upon RadNet are now based upon homeland security support in addition to existing EPA monitoring responsibilities. Beginning in FY05 and continuing into FY13 up to135 near real-time air monitors will be put into operation across the country to provide decision making-data to EPA officials. Data will be transmitted from the monitors in all 50 states to a central database at the National Air and Radiation Environmental Laboratory (NAREL) in Montgomery, Alabama. The data will then be assessed and verified and made available to federal and state officials and, eventually, the public. A data flow model is being constructed to provide the most effective and efficient use of verified data obtained from the new radNet system The objective of the near-real time air monitoring component of RadNet is to provide verified decision-making data to fed

  13. Wireless Sensor Networks for Oceanographic Monitoring: A Systematic Review

    PubMed Central

    Albaladejo, Cristina; Sánchez, Pedro; Iborra, Andrés; Soto, Fulgencio; López, Juan A.; Torres, Roque

    2010-01-01

    Monitoring of the marine environment has come to be a field of scientific interest in the last ten years. The instruments used in this work have ranged from small-scale sensor networks to complex observation systems. Among small-scale networks, Wireless Sensor Networks (WSNs) are a highly attractive solution in that they are easy to deploy, operate and dismantle and are relatively inexpensive. The aim of this paper is to identify, appraise, select and synthesize all high quality research evidence relevant to the use of WSNs in oceanographic monitoring. The literature is systematically reviewed to offer an overview of the present state of this field of study and identify the principal resources that have been used to implement networks of this kind. Finally, this article details the challenges and difficulties that have to be overcome if these networks are to be successfully deployed. PMID:22163583

  14. Integrating wireless sensor network for monitoring subsidence phenomena

    NASA Astrophysics Data System (ADS)

    Marturià, Jordi; Lopez, Ferran; Gigli, Giovanni; Intrieri, Emanuele; Mucchi, Lorenzo; Fornaciai, Alessandro

    2016-04-01

    An innovative wireless sensor network (WSN) for the 3D superficial monitoring of deformations (such as landslides and subsidence) is being developed in the frame of the Wi-GIM project (Wireless sensor network for Ground Instability Monitoring - LIFE12 ENV/IT/001033). The surface movement is detected acquiring the position (x, y and z) by integrating large bandwidth technology able to detect the 3D coordinates of the sensor with a sub-meter error, with continuous wave radar, which allows decreasing the error down to sub-cm. The Estació neighborhood in Sallent is located over the old potassium mine Enrique. This zone has been affected by a subsidence process over more than twenty years. The implementation of a wide network for ground auscultation has allowed monitoring the process of subsidence since 1997. This network consists of: i) a high-precision topographic leveling network to control the subsidence in surface; ii) a rod extensometers network to monitor subsurface deformation; iii) an automatic Leica TCA Total Station to monitor building movements; iv) an inclinometers network to measure the horizontal displacements on subsurface and v) a piezometer to measure the water level. Those networks were implemented within an alert system for an organized an efficient response of the civil protection authorities in case of an emergency. On 23rd December 2008, an acceleration of subsoil movements (of approx. 12-18 cm/year) provoked the activation of the emergency plan by the Catalan Civil Protection. This implied the preventive and scheduled evacuation of the neighbours (January 2009) located in the area with a higher risk of collapse: around 120 residents of 43 homes. As a consequence, the administration implemented a compensation plan for the evacuation of the whole neighbourhood residents and the demolition of 405 properties. In this work, the adaptation and integration process of Wi-GIM system with those conventional monitoring network are presented for its testing

  15. Gulf Watch Alaska nearshore component: Monitoring site locations from Prince William Sound, Katmai National Park and Preserve, and Kenai Fjords National Park

    USGS Publications Warehouse

    Coletti, Heather A.; Kloecker, Kim; Bodkin, James L.; Dean, Thomas A.

    2017-01-01

    These data are part of the Gulf Watch Alaska (GWA) long term monitoring program, nearshore monitoring component. Specifically, these data describe site locations for rocky intertidal, mussel sampling, soft sediment bivalve sampling, and eelgrass bed sampling in the northern Gulf of Alaska within the GWA program. The dataset consists of two comma separated files exported from a Microsoft Excel workbook. The data consists of 1. rocky intertidal, mussel sampling, and soft sediment site location information, and 2. eelgrass bed locations. Sampling will be conducted in Katmai National Park and Preserve (KATM), Kenai Fjords National Park (KEFJ), Prince William Sound (PWS) and to a lesser extent on the Lake Clark National Park and Preserve (LACL). Sites from a related project that provides similar data from Kachemak Bay (KBAY) are included here.

  16. Leveraging network connectivity for quality assurance of clinical display monitors.

    PubMed

    Gersten, Jennifer

    2012-01-01

    The VA Midwest Health Care Network, VISN 23, is one of 21 veteran integrated health service networks (VISN) under the Department of Veterans Affairs. There are approximately 300,000 imaging studies generated per year and currently more than 14,000 picture archiving and communication system (PACS) users in VISN 23. Biomedical Engineering Services within VISN 23 coordinates the provision of medical technology support. One emerging technology leverages network connectivity as a method of calibrating and continuously monitoring clinical display monitors in support of PACS. Utilizing a continuous calibration monitoring system, clinical displays can be identified as out of Digital Imaging and Communications in Medicine (DICOM) compliance through a centralized server. The technical group can receive immediate notification via e-mail and respond proactively. Previously, this problem could go unnoticed until the next scheduled preventive maintenance was performed. This system utilizes simple network management protocols (SNMP) and simple mail transfer protocols (SMTP) across a wide area network for real-time alerts from a centralized location. This central server supports and monitors approximately 320 clinical displays deployed across five states. Over the past three years of implementation in VISN 23, the remote calibration and monitoring capability has allowed for more efficient support of clinical displays and has enhanced patient safety by ensuring a consistent display of images on these clinical displays.

  17. ASSESSING THE COMPARABILITY OF AMMONIUM, NITRATE AND SULFATE CONCENTRATIONS MEASURED BY THREE AIR QUALITY MONITORING NETWORKS

    EPA Science Inventory

    Airborne fine particulate matter across the United States is monitored by different networks, the three prevalent ones presently being the Clean Air Status and Trend Network (CASTNet), the Interagency Monitoring of PROtected Visual Environment Network (IMPROVE) and the Speciati...

  18. DATA FROM A SOLAR ULTRAVIOLET MONITORING NETWORK

    EPA Science Inventory

    The U.S. Environmental Protection Agency, in conjunction with the National Park Service, operates a network of 21 spectrophotometers, measuring spectrally-resolved, surface UV radiation of wavelengths 290-363 nanometers. Fourteen of the measurement sites are in National Parks,...

  19. Reconfigurable hardware applications on NetFPGA for network monitoring in large area sensor networks

    NASA Astrophysics Data System (ADS)

    Belias, A.; Koutsoumpos, V.; Manolopoulos, K.; Kachris, C.

    2013-10-01

    A valuable functionality for sensor networks, distributed in large volumes is the capability to characterize and analyze the data traffic at wire speed and monitor the data prior to committing to permanent storage. As a demonstrator we use a reconfigurable hardware router for real-time monitoring of data before their transmission to further processing and storage. The reconfigurable hardware router is based on the NetFPGA platform. In this study we report on the hardware implementation to monitor web-based network applications and compare our results with a software based network analyzer.

  20. A Great Lakes atmospheric mercury monitoring network: evaluation and design

    USGS Publications Warehouse

    Risch, Martin R.; Kenski, Donna M.; ,; David, A.

    2014-01-01

    As many as 51 mercury (Hg) wet-deposition-monitoring sites from 4 networks were operated in 8 USA states and Ontario, Canada in the North American Great Lakes Region from 1996 to 2010. By 2013, 20 of those sites were no longer in operation and approximately half the geographic area of the Region was represented by a single Hg-monitoring site. In response, a Great Lakes Atmospheric Mercury Monitoring (GLAMM) network is needed as a framework for regional collaboration in Hg-deposition monitoring. The purpose of the GLAMM network is to detect changes in regional atmospheric Hg deposition related to changes in Hg emissions. An optimized design for the network was determined to be a minimum of 21 sites in a representative and approximately uniform geographic distribution. A majority of the active and historic Hg-monitoring sites in the Great Lakes Region are part of the National Atmospheric Deposition Program (NADP) Mercury Deposition Network (MDN) in North America and the GLAMM network is planned to be part of the MDN. To determine an optimized network design, active and historic Hg-monitoring sites in the Great Lakes Region were evaluated with a rating system of 21 factors that included characteristics of the monitoring locations and interpretations of Hg data. Monitoring sites were rated according to the number of Hg emissions sources and annual Hg emissions in a geographic polygon centered on each site. Hg-monitoring data from the sites were analyzed for long-term averages in weekly Hg concentrations in precipitation and weekly Hg-wet deposition, and on significant temporal trends in Hg concentrations and Hg deposition. A cluster analysis method was used to group sites with similar variability in their Hg data in order to identify sites that were unique for explaining Hg data variability in the Region. The network design included locations in protected natural areas, urban areas, Great Lakes watersheds, and in proximity to areas with a high density of annual Hg

  1. Pollution monitoring using networks of honey bees

    SciTech Connect

    Bromenshenk, J.J.; Dewart, M.L.; Thomas, J.M.

    1983-08-01

    Each year thousands of chemicals in large quantities are introduced into the global environment and the need for effective methods of monitoring these substances has steadily increased. Most monitoring programs rely upon instrumentation to measure specific contaminants in air, water, or soil. However, it has become apparent that humans and their environment are exposed to complex mixtures of chemicals rather than single entities. As our ability to detect ever smaller quantities of pollutants has increased, the biological significance of these findings has become more uncertain. Also, it is clear that monitoring efforts should shift from short-term studies of easily identifiable sources in localized areas to long-term studies of multiple sources over widespread regions. Our investigations aim at providing better tools to meet these exigencies. Honey bees are discussed as an effective, long-term, self-sustaining system for monitoring environmental impacts. Our results indicate that the use of regional, and possibly national or international, capability can be realized with the aid of beekeepers in obtaining samples and conducting measurements. This approach has the added advantage of public involvement in environmental problem solving and protection of human health and environmental quality.

  2. Throughfall Monitoring Of Old Growth, Second Growth, And Cleared Vegetation Plots On Prince of Wales Island, Alaska

    NASA Astrophysics Data System (ADS)

    Prussian, K. M.

    2006-12-01

    The density of forest canopy affects the amount of rain reaching the forest floor in forested environments of Southeast Alaska. Less throughfall occurs in the second growth sites than in the old growth site and greater throughfall occurs in the clear-cut sites. More specifically, preliminary data show that SG sites received between 38 and 87% of the OG throughfall and the clear-cut sites experienced between 145 and 248% of the OG throughfall. Precipitation gages were used to monitor throughfall in each of the forested vegetation sites on Prince of Wales Island, Alaska, as an indicator of the amount of water reaching the forest floor in these different forest types. Data collected during 2004 and 2005 included 23 storms ranging from 0.2 to 10.6 inches of rain in the clear-cut forest. This monitoring is an effort to determine the affect, if any, that forest management could have on throughfall, and furthermore, lend information to forest management effects on the water balance within a watershed. Site selection focused on similarities in location, elevation, aspect, and accessibility while accounting for the three varying vegetation conditions. Data collected during 2004 and 2005 sampling seasons were in the same sampling plots, while data collected in 2006 is a duplicate set of sites. Twenty-three storms were used to determine the affect, if any, that forest management could have on throughfall, and furthermore, lend information to forest management effects on the water balance within a watershed. The second growth stand was harvested in 1979 and is currently in stem re-initiation phase with thick conifer regeneration. The clear-cut site was harvested in 1999 and contains conifer vegetation, blueberry, and salmonberry vegetation less than five feet in height. Storms were defined as events that were clearly delineated by lack of rainfall for a period of time, or similar antecedent conditions, and totaled at least .2 inches of rain at the CC site. Analysis of a storm

  3. Monitoring change in the Bering Glacier region, Alaska: Using Landsat TM and ERS-1 imagery

    SciTech Connect

    Payne, J.F.; Coffeen, M.; Macleod, R.D.

    1997-06-01

    The Bering Glacier is the largest (5,180 km{sup 2}) and longest (191 km) glacier in continental North America. This glacier is one of about 200 temperate glaciers in the Alaska/Canada region that are known to surge. Surges at the Bering Glacier typically occur on a 20-30 year cycle. The objective of this project was to extract information regarding the position of the terminus of the glacier from historic aerial photography, early 20{sup th} century ground photography, Landsat Thematic Mapper (TM) satellite data, and European Space Agency, Synthetic Aperture RADAR (ERS-1 SAR) data and integrate it into a single digital database that would lend itself to change detection analysis. ERS-1 SAR data was acquired from six dates between 1992-95 and was terrain corrected and co-registered A single Landsat TM image from June 1991 was used as the base image for classifying land cover types. Historic locations of the glacier terminus were generated using traditional photo interpretation techniques from aerial and ground photography. The result of this platform combination, along with the historical data, is providing land managers with the unique opportunity to generate complete assessments of glacial movement this century and determine land cover changes which may impact wildlife and recreational opportunities.

  4. Diffuse gas emissions at the Ukinrek Maars, Alaska: Implications for magmatic degassing and volcanic monitoring

    USGS Publications Warehouse

    Evans, William C.; Bergfeld, D.; McGimsey, R.G.; Hunt, A.G.

    2009-01-01

    Diffuse CO2 efflux near the Ukinrek Maars, two small volcanic craters that formed in 1977 in a remote part of the Alaska Peninsula, was investigated using accumulation chamber measurements. High CO2 efflux, in many places exceeding 1000 g m-2 d-1, was found in conspicuous zones of plant damage or kill that cover 30,000-50,000 m2 in area. Total diffuse CO2 emission was estimated at 21-44 t d-1. Gas vents 3-km away at The Gas Rocks produce 0.5 t d-1 of CO2 that probably derives from the Ukinrek Maars basalt based on similar ??13C values (???-6???), 3He/4He ratios (5.9-7.2 RA), and CO2/3He ratios (1-2 ?? 109) in the two areas. A lower 3He/4He ratio (2.7 RA) and much higher CO2/3He ratio (9 ?? 1010) in gas from the nearest arc-front volcanic center (Mount Peulik/Ugashik) provide a useful comparison. The large diffuse CO2 emission at Ukinrek has important implications for magmatic degassing, subsurface gas transport, and local toxicity hazards. Gas-water-rock interactions play a major role in the location, magnitude and chemistry of the emissions.

  5. Hybrid wireless sensor network for rescue site monitoring after earthquake

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Wang, Shuo; Tang, Chong; Zhao, Xiaoguang; Hu, Weijian; Tan, Min; Gao, Bowei

    2016-07-01

    This paper addresses the design of a low-cost, low-complexity, and rapidly deployable wireless sensor network (WSN) for rescue site monitoring after earthquakes. The system structure of the hybrid WSN is described. Specifically, the proposed hybrid WSN consists of two kinds of wireless nodes, i.e., the monitor node and the sensor node. Then the mechanism and the system configuration of the wireless nodes are detailed. A transmission control protocol (TCP)-based request-response scheme is proposed to allow several monitor nodes to communicate with the monitoring center. UDP-based image transmission algorithms with fast recovery have been developed to meet the requirements of in-time delivery of on-site monitor images. In addition, the monitor node contains a ZigBee module that used to communicate with the sensor nodes, which are designed with small dimensions to monitor the environment by sensing different physical properties in narrow spaces. By building a WSN using these wireless nodes, the monitoring center can display real-time monitor images of the monitoring area and visualize all collected sensor data on geographic information systems. In the end, field experiments were performed at the Training Base of Emergency Seismic Rescue Troops of China and the experimental results demonstrate the feasibility and effectiveness of the monitor system.

  6. The ground-water-level monitoring network in Iowa

    USGS Publications Warehouse

    Lambert, R.B.

    1992-01-01

    The objectives of the ground-water-level monitoring network in Iowa are to provide the data needed to: (1) determine the change in aquifer storage, (2) document the effects of climatic stress and human activities on discharge and recharge to the principal aquifers, (3) quantify the physical characteristics of ground-water flow including the transmissivity, hydraulic conductivity, and specific capacity of aquifers; and (4) provide historical baseline data for future research. The design of the ground-water-level monitoring network in Iowa that satisfies these objectives includes three types of data: (1) hydrologic data, (2) water-management data for use by State and local officials, and (3) baseline data.

  7. Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring

    DTIC Science & Technology

    2016-02-02

    AFRL-AFOSR-VA-TR-2016-0094 Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring. Thomas Henderson UNIVERSITY OF UTAH SALT...The major goal of this work was to provide rigorous Bayesian Computational Sensor Networks to quantify uncertainty in (1) model-based state...estimates incorporating sensor data, (2) model parameters (e.g., diffusion coefficients), (3) sensor node model parameter values (e.g., location, bias

  8. Design development of a neural network-based telemetry monitor

    NASA Technical Reports Server (NTRS)

    Lembeck, Michael F.

    1992-01-01

    This paper identifies the requirements and describes an architectural framework for an artificial neural network-based system that is capable of fulfilling monitoring and control requirements of future aerospace missions. Incorporated into this framework are a newly developed training algorithm and the concept of cooperative network architectures. The feasibility of such an approach is demonstrated for its ability to identify faults in low frequency waveforms.

  9. Wireless Sensor Networks Applied on Environmental Monitoring in Fowl Farm

    NASA Astrophysics Data System (ADS)

    Dong, Fangwu; Zhang, Naiqing

    Aiming at the real time monitoring requirement of poultry farms on the environment, a online monitoring system is proposed for poultry farms on the environment based on ZigBee, its application of ZigBee wireless networks and sensor technology. supply a network structure of monitoring system, monitoring system node controller of data acquisition, data transmission and control node, which is TI's CC2430 based on ZigBee technology. CO2 sensors use TGS4161, temperature and humidity sensors use SHT75 to detect environmental parameters. designed circuit diagram of parameter testing node and system master control node, CC2430 as a data processing chip. through the analysis of data transmission of system, simplifying the ZigBee protocol stack, designed data transmission protocols and communication formats of the system. given program flow chart of sensors nodes and main node. practical application shows that the performance ratio cable monitoring system is better, Especially in real-time systems and anti-jamming, it so superior on the current forms of environmental monitoring SCM cable system which cost lower than the SCM cable control system about 30%.Successfully achieved the Monitoring of fowlery's CO2 concentration, temperature, humidity and other environmental parameters for large-scale poultry farming, and to provide a new monitoring environment technologie.

  10. Monitoring air quality in mountains: Designing an effective network

    USGS Publications Warehouse

    Peterson, D.L.

    2000-01-01

    A quantitatively robust yet parsimonious air-quality monitoring network in mountainous regions requires special attention to relevant spatial and temporal scales of measurement and inference. The design of monitoring networks should focus on the objectives required by public agencies, namely: 1) determine if some threshold has been exceeded (e.g., for regulatory purposes), and 2) identify spatial patterns and temporal trends (e.g., to protect natural resources). A short-term, multi-scale assessment to quantify spatial variability in air quality is a valuable asset in designing a network, in conjunction with an evaluation of existing data and simulation-model output. A recent assessment in Washington state (USA) quantified spatial variability in tropospheric ozone distribution ranging from a single watershed to the western third of the state. Spatial and temporal coherence in ozone exposure modified by predictable elevational relationships ( 1.3 ppbv ozone per 100 m elevation gain) extends from urban areas to the crest of the Cascade Range. This suggests that a sparse network of permanent analyzers is sufficient at all spatial scales, with the option of periodic intensive measurements to validate network design. It is imperative that agencies cooperate in the design of monitoring networks in mountainous regions to optimize data collection and financial efficiencies.

  11. Ocean breeze monitoring network at the Oyster Creek Nuclear Plant

    SciTech Connect

    Heck, W.

    1987-01-01

    The Oyster Creek Nuclear Generating Station (OCNGS) is located in New Jersey 10 km west of the Atlantic Ocean. Routine meteorological monitoring at the station has consisted of a single meteorological tower 120 m high and instrumented at the 10-m, 46-m, and 116-m levels. An analysis of 5 yr of data from this tower showed the OCNGS is affected by an ocean breeze approx. 1 day out of 4 during May through August. This suggested the need for meteorological monitoring in addition to the single met tower at OCNGS. As a result of the 1985 OCNGS meteorological monitoring study, GPU Nuclear established an ocean breeze monitoring network in the fall of 1986. It is a permanent part of OCNGS meteorological monitoring and consists of the same sites as used in the 1985 field study. Meteorological towers are located at the ocean site, the inland site, and at OCNGS. The ocean tower is 13 m (43 ft) high, the inland tower 10 m (33 ft), and the OCNGS tower 116 m (380 ft). Wind speed, wind direction, and temperature are measured on each tower; delta-temperature is also measured on the main tower. The instruments are calibrated in the spring, summer, and fall. The network is operated and maintained by GPU Nuclear Environmental Controls. The ocean breeze monitoring network and meteorological information system forms the basis for including the effects of the ocean breeze in OCNGS emergency off-site dose assessment.

  12. Wireless Sensor Network for Electric Transmission Line Monitoring

    SciTech Connect

    Alphenaar, Bruce

    2009-06-30

    Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform

  13. Continuous monitoring of soil gas efflux with Forced Diffusion (FD) chamber technique in a tundra ecosystem, Alaska

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Park, S. J.; Lee, B. Y.

    2015-12-01

    Continuous measurements of soil carbon dioxide (CO2) efflux provide essential information about the soil carbon budget in response to an abruptly changing climate at Arctic and Subarctic scales. The Forced Diffusion (FD) chamber technique has a gas permeable membrane, which passively regulates the mixing of atmosphere and soil air in the chamber, in place of the active pumping system inside a regular dynamics efflux chamber system (Risk et al., 2011). Here the system has been modified the sampling routine to eliminate the problem of sensor drift. After that, we deployed the FD chamber system in a tundra ecosystem over the discontinuous permafrost regime of Council, Alaska. The representative understory plants are tussock (17 %), lichen (32 %), and moss (51 %), within a 40 נ40 m plot at an interval of five meters (81 points total) for efflux-measurement by dynamic chamber. The FD chamber monitored soil CO2 efflux from moss, lichen, and tussock regimes at an interval of 30 min during the growing season of 2015. As the results, mean soil CO2 effluxes in sphagnum moss, lichen, and tussock were 1.98 ± 1.10 (coefficient of variance: 55.8 %), 3.34 ± 0.84 (CV: 25.0 %), and 5.32 ± 1.48 (CV: 27.8 %) gCO2/m2/d, respectively. The difference between the 30-min efflux interval and the average efflux of three 10-min intervals is not significant for sphagnum (n = 196), lichen (n = 918), and tussock (n = 918) under a 95 % confidence level. The deploying interval was then set to 30 min and synchronized with eddy covariance tower data. During the deployment period of 2015, soil CO2 efflux over moss, lichen, and tussock using the FD chamber system were 44 ± 24, 73 ± 18, and 117 ± 33 gCO2/m2/period, respectively. Using the dynamic chamber, mean ecosystem respiration (Re) ranges for moss, lichen, and tussock were 2.2-2.6, 1.8-2.0, and 3.3-3.6 gCO2/m2/d, respectively, during June and July of 2015. These techniques provide the representativeness of spatiotemporal variation of soil

  14. Spatio-temporally continuous monitoring of surface and ground temperature in Interior Alaska forest by optical Fiber DTS

    NASA Astrophysics Data System (ADS)

    Saito, K.; Iwahana, G.; Busey, R.; Ikawa, H.

    2015-12-01

    We have employed an optical Fiber DTS (distributed temperature sensing; N4386B by AP Sensing) system at a taiga site in Interior Alaska in order to monitor the surface and subsurface thermal regime continuously in space and time. The optic fiber cable sensor (multi-mode, GI50/125 dual core; 3.4 mm) of 2.7 km was installed on or below surface, measuring temperature at the half-meter resolution and half-hour interval. The site is in Poker Flat Research Range of the University of Alaska Fairbanks (N 65˚08', W 147˚26', 491 m a.s.l), underlain by permafrost. Dominant vegetation is black spruce. Within the area in which the cable was installed, density of spruce trees varies, ranging from open area with mosses to shrubby open forest to closed forest. Measurement was done for two years (from October, 2012 to October, 2014). When incident photons of a laser pulse is scattered by molecules of optical fiber (SiO2), a certain amount is back scattered at different frequencies (Stokes and Anti-Stokes peaks). The system detects the intensity ratio of the two peaks of this Raman scattering, which depends on the temperature of the molecules. The distance of the molecules is determines by the time it takes to travel (optical time domain reflectmetry; OTDR). About 2.0 km of the entire cable sensor lies on the surface to measure horizontal variations of surface temperatures. The diurnal and seasonal components of the variations were analyzed to illustrate their relationship with the overlying canopy characteristics. Cable is also coiled around a PVC tube (outer radius of 4 inch = 10.2 cm) for 120 cm, which is half buried to the ground to measure surface (or snow, when snow-covered) and subsurface temperatures with finer vertical resolution. Five of such tubes were installed in different land cover areas (open and closed forest, shrubs, open area, and relict thermokarst). We will also discuss challenges we encountered during installations and operations.

  15. Dual Use Global Tsunami Monitoring Network and Underwater GNSS

    NASA Astrophysics Data System (ADS)

    Bernard, E. N.

    2015-12-01

    Earthquakes, volcanoes, landslides, slumps, meteorological events and asteroid impacts can generate tsunamis. However, the present tsunami monitoring network is designed to detect tsunamis generated only by subduction zone earthquakes. A global tsunami monitoring system will be presented to detect tsunamis from ANY source within 20 minutes of origin time. Real-time tsunami data from the monitoring system can be used to forecast coastal flooding in advance of tsunami arrival, thus saving lives through early warnings. The global tsunami monitoring system could also be used to expand the coverage of global navigation by satellites to the seafloor of the world's oceans. Since oceans cover over 70% of the surface planet earth, such an expansion of coverage would revolutionize earth sciences as well as tsunami monitoring for all generation mechanisms. A demonstration project is proposed to test and evaluate the dual use concept.

  16. Network-Oriented Radiation Monitoring System (NORMS)

    SciTech Connect

    Rahmat Aryaeinejad; David F. Spencer

    2007-10-01

    We have developed a multi-functional pocket radiation monitoring system capable of detecting and storing gamma ray and neutron data and then sending the data through a wireless connection to a remote central facility upon request. The device has programmable alarm trigger levels that can be modified for specific applications. The device could be used as a stand-alone device or in conjunction with an array to cover a small or large area. The data is stored with a date/time stamp. The device may be remotely configured. Data can be transferred and viewed on a PDA via direct connection or wirelessly. Functional/bench tests have been completed successfully. The device detects low-level neutron and gamma sources within a shielded container in a radiation field of 10 uR/hr above the ambient background level.

  17. Wireless sensor network for monitoring soil moisture and weather conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  18. Combine harvester monitor system based on wireless sensor network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  19. PLUME-SCALER-EVALUATING LONG-TERM MONITORING WELL NETWORKS

    EPA Science Inventory

    EPA's Subsurface Protection and Remediation Division is developing a new computer application called PLUME-SCALER to evaluate long term monitoring well networks using typically available historical site water level data. PLUME-SCALER can be used to determine if there are enough ...

  20. A proposed ground-water quality monitoring network for Idaho

    USGS Publications Warehouse

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  1. DESIGN OF LARGE-SCALE AIR MONITORING NETWORKS

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks to air pollution. A major crit...

  2. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  3. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    PubMed

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-09-18

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  4. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and

  5. Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network

    DOE Data Explorer

    The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from November 1985 through December 1996. The six-station network provided 5-minute averaged measurements of global and diffuse horizontal solar irradiance. The data were processed at the National Renewable Energy Laboratory (NREL) to improve the assessment of the solar radiation resources in the southeastern United States. Three of the stations also measured the direct-normal solar irradiance with a pyrheliometer mounted in an automatic sun tracker. All data are archived in the Standard Broadband Format (SBF) with quality-assessment indicators. Monthly data summaries and plots are also available for each month. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network.

  6. Pipelining in structural health monitoring wireless sensor network

    NASA Astrophysics Data System (ADS)

    Li, Xu; Dorvash, Siavash; Cheng, Liang; Pakzad, Shamim

    2010-04-01

    Application of wireless sensor network (WSN) for structural health monitoring (SHM), is becoming widespread due to its implementation ease and economic advantage over traditional sensor networks. Beside advantages that have made wireless network preferable, there are some concerns regarding their performance in some applications. In long-span Bridge monitoring the need to transfer data over long distance causes some challenges in design of WSN platforms. Due to the geometry of bridge structures, using multi-hop data transfer between remote nodes and base station is essential. This paper focuses on the performances of pipelining algorithms. We summarize several prevent pipelining approaches, discuss their performances, and propose a new pipelining algorithm, which gives consideration to both boosting of channel usage and the simplicity in deployment.

  7. Fluid and Rock Property Controls On Production And Seismic Monitoring Alaska Heavy Oils

    SciTech Connect

    Liberatore, Matthew; Herring, Andy; Prasad, Manika; Dorgan, John; Batzle, Mike

    2012-10-30

    The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formation's vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations.

  8. EPMOSt: an energy-efficient passive monitoring system for wireless sensor networks.

    PubMed

    Garcia, Fernando P; Andrade, Rossana M C; Oliveira, Carina T; de Souza, José Neuman

    2014-06-19

    Monitoring systems are important for debugging and analyzing Wireless Sensor Networks (WSN). In passive monitoring, a monitoring network needs to be deployed in addition to the network to be monitored, named the target network. The monitoring network captures and analyzes packets transmitted by the target network. An energy-efficient passive monitoring system is necessary when we need to monitor a WSN in a real scenario because the lifetime of the monitoring network is extended and, consequently, the target network benefits from the monitoring for a longer time. In this work, we have identified, analyzed and compared the main passive monitoring systems proposed for WSN. During our research, we did not identify any passive monitoring system for WSN that aims to reduce the energy consumption of the monitoring network. Therefore, we propose an Energy-efficient Passive MOnitoring SysTem for WSN named EPMOSt that provides monitoring information using a Simple Network Management Protocol (SNMP) agent. Thus, any management tool that supports the SNMP protocol can be integrated with this monitoring system. Experiments with real sensors were performed in several scenarios. The results obtained show the energy efficiency of the proposed monitoring system and the viability of using it to monitor WSN in real scenarios.

  9. EPMOSt: An Energy-Efficient Passive Monitoring System for Wireless Sensor Networks

    PubMed Central

    Garcia, Fernando P.; Andrade, Rossana M. C.; Oliveira, Carina T.; de Souza, José Neuman

    2014-01-01

    Monitoring systems are important for debugging and analyzing Wireless Sensor Networks (WSN). In passive monitoring, a monitoring network needs to be deployed in addition to the network to be monitored, named the target network. The monitoring network captures and analyzes packets transmitted by the target network. An energy-efficient passive monitoring system is necessary when we need to monitor a WSN in a real scenario because the lifetime of the monitoring network is extended and, consequently, the target network benefits from the monitoring for a longer time. In this work, we have identified, analyzed and compared the main passive monitoring systems proposed for WSN. During our research, we did not identify any passive monitoring system for WSN that aims to reduce the energy consumption of the monitoring network. Therefore, we propose an Energy-efficient Passive MOnitoring SysTem for WSN named EPMOSt that provides monitoring information using a Simple Network Management Protocol (SNMP) agent. Thus, any management tool that supports the SNMP protocol can be integrated with this monitoring system. Experiments with real sensors were performed in several scenarios. The results obtained show the energy efficiency of the proposed monitoring system and the viability of using it to monitor WSN in real scenarios. PMID:24949639

  10. Pattern classification by a neurofuzzy network: application to vibration monitoring.

    PubMed

    Meesad, P; Yen, G G

    2000-01-01

    An innovative neurofuzzy network is proposed herein for pattern classification applications, specifically for vibration monitoring. A fuzzy set interpretation is incorporated into the network design to handle imprecise information. A neural network architecture is used to automatically deduce fuzzy if-then rules based on a hybrid supervised learning scheme. The neurofuzzy classifier proposed is equipped with a one-pass, on-line, and incremental learning algorithm. This network can be considered a self-organized classifier with the ability to adaptively learn new information without forgetting old knowledge. The classification performance of the proposed neurofuzzy network is validated on the Fisher's Iris data, which is a well-known benchmark data set. For the generalization capability, the neurofuzzy network can achieve 97.33% correct classification. In addition, to demonstrate the efficiency and effectiveness of the proposed neurofuzzy paradigm, numerical simulations have been performed using the Westland data set. The Westland data set consists of vibration data collected from a US Navy CH-46E helicopter test stand. Using a simple fast Fourier transform technique for feature extraction, the proposed neurofuzzy network has shown promising results. Using various torque levels for training and testing, the network achieved 100% correct classification.

  11. The Alaska Lake Ice and Snow Observatory Network (ALISON): Hands-on Experiential K- 12 Learning in the North

    NASA Astrophysics Data System (ADS)

    Morris, K.; Jeffries, M.

    2008-12-01

    The Alaska Lake Ice and Snow Observatory Network (ALISON) was initiated by Martin Jeffries (UAF polar scientist), Delena Norris-Tull (UAF education professor) and Ron Reihl (middle school science teacher, Fairbanks North Star Borough School District). The snow and ice measurement protocols were developed in 1999-2000 at the Poker Flat Research Range (PFRR) by Geophysical Institute, University of Alaska scientists and tested by home school teacher/students in winter 2001-2002 in Fairbanks, AK. The project was launched in 2002 with seven sites around the state (PFRR, Fairbanks, Barrow, Mystic Lake, Nome, Shageluk and Wasilla). The project reached its broadest distribution in 2005-2006 with 22 sites. The schools range from urban (Wasilla) to primarily Alaska native villages (Shageluk). They include public schools, charter schools, home schooled students and parents, informal educators and citizen scientists. The grade levels range from upper elementary to high school. Well over a thousand students have participated in ALISON since its inception. Equipment is provided to the observers at each site. Measurements include ice thickness (with a hot wire ice thickness gauge), snow depth and snow temperature (surface and base). Snow samples are taken and snow density derived. Snow variables are used to calculate the conductive heat flux through the ice and snow cover to the atmosphere. All data are available on the Web site. The students and teachers are scientific partners in the study of lake ice processes, contributing to new scientific knowledge and understanding while also learning science by doing science with familiar and abundant materials. Each autumn, scientists visit each location to work with the teachers and students, helping them to set up the study site, showing them how to make the measurements and enter the data into the computer, and discussing snow, ice and polar environmental change. A number of 'veteran' teachers are now setting up the study sites on

  12. Ten Years of Monitoring the Eruption of Shrub Mud Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    McGimsey, R. G.; Evans, W. C.; Bergfeld, D.; McCarthy, S. H.; Hagstrum, J. T.

    2007-12-01

    Shrub mud volcano, one of three in the Klawasi group on the eastern flank of Mount Drum volcano in the Wrangell volcanic field of eastern Alaska, has been erupting warm, saline mud and CO2-rich gas continuously since at least the summer of 1997, following 40 years of repose. The initial eruption in early summer of 1997, documented by Richter and others (1998), involved violent fountaining of mud, up to 6-8 m high, from nearly a dozen vents located near the summit, and quiet effusion from vents located about mid-way down the north flank of the 100-m-high cone. Guided by topography, early emissions of copious amounts of CO2 gas flowed in narrow streams through brushy foliage leaving behind stripes of brown, dead vegetation along the flow paths. The hazard posed by the CO2 emissions was evident from dead birds and mammals found near the vents. Initial surveys of the activity in 1997 recorded water temperatures up to 46°C. A survey in 1999 by Sorey and others (2000) found numerous active vents-many in different locations than those two years earlier-a maximum water temperature of 54°C, and an estimated total discharge of warm water of 50 l/s. Measured CO2 emissions were extrapolated to a discharge rate of 6-12 tonnes/day. The highest water temperature recorded was 57.3°C in 2000, with temperatures gradually declining since. From year to year, we found that eruptive activity migrated amongst clusters of vents, some new and some continuing from 1997. Between the summer of 2003 and the spring of 2004, the system changed dramatically when a large collapse pit formed a few tens of meters from the main summit vents and all previously active vents became inactive. This water-filled circular pit measured 28 m in diameter, up to 9 m deep, and encompassed an area that had previously been unaffected by the eruptive activity. In July 2004, water temperature and discharge at the outlet channel was 37.2°C and 9.4 l/s, respectively. The total CO2 discharge from the roiling pool

  13. Monitoring of stability of ASG-EUPOS network coordinates

    NASA Astrophysics Data System (ADS)

    Figurski, M.; Szafranek, K.; Wrona, M.

    2009-04-01

    ASG-EUPOS (Active Geodetic Network - European Position Determination System) is the national system of precise satellite positioning in Poland, which increases a density of regional and global GNSS networks and is widely used by public administration, national institutions, entrepreneurs and citizens (especially surveyors). In near future ASG-EUPOS is to take role of main national network. Control of proper activity of stations and realization of ETRS'89 is a necessity. User of the system needs to be sure that observations quality and coordinates accuracy are high enough. Coordinates of IGS (International GNSS Service) and EPN (European Permanent Network) stations are precisely determined and any changes are monitored all the time. Observations are verified before they are archived in regional and global databases. The same applies to ASG-EUPOS. This paper concerns standardization of GNSS observations from different stations (uniform adjustment), examination of solutions correctness according to IGS and EPN standards and stability of solutions and sites activity

  14. Vibration monitoring of EDF rotating machinery using artificial neural networks

    SciTech Connect

    Alguindigue, I.E.; Loskiewicz-Buczak, A.; Uhrig, R.E. . Dept. of Nuclear Engineering); Hamon, L.; Lefevre, F. . Direction des Etudes et Recherches)

    1991-01-01

    Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural networks to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected by Electricite de France (EDF). Two neural networks algorithms were used in our project: the Recirculation algorithm and the Backpropagation algorithm. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results are very encouraging.

  15. Vibration monitoring of EDF rotating machinery using artificial neural networks

    SciTech Connect

    Alguindigue, I.E.; Loskiewicz-Buczak, A.; Uhrig, R.E.; Hamon, L.; Lefevre, F.

    1991-12-31

    Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural networks to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected by Electricite de France (EDF). Two neural networks algorithms were used in our project: the Recirculation algorithm and the Backpropagation algorithm. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results are very encouraging.

  16. Social network diagnostics: a tool for monitoring group interventions

    PubMed Central

    2013-01-01

    Background Many behavioral interventions designed to improve health outcomes are delivered in group settings. To date, however, group interventions have not been evaluated to determine if the groups generate interaction among members and how changes in group interaction may affect program outcomes at the individual or group level. Methods This article presents a model and practical tool for monitoring how social ties and social structure are changing within the group during program implementation. The approach is based on social network analysis and has two phases: collecting network measurements at strategic intervention points to determine if group dynamics are evolving in ways anticipated by the intervention, and providing the results back to the group leader to guide implementation next steps. This process aims to initially increase network connectivity and ultimately accelerate the diffusion of desirable behaviors through the new network. This article presents the Social Network Diagnostic Tool and, as proof of concept, pilot data collected during the formative phase of a childhood obesity intervention. Results The number of reported advice partners and discussion partners increased during program implementation. Density, the number of ties among people in the network expressed as a percentage of all possible ties, increased from 0.082 to 0.182 (p < 0.05) in the advice network, and from 0.027 to 0.055 (p > 0.05) in the discussion network. Conclusions The observed two-fold increase in network density represents a significant shift in advice partners over the intervention period. Using the Social Network Tool to empirically guide program activities of an obesity intervention was feasible. PMID:24083343

  17. A versatile and interoperable network sensors for water resources monitoring

    NASA Astrophysics Data System (ADS)

    Ortolani, Alberto; Brandini, Carlo; Costantini, Roberto; Costanza, Letizia; Innocenti, Lucia; Sabatini, Francesco; Gozzini, Bernardo

    2010-05-01

    Monitoring systems to assess water resources quantity and quality require extensive use of in-situ measurements, that have great limitations like difficulties to access and share data, and to customise and easy reconfigure sensors network to fulfil end-users needs during monitoring or crisis phases. In order to address such limitations Sensor Web Enablement technologies for sensors management have been developed and applied to different environmental context under the EU-funded OSIRIS project (Open architecture for Smart and Interoperable networks in Risk management based on In-situ Sensors, www.osiris-fp6.eu). The main objective of OSIRIS was to create a monitoring system to manage different environmental crisis situations, through an efficient data processing chain where in-situ sensors are connected via an intelligent and versatile network infrastructure (based on web technologies) that enables end-users to remotely access multi-domain sensors information. Among the project application, one was focused on underground fresh-water monitoring and management. With this aim a monitoring system to continuously and automatically check water quality and quantity has been designed and built in a pilot test, identified as a portion of the Amiata aquifer feeding the Santa Fiora springs (Grosseto, Italy). This aquifer present some characteristics that make it greatly vulnerable under some conditions. It is a volcanic aquifer with a fractured structure. The volcanic nature in Santa Fiora causes levels of arsenic concentrations that normally are very close to the threshold stated by law, but that sometimes overpass such threshold for reasons still not fully understood. The presence of fractures makes the infiltration rate very inhomogeneous from place to place and very high in correspondence of big fractures. In case of liquid-pollutant spills (typically hydrocarbons spills from tanker accidents or leakage from house tanks containing fuel for heating), these fractures can act

  18. Toward implementation of a national ground water monitoring network

    USGS Publications Warehouse

    Schreiber, Robert P.; Cunningham, William L.; Copeland, Rick; Frederick, Kevin D.

    2008-01-01

    The Federal Advisory Committee on Water Information's (ACWI) Subcommittee on Ground Water (SOGW) has been working steadily to develop and encourage implementation of a nationwide, long-term ground-water quantity and quality monitoring framework. Significant progress includes the planned submission this fall of a draft framework document to the full committee. The document will include recommendations for implementation of the network and continued acknowledgment at the federal and state level of ACWI's potential role in national monitoring toward an improved assessment of the nation's water reserves. The SOGW mission includes addressing several issues regarding network design, as well as developing plans for concept testing, evaluation of costs and benefits, and encouraging the movement from pilot-test results to full-scale implementation within a reasonable time period. With the recent attention to water resource sustainability driven by severe droughts, concerns over global warming effects, and persistent water supply problems, the SOGW mission is now even more critical.

  19. Wireless body sensor networks for health-monitoring applications.

    PubMed

    Hao, Yang; Foster, Robert

    2008-11-01

    Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system.

  20. On a Monitoring Network of Territory Elements for Emergency Management

    NASA Astrophysics Data System (ADS)

    Teramo, A.; Marino, A.; Termini, D.; Teramo, M.; Saccà, C.; Romeo, M.; de Domenico, D.; Lupò, D.

    2010-12-01

    The proposed methodological approach, based on the implementation of innovative monitoring networks of territories falling within high seismicity areas, aims at the arrangement of tools for a reduction of urban and territorial seismic vulnerability through procedures of territorial diagnostics with early warning thresholds. In this preliminary phase of the study, several problems have been analysed and solved related to wireless sensor typology to be used and data to be acquired for the realization of a expert system for a real time check of escape route conditions in case of a catastrophe, and the structural reliability of buildings, also strategic type, for preliminary damage evaluations. Specific analysis tools of acquired data by monitoring networks have been arranged for an analysis in relation to main territorial risk factors of a given area, arranging GIS maps in real time for the reduction of territorial system criticalities also during the emergencies.

  1. Automated monitor and control for deep space network subsystems

    NASA Technical Reports Server (NTRS)

    Smyth, P.

    1989-01-01

    The problem of automating monitor and control loops for Deep Space Network (DSN) subsystems is considered and an overview of currently available automation techniques is given. The use of standard numerical models, knowledge-based systems, and neural networks is considered. It is argued that none of these techniques alone possess sufficient generality to deal with the demands imposed by the DSN environment. However, it is shown that schemes that integrate the better aspects of each approach and are referenced to a formal system model show considerable promise, although such an integrated technology is not yet available for implementation. Frequent reference is made to the receiver subsystem since this work was largely motivated by experience in developing an automated monitor and control loop for the advanced receiver.

  2. Assessing the weather monitoring capabilities of cellular microwave link networks

    NASA Astrophysics Data System (ADS)

    Fencl, Martin; Vrzba, Miroslav; Rieckermann, Jörg; Bareš, Vojtěch

    2016-04-01

    Using of microwave links for rainfall monitoring was suggested already by (Atlas and Ulbrich, 1977). However, this technique attracted broader attention of scientific community only in the recent decade, with the extensive growth of cellular microwave link (CML) networks, which form the backbone of today's cellular telecommunication infrastructure. Several studies have already shown that CMLs can be conveniently used as weather sensors and have potential to provide near-ground path-integrated observations of rainfall but also humidity or fog. However, although research is still focusing on algorithms to improve the weather sensing capabilities (Fencl et al., 2015), it is not clear how to convince cellular operators to provide the power levels of their network. One step in this direction is to show in which regions or municipalities the networks are sufficiently dense to provide/develop good services. In this contribution we suggest a standardized approach to evaluate CML networks in terms of rainfall observation and to identify suitable regions for CML rainfall monitoring. We estimate precision of single CML based on its sensitivity to rainfall, i.e. as a function of frequency, polarization and path length. Capability of a network to capture rainfall spatial patterns is estimated from the CML coverage and path lengths considering that single CML provides path-integrated rain rates. We also search for suitable predictors for regions where no network topologies are available. We test our approach on several European networks and discuss the results. Our results show that CMLs are very dense in urban areas (> 1 CML/km2), but less in rural areas (< 0.02 CML/km2). We found a strong correlation between a population and CML network density (e.g. R2 = 0.97 in Czech Republic), thus population could be a simple proxy to identify suitable regions for CML weather monitoring. To enable a simple and efficient assessment of the CML monitoring potential for any region worldwide

  3. Common murre restoration monitoring in the Barren Islands, Alaska, 1993. Restoration project 93049. Exxon Valdez oil spill restoration project final report

    SciTech Connect

    Roseneau, D.G.; Kettle, A.B.; Byrd, G.V.

    1995-06-01

    This report summarizes the results of the second year of common murre (Uria aalge) restoration monitoring work conducted in the northern Gulf of Alaska for the Exxon Valdez Oil Spill Trustee Council. Information on population numbers, nesting chronology, and productivity of murres were collected by U.S. Fish and Wildlife Service (FWS) biologists at the injured East of Amatuli Island - Light Rock and Nord Island - Northwest Islet colonies in the Barren Islands during the 1993 breeding season. These data are presented and statistically compared with information reported in the 1989-1992 FWS murre damage assessment and restoration studies.

  4. Network Monitoring and Fault Detection on the University of Illinois at Urbana-Champaign Campus Computer Network.

    ERIC Educational Resources Information Center

    Sng, Dennis Cheng-Hong

    The University of Illinois at Urbana-Champaign (UIUC) has a large campus computer network serving a community of about 20,000 users. With such a large network, it is inevitable that there are a wide variety of technologies co-existing in a multi-vendor environment. Effective network monitoring tools can help monitor traffic and link usage, as well…

  5. Dual instrument passive acoustic monitoring of belugas in Cook Inlet, Alaska.

    PubMed

    Castellote, Manuel; Small, Robert J; Lammers, Marc O; Jenniges, Justin J; Mondragon, Jeff; Atkinson, Shannon

    2016-05-01

    As part of a long-term research program, Cook Inlet beluga (Delphinapterus leucas) presence was acoustically monitored with two types of acoustic sensors utilized in tandem in moorings deployed year-round: an ecological acoustic recorder (EAR) and a cetacean and porpoise detector (C-POD). The EAR was used primarily to record the calls, whistles, and buzzes produced by belugas and killer whales (Orcinus orca). The C-POD was used to log and classify echolocation clicks from belugas, killer whales, and porpoises. This paper describes mooring packages that maximized the chances of successful long-term data collection in the particularly challenging Cook Inlet environment, and presents an analytical comparison of odontocete detections obtained by the collocated EAR and C-POD instruments from two mooring locations in the upper inlet. Results from this study illustrate a significant improvement in detecting beluga and killer whale presence when the different acoustic signals detected by EARs and C-PODs are considered together. Further, results from concurrent porpoise detections indicating prey competition and feeding interference with beluga, and porpoise displacement due to ice formation are described.

  6. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    USGS Publications Warehouse

    Bennington, Ninfa; Haney, Matt; De Angelis, Silvio; Thurber, Clifford; Freymueller, Jeff

    2015-01-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok’s caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. Themagnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/ormagmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation sourcemay be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  7. Erosional history of Cape Halkett and contemporary monitoring of bluff retreat, Beaufort Sea coast, Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Arp, Christopher D.; Beck, Richard A.; Grosse, Guido; Webster, James M.; Urban, Frank E.

    2009-01-01

    Cape Halkett is located along the Beaufort Sea at the end of a low-lying tundra landscape. The area has been subject to major modifications over the last century as a result of erosion and migration of the coastline inland. Long-term mean annual erosion rates (1955-2009) for the entire cape are 7.6 m/yr, with a gradual increase in rates over the first five time periods of remotely sensed imagery analyzed and a large increase during the most recent time period. Division of the cape into three distinct coastal zones shows very different erosional patterns: the northeast-facing segment (Zone 1) showing a consistent and large increase; the southeast-facing segment (Zone 3) showing a gradual increase with recent, heightened erosion rates; and the east-facing segment (Zone 2) showing decreased rates due to the reformation of a sand and gravel spit. Monitoring of bluff erosion with time-lapse photography, differential GPS surveys, terrestrial and bathymetric surveys, and water level, sea and permafrost temperature data provide insights into the processes driving contemporary patterns of erosion and will provide valuable information for the prediction of future shoreline positions.

  8. Optimal reduction of the ozone monitoring network over France

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Bocquet, Marc; Chevallier, Matthieu

    2010-08-01

    Ozone is a harmful air pollutant at ground level, and its concentrations are measured with routine monitoring networks. Due to the heterogeneous nature of ozone fields, the spatial distribution of the ozone concentration measurements is very important. Therefore, the evaluation of distributed monitoring networks is of both theoretical and practical interests. In this study, we assess the efficiency of the ozone monitoring network over France (BDQA) by investigating a network reduction problem. We examine how well a subset of the BDQA network can represent the full network. The performance of a subnetwork is taken to be the root mean square error ( RMSE) of the hourly ozone mean concentration estimations over the whole network given the observations from that subnetwork. Spatial interpolations are conducted for the ozone estimation taking into account the spatial correlations. Several interpolation methods, namely ordinary kriging, simple kriging, kriging about the means, and consistent kriging about the means, are compared for a reliable estimation. Exponential models are employed for the spatial correlations. It is found that the statistical information about the means improves significantly the kriging results, and that it is necessary to consider the correlation model to be hourly-varying and daily stationary. The network reduction problem is solved using a simulated annealing algorithm. Significant improvements can be obtained through these optimizations. For instance, removing optimally half the stations leads to an estimation error of the order of the standard observational error (10 μg m -3). The resulting optimal subnetworks are dense in urban agglomerations around Paris ( Île-de-France) and Nice ( Côte d'Azur), where high ozone concentrations and strong heterogeneity are observed. The optimal subnetworks are probably dense near frontiers because beyond these frontiers there is no observation to reduce the uncertainty of the ozone field. For large rural

  9. Space Environmental Viewing and Analysis Network (SEVAN) - A Network of Neutron Monitors in Bulgaria

    NASA Astrophysics Data System (ADS)

    Georgieva, K.

    2006-11-01

    katyagerogieva@msn.com A network of middle to low latitude particle detectors called SEVAN (Space Environmental Viewing and Analysis Network) aims to improve fundamental research of the space weather conditions and provide possibilities to perform short and long-term forecasts of the dangerous consequences of the space storms. The network will detect changing fluxes of the most species of secondary cosmic rays at different altitudes and latitudes, thus constituting powerful integrated device in exploring solar modulation effects. Recently two more countries have decided to host cosmic ray monitors - Bulgaria and Croatia.

  10. Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Wang, Shin-Ywan

    2012-01-01

    The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.

  11. Low-power wireless sensor networks for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Musaloiu-Elefteri, Razvan

    Significant progress has been made in the field of Wireless Sensor Networks in the decade that passed since its inception. This thesis presents several advances intended to make these networks a suitable instrument for environmental monitoring. The thesis first describes Koala, a low-power data-retrieval system that can achieve duty cycles below 1% by using bulk transfers, and Low Power Probing, a novel mechanism to efficiently wake up a network. The second contribution is Serendipity, another data-retrieval system, which takes advantage of the random rendezvous inherent in the Low Power Probing mechanism to achieve a very low duty cycle for low data rate networks. The third part explores the problem of and presents a solution for the interference between WSNs using IEEE 802.15.4 radios and the ubiquitous WiFi networks in the 2.4 GHz spectrum bandwidth. The last contribution of this thesis is Latte, a restricted version of the JavaScript language, that not only can be compiled to C and dynamically loaded on a sensing node, but can also be simulated and debugged in a JavaScript-enabled browser.

  12. Three neural network based sensor systems for environmental monitoring

    SciTech Connect

    Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1994-05-01

    Compact, portable systems capable of quickly identifying contaminants in the field are of great importance when monitoring the environment. One of the missions of the Pacific Northwest Laboratory is to examine and develop new technologies for environmental restoration and waste management at the Hanford Site. In this paper, three prototype sensing systems are discussed. These prototypes are composed of sensing elements, data acquisition system, computer, and neural network implemented in software, and are capable of automatically identifying contaminants. The first system employs an array of tin-oxide gas sensors and is used to identify chemical vapors. The second system employs an array of optical sensors and is used to identify the composition of chemical dyes in liquids. The third system contains a portable gamma-ray spectrometer and is used to identify radioactive isotopes. In these systems, the neural network is used to identify the composition of the sensed contaminant. With a neural network, the intense computation takes place during the training process. Once the network is trained, operation consists of propagating the data through the network. Since the computation involved during operation consists of vector-matrix multiplication and application of look-up tables unknown samples can be rapidly identified in the field.

  13. Journal Article: the National Dioxin Air Monitoring Network ...

    EPA Pesticide Factsheets

    The U.S. EPA has established a National Dioxin Air Monitoring Network (NDAMN) to determine the temporal and geographical variability of atmospheric CDDs, CDFs and coplanar PCBs at rural and nonimpacted locations throughout the United States. Currently operating at 32 sampling stations, NDAMN has three primary purposes: (1) to determine the atmospheric levels and occurrences of dioxin-like compounds in rural and agricultural areas where livestock, poultry and animal feed crops are grown; (2) to provide measurements of atmospheric levels of dioxin-like compounds in different geographic regions of the U.S.; and (3) to provide information regarding the long-range transport of dioxin-like compounds in air over the U.S. Designed in 1997, NDAMN has been implemented in phases, with the first phase consisting of 9 monitoring stations. Previously EPA has reported on the preliminary results of monitoring at 9 rural locations from June1998 through June 19991. The one-year measurement at the 9 stations indicated an annual mean TEQDF–WHO98 air concentration of 12 fg m-3. Since this reporting, NDAMN has been extended to include additional stations. The following is intended to be an update to this national monitoring effort. We are reporting the air monitoring results of 22 NDAMN stations operational over 9 sampling moments from June 1998 to December 1999. Fifteen stations are in rural areas, and 6 are located in National Parks. One station is located in suburban Wa

  14. Monitoring the natural attenuation of petroleum in ground water at the former naval complex, Operable Unit A, Adak Island, Alaska, May and June 2003

    USGS Publications Warehouse

    Dinicola, R.S.; Simonds, F.W.; Defawe, Rose

    2005-01-01

    During May and June 2003, the U.S. Geological Survey installed monitoring wells and collected data to characterize the effectiveness of natural attenuation processes for remediating petroleum-contaminated ground water at Operable Unit A of the former Naval complex on Adak Island, Alaska. In addition, the evidence for petroleum biodegradation in ground water was evaluated at selected petroleum sites, plans for future natural attenuation monitoring were suggested for the selected petroleum sites, and the natural attenuation monitoring strategy for the Downtown area of Adak Island was reviewed and refinements were suggested. U.S. Geological Survey personnel measured water levels and collected ground-water samples from about 100 temporary boreholes and 50 monitoring wells. Most samples were analyzed on-site for concentrations of selected petroleum compounds and natural attenuation parameters such as dissolved oxygen, ferrous iron, and carbon dioxide. The U.S. Geological Survey evaluated the data on-site, selected new monitoring well locations, and installed, developed, and sampled 10 monitoring wells. The review and suggestions for the natural attenuation monitoring strategy focused on how to better achieve monitoring objectives specified in the Record of Decision for Adak Island petroleum sites. To achieve the monitoring objective of verifying that natural attenuation is occurring, the monitoring plans for each monitored natural attenuation site need to include sampling of at least one strategically placed well at the downgradient margin of the contaminant plume margin, preferably where contaminant concentrations are detectable but less than the cleanup level. Collection of natural attenuation parameter data and sampling background wells is no longer needed to achieve the monitoring objective of demonstrating the occurrence of natural attenuation. To achieve the objective of monitoring locations where chemical concentrations exceed specified cleanup levels, at least

  15. Prairie Monitoring Protocol Development: North Coast and Cascades Network

    USGS Publications Warehouse

    McCoy, Allen; Dalby, Craig

    2009-01-01

    The purpose of the project was to conduct research that will guide development of a standard approach to monitoring several components of prairies within the North Coast and Cascades Network (NCCN) parks. Prairies are an important element of the natural environment at many parks, including San Juan Island National Historical Park (NHP) and Ebey's Landing National Historical Reserve (NHR). Forests have been encroaching on these prairies for many years, and so monitoring of the prairies is an important resource issue. This project specifically focused on San Juan Island NHP. Prairies at Ebey's Landing NHR will be monitored in the future, but that park was not mapped as part of this prototype project. In the interest of efficiency, the Network decided to investigate two main issues before launching a full protocol development effort: (1) the imagery requirements for monitoring prairie components, and (2) the effectiveness of software to assist in extracting features from the imagery. Several components of prairie monitoring were initially identified as being easily tracked using aerial imagery. These components included prairie/forest edge, broad prairie composition (for example, shrubs, scattered trees), and internal exclusions (for example, shrubs, bare ground). In addition, we believed that it might be possible to distinguish different grasses in the prairies if the imagery were of high enough resolution. Although the areas in question at San Juan Island NHP are small enough that mapping on the ground with GPS (Global Positioning System) would be feasible, other applications could benefit from aerial image acquisition on a regular, recurring basis and thereby make the investment in aerial imagery worthwhile. The additional expense of orthorectifying the imagery also was determined to be cost-effective.

  16. Deploying optical performance monitoring in TeliaSonera's network

    NASA Astrophysics Data System (ADS)

    Svensson, Torbjorn K.; Karlsson, Per-Olov E.

    2004-09-01

    This paper reports on the first steps taken by TeliaSonera towards deploying optical performance monitoring (OPM) in the company"s transport network, in order to assure increasingly reliable communications on the physical layer. The big leap, a world-wide deployment of OPM still awaits a breakthrough. There is required very obvious benefits from using OPM in order to change this stalemate. Reasons may be the anaemic economy of many telecom operators, shareholders" pushing for short-term payback, and reluctance to add complexity and to integrate a system management. Technically, legacy digital systems do already have a proven ability of monitoring, so adding OPM to the dense wavelength division multiplexed (DWDM) systems in operation should be judged with care. Duly installed, today"s DWDM systems do their job well, owing to rigorous rules for link design and a prosperous power budget, a power management inherent to the system, and a reliable supplier"s support. So what may bring this stalemate to an end? -A growing number of appliances of OPM, for enhancing network operation and maintenance, and enabling new customer services, will most certainly bring momentum to a change. The first employment of OPM in TeliaSonera"s network is launched this year, 2004. The preparedness of future OPM dependent services and transport technologies will thereby be granted.

  17. Controller area network for monitor and control in ALMA

    NASA Astrophysics Data System (ADS)

    Brooks, Michael J.

    2000-06-01

    The Controller Area Network (CAN), initially developed for the automotive industry, is becoming increasingly popular in industrial process control applications. The need for distributed low data rate monitor and control networking in industry is similar to the needs of the various instrumentation and support equipment in a modern radio telescope. In particular, immunity to noise and low radio frequency emission characteristics are common to both domains. The Atacama Large Millimeter Array project has adopted CAN technology for use in local monitor and control applications at each of its 64 antennas. A standard interface slave node providing flexible I/O options is under development and a simple application-level protocol making use of CAN to access these nodes in a master/slave fashion has been implemented. This paper will present the work which has been completed to date including experiences in the use of CAN in an astronomical environment. In addition, analysis and simulation of CAN networks is compared with the performance of our implementation in the lab.

  18. Monitoring individual traffic flows within the ATLAS TDAQ network

    NASA Astrophysics Data System (ADS)

    Sjoen, R.; Stancu, S.; Ciobotaru, M.; Batraneanu, S. M.; Leahu, L.; Martin, B.; Al-Shabibi, A.

    2010-04-01

    The ATLAS data acquisition system consists of four different networks interconnecting up to 2000 processors using up to 200 edge switches and five multi-blade chassis devices. The architecture of the system has been described in [1] and its operational model in [2]. Classical, SNMP-based, network monitoring provides statistics on aggregate traffic, but for performance monitoring and troubleshooting purposes there was an imperative need to identify and quantify single traffic flows. sFlow [3] is an industry standard based on statistical sampling which attempts to provide a solution to this. Due to the size of the ATLAS network, the collection and analysis of the sFlow data from all devices generates a data handling problem of its own. This paper describes how this problem is addressed by making it possible to collect and store data either centrally or distributed according to need. The methods used to present the results in a relevant fashion for system analysts are discussed and we explore the possibilities and limitations of this diagnostic tool, giving an example of its use in solving system problems that arise during the ATLAS data taking.

  19. Remote Environmental Monitoring With a Wireless Sensor Network System

    NASA Astrophysics Data System (ADS)

    Kizito, F.; Hopmans, J. W.; Bales, R.; Tuli, A.; Kamai, T.

    2007-12-01

    Wireless sensors have the potential to reveal dynamic environmental variables in remote landscapes at reduced long-term costs and offer a promising approach to revolutionize environmental monitoring. Better management of surface water in remote landscapes warrants close monitoring of moisture and temperature variability. This work describes field data demonstrating the functionality of a deployed wireless network system, consisting of various soil moisture sensors. Soil water potential sensors with an imbedded thermistor were deployed in a remote meadow along a topographic gradient with dense tree canopies in Wolverton Meadows in Sequoia National Park. The sensors responded to moisture and temperature variations and the wireless system met the goal of providing informative data on dynamic responses of soil moisture to rainfall and snowmelt. The deployed sensor system functioned well during harsh winter conditions at 7000 feet, requiring low power. The study highlights measurement accuracy limitations and presents an alternative, robust wireless Zigbee sensor network, using Crossbow motes. We demonstrate that deployment, implementation and long-term field monitoring in remote and challenging environments is possible with current technologies.

  20. Reliable real-time clinical monitoring using sensor network technology.

    PubMed

    Chipara, Octav; Brooks, Christopher; Bhattacharya, Sangeeta; Lu, Chenyang; Chamberlain, Roger D; Roman, Gruia-Catalin; Bailey, Thomas C

    2009-11-14

    We propose wireless sensor networks composed of nodes using low-power 802.15.4 radios as an enabling technology for patient monitoring in general hospital wards. A key challenge for such applications is to reliably deliver sensor data from mobile patients. We propose a monitoring system with two types of nodes: patient nodes equipped with wireless pulse oximeters and relays nodes used to route data to a base station. A reliability analysis of data collection from mobile users shows that mobility leads to packet losses exceeding 30%. The majority of packet losses occur between the mobile subjects and the first-hop relays. Based on this insight we developed the Dynamic Relay Association Protocol (DRAP), an effective mechanism for discovering the right relays for patient nodes. DRAP enables highly reliable data collection from mobile subjects. Empirical evaluation showed that DRAP delivered at least 96% of data from multiple users. Our results demonstrate the feasibility of wireless sensor networks for real-time clinical monitoring.

  1. An International Haze-Monitoring Network for Students.

    NASA Astrophysics Data System (ADS)

    Mims, Forrest M., III

    1999-07-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) Program is an international network of schools in 71 countries that monitors up to 20 environmental parameters. Recently GLOBE added a haze-monitoring program to its measurement protocols. This network has the potential of providing important data about changes in the aerosol optical depth of the atmosphere caused by weather fronts, industrial and automobile pollution, and smoke from forest and brush fires and volcanic eruptions. Initially, monitoring will be conducted with an inexpensive, single-channel (520 nm) sun photometer. Unlike conventional sun photometers that use interference filters that are subject to unpredictable and rapid degradation, the GLOBE instrument uses a common light-emitting diode (LED) as a spectrally selective detector. Annual calibrations of two LED sun photometers at Mauna Loa Observatory since 1992 show that these instruments have insignificant degradation when compared to filter sun photometers. Some 175 prototype versions of a kit LED sun photometer have been assembled and tested by students from 16 countries at the University of the Nations and by more than 130 high school teachers in various pilot studies. These studies have demonstrated that even inexperienced students and teachers can quickly assemble a sun photometer from a kit of parts and perform a reliable angley calibration. The pilot studies have also demonstrated that sun photometery provides a convenient means for allowing students to perform hands-on science while they learn about various topics in history, electronics, algebra, statistics, graphing, and meteorology.

  2. Hazard Analysis and Disaster Preparedness in the Fairbanks North Star Borough, Alaska using Hazard Simulations, GIS, and Network Analysis

    NASA Astrophysics Data System (ADS)

    Schaefer, K.; Prakash, A.; Witte, W.

    2011-12-01

    The Fairbanks North Star Borough (FNSB) lies in interior Alaska, an area that is dominated by semiarid, boreal forest climate. FNSB frequently witnesses flooding events, wild land fires, earthquakes, extreme winter storms and other natural and man-made hazards. Being a large 19,065 km2 area, with a population of approximately 97,000 residents, providing emergency services to residents in a timely manner is a challenge. With only four highways going in and out of the borough, and only two of those leading to another city, most residents do not have quick access to a main road. Should a major disaster occur and block one of the two highways, options for evacuating or getting supplies to the area quickly dwindle. We present the design of a Geographic Information System (GIS) and network analysis based decision support tool that we have created for planning and emergency response. This tool will be used by Emergency Service (Fire/EMS), Emergency Management, Hazardous Materials Team, and Law Enforcement Agencies within FNSB to prepare and respond to a variety of potential disasters. The GIS combines available road and address networks from different FNSB agencies with the 2010 census data. We used ESRI's ArcGIS and FEMA's HAZUS-MH software to run multiple disaster scenarios and create several evacuation and response plans. Network analysis resulted in determining response time and classifying the borough by response times to facilitate allocation of emergency resources. The resulting GIS database can be used by any responding agency in FNSB to determine possible evacuation routes, where to open evacuation centers, placement of resources, and emergency response times. We developed a specific emergency response plan for three common scenarios: (i) major wildfire threatening Fairbanks, (ii) a major earthquake, (iii) loss of power during flooding in a flood-prone area. We also combined the network analysis results with high resolution imagery and elevation data to determine

  3. Intelligent Wireless Sensor Networks for System Health Monitoring

    NASA Technical Reports Server (NTRS)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  4. Using graphene networks to build bioinspired self-monitoring ceramics.

    PubMed

    Picot, Olivier T; Rocha, Victoria G; Ferraro, Claudio; Ni, Na; D'Elia, Eleonora; Meille, Sylvain; Chevalier, Jerome; Saunders, Theo; Peijs, Ton; Reece, Mike J; Saiz, Eduardo

    2017-02-09

    The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20-30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor 'in situ' structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances.

  5. Using graphene networks to build bioinspired self-monitoring ceramics

    NASA Astrophysics Data System (ADS)

    Picot, Olivier T.; Rocha, Victoria G.; Ferraro, Claudio; Ni, Na; D'Elia, Eleonora; Meille, Sylvain; Chevalier, Jerome; Saunders, Theo; Peijs, Ton; Reece, Mike J.; Saiz, Eduardo

    2017-02-01

    The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20-30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor `in situ' structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances.

  6. Using graphene networks to build bioinspired self-monitoring ceramics

    PubMed Central

    Picot, Olivier T.; Rocha, Victoria G.; Ferraro, Claudio; Ni, Na; D'Elia, Eleonora; Meille, Sylvain; Chevalier, Jerome; Saunders, Theo; Peijs, Ton; Reece, Mike J.; Saiz, Eduardo

    2017-01-01

    The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20–30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor ‘in situ' structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances. PMID:28181518

  7. Spatially Resolved Monitoring of Drying of Hierarchical Porous Organic Networks.

    PubMed

    Velasco, Manuel Isaac; Silletta, Emilia V; Gomez, Cesar G; Strumia, Miriam C; Stapf, Siegfried; Monti, Gustavo Alberto; Mattea, Carlos; Acosta, Rodolfo H

    2016-03-01

    Evaporation kinetics of water confined in hierarchal polymeric porous media is studied by low field nuclear magnetic resonance (NMR). Systems synthesized with various degrees of cross-linker density render networks with similar pore sizes but different response when soaked with water. Polymeric networks with low percentage of cross-linker can undergo swelling, which affects the porosity as well as the drying kinetics. The drying process is monitored macroscopically by single-sided NMR, with spatial resolution of 100 μm, while microscopic information is obtained by measurements of spin-spin relaxation times (T2). Transition from a funicular to a pendular regime, where hydraulic connectivity is lost and the capillary flow cannot compensate for the surface evaporation, can be observed from inspection of the water content in different sample layers. Relaxation measurements indicate that even when the larger pore structures are depleted of water, capillary flow occurs through smaller voids.

  8. A Survey of Geosensor Networks: Advances in Dynamic Environmental Monitoring

    PubMed Central

    Nittel, Silvia

    2009-01-01

    In the recent decade, several technology trends have influenced the field of geosciences in significant ways. The first trend is the more readily available technology of ubiquitous wireless communication networks and progress in the development of low-power, short-range radio-based communication networks, the miniaturization of computing and storage platforms as well as the development of novel microsensors and sensor materials. All three trends have changed the type of dynamic environmental phenomena that can be detected, monitored and reacted to. Another important aspect is the real-time data delivery of novel platforms today. In this paper, I will survey the field of geosensor networks, and mainly focus on the technology of small-scale geosensor networks, example applications and their feasibility and lessons learnt as well as the current research questions posed by using this technology today. Furthermore, my objective is to investigate how this technology can be embedded in the current landscape of intelligent sensor platforms in the geosciences and identify its place and purpose. PMID:22346721

  9. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    PubMed Central

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper. PMID:22163914

  10. A climatological network for regional climate monitoring in Sardinia.

    NASA Astrophysics Data System (ADS)

    Delitala, Alessandro M. S.

    2016-04-01

    In recent years the Region of Sardinia has been working to set-up a Regional Climatological Network of surface stations, in order to monitor climate (either stationary or changing) at sub-synoptic scale and in order to make robust climatological information available to researchers and to local stake-holders. In order to do that, an analysis of long climatological time series has been performed on the different historical networks of meteorological stations that existed over the past two centuries. A set of some hundreds of stations, with about a century of observations of daily precipitation, was identified. An important subset of them was also defined, having long series of observations of temperature, wind, pressure and other quantities. Specific investments were made on important stations sites where observations had been carried for decades, but where the climatological stations did not exist anymore. In the present talk, the Regional Climatological Network of Sardinia will be presented and its consistency discussed. Specific attention will be given to the most important climatological stations which have got more than a century of observations of meteorological quantities. Critical issues of the Regional Climatological Network, like relocation of stations and inhomogeneity of data due to instrumental changes or environmental modifications, will be discussed.

  11. Wearable and implantable wireless sensor network solutions for healthcare monitoring.

    PubMed

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper.

  12. Analysis of the Monitoring Network at the Salmon, Mississippi, Site

    SciTech Connect

    2013-08-01

    The Salmon site in southern Mississippi was the location of two underground nuclear tests and two methane-oxygen gas explosion tests conducted in the Tatum Salt Dome at a depth of 2,715 feet below ground surface. The U.S. Atomic Energy Commission (a predecessor agency of the U.S. Department of Energy [DOE]) and the U.S. Department of Defense jointly conducted the tests between 1964 and 1970. The testing operations resulted in surface contamination at multiple locations on the site and contamination of shallow aquifers. No radionuclides from the nuclear tests were released to the surface or to groundwater, although radionuclide-contaminated drill cuttings were brought to the surface during re-entry drilling. Drilling operations generated the largest single volume of waste materials, including radionuclide-contaminated drill cuttings and drilling fluids. Nonradioactive wastes were also generated as part of the testing operations. Site cleanup and decommissioning began in 1971 and officially ended in 1972. DOE conducted additional site characterization between 1992 and 1999. The historical investigations have provided a reasonable understanding of current surface and shallow subsurface conditions at the site, although some additional investigation is desirable. For example, additional hydrologic data would improve confidence in assigning groundwater gradients and flow directions in the aquifers. The U.S. Environmental Protection Agency monitored groundwater at the site as part of its Long-Term Hydrologic Monitoring Program from 1972 through 2007, when DOE's Office of Legacy Management (LM) assumed responsibility for site monitoring. The current monitoring network consists of 28 monitoring wells and 11 surface water locations. Multiple aquifers which underlie the site are monitored. The current analyte list includes metals, radionuclides, and volatile organic compounds (VOCs).

  13. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  14. A Volcano Monitoring Seismo-Acoustic Network in the CNMI

    NASA Astrophysics Data System (ADS)

    Howard, J. E.; Crippen, S. E.; Hayward, C.; Quick, J. E.

    2011-12-01

    In late spring and early summer of 2011, a seismo-acoustic network was installed in the Commonwealth of the Northern Mariana Islands (CNMI) for volcano monitoring. The network consists of a seismo-acoustic array on Saipan, an acoustic array on Sarigan with one seismometer, and a seismic network on Anatahan. On Saipan the array consists of a central site and 3 embedded triangular arrays with apertures of 100 m, 300 m and 1000 m. Four 50-foot porous hoses in a clover-leaf arrangement are used for spatial filtering at each acoustic site. Broadband seismometers were installed at the central site and the 1000 m sites. The Sarigan Array consists of a central acoustic site with 5 surrounding sites evenly spaced at 50 m radius, and one broadband seismic station. Two hoses were used for each site on Sarigan. Four broadband seismic stations were also installed on Anatahan which last erupted in 2005. Data from each array is sent by radio telemetry to the Emergency Management Office on Saipan, where it is routed to the USGS and SMU. Data will be used for volcano monitoring which will allow the CNMI to resume economic activity in the uninhabited northern islands. Initial data streams show high seismic noise levels as expected for an island installation. The Sarigan acoustic sites are also noisy as a result of being more exposed to wind than the Saipan sites. Many small events have already been observed in the infrasound data. This network was installed through the collaborative efforts of CNMI, USGS and SMU.

  15. Estimating National-scale Emissions using Dense Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Ganesan, A.; Manning, A.; Grant, A.; Young, D.; Oram, D.; Sturges, W. T.; Moncrieff, J. B.; O'Doherty, S.

    2014-12-01

    The UK's DECC (Deriving Emissions linked to Climate Change) network consists of four greenhouse gas measurement stations that are situated to constrain emissions from the UK and Northwest Europe. These four stations are located in Mace Head (West Coast of Ireland), and on telecommunication towers at Ridge Hill (Western England), Tacolneston (Eastern England) and Angus (Eastern Scotland). With the exception of Angus, which currently only measures carbon dioxide (CO2) and methane (CH4), the remaining sites are additionally equipped to monitor nitrous oxide (N2O). We present an analysis of the network's CH4 and N2O observations from 2011-2013 and compare derived top-down regional emissions with bottom-up inventories, including a recently produced high-resolution inventory (UK National Atmospheric Emissions Inventory). As countries are moving toward national-level emissions estimation, we also address some of the considerations that need to be made when designing these national networks. One of the novel aspects of this work is that we use a hierarchical Bayesian inversion framework. This methodology, which has newly been applied to greenhouse gas emissions estimation, is designed to estimate temporally and spatially varying model-measurement uncertainties and correlation scales, in addition to fluxes. Through this analysis, we demonstrate the importance of characterizing these covariance parameters in order to properly use data from high-density monitoring networks. This UK case study highlights the ways in which this new inverse framework can be used to address some of the limitations of traditional Bayesian inverse methods.

  16. Journal Article: the National Dioxin Air Monitoring Network ...

    EPA Pesticide Factsheets

    In June, 1998, the U.S. EPA established the National Dioxin Air Monitoring Network (NDAMN). The primary goal of NDAMN is determine the temporal and geographical variability of atmospheric CDDs, CDFs, and coplanar PCBs at rural and nonimpacted locations throughout the United States. Currently operating at 32 sampling stations, NDAMN has three primary purposes: (1) to determine the atmospheric levels and occurrences of dioxin-like compounds in rural and agricultural areas where livestock, poultry and animal feed crops are grown; (2) to provide measurements of atmospheric levels of dioxin-like compounds in different geographic regions of the U.S.; and (3) to provide information regarding the long-range transport of dioxin-like compounds in air over the U.S. At Dioxin 2000, we reported on the preliminary results of monitoring at 9 rural locations from June 1998 through June 1999. By the end of 1999, NDAMN had expanded to 21 sampling stations. Then, at Dioxin 2001, we reported the results of the first 18 months of operation of NDAMN at 15 rural and 6 National Park stations in the United States. The following is intended to be an update to this national monitoring effort. We are reporting the air monitoring results of 17 rural and 8 National Park NDAMN stations operational over 4 sampling moments during calendar year 2000. Two stations located in suburban Washington DC and San Francisco, CA are more urban in character and serve as an indicator of CDD/F and cop

  17. Monitoring system of arch bridge for safety network management

    NASA Astrophysics Data System (ADS)

    Joo, Bong Chul; Yoo, Young Jun; Lee, Chin Hyung; Park, Ki Tae; Hwang, Yoon Koog

    2010-03-01

    Korea has constructed the safety management network monitoring test systems for the civil infrastructure since 2006 which includes airport structure, irrigation structure, railroad structure, road structure, and underground structure. Bridges among the road structure include the various superstructure types which are Steel box girder bridge, suspension bridge, PSC-box-girder bridge, and arch bridge. This paper shows the process of constructing the real-time monitoring system for the arch bridge and the measured result by the system. The arch type among various superstructure types has not only the structural efficiency but the visual beauty, because the arch type superstructure makes full use of the feature of curve. The main measuring points of arch bridges composited by curved members make a difference to compare with the system of girder bridges composited by straight members. This paper also shows the method to construct the monitoring system that considers the characteristic of the arch bridge. The system now includes strain gauges and thermometers, and it will include various sensor types such as CCTV, accelerometers and so on additionally. For the long term and accuracy monitoring, the latest optical sensors and equipments are applied to the system.

  18. Representativeness-Based Sampling Network Design for the State of Alaska

    SciTech Connect

    Hoffman, Forrest M; Kumar, Jitendra; Mills, Richard T; HargroveJr., William Walter

    2013-01-01

    Resource and logistical constraints limit the frequency and extent of environmental observations, particularly in the Arctic, necessitating the development of a systematic sampling strategy to maximize coverage and objectively represent environmental variability at desired scales. A quantitative methodology for stratifying sampling domains, informing site selection, and determining the representativeness of measurement sites and networks is described here.

  19. 78 FR 3447 - Information Collection: Southern Alaska Sharing Network and Subsistence Study; Submitted for OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... structure contemporary subsistence-cash economies using research methods that involve the residents of these... manages the responsibilities of research. This study will facilitate the meeting of DOI/BOEM information... interim baseline for impact monitoring to compare against future research in these areas. Without...

  20. Seabirds in Alaska

    USGS Publications Warehouse

    Hatch, Scott A.; Piatt, John F.

    1995-01-01

    Techniques for monitoring seabird populations vary according to habitat types and the breeding behavior of individual species (Hatch and Hatch 1978, 1989; Byrd et al. 1983). An affordable monitoring program can include but a few of the 1,300 seabird colonies identified in Alaska, and since the mid-1970's, monitoring effotrts have emphasized a small selection of surface-feeding and diving species, primarily kittiwakes (Rissa spp.) and murres (Uria spp.). Little or no information on trends is available for other seabirds (Hatch 1993a). The existing monitoring program occurs largely on sites within the Alaska Maritime National Wildlife Refuge, which was established primarily for the conservation of marine birds. Data are collected by refuge staff, other state and federal agencies, private organizations, university faculty, and students.

  1. A High-Resolution Sensor Network for Monitoring Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Edwards, S.; Murray, T.; O'Farrell, T.; Rutt, I. C.; Loskot, P.; Martin, I.; Selmes, N.; Aspey, R.; James, T.; Bevan, S. L.; Baugé, T.

    2013-12-01

    Changes in Greenland and Antarctic ice sheets due to ice flow/ice-berg calving are a major uncertainty affecting sea-level rise forecasts. Latterly GNSS (Global Navigation Satellite Systems) have been employed extensively to monitor such glacier dynamics. Until recently however, the favoured methodology has been to deploy sensors onto the glacier surface, collect data for a period of time, then retrieve and download the sensors. This approach works well in less dynamic environments where the risk of sensor loss is low. In more extreme environments e.g. approaching the glacial calving front, the risk of sensor loss and hence data loss increases dramatically. In order to provide glaciologists with new insights into flow dynamics and calving processes we have developed a novel sensor network to increase the robustness of data capture. We present details of the technological requirements for an in-situ Zigbee wireless streaming network infrastructure supporting instantaneous data acquisition from high resolution GNSS sensors thereby increasing data capture robustness. The data obtained offers new opportunities to investigate the interdependence of mass flow, uplift, velocity and geometry and the network architecture has been specifically designed for deployment by helicopter close to the calving front to yield unprecedented detailed information. Following successful field trials of a pilot three node network during 2012, a larger 20 node network was deployed on the fast-flowing Helheim glacier, south-east Greenland over the summer months of 2013. The utilisation of dual wireless transceivers in each glacier node, multiple frequencies and four ';collector' stations located on the valley sides creates overlapping networks providing enhanced capacity, diversity and redundancy of data 'back-haul', even close to ';floor' RSSI (Received Signal Strength Indication) levels around -100 dBm. Data loss through radio packet collisions within sub-networks are avoided through the

  2. National Stream Quality Accounting Network and National Monitoring Network Basin Boundary Geospatial Dataset, 2008–13

    USGS Publications Warehouse

    Baker, Nancy T.

    2011-01-01

    This report and the accompanying geospatial data were created to assist in analysis and interpretation of water-quality data provided by the U.S. Geological Survey's National Stream Quality Accounting Network (NASQAN) and by the U.S. Coastal Waters and Tributaries National Monitoring Network (NMN), which is a cooperative monitoring program of Federal, regional, and State agencies. The report describes the methods used to develop the geospatial data, which was primarily derived from the National Watershed Boundary Dataset. The geospatial data contains polygon shapefiles of basin boundaries for 33 NASQAN and 5 NMN streamflow and water-quality monitoring stations. In addition, 30 polygon shapefiles of the closed and noncontributing basins contained within the NASQAN or NMN boundaries are included. Also included is a point shapefile of the NASQAN and NMN monitoring stations and associated basin and station attributes. Geospatial data for basin delineations, associated closed and noncontributing basins, and monitoring station locations are available at http://water.usgs.gov/GIS/metadata/usgswrd/XML/ds641_nasqan_wbd12.xml.

  3. Spatio-temporal statistical models for river monitoring networks.

    PubMed

    Clement, L; Thas, O; Vanrolleghem, P A; Ottoy, J P

    2006-01-01

    When introducing new wastewater treatment plants (WWTP), investors and policy makers often want to know if there indeed is a beneficial effect of the installation of a WWTP on the river water quality. Such an effect can be established in time as well as in space. Since both temporal and spatial components affect the output of a monitoring network, their dependence structure has to be modelled. River water quality data typically come from a river monitoring network for which the spatial dependence structure is unidirectional. Thus the traditional spatio-temporal models are not appropriate, as they cannot take advantage of this directional information. In this paper, a state-space model is presented in which the spatial dependence of the state variable is represented by a directed acyclic graph, and the temporal dependence by a first-order autoregressive process. The state-space model is extended with a linear model for the mean to estimate the effect of the activation of a WWTP on the dissolved oxygen concentration downstream.

  4. An entropy method for floodplain monitoring network design

    NASA Astrophysics Data System (ADS)

    Ridolfi, E.; Yan, K.; Alfonso, L.; Di Baldassarre, G.; Napolitano, F.; Russo, F.; Bates, Paul D.

    2012-09-01

    In recent years an increasing number of flood-related fatalities has highlighted the necessity of improving flood risk management to reduce human and economic losses. In this framework, monitoring of flood-prone areas is a key factor for building a resilient environment. In this paper a method for designing a floodplain monitoring network is presented. A redundant network of cheap wireless sensors (GridStix) measuring water depth is considered over a reach of the River Dee (UK), with sensors placed both in the channel and in the floodplain. Through a Three Objective Optimization Problem (TOOP) the best layouts of sensors are evaluated, minimizing their redundancy, maximizing their joint information content and maximizing the accuracy of the observations. A simple raster-based inundation model (LISFLOOD-FP) is used to generate a synthetic GridStix data set of water stages. The Digital Elevation Model (DEM) that is used for hydraulic model building is the globally and freely available SRTM DEM.

  5. Drainage network structure and hydrologic behavior of three lake-rich watersheds on the Arctic Coastal Plain, Alaska

    USGS Publications Warehouse

    Arp, C.D.; Whitman, M.S.; Jones, Benjamin M.; Kemnitz, R.; Grosse, G.; Urban, F.E.

    2012-01-01

    Watersheds draining the Arctic Coastal Plain (ACP) of Alaska are dominated by permafrost and snowmelt runoff that create abundant surface storage in the form of lakes, wetlands, and beaded streams. These surface water elements compose complex drainage networks that affect aquatic ecosystem connectivity and hydrologic behavior. The 4676 km2 Fish Creek drainage basin is composed of three watersheds that represent a gradient of the ACP landscape with varying extents of eolian, lacustrine, and fluvial landforms. In each watershed, we analyzed 2.5-m-resolution aerial photography, a 5-m digital elevation model, and river gauging and climate records to better understand ACP watershed structure and processes. We show that connected lakes accounted for 19 to 26% of drainage density among watersheds and most all channels initiate from lake basins in the form of beaded streams. Of the > 2500 lakes in these watersheds, 33% have perennial streamflow connectivity, and these represent 66% of total lake area extent. Deeper lakes with over-wintering habitat were more abundant in the watershed with eolian sand deposits, while the watershed with marine silt deposits contained a greater extent of beaded streams and shallow thermokarst lakes that provide essential summer feeding habitat. Comparison of flow regimes among watersheds showed that higher lake extent and lower drained lake-basin extent corresponded with lower snowmelt and higher baseflow runoff. Variation in baseflow runoff among watersheds was most pronounced during drought conditions in 2007 with corresponding reduction in snowmelt peak flows the following year. Comparison with other Arctic watersheds indicates that lake area extent corresponds to slower recession of both snowmelt and baseflow runoff. These analyses help refine our understanding of how Arctic watersheds are structured and function hydrologically, emphasizing the important role of lake basins and suggesting how future lake change may impact hydrologic

  6. The Community Environmental Monitoring Program in the 21st Century: The Evolution of a Monitoring Network

    SciTech Connect

    Hartwell, W.T.; Tappen, J.; Karr, L.

    2007-01-19

    This paper focuses on the evolution of the various operational aspects of the Community Environmental Monitoring Program (CEMP) network following the transfer of program administration from the U.S. Environmental Protection Agency (EPA) to the Desert Research Institute (DRI) of the Nevada System of Higher Education in 1999-2000. The CEMP consists of a network of 29 fixed radiation and weather monitoring stations located in Nevada, Utah, and California. Its mission is to involve stakeholders directly in monitoring for airborne radiological releases to the off site environment as a result of past or ongoing activities on the Nevada Test Site (NTS) and to make data as transparent and accessible to the general public as feasible. At its inception in 1981, the CEMP was a cooperative project of the U.S. Department of Energy (DOE), DRI, and EPA. In 1999-2000, technical administration of the CEMP transitioned from EPA to DRI. Concurrent with and subsequent to this transition, station and program operations underwent significant enhancements that furthered the mission of the program. These enhancements included the addition of a full suite of meteorological instrumentation, state-of-the-art electronic data collectors, on-site displays, and communications hardware. A public website was developed. Finally, the DRI developed a mobile monitoring station that can be operated entirely on solar power in conjunction with a deep-cell battery, and includes all meteorological sensors and a pressurized ion chamber for detecting background gamma radiation. Final station configurations have resulted in the creation of a platform that is well suited for use as an in-field multi-environment test-bed for prototype environmental sensors and in interfacing with other scientific and educational programs. Recent and near-future collaborators have included federal, state, and local agencies in both the government and private sectors. The CEMP also serves as a model for other programs wishing to

  7. Sampling design optimization of a mussel watch-type monitoring program, the French Monitoring Network

    SciTech Connect

    Beliaeff, B.; Claisse, D.; Smith, P.J.

    1995-12-31

    In the French Monitoring Network, trace element and organic concentration in biota has been measured for 15 years on a quarterly basis at over 80 sites scattered along the French coastline. A reduction in the sampling effort may be needed as a result of budget restrictions. A constant budget, however, would allow the advancement of certain research and development projects, such as the feasibility of new chemical analysis. The basic problem confronting the program sampling design optimization is finding optimal numbers of sites in a given non-heterogeneous area and of sampling events within a year at each site. First, they determine a site specific cost function integrating analysis, personnel, and computer costs. Then, within-year and between-site variance components are estimated from the results of a linear model which includes a seasonal component. These two steps provide a cost-precision optimum for each contaminant. An example is given using the data from the 4 sites of the Loire estuary. Over all sites, significant `U`-shaped trends are estimated for Pb, PCBs, {Sigma}DDT and {alpha}-HCH, while PAHs show a significant inverted `U`-shaped curve. For most chemicals the within-year variance appears to be much higher than the between sites variance. This leads to the conclusion that, for this case, reducing the number of sites by two is preferable economically and in terms of monitoring efficiency to reducing the sampling frequency by the same factor. Further implications for the French Monitoring Network are discussed.

  8. The Monitoring Network of the Vancouver 2010 Olympics

    NASA Astrophysics Data System (ADS)

    Joe, Paul; Scott, Bill; Doyle, Chris; Isaac, George; Gultepe, Ismail; Forsyth, Douglas; Cober, Stewart; Campos, Edwin; Heckman, Ivan; Donaldson, Norman; Hudak, David; Rasmussen, Roy; Kucera, Paul; Stewart, Ron; Thériault, Julie M.; Fisico, Teresa; Rasmussen, Kristen L.; Carmichael, Hannah; Laplante, Alex; Bailey, Monika; Boudala, Faisal

    2014-01-01

    An innovative monitoring network was implemented to support the operational and science programs for the Vancouver 2010 Winter Olympics. It consisted of in situ weather stations on custom-designed platforms. The sensors included an HMP45C for temperature, humidity and pressure, a tipping bucket rain gauge, an acoustic snow depth sensor, a Pluvio 1 precipitation gauge and an anemometer placed at gauge height and at 10 m height. Modifications to commercial automated precipitation gauges were necessary for the heavy snowfall conditions. Advanced or emerging technologies were deployed to support scientific and nowcasting studies into precipitation intensity, typing, visibility and wind. The sensors included an FD12P visibility and precipitation sensor, a precipitation occurrence sensing system (POSS) present weather sensor, a Hotplate precipitation sensor and a Parsivel disdrometer. Data were collected at 1 min sampling intervals. A Doppler weather radar was deployed in a valley location and provided critical detailed low-level data. An X-band dual-polarized radar was deployed by the National Oceanic and Atmospheric Administration to monitor Vancouver and Cypress Mountain. Three remote sensing stations for vertical profiling were established. At the base of Whistler Mountain, a micro-rain radar, a 22-channel radiometer, a ceilometer, a Parsivel and a POSS were installed. At the base of Cypress Mountain, a micro-rain radar, a ceilometer, a low cost rain sensor (LCR by ATTEX) and a POSS were installed. At Squamish, a wind profiler and a POSS were installed. Weather sensors were mounted on the Whistler Village Gondola and on the Peak to Peak gondola. Sites were established along the Whistler Mountain slope and at other key locations. The combination of sites and instruments formed a comprehensive network to provide observations appropriate for nowcasting in winter complex terrain and investigate precipitation, visibility and wind processes. The contribution provides a

  9. Monitoring the particle size in CFB using fuzzy neural network

    SciTech Connect

    Ma, L.; Chen, H.; Tian, Z.; He, W.

    1999-07-01

    The particle size and particle size distributions (PSDs) affect the performance of a circulating fluidized (CFB) boiler. For improving the efficiency of analysis of particle size to monitor the particle size and particle size distribution, a fuzzy neural network (FNN) model is presented. Because the pressure fluctuant frequency and particle size have some non-linear relationship, the FNN models the relationship between the pressure fluctuant frequencies along CFB boiler height and particle size sampled from CFB boiler by neural network training. A hybrid fuzzy neural network parameter training method is presented to identify the model parameters, which combine the gradient back propagation (BP) algorithm and least square estimation (LSE) algorithm to estimate unknown non-linear parameter and linear parameter respectively. When the FNN training procedure converges, the parameters, which reflect the non-linear relationship between frequency and particle, are determined for a given operational condition of CFB boiler. In operating CFB boilers, the coal particle size at high temperature changes with combustion and its values are unknown, however, pressure fluctuation frequency can be obtained easily. In this case, FNN can predict the particle size and PSDs along the CFB boiler height according to the pressure fluctuation frequency. To validate the FNN model effect of analyzing the particle size, data from experiment are used with fluidized gas velocity equal to 41.82 cm/s. The predictive error of FNN model is 3.839%. It is proved that the model not only identifies the non-linear relationship between particle size and pressure fluctuation frequency with high precision but also can adaptively learn the data information without expert knowledge by adjusting its own parameters. It operates quickly and can satisfy the real-time request of monitoring the particle size and its distribution in CFB boilers.

  10. GNSS Spoofing Network Monitoring Based on Differential Pseudorange.

    PubMed

    Zhang, Zhenjun; Zhan, Xingqun

    2016-10-23

    Spoofing is becoming a serious threat to various Global Navigation Satellite System (GNSS) applications, especially for those that require high reliability and security such as power grid synchronization and applications related to first responders and aviation safety. Most current works on anti-spoofing focus on spoofing detection from the individual receiver side, which identifies spoofing when it is under an attack. This paper proposes a novel spoofing network monitoring (SNM) mechanism aiming to reveal the presence of spoofing within an area. Consisting of several receivers and one central processing component, it keeps detecting spoofing even when the network is not attacked. The mechanism is based on the different time difference of arrival (TDOA) properties between spoofing and authentic signals. Normally, TDOAs of spoofing signals from a common spoofer are identical while those of authentic signals from diverse directions are dispersed. The TDOA is measured as the differential pseudorange to carrier frequency ratio (DPF). In a spoofing case, the DPFs include those of both authentic and spoofing signals, among which the DPFs of authentic are dispersed while those of spoofing are almost overlapped. An algorithm is proposed to search for the DPFs that are within a pre-defined small range, and an alarm will be raised if several DPFs are found within such range. The proposed SNM methodology is validated by simulations and a partial field trial. Results show 99.99% detection and 0.01% false alarm probabilities are achieved. The SNM has the potential to be adopted in various applications such as (1) alerting dedicated users when spoofing is occurring, which could significantly shorten the receiver side spoofing cost; (2) in combination with GNSS performance monitoring systems, such as the Continuous Operating Reference System (CORS) and GNSS Availability, Accuracy, Reliability anD Integrity Assessment for Timing and Navigation (GAARDIAN) System, to provide more

  11. GNSS Spoofing Network Monitoring Based on Differential Pseudorange

    PubMed Central

    Zhang, Zhenjun; Zhan, Xingqun

    2016-01-01

    Spoofing is becoming a serious threat to various Global Navigation Satellite System (GNSS) applications, especially for those that require high reliability and security such as power grid synchronization and applications related to first responders and aviation safety. Most current works on anti-spoofing focus on spoofing detection from the individual receiver side, which identifies spoofing when it is under an attack. This paper proposes a novel spoofing network monitoring (SNM) mechanism aiming to reveal the presence of spoofing within an area. Consisting of several receivers and one central processing component, it keeps detecting spoofing even when the network is not attacked. The mechanism is based on the different time difference of arrival (TDOA) properties between spoofing and authentic signals. Normally, TDOAs of spoofing signals from a common spoofer are identical while those of authentic signals from diverse directions are dispersed. The TDOA is measured as the differential pseudorange to carrier frequency ratio (DPF). In a spoofing case, the DPFs include those of both authentic and spoofing signals, among which the DPFs of authentic are dispersed while those of spoofing are almost overlapped. An algorithm is proposed to search for the DPFs that are within a pre-defined small range, and an alarm will be raised if several DPFs are found within such range. The proposed SNM methodology is validated by simulations and a partial field trial. Results show 99.99% detection and 0.01% false alarm probabilities are achieved. The SNM has the potential to be adopted in various applications such as (1) alerting dedicated users when spoofing is occurring, which could significantly shorten the receiver side spoofing cost; (2) in combination with GNSS performance monitoring systems, such as the Continuous Operating Reference System (CORS) and GNSS Availability, Accuracy, Reliability anD Integrity Assessment for Timing and Navigation (GAARDIAN) System, to provide more

  12. Support vector machines (SVMs) for monitoring network design.

    PubMed

    Asefa, Tirusew; Kemblowski, Mariush; Urroz, Gilberto; McKee, Mac

    2005-01-01

    In this paper we present a hydrologic application of a new statistical learning methodology called support vector machines (SVMs). SVMs are based on minimization of a bound on the generalized error (risk) model, rather than just the mean square error over a training set. Due to Mercer's conditions on the kernels, the corresponding optimization problems are convex and hence have no local minima. In this paper, SVMs are illustratively used to reproduce the behavior of Monte Carlo-based flow and transport models that are in turn used in the design of a ground water contamination detection monitoring system. The traditional approach, which is based on solving transient transport equations for each new configuration of a conductivity field, is too time consuming in practical applications. Thus, there is a need to capture the behavior of the transport phenomenon in random media in a relatively simple manner. The objective of the exercise is to maximize the probability of detecting contaminants that exceed some regulatory standard before they reach a compliance boundary, while minimizing cost (i.e., number of monitoring wells). Application of the method at a generic site showed a rather promising performance, which leads us to believe that SVMs could be successfully employed in other areas of hydrology. The SVM was trained using 510 monitoring configuration samples generated from 200 Monte Carlo flow and transport realizations. The best configurations of well networks selected by the SVM were identical with the ones obtained from the physical model, but the reliabilities provided by the respective networks differ slightly.

  13. Review of Artificial Neural Networks (ANN) applied to corrosion monitoring

    NASA Astrophysics Data System (ADS)

    Mabbutt, S.; Picton, P.; Shaw, P.; Black, S.

    2012-05-01

    The assessment of corrosion within an engineering system often forms an important aspect of condition monitoring but it is a parameter that is inherently difficult to measure and predict. The electrochemical nature of the corrosion process allows precise measurements to be made. Advances in instruments, techniques and software have resulted in devices that can gather data and perform various analysis routines that provide parameters to identify corrosion type and corrosion rate. Although corrosion rates are important they are only useful where general or uniform corrosion dominates. However, pitting, inter-granular corrosion and environmentally assisted cracking (stress corrosion) are examples of corrosion mechanisms that can be dangerous and virtually invisible to the naked eye. Electrochemical noise (EN) monitoring is a very useful technique for detecting these types of corrosion and it is the only non-invasive electrochemical corrosion monitoring technique commonly available. Modern instrumentation is extremely sensitive to changes in the system and new experimental configurations for gathering EN data have been proven. In this paper the identification of localised corrosion by different data analysis routines has been reviewed. In particular the application of Artificial Neural Network (ANN) analysis to corrosion data is of key interest. In most instances data needs to be used with conventional theory to obtain meaningful information and relies on expert interpretation. Recently work has been carried out using artificial neural networks to investigate various types of corrosion data in attempts to predict corrosion behaviour with some success. This work aims to extend this earlier work to identify reliable electrochemical indicators of localised corrosion onset and propagation stages.

  14. Sensor Networking Testbed with IEEE 1451 Compatibility and Network Performance Monitoring

    NASA Technical Reports Server (NTRS)

    Gurkan, Deniz; Yuan, X.; Benhaddou, D.; Figueroa, F.; Morris, Jonathan

    2007-01-01

    Design and implementation of a testbed for testing and verifying IEEE 1451-compatible sensor systems with network performance monitoring is of significant importance. The performance parameters measurement as well as decision support systems implementation will enhance the understanding of sensor systems with plug-and-play capabilities. The paper will present the design aspects for such a testbed environment under development at University of Houston in collaboration with NASA Stennis Space Center - SSST (Smart Sensor System Testbed).

  15. Monitoring network-design influence on assessment of ecological condition in wadeable streams

    EPA Science Inventory

    We investigated outcomes of three monitoring networks for assessing ecological character and condition of wadeable streams in the Waikato region, New Zealand. Sites were selected 1) based on a professional judgment network, 2) within categories of stream and watershed characteris...

  16. Assessment Of Errors In Long-Term Mass Balance Records From Alaska, USA

    NASA Astrophysics Data System (ADS)

    March, R. S.; van Beusekom, A. E.; O'Neel, S.

    2009-12-01

    The USGS maintains a long-term glacier mass balance monitoring program at Gulkana and Wolverine glaciers in Alaska. The records produced by this program are a major component of the world’s mountain glacier balance inventory due to the scarcity of such long-term measurements. Recent data that show rapid glacier volume loss in Alaska further emphasize the importance of these records. An integral part of the long-term mass balance program is repeated assessment of the validity of the methods because bias errors in mass balance data are cumulative. Long-term glacier mass balance records in Alaska have previously been shown to be in good agreement with geodetically determined volume changes despite a minimal network of mass balance stakes. Because the rates of negative mass balance and change in glacier geometry have recently increased, this work reassess whether or not the existing stake networks and method of determining glacier-average balance are still working adequately.

  17. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  18. Near-Road Air Quality Monitoring: Factors Affecting Network Design and Interpretation of Data

    EPA Science Inventory

    The growing number of health studies identifying adverse health effects for populations spending significant amounts of time near large roadways has increased the interest in monitoring air quality in this microenvironment. Designing near-road air monitoring networks or interpret...

  19. Methods used for Undergraduate Education at the University of Alaska Southeast Environmental Sciences Program

    NASA Astrophysics Data System (ADS)

    Heavner, M. J.; Hood, E. W.; Connor, C. L.

    2004-12-01

    The Environmental Science Program at the University of Alaska Southeast in Juneau, Alaska utilizes our unique outdoor field experience opportunities as part of both the classroom experience and our undergraduate research component. This presentation focuses on our successes in taking advantage of our surrounding environment in the maritime rainforest of the Alaska panhandle to enhance our undergraduate program. We will highlight some of our most successful undergraduate experiences, which include a snow pack monitoring site at our local ski area, glacier mass balance studies on the Mendenhall Glacier, glacial geology studies in Glacier Bay National Park, and the development of wireless networks to monitor bats. We will describe methods we have used to integrate the field opportunities into our program.

  20. Monitoring the Earth's Atmosphere with the Global IMS Infrasound Network

    NASA Astrophysics Data System (ADS)

    Brachet, Nicolas; Brown, David; Mialle, Pierrick; Le Bras, Ronan; Coyne, John; Given, Jeffrey

    2010-05-01

    The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is tasked with monitoring compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) which bans nuclear weapon explosions underground, in the oceans, and in the atmosphere. The verification regime includes a globally distributed network of seismic, hydroacoustic, infrasound and radionuclide stations which collect and transmit data to the International Data Centre (IDC) in Vienna, Austria shortly after the data are recorded at each station. The infrasound network defined in the Protocol of the CTBT comprises 60 infrasound array stations. Each array is built according to the same technical specifications, it is typically composed of 4 to 9 sensors, with 1 to 3 km aperture geometry. At the end of 2000 only one infrasound station was transmitting data to the IDC. Since then, 41 additional stations have been installed and 70% of the infrasound network is currently certified and contributing data to the IDC. This constitutes the first global infrasound network ever built with such a large and uniform distribution of stations. Infrasound data at the IDC are processed at the station level using the Progressive Multi-Channel Correlation (PMCC) method for the detection and measurement of infrasound signals. The algorithm calculates the signal correlation between sensors at an infrasound array. If the signal is sufficiently correlated and consistent over an extended period of time and frequency range a detection is created. Groups of detections are then categorized according to their propagation and waveform features, and a phase name is assigned for infrasound, seismic or noise detections. The categorization complements the PMCC algorithm to avoid overwhelming the IDC automatic association algorithm with false alarm infrasound events. Currently, 80 to 90% of the detections are identified as noise by the system. Although the noise detections are not used to build events in the context of CTBT monitoring

  1. Environmental Monitoring using Measurements from Cellular Network Infrastructure

    NASA Astrophysics Data System (ADS)

    David, N.; Gao, O. H.

    2015-12-01

    Accurate measurements of atmospheric parameters at ground level are fundamentally essential for hazard warning, meteorological forecasting and for various applications in agriculture, hydrology, transportation and more. The accuracy of existing instruments, however, is often limited as a result of technical and practical constraints. Existing technologies such as satellite systems cover large areas but may experience lack of precision at near surface level. On the other hand, ground based in-situ sensors often suffer from low spatial representativity. In addition, these conventional monitoring instruments are costly to implement and maintain. At frequencies of tens of GHz, various atmospheric hydrometeors affect microwave beams, causing perturbations to radio signals. Consequently, commercial wireless links that constitute the infrastructure for data transport between cellular base stations can be considered as a built in environmental monitoring facility (Messer et al., Science, 2006). These microwave links are widely deployed worldwide at surface level altitudes and can provide measurements of various atmospheric phenomena. The implementation costs are minimal since the infrastructure is already situated in the field. This technique has been shown to be applicable for 2D rainfall monitoring (e.g. Overeem et al., PNAS, 2013; Liberman et al., AMT, 2014) and potentially for water vapor observations (David et al., ACP, 2009; Chwala et al., Atmos. Res., 2013). Moreover, it has been recently shown that the technology has strong potential for detection of fog and estimation of its intensity (David et al., JGR-Atmos., 2013; David et al., BAMS, 2014). The research conducted to this point forms the basis for the initiation of a research project in this newly emerging field at the School of Civil and Environmental Engineering of Cornell University. The presentation will provide insights into key capabilities of the novel approach. The potential to monitor various

  2. 40 CFR Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...—Network Design Criteria for Ambient Air Quality Monitoring 1. Monitoring Objectives and Spatial Scales 2.... References 1. Monitoring Objectives and Spatial Scales The purpose of this appendix is to describe monitoring... and path placement, are described in appendix E to this part. 1.2Spatial Scales. (a) To clarify...

  3. 40 CFR Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...—Network Design Criteria for Ambient Air Quality Monitoring 1. Monitoring Objectives and Spatial Scales 2.... References 1. Monitoring Objectives and Spatial Scales The purpose of this appendix is to describe monitoring... and path placement, are described in appendix E to this part. 1.2Spatial Scales. (a) To clarify...

  4. 40 CFR Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...—Network Design Criteria for Ambient Air Quality Monitoring 1. Monitoring Objectives and Spatial Scales 2.... References 1. Monitoring Objectives and Spatial Scales The purpose of this appendix is to describe monitoring... and path placement, are described in appendix E to this part. 1.2Spatial Scales. (a) To clarify...

  5. Variability of multifractal parameters in an urban precipitation monitoring network

    NASA Astrophysics Data System (ADS)

    Licznar, Paweł; De Michele, Carlo; Dżugaj, Dagmara; Niesobska, Maria

    2014-05-01

    Precipitation especially over urban areas is considered a highly non-linear process, with wide variability over a broad range of temporal and spatial scales. Despite obvious limitations of rainfall gauges location at urban sites, rainfall monitoring by gauge networks is a standard solution of urban hydrology. Often urban precipitation gauge networks are formed by modern electronic gauges and connected to control units of centralized urban drainage systems. Precipitation data, recorded online through these gauge networks, are used in so called Real-Time-Control (RTC) systems for the development of optimal strategies of urban drainage outflows management. As a matter of fact, the operation of RTC systems is motivated mainly by the urge of reducing the severity of urban floods and combined sewerage overflows, but at the same time, it creates new valuable precipitation data sources. The variability of precipitation process could be achieved by investigating multifractal behavior displayed by the temporal structure of precipitation data. There are multiply scientific communications concerning multifractal properties of point-rainfall data from different worldwide locations. However, very little is known about the close variability of multifractal parameters among closely located gauges, at the distances of single kilometers. Having this in mind, here we assess the variability of multifractal parameters among gauges of the urban precipitation monitoring network in Warsaw, Poland. We base our analysis on the set of 1-minute rainfall time series recorded in the period 2008-2011 by 25 electronic weighing type gauges deployed around the city by the Municipal Water Supply and Sewerage Company in Warsaw as a part of local RTC system. The presence of scale invariance and multifractal properties in the precipitation process was investigated with spectral analysis, functional box counting method and studying the probability distributions and statistical moments of the rainfall

  6. Revisiting Notable Earthquakes and Seismic Patterns of the Past Decade in Alaska

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Macpherson, K. A.; Holtkamp, S. G.

    2015-12-01

    Alaska, the most seismically active region of the United States, has produced five earthquakes with magnitudes greater than seven since 2005. The 2007 M7.2 and 2013 M7.0 Andreanof Islands earthquakes were representative of the most common source of significant seismic activity in the region, the Alaska-Aleutian megathrust. The 2013 M7.5 Craig earthquake, a strike-slip event on the Queen-Charlotte fault, occurred along the transform plate boundary in southeast Alaska. The largest earthquake of the past decade, the 2014 M7.9 Little Sitkin event in the western Aleutians, occurred at an intermediate depth and ruptured along a gently dipping fault through nearly the entire thickness of the subducted Pacific plate. Along with these major earthquakes, the Alaska Earthquake Center reported over 250,000 seismic events in the state over the last decade, and its earthquake catalog surpassed 500,000 events in mid-2015. Improvements in monitoring networks and processing techniques allowed an unprecedented glimpse into earthquake patterns in Alaska. Some notable recent earthquake sequences include the 2008 Kasatochi eruption, the 2006-2008 M6+ crustal earthquakes in the central and western Aleutians, the 2010 and 2015 Bering Sea earthquakes, the 2014 Noatak swarm, and the 2014 Minto earthquake sequence. In 2013, the Earthscope USArray project made its way into Alaska. There are now almost 40 new Transportable Array stations in Alaska along with over 20 upgraded sites. This project is changing the earthquake-monitoring scene in Alaska, lowering magnitude of completeness across large, newly instrumented parts of the state.

  7. February 2012 workshop jumpstarts the Mekong Fish Monitoring Network

    USGS Publications Warehouse

    Andersen, Matthew E.; Ainsley, Shaara M.

    2012-01-01

    , Cambodia, and Vietnam. Representatives from the governments, universities, nongovernmental organizations, and the Mekong River Commission discussed current and potential methods and mechanisms of the Mekong Fish Monitoring Network. The goals of the workshop were to determine if the Network and associated databases were of interest and value to the LMB nations, to determine if future fisheries monitoring data would be comparable among the nations, and to establish methods and an organizational structure for collaborating on future monitoring and research. The participants in this international workshop agreed that the Network would be useful but would require additional funding to secure their full participation. The USGS and FISHBIO are collaboratively seeking additional funding to expand research participation and projects in all four LMB nations. If the Network can facilitate cooperation among many fisheries researchers in the LMB, the basin would become a model of cooperative international fishery studies and would increase the understanding of a river basin rich in natural resources.

  8. Uncertainty based optimal monitoring network design for a chlorinated hydrocarbon contaminated site.

    PubMed

    Chadalavada, Sreenivasulu; Datta, Bithin; Naidu, Ravi

    2011-02-01

    An application of a newly developed optimal monitoring network for the delineation of contaminants in groundwater is demonstrated in this study. Designing a monitoring network in an optimal manner helps to delineate the contaminant plume with a minimum number of monitoring wells at optimal locations at a contaminated site. The basic principle used in this study is that the wells are installed where the measurement uncertainties are minimum at the potential monitoring locations. The development of the optimal monitoring network is based on the utilization of contaminant concentration data from an existing initial arbitrary monitoring network. The concentrations at the locations that were not sampled in the study area are estimated using geostatistical tools. The uncertainty in estimating the contaminant concentrations at such locations is used as design criteria for the optimal monitoring network. The uncertainty in the study area was quantified by using the concentration estimation variances at all the potential monitoring locations. The objective function for the monitoring network design minimizes the spatial concentration estimation variances at all potential monitoring well locations where a monitoring well is not to be installed as per the design criteria. In the proposed methodology, the optimal monitoring network is designed for the current management period and the contaminant concentration data estimated at the potential observation locations are then used as the input to the network design model. The optimal monitoring network is designed for the consideration of two different cases by assuming different initial arbitrary existing data. Three different scenarios depending on the limit of the maximum number of monitoring wells that can be allowed at any period are considered for each case. In order to estimate the efficiency of the developed optimal monitoring networks, mass estimation errors are compared for all the three different scenarios of the two

  9. SSME Condition Monitoring Using Neural Networks and Plume Spectral Signatures

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall; Benzing, Daniel

    1996-01-01

    For a variety of reasons, condition monitoring of the Space Shuttle Main Engine (SSME) has become an important concern for both ground tests and in-flight operation. The complexities of the SSME suggest that active, real-time condition monitoring should be performed to avoid large-scale or catastrophic failure of the engine. In 1986, the SSME became the subject of a plume emission spectroscopy project at NASA's Marshall Space Flight Center (MSFC). Since then, plume emission spectroscopy has recorded many nominal tests and the qualitative spectral features of the SSME plume are now well established. Significant discoveries made with both wide-band and narrow-band plume emission spectroscopy systems led MSFC to develop the Optical Plume Anomaly Detection (OPAD) system. The OPAD system is designed to provide condition monitoring of the SSME during ground-level testing. The operational health of the engine is achieved through the acquisition of spectrally resolved plume emissions and the subsequent identification of abnormal emission levels in the plume indicative of engine erosion or component failure. Eventually, OPAD, or a derivative of the technology, could find its way on to an actual space vehicle and provide in-flight engine condition monitoring. This technology step, however, will require miniaturized hardware capable of processing plume spectral data in real-time. An objective of OPAD condition monitoring is to determine how much of an element is present in the SSME plume. The basic premise is that by knowing the element and its concentration, this could be related back to the health of components within the engine. For example, an abnormal amount of silver in the plume might signify increased wear or deterioration of a particular bearing in the engine. Once an anomaly is identified, the engine could be shut down before catastrophic failure occurs. Currently, element concentrations in the plume are determined iteratively with the help of a non-linear computer

  10. Global optimal design of ground water monitoring network using embedded kriging.

    PubMed

    Dhar, Anirban; Datta, Bithin

    2009-01-01

    We present a methodology for global optimal design of ground water quality monitoring networks using a linear mixed-integer formulation. The proposed methodology incorporates ordinary kriging (OK) within the decision model formulation for spatial estimation of contaminant concentration values. Different monitoring network design models incorporating concentration estimation error, variance estimation error, mass estimation error, error in locating plume centroid, and spatial coverage of the designed network are developed. A big-M technique is used for reformulating the monitoring network design model to a linear decision model while incorporating different objectives and OK equations. Global optimality of the solutions obtained for the monitoring network design can be ensured due to the linear mixed-integer programming formulations proposed. Performances of the proposed models are evaluated for both field and hypothetical illustrative systems. Evaluation results indicate that the proposed methodology performs satisfactorily. These performance evaluation results demonstrate the potential applicability of the proposed methodology for optimal ground water contaminant monitoring network design.

  11. A conceptual ground-water-quality monitoring network for San Fernando Valley, California

    USGS Publications Warehouse

    Setmire, J.G.

    1985-01-01

    A conceptual groundwater-quality monitoring network was developed for San Fernando Valley to provide the California State Water Resources Control Board with an integrated, basinwide control system to monitor the quality of groundwater. The geology, occurrence and movement of groundwater, land use, background water quality, and potential sources of pollution were described and then considered in designing the conceptual monitoring network. The network was designed to monitor major known and potential point and nonpoint sources of groundwater contamination over time. The network is composed of 291 sites where wells are needed to define the groundwater quality. The ideal network includes four specific-purpose networks to monitor (1) ambient water quality, (2) nonpoint sources of pollution, (3) point sources of pollution, and (4) line sources of pollution. (USGS)

  12. Energy Harvesting for Structural Health Monitoring Sensor Networks

    SciTech Connect

    Park, G.; Farrar, C. R.; Todd, M. D.; Hodgkiss, T.; Rosing, T.

    2007-02-26

    This report has been developed based on information exchanges at a 2.5-day workshop on energy harvesting for embedded structural health monitoring (SHM) sensing systems that was held June 28-30, 2005, at Los Alamos National Laboratory. The workshop was hosted by the LANL/UCSD Engineering Institute (EI). This Institute is an education- and research-focused collaboration between Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD), Jacobs School of Engineering. A Statistical Pattern Recognition paradigm for SHM is first presented and the concept of energy harvesting for embedded sensing systems is addressed with respect to the data acquisition portion of this paradigm. Next, various existing and emerging sensing modalities used for SHM and their respective power requirements are summarized, followed by a discussion of SHM sensor network paradigms, power requirements for these networks and power optimization strategies. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. This discussion also addresses current energy harvesting applications and system integration issues. The report concludes by defining some future research directions and possible technology demonstrations that are aimed at transitioning the concept of energy harvesting for embedded SHM sensing systems from laboratory research to field-deployed engineering prototypes.

  13. Wireless Sensor Network Deployment for Monitoring Wildlife Passages

    PubMed Central

    Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Losilla, Fernando; Kulakowski, Pawel; Garcia-Haro, Joan; Rodríguez, Alejandro; López-Bao, José-Vicente; Palomares, Francisco

    2010-01-01

    Wireless Sensor Networks (WSNs) are being deployed in very diverse application scenarios, including rural and forest environments. In these particular contexts, specimen protection and conservation is a challenge, especially in natural reserves, dangerous locations or hot spots of these reserves (i.e., roads, railways, and other civil infrastructures). This paper proposes and studies a WSN based system for generic target (animal) tracking in the surrounding area of wildlife passages built to establish safe ways for animals to cross transportation infrastructures. In addition, it allows target identification through the use of video sensors connected to strategically deployed nodes. This deployment is designed on the basis of the IEEE 802.15.4 standard, but it increases the lifetime of the nodes through an appropriate scheduling. The system has been evaluated for the particular scenario of wildlife monitoring in passages across roads. For this purpose, different schemes have been simulated in order to find the most appropriate network operational parameters. Moreover, a novel prototype, provided with motion detector sensors, has also been developed and its design feasibility demonstrated. Original software modules providing new functionalities have been implemented and included in this prototype. Finally, main performance evaluation results of the whole system are presented and discussed in depth. PMID:22163601

  14. Human mobility monitoring in very low resolution visual sensor network.

    PubMed

    Bo, Nyan Bo; Deboeverie, Francis; Eldib, Mohamed; Guan, Junzhi; Xie, Xingzhe; Niño, Jorge; Van Haerenborgh, Dirk; Slembrouck, Maarten; Van de Velde, Samuel; Steendam, Heidi; Veelaert, Peter; Kleihorst, Richard; Aghajan, Hamid; Philips, Wilfried

    2014-11-04

    This paper proposes an automated system for monitoring mobility patterns using a network of very low resolution visual sensors (30 × 30 pixels). The use of very low resolution sensors reduces privacy concern, cost, computation requirement and power consumption. The core of our proposed system is a robust people tracker that uses low resolution videos provided by the visual sensor network. The distributed processing architecture of our tracking system allows all image processing tasks to be done on the digital signal controller in each visual sensor. In this paper, we experimentally show that reliable tracking of people is possible using very low resolution imagery. We also compare the performance of our tracker against a state-of-the-art tracking method and show that our method outperforms. Moreover, the mobility statistics of tracks such as total distance traveled and average speed derived from trajectories are compared with those derived from ground truth given by Ultra-Wide Band sensors. The results of this comparison show that the trajectories from our system are accurate enough to obtain useful mobility statistics.

  15. Wireless Sensor Network deployment for monitoring wildlife passages.

    PubMed

    Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Losilla, Fernando; Kulakowski, Pawel; Garcia-Haro, Joan; Rodríguez, Alejandro; López-Bao, José-Vicente; Palomares, Francisco

    2010-01-01

    Wireless Sensor Networks (WSNs) are being deployed in very diverse application scenarios, including rural and forest environments. In these particular contexts, specimen protection and conservation is a challenge, especially in natural reserves, dangerous locations or hot spots of these reserves (i.e., roads, railways, and other civil infrastructures). This paper proposes and studies a WSN based system for generic target (animal) tracking in the surrounding area of wildlife passages built to establish safe ways for animals to cross transportation infrastructures. In addition, it allows target identification through the use of video sensors connected to strategically deployed nodes. This deployment is designed on the basis of the IEEE 802.15.4 standard, but it increases the lifetime of the nodes through an appropriate scheduling. The system has been evaluated for the particular scenario of wildlife monitoring in passages across roads. For this purpose, different schemes have been simulated in order to find the most appropriate network operational parameters. Moreover, a novel prototype, provided with motion detector sensors, has also been developed and its design feasibility demonstrated. Original software modules providing new functionalities have been implemented and included in this prototype. Finally, main performance evaluation results of the whole system are presented and discussed in depth.

  16. Network of LAMP systems for atmospheric monitoring in India

    NASA Astrophysics Data System (ADS)

    Yellapragada, Bhavani Kumar; Jayaraman, Achuthan

    2012-07-01

    A systematic knowledge of the vertical distribution of aerosol particles in the atmosphere is required for understanding many atmospheric processes such as dynamics of boundary layer, pollution transport, modification of cloud microphysics etc. At present, the information on the particle distribution in the atmosphere is far from sufficient to estimate properly the load of aerosols in the atmosphere. Light detection and ranging (LIDAR) has been demonstrated to be a reliable remote sensing technique to obtain altitude profiles of atmospheric cloud and aerosol scattering. A LIDAR network is being implemented by National Atmospheric Research Laboratory (NARL), a Department of Space unit, in India for the measurement and monitoring of the atmospheric aerosols and clouds. Towards this, the technology of boundary layer lidar (BLL) (Bhavani Kumar, 2006) has been exploited. Several industrial grade BLL systems are being fabricated at a private industry in India through technological transfer from NARL. The industrial BLL lidar is named as LAMP, stands for LIDAR for Atmospheric Measurement and Probing. Five LAMP systems have already been fabricated and deployed at several locations of the country for continuous monitoring of aerosols and clouds under the Indian Lidar network (I-LINK) programme. The LAMP system employs a single barrel construction so that no realignment is required in future. Moreover, the network lidar system employs several features like rotation facility about the elevation (EL) axis, a provision of front window for environmental protection to the telescope optics and a silica gel pocket for desiccation (for transmit and receive assembly) and a provision of nitrogen purging to overcome the humidity effects. The LAMP system is an autonomous system equipped with a diode pumped Nd-YAG laser, a PMT for the detection of the backscattered photons, and a PC based photon counting electronics for recording the photon returns. In this paper, a report describing

  17. Overview of the new National Near-Road Air Quality Monitoring Network

    EPA Science Inventory

    In 2010, EPA promulgated new National Ambient Air Quality Standards (NAAQS) for nitrogen dioxide (NO2). As part of this new NAAQS, EPA required the establishment of a national near-road air quality monitoring network. This network will consist of one NO2 near-road monitoring st...

  18. Development of a multiple objective planning theory and system for sustainable air quality monitoring networks.

    PubMed

    Chen, Ching-Ho; Liu, Wei-Lin; Chen, Chia-Hsing

    2006-01-15

    Air quality monitoring data are important bases for air quality management strategies planning and performance assessment. Therefore, the environmental protection authorities need to plan the air quality monitoring network effectively. However, in Taiwan, the national Environmental Protection Administration (EPA) and some county environmental protection bureaus (EPB) separately installed their own monitoring stations. This study developed an integrated methodology and computer system for planning air quality monitoring networks. The environmental, social, and economic objectives and sub-objectives, and their weights were identified using system analysis and multiple objective planning, based on the principles of sustainable development. A multiple objective optimization model and procedure for sustainable air quality monitoring networks planning are developed in this study. According to the procedure, a multiple objective planning system for sustainable air quality monitoring networks (MOPSSAQMN) is developed using computer software based on the modified bounded implicit enumeration algorithm with the constraint arrangement method. The air quality monitoring network of Taoyuan County, in northern Taiwan, was used as a case study to demonstrate the proposed method. Two satisfactory alternatives based on different conditions were generated using MOPSSAQMN. The compared results show that this study generated better alternatives than the current monitoring network. An installation schedule for the alternative was proposed, and its first step is now being implemented by the EPB of Taoyuan County Government. The procedure and computer system developed in this study can be used to assist the competent authorities to devise good and different alternatives for air quality monitoring networks planning.

  19. Distance Learning in Alaska's Rural Schools.

    ERIC Educational Resources Information Center

    Bramble, William J.

    1986-01-01

    The distance education and instructional technology projects that have been undertaken in Alaska over the last decade are detailed in this paper. The basic services offered by the "Learn Alaska Network" are described in relation to three user groups: K-12 education; postsecondary education; and general public education and information.…

  20. Extending permanent volcano monitoring networks into Iceland's ice caps

    NASA Astrophysics Data System (ADS)

    Vogfjörd, Kristín S.; Bergsson, Bergur H.; Kjartansson, Vilhjálmur; Jónsson, Thorsteinn; Ófeigsson, Benedikt G.; Roberts, Matthew J.; Jóhannesson, Tómas; Pálsson, Finnur; Magnússon, Eyjólfur; Erlendsson, Pálmi; Ingvarsson, Thorgils; Pálssson, Sighvatur K.

    2015-04-01

    The goals of the FUTUREVOLC project are the establishment of a volcano Supersite in Iceland to enable access to volcanological data from the country's many volcanoes and the development of a multiparametric volcano monitoring and early warning system. However, the location of some of Iceland's most active volcanoes inside the country's largest ice cap, Vatnajökull, makes these goals difficult to achieve as it hinders access and proper monitoring of seismic and deformation signals from the volcanoes. To overcome these obstacles, one of the developments in the project involves experimenting with extending the permanent real-time networks into the ice cap, including installation of stations in the glacier ice. At the onset of the project, only one permanent seismic and GPS site existed within Vatnajökull, on the caldera rim of the Grímsvötn volcano. Two years into the project both seismic and GPS stations have been successfully installed and operated inside the glacier; on rock outcrops as well as on the glacier surface. The specific problems to overcome are (i) harsh weather conditions requiring sturdy and resilient equipment and site installations, (ii) darkness during winter months shutting down power generation for several weeks, (iii) high snow accumulation burying the instruments, solar panels and communication and GPS antennae, and in some locations (iv) extreme icing conditions blocking transmission signals and connection to GPS satellites, as well as excluding the possibility of power generation by wind generators. In 2013, two permanent seismic stations and one GPS station were installed on rock outcrops within the ice cap in locations with 3G connections and powered by solar panels and enough battery storage to sustain operation during the darkest winter months. These sites have successfully operated for over a year with mostly regular maintenance requirements, transmitting data in real-time to IMO for analysis. Preparations for two permanent seismic

  1. An Alaska Soil Carbon Database

    NASA Astrophysics Data System (ADS)

    Johnson, Kristofer; Harden, Jennifer

    2009-05-01

    Database Collaborator's Meeting; Fairbanks, Alaska, 4 March 2009; Soil carbon pools in northern high-latitude regions and their response to climate changes are highly uncertain, and collaboration is required from field scientists and modelers to establish baseline data for carbon cycle studies. The Global Change Program at the U.S. Geological Survey has funded a 2-year effort to establish a soil carbon network and database for Alaska based on collaborations from numerous institutions. To initiate a community effort, a workshop for the development of an Alaska soil carbon database was held at the University of Alaska Fairbanks. The database will be a resource for spatial and biogeochemical models of Alaska ecosystems and will serve as a prototype for a nationwide community project: the National Soil Carbon Network (http://www.soilcarb.net). Studies will benefit from the combination of multiple academic and government data sets. This collaborative effort is expected to identify data gaps and uncertainties more comprehensively. Future applications of information contained in the database will identify specific vulnerabilities of soil carbon in Alaska to climate change, disturbance, and vegetation change.

  2. GuMNet - Guadarrama Monitoring Network. Installation and set up of a high altitude monitoring network, north of Madrid. Spain

    NASA Astrophysics Data System (ADS)

    Santolaria-Canales, Edmundo

    2015-04-01

    An observational monitoring network in the Guadarrama Mountains is due to be operational at the end of 2015. This network integrates atmospheric measurements as well as subsurface observations in a high mountain climate, located up to 2.400 m.a.s.l. The data provided by GuMNet will help to improve the characterization of microclimate in high mountain areas, as well as land-atmosphere interations. The network information aims at meeting the needs of accuracy to be used for biological, agricultural, hydrological, meteorological and climatic investigations in this area. This initiative is supported and developed by research groups integrating the GuMNet Consortiuma from the Complutense and Polytechnical Universities of Madrid (UCM and UPM), the Energetic Environmental and Technological Research Centre (CIEMAT), the Spanish National Meteorological Agency (AEMET), and the National Park Sierra de Guadarrama (PNSG). The starting setup includes seven meteorological stations compatible with WMO standards, to be installed in the central area of the massif. Including a four-component net radiation sensor, an ultrasonic snow height, a pluviometer specialized for snow capture, air temperature and humidity devices and wind speed/direction sensor. Along with these atmospheric measurements, each station will include a set of subsurface measurements of temperature in shallow boreholes ( 20 m depth ) and temperature and humidity in trenches up to 1 m depth. These compatible WMO stations will be complemented by a station specialized in eddy covariance measuremets with CO2 fluxes at low altitude pastureland near Madrid. Another portable station is available to develop ad hoc comparison studies. This setup is embedded in a broader network of meteorological stations run partly by AEMET and partly by the PNSG. Most of the AEMET stations are distributed over lower altitudes, and will provide a very reliable boundary information for the atmosphere state around the Sierra. In the same way

  3. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks

    PubMed Central

    Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi

    2016-01-01

    Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance. PMID:27006977

  4. Optimal design of river monitoring network in Taizihe River by matter element analysis.

    PubMed

    Wang, Hui; Liu, Zhe; Sun, Lina; Luo, Qing

    2015-01-01

    The objective of this study is to optimize the river monitoring network in Taizihe River, Northeast China. The situation of the network and water characteristics were studied in this work. During this study, water samples were collected once a month during January 2009 - December 2010 from seventeen sites. Futhermore, the 16 monitoring indexes were analyzed in the field and laboratory. The pH value of surface water sample was found to be in the range of 6.83 to 9.31, and the average concentrations of NH4(+)-N, chemical oxygen demand (COD), volatile phenol and total phosphorus (TP) were found decreasing significantly. The water quality of the river has been improved from 2009 to 2010. Through the calculation of the data availability and the correlation between adjacent sections, it was found that the present monitoring network was inefficient as well as the optimization was indispensable. In order to improve the situation, the matter element analysis and gravity distance were applied in the optimization of river monitoring network, which were proved to be a useful method to optimize river quality monitoring network. The amount of monitoring sections were cut from 17 to 13 for the monitoring network was more cost-effective after being optimized. The results of this study could be used in developing effective management strategies to improve the environmental quality of Taizihe River. Also, the results show that the proposed model can be effectively used for the optimal design of monitoring networks in river systems.

  5. Infrasonic Monitoring Network on the Big Island of Hawaii

    NASA Astrophysics Data System (ADS)

    Thelen, Weston; Garces, Milton; Cooper, Jennifer; Badger, Nickles; Perttu, Anna; Williams, Brian

    2013-04-01

    The USGS Hawaiian Volcano Observatory (HVO) with the participation of the University of Hawaii Infrasound Lab (ISLA) installed three new permanent infrasound arrays on the south half of the Island of Hawaii. Together with three existing permanent arrays maintained by ISLA, the current infrasound network around Kīlauea and Mauna Loa volcanoes is one of the most advanced of any volcano in the world. Open-vent volcanoes such as Kīlauea are particularly good infrasound emitters as lava spattering and unsteady gas release is common. The network was designed with two main goals in mind: 1) to monitor and study the infrasound sources associated with the ongoing Pu`u `Ō`ō and Halema'u'mau eruption, and 2) to detect in near real-time new eruptions at Mauna Loa or Kīlauea volcanoes. Each HVO array consists of 4 sensors, which form an equilateral triangle ~100 m on a side surrounding a central sensor. Three other permanent arrays maintained by ISLA (I59US, MENE, KHLU) have been operational since 2000, 2006, and 2009, respectively, and consist of a combination of Chaparral 25 and 50 sensors. Each infrasound instrument within the HVO arrays is built around an low- cost AllSensor MEMS sensor, which has higher noise characteristics than a Chaparral 25, but similar frequency response. ISLA also operates stations on Maui and Kauai that provide --statewide coverage. Since the full network has been established, we have recorded several infrasound signals including infrasonic tremor from Halema`uma`u, collapses from the craters of Halema`uma`u and Pu`u `Ō`ō, and other natural and anthropogenic infrasound from diverse sources on- island, offshore, and aloft. Future developments will include real-time detection, location, and identification of infrasonic signals for eruption notification. We hope to increase public awareness of volcanic infrasound by posting real-time locations on an interactive display, similar to how seismicity is currently reported. MENE data is presently

  6. Identifying Trends in Deep Space Network Monitor Data

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program has been developed that analyzes Deep Space Network monitor data, looking for changes of trends in critical parameters. This program represents a significant improvement over the previous practice of manually plotting data and visually inspecting the resulting graphs to identify trends. This program uses proven numerical techniques to identify trends. When a statistically significant trend is detected, then it is characterized by means of a symbol that can be used by pre-existing model-based reasoning software. The program can perform any of the following functions: Given an expectation that data in a given list should exhibit an upward, downward, constant, or unknown trend, it can determine whether the data do or do not follow such a trend. Given a list of data, it can identify which of the aforementioned trends the data follow. Given two lists of data, it can determine whether or not both follow the same trend. This program can be executed on a variety of computers. It can be distributed in either source code or binary code form. It must be run in conjunction with any one of a number of Lisp compilers that are available commercially or as shareware.

  7. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  8. Artificial neural network model for earthquake prediction with radon monitoring.

    PubMed

    Külahci, Fatih; Inceöz, Murat; Doğru, Mahmut; Aksoy, Ercan; Baykara, Oktay

    2009-01-01

    Apart from the linear monitoring studies concerning the relationship between radon and earthquake, an artificial neural networks (ANNs) model approach is presented starting out from non-linear changes of the eight different parameters during the earthquake occurrence. A three-layer Levenberg-Marquardt feedforward learning algorithm is used to model the earthquake prediction process in the East Anatolian Fault System (EAFS). The proposed ANN system employs individual training strategy with fixed-weight and supervised models leading to estimations. The average relative error between the magnitudes of the earthquakes acquired by ANN and measured data is about 2.3%. The relative error between the test and earthquake data varies between 0% and 12%. In addition, the factor analysis was applied on all data and the model output values to see the statistical variation. The total variance of 80.18% was explained with four factors by this analysis. Consequently, it can be concluded that ANN approach is a potential alternative to other models with complex mathematical operations.

  9. Sensor network infrastructure for a home care monitoring system.

    PubMed

    Palumbo, Filippo; Ullberg, Jonas; Stimec, Ales; Furfari, Francesco; Karlsson, Lars; Coradeschi, Silvia

    2014-02-25

    This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose) and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage). The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL) tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus.

  10. Sensor Network Infrastructure for a Home Care Monitoring System

    PubMed Central

    Palumbo, Filippo; Ullberg, Jonas; Štimec, Ales; Furfari, Francesco; Karlsson, Lars; Coradeschi, Silvia

    2014-01-01

    This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose) and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage). The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL) tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus. PMID:24573309

  11. Statistical approaches used to assess and redesign surface water-quality-monitoring networks.

    PubMed

    Khalil, B; Ouarda, T B M J

    2009-11-01

    An up-to-date review of the statistical approaches utilized for the assessment and redesign of surface water quality monitoring (WQM) networks is presented. The main technical aspects of network design are covered in four sections, addressing monitoring objectives, water quality variables, sampling frequency and spatial distribution of sampling locations. This paper discusses various monitoring objectives and related procedures used for the assessment and redesign of long-term surface WQM networks. The appropriateness of each approach for the design, contraction or expansion of monitoring networks is also discussed. For each statistical approach, its advantages and disadvantages are examined from a network design perspective. Possible methods to overcome disadvantages and deficiencies in the statistical approaches that are currently in use are recommended.

  12. Monitoring groundwater: optimising networks to take account of cost effectiveness, legal requirements and enforcement realities

    NASA Astrophysics Data System (ADS)

    Allan, A.; Spray, C.

    2013-12-01

    The quality of monitoring networks and modeling in environmental regulation is increasingly important. This is particularly true with respect to groundwater management, where data may be limited, physical processes poorly understood and timescales very long. The powers of regulators may be fatally undermined by poor or non-existent networks, primarily through mismatches between the legal standards that networks must meet, actual capacity and the evidentiary standards of courts. For example, in the second and third implementation reports on the Water Framework Directive, the European Commission drew attention to gaps in the standards of mandatory monitoring networks, where the standard did not meet the reality. In that context, groundwater monitoring networks should provide a reliable picture of groundwater levels and a ';coherent and comprehensive' overview of chemical status so that anthropogenically influenced long-term upward trends in pollutant levels can be tracked. Confidence in this overview should be such that 'the uncertainty from the monitoring process should not add significantly to the uncertainty of controlling the risk', with densities being sufficient to allow assessment of the impact of abstractions and discharges on levels in groundwater bodies at risk. The fact that the legal requirements for the quality of monitoring networks are set out in very vague terms highlights the many variables that can influence the design of monitoring networks. However, the quality of a monitoring network as part of the armory of environmental regulators is potentially of crucial importance. If, as part of enforcement proceedings, a regulator takes an offender to court and relies on conclusions derived from monitoring networks, a defendant may be entitled to question those conclusions. If the credibility, reliability or relevance of a monitoring network can be undermined, because it is too sparse, for example, this could have dramatic consequences on the ability of a

  13. Evidence for Deep Tectonic Tremor in the Alaska-Aleutian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Brown, J. R.; Prejean, S. G.; Beroza, G. C.; Gomberg, J. S.; Haeussler, P. J.

    2010-12-01

    We search for, characterize, and locate tremor not associated with volcanoes along the Alaska-Aleutian subduction zone using continuous seismic data recorded by the Alaska Volcano Observatory and Alaska Earthquake Information Center from 2005 to the present. Visual inspection of waveform spectra and time series reveal dozens of 10 to 20-minute bursts of tremor throughout the Alaska-Aleutian subduction zone (Peterson, 2009). Using autocorrelation methods, we show that these tremor signals are composed of hundreds of repeating low-frequency earthquakes (LFEs) as has been found in other circum-Pacific subduction zones. We infer deep sources based on phase arrival move-out times of less than 4 seconds across multiple monitoring networks (max. inter-station distances of 50 km), which are designed to monitor individual volcanoes. We find tremor activity is localized in 7 segments: Cook Inlet, Shelikof Strait, Alaska Peninsula, King Cove, Unalaska-Dutch Harbor, Andreanof Islands, and the Rat Islands. Locations along the Cook Inlet, Shelikof Straight and Alaska Peninsula are well constrained due to adequate station coverage. LFE hypocenters in these regions are located on the plate interface and form a sharp edge near the down-dip limit of the 1964 M 9.2 rupture area. Although the geometry, age, thermal structure, frictional and other relevant properties of the Alaska-Aleutian subduction are poorly known, it is likely these characteristics differ along its entire length, and also differ from other subduction zones where tremor has been found. LFE hypocenters in the remaining areas are also located down-dip of the most recent M 8+ megathrust earthquakes, between 60-75 km depth and almost directly under the volcanic arc. Although these locations are less well constrained, our preliminary results suggest LFE/tremor activity marks the down-dip rupture limit for megathrust earthquakes in this subduction zone. Also, we cannot rule out the possibility that our observations could

  14. Precise Time-Tag Generator For A Local-Area-Network Monitor

    NASA Technical Reports Server (NTRS)

    Stauffer, David R.; Tran, Khoa Duy

    1995-01-01

    Time-tag-generating circuit designed for use in LAN monitor, monitors frames of data transmitted among computers on local-area network (LAN). To each frame of data that LAN monitor receives from LAN, time-tag generator appends ancillary data on time of arrival of frame, precise to within 1 microsecond of centrally generated time signal. Inserts ancillary time data in place of already used frame-check data before frames of data stored in memory of LAN monitor.

  15. The Operational Use of Suomi National Polar-Orbiting Partnership (S-NPP) Satellite Information in Alaska

    NASA Astrophysics Data System (ADS)

    Scott, C. A.; Goldberg, M.

    2014-12-01

    The National Weather Service (NWS), Alaska Region (AR) provides warnings, forecasts and information for an area greater than 20% of the size of the continental United States. This region experiences an incredible diversity of weather phenomena, yet ironically is one of the more data-sparse areas in the world. Polar orbiting satellite-borne sensors offer one of the most cost effective means of gaining repetitive information over this data-sparse region to provide insight on Alaskan weather and the environment on scales ranging from synoptic to mesoscale in a systematic manner. Because of Alaska's high latitude location, polar orbiting satellites can provide coverage about every two hours at high resolution. The Suomi National Polar-orbiting Partnership (S-NPP) Satellite, equipped with a new generation of satellite sensors to better monitor, detect, and track weather and the environment was launched October 2011. Through partnership through the with NESDIS JPSS, the University of Alaska - Geographical Information Network of Alaska (GINA), the NWS Alaska Region was able to gain timely access to the Visible Infrared Imaging Radiometer Suite (VIIRS) imagery from S-NPP. The imagery was quickly integrated into forecast operations across the spectrum of NWS Alaska areas of responsibility. The VIIRS has provided a number of new or improved capabilities for detecting low cloud/fog, snow cover, volcanic ash, fire hotspots/smoke, flooding due to river ice break up, and sea ice and ice-free passages. In addition the Alaska Region has successfully exploited the 750 m spatial resolution of the VIIRS/Near Constant Contrast (NCC) low-light visible measurements. Forecasters have also begun the integration of NOAA Unique Cross-track Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) Processing System (NUCAPS) Soundings in AWIPS-II operations at WFO Fairbanks and Anchorage, the Alaska Aviation Weather Unit (AAWU) and the Alaska Region, Regional Operations Center (ROC

  16. Monitoring Recovery of Prince William Sound, Alaska, Following the Exxon Valdez Oil Spill: Bioavailability of PAH in Offshore Sediments

    SciTech Connect

    Neff, Jerry M.; Boehm, Paul D.; Kropp, Roy K.; Stubblefield, William A.; Page, David S.

    2004-11-02

    We determined the bioavailability to sediment dwelling marine worms of polycyclic aromatic hydrocarbons (PAHs) associated with offshore sediments from 3 spill path and 3 non-spill path areas of Prince William Sound (PWS), Alaska, 12 years after the Exxon Valdez oil spill. The PAHs in sediments from 4 sites sampled in 2001 were primarily from a regional natural petrogenic background derived from organic-rich shales and natural oil seeps associated with sources southeast of PWS. Pyrogenic (combustion) PAHs, primarily from former human and industrial activities, were more abundant than petrogenic PAHs in nearshore sediments from 2 bays associated with past and current human activities. We performed sediment bioaccumulation tests with the six sediments and polychaete worms according to standard EPA protocols. All the PAHs had a very low bioavailability, as indicated by low values for biota/sediment accumulation factors (BSAFs) in the worms. Mean BSAFs for total PAHs (sum of 41 analyte groups) ranged from 0.002 to 0.009. The worms exposed to spill path and non-spill path sediments bioaccumulated small amounts of 4- and 5-ring PAHs, particularly fluoranthene and pyrene; these higher molecular weight PAHs are responsible for induction of mixed function oxygenase (MFO) activity in marine fish, birds, and mammals. These results may help to explain in part why fish from throughout PWS exhibit induced MFO activity. Elevated levels of MFO activity cannot be used as evidence of recent exposure by marine fish, birds, and mammals in the sound to Exxon Valdez oil.

  17. Long-term monitoring of airborne pollen in Alaska and the Yukon: Possible implications for global change

    SciTech Connect

    Anderson, J.H.

    1992-03-01

    Airborne pollen and spores have been sampled since 1978 in Fairbanks and 1982 Anchorage and other Alaska-Yukon locations for medical and ecological purposes. Comparative analyses of pre- and post-1986 data subsets reveal that after 1986 (1) pollen is in the air earlier, (2) the multiyear average of degree-days promoting pollen onset is little changed while (3) annual variation in degree-days at onset is greater, (4) pollen and spore annual productions are considerably higher, and (5) there is more year-to-year variation in pollen production. These changes probably reflect directional changes in certain weather variables, and there is some indication that they are of global change significance, i.e., related to increasing atmospheric greenhouse gases. Correlations with pollen data suggest that weather variables of high influence are temperatures during specific periods following pollen dispersal in the preceding year and the average temperature in April of the current year. Annual variations in pollen dispersal might be roughly linked to the 11 year sunspot cycle through air temperature mediators. Weather in 1990, apparent pollen production cycles under endogenous control, and the impending sunspot maximum portend a very severe pollen season in 199 existing but unfunded sampling projects.

  18. Journal Article: EPA's National Dioxin Air Monitoring Network ...

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (U.S. EPA) established the National Dioxin Air Monitoring Network (NDAMN) in June of 1998, and operated it until November of 2004. The objective of NDAMN was to determine background air concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (dl-PCBs). NDAMN started with 10 sampling sites, adding more over time until the final count of 34 sites was reached by the beginning of 2003. Samples were taken quarterly, and the final sample count was 685. All samples were measured for 17 PCDD/PCDF congeners, 8 PCDD/PCDF homologue groups, and 7 dl-PCBs (note: 5 additional dl-PCBs were added for samples starting in the summer of 2002; 317 samples had measurements of 12 dl-PCBs). The overall average total toxic equivalent (TEQ) concentration in the United States was 11.2 fg TEQ m−3 with dl-PCBs contributing 0.8 fg TEQ m−3 (7%) to this total. The archetype dioxin and furan background air congener profile was seen in the survey averages and in most individual samples. This archetype profile is characterized by low and similar concentrations for tetra – through hexa PCDD/PCDF congeners, with elevations in four congeners – a hepta dioxin and furan congener, and both octa congeners. Sites were generally categorized as urban (4 sites), rural (23 sites), or remote (7 sites). The average TEQ concentrations over all sites and samples within these cat

  19. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... counts that is required in Appendix D, section 4.3.2; (5) January 1, 2017, for a near-road NO2 monitor in... million persons or more; or (2) January 1, 2017 for other CO monitors. (f) PM 2.5 monitors required in... persons or more; or (2) January 1, 2017 for PM 2.5 monitors in CBSAs having 1 million or more, but...

  20. The status of streamflow and ground-water-level monitoring networks in Maryland, 2005

    USGS Publications Warehouse

    Gerhart, James M.; Cleaves, Emery T.

    2005-01-01

    The monitoring of streamflow and ground-water levels in Maryland is vitally important to the effective management and protection of the State?s water resources. Streamflow and ground-water-level monitoring networks have been operated for many years in Maryland, and in recent years, these networks have been redesigned to improve their efficiency. Unfortunately, these networks are increasingly at risk due to reduced and fluctuating funding from Federal, State, and local agencies. Stable, long-term funding is necessary to ensure that these networks will continue to provide valuable water data for use by State and local water-resources managers.

  1. Spatial assessment of monitoring network in coastal waters: a case study of Kuwait Bay.

    PubMed

    Al-Mutairi, Nawaf; AbaHussain, Asma; El-Battay, Ali

    2015-10-01

    Spatial analyses of water-quality-monitoring networks in coastal waters are important because pollution sources vary temporally and spatially. This study was conducted to evaluate the spatial distribution of the water-quality-monitoring network of Kuwait Bay using both geostatistical and multivariate techniques. Three years of monthly data collected from six existing monitoring stations covering Kuwait Bay between 2009 and 2011 were employed in conjunction with data collected from 20 field sampling sites. Field sampling locations were selected based on a stratified random sampling scheme oriented by an existing classification map of Kuwait Bay. Two water quality datasets obtained from different networks were compared by cluster analysis applied to the Water Quality Index (WQI) and other water quality parameters, after which the Kriging method was used to generate distribution maps of water quality for spatial assessment. Cluster analysis showed that the current monitoring network does not represent water quality patterns in Kuwait Bay. Specifically, the distribution maps revealed that the existing monitoring network is inadequate for heavily polluted areas such as Sulaibikhat Bay and the northern portion of Kuwait Bay. Accordingly, the monitoring system in Kuwait Bay must be revised or redesigned. The geostatistical approach and cluster analysis employed in this study will be useful for evaluating future proposed modifications to the monitoring stations network in Kuwait Bay.

  2. Detecting link failures in complex network processes using remote monitoring

    NASA Astrophysics Data System (ADS)

    Dhal, R.; Abad Torres, J.; Roy, S.

    2015-11-01

    We study whether local structural changes in a complex network can be distinguished from passive remote time-course measurements of the network's dynamics. Specifically the detection of link failures in a network synchronization process from noisy measurements at a single network component is considered. By phrasing the detection task as a Maximum A Posteriori Probability hypothesis testing problem, we are able to obtain conditions under which the detection is (1) improved over the a priori and (2) asymptotically perfect, in terms of the network spectrum and graph. We find that, in the case where the detector has knowledge of the network's state, perfect detection is possible under general connectivity conditions regardless of the measurement location. When the detector does not have state knowledge, a remote signature permits improved but not perfect detection, under the same connectivity conditions. At its essence, detectability is achieved because of the close connection between a network's topology, its eigenvalues and local response characteristics.

  3. Operation IceBridge Alaska

    NASA Astrophysics Data System (ADS)

    Larsen, C.

    2015-12-01

    The University of Alaska Fairbanks (UAF) has flown LiDAR missions for Operation IceBridge in Alaska each year since 2009, expanding upon UAF's airborne laser altimetry program which started in 1994. These observations show that Alaska's regional mass balance is -75+11/-16 Gt yr-1 (1994-2013) (Larsen et al., 2015). A surprising result is that the rate of surface mass loss observed on non-tidewater glaciers in Alaska is extremely high. At these rates, Alaska contributes ~1 mm to global sea level rise every 5 years. Given the present lack of adequate satellite resources, Operation IceBridge airborne surveys by UAF are the most effective and efficient method to monitor this region's impact on global sea level rise. Ice depth measurements using radar sounding have been part of these airborne surveys since 2012. Many of Alaska's tidewater glaciers are bedded significantly below sea level. The depth and extent of glacier beds below sea level are critical factors in the dynamics of tidewater retreat. Improved radar processing tools are being used to predict clutter using forward simulation. This is essential to properly sort out true bed returns, which are often masked or obscured by valley wall returns. This presentation will provide an overview of the program, highlighting recent findings and observations from the most recent campaigns, and focusing on techniques used for the extrapolation of surface elevation changes to regional mass balances.

  4. Designing optimal greenhouse gas monitoring networks for Australia

    NASA Astrophysics Data System (ADS)

    Ziehn, T.; Law, R. M.; Rayner, P. J.; Roff, G.

    2016-01-01

    Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG) flux estimates from concentration measurements. The optimal location of ground-based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM) in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2) performed by Ziehn et al. (2014) to also minimise the uncertainty on the flux estimates for methane (CH4) and nitrous oxide (N2O), both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to five new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that, while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.

  5. Eastern Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this SeaWiFS image of eastern Alaska, the Aleutian Islands, Kodiak Island, Yukon and Tanana rivers are clearly visible. Also visible, but slightly hidden beneath the clouds, is a bloom in Bristol Bay. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  6. Groundwater Monitoring Network Design Using a Space-Filling/ Bias-Reduction Heuristic

    NASA Astrophysics Data System (ADS)

    Yan, T.; Singh, A.; Kelley, V.; Deeds, N.

    2012-12-01

    Groundwater monitoring network design is one of the primary goals of groundwater management. In this study, a heuristic method for selecting wells to monitor groundwater flow is developed. The approach selects wells to a) maximize spread within the monitoring area (space-filling objective), b) reduce bias in estimate of groundwater level (drawdown objective) by selecting pairs of well proximal and distant from pumping areas. By selecting pairs of monitoring wells, this method is able to capture the largest and smallest drawdown in the study area while ensuring the newly added monitoring wells are at the greatest distance from existing monitoring wells. One of the advantages of this method is that it does not require water level information, obtained either from field measurements or groundwater model runs, which might be unavailable at the time of the monitoring network design; instead, this method utilizes pumping rates and locations thus can take future planning into consideration. If water level data is available then that may be included by considering it in the drawdown objective. A FORTRAN code is developed to implement this method. By changing the weighting factors, users have the flexibility on deciding the importance of pumping and spatial information to their network designs. The method has been successfully applied to monitoring network design in Upper Trinity County Groundwater Conservation District in Texas. Monitoring wells were selected from thousands of existing wells and added to the current monitoring network. The results support the decision maker on the number and distribution of a new groundwater network using existing wells. The study can be extended to improve the application of desired future condition (DFC) for Groundwater Conservation Districts in Texas.

  7. Use of Romanian Seismic Network to monitor nuclear explosions

    NASA Astrophysics Data System (ADS)

    Ghica, Daniela; Neagoe, Cristian; Grecu, Bogdan; Popa, Mihaela

    2014-05-01

    During the last decade, three underground nuclear tests were conducted by the Democratic People's Republic of Korea (DPRK): on October 9, 2006, May 25, 2009, and February 12, 2013. The magnitude of the events, estimated by International Data Centre (IDC) as 4.1, 4.5 and 4.9, indicates that the latest was more powerful than its predecessors. We analyze seismic signals generated by the DPRK tests and recorded with Romanian Seismic Network (RSN). The location estimates performed at Romania National Data Centre (NDC) using RSN data, were compared with those obtained at IDC. As a consequence of the global superior coverage with seismic stations included in the International Monitoring System, IDC locations are better constrained. The signals generated by 2006 DPRK nuclear test were observed on 8 RSN stations, the 2009 test on 33, and the 2013 test on 47. This continuous increase is due to the rise in the number of stations installed during last five years, as well as to the larger magnitude of the 2013 test. The recent development of RSN has enabled NDC to locate the events with more accuracy, based on the higher-quality parameters estimated from data processing. For all three events, a high signal coherency is observed for the data recorded by the Romanian seismic array, BURAR, reconfirming the superiority of the arrays to single stations for detecting and characterizing signals from nuclear explosions. Array processing techniques are applied for signal detection and to estimate the slowness vector (back-azimuth and apparent velocity). The comparison of vertical displacement seismograms recorded at RSN stations shows a remarkably similarity of the signals generated by the three events analyzed. The records are nearly identical, except that the amplitude is directly proportional to the event magnitude. Spectrograms of the recorded RSN data were examined, showing that the nuclear explosions produce seismic signals with a high energy in the 0.5 to 2.0 Hz frequency range

  8. Plan for a groundwater monitoring network in Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, Shiang-Kueen

    In Taiwan, rapid economic growth, rising standards of living, and an altered societal structure have in recent years put severe demands on water supplies. Because of its stable quantity and quality, groundwater has long been a reliable source of water for domestic, agricultural, and industrial users, but the establishment of a management program that integrates groundwater and surface-water use has been hampered by the lack of groundwater data. In 1992, the Department of Water Resources (DWR) initiated a program entitled "Groundwater Monitoring Network Plan in Taiwan." Under this program, basic groundwater data, including water-level and water-quality data, are being collected, and a reliable database is being established for the purpose of managing total water resources. This paper introduces the goals, implementation stages, and scope of that plan. The plan calls for constructing 517 hydrogeologic survey stations and 990 groundwater monitoring wells within 17 years. Under this program, water-level fluctuations are continuously monitored, whereas water-quality samples are taken for analysis only at the initial drilling stage and, subsequently, at the time when a monitoring well is being serviced. In 1996, the DWR and the Water Resources Planning Commission were merged to form today's Water Resources Bureau. Résumé A Taïwan, l'expansion économique rapide, l'amélioration des conditions de vie et la transformation de la structure sociale ont provoqué, ces dernières années, une très forte demande en eau. Du fait de sa constance en qualité et en quantité, l'eau souterraine a longtemps été considérée comme une ressource en eau sûre pour les usages domestiques, agricoles et industriels. Mais la mise en place d'un programme de gestion intégrant les utilisations d'eaux souterraines et de surface a été gênée par l'absence de données sur les eaux souterraines. En 1992, le Département des Ressources en Eau a lancé le programme "Plan pour un réseau de

  9. Detectable Aspects Of Alaska, and the Southwests Kokopelli, Indicate That Environmental Monitoring By Native Americans Utilized Several Sensory Modes, and That Their Conservation Held Moral Value Within Their Traditional Culture.

    NASA Astrophysics Data System (ADS)

    Ochs, Michael Ann; Mc Leod, Roger D.

    2004-03-01

    Place-names of Alaska and the Americas, in names like Natick, MA, Matagamon, ME, Matacumbe Key, FL, Tecate Mt, CA, and Tacoma, WA as well as Allapatah, FL, and Issaqua, WA indicate Native Americans all monitored equivalent aspects of the earths EMF. Former coastal and island areas of Native American activity and culture in Alaska show a traditional, historic leader climbed the mountain of one cliff-like island area for weather prediction. We suggest that the ascent onto the mountain and the subsequent significant stay there was for purposes of cultural and religious reverence associated with direct observation of phenomena associated with known weather sequences. Similar cultural awareness of EMF phenomena and weather-making could be related to practices of the MiKmaw/Micmac Indians of the northeast, and the so-called rain-dance of the Hopi of the southwest. *This paper does not necessarily represent the views of the U.S. E.P.A

  10. Complex network theory, streamflow, and hydrometric monitoring system design

    NASA Astrophysics Data System (ADS)

    Halverson, M. J.; Fleming, S. W.

    2015-07-01

    Network theory is applied to an array of streamflow gauges located in the Coast Mountains of British Columbia (BC) and Yukon, Canada. The goal of the analysis is to assess whether insights from this branch of mathematical graph theory can be meaningfully applied to hydrometric data, and, more specifically, whether it may help guide decisions concerning stream gauge placement so that the full complexity of the regional hydrology is efficiently captured. The streamflow data, when represented as a complex network, have a global clustering coefficient and average shortest path length consistent with small-world networks, which are a class of stable and efficient networks common in nature, but the observed degree distribution did not clearly indicate a scale-free network. Stability helps ensure that the network is robust to the loss of nodes; in the context of a streamflow network, stability is interpreted as insensitivity to station removal at random. Community structure is also evident in the streamflow network. A network theoretic community detection algorithm identified separate communities, each of which appears to be defined by the combination of its median seasonal flow regime (pluvial, nival, hybrid, or glacial, which in this region in turn mainly reflects basin elevation) and geographic proximity to other communities (reflecting shared or different daily meteorological forcing). Furthermore, betweenness analyses suggest a handful of key stations which serve as bridges between communities and might be highly valued. We propose that an idealized sampling network should sample high-betweenness stations, small-membership communities which are by definition rare or undersampled relative to other communities, and index stations having large numbers of intracommunity links, while retaining some degree of redundancy to maintain network robustness.

  11. The National Ambient Air Monitoring Stategy: Rethinking the Role of National Networks

    EPA Science Inventory

    A current re-engineering of the United States routine ambient monitoring networks intended to improve the balance in addressing both regulatory and scientific objectives is addressed in this paper. Key attributes of these network modifications include the addition of collocated ...

  12. A Mobile Sensor Network System for Monitoring of Unfriendly Environments

    PubMed Central

    Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo

    2008-01-01

    Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments. PMID:27873927

  13. A Mobile Sensor Network System for Monitoring of Unfriendly Environments.

    PubMed

    Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo

    2008-11-14

    Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.

  14. NRC TLD Direct Radiation Monitoring Network progress report, October--December 1994. Volume 14, No. 4

    SciTech Connect

    Struckmeyer, R.

    1995-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1994. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  15. Community-Based Groundwater Monitoring Network Using a Citizen-Science Approach.

    PubMed

    Little, Kathleen E; Hayashi, Masaki; Liang, Steve

    2016-05-01

    Water level monitoring provides essential information about the condition of aquifers and their responses to water extraction, land-use change, and climatic variability. It is important to have a spatially distributed, long-term monitoring well network for sustainable groundwater resource management. Community-based monitoring involving citizen scientists provides an approach to complement existing government-run monitoring programs. This article demonstrates the feasibility of establishing a large-scale water level monitoring network of private water supply wells using an example from Rocky View County (3900 km(2) ) in Alberta, Canada. In this network, community volunteers measure the water level in their wells, and enter these data through a web-based data portal, which allows the public to view and download these data. The close collaboration among the university researchers, county staff members, and community volunteers enabled the successful implementation and operation of the network for a 5-year pilot period, which generated valuable data sets. The monitoring program was accompanied by education and outreach programs, in which the educational materials on groundwater were developed in collaboration with science teachers from local schools. The methodology used in this study can be easily adopted by other municipalities and watershed stewardship groups interested in groundwater monitoring. As governments are starting to rely increasingly on local municipalities and conservation authorities for watershed management and planning, community-based groundwater monitoring provides an effective and affordable tool for sustainable water resources management.

  16. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    SciTech Connect

    Struckmeyer, R.

    1997-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  17. Deploying perfSONAR-based End-2-End monitoring for production US CMS networking

    SciTech Connect

    Grigoriev, Maxim; Bobyshev, Andrey; Crawford, Matt; DeMar, Phil; Grigaliunas, Vyto; Petravick, Don; /Fermilab

    2007-09-01

    Fermilab is the US Tier-1 Center for CMS data storage and analysis. End-2-End (E2E) circuits are utilized to support high impact data movement into and out of the Tier-1 Center. E2E circuits have been implemented to facilitate the movement of raw experiment data from the Tier-0 Center at CERN, as well as processed data to a number of the US Tier-2 sites. Troubleshooting and monitoring of those circuits presents a significant challenge, since the circuits typically cross multiple research & education networks, each with its own management domain and customized monitoring capabilities. The perfSONAR Monitoring Project was established to facilitate development and deployment of a common monitoring infrastructure across multiple network management domains. Fermilab has deployed perfSONAR across its E2E circuit infrastructure and enhanced the product with several tools that ease the monitoring and management of those circuits. This paper will present the current state of perfSONAR monitoring at Fermilab and detail our experiences using perfSONAR to manage our current E2E circuit infrastructure. We will describe how production network circuits are monitored by perfSONAR E2E Monitoring Points (MPs), and the benefits it has brought to production US CMS networking support.

  18. Complex networks, streamflow, and hydrometric monitoring system design

    NASA Astrophysics Data System (ADS)

    Halverson, M.; Fleming, S.

    2014-12-01

    Network theory is applied to an array of streamflow gauges located in the Coast Mountains of British Columbia and Yukon, Canada. The goal of the analysis is to assess whether insights from this branch of mathematical graph theory can be meaningfully applied to hydrometric data, and more specifically, whether it may help guide decisions concerning stream gauge placement so that the full complexity of the regional hydrology is efficiently captured. The streamflow data, when represented as a complex network, has a global clustering coefficient and average shortest path length consistent with small-world networks, which are a class of stable and efficient networks common in nature, but the results did not clearly suggest a scale-free network. Stability helps ensure that the network is robust to the loss of nodes; in the context of a streamflow network, stability is interpreted as insensitivity to station removal at random. Community structure is also evident in the streamflow network. A community detection algorithm identified 10 separate communities, each of which appears to be defined by the combination of its median seasonal flow regime (pluvial, nival, hybrid, or glacial, which in this region in turn mainly reflects basin elevation) and geographic proximity to other communities (reflecting shared or different daily meteorological forcing). Betweenness analyses additionally suggest a handful of key stations which serve as bridges between communities and might therefore be highly valued. We propose that an idealized sampling network should sample high-betweenness stations, as well as small-membership communities which are by definition rare or undersampled relative to other communities, while retaining some degree of redundancy to maintain network robustness.

  19. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements of this part, including the requirements of appendices A, C, D, and E to this part. (e) The CO... this part, no later than: (1) January 1, 2015 for CO monitors in CBSAs having 2.5 million persons or more; or (2) January 1, 2017 for other CO monitors....

  20. Synthesize, optimize, analyze, repeat (SOAR): Application of neural network tools to ECG patient monitoring

    SciTech Connect

    Watrous, R.; Towell, G.; Glassman, M.S.

    1995-12-31

    Results are reported from the application of tools for synthesizing, optimizing and analyzing neural networks to an ECG Patient Monitoring task. A neural network was synthesized from a rule-based classifier and optimized over a set of normal and abnormal heartbeats. The classification error rate on a separate and larger test set was reduced by a factor of 2. When the network was analyzed and reduced in size by a factor of 40%, the same level of performance was maintained.

  1. Warm summer nights and the growth decline of shore pine in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Sullivan, Patrick F.; Mulvey, Robin L.; Brownlee, Annalis H.; Barrett, Tara M.; Pattison, Robert R.

    2015-12-01

    Shore pine, which is a subspecies of lodgepole pine, was a widespread and dominant tree species in Southeast Alaska during the early Holocene. At present, the distribution of shore pine in Alaska is restricted to coastal bogs and fens, likely by competition with Sitka spruce and Western hemlock. Monitoring of permanent plots as part of the United States Forest Service Forest Inventory and Analysis program identified a recent loss of shore pine biomass in Southeast Alaska. The apparent loss of shore pine is concerning, because its presence adds a vertical dimension to coastal wetlands, which are the richest plant communities of the coastal temperate rainforest in Alaska. In this study, we examined the shore pine tree-ring record from a newly established plot network throughout Southeast Alaska and explored climate-growth relationships. We found a steep decline in shore pine growth from the early 1960s to the present. Random Forest regression revealed a strong correlation between the decline in shore pine growth and the rise in growing season diurnal minimum air temperature. Warm summer nights, cool daytime temperatures and a reduced diurnal temperature range are associated with greater cloud cover in Southeast Alaska. This suite of conditions could lead to unfavorable tree carbon budgets (reduced daytime photosynthesis and greater nighttime respiration) and/or favor infection by foliar pathogens, such as Dothistroma needle blight, which has recently caused widespread tree mortality on lodgepole pine plantations in British Columbia. Further field study that includes experimental manipulation (e.g., fungicide application) will be necessary to identify the proximal cause(s) of the growth decline. In the meantime, we anticipate continuation of the shore pine growth decline in Southeast Alaska.

  2. Establishment of a hydrological monitoring network in a tropical African catchment: An integrated participatory approach

    NASA Astrophysics Data System (ADS)

    Gomani, M. C.; Dietrich, O.; Lischeid, G.; Mahoo, H.; Mahay, F.; Mbilinyi, B.; Sarmett, J.

    Sound decision making for water resources management has to be based on good knowledge of the dominant hydrological processes of a catchment. This information can only be obtained through establishing suitable hydrological monitoring networks. Research catchments are typically established without involving the key stakeholders, which results in instruments being installed at inappropriate places as well as at high risk of theft and vandalism. This paper presents an integrated participatory approach for establishing a hydrological monitoring network. We propose a framework with six steps beginning with (i) inception of idea; (ii) stakeholder identification; (iii) defining the scope of the network; (iv) installation; (v) monitoring; and (vi) feedback mechanism integrated within the participatory framework. The approach is illustrated using an example of the Ngerengere catchment in Tanzania. In applying the approach, the concept of establishing the Ngerengere catchment monitoring network was initiated in 2008 within the Resilient Agro-landscapes to Climate Change in Tanzania (ReACCT) research program. The main stakeholders included: local communities; Sokoine University of Agriculture; Wami Ruvu Basin Water Office and the ReACCT Research team. The scope of the network was based on expert experience in similar projects and lessons learnt from literature review of similar projects from elsewhere integrated with local expert knowledge. The installations involved reconnaissance surveys, detailed surveys, and expert consultations to identify best sites. First, a Digital Elevation Model, land use, and soil maps were used to identify potential monitoring sites. Local and expert knowledge was collected on flow regimes, indicators of shallow groundwater plant species, precipitation pattern, vegetation, and soil types. This information was integrated and used to select sites for installation of an automatic weather station, automatic rain gauges, river flow gauging stations

  3. Design, implementation, and initial results from a water-quality monitoring network for Atlanta, Georgia, USA

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2005-01-01

    In cooperation with the City of Atlanta, Georgia, the US Geological Survey has designed and implemented a water-quantity and quality monitoring network that measures a variety of biological and chemical constituents in water and suspended sediment. The network consists of 20 long-term monitoring sites and is intended to assess water-quality trends in response to planned infrastructural improvements. Initial results from the network indicate that nonpoint-source contributions may be more significant than point-source contributions for selected sediment associated trace elements and nutrients. There also are indications of short-term discontinuous point-source contributions of these same constituents during baseflow.

  4. A system for ubiquitous health monitoring in the bedroom via a Bluetooth network and wireless LAN.

    PubMed

    Choi, J M; Choi, B H; Seo, J W; Sohn, R H; Ryu, M S; Yi, W; Park, K S

    2004-01-01

    Advances in information technology have enabled ubiquitous health monitoring at home, which is particularly useful for patients, who have to live alone. We have focused on the automatic and unobtrusive measurement of biomedical signals and activities of patients. We have constructed wireless communication networks in order to transfer data. The networks consist of Bluetooth and Wireless Local Area Network (WLAN). In this paper, we present the concept of a ubiquitous-Bedroom (u-Bedroom) which is a part of a ubiquitous-House (u-House) and we present our systems for ubiquitous health monitoring.

  5. Monitoring industrial facilities using principles of integration of fiber classifier and local sensor networks

    NASA Astrophysics Data System (ADS)

    Korotaev, Valery V.; Denisov, Victor M.; Rodrigues, Joel J. P. C.; Serikova, Mariya G.; Timofeev, Andrey V.

    2015-05-01

    The paper deals with the creation of integrated monitoring systems. They combine fiber-optic classifiers and local sensor networks. These systems allow for the monitoring of complex industrial objects. Together with adjacent natural objects, they form the so-called geotechnical systems. An integrated monitoring system may include one or more spatially continuous fiber-optic classifiers based on optic fiber and one or more arrays of discrete measurement sensors, which are usually combined in sensor networks. Fiber-optic classifiers are already widely used for the control of hazardous extended objects (oil and gas pipelines, railways, high-rise buildings, etc.). To monitor local objects, discrete measurement sensors are generally used (temperature, pressure, inclinometers, strain gauges, accelerometers, sensors measuring the composition of impurities in the air, and many others). However, monitoring complex geotechnical systems require a simultaneous use of continuous spatially distributed sensors based on fiber-optic cable and connected local discrete sensors networks. In fact, we are talking about integration of the two monitoring methods. This combination provides an additional way to create intelligent monitoring systems. Modes of operation of intelligent systems can automatically adapt to changing environmental conditions. For this purpose, context data received from one sensor (e.g., optical channel) may be used to change modes of work of other sensors within the same monitoring system. This work also presents experimental results of the prototype of the integrated monitoring system.

  6. Managing landslide monitoring networks with near real time Geo-browsers

    NASA Astrophysics Data System (ADS)

    Giordan, Daniele; Dell'Anese, Federico; Manconi, Andrea; Allasia, Paolo

    2015-04-01

    Monitoring applications are an extremely important task for the analysis and understanding geo-hazards, as well as for promptly recognizing and eventually warn about their potential paroxysmal evolution. Nowadays, a wide range of monitoring strategies and instruments can be applied in operative monitoring scenarios, and the technological evolution of last decades has considerably increased the possibility of managing complex multi-parametric networks. The effectiveness of a monitoring network in geo-hazard scenarios is usually directly associated to the type of instruments considered, the suitability and completeness of the monitoring network, and the frequency of acquisition of measurements (revisit time). However, especially during emergency scenarios, another fundamental parameter to consider is the possibility to achieve an easy and clear access to all the available information. The Geohazard Monitoring Group of CNR IRPI exploited the Google Earth® plugin to organize and present the information obtained d from a monitoring network installed on a landslide scenario in a straightforward fashion. The system restitutes all the available information on the monitored area as different layers, which are superimposed to the base map and digital elevation models provided by Google. The layers include data as raster (ortophotos, shaded relieves, etc.) and point information (position of instruments, monitored targets, etc.), as well as the most recent results obtained from the monitoring network in near real time. The resulting geo-browser is hosted on a dedicated website, where authorized end-users can select between several thematic visualizations. The system has been developed and tested in the Mont de La Saxe landslide scenario, a large instable slope located in the northwestern Italian. This new data exploitation modality has demonstrated to be an efficient tool to support the decision makers in particular during emergency phases.

  7. Using Geoscience and Geostatistics to Optimize Groundwater Monitoring Networks at the Savannah River Site

    SciTech Connect

    Tuckfield, R.C.

    2001-03-22

    A team of scientists, engineers, and statisticians was assembled to review the operation efficiency of groundwater monitoring networks at US Department of Energy Savannah River Site (SRS). Subsequent to a feasibility study, this team selected and conducted an analysis of the A/M area groundwater monitoring well network. The purpose was to optimize the number of groundwater wells requisite for monitoring the plumes of the principal constituent of concern, viz., trichloroethylene (TCE). The project gathered technical expertise from the Savannah River Technology Center (SRTC), the Environmental Restoration Division (ERD), and the Environmental Protection Department (EPD) of SRS.

  8. Development of a Monitoring Protocol to Detect Ecological Change in the Intertidal Zone of Sitka National Historical Park, Alaska

    USGS Publications Warehouse

    Irvine, Gail V.; Madison, Erica N.

    2008-01-01

    A pilot study to develop and test a probability-based intertidal monitoring protocol for Sitka National Historical Park was conducted from 1999 to 2003. In 1999, the basic design, with a focus on sampling the whole of the designated intertidal was created, and sampling was conducted for sessile species and large mobile invertebrates by point-intercept sampling of vertical transects and band surveys along transects, respectively. In 2002 and 2003, the same types of sampling were conducted, but quadrat sampling for small mobile invertebrates was added and then modified. This project has produced basic data on the presence, abundance, and spatial distribution of substrates and intertidal biota. Additionally, statistical power analyses conducted on the biological data have allowed assessment of the ability of the sampling to detect trends in the abundance of the predominant species. Current sampling has an 80 percent probability to detect +10 percent annual changes in abundance of all targeted species with an a = 0.05; the ability to detect -10 percent trends is not as uniformly high. Various options are discussed for decreasing the spatial variance of the data. The information presented provides a basis for discussion of the major questions being asked, how the sampling design might be reconfigured to be consistent in approach, and how the intertidal monitoring should interface with other potential intertidal monitoring.

  9. Optimal Design of Multitype Groundwater Monitoring Networks Using Easily Accessible Tools.

    PubMed

    Wöhling, Thomas; Geiges, Andreas; Nowak, Wolfgang

    2016-11-01

    Monitoring networks are expensive to establish and to maintain. In this paper, we extend an existing data-worth estimation method from the suite of PEST utilities with a global optimization method for optimal sensor placement (called optimal design) in groundwater monitoring networks. Design optimization can include multiple simultaneous sensor locations and multiple sensor types. Both location and sensor type are treated simultaneously as decision variables. Our method combines linear uncertainty quantification and a modified genetic algorithm for discrete multilocation, multitype search. The efficiency of the global optimization is enhanced by an archive of past samples and parallel computing. We demonstrate our methodology for a groundwater monitoring network at the Steinlach experimental site, south-western Germany, which has been established to monitor river-groundwater exchange processes. The target of optimization is the best possible exploration for minimum variance in predicting the mean travel time of the hyporheic exchange. Our results demonstrate that the information gain of monitoring network designs can be explored efficiently and with easily accessible tools prior to taking new field measurements or installing additional measurement points. The proposed methods proved to be efficient and can be applied for model-based optimal design of any type of monitoring network in approximately linear systems. Our key contributions are (1) the use of easy-to-implement tools for an otherwise complex task and (2) yet to consider data-worth interdependencies in simultaneous optimization of multiple sensor locations and sensor types.

  10. [The Development of Information Centralization and Management Integration System for Monitors Based on Wireless Sensor Network].

    PubMed

    Xu, Xiu; Zhang, Honglei; Li, Yiming; Li, Bin

    2015-07-01

    Developed the information centralization and management integration system for monitors of different brands and models with wireless sensor network technologies such as wireless location and wireless communication, based on the existing wireless network. With adaptive implementation and low cost, the system which possesses the advantages of real-time, efficiency and elaboration is able to collect status and data of the monitors, locate the monitors, and provide services with web server, video server and locating server via local network. Using an intranet computer, the clinical and device management staffs can access the status and parameters of monitors. Applications of this system provide convenience and save human resource for clinical departments, as well as promote the efficiency, accuracy and elaboration for the device management. The successful achievement of this system provides solution for integrated and elaborated management of the mobile devices including ventilator and infusion pump.

  11. Optimal space-time coverage and exploration costs in groundwater monitoring networks.

    PubMed

    Nunes, L M; Cunha, M C; Ribeiro, L

    2004-01-01

    A method to determine the optimal subset of stations from a reference level groundwater monitoring network is proposed. The method considers the redundancy of data from historical time series, the times associated with the total distance required to run through the entire monitoring network, and the sum of the times for each monitoring station. The method was applied to a hypothetical case-study consisting of a monitoring network with 32 stations. Cost-benefit analysis was performed to determine the number of stations to include in the new design versus loss of information. This optimisation problem was solved with simulated annealing. Results showed that the relative reduction in exploration costs more than compensates for the relative loss in data representativeness.

  12. Analysis of the design in landslide monitoring system based on fiber optic sensor network

    NASA Astrophysics Data System (ADS)

    Bi, Weihong; Wu, Guoqing; Liu, Feng

    2008-12-01

    This paper holds landslide monitoring system based on fiber optic sensors network. When structural distortion is occurred in landslide area, it will affect the change of fiber bragg grating space, and brings on the offset of the fiber bragg wavelength.The information of the destroyed point is obtained with the demodulated system.It applies annular distribution to mountain body, and establishs homologous fiber optic sensor network which collect all the information to the home site. This technique can provide the managers, policy-makers and experts the real time change of the parameters of the disaster, and the feedback can be given to monitoring station through the monitoring network. Therefore, it will be an important technical support for real time dynamic monitoring.

  13. REVIEW OF THE RADNET AIR MONITORING NETWORK UPGRADE AND EXPANSION

    EPA Science Inventory

    RadNet, formerly known as ERAMS, has been operating since the 1970's, monitoring environmental radiation across the country, supporting responses to radiological emergencies, and providing important information on background levels of radiation in the environment. The original ...

  14. QoS-based management of biomedical wireless sensor networks for patient monitoring.

    PubMed

    Abreu, Carlos; Miranda, Francisco; Ricardo, Manuel; Mendes, Paulo Mateus

    2014-01-01

    Biomedical wireless sensor networks are a key technology to support the development of new applications and services targeting patient monitoring, in particular, regarding data collection for medical diagnosis and continuous health assessment. However, due to the critical nature of medical applications, such networks have to satisfy demanding quality of service requirements, while guaranteeing high levels of confidence and reliability. Such goals are influenced by several factors, where the network topology, the limited throughput, and the characteristics and dynamics of the surrounding environment are of major importance. Harsh environments, as hospital facilities, can compromise the radio frequency communications and, consequently, the network's ability to provide the quality of service required by medical applications. Furthermore, the impact of such environments on the network's performance is hard to manage due to its random and unpredictable nature. Consequently, network planning and management, in general or step-down hospital units, is a very hard task. In such context, this work presents a quality of service based management tool to help healthcare professionals supervising the network's performance and to assist them managing the admission of new sensor nodes (i.e., patients to be monitored) to the biomedical wireless sensor network. The proposed solution proves to be a valuable tool both, to detect and classify potential harmful variations in the quality of service provided by the network, avoiding its degradation to levels where the biomedical signs would be useless; and to manage the admission of new patients to the network.

  15. Alaska Resource Data File, Noatak Quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.; Dumoulin, Julie A.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Noatak 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  16. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    PubMed

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-07-21

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  17. U.S. National PM2.5 Chemical Speciation Monitoring Networks – CSN and IMPROVE: Description of Networks

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) initiated the national PM2.5 Chemical Speciation Monitoring Network (CSN) in 2000 to support evaluation of long-term trends and to better quantify the impact of sources on particulate matter (PM) concentrations in the size range belo...

  18. Object-oriented Approach to High-level Network Monitoring and Management

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi

    2000-01-01

    An absolute prerequisite for the management of large investigating methods to build high-level monitoring computer networks is the ability to measure their systems that are built on top of existing monitoring performance. Unless we monitor a system, we cannot tools. Due to the heterogeneous nature of the hope to manage and control its performance. In this underlying systems at NASA Langley Research Center, paper, we describe a network monitoring system that we use an object-oriented approach for the design, we are currently designing and implementing. Keeping, first, we use UML (Unified Modeling Language) to in mind the complexity of the task and the required model users' requirements. Second, we identify the flexibility for future changes, we use an object-oriented existing capabilities of the underlying monitoring design methodology. The system is built using the system. Third, we try to map the former with the latter. APIs offered by the HP OpenView system.

  19. Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey

    PubMed Central

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-01-01

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942

  20. Applications of wireless sensor networks in marine environment monitoring: a survey.

    PubMed

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-09-11

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring.

  1. Locations of Sampling Stations for Water Quality Monitoring in Water Distribution Networks.

    PubMed

    Rathi, Shweta; Gupta, Rajesh

    2014-04-01

    Water quality is required to be monitored in the water distribution networks (WDNs) at salient locations to assure the safe quality of water supplied to the consumers. Such monitoring stations (MSs) provide warning against any accidental contaminations. Various objectives like demand coverage, time for detection, volume of water contaminated before detection, extent of contamination, expected population affected prior to detection, detection likelihood and others, have been independently or jointly considered in determining optimal number and location of MSs in WDNs. "Demand coverage" defined as the percentage of network demand monitored by a particular monitoring station is a simple measure to locate MSs. Several methods based on formulation of coverage matrix using pre-specified coverage criteria and optimization have been suggested. Coverage criteria is defined as some minimum percentage of total flow received at the monitoring stations that passed through any upstream node included then as covered node of the monitoring station. Number of monitoring stations increases with the increase in the value of coverage criteria. Thus, the design of monitoring station becomes subjective. A simple methodology is proposed herein which priority wise iteratively selects MSs to achieve targeted demand coverage. The proposed methodology provided the same number and location of MSs for illustrative network as an optimization method did. Further, the proposed method is simple and avoids subjectivity that could arise from the consideration of coverage criteria. The application of methodology is also shown on a WDN of Dharampeth zone (Nagpur city WDN in Maharashtra, India) having 285 nodes and 367 pipes.

  2. Lidar network for atmosphere environment monitoring of the city

    NASA Astrophysics Data System (ADS)

    Dai, Yongjiang; Zhao, Hongwei; Sun, Fuxing; Zhao, Yu; Chen, Xiangjun

    2000-10-01

    The big city is a center of the economic and political for every country and territory. The population is coarctation$DALindustry is focus and traffic is developed in the city. Especially, there are a lot of factories and cars. Burning coal for heating and life garbage are more too. It is a mostly cause beget atmosphere polluted. The Network can be availability inspects the buildup of the atmosphere, it's 3-D static state distributing and dynamic distributing. Also can be coarsely inspect at the car and helicopter. The network is low cost, high capability and facility using. It is commendably expand for every city.

  3. An Implementation of Traffic Monitoring for UNIX Network Performance Management

    DTIC Science & Technology

    1993-03-01

    plttsr->network-node~network-node~plttsr); new_node,_recjpltlsr->trafflc_info nr-rewremc..plttsr, * new-node_rec~plutsr->next;=NULL; if (head- nodej -ec...plttsr); free(new nodejrec~plttsr); free(cur _node__rec..plttsr); displayjlong-term-statisticsý-report(head_node-rec-dltsr.tail- nodej -ec~dltsr) long~ern...NULL) head- nodej - ec..pltutrrnew node-rec-plttrrn tail-node-re4cplttri-new node-rec-plttrr else tail-node-rec-plttr->next=new node_rec-plttrrn 265

  4. Dynamic groundwater monitoring networks: a manageable method for reviewing sampling frequency.

    PubMed

    Moreau-Fournier, Magali F; Daughney, Christopher J

    2012-12-01

    Optimization of a water quality network through a change in sampling frequency is the only way to increase cost-efficiency without any reduction in the robustness of the data. Existing techniques define optimal sampling frequency based on analysis of historical data from the monitoring network under investigation. Their application to a large network comprised of many sites and many monitored parameters is both technical and challenging. This paper presents a simple non-parametric method for reviewing sampling frequency that is consistent with highly censored environmental data and oriented towards reduction of sampling frequency as a cost-saving measure. Based on simple descriptive statistics, the method is applicable to large networks with long time series and many monitored parameters. The method also provides metrics for interpretation of newly collected data, which enables identification of sites for which a future change in sampling frequency may be necessary, ensuring that the monitoring network is both current and adaptive. Application of this method to the New Zealand National Groundwater Monitoring Programme indicates that reduction of sampling frequency at any site would result in a significant loss of information. This paper also discusses the potential for reducing analysis frequency as an alternative to reduction of sampling frequency.

  5. A water quality monitoring network design methodology for the selection of critical sampling points: Part I.

    PubMed

    Strobl, R O; Robillard, P D; Shannon, R D; Day, R L; McDonnell, A J

    2006-01-01

    The principal instrument to temporally and spatially manage water resources is a water quality monitoring network. However, to date in most cases, there is a clear absence of a concise strategy or methodology for designing monitoring networks, especially when deciding upon the placement of sampling stations. Since water quality monitoring networks can be quite costly, it is very important to properly design the monitoring network so that maximum information extraction can be accomplished, which in turn is vital when informing decision-makers. This paper presents the development of a methodology for identifying the critical sampling locations within a watershed. Hence, it embodies the spatial component in the design of a water quality monitoring network by designating the critical stream locations that should ideally be sampled. For illustration purposes, the methodology focuses on a single contaminant, namely total phosphorus, and is applicable to small, upland, predominantly agricultural-forested watersheds. It takes a number of hydrologic, topographic, soils, vegetative, and land use factors into account. In addition, it includes an economic as well as logistical component in order to approximate the number of sampling points required for a given budget and to only consider the logistically accessible stream reaches in the analysis, respectively. The methodology utilizes a geographic information system (GIS), hydrologic simulation model, and fuzzy logic.

  6. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    NASA Astrophysics Data System (ADS)

    Abas, Faizulsalihin bin; Takayama, Shigeru

    2015-02-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.

  7. Linking Geophysical Networks to International Economic Development Through Integration of Global and National Monitoring

    NASA Astrophysics Data System (ADS)

    Lerner-Lam, A.

    2007-05-01

    Outside of the research community and mission agencies, global geophysical monitoring rarely receives sustained attention except in the aftermath of a humanitarian disaster. The recovery and rebuilding period focuses attention and resources for a short time on regional needs for geophysical observation, often at the national or sub-national level. This can result in the rapid deployment of national monitoring networks, but may overlook the longer-term benefits of integration with global networks. Even in the case of multinational disasters, such as the Indian Ocean tsunami, it has proved difficult to promote the integration of national solutions with global monitoring, research and operations infrastructure. More importantly, continuing operations at the national or sub-national scale are difficult to sustain once the resources associated with recovery and rebuilding are depleted. Except for some notable examples, the vast infrastructure associated with global geophysical monitoring is not utilized constructively to promote the integration of national networks with international efforts. This represents a missed opportunity not only for monitoring, but for developing the international research and educational collaborations necessary for technological transfer and capacity building. The recent confluence of highly visible disasters, global multi-hazard risk assessments, evaluations of the relationships between natural disasters and socio-economic development, and shifts in development agency policies, provides an opportunity to link global geophysical monitoring initiatives to central issues in international development. Natural hazard risk reduction has not been the first priority of international development agendas for understandable, mainly humanitarian reasons. However, it is now recognized that the so-called risk premium associated with making development projects more risk conscious or risk resilient is relatively small relative to potential losses. Thus

  8. A Risk-Based Multi-Objective Optimization Concept for Early-Warning Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Bode, F.; Loschko, M.; Nowak, W.

    2014-12-01

    Groundwater is a resource for drinking water and hence needs to be protected from contaminations. However, many well catchments include an inventory of known and unknown risk sources which cannot be eliminated, especially in urban regions. As matter of risk control, all these risk sources should be monitored. A one-to-one monitoring situation for each risk source would lead to a cost explosion and is even impossible for unknown risk sources. However, smart optimization concepts could help to find promising low-cost monitoring network designs.In this work we develop a concept to plan monitoring networks using multi-objective optimization. Our considered objectives are to maximize the probability of detecting all contaminations and the early warning time and to minimize the installation and operating costs of the monitoring network. A qualitative risk ranking is used to prioritize the known risk sources for monitoring. The unknown risk sources can neither be located nor ranked. Instead, we represent them by a virtual line of risk sources surrounding the production well.We classify risk sources into four different categories: severe, medium and tolerable for known risk sources and an extra category for the unknown ones. With that, early warning time and detection probability become individual objectives for each risk class. Thus, decision makers can identify monitoring networks which are valid for controlling the top risk sources, and evaluate the capabilities (or search for least-cost upgrade) to also cover moderate, tolerable and unknown risk sources. Monitoring networks which are valid for the remaining risk also cover all other risk sources but the early-warning time suffers.The data provided for the optimization algorithm are calculated in a preprocessing step by a flow and transport model. Uncertainties due to hydro(geo)logical phenomena are taken into account by Monte-Carlo simulations. To avoid numerical dispersion during the transport simulations we use the

  9. Cell specific electrodes for neuronal network reconstruction and monitoring.

    PubMed

    Bendali, Amel; Bouguelia, Sihem; Roupioz, Yoann; Forster, Valérie; Mailley, Pascal; Benosman, Ryad; Livache, Thierry; Sahel, José-Alain; Picaud, Serge

    2014-07-07

    Direct interfacing of neurons with electronic devices has been investigated for both prosthetic and neuro-computing applications. In vitro neuronal networks provide great tools not only for improving neuroprostheses but also to take advantage of their computing abilities. However, it is often difficult to organize neuronal networks according to specific cell distributions. Our aim was to develop a cell-type specific immobilization of neurons on individual electrodes to produce organized in vitro neuronal networks on multi-electrode arrays (MEAs). We demonstrate the selective capture of retinal neurons on antibody functionalized surfaces following the formation of self-assembled monolayers from protein-thiol conjugates by simple contact and protein-polypyrrole deposits by electrochemical functionalization. This neuronal selection was achieved on gold for either cone photoreceptors or retinal ganglion neurons using a PNA lectin or a Thy1 antibody, respectively. Anti-fouling of un-functionalized gold surfaces was optimized to increase the capture efficiencies. The technique was extended to electrode arrays by addressing electropolymerization of pyrrole monomers and pyrrole-protein conjugates to active electrodes. Retinal ganglion cell recording on the array further demonstrated the integrity of these neurons following their selection on polypyrrole-coated electrodes. Therefore, this protein-polypyrrole electrodeposition could provide a new approach to generate organized in vitro neuronal networks.

  10. Network Quality of Service Monitoring for IP Telephony.

    ERIC Educational Resources Information Center

    Ghita, B. V.; Furnell, S. M.; Lines, B. M.; Le-Foll, D.; Ifeachor, E. C.

    2001-01-01

    Discusses the development of real-time applications on the Internet for telecommunications and presents a non-intrusive way of determining network performance parameters for voice packet flows within a voice over IP (Internet Protocol), or Internet telephony call. Considers measurement of quality of service and describes results of a preliminary…

  11. The Relationship Between Attachment Styles, Self-Monitoring and Cybercrime in Social Network Users

    PubMed Central

    Yaghoobi, Abolghasem; Mohammadzade, Serwa; Chegini, Ali Asghar; Yarmohammadi Vasel, Mosaeib; Zoghi Paidar, Mohammad Reza

    2016-01-01

    Background The anonymity in the cyberspace environment, as well as the rapid advent of and improvements to online activities has increased cybercrime. Objectives The aim of this paper was to survey the relationship between attachment styles, self-monitoring and cybercrime in social network users. Patients and Methods The Collins and Read Adult Attachment Scale, and the Snyder self-monitoring and cybercrime scales were sent to 500 social network users. Of these, 203 users (103 men and 100 women) filled out the questionnaires. Results The results showed that women achieved higher scores in self-monitoring and the anxious attachment style, and men achieved higher scores in cybercrime and the anxious attachment style. There was a negative correlation between self-monitoring and cybercrime, and the anxious attachment style had a positive correlation with cybercrime and a negative correlation with self-monitoring. The secure attachment style had a positive correlation with self-monitoring and a negative correlation with cybercrime. The dependent attachment style had a positive correlation with self-monitoring and a negative correlation with cybercrime. All correlations were significant. Conclusions Attachment styles have significant relationships with both self-monitoring and cybercrime. Self-monitoring and attachment styles are significant predictors of cybercrimes. PMID:27818964

  12. An International Haze-Monitoring Network for Students.

    ERIC Educational Resources Information Center

    Mims, Forrest M.

    1999-01-01

    Describes the haze-monitoring program that was added to the protocols of the Global Learning and Observations to Benefit the Environment (GLOBE) Program. Finds that sun photometry provides a convenient means for allowing students to perform hands-on science while learning about various topics in history, electronics, algebra, statistics, graphing,…

  13. Circular sensing networks for guided waves based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Wandowski, T.; Malinowski, P. H.; Ostachowicz, W. M.

    2016-01-01

    In this paper, results of damage localization performed for four sensing network configurations are compared. Process of damage localization is based on guided waves propagation phenomenon. Guided waves are excited using piezoelectric transducer and received by scanning laser vibrometer. Different excitation frequencies are also investigated. In experimental investigations two types of piezoelectric transducers are used as guided waves exciters. Frequency-magnitude characteristics of symmetric and antisymmetric modes are created for both types of transducers. These characteristics allow a choice of an excitation frequency for efficient generation of selected wave mode. The amplitude of second mode in this case has negligibly small value. Finally, sensing networks in the form of circle with three different diameters are realized based on piezoelectric transducers. Damage localization algorithm is prepared in MATLAB® environment as well as in C++.

  14. CMOS: efficient clustered data monitoring in sensor networks.

    PubMed

    Min, Jun-Ki

    2013-01-01

    Tiny and smart sensors enable applications that access a network of hundreds or thousands of sensors. Thus, recently, many researchers have paid attention to wireless sensor networks (WSNs). The limitation of energy is critical since most sensors are battery-powered and it is very difficult to replace batteries in cases that sensor networks are utilized outdoors. Data transmission between sensor nodes needs more energy than computation in a sensor node. In order to reduce the energy consumption of sensors, we present an approximate data gathering technique, called CMOS, based on the Kalman filter. The goal of CMOS is to efficiently obtain the sensor readings within a certain error bound. In our approach, spatially close sensors are grouped as a cluster. Since a cluster header generates approximate readings of member nodes, a user query can be answered efficiently using the cluster headers. In addition, we suggest an energy efficient clustering method to distribute the energy consumption of cluster headers. Our simulation results with synthetic data demonstrate the efficiency and accuracy of our proposed technique.

  15. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications

    PubMed Central

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco

    2017-01-01

    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO2 concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers. PMID:28216556

  16. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications.

    PubMed

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco

    2017-02-14

    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO₂ concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.

  17. Chowkidar: A Health Monitor for Wireless Sensor Network Testbeds

    DTIC Science & Technology

    2006-02-01

    prefer to use healthy devices and like to know if there are any failures during their experiments. Based on our experience with Kansei , a large WSN...Chowkidar with Kansei , including feedback from both testbed users and administrators who have found Chowkidar to be a useful tool for improving the...can speed WSN development by providing a supporting infrastructure to run, configure and monitor experiments. (a) Physical layout of Kansei (b) A

  18. The role of SANSA's geomagnetic observation network in space weather monitoring: A review

    NASA Astrophysics Data System (ADS)

    Kotzé, P. B.; Cilliers, P. J.; Sutcliffe, P. R.

    2015-10-01

    Geomagnetic observations play a crucial role in the monitoring of space weather events. In a modern society relying on the efficient functioning of its technology network such observations are important in order to determine the potential hazard for activities and infrastructure. Until recently, it was the perception that geomagnetic storms had no or very little adverse effect on radio communication and electric power infrastructure at middle- and low-latitude regions like southern Africa. The 2003 Halloween storm changed this perception. In this paper we discuss the role of the geomagnetic observation network operated by the South African National Space Agency (SANSA) in space weather monitoring. The primary objective is to describe the geomagnetic data sets available to characterize and monitor the various types of solar-driven disturbances, with the aim to better understand the physics of these processes in the near-Earth space environment and to provide relevant space weather monitoring and prediction.

  19. Spatiotemporal Variability in Potential Evapotranspiration across an Urban Monitoring Network

    NASA Astrophysics Data System (ADS)

    Miller, G. R.; Long, M. R.; Fipps, G.; Swanson, C.; Traore, S.

    2015-12-01

    Evapotranspiration in urban and peri-urban environments is difficult to measure and predict. Barriers to accurate assessment include: the wide range of microclimates caused by urban canyons, heat islands, and park cooling; limited instrument fetch; and the patchwork of native soils, engineered soils, and hardscape. These issues combine to make an accurate assessment of the urban water balance difficult, as evapotranspiration calculations require accurate meteorological data. This study examines nearly three years of data collected by a network of 18 weather stations in Dallas, Texas, designed to measure potential evapotranspiration (ETo) in support of the WaterMyYard conservation program (http://WaterMyYard.org). Variability amongst stations peaked during the summer irrigation months, with a maximum standard deviation of 0.3 mm/hr and 4 mm/d. However, we found a significant degree of information overlap in the network. Most stations had a high correlation (>0.75) with at least one other station in the network, and many had a high correlation with at least 10 others. Correlation strength between station ETo measurements did not necessarily decrease with Euclidean distance, as expected, but was more closely related to differences in station elevation and longitude. Stations that had low correlations with others in the network typically had siting and fetch issues. ETo showed a strong temporal persistence; average station autocorrelation was 0.79 at a 1-hour lag and 0.70 at a 24-hour lag. To supplement the larger-scale network data, we deployed a mobile, vehicle-mounted weather station to quantify deviations present in the atmospheric drivers of evapotranspiration: temperature, humidity, wind, and solar radiation. Data were collected at mid-day during the irrigation season. We found differences in mobile and station ETo predictions up to 0.2 mm/hr, primarily driven by wind speed variations. These results suggest that ETo variation at the neighborhood to municipality

  20. Development of a decision-making methodology to design a water quality monitoring network.

    PubMed

    Keum, Jongho; Kaluarachchi, Jagath J

    2015-07-01

    The number of water quality monitoring stations in the USA has decreased over the past few decades. Scarcity of observations can easily produce prediction uncertainty due to unreliable model calibration. An effective water quality monitoring network is important not only for model calibration and water quality prediction but also for resources management. Redundant or improperly located monitoring stations may cause increased monitoring costs without improvement to the understanding of water quality in watersheds. In this work, a decision-making methodology is proposed to design a water quality monitoring network by providing an adequate number of monitoring stations and their approximate locations at the eight-digit hydrologic unit codes (HUC8) scale. The proposed methodology is demonstrated for an example at the Upper Colorado River Basin (UCRB), where salinity is a serious concern. The level of monitoring redundancy or scarcity is defined by an index, station ratio (SR), which represents a monitoring density based on water quality load originated within a subbasin. By comparing the number of stations from a selected target SR with the available number of stations including the actual and the potential stations, the suggested number of stations in each subbasin was decided. If monitoring stations are primarily located in the low salinity loading subbasins, the average actual SR tends to increase, and vice versa. Results indicate that the spatial distribution of monitoring locations in 2011 is concentrated on low salinity loading subbasins, and therefore, additional monitoring is required for the high salinity loading subbasins. The proposed methodology shows that the SR is a simple and a practical indicator for monitoring density.

  1. Fieldservers and Sensor Service Grid as Real-time Monitoring Infrastructure for Ubiquitous Sensor Networks.

    PubMed

    Honda, Kiyoshi; Shrestha, Aadit; Witayangkurn, Apichon; Chinnachodteeranun, Rassarin; Shimamura, Hiroshi

    2009-01-01

    The fieldserver is an Internet based observation robot that can provide an outdoor solution for monitoring environmental parameters in real-time. The data from its sensors can be collected to a central server infrastructure and published on the Internet. The information from the sensor network will contribute to monitoring and modeling on various environmental issues in Asia, including agriculture, food, pollution, disaster, climate change etc. An initiative called Sensor Asia is developing an infrastructure called Sensor Service Grid (SSG), which integrates fieldservers and Web GIS to realize easy and low cost installation and operation of ubiquitous field sensor networks.

  2. Coded-subcarrier-aided chromatic dispersion monitoring scheme for flexible optical OFDM networks.

    PubMed

    Tse, Kam-Hon; Chan, Chun-Kit

    2014-08-11

    A simple coded-subcarrier aided scheme is proposed to perform chromatic dispersion monitoring in flexible optical OFDM networks. A pair of coded label subcarriers is added to both edges of the optical OFDM signal spectrum at the edge transmitter node. Upon reception at any intermediate or the receiver node, chromatic dispersion estimation is performed, via simple direct detection, followed by electronic correlation procedures with the designated code sequences. The feasibility and the performance of the proposed scheme have been experimentally characterized. It provides a cost-effective monitoring solution for the optical OFDM signals across intermediate nodes in flexible OFDM networks.

  3. Cost-effective and monitoring-active technique for TDM-passive optical networks

    NASA Astrophysics Data System (ADS)

    Chi, Chang-Chia; Lin, Hong-Mao; Tarn, Chen-Wen; Lin, Huang-Liang

    2014-08-01

    A reliable, detection-active and cost-effective method which employs the hello and heartbeat signals for branched node distinguishing to monitor fiber fault in any branch of distribution fibers of a time division multiplexing passive optical network (TDM-PON) is proposed. With this method, the material cost of building an optical network monitor system for a TDM-PON with 168 ONUs and the time of identifying a multiple branch faults is significantly reduced in a TDM-PON system of any scale. A fault location in a 1 × 32 TDM-PON system using this method to identify the fault branch is demonstrated.

  4. A review of harsh environment fiber optic sensing networks for bridge structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Chen, Weimin; Fu, Yumei; Huang, Shanglian

    2006-08-01

    The Opto-electronic Technology Lab of Chongqing University (OTLCU) has been working on bridge structural health monitoring using fiber optic sensors in the past decade. A remote sensing network based on the Extrinsic Fabry-Perot Interferometer (EFPI) fiber sensor was developed and implemented on several large bridges in Chongqing, China. In this paper, a brief review of the OTLCU's research progress in this field was presented. Contrastive experiments between the EFPI strain sensor and the electrical strain patch (ESP) were introduced. Both internal embedding and surface mounting of the EFPI were studied. The design of the sensing network and two implementation examples were discussed, and some representative monitoring results were given.

  5. Evaluation of ground-water monitoring network, Santa Cruz County, California

    USGS Publications Warehouse

    Blankenbaker, G.G.; Farrar, Christopher D.

    1981-01-01

    The Santa Cruz County Flood Control and Water Conservation District seeks to improve the existing network of observation wells to monitor water levels and ground-water quality in the Pajaro Valley subarea and the Aptos-Soquel, San Lorenzo, and Santa Cruz Coastal subbasins in California. The proposed network , consisting of 92 wells, is designed to monitor changes in storage and quality of ground water resulting from climatic changes and management-induced stresses. In the proposed network , water levels in all wells would be measured semiannually, in April and September, and monthly in a few key wells. The water-level measurements would provide data that could be used to determine changes in ground-water storage. In addition to the currently monitored characteristics--temperature, specific conductance, pH, and chloride ion concentration--inclusion of annual sampling and analysis for major ions and nutrients is proposed. The network would also include sampling and analysis for trace elements once every 4 years. More frequent analyses are proposed in areas where water-quality problems are known to exist or where potential water-quality problems are recognized. Analyses for major ions, nutrients, and trace elements are included in the proposed network to provide baseline data for monitoring long-term changes in water quality and to detect any unexpected changes in quality. (USGS)

  6. Vital signs monitoring plan for the Klamath Network: Phase I report

    USGS Publications Warehouse

    Sarr, Daniel; Odion, Dennis; Truitt, Robert E.; Beever, Erik A.; Shafer, Sarah; Duff, Andrew; Smith, Sean B.; Bunn, Windy; Rocchio, Judy; Sarnat, Eli; Alexander, John; Jessup, Steve

    2004-01-01

    This report chronicles the Phase 1 stage of the vital signs monitoring program for the Klamath Network. It consists of two chapters and eleven appendixes. The purposes of Chapter One are to 1) describe the network administrative structure and approach to planning; 2) introduce the Klamath Network parks, their resources, and environmental settings; 3) explain the need for monitoring changes in resources and supporting environments; 4) identify key information gaps that limit understanding of how to best achieve these monitoring goals. The purpose of Chapter Two is to develop the descriptive information provided in Chapter One into a conceptual basis for vital signs monitoring and to present the Network’s initial suite of conceptual models. The Report Appendices provide in-depth information on a variety of topics researched in preparation of the report, including: detailed natural resource profiles for each park, supporting policies and guidelines, regional fire regimes, vegetation types of the parks, exotic species threats, interagency monitoring programs, air issues, water quality (Phase 1 Report), Network vital signs (Scoping Summary Report), rare species, and rare habitats of the parks.

  7. Design of a Forecasting Service System for Monitoring of Vulnerabilities of Sensor Networks

    NASA Astrophysics Data System (ADS)

    Song, Jae-Gu; Kim, Jong Hyun; Seo, Dong Il; Kim, Seoksoo

    This study aims to reduce security vulnerabilities of sensor networks which transmit data in an open environment by developing a forecasting service system. The system is to remove or monitor causes of breach incidents in advance. To that end, this research first examines general security vulnerabilities of sensor networks and analyzes characteristics of existing forecasting systems. Then, 5 steps of a forecasting service system are proposed in order to improve security responses.

  8. Entropy-based heavy tailed distribution transformation and visual analytics for monitoring massive network traffic

    NASA Astrophysics Data System (ADS)

    Han, Keesook J.; Hodge, Matthew; Ross, Virginia W.

    2011-06-01

    For monitoring network traffic, there is an enormous cost in collecting, storing, and analyzing network traffic datasets. Data mining based network traffic analysis has a growing interest in the cyber security community, but is computationally expensive for finding correlations between attributes in massive network traffic datasets. To lower the cost and reduce computational complexity, it is desirable to perform feasible statistical processing on effective reduced datasets instead of on the original full datasets. Because of the dynamic behavior of network traffic, traffic traces exhibit mixtures of heavy tailed statistical distributions or overdispersion. Heavy tailed network traffic characterization and visualization are important and essential tasks to measure network performance for the Quality of Services. However, heavy tailed distributions are limited in their ability to characterize real-time network traffic due to the difficulty of parameter estimation. The Entropy-Based Heavy Tailed Distribution Transformation (EHTDT) was developed to convert the heavy tailed distribution into a transformed distribution to find the linear approximation. The EHTDT linearization has the advantage of being amenable to characterize and aggregate overdispersion of network traffic in realtime. Results of applying the EHTDT for innovative visual analytics to real network traffic data are presented.

  9. Monitoring the Environment in a Lava Tube with a Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Li, Y.; Jorgensen, A. M.; Wilson, J. L.; Rendon, N. M.

    2010-12-01

    Monitoring cave environments is important for several reasons. For instance, through the studies of cave environments, we can better protect cave ecology. Past experiments have monitored cave environments, although most of those were based on individual sensor nodes such as data loggers. In this paper we introduce and discuss a ZigBee wireless sensor network-based platform used for cave environment monitoring. The platform is based on a Freescale ZigBee evaluation kit. We carried out a proof-of-concept experiment in Junction Cave, a lava tube, at El Malpais National Monument in New Mexico. That experiment monitored temperature, humidity, and air turbulence inside the cave. The instrumentation consisted of a turbulence tower with five thermocouple-based sensors, reaching from the floor to the ceiling of the cave, temperature/humidity sensors distributed throughout the cave, and a low-power embedded Linux computer for data collection and storage. The experiment measured interesting air turbulence variations at different heights, which we related to to weather changes outside the cave and human activities inside the cave. The experiment also observed variations of air temperature at different locations inside the cave. In this presentation we will discuss the instrumentation as well as interpretations of the observations. The experiment demonstrated that a ZigBee wireless sensor network-based monitoring system is a potentially feasible platform for a cave environment monitoring system. We also found that network reliability, node cost, and power consumption need to be improved for future systems.

  10. Experimental FSO network availability estimation using interactive fog condition monitoring

    NASA Astrophysics Data System (ADS)

    Turán, Ján.; Ovseník, Łuboš

    2016-12-01

    Free Space Optics (FSO) is a license free Line of Sight (LOS) telecommunication technology which offers full duplex connectivity. FSO uses infrared beams of light to provide optical broadband connection and it can be installed literally in a few hours. Data rates go through from several hundreds of Mb/s to several Gb/s and range is from several 100 m up to several km. FSO link advantages: Easy connection establishment, License free communication, No excavation are needed, Highly secure and safe, Allows through window connectivity and single customer service and Compliments fiber by accelerating the first and last mile. FSO link disadvantages: Transmission media is air, Weather and climate dependence, Attenuation due to rain, snow and fog, Scattering of laser beam, Absorption of laser beam, Building motion and Air pollution. In this paper FSO availability evaluation is based on long term measured data from Fog sensor developed and installed at TUKE experimental FSO network in TUKE campus, Košice, Slovakia. Our FSO experimental network has three links with different physical distances between each FSO heads. Weather conditions have a tremendous impact on FSO operation in terms of FSO availability. FSO link availability is the percentage of time over a year that the FSO link will be operational. It is necessary to evaluate the climate and weather at the actual geographical location where FSO link is going to be mounted. It is important to determine the impact of a light scattering, absorption, turbulence and receiving optical power at the particular FSO link. Visibility has one of the most critical influences on the quality of an FSO optical transmission channel. FSO link availability is usually estimated using visibility information collected from nearby airport weather stations. Raw data from fog sensor (Fog Density, Relative Humidity, Temperature measured at each ms) are collected and processed by FSO Simulator software package developed at our Department. Based

  11. Subsidence monitoring network: an Italian example aimed at a sustainable hydrocarbon E&P activity

    NASA Astrophysics Data System (ADS)

    Dacome, M. C.; Miandro, R.; Vettorel, M.; Roncari, G.

    2015-11-01

    According to the Italian law in order to start-up any new hydrocarbon exploitation activity, an Environmental Impact Assessment study has to be presented, including a monitoring plan, addressed to foresee, measure and analyze in real time any possible impact of the project on the coastal areas and on those ones in the close inland located. The occurrence of subsidence, that could partly be related to hydrocarbon production, both on-shore and off-shore, can generate great concern in those areas where its occurrence may have impacts on the local environment. ENI, following the international scientific community recommendations on the matter, since the beginning of 90's years, implemented a cutting-edge monitoring network, with the aim to prevent, mitigate and control geodynamics phenomena generated in the activity areas, with a particular attention to conservation and protection of environmental and territorial equilibrium, taking care of what is known as "sustainable development". The current ENI implemented monitoring surveys can be divided as: - Shallow monitoring: spirit levelling surveys, continuous GPS surveys in permanent stations, SAR surveys, assestimeter subsurface compaction monitoring, ground water level monitoring, LiDAR surveys, bathymetrical surveys. - Deep monitoring: reservoir deep compaction trough radioactive markers, reservoir static (bottom hole) pressure monitoring. All the information, gathered through the monitoring network, allow: 1. to verify if the produced subsidence is evolving accordingly with the simulated forecast. 2. to provide data to revise and adjust the prediction compaction models 3. to put in place the remedial actions if the impact exceeds the threshold magnitude originally agreed among the involved parties. ENI monitoring plan to measure and monitor the subsidence process, during field production and also after the field closure, is therefore intended to support a sustainable field development and an acceptable exploitation

  12. Sunphotometer network for monitoring aerosol properties in the Brazilian Amazon

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Eck, T. F.; Setzer, A.; Pereira, Alfredo; Vermote, E.; Reagan, J. A.; Kaufman, Y. A.; Tanre, D.; Slutsker, I.

    1993-01-01

    Satellite platforms have provided a methodology for regional and global remote sensing of aerosols. New systems will significantly improve that capability during the EOS era; however, the voluminous 20 year record of satellite data has produced only regional snapshots of aerosol loading and have not yielded a data base of the optical properties of those aerosols which are fundamental to our understanding of their influence on climate change. The prospect of fully understanding the properties of the aerosols with respect to climate change is small without validation and augmentation by ancillary ground based observations. Sun photometry was demonstrated to be an effective tool for ground based measurements of aerosol optical properties from fire emissions. Newer technology has expanded routine sun photometer measurements to spectral observations of solar aureole and almucantar allowing retrievals of size distribution, scattering phase function, and refractive index. A series of such observations were made in Brazil's Amazon basin from a network of six simultaneously recording instruments deployed in Sep. 1992. The instruments were located in areas removed from local aerosol sources such that sites are representative of regional aerosol conditions. The overall network was designed to cover the counter clockwise tropospheric circulation of the Amazon Basin. Spectral measurements of sun, aureole and sky data for retrieval of aerosol optical thickness, particle size distribution, and scattering phase function as well as measurements of precipitable water were made during noncloudy conditions.

  13. Design of a multimedia PC-based telemedicine network for the monitoring of renal dialysis patients

    NASA Astrophysics Data System (ADS)

    Tohme, Walid G.; Winchester, James F.; Dai, Hailei L.; Khanafer, Nassib; Meissner, Marion C.; Collmann, Jeff R.; Schulman, Kevin A.; Johnson, Ayah E.; Freedman, Matthew T.; Mun, Seong K.

    1997-05-01

    This paper investigates the design and implementation of a multimedia telemedicine application being undertaken by the Imaging Science and Information Systems Center of the Department of Radiology and the Division of Nephrology of the Department of Medicine at the Georgetown University Medical Center (GUMC). The Renal Dialysis Patient Monitoring network links GUMC, a remote outpatient dialysis clinic, and a nephrologist's home. The primary functions of the network are to provide telemedicine services to renal dialysis patients, to create, manage, transfer and use electronic health data, and to provide decision support and information services for physicians, nurses and health care workers. The technical parameters for designing and implementing such a network are discussed.

  14. Assessment and Design of Water Quality Monitoring Networks with respect to Shale Gas Activities in Pennsylvania

    NASA Astrophysics Data System (ADS)

    Arjmand, S.; Abad, J. D.; Brantley, S. L.

    2013-12-01

    Over the past few years, hydraulic fracturing and horizontal drilling techniques have been extensively used to extract shale gas from the Marcellus Shale. Likewise, several environmental violations that have been repeatedly reported in drilling sites have created greater awareness on potentially adverse environmental impacts of shale gas. Long-term monitoring in the Marcellus Shale is the key to maintain and improve the quality of water supplies in future. Currently, the absence of an efficient water quality monitoring network prevents the detection and source identification of contaminants associated with shale gas activities. Evaluation and re-design of monitoring networks from time to time is a major step towards efficient water resources planning and management. In this study, we assessed the performance of the current water quality monitoring network with respect to the shale gas development in Pennsylvania. For better evaluation, the Oil and Gas Compliance Report by the Pennsylvania Department of Environmental Protection between January 2005 and May 2013 was compiled. Using statistical and GIS methods each violation item was examined against the number and location of sensors in the current monitoring network. The results helped identify the adequacy of the number of sensors to detect the potential contamination. Moreover, to improve the performance and to lower the long-term monitoring costs, we re-designed the network using optimization methods. This optimal system maximizes the understanding of the aquifer condition and investigates the shale gas industry impacts on shallow aquifers, and it is applicable to other watersheds with shale oil and gas drilling activities.

  15. The BioCASe Monitor Service - A tool for monitoring progress and quality of data provision through distributed data networks

    PubMed Central

    2013-01-01

    Abstract The BioCASe Monitor Service (BMS) is a web-based tool for coordinators of distributed data networks that provide information to web-portals and data aggregators via the BioCASe Provider Software. Building on common standards and protocols, it has three main purposes: (1) monitoring provider’s progress in data provision, (2) facilitating checks of data mappings with a focus on the structure, plausibility and completeness, and (3) verifying compliance of provided data for transformation into other target schemas. Herein two use cases, GBIF-D and OpenUp!, are presented in which the BMS is being applied for monitoring the progress in data provision and performing quality checks on the ABCD (Access to Biological Collection Data) schema mapping. However, the BMS can potentially be used with any conceptual data schema and protocols for querying web services. Through flexible configuration options it is highly adaptable to specific requirements and needs. Thus, the BMS can be easily implemented into coordination workflows and reporting duties within other distributed data network projects. PMID:24723764

  16. EarthScope's Transportable Array in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Enders, M.; Miner, J.; Bierma, R. M.; Busby, R.

    2015-12-01

    EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. As the array doubles in Alaska, IRIS continues to collaborate closely with other network operators, universities and research consortia in Alaska and Canada including the Alaska Earthquake Center (AEC), the Alaska Volcano Observatory (AVO), the UNAVCO Plate Boundary Observatory (PBO), the National Tsunami Warning Center (NTWC), Natural Resources Canada (NRCAN), Canadian Hazard Information Service (CHIS), the Yukon Geologic Survey (YGS), the Pacific Geoscience Center of the Geologic Survey, Yukon College and others. During FY14 and FY15 the TA has completed upgrade work at 20 Alaska Earthquake Center stations and 2 AVO stations, TA has co-located borehole seismometers at 5 existing PBO GPS stations to augment the EarthScope observatory. We present an overview of deployment plan and the status through 2015. The performance of new Alaska TA stations including improvements to existing stations is described.

  17. Protocol for Landsat-Based Monitoring of Landscape Dynamics at North Coast and Cascades Network Parks

    USGS Publications Warehouse

    Kennedy, Robert E.; Cohen, Warren B.; Kirschbaum, Alan A.; Haunreiter, Erik

    2007-01-01

    Background and Objectives As part of the National Park Service's larger goal of developing long-term monitoring programs in response to the Natural Resource Challenge of 2000, the parks of the North Coast and Cascades Network (NCCN) have determined that monitoring of landscape dynamics is necessary to track ecosystem health (Weber and others, 2005). Landscape dynamics refer to a broad suite of ecological, geomorphological, and anthropogenic processes occurring across broad spatial scales. The NCCN has sought protocols that would leverage remote-sensing technologies to aid in monitoring landscape dynamics.

  18. Electromagnetic interference of wireless local area network on electrocardiogram monitoring system: a case report.

    PubMed

    Chung, Seungmin; Yi, Joohee; Park, Seung Woo

    2013-03-01

    Electromagnetic interference (EMI) can affect various medical devices. Herein, we report the case of EMI from wireless local area network (WLAN) on an electrocardiogram (ECG) monitoring system. A patient who had a prior myocardial infarction participated in the cardiac rehabilitation program in the sports medicine center of our hospital under the wireless ECG monitoring system. After WLAN was installed, wireless ECG monitoring system failed to show a proper ECG signal. ECG signal was distorted when WLAN was turned on, but it was normalized after turning off the WLAN.

  19. A novel Smart Routing Protocol for remote health monitoring in Medical Wireless Networks.

    PubMed

    Sundararajan, T V P; Sumithra, M G; Maheswar, R

    2014-01-01

    In a Medical Wireless Network (MWN), sensors constantly monitor patient's physiological condition and movement. Inter-MWN communications are set up between the Patient Server and one or more Centralized Coordinators. However, MWNs require protocols with little energy consumption and the self-organizing attribute perceived in ad-hoc networks. The proposed Smart Routing Protocol (SRP) selects only the nodes with a higher residual energy and lower traffic density for routing. This approach enhances cooperation among the nodes of a Mobile Ad Hoc Network. Consequently, SRP produces better results than the existing protocols, namely Conditional Min-Max Battery Cost Routing, Min-Max Battery Cost Routing and AdHoc On-demand Distance Vector in terms of network parameters. The performance of the erstwhile schemes for routing protocols is evaluated using the network simulator Qualnet v 4.5.

  20. Neural network classification of clinical neurophysiological data for acute care monitoring

    NASA Technical Reports Server (NTRS)

    Sgro, Joseph

    1994-01-01

    The purpose of neurophysiological monitoring of the 'acute care' patient is to allow the accurate recognition of changing or deteriorating neurological function as close to the moment of occurrence as possible, thus permitting immediate intervention. Results confirm that: (1) neural networks are able to accurately identify electroencephalogram (EEG) patterns and evoked potential (EP) wave components, and measuring EP waveform latencies and amplitudes; (2) neural networks are able to accurately detect EP and EEG recordings that have been contaminated by noise; (3) the best performance was obtained consistently with the back propagation network for EP and the HONN for EEG's; (4) neural network performed consistently better than other methods evaluated; and (5) neural network EEG and EP analyses are readily performed on multichannel data.

  1. Optimal design of hydraulic head monitoring networks using space-time geostatistics

    NASA Astrophysics Data System (ADS)

    Herrera, G. S.; Júnez-Ferreira, H. E.

    2013-05-01

    This paper presents a new methodology for the optimal design of space-time hydraulic head monitoring networks and its application to the Valle de Querétaro aquifer in Mexico. The selection of the space-time monitoring points is done using a static Kalman filter combined with a sequential optimization method. The Kalman filter requires as input a space-time covariance matrix, which is derived from a geostatistical analysis. A sequential optimization method that selects the space-time point that minimizes a function of the variance, in each step, is used. We demonstrate the methodology applying it to the redesign of the hydraulic head monitoring network of the Valle de Querétaro aquifer with the objective of selecting from a set of monitoring positions and times, those that minimize the spatiotemporal redundancy. The database for the geostatistical space-time analysis corresponds to information of 273 wells located within the aquifer for the period 1970-2007. A total of 1,435 hydraulic head data were used to construct the experimental space-time variogram. The results show that from the existing monitoring program that consists of 418 space-time monitoring points, only 178 are not redundant. The implied reduction of monitoring costs was possible because the proposed method is successful in propagating information in space and time.

  2. Primary health-care network monitoring: a hierarchical resource allocation modeling approach.

    PubMed

    Pur, Aleksander; Bohanec, Marko; Lavrac, Nada; Cestnik, Bojan

    2010-01-01

    Management of a primary health-care network (PHCN) is a difficult task in every country. A suitable monitoring system can provide useful information for PHCN management, especially given a large quantity of health-care data that is produced daily in the network. This paper proposes a methodology for structured development of monitoring systems and a PHCN resource allocation monitoring model based on this methodology. The purpose of the monitoring model is to improve the allocation of health-care resources. The proposed methodology is based on modules that are organized into a hierarchy, where each module monitors a particular aspect of the system. This methodology was used to design a PHCN monitoring model for Slovenia. Specific aspects of the Slovenian PHCN were taken into account such as varying needs of patients from different municipalities, existence of small municipalities having less than 1000 residents, the fact that many patients visit physicians in other municipalities, and that physicians may work at more than one location or organization. The main modules in the model are focused on the overall assessment of the PHCN, monitoring of patients visits to health-care providers (HCPs), physical accessibility of health services, segment of patients in municipalities who have not selected a personal physician, assessment of the availability of HCPs for patients, physicians working on more than one location, and available human resources in the PHCN. Most of the model's components are general and can be adapted for other national health-care systems.

  3. Monitoring CAP8 and SURAP Networks (SRNTN-12)

    DTIC Science & Technology

    1990-01-01

    networks, has been available only from the PR itself using the XRAY tool. 1.1 NetMan Considerations T’he following section is a brief overview of the...I I1 3 I I I I I I I I U~ nbr.al 0 ea15 0 I i i I i II I I I I I I I SI II I I I I I I I S I I I I I I I I I I I I I np qarset u V * 24 I 1 Report No...TriggersI This Appendix is a complete list of all MDP triggers. = M-,-.MECUT Send an MDP #1 every thirty minutes. = _ z .AUL Send an MDP #1 each time

  4. Global Ionosphere Perturbations Monitored by the Worldwide GPS Network

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Manucci, A. T.; Lindqwister, U. J.; Pi, X.

    1996-01-01

    For the first time, measurements from the Global Positioning System (GPS) worldwide network are employed to study the global ionospheric total electron content(TEC) changes during a magnetic storm (November 26, 1994). These measurements are obtained from more than 60 world-wide GPS stations which continuously receive dual-frequency signals. Based on the delays of the signals, we have generated high resolution global ionospheric maps (GIM) of TEC at 15 minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that significant TEC increases (the positive effect ) are the major feature in the winter hemisphere during this storm (the maximum percent change relative to quiet times is about 150 percent).

  5. Performance evaluation of a Wireless Body Area sensor network for remote patient monitoring.

    PubMed

    Khan, Jamil Y; Yuce, Mehmet R; Karami, Farbood

    2008-01-01

    In recent years, interests in the application of Wireless Body Area Network (WBAN) have grown considerably. A WBAN can be used to develop a patient monitoring system which offers flexibility and mobility to patients. Use of a WBAN will also allow the flexibility of setting up a remote monitoring system via either the internet or an intranet. For such medical systems it is very important that a WBAN can collect and transmit data reliably, and in a timely manner to the monitoring entity. In this paper we examine the performance of an IEEE802.15.4/Zigbee MAC based WBAN operating in different patient monitoring environment. We study the performance of a remote patient monitoring system using an OPNET based simulation model.

  6. Building Capacity for Earthquake Monitoring: Linking Regional Networks with the Global Community

    NASA Astrophysics Data System (ADS)

    Willemann, R. J.; Lerner-Lam, A.

    2006-12-01

    Installing or upgrading a seismic monitoring network is often among the mitigation efforts after earthquake disasters, and this is happening in response to the events both in Sumatra during December 2004 and in Pakistan during October 2005. These networks can yield improved hazard assessment, more resilient buildings where they are most needed, and emergency relief directed more quickly to the worst hit areas after the next large earthquake. Several commercial organizations are well prepared for the fleeting opportunity to provide the instruments that comprise a seismic network, including sensors, data loggers, telemetry stations, and the computers and software required for the network center. But seismic monitoring requires more than hardware and software, no matter how advanced. A well-trained staff is required to select appropriate and mutually compatible components, install and maintain telemetered stations, manage and archive data, and perform the analyses that actually yield the intended benefits. Monitoring is more effective when network operators cooperate with a larger community through free and open exchange of data, sharing information about working practices, and international collaboration in research. As an academic consortium, a facility operator and a founding member of the International Federation of Digital Seismographic Networks, IRIS has access to a broad range of expertise with the skills that are required to help design, install, and operate a seismic network and earthquake analysis center, and stimulate the core training for the professional teams required to establish and maintain these facilities. But delivering expertise quickly when and where it is unexpectedly in demand requires advance planning and coordination in order to respond to the needs of organizations that are building a seismic network, either with tight time constraints imposed by the budget cycles of aid agencies following a disastrous earthquake, or as part of more informed

  7. Community Air Sensor Network (CAIRSENSE) Project: Lower Cost, Continuous Ambient Monitoring Methods

    EPA Science Inventory

    Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of numerous sensors across a small geographic area would have potential benefits to supplement existing monitoring networks and ...

  8. Journal Article: Quality Assurance Considerations for An Ambient Dioxin Monitoring Network

    EPA Science Inventory

    The U.S. Environmental Protection Agency initiated the National Dioxin Air Monitoring Network (NDAMN) in 1998. NDAMN has three primary purposes:
    1. To provide measurements of background atmospheric levels of dioxin-like compounds in different geographic regions of the Unite...

  9. U.S. EPA's National Dioxin Air Monitoring Network: Analytical Issues

    EPA Science Inventory

    The U.S. EPA has established a National Dioxin Air Monitoring Network (NDAMN) to determine the temporal and geographical variability of atmospheric chlorinated dibenzo-p-dioxins (CDDs), furans (CDFs), and coplanar polychlorinated biphenyls (PCBs) at rural and non-impacted locatio...

  10. [Computer-assisted monitoring systems. Use of computer networks and internet technologies].

    PubMed

    Flerov, E V; Sablin, I N; Broĭtman, O G; Tolmachev, V A; Batchaev, Sh S

    2005-01-01

    The automated workplace (AWP) of anesthesiologist developed by the early 1990s provided data collection and processing, viewing of all monitors, and printing of anesthesiological chart (AC). AWP is a subject of continuous modification and adaptation to variable conditions. Computer monitoring including various measuring devises equipped with series interface RS-232 was implemented in Russian Research Center for Surgery. Rapid progress in computer network technologies made it necessary to adapt AWP to operation in computer networks. Since 1999 the computer network has been connected to the Internet. The use of computer technologies, including Internet, provides remote access to AC, thereby providing conditions for remote monitoring. AWP of anesthesiologist can be regarded as an automated control system of the patient state operated by anesthesiologist. Specific features of data processing in AWP are described. The AWP system is planed to be multiprocessor with distributed data flow. The suggested structure of computer network system for surgery rooms meeting the requirements of WWW-technology connected to the Internet is a promising approach to remote monitoring in medicine.

  11. Journal Article: EPA's National Dioxin Air Monitoring Network (Ndamn): Design, Implementation, and Final Results

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) established the National Dioxin Air Monitoring Network (NDAMN) in June of 1998, and operated it until November of 2004. The objective of NDAMN was to determine background air concentrations of polychlorinated dibenzo-p-dioxins (...

  12. Progress towards an AIS early detection monitoring network for the Great Lakes

    EPA Science Inventory

    As an invasion prone location, the lower St. Louis River system (SLR) has been a case study for ongoing research to develop the framework for a practical Great Lakes monitoring network for early detection of aquatic invasive species (AIS). Early detection, however, necessitates f...

  13. Web-based monitoring and management system for integrated enterprise-wide imaging networks

    NASA Astrophysics Data System (ADS)

    Ma, Keith; Slik, David; Lam, Alvin; Ng, Won

    2003-05-01

    Mass proliferation of IP networks and the maturity of standards has enabled the creation of sophisticated image distribution networks that operate over Intranets, Extranets, Communities of Interest (CoI) and even the public Internet. Unified monitoring, provisioning and management of such systems at the application and protocol levels represent a challenge. This paper presents a web based monitoring and management tool that employs established telecom standards for the creation of an open system that enables proactive management, provisioning and monitoring of image management systems at the enterprise level and across multi-site geographically distributed deployments. Utilizing established standards including ITU-T M.3100, and web technologies such as XML/XSLT, JSP/JSTL, and J2SE, the system allows for seamless device and protocol adaptation between multiple disparate devices. The goal has been to develop a unified interface that provides network topology views, multi-level customizable alerts, real-time fault detection as well as real-time and historical reporting of all monitored resources, including network connectivity, system load, DICOM transactions and storage capacities.

  14. Monitoring Scientific Developments from a Dynamic Perspective: Self-Organized Structuring To Map Neural Network Research.

    ERIC Educational Resources Information Center

    Noyons, E. C. M.; van Raan, A. F. J.

    1998-01-01

    Using bibliometric mapping techniques, authors developed a methodology of self-organized structuring of scientific fields which was applied to neural network research. Explores the evolution of a data generated field structure by monitoring the interrelationships between subfields, the internal structure of subfields, and the dynamic features of…

  15. Research on a Banknote Printing Wastewater Monitoring System based on Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Li, B. B.; Yuan, Z. F.

    2006-10-01

    In this paper, a banknote printing wastewater monitoring system based on WSN is presented in line with the system demands and actual condition of the worksite for a banknote printing factory. In Physical Layer, the network node is a nRF9e5-centric embedded instrument, which can realize the multi-function such as data collecting, status monitoring, wireless data transmission and so on. Limited by the computing capability, memory capability, communicating energy and others factors, it is impossible for the node to get every detail information of the network, so the communication protocol on WSN couldn't be very complicated. The competitive-based MACA (Multiple Access with Collision Avoidance) Protocol is introduced in MAC, which can decide the communication process and working mode of the nodes, avoid the collision of data transmission, hidden and exposed station problem of nodes. On networks layer, the routing protocol in charge of the transmitting path of the data, the networks topology structure is arranged based on address assignation. Accompanied with some redundant nodes, the network performances stabile and expandable. The wastewater monitoring system is a tentative practice of WSN theory in engineering. Now, the system has passed test and proved efficiently.

  16. The Deep Impact Network Experiment Operations Center Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Wang, Shin-Ywan (Cindy); Torgerson, J. Leigh; Schoolcraft, Joshua; Brenman, Yan

    2009-01-01

    The Interplanetary Overlay Network (ION) software at JPL is an implementation of Delay/Disruption Tolerant Networking (DTN) which has been proposed as an interplanetary protocol to support space communication. The JPL Deep Impact Network (DINET) is a technology development experiment intended to increase the technical readiness of the JPL implemented ION suite. The DINET Experiment Operations Center (EOC) developed by JPL's Protocol Technology Lab (PTL) was critical in accomplishing the experiment. EOC, containing all end nodes of simulated spaces and one administrative node, exercised publish and subscribe functions for payload data among all end nodes to verify the effectiveness of data exchange over ION protocol stacks. A Monitor and Control System was created and installed on the administrative node as a multi-tiered internet-based Web application to support the Deep Impact Network Experiment by allowing monitoring and analysis of the data delivery and statistics from ION. This Monitor and Control System includes the capability of receiving protocol status messages, classifying and storing status messages into a database from the ION simulation network, and providing web interfaces for viewing the live results in addition to interactive database queries.

  17. Autonomous smart sensor network for full-scale structural health monitoring

    NASA Astrophysics Data System (ADS)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  18. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks

    PubMed Central

    Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio

    2008-01-01

    Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper. PMID:27873941

  19. Air-dropped sensor network for real-time high-fidelity volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Huang, R.; Xu, M.; Ma, A.; Shirazi, B.; LaHusen, R.

    2009-01-01

    This paper presents the design and deployment experience of an air-dropped wireless sensor network for volcano hazard monitoring. The deployment of five stations into the rugged crater of Mount St. Helens only took one hour with a helicopter. The stations communicate with each other through an amplified 802.15.4 radio and establish a self-forming and self-healing multi-hop wireless network. The distance between stations is up to 2 km. Each sensor station collects and delivers real-time continuous seismic, infrasonic, lightning, GPS raw data to a gateway. The main contribution of this paper is the design and evaluation of a robust sensor network to replace data loggers and provide real-time long-term volcano monitoring. The system supports UTC-time synchronized data acquisition with 1ms accuracy, and is online configurable. It has been tested in the lab environment, the outdoor campus and the volcano crater. Despite the heavy rain, snow, and ice as well as gusts exceeding 120 miles per hour, the sensor network has achieved a remarkable packet delivery ratio above 99% with an overall system uptime of about 93.8% over the 1.5 months evaluation period after deployment. Our initial deployment experiences with the system have alleviated the doubts of domain scientists and prove to them that a low-cost sensor network system can support real-time monitoring in extremely harsh environments. Copyright 2009 ACM.

  20. DEVELOPMENT OF A SENSOR NETWORK TEST BED FOR ISD MATERIALS AND STRUCUTRAL CONDITION MONITORING

    SciTech Connect

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-07-06

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  1. Entropy based groundwater monitoring network design considering spatial distribution of annual recharge

    NASA Astrophysics Data System (ADS)

    Leach, James M.; Coulibaly, Paulin; Guo, Yiping

    2016-10-01

    This study explores the inclusion of a groundwater recharge based design objective and the impact it has on the design of optimum groundwater monitoring networks. The study was conducted in the Hamilton, Halton, and Credit Valley regions of Ontario, Canada, in which the existing Ontario Provincial Groundwater Monitoring Network was augmented with additional monitoring wells. The Dual Entropy-Multiobjective Optimization (DEMO) model was used in these analyses. The value of using this design objective is rooted in the information contained within the estimated recharge. Recharge requires knowledge of climate, geomorphology, and geology of the area, thus using this objective function can help account for these physical characteristics. Two sources of groundwater recharge data were examined and compared, the first was calculated using the Precipitation-Runoff Modeling System (PRMS), and the second was an aggregation of recharge found using both the PRMS and Hydrological Simulation Program-Fortran (HSP-F). The entropy functions are used to identify optimal trade-offs between the maximum information content and the minimum shared information between the monitoring wells. The recharge objective will help to quantify hydrological characteristics of the vadose zone, and thus provide more information to the optimization algorithm. Results show that by including recharge as a design objective, the spatial coverage of the monitoring network can be improved. The study also highlights the flexibility of DEMO and its ability to incorporate additional design objectives such as the groundwater recharge.

  2. Monitoring the lower ionosphere with a small scale interferometric network of radio receivers

    NASA Astrophysics Data System (ADS)

    Mezentsev, Andrey; Fullekrug, Martin

    2013-04-01

    Sprites, gigantic jets and relativistic electron beams above thunderclouds attracted significant attention in the last decades. These natural transient events are caused by lightning discharges and they are associated with characteristic low frequency radio emissions from a certain height above thunderclouds. The altitudes of these sources can be inferred from their radio waves which are reflected by the lower ionosphere along their propagation path. The ionospheric conditions vary with time and location which makes it important to monitor the lower ionosphere during the observation period. This work uses 100 kHz radio emissions from the LOng Range Navigation (LORAN) transmitters in Western Europe to monitor the height of the reflecting lower ionosphere. The pulsed LORAN transmissions are synced with high precision to atomic time and they are therefore particularly suitable for monitoring the lower ionosphere. The vertical electric field strengths of the LORAN transmissions are recorded with a small scale interferometric network of eight wide band digital radio receivers which are separated by distances ranging from ~3 km up to ~30 km. The network was deployed in southern France during the summer months from July to September in 2011 and 2012 when numerous thunderstorms occur. The ionospheric monitoring with the network reveals the dynamics of the lower ionosphere at different locations throughout the observation period. Results of the ionospheric monitoring for different meteorological conditions will be presented.

  3. A Model for Field Deployment of Wireless Sensor Networks (WSNs) within the Domain of Microclimate Habitat Monitoring

    ERIC Educational Resources Information Center

    Sanborn, Mark

    2011-01-01

    Wireless sensor networks (WSNs) represent a class of miniaturized information systems designed to monitor physical environments. These smart monitoring systems form collaborative networks utilizing autonomous sensing, data-collection, and processing to provide real-time analytics of observed environments. As a fundamental research area in…

  4. Modeling CH4 and CO2 cycling using porewater stable isotopes in a thermokarst bog in Interior Alaska: results from three conceptual reaction networks

    DOE PAGES

    Neumann, Rebecca B.; Blazewicz, Steven J.; Conaway, Christopher H.; ...

    2015-12-16

    Quantifying rates of microbial carbon transformation in peatlands is essential for gaining mechanistic understanding of the factors that influence methane emissions from these systems, and for predicting how emissions will respond to climate change and other disturbances. In this study, we used porewater stable isotopes collected from both the edge and center of a thermokarst bog in Interior Alaska to estimate in situ microbial reaction rates. We expected that near the edge of the thaw feature, actively thawing permafrost and greater abundance of sedges would increase carbon, oxygen and nutrient availability, enabling faster microbial rates relative to the center ofmore » the thaw feature. We developed three different conceptual reaction networks that explained the temporal change in porewater CO2, CH4, δ13C-CO2 and δ13C-CH4. All three reaction-network models included methane production, methane oxidation and CO2 production, and two of the models included homoacetogenesis — a reaction not previously included in isotope-based porewater models. All three models fit the data equally well, but rates resulting from the models differed. Most notably, inclusion of homoacetogenesis altered the modeled pathways of methane production when the reaction was directly coupled to methanogenesis, and it decreased gross methane production rates by up to a factor of five when it remained decoupled from methanogenesis. The ability of all three conceptual reaction networks to successfully match the measured data indicate that this technique for estimating in-situ reaction rates requires other data and information from the site to confirm the considered set of microbial reactions. Despite these differences, all models indicated that, as expected, rates were greater at the edge than in the center of the thaw bog, that rates at the edge increased more during the growing season than did rates in the center, and that the ratio of acetoclastic to hydrogenotrophic methanogenesis was

  5. 1997 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Wallace, Kristi L.

    1999-01-01

    The Alaska Volcano Observatory (AVO) monitors over 40 historically active volcanoes along the Aleutian Arc. Twenty are seismically monitored and for the rest, the AVO monitoring program relies mainly on pilot reports, observations of local residents and ship crews, and daily analysis of satellite images. In 1997, AVO responded to eruptive activity or suspect volcanic activity at 11 volcanic centers: Wrangell, Sanford, Shrub mud volcano, Iliamna, the Katmai group (Martin, Mageik, Snowy, and Kukak volcanoes), Chiginagak, Pavlof, Shishaldin, Okmok, Cleveland, and Amukta. Of these, AVO has real-time, continuously recording seismic networks at Iliamna, the Katmai group, and Pavlof. The phrase “suspect volcanic activity” (SVA), used to characterize several responses, is an eruption report or report of unusual activity that is subsequently determined to be normal or enhanced fumarolic activity, weather-related phenomena, or a non-volcanic event. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) about the 1997 activity of 5 Russian volcanoes--Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Alaid (SVA). This report summarizes volcanic activity and SVA in Alaska during 1997 and the AVO response, as well as information on the reported activity at the Russian volcanoes. Only those reports or inquiries that resulted in a “significant” investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of reports throughout the year of steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1997 response record.

  6. A mobile-agent based wireless sensing network for structural monitoring applications

    SciTech Connect

    Taylor, Stuart G; Farinholt, Kevin M; Figueiredo, Eloi; Park, Gyuhae; Farrar, Charles R; Flynn, Eric B; Mascarenas, David L; Todd, Michael D

    2008-01-01

    A new wireless sensing network paradigm is presented for structural monitoring applications. In this approach, both power and data interrogation commands are conveyed via a mobile agent that is sent to sensor nodes to perform intended interrogations, which can alleviate several limitations of the traditional sensing networks. Furthermore, the mobile agent provides computational power to make near real-time assessments on the structural conditions. This paper will discuss such prototype systems, which are used to interrogate impedance-based sensors for structural health monitoring applications. Our wireless sensor node is specifically designed to accept various energy sources, including wireless energy transmission, and to be wirelessly triggered on an as-needed basis by the mobile agent or other sensor nodes. The capabilities of this proposed sensing network paradigm are demonstrated in the laboratory and the field.

  7. MONITOR Ionospheric Network: two case studies on scintillation and electron content variability

    NASA Astrophysics Data System (ADS)

    Béniguel, Yannick; Cherniak, Iurii; Garcia-Rigo, Alberto; Hamel, Pierrick; Hernández-Pajares, Manuel; Kameni, Roland; Kashcheyev, Anton; Krankowski, Andrzej; Monnerat, Michel; Nava, Bruno; Ngaya, Herbert; Orus-Perez, Raül; Secrétan, Hughes; Sérant, Damien; Schlüter, Stefan; Wilken, Volker

    2017-03-01

    The ESA MONITOR network is composed of high-frequency-sampling global navigation satellite systems (GNSS) receivers deployed mainly at low and high latitudes to study ionosphere variability and jointly with global GNSS data and ionospheric processing software in support of the GNSS and its satellite-based augmentation systems (SBAS) like the European EGNOS. In a recent phase of the project, the network was merged with the CNES/ASECNA network and new receivers were added to complement the latter in the western African sector. This paper summarizes MONITOR, presenting two case studies on scintillations (using almost 2 years of data measurements). The first case occurred during the major St. Patrick's Day geomagnetic storm in 2015. The second case study was performed in the last phase of the project, which was supported by ESA EGNOS Project Office, when we paid special attention to extreme events that might degrade the system performance of the European EGNOS.

  8. On the Relevance of Using Open Wireless Sensor Networks in Environment Monitoring

    PubMed Central

    Bagula, Antoine B.; Inggs, Gordon; Scott, Simon; Zennaro, Marco

    2009-01-01

    This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks. PMID:22408557

  9. Power analysis and trend detection for water quality monitoring data. An application for the Greater Yellowstone Inventory and Monitoring Network

    USGS Publications Warehouse

    Irvine, Kathryn M.; Manlove, Kezia; Hollimon, Cynthia

    2012-01-01

    An important consideration for long term monitoring programs is determining the required sampling effort to detect trends in specific ecological indicators of interest. To enhance the Greater Yellowstone Inventory and Monitoring Network’s water resources protocol(s) (O’Ney 2006 and O’Ney et al. 2009 [under review]), we developed a set of tools to: (1) determine the statistical power for detecting trends of varying magnitude in a specified water quality parameter over different lengths of sampling (years) and different within-year collection frequencies (monthly or seasonal sampling) at particular locations using historical data, and (2) perform periodic trend analyses for water quality parameters while addressing seasonality and flow weighting. A power analysis for trend detection is a statistical procedure used to estimate the probability of rejecting the hypothesis of no trend when in fact there is a trend, within a specific modeling framework. In this report, we base our power estimates on using the seasonal Kendall test (Helsel and Hirsch 2002) for detecting trend in water quality parameters measured at fixed locations over multiple years. We also present procedures (R-scripts) for conducting a periodic trend analysis using the seasonal Kendall test with and without flow adjustment. This report provides the R-scripts developed for power and trend analysis, tutorials, and the associated tables and graphs. The purpose of this report is to provide practical information for monitoring network staff on how to use these statistical tools for water quality monitoring data sets.

  10. The Wireless Sensor Network (WSN) Based Coal Ash Impoundments Safety Monitoring System

    NASA Astrophysics Data System (ADS)

    Sun, E. J.; Nieto, A.; Zhang, X. K.

    2017-01-01

    Coal ash impoundments are inevitable production of the coal-fired power plants. All coal ash impoundments in North Carolina USA that tested for groundwater contamination are leaking toxic heavy metals and other pollutants. Coal ash impoundments are toxic sources of dangerous pollutants that pose a danger to human and environmental health if the toxins spread to adjacent surface waters and drinking water wells. Coal ash impoundments failures accidents resulted in serious water contamination along with toxic heavy metals. To improve the design and stability of coal ash impoundments, the Development of a Coal Ash Impoundment Safety Monitoring System (CAISM) was proposed based on the implementation of a wireless sensor network (WSN) with the ability to monitor the stability of coal ash impoundments, water level, and saturation levels on-demand and remotely. The monitoring system based on a robust Ad-hoc network could be adapted to different safety conditions.

  11. Nonthreshold-based event detection for 3d environment monitoring in sensor networks

    SciTech Connect

    Li, M.; Liu, Y.H.; Chen, L.

    2008-12-15

    Event detection is a crucial task for wireless sensor network applications, especially environment monitoring. Existing approaches for event detection are mainly based on some predefined threshold values and, thus, are often inaccurate and incapable of capturing complex events. For example, in coal mine monitoring scenarios, gas leakage or water osmosis can hardly be described by the overrun of specified attribute thresholds but some complex pattern in the full-scale view of the environmental data. To address this issue, we propose a nonthreshold-based approach for the real 3D sensor monitoring environment. We employ energy-efficient methods to collect a time series of data maps from the sensor network and detect complex events through matching the gathered data to spatiotemporal data patterns. Finally, we conduct trace-driven simulations to prove the efficacy and efficiency of this approach on detecting events of complex phenomena from real-life records.

  12. Network for Monitoring Agricultural Water Quantity and Water Quality in Arkansas

    NASA Astrophysics Data System (ADS)

    Reba, M. L.; Daniels, M.; Chen, Y.; Sharpley, A.; Teague, T. G.; Bouldin, J.

    2012-12-01

    A network of agricultural monitoring sites was established in 2010 in Arkansas. The state of Arkansas produces the most rice of any state in the US, the 3rd most cotton and the 3rd most broilers. By 2050, agriculture will be asked to produce food, feed, and fiber for the increasing world population. Arkansas agriculture is challenged with reduced water availability from groundwater decline and the associated increase in pumping costs. Excess nutrients, associated in part to agriculture, influence the hypoxic condition in the Gulf of Mexico. All sites in the network are located at the edge-of-field in an effort to relate management to water quantity and water quality. The objective of the network is to collect scientifically sound data at field scales under typical and innovative management for the region. Innovative management for the network includes, but is not limited to, variable rate fertilizer, cover crops, buffer strips, irrigation water management, irrigation planning, pumping plant monitoring and seasonal shallow water storage. Data collection at the sites includes quantifying water inputs and losses, and water quality. Measured water quality parameters include sediment and dissolved nitrate, nitrite and orthophosphate. The measurements at the edge-of-field will be incorporated into the monitoring of field ditches and larger drainage systems to result in a 3-tiered monitoring effort. Partners in the creation of this network include USDA-ARS, Arkansas State University, University of Arkansas, University of Arkansas at Pine Bluff, USDA-NRCS and agricultural producers representing the major commodities of the state of Arkansas. The network is described in detail with preliminary results presented.

  13. Tailoring groundwater quality monitoring to vulnerability: a GIS procedure for network design.

    PubMed

    Preziosi, E; Petrangeli, A B; Giuliano, G

    2013-05-01

    Monitoring networks aiming to assess the state of groundwater quality and detect or predict changes could increase in efficiency when fitted to vulnerability and pollution risk assessment. The main purpose of this paper is to describe a methodology aiming at integrating aquifers vulnerability and actual levels of groundwater pollution in the monitoring network design. In this study carried out in a pilot area in central Italy, several factors such as hydrogeological setting, groundwater vulnerability, and natural and anthropogenic contamination levels were analyzed and used in designing a network tailored to the monitoring objectives, namely, surveying the evolution of groundwater quality relating to natural conditions as well as to polluting processes active in the area. Due to the absence of an aquifer vulnerability map for the whole area, a proxi evaluation of it was performed through a geographic information system (GIS) methodology, leading to the so called "susceptibility to groundwater quality degradation". The latter was used as a basis for the network density assessment, while water points were ranked by several factors including discharge, actual contamination levels, maintenance conditions, and accessibility for periodical sampling in order to select the most appropriate to the network. Two different GIS procedures were implemented which combine vulnerability conditions and water points suitability, producing two slightly different networks of 50 monitoring points selected out of the 121 candidate wells and springs. The results are compared with a "manual" selection of the points. The applied GIS procedures resulted capable to select the requested number of water points from the initial set, evaluating the most confident ones and an appropriate density. Moreover, it is worth underlining that the second procedure (point distance analysis [PDA]) is technically faster and simpler to be performed than the first one (GRID + PDA).

  14. Low power wireless sensor networks for infrastructure monitoring

    NASA Astrophysics Data System (ADS)

    Ghaed, Mohammad Hassan; Ghahramani, Mohammad Mahdi; Chen, Gregory; Fojtik, Matthew; Blaauw, David; Flynn, Michael P.; Sylvester, Dennis

    2012-04-01

    Sensors with long lifetimes are ideal for infrastructure monitoring. Miniaturized sensor systems are only capable of storing small amounts of energy. Prior work has increased sensor lifetime through the reduction of supply voltage , necessitating voltage conversion from storage elements such as batteries. Sensor lifetime can be further extended by harvesting from solar, vibrational, or thermal energy. Since harvested energy is sporadic, it must be detected and stored. Harvesting sources do not provide voltage levels suitable for secondary power sources, necessitating DC-DC upconversion. We demonstrate a 8.75mm3 sensor system with a near-threshold ARM microcontroller, custom 3.3fW/bit SRAM, two 1mm2 solar cells, a thin-film Li-ion battery, and integrated power management unit. The 7.7μW system enters a 550pW data-retentive sleep state between measurements and harvests solar energy to enable energy autonomy. Our receiver and transmitter architectures benefit from a design strategy that employs mixed signal and digital circuit schemes that perform well in advanced CMOS integrated circuit technologies. A prototype transmitter implemented in 0.13μm CMOS satisfies the requirements for Zigbee, but consumes far less power consumption than state-of-the-art commercial devices.

  15. Never Use the Complete Search Space: a Concept to Enhance the Optimization Procedure for Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Bode, F.; Reuschen, S.; Nowak, W.

    2015-12-01

    Drinking-water well catchments include many potential sources of contaminations like gas stations or agriculture. Finding optimal positions of early-warning monitoring wells is challenging because there are various parameters (and their uncertainties) that influence the reliability and optimality of any suggested monitoring location or monitoring network.The overall goal of this project is to develop and establish a concept to assess, design and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: a high detection probability, which can be reached by maximizing the "field of vision" of the monitoring network, a long early-warning time such that there is enough time left to install counter measures after first detection, and the overall operating costs of the monitoring network, which should ideally be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, scenario analyses for real data, respectively, wrapped up within the framework of formal multi-objective optimization using a genetic algorithm.In order to speed up the optimization process and to better explore the Pareto-front, we developed a concept that forces the algorithm to search only in regions of the search space where promising solutions can be expected. We are going to show how to define these regions beforehand, using knowledge of the optimization problem, but also how to define them independently of problem attributes. With that, our method can be used with and/or without detailed knowledge of the objective functions.In summary, our study helps to improve optimization results in less optimization time by meaningful restrictions of the search space. These restrictions can be done independently of the optimization problem, but also in a problem-specific manner.

  16. An intelligent wireless sensor network applied research on dynamic physiological data monitoring of athletes

    NASA Astrophysics Data System (ADS)

    Xie, Ying; Wu, Fei-qing; Li, Lin-gong

    2008-12-01

    A wireless sensor network (WSN) monitoring system was designed, because of the big labour, time-consumption, and non-real-time monitoring of the true physiological data of athlete for wire communication, which were very important for their coach. The coach, who obtained the first material, can know the physiological sports status of althletes according to these data, can intervene on them and formulate a scientific training plan. The system has the characteristic of a random layout, arbitrary additions and combined network nodes. The performance of the system for 24 athletes who were trained has been tested in the system improved LEACH-c protocol and a threshold sensitive energy efficient protocol has been applied. The experimental results showed that, while the interval time of the contact was more than 15 seconds, the network packet loss rate was less than 3 percent. The operation of the network can be considered to be relatively stable. During the test, the MAC network capacity obtained by the actual tests in the implicit terminal mode was three packets per second. Considering the costs of a node sending routing maintenance packet, a network capacity of 2 was reasonable. Based on the performance of the system for testing, the results showed that the system was stable and reliable

  17. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems

    PubMed Central

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  18. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    PubMed

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  19. Deploying Monitoring Trails for Fault Localization in All- Optical Networks and Radio-over-Fiber Passive Optical Networks

    NASA Astrophysics Data System (ADS)

    Maamoun, Khaled Mohamed

    Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman's Problem (CPP) solution and an adapted version of the Traveling Salesman's Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of

  20. Seamonster: A Smart Sensor Web in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Heavner, M. J.; Hood, E.; Connor, C.; Nagorski, S.

    2006-12-01

    The NASA Research Opportunities in Space and Earth Science (ROSES) program is supporting a wireless sensor network project as part of its Advanced Information Systems Technology "Smart Sensor Web" initiative. The project, entitled Seamonster (for SouthEast Alaska MONitoring Network for Science, Telecomm, and Education Research) is led by the University of Alaska Southeast (Juneau) in collaboration with Microsoft- Vexcel in Boulder Colorado. This paper describes both the data acquisition components and science research objectives of Seamonster. The underlying data acquisition concept is to facilitate geophysics data acquisition by providing a wireless backbone for data recovery. Other researchers would be encouraged to emplace their own sensors together with short-range wireless (ZigBee, Bluetooth, etc). Through a common protocol the backbone will receive data from these sensors and relay them to a wired server. This means that the investigator can receive their data via email on a daily basis thereby cutting cost and monitoring sensor health. With environmental hardening and fairly high bandwidth and long range (100kbps/50km to 5mpbs/15km per hop) the network is intended to cover large areas and operate in harsh environments. Low power sensors and intelligent power management within the backbone are the dual ideas to contend with typical power/cost/data dilemmas. Seamonster science will focus over the next three years on hydrology and glaciology in a succession of valleys near Juneau in various stages of deglaciation, in effect providing a synopsis of a millennium-timescale process in a single moment. The instrumentation will include GPS, geophones, digital photography, met stations, and a suite of stream state and water quality sensors. Initial focus is on the Lemon Creek watershed with expansion to follow in subsequent years. The project will ideally expand to include marine and biological monitoring components.

  1. Sequential Optimal Monitoring Network Design using Iterative Kriging for Identification of Unknown Groundwater Pollution Sources Location

    NASA Astrophysics Data System (ADS)

    Prakash, O.; Datta, B.

    2011-12-01

    Identification of unknown groundwater pollution source characteristics, in terms of location, magnitude and activity duration is important for designing an effective pollution remediation strategy. Precise source characterization also becomes very important to ascertain liability, and to recover the cost of remediation from parties responsible for the groundwater pollution. Due to the uncertainties in accurately predicting the aquifer response to source flux injection, generally encountered sparsity of concentration observation data in the field, and the non uniqueness in the aquifer response to the subjected hydraulic and chemical stresses, groundwater pollution source characterization remains a challenging task. A scientifically designed pollutant concentration monitoring network becomes imperative for accurate pollutant source characterization. The efficiency of the unknown source locations identification process is largely determined by locations of monitoring wells where the pollutant concentration is observed. The proposed method combines spatial interpolation of concentration measurements and Simulated Annealing as optimization algorithm to find the optimum locations for monitoring wells. Initially, the observed concentration data at few sparsely and arbitrarily distributed wells are used to interpolate the concentration data for the aquifer study area. The concentration information is passed to the optimization algorithm (decision model) as concentration gradient which in turn finds the optimum locations for implementing the next sequence of monitoring wells. Concentration measurement data from these designed monitoring wells and already implemented monitoring network are iteratively used as feedback information for potential groundwater pollution source locations identification. The potential applicability of the developed methodology is demonstrated for an illustrative study area.

  2. Ocean observatory networks monitor gas hydrates systems - Updates from Cascadia

    NASA Astrophysics Data System (ADS)

    Scherwath, M.; Kelley, D. S.; Moran, K.; Philip, B. T.; Roemer, M.; Riedel, M.; Solomon, E. A.; Spence, G.; Heesemann, M.

    2015-12-01

    Seafloor observatories have been installed at the Cascadia margin with a long-term (>20 year) lifespan. These observatories consist of a variety of node locations cabled back to shore for continuous power and communication to instruments via high bandwidth internet access. Ocean Networks Canada (ONC) maintains two hydrate sites at Barkley Canyon and Clayoquot Slope off Vancouver Island, and the Ocean Observatories Initiative (OOI) Cabled Array connects to Hydrate Ridge off the Oregon coast. Together, these installations comprise a diverse suite of different experiments. For example, a seafloor crawler, operated by Jacobs University in Bremen, travels around the Barkley hydrate mounds on a daily basis and carries out a suite of measurements such as determining the rate of change of the benthic community composition. Another example is from several years of hourly sonar data showing gas bubbles rising from the seafloor near the Bullseye Vent with varying intensities, allowing statistically sound correlations with other seafloor parameters such as ground shaking, temperature and pressure variations and currents, where tidal pressure appearing as the main driver. The Southern Hydrate Ridge is now equipped with the world's first long-term seafloor mass spectrometer, co-located with a camera and lights, hydrophone, current meters, pressure sensor, autonomous dissolved oxygen and fluid samplers, and is surrounded by a seismometer array for local seismicity. In the future, long-term data will be continuously captured and made available throughout the year covering the full range of variations of the dynamic hydrate system, and expect additional experiments to be connected to the observatories from the broader research community.

  3. Atmospheric deposition and critical loads for nitrogen and metals in Arctic Alaska: Review and current status

    USGS Publications Warehouse

    Linder, Greg L.; Brumbaugh, William G.; Neitlich, Peter; Little, Edward

    2013-01-01

    To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being col- lected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.

  4. Design of a water environment monitoring system based on wireless sensor networks.

    PubMed

    Jiang, Peng; Xia, Hongbo; He, Zhiye; Wang, Zheming

    2009-01-01

    A water environmental monitoring system based on a wireless sensor network is proposed. It consists of three parts: data monitoring nodes, data base station and remote monitoring center. This system is suitable for the complex and large-scale water environment monitoring, such as for reservoirs, lakes, rivers, swamps, and shallow or deep groundwaters. This paper is devoted to the explanation and illustration for our new water environment monitoring system design. The system had successfully accomplished the online auto-monitoring of the water temperature and pH value environment of an artificial lake. The system's measurement capacity ranges from 0 to 80 °C for water temperature, with an accuracy of ±0.5 °C; from 0 to 14 on pH value, with an accuracy of ±0.05 pH units. Sensors applicable to different water quality scenarios should be installed at the nodes to meet the monitoring demands for a variety of water environments and to obtain different parameters. The monitoring system thus promises broad applicability prospects.

  5. Local seismic network for monitoring of a potential nuclear power plant area

    NASA Astrophysics Data System (ADS)

    Tiira, Timo; Uski, Marja; Kortström, Jari; Kaisko, Outi; Korja, Annakaisa

    2016-04-01

    This study presents a plan for seismic monitoring of a region around a potential nuclear power plant. Seismic monitoring is needed to evaluate seismic risk. The International Atomic Energy Agency has set guidelines on seismic hazard evaluation and monitoring of such areas. According to these guidelines, we have made a plan for a local network of seismic stations to collect data for seismic source characterization and seismotectonic interpretations, as well as to monitor seismic activity and natural hazards. The detection and location capability of the network were simulated using different station configurations by computing spatial azimuthal coverages and detection threshold magnitudes. Background noise conditions around Pyhäjoki were analyzed by comparing data from different stations. The annual number of microearthquakes that should be detected with a dense local network centered around Pyhäjoki was estimated. The network should be dense enough to fulfill the requirements of azimuthal coverage better than 180° and automatic event location capability down to ML ˜ 0 within a distance of 25 km from the site. A network of 10 stations should be enough to reach these goals. With this setup, the detection threshold magnitudes are estimated to be ML = -0.1 and ML = 0.1 within a radius of 25 and 50 km from Pyhäjoki, respectively. The annual number of earthquakes detected by the network is estimated to be 2 (ML ≥ ˜ -0.1) within 25 km radius and 5 (ML ≥ ˜-0.1 to ˜0.1) within 50 km radius. The location accuracy within 25 km radius is estimated to be 1-2 and 4 km for horizontal coordinates and depth, respectively. Thus, the network is dense enough to map out capable faults with horizontal accuracy of 1-2 km within 25 km radius of the site. The estimation is based on the location accuracies of five existing networks in northern Europe. Local factors, such as seismic noise sources, geology and infrastructure might limit the station configuration and detection and

  6. Local seismic network for monitoring of a potential nuclear power plant area.

    PubMed

    Tiira, Timo; Uski, Marja; Kortström, Jari; Kaisko, Outi; Korja, Annakaisa

    2016-01-01

    This study presents a plan for seismic monitoring of a region around a potential nuclear power plant. Seismic monitoring is needed to evaluate seismic risk. The International Atomic Energy Agency has set guidelines on seismic hazard evaluation and monitoring of such areas. According to these guidelines, we have made a plan for a local network of seismic stations to collect data for seismic source characterization and seismotectonic interpretations, as well as to monitor seismic activity and natural hazards. The detection and location capability of the network were simulated using different station configurations by computing spatial azimuthal coverages and detection threshold magnitudes. Background noise conditions around Pyhäjoki were analyzed by comparing data from different stations. The annual number of microearthquakes that should be detected with a dense local network centered around Pyhäjoki was estimated. The network should be dense enough to fulfill the requirements of azimuthal coverage better than 180° and automatic event location capability down to ML ∼ 0 within a distance of 25 km from the site. A network of 10 stations should be enough to reach these goals. With this setup, the detection threshold magnitudes are estimated to be ML = -0.1 and ML = 0.1 within a radius of 25 and 50 km from Pyhäjoki, respectively. The annual number of earthquakes detected by the network is estimated to be 2 (ML ≥ ∼ -0.1) within 25 km radius and 5 (ML ≥ ∼-0.1 to ∼0.1) within 50 km radius. The location accuracy within 25 km radius is estimated to be 1-2 and 4 km for horizontal coordinates and depth, respectively. Thus, the network is dense enough to map out capable faults with horizontal accuracy of 1-2 km within 25 km radius of the site. The estimation is based on the location accuracies of five existing networks in northern Europe. Local factors, such as seismic noise sources, geology and infrastructure might limit the station

  7. SeaDataNet network services monitoring: Definition and Implementation of Service availability index

    NASA Astrophysics Data System (ADS)

    Lykiardopoulos, Angelos; Mpalopoulou, Stavroula; Vavilis, Panagiotis; Pantazi, Maria; Iona, Sissy

    2014-05-01

    SeaDataNet (SDN) is a standardized system for managing large and diverse data sets collected by the oceanographic fleets and the automatic observation systems. The SeaDataNet network is constituted of national oceanographic data centres of 35 countries, active in data collection. SeaDataNetII project's objective is to upgrade the present SeaDataNet infrastructure into an operationally robust and state-of-the-art infrastructure; therefore Network Monitoring is a step to this direction. The term Network Monitoring describes the use of system that constantly monitors a computer network for slow or failing components and that notifies the network administrator in case of outages. Network monitoring is crucial when implementing widely distributed systems over the Internet and in real-time systems as it detects malfunctions that may occur and notifies the system administrator who can immediately respond and correct the problem. In the framework of SeaDataNet II project a monitoring system was developed in order to monitor the SeaDataNet components. The core system is based on Nagios software. Some plug-ins were developed to support SeaDataNet modules. On the top of Nagios Engine a web portal was developed in order to give access to local administrators of SeaDataNet components, to view detailed logs of their own service(s). Currently the system monitors 35 SeaDataNet Download Managers, 9 SeaDataNet Services, 25 GeoSeas Download Managers and 23 UBSS Download Managers . Taking advantage of the continuous monitoring of SeaDataNet system components a total availability index will be implemented. The term availability can be defined as the ability of a functional unit to be in a state to perform a required function under given conditions at a given instant of time or over a given time interval, assuming that the required external resources are provided. Availability measures can be considered as a are very important benefit becauseT - The availability trends that can be

  8. Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant

    SciTech Connect

    Kumar, Rajeeva; Kumar, Aditya; Dai, Dan; Seenumani, Gayathri; Down, John; Lopez, Rodrigo

    2012-12-31

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a general model-based sensor network design methodology and tools to address key issues in the design of an optimal sensor network configuration: the type, location and number of sensors used in a network, for online condition monitoring. In particular, the focus in this work is to develop software tools for optimal sensor placement (OSP) and use these tools to design optimal sensor network configuration for online condition monitoring of gasifier refractory wear and radiant syngas cooler (RSC) fouling. The methodology developed will be applicable to sensing system design for online condition monitoring for broad range of applications. The overall approach consists of (i) defining condition monitoring requirement in terms of OSP and mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-off of alternate OSP algorithms, down selecting the most relevant ones and developing them for IGCC applications (iii) enhancing the gasifier and RSC models as required by OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor network required for the condition monitoring of an IGCC gasifier refractory and RSC fouling. Two key requirements for OSP for condition monitoring are desired precision for the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor network in the presence of expected sensor failures. The OSP problem is naturally posed within a Kalman filtering approach as an integer programming problem where the key requirements of precision and reliability are imposed as constraints. The optimization is performed over the overall network cost. Based on extensive literature survey two formulations were identified as being relevant to OSP for condition monitoring; one based on LMI formulation and the other being standard INLP formulation. Various algorithms to solve

  9. Concept of Complex Environmental Monitoring Network - Vardzia Rock Cut City Case Study

    NASA Astrophysics Data System (ADS)

    Elashvili, Mikheil; Vacheishvili, Nikoloz; Margottini, Claudio; Basilaia, Giorgi; Chkhaidze, Davit; Kvavadze, Davit; Spizzichino, Daniele; Boscagli, Franceso; Kirkitadze, Giorgi; Adikashvili, Luka; Navrozashvili, Levan

    2016-04-01

    Vardzia represents an unique cultural heritage monument - rock cut city, which unites architectural monument and Natural-Geological complex. Such monuments are particularly vulnerable and their restoration and conservation requires complex approach. It is curved in various layers of volcanic tuffs and covers several hectares of area, with chronologically different segments of construction. This monument, as many similar monuments worldwide, is subjected to slow but permanent process of destruction, expressed in following factors: surface weathering of rock, active tectonics (aseismic displacement along the active faults and earthquakes), interaction between lithologically different rock layers, existence of major cracks and associated complex block structure, surface rainwater runoff and infiltrated ground water, temperature variations, etc. During its lifetime, Vardzia was heavily damaged by Historical Earthquake of 1283 and only partly restored afterwards. The technological progress together with the increased knowledge about ongoing environmental processes, established the common understanding that the complex monitoring of the environment represents the essential component for resolving such a principal issues, as: Proper management and prevention of natural disasters; Modeling of environmental processes, their short and long term prognosis; Monitoring of macro and micro climate; Safe functioning and preservation of important constructions. Research Center of Cultural Heritage and Environment of Ilia State University in cooperation with Experts from ISPRA, with the funding from the State agency of Cultural Heritage, has developed a concept of Vardzia complex monitoring network. Concept of the network includes: monitoring local meteorological conditions (meteorological station), monitoring microclimate in caves (temperature and humidity in the air and rock), monitoring microtremors and ambient seismic noise in Vardzia (local strong motion network), monitoring

  10. Monitoring architectural heritage by wireless sensors networks: San Gimignano--a case study.

    PubMed

    Mecocci, Alessandro; Abrardo, Andrea

    2014-01-03

    This paper describes a wireless sensor network (WSN) used to monitor the health state of architectural heritage in real-time. The WSN has been deployed and tested on the "Rognosa" tower in the medieval village of San Gimignano, Tuscany, Italy. This technology, being non-invasive, mimetic, and long lasting, is particularly well suited for long term monitoring and on-line diagnosis of the conservation state of heritage buildings. The proposed monitoring system comprises radio-equipped nodes linked to suitable sensors capable of monitoring crucial parameters like: temperature, humidity, masonry cracks, pouring rain, and visual light. The access to data is granted by a user interface for remote control. The WSN can autonomously send remote alarms when predefined thresholds are reached.

  11. A cell phone based health monitoring system with self analysis processor using wireless sensor network technology.

    PubMed

    Chung, Wan-Young; Yau, Chiew-Lian; Shin, Kwang-Sig; Myllyla, Risto

    2007-01-01

    This paper describes the integrated wireless CDMA-based ubiquitous healthcare monitoring system for disease and chronic management and better patient care in the hospital, home or travel environments with extended standalone simple electrocardiogram (ECG) diagnosis algorithm at cell phone. This system utilizes a wireless dongles prototype as the intermediary devices to remotely monitor the physiological signs of patient's from a tiny wireless sensor to transmit directly to medical center monitoring/PDA wirelessly within 802.15.4 wireless LAN or using cell phone to relay the medical data through CDMA network when outside the coverage LAN. The external standalone ECG diagnosis was implemented to enable continuous monitoring and evaluation of the ECG signal locally before any medical data could be sent to the medical center.

  12. A Distributed Multiagent System Architecture for Body Area Networks Applied to Healthcare Monitoring

    PubMed Central

    Laza, Rosalía; Pereira, António

    2015-01-01

    In the last years the area of health monitoring has grown significantly, attracting the attention of both academia and commercial sectors. At the same time, the availability of new biomedical sensors and suitable network protocols has led to the appearance of a new generation of wireless sensor networks, the so-called wireless body area networks. Nowadays, these networks are routinely used for continuous monitoring of vital parameters, movement, and the surrounding environment of people, but the large volume of data generated in different locations represents a major obstacle for the appropriate design, development, and deployment of more elaborated intelligent systems. In this context, we present an open and distributed architecture based on a multiagent system for recognizing human movements, identifying human postures, and detecting harmful activities. The proposed system evolved from a single node for fall detection to a multisensor hardware solution capable of identifying unhampered falls and analyzing the users' movement. The experiments carried out contemplate two different scenarios and demonstrate the accuracy of our proposal as a real distributed movement monitoring and accident detection system. Moreover, we also characterize its performance, enabling future analyses and comparisons with similar approaches. PMID:25874202

  13. A distributed multiagent system architecture for body area networks applied to healthcare monitoring.

    PubMed

    Felisberto, Filipe; Laza, Rosalía; Fdez-Riverola, Florentino; Pereira, António

    2015-01-01

    In the last years the area of health monitoring has grown significantly, attracting the attention of both academia and commercial sectors. At the same time, the availability of new biomedical sensors and suitable network protocols has led to the appearance of a new generation of wireless sensor networks, the so-called wireless body area networks. Nowadays, these networks are routinely used for continuous monitoring of vital parameters, movement, and the surrounding environment of people, but the large volume of data generated in different locations represents a major obstacle for the appropriate design, development, and deployment of more elaborated intelligent systems. In this context, we present an open and distributed architecture based on a multiagent system for recognizing human movements, identifying human postures, and detecting harmful activities. The proposed system evolved from a single node for fall detection to a multisensor hardware solution capable of identifying unhampered falls and analyzing the users' movement. The experiments carried out contemplate two different scenarios and demonstrate the accuracy of our proposal as a real distributed movement monitoring and accident detection system. Moreover, we also characterize its performance, enabling future analyses and comparisons with similar approaches.

  14. A Design of Wireless Sensor Networks for a Power Quality Monitoring System

    PubMed Central

    Lim, Yujin; Kim, Hak-Man; Kang, Sanggil

    2010-01-01

    Power grids deal with the business of generation, transmission, and distribution of electric power. Recently, interest in power quality in electrical distribution systems has increased rapidly. In Korea, the communication network to deliver voltage, current, and temperature measurements gathered from pole transformers to remote monitoring centers employs cellular mobile technology. Due to high cost of the cellular mobile technology, power quality monitoring measurements are limited and data gathering intervals are large. This causes difficulties in providing the power quality monitoring service. To alleviate the problems, in this paper we present a communication infrastructure to provide low cost, reliable data delivery. The communication infrastructure consists of wired connections between substations and monitoring centers, and wireless connections between pole transformers and substations. For the wireless connection, we employ a wireless sensor network and design its corresponding data forwarding protocol to improve the quality of data delivery. For the design, we adopt a tree-based data forwarding protocol in order to customize the distribution pattern of the power quality information. We verify the performance of the proposed data forwarding protocol quantitatively using the NS-2 network simulator. PMID:22163436

  15. Gastric bypass patients' goal-strategy-monitoring networks for long-term dietary management.

    PubMed

    Lynch, Amanda; Bisogni, Carole A

    2014-10-01

    Following gastric bypass surgery, patients must make dramatic dietary changes, but little is known about patients' perspectives on long-term dietary management after this surgery. This grounded theory, qualitative study sought to advance conceptual understanding of food choice by examining how gastric bypass patients constructed personal food systems to guide food and eating behaviors 12 months post-surgery. Two in-depth interviews were conducted with each of 16 adults, purposively sampled from bariatric support groups. Using constant comparative analysis of verbatim interview transcripts, researchers identified participants' goal-strategy-monitoring networks representing how participants used specific food and eating behaviors towards their main goals of: Weight Management, Overall Health, Avoiding Negative Reactions to Eating, and Integrating Dietary Changes with Daily Life. Linked to each main goal was a hierarchy of intermediary goals, strategies, and tactics. Participants used monitoring behaviors to assess strategy effectiveness towards goal achievement. Individuals' Weight Management networks were compared to uncover similarities and differences among strategy use and monitoring methods among those who maintained weight loss and those who regained weight. The complex, multilevel goal-strategy-monitoring networks identified illustrate the "work" involved in constructing new personal food systems after surgery, as well as advance understanding of strategies as a component of people's personal food systems. These findings provide researchers and practitioners with insight into the long-term dietary issues that gastric bypass patients face and a potential method for representing how people relate deliberate dietary behaviors to their goals.

  16. A design of wireless sensor networks for a power quality monitoring system.

    PubMed

    Lim, Yujin; Kim, Hak-Man; Kang, Sanggil

    2010-01-01

    Power grids deal with the business of generation, transmission, and distribution of electric power. Recently, interest in power quality in electrical distribution systems has increased rapidly. In Korea, the communication network to deliver voltage, current, and temperature measurements gathered from pole transformers to remote monitoring centers employs cellular mobile technology. Due to high cost of the cellular mobile technology, power quality monitoring measurements are limited and data gathering intervals are large. This causes difficulties in providing the power quality monitoring service. To alleviate the problems, in this paper we present a communication infrastructure to provide low cost, reliable data delivery. The communication infrastructure consists of wired connections between substations and monitoring centers, and wireless connections between pole transformers and substations. For the wireless connection, we employ a wireless sensor network and design its corresponding data forwarding protocol to improve the quality of data delivery. For the design, we adopt a tree-based data forwarding protocol in order to customize the distribution pattern of the power quality information. We verify the performance of the proposed data forwarding protocol quantitatively using the NS-2 network simulator.

  17. A holistic approach for optimal design of air quality monitoring network expansion in an urban area

    NASA Astrophysics Data System (ADS)

    Mofarrah, Abdullah; Husain, Tahir

    2010-01-01

    This paper presents an objective methodology for determining the optimum number of ambient air quality stations in a monitoring network. The methodology integrates the multiple-criteria method with the spatial correlation technique. The pollutant concentration and population exposure data are used in this methodology in different ways. In the first stage, the Fuzzy Analytic Hierarchy Process (FAHP) with triangular fuzzy numbers (TFNs) is used to identify the most desirable monitoring locations. The network configuration is then determined on the basis of the concept of sphere of influences (SOIs). The SOIs are dictated by a predetermined cutoff value ( rc) in the spatial correlation coefficients ( r) between the pollutant concentrations at the monitoring stations identified from first step and the corresponding concentrations at neighboring locations in the region. Finally, the optimal station locations are ranked by using combined utility scores gained from the first and second steps. The expansion of air quality monitoring network of Riyadh city in Saudi Arabia is used as a case study to demonstrate the proposed methodology.

  18. Alaska's Children, 1997.

    ERIC Educational Resources Information Center

    Douglas, Dorothy, Ed.

    1997-01-01

    These four issues of the "Alaska's Children" provide information on the activities of the Alaska Head Start State Collaboration Project and other Head Start activities. Legal and policy changes affecting the education of young children in Alaska are also discussed. The Spring 1997 issue includes articles on brain development and the…

  19. Alaska's Economy: What's Ahead?

    ERIC Educational Resources Information Center

    Alaska Review of Social and Economic Conditions, 1987

    1987-01-01

    This review describes Alaska's economic boom of the early 1980s, the current recession, and economic projections for the 1990s. Alaska's economy is largely influenced by oil prices, since petroleum revenues make up 80% of the state government's unrestricted general fund revenues. Expansive state spending was responsible for most of Alaska's…

  20. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  1. A Low-Cost, Real-Time Network for Radiological Monitoring Around Nuclear Facilities

    SciTech Connect

    Bertoldo, N A

    2004-08-13

    A low-cost, real-time radiological sensor network for emergency response has been developed and deployed at the Lawrence Livermore National Laboratory (LLNL). The Real-Time Radiological Area Monitoring (RTRAM) network is comprised of 16 Geiger-Mueller (GM) sensors positioned on the site perimeter to continuously monitor radiological conditions as part of LLNL's comprehensive environment/safety/health protection program. The RTRAM network sensor locations coincide with wind sector directions to provide thorough coverage of the one square mile site. These low-power sensors transmit measurement data back to a central command center (CCC) computer through the LLNL telecommunications infrastructure. Alarm conditions are identified by comparing current data to predetermined threshold parameters and are validated by comparison with plausible dispersion modeling scenarios and prevailing meteorological conditions. Emergency response personnel are notified of alarm conditions by automatic radio- and computer- based notifications. A secure intranet provides emergency response personnel with current condition assessment data that enable them to direct field response efforts remotely. This system provides a low-cost real-time radiation monitoring solution that is easily converted to incorporate both a hard-wired interior perimeter with strategically positioned wireless secondary and tertiary concentric remote locations. These wireless stations would be configured with solar voltaic panels that provide current to recharge batteries and power the sensors and radio transceivers. These platforms would supply data transmission at a range of up to 95 km from a single transceiver location. As necessary, using radio transceivers in repeater mode can extend the transmission range. The RTRAM network as it is presently configured at LLNL has proven to be a reliable system since initial deployment in August 2001 and maintains stability during inclement weather conditions. With the proposed

  2. An agronomic field-scale sensor network for monitoring soil water and temperature variation

    NASA Astrophysics Data System (ADS)

    Brown, D. J.; Gasch, C.; Brooks, E. S.; Huggins, D. R.; Campbell, C. S.; Cobos, D. R.

    2014-12-01

    Environmental sensor networks have been deployed in a variety of contexts to monitor plant, air, water and soil properties. To date, there have been relatively few such networks deployed to monitor dynamic soil properties in cropped fields. Here we report on experience with a distributed soil sensor network that has been deployed for seven years in a research farm with ongoing agronomic field operations. The Washington State University R. J. Cook Agronomy Farm (CAF), Pullman, WA, USA has recently been designated a United States Department of Agriculture (USDA) Long-Term Agro-Ecosystem Research (LTAR) site. In 2007, 12 geo-referenced locations at CAF were instrumented, then in 2009 this network was expended to 42 locations distributed across the 37-ha farm. At each of this locations, Decagon 5TE probes (Decagon Devices Inc., Pullman, WA, USA) were installed at five depths (30, 60, 90, 120, and 150 cm), with temperature and volumetric soil moisture content recorded hourly. Initially, data loggers were wirelessly connected to a data station that could be accessed through a cell connection, but due to the logistics of agronomic field operations, we later buried the dataloggers at each site and now periodically download data via local radio transmission. In this presentation, we share our experience with the installation, maintenance, calibration and data processing associated with an agronomic soil monitoring network. We also present highlights of data derived from this network, including seasonal fluctuations of soil temperature and volumetric water content at each depth, and how these measurements are influenced by crop type, soil properties, landscape position, and precipitation events.

  3. Self-organizing sensor sub-network protocol for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Ratnaraj, Sibila; Jagannathan, Sarangapani; Rao, Vittal

    2006-03-01

    A novel self-organizing sub-network (SOS) protocol that improves the lifetime, scalability, and reduces the overall energy consumption is proposed for wireless sensor networks (WSN). In SOS protocol, the nodes are usually in idle or sleep mode but when an event is detected; the nodes near the event become active and form sub-networks. Subsequently, cluster heads (CHs) are selected within each sub-network, and the nodes are grouped into clusters. Nodes in the cluster send data to their respective CH, which in turn aggregates the data. This method of forming sub-networks reduces the amount of energy used, because only a part of the network closer to the unexpected event is active, when compared to the other existing methods. The results of SOS protocol obtained using GloMoSim demonstrate that the protocol minimizes the energy consumed, lowers the end-to-end delay, increases the lifetime of the network, and ensures scalability when compared to LEACH protocol. The applicability of SOS protocols for structural heath monitoring is investigated.

  4. A biologically inspired sensor network framework for autonomous structural health monitoring

    NASA Astrophysics Data System (ADS)

    Chen, Bo

    2009-03-01

    This paper presents a biologically inspired sensor network framework for autonomous structural health monitoring (SHM). The presented sensor network framework transforms desirable characteristics and effective defense mechanisms of the natural immune system to wireless sensor networks for SHM. The autonomous structural health monitoring is achieved through an integrated sensor network framework consisting of high computational power sensors, a mobileagent- based sensor network middleware, and artificial immune pattern recognition (AIPR) methodology for structure damage detection and classification. An AIPR-based structure damage classifier (AIPR-SDC) has been developed, which incorporates several novel characteristics of the natural immune system. The performance of the AIPR-SDC has been validated using a benchmark structure proposed by the IASC-ASCE (International Association for Structural Control - American Society of Civil Engineers) SHM Task Group. The validation results show a better classification success rate comparing to some of other classification algorithms. The further study of unsupervised structure damage classification is also conducted by integrating data clustering techniques and the AIPR method.

  5. Geophysical monitoring of a complex geologic framework: the multi-disciplinary sensor networks in Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Cantarero, M.; Di Prima, S.; Mattia, M.; Patanè, D.; Rossi, M.

    2012-04-01

    Since 2004 the Osservatorio Etneo INGV has begun a new approach to the geophysical monitoring of volcanic and seismic areas of Sicily (Italy) where the core is a new type of remote infrastructure able to efficiently accommodate different kinds of sensor. In particular our multi-parametric network is mainly focused on the monitoring of different geophysical parameters (seismic ground velocity and acceleration, infrasound and ground deformation GPS).The whole seismic network consists of 66 broad band digital stations, 19 analog stations, 13 accelerometric stations and 12 infrasonic stations, for a total of 110 stations while the Continuous GPS network consist of 80 stations. Every station is equipped with solar panels in order to satisfy the power requirements of the instruments and with satellite-based communication systems. In this work we show both the technical solutions of this integrated network and its main advantages, if compared with older kinds of remote stations. Moreover we show some examples of the more interesting scientific results achieved thank to this technologically advanced network.

  6. Report on the Dagstuhl Seminar on Visualization and Monitoring of Network Traffic

    SciTech Connect

    Keim, Daniel; Pras, Aiko; Schonwalder, Jurgen; Wong, Pak C.; Mansmann, Florian

    2011-01-26

    The Dagstuhl Seminar on Visualization and Monitoring of Network Traffic [1] took place May 17-20, 2009 in Dagstuhl, Germany. Dagstuhl seminars promote personal interaction and open discussion of results as well as new ideas. Unlike at most conferences, the focus is not solely on the presentation of established results but to equal parts on results, ideas, sketches, and open problems. The aim of this particular seminar was to bring together experts from the information visualization community and the networking community in order to discuss the state of the art of monitoring and visualization of network traffic. People from the different research communities involved jointly organized the seminar. The co-chairs of the seminar from the networking community were Aiko Pras (University of Twente) and Jürgen Schönwälder (Jacobs University Bremen). The co-chairs from the visualization community were Daniel A. Keim (University of Konstanz) and Pak Chung Wong (Pacific Northwest National Lab). Florian Mansmann (University of Konstanz) helped with producing this report. The seminar was organized and supported by Schloss Dagstuhl and the EC IST-EMANICS Network of Excellence [1].

  7. The new Athens center on data processing from the neutron monitor network in real time

    NASA Astrophysics Data System (ADS)

    Mavromichalaki, H.; Souvatzoglou, G.; Sarlanis, C.; Mariatos, G.; Gerontidou, M.; Papaioannou, A.; Plainaki, C.; Tatsis, S.; Belov, A.; Eroshenko, E.; Yanke, V.

    2005-11-01

    The ground-based neutron monitors (NMs) record galactic and solar relativistic cosmic rays which can play a useful key role in space weather forecasting, as a result of their interaction with interplanetary disturbances. The Earth's-based neutron monitor network has been used in order to produce a real-time prediction of space weather phenomena. Therefore, the Athens Neutron Monitor Data Processing Center (ANMODAP) takes advantage of this unique multi-directional device to solve problems concerning the diagnosis and forecasting of space weather. At this moment there has been a multi-sided use of neutron monitors. On the one hand, a preliminary alert for ground level enhancements (GLEs) may be provided due to relativistic solar particles and can be registered around 20 to 30 min before the arrival of the main part of lower energy particles responsible for radiation hazard. To make a more reliable prognosis of these events, real time data from channels of lower energy particles and X-ray intensity from the GOES satellite are involved in the analysis. The other possibility is to search in real time for predictors of geomagnetic storms when they occur simultaneously with Forbush effects, using hourly, on-line accessible neutron monitor data from the worldwide network and applying a special method of processing. This chance of prognosis is only being elaborated and considered here as one of the possible uses of the Neutron Monitor Network for forecasting the arrival of interplanetary disturbance to the Earth. The achievements, the processes and the future results, are discussed in this work.

  8. SIMAC: development and implementation of a coral reef monitoring network in Colombia.

    PubMed

    Garzón-Ferreira, Jaime; Rodríguez-Ramírez, Alberto

    2010-05-01

    Significant coral reef decline has been observed in Colombia during the last three decades. However, due to the lack of monitoring activities, most of the information about health and changes was fragmentary or inadequate. To develop an expanded nation-wide reef-monitoring program, in 1998 INVEMAR (Instituto de Investigaciones Marinas y Costeras: "Colombian Institute of Marine and Coastal Research") designed and implemented SIMAC (Sistema Nacional de Monitorco de Arrecifes Coralinos en Colombia: "National Monitoring System of Coral Reefs in Colombia") with the participation of other institutions. By the end of 2003 the SIMAC network reached more than twice its initial size, covering ten reef areas (seven in the Caribbean and three in the Pacific), 63 reef sites and 263 permanent transects. SIMAC monitoring continued without interruption until 2008 and should persist in the long-term. The SIMAC has a large database and consists basically of water quality measurements (temperature, salinity, turbidity) and a yearly estimation of benthic reef cover, coral disease prevalence, gorgonian density, abundance of important mobile invertebrates, fish diversity and abundance of important fish species. A methods manual is available in the Internet. Data and results of SIMAC have been widely circulated through a summary report published annually since 2000 for the Colombian environmental agencies and the general public, as well as numerous national and international scientific papers and presentations at meetings. SIMAC information has contributed to support regional and global reef monitoring networks and databases (i.e. CARICOMP, GCRMN, ReefBase).

  9. Development of a wireless sensor network for individual monitoring of panels in a photovoltaic plant.

    PubMed

    Prieto, Miguel J; Pernía, Alberto M; Nuño, Fernando; Díaz, Juan; Villegas, Pedro J

    2014-01-30

    With photovoltaic (PV) systems proliferating in the last few years due to the high prices of fossil fuels and pollution issues, among others, it is extremely important to monitor the efficiency of these plants and optimize the energy production process. This will also result in improvements related to the maintenance and security of the installation. In order to do so, the main parameters in the plant must be continuously monitored so that the appropriate actions can be carried out. This monitoring should not only be carried out at a global level, but also at panel-level, so that a better understanding of what is actually happening in the PV plant can be obtained. This paper presents a system based on a wireless sensor network (WSN) that includes all the components required for such monitoring as well as a power supply obtaining the energy required by the sensors from the photovoltaic panels. The system proposed succeeds in identifying all the nodes in the network and provides real-time monitoring while tracking efficiency, features, failures and weaknesses from a single cell up to the whole infrastructure. Thus, the decision-making process is simplified, which contributes to reducing failures, wastes and, consequently, costs.

  10. Development of a Wireless Sensor Network for Individual Monitoring of Panels in a Photovoltaic Plant

    PubMed Central

    Prieto, Miguel J.; Pernía, Alberto M.; Nuño, Fernando; Díaz, Juan; Villegas, Pedro J.

    2014-01-01

    With photovoltaic (PV) systems proliferating in the last few years due to the high prices of fossil fuels and pollution issues, among others, it is extremely important to monitor the efficiency of these plants and optimize the energy production process. This will also result in improvements related to the maintenance and security of the installation. In order to do so, the main parameters in the plant must be continuously monitored so that the appropriate actions can be carried out. This monitoring should not only be carried out at a global level, but also at panel-level, so that a better understanding of what is actually happening in the PV plant can be obtained. This paper presents a system based on a wireless sensor network (WSN) that includes all the components required for such monitoring as well as a power supply obtaining the energy required by the sensors from the photovoltaic panels. The system proposed succeeds in identifying all the nodes in the network and provides real-time monitoring while tracking efficiency, features, failures and weaknesses from a single cell up to the whole infrastructure. Thus, the decision-making process is simplified, which contributes to reducing failures, wastes and, consequently, costs. PMID:24487622

  11. Using the Global GPS Network and Other Satellite Data to Monitor Ionospheric Total Electron Content

    NASA Technical Reports Server (NTRS)

    Mannucci, Anthony J.; Wilson, Brian D.; Yuan, Dah-Ning; Lindqwister, Ulf

    1994-01-01

    A globally distributed network of dual-frequency global positioning system (GPS) receivers is the primary source of data used to measure ionospheric total electron content (TEC) on global scales. Maps of TEC useful for calibrating propagation delays, or monitoring the solar-terrestrial environment, can be produced using this continuously operating network. The maps can also form the basis of a TEC calibration service for users around the world. Potential users may include single-frequency satellite altimetry missions, satellite tracking stations, and astronomical observatories.

  12. 3D Smart Monitoring Network Establishment for Rainfall-triggered Shallow Landslide

    NASA Astrophysics Data System (ADS)

    Liu, C.; Li, W.; Scaioni, M.; Wu, H.; Lu, P.; Li, R.

    2012-12-01

    The most important objective of the monitoring is the discovery of the omen of the landslide. Actually, an efficient monitoring solution is important to collect information as much as possible, either in term of multiple processes observation. It leads to setup 3D smart sensor networks, intended as the whole set of different measurement systems aiming at gathering data on the whole body of landslide site. Actually, sensor networks can be used for both analysis and early-warning. However, some existing sensors network observation method is only paid emphasis on the capture of multiple sources of data. Different with them, this task consider not only on the interpretation of monitoring measurements, but also on the relationships between the observation and the environmental conditions (rainfall). Actually, as the reference of the 3D smart sensors network establishment in this task, the rainfall-triggered landslides is emphasized to use some physically based models that reveal the dynamic changes in positive and negative (suction) pressure heads in the soil during the infiltration process in a regional scale. Nowadays, many physically based slope-stability models have been developed suitable for individual sites of different dimensions (Sidle and Hirotaka, 2006). The representative models are SHALSTAB (Dietrich et al, 1994) and TRIGRS (Baum et al, 2002). Based on the data captured from the 3D smart sensors network, the task will take the model of SHALSTAB and TRIGRS as examples, and analyzed their advantages and disadvantages. It revealed that there are some questions in the exiting shallow rainfall-landslide models: ignoring initial precipitation, rainfall-runoff, saturated-unsaturated infiltration processes. At the same time, we can also optimized the model and the 3D monitoring network, and made it more universality. Couple with the task, an established simulation 3D smart sensors network at Tongji University, Shanhgai, China is introduced in order to explain idea

  13. Study on an agricultural environment monitoring server system using Wireless Sensor Networks.

    PubMed

    Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun

    2010-01-01

    This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.

  14. Alternatives for Monitoring and Limiting Network Access to Students in Network-Connected Classrooms

    ERIC Educational Resources Information Center

    Almeroth, Kevin; Zhang, Hangjin

    2013-01-01

    With the advent of laptop computers and network technology, many classrooms are now being equipped with Internet connections, either through wired connections or wireless infrastructure. Internet access provides students an additional source from which to obtain course-related information. However, constant access to the Internet can be a…

  15. Optimal design of hydrometric monitoring networks with dynamic components based on Information Theory

    NASA Astrophysics Data System (ADS)

    Alfonso, Leonardo; Chacon, Juan; Solomatine, Dimitri

    2016-04-01

    The EC-FP7 WeSenseIt project proposes the development of a Citizen Observatory of Water, aiming at enhancing environmental monitoring and forecasting with the help of citizens equipped with low-cost sensors and personal devices such as smartphones and smart umbrellas. In this regard, Citizen Observatories may complement the limited data availability in terms of spatial and temporal density, which is of interest, among other areas, to improve hydraulic and hydrological models. At this point, the following question arises: how can citizens, who are part of a citizen observatory, be optimally guided so that the data they collect and send is useful to improve modelling and water management? This research proposes a new methodology to identify the optimal location and timing of potential observations coming from moving sensors of hydrological variables. The methodology is based on Information Theory, which has been widely used in hydrometric monitoring design [1-4]. In particular, the concepts of Joint Entropy, as a measure of the amount of information that is contained in a set of random variables, which, in our case, correspond to the time series of hydrological variables captured at given locations in a catchment. The methodology presented is a step forward in the state of the art because it solves the multiobjective optimisation problem of getting simultaneously the minimum number of informative and non-redundant sensors needed for a given time, so that the best configuration of monitoring sites is found at every particular moment in time. To this end, the existing algorithms have been improved to make them efficient. The method is applied to cases in The Netherlands, UK and Italy and proves to have a great potential to complement the existing in-situ monitoring networks. [1] Alfonso, L., A. Lobbrecht, and R. Price (2010a), Information theory-based approach for location of monitoring water level gauges in polders, Water Resour. Res., 46(3), W03528 [2] Alfonso, L., A

  16. The implementation method of stage video monitoring system based on network

    NASA Astrophysics Data System (ADS)

    Li, Yihua; Zhang, Xiaodong; Feng, Zhicong; Luan, Zhenhui

    2016-01-01

    In view of the problems of inflexible saving and calling data and low reliability and being difficult to compatiable with other system for domestic stage video monitoring system, the authors proposed a video supervision and scheduling system of stage based on IP camera. Audio and video technology, multimedia technology and computer network technology were used in the stage video surveillance and scheduling system. The structure of the system were designed and the main functions of the system were tested. The results show that this system can satisfy the modern stage performance effect and monitoring requirements.

  17. Feasibility study for the modernization of the air quality monitoring network in Venezuela

    SciTech Connect

    1997-11-01

    The project is part of the Ministry of Environment and Recoverable Resources`s (MARNR) goal of establishing a consolidated and effective monitoring program nationwide, which would allow for evaluations of air quality, identification of pollution sources and provide a basis for future air quality management decisions. The bilingual Spanish/English report consists of: (1) work plan; (2) evaluation of current monitoring stations and recommendations for improvement; (3) field evaluation report for existing MARNR network; (4) institutional analysis, revenue requirements, selection of funding mechanism, and three sets of attachments.

  18. Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA.

    PubMed

    Bhat, Shirish; Motz, Louis H; Pathak, Chandra; Kuebler, Laura

    2015-01-01

    A geostatistical method was applied to optimize an existing groundwater-level monitoring network in the Upper Floridan aquifer for the South Florida Water Management District in the southeastern United States. Analyses were performed to determine suitable numbers and locations of monitoring wells that will provide equivalent or better quality groundwater-level data compared to an existing monitoring network. Ambient, unadjusted groundwater heads were expressed as salinity-adjusted heads based on the density of freshwater, well screen elevations, and temperature-dependent saline groundwater density. The optimization of the numbers and locations of monitoring wells is based on a pre-defined groundwater-level prediction error. The newly developed network combines an existing network with the addition of new wells that will result in a spatial distribution of groundwater monitoring wells that better defines the regional potentiometric surface of the Upper Floridan aquifer in the study area. The network yields groundwater-level predictions that differ significantly from those produced using the existing network. The newly designed network will reduce the mean prediction standard error by 43% compared to the existing network. The adoption of a hexagonal grid network for the South Florida Water Management District is recommended to achieve both a uniform level of information about groundwater levels and the minimum required accuracy. It is customary to install more monitoring wells for observing groundwater levels and groundwater quality as groundwater development progresses. However, budget constraints often force water managers to implement cost-effective monitoring networks. In this regard, this study provides guidelines to water managers concerned with groundwater planning and monitoring.

  19. Optimal expansion of water quality monitoring network by fuzzy optimization approach.

    PubMed

    Ning, Shu-Kuang; Chang, Ni-Bin

    2004-02-01

    River reaches are frequently classified with respect to various mode of water utilization depending on the quantity and quality of water resources available at different location. Monitoring of water quality in a river system must collect both temporal and spatial information for comparison with respect to the preferred situation of a water body based on different scenarios. Designing a technically sound monitoring network, however, needs to identify a suite of significant planning objectives and consider a series of inherent limitations simultaneously. It would rely on applying an advanced systems analysis technique via an integrated simulation-optimization approach to meet the ultimate goal. This article presents an optimal expansion strategy of water quality monitoring stations for fulfilling a long-term monitoring mission under an uncertain environment. The planning objectives considered in this analysis are to increase the protection degree in the proximity of the river system with higher population density, to enhance the detection capability for lower compliance areas, to promote the detection sensitivity by better deployment and installation of monitoring stations, to reflect the levels of utilization potential of water body at different locations, and to monitor the essential water quality in the upper stream areas of all water intakes. The constraint set contains the limitations of budget, equity implication, and the detection sensitivity in the water environment. A fuzzy multi-objective evaluation framework that reflects the uncertainty embedded in decision making is designed for postulating and analyzing the underlying principles of optimal expansion strategy of monitoring network. The case study being organized in South Taiwan demonstrates a set of more robust and flexible expansion alternatives in terms of spatial priority. Such an approach uniquely indicates the preference order of each candidate site to be expanded step-wise whenever the budget

  20. Trend Analysis for Groundwater Quality at Different Depths for National Groundwater Quality Monitoring Network of Korea

    NASA Astrophysics Data System (ADS)

    An, Hyeonsil; Jeen, Sung-Wook; Hyun, Yunjung; Lee, Soo Jae; Yoon, Heesung; Kim, Rak-Hyeon

    2015-04-01

    Continuous groundwater monitoring is necessary to investigate the changes of groundwater quality with time, and trend analysis using a statistical method can be used to evaluate if the changes are significant. While groundwater quality is typically monitored and evaluated at one depth, in many cases groundwater quality can be different with depths; thus it is required that monitoring and assessment of trends of groundwater quality should be performed at different depths. In this study, we carried out trend analysis for groundwater quality data of National Groundwater Quality Monitoring Network of Korea to investigate the changes of groundwater quality between 2007 and 2013. The monitoring network has wells with different depths at each site, of which screens are located at about 10 m, 30 m, and 80 m. We analyzed three of the groundwater quality parameters that have sufficient time series data: pH, nitrate-nitrogen, and chloride ion. Sen's test, a non-parametric statistical method for trend analysis, was used to determine the linear trend of groundwater quality data. The trend analyses were conducted at different confidence levels (i.e., at 70, 80, 90, 95, and 99 % confidence levels). The results of groundwater monitoring and trend analysis at each location were compared with groundwater quality management standards and were classified to establish a new groundwater quality management framework of Korea. The results were further plotted in a regional scale to identify whether the trends, if any, can be grouped regionally. The results showed that wells with significant increasing or decreasing trends are far less than wells with no trends, and chloride ion has more wells with significant trends compared to pH and nitrate-nitrogen. The trends were more or less affected by local characteristics rather than reflecting a regional trend. The number of wells with trends decreased as the confidence level increased as expected, indicating that it is necessary to set an

  1. Monitoring of Thermal Protection Systems Using Robust Self-Organizing Optical Fiber Sensing Networks

    NASA Technical Reports Server (NTRS)

    Richards, Lance

    2013-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, and an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during re-entry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry

  2. Bluetooth-based sensor networks for remotely monitoring the physiological signals of a patient.

    PubMed

    Zhang, Ying; Xiao, Hannan

    2009-11-01

    Integrating intelligent medical microsensors into a wireless communication network makes it possible to remotely collect physiological signals of a patient, release the patient from being tethered to monitoring medical instrumentations, and facilitate the patient's early hospital discharge. This can further improve life quality by providing continuous observation without the need of disrupting the patient's normal life, thus reducing the risk of infection significantly, and decreasing the cost of the hospital and the patient. This paper discusses the implementation issues, and describes the overall system architecture of our developed Bluetooth sensor network for patient monitoring and the corresponding heart activity sensors. It also presents our approach to developing the intelligent physiological sensor nodes involving integration of Bluetooth radio technology, hardware and software organization, and our solutions for onboard signal processing.

  3. Distributed Estimation via Iterative Projections with Application to Power Network Monitoring

    DTIC Science & Technology

    2011-07-11

    1 ( Generality of our methods) In this paper we focus on the state estimation and the false data detec- tion problem for power systems, because this...structure of the measurement matrix, describes also the monitors interconnections. By using the same partitioning as in (9), the Moore - Penrose pseudoinverse...the system operator is to maintain the network in a secure operating condition, in which all the loads are supplied power by the generators without

  4. Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.

    This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and

  5. Energy efficient wireless sensor network for structural health monitoring using distributed embedded piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Li, Peng; Olmi, Claudio; Song, Gangbing

    2010-04-01

    Piezoceramic based transducers are widely researched and used for structural health monitoring (SHM) systems due to the piezoceramic material's inherent advantage of dual sensing and actuation. Wireless sensor network (WSN) technology benefits from advances made in piezoceramic based structural health monitoring systems, allowing easy and flexible installation, low system cost, and increased robustness over wired system. However, piezoceramic wireless SHM systems still faces some drawbacks, one of these is that the piezoceramic based SHM systems require relatively high computational capabilities to calculate damage information, however, battery powered WSN sensor nodes have strict power consumption limitation and hence limited computational power. On the other hand, commonly used centralized processing networks require wireless sensors to transmit all data back to the network coordinator for analysis. This signal processing procedure can be problematic for piezoceramic based SHM applications as it is neither energy efficient nor robust. In this paper, we aim to solve these problems with a distributed wireless sensor network for piezoceramic base structural health monitoring systems. Three important issues: power system, waking up from sleep impact detection, and local data processing, are addressed to reach optimized energy efficiency. Instead of sweep sine excitation that was used in the early research, several sine frequencies were used in sequence to excite the concrete structure. The wireless sensors record the sine excitations and compute the time domain energy for each sine frequency locally to detect the energy change. By comparing the data of the damaged concrete frame with the healthy data, we are able to find out the damage information of the concrete frame. A relative powerful wireless microcontroller was used to carry out the sampling and distributed data processing in real-time. The distributed wireless network dramatically reduced the data

  6. Polynomials and Neural Networks for Gas Turbine Monitoring: a Comparative Study

    NASA Astrophysics Data System (ADS)

    Loboda, Igor; Feldshteyn, Yakov

    2011-09-01

    Gas turbine health monitoring includes the common stages of problem detection, fault identification, and prognostics. To extract useful diagnostic information from raw recorded data, these stages require a preliminary operation of computing differences between measurements and an engine baseline, which is a function of engine operating conditions. These deviations of measured values from the baseline data can be good indicators of engine health. However, their quality and the success of all diagnostic stages strongly depend on the adequacy of the baseline model employed and, in particular, on the mathematical techniques applied to create it. To create a baseline model, we have applied polynomials and the least squares method for computing the coefficients over a long period of time. Methods were proposed to enhance such a polynomial-based model. The resulting accuracy was sufficient for reliable monitoring of gas turbine deterioration effects. The polynomials previously investigated thus far are used in the present study as a standard for evaluating artificial neural networks, a very popular technique in gas turbine diagnostics. The focus of this comparative study is to verify whether the use of networks results in a better description of the engine baseline. Extensive field data for two different industrial gas turbines were used to compare these two techniques under various conditions. The deviations were computed for all available data, and the quality of the resulting deviation plots was compared visually. The mean error of the baseline model was used as an additional criterion for comparing the techniques. To find the best network configurations, many network variations were realised and compared with the polynomials. Although the neural networks studied were found to be close to the polynomials in accuracy, they did not exceed the polynomials in any variation. In this way, it seems that polynomials can be successfully used for engine monitoring, at least for

  7. Monitoring near burner slag deposition with a hybrid neural network system

    NASA Astrophysics Data System (ADS)

    Tan, C. K.; Wilcox, S. J.; Ward, J.; Lewitt, M.

    2003-07-01

    This paper is concerned with the development of a system to detect and monitor slag growth in the near burner region in a pulverized-fuel (pf) fired combustion rig. These slag deposits are commonly known as 'eyebrows' and can markedly affect the stability of the burner. The study thus involved a series of experiments with two different coals over a range of burner conditions using a 150 kW pf burner fitted with simulated eyebrows. These simulated eyebrows consisted of annular refractory inserts mounted immediately in front of the original burner quarl. Data obtained by monitoring the infra-red radiation and sound emitted by the flame were processed to yield time and frequency-domain features, which were then used to train and test a hybrid neural network. This hybrid 'intelligent' system was based on self organizing map and radial-basis-function neural networks. This system was able to classify different sized eyebrows with a success rate of at least 99.5%. Consequently, it is possible not only to detect the presence of an eyebrow by monitoring the flame, but also the network can provide an estimate of the size of the deposit, over a reasonably large range of conditions.

  8. Landbird Monitoring Protocol for National Parks in the North Coast and Cascades Network

    USGS Publications Warehouse

    Siegel, Rodney B.; Wilkerson, Robert L.; Jenkins, Kurt J.; Kuntz, Robert C.; Boetsch, John R.; Schaberl, James P.; Happe, Patricia J.

    2007-01-01

    This protocol narrative outlines the rationale, sampling design and methods for monitoring landbirds in the North Coast and Cascades Network (NCCN) during the breeding season. The NCCN, one of 32 networks of parks in the National Park System, comprises seven national park units in the Pacific Northwest, including three large, mountainous, natural area parks (Mount Rainier [MORA] and Olympic [OLYM] National Parks, North Cascades National Park Service Complex [NOCA]), and four small historic cultural parks (Ebey's Landing National Historical Reserve [EBLA], Lewis and Clark National Historical Park [LEWI], Fort Vancouver National Historical Park [FOVA], and San Juan Island National Historical Park [SAJH]). The protocol reflects decisions made by the NCCN avian monitoring group, which includes NPS representatives from each of the large parks in the Network as well as personnel from the U.S. Geological Survey Forest and Rangeland Ecosystem Science Center (USGS-FRESC) Olympic Field Station, and The Institute for Bird Populations, at meetings held between 2000 (Siegel and Kuntz, 2000) and 2005. The protocol narrative describes the monitoring program in relatively broad terms, and its structure and content adhere to the outline and recommendations developed by Oakley and others (2003) and adopted by NPS. Finer details of the methodology are addressed in a set of standard operating procedures (SOPs) that accompany the protocol narrative. We also provide appendixes containing additional supporting materials that do not clearly belong in either the protocol narrative or the standard operating procedures.

  9. A Data Acquisition Protocol for a Reactive Wireless Sensor Network Monitoring Application

    PubMed Central

    Aderohunmu, Femi A.; Brunelli, Davide; Deng, Jeremiah D.; Purvis, Martin K.

    2015-01-01

    Limiting energy consumption is one of the primary aims for most real-world deployments of wireless sensor networks. Unfortunately, attempts to optimize energy efficiency are often in conflict with the demand for network reactiveness to transmit urgent messages. In this article, we propose SWIFTNET: a reactive data acquisition scheme. It is built on the synergies arising from a combination of the data reduction methods and energy-efficient data compression schemes. Particularly, it combines compressed sensing, data prediction and adaptive sampling strategies. We show how this approach dramatically reduces the amount of unnecessary data transmission in the deployment for environmental monitoring and surveillance networks. SWIFTNET targets any monitoring applications that require high reactiveness with aggressive data collection and transmission. To test the performance of this method, we present a real-world testbed for a wildfire monitoring as a use-case. The results from our in-house deployment testbed of 15 nodes have proven to be favorable. On average, over 50% communication reduction when compared with a default adaptive prediction method is achieved without any loss in accuracy. In addition, SWIFTNET is able to guarantee reactiveness by adjusting the sampling interval from 5 min up to 15 s in our application domain. PMID:25942642

  10. Scaling-up camera traps: monitoring the planet's biodiversity with networks of remote sensors

    USGS Publications Warehouse

    Steenweg, Robin; Hebblewhite, Mark; Kays, Roland; Ahumada, Jorge A.; Fisher, Jason T.; Burton, Cole; Townsend, Susan E.; Carbone, Chris; Rowcliffe, J. Marcus; Whittington, Jesse; Brodie, Jedediah; Royle, Andy; Switalski, Adam; Clevenger, Anthony P.; Heim, Nicole; Rich, Lindsey N.

    2017-01-01

    Countries committed to implementing the Convention on Biological Diversity's 2011–2020 strategic plan need effective tools to monitor global trends in biodiversity. Remote cameras are a rapidly growing technology that has great potential to transform global monitoring for terrestrial biodiversity and can be an important contributor to the call for measuring Essential Biodiversity Variables. Recent advances in camera technology and methods enable researchers to estimate changes in abundance and distribution for entire communities of animals and to identify global drivers of biodiversity trends. We suggest that interconnected networks of remote cameras will soon monitor biodiversity at a global scale, help answer pressing ecological questions, and guide conservation policy. This global network will require greater collaboration among remote-camera studies and citizen scientists, including standardized metadata, shared protocols, and security measures to protect records about sensitive species. With modest investment in infrastructure, and continued innovation, synthesis, and collaboration, we envision a global network of remote cameras that not only provides real-time biodiversity data but also serves to connect people with nature.

  11. Spatial-temporal assessment and redesign of groundwater quality monitoring network: a case study.

    PubMed

    Owlia, Rashid Reza; Abrishamchi, Ahmad; Tajrishy, Massoud

    2011-01-01

    Assessment of groundwater quality monitoring networks requires methods to determine the potential efficiency and cost-effectiveness of the current monitoring programs. To this end, the concept of entropy has been considered as a promising method in previous studies since it quantitatively measures the information produced by a network. In this study, the measure of transinformation in the discrete entropy theory and the transinformation-distance (T-D) curves, which are used frequently by other researchers, are used to quantify the efficiency of a monitoring network. This paper introduces a new approach to decrease dispersion in results by performing cluster analysis that uses fuzzy equivalence relations. As a result, the sampling (temporal) frequency determination method also recommends the future sampling frequencies for each location based on certain criteria such as direction, magnitude, correlation with neighboring stations, and uncertainty of the concentration trend derived from representative historical concentration data. The proposed methodology is applied to groundwater resources in the Tehran-Karadj aquifer, Tehran, Iran.

  12. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    PubMed

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  13. Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network

    PubMed Central

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-01-01

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Jacinto Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions. PMID:25171121

  14. Monitoring Network Design for Discriminating and Reducing Models in Bayesian Model Averaging Paradigm

    NASA Astrophysics Data System (ADS)

    Tsai, F. T.; Pham, H. V.

    2013-12-01

    Bayesian model averaging (BMA) is often adopted to quantify model prediction and uncertainty using multiple models generated from various sources of uncertainty. Due to the lack of data and knowledge, the number of models with non-dominant posterior model probabilities can be overwhelming. Conducting prediction and uncertainty analysis using a great deal of computationally intensive simulation models (e.g., groundwater models) can become intractable under the BMA framework. Moreover, prediction results using the BMA can be useless when prediction uncertainty is very high. This study implements a monitoring network design under the BMA framework to discriminate groundwater models and in turn reduce the number of models. The posterior model probabilities are re-evaluated by using BMA prediction as 'future observation data' and historical data. Given a design criterion of posterior model probability (e.g. 85%), the monitoring network design aims to find the optimal number and location of monitoring wells at existing wells for continuous observation. If using existing wells cannot achieve the design criterion, then exploration of new monitoring well location is necessary. Once the design criterion is met, other models will be discriminated from the best model. Between-model variance will be significantly reduced. We use the monitoring network design to discriminate 18 complex groundwater models that include the '1,200-foot', '1,500-foot', and '1,700-foot' sands in the Baton Rouge area, southeastern Louisiana. The sources of uncertainty that creates the groundwater models are from hydrostratigraphic architecture, fault permeability architecture, and boundary conditions. To speed up model calibration, we develop a parallel version of CMA-ES and implement it to SuperMike II cluster at Louisiana State University. Results show that in the model calibration period from 1975 to 2010, eleven models have posterior model probabilities ranging from 3.5% to 17.4%. The purpose of

  15. Environmental networks for large-scale monitoring of Earth and atmosphere

    NASA Astrophysics Data System (ADS)

    Maurodimou, Olga; Kolios, Stavros; Konstantaras, Antonios; Georgoulas, George; Stylios, Chrysostomos

    2013-04-01

    Installation and operation of instrument/sensor networks are proven fundamental in the monitoring of the physical environment from local to global scale. The advances in electronics, wireless communications and informatics has led to the development of a huge number of networks at different spatial scales that measure, collect and store a wide range of environmental parameters. These networks have been gradually evolved into integrated information systems that provide real time monitoring, forecasts and different products from the initial collected datasets. Instrument/sensor networks have nowadays become important solutions for environmental monitoring, comprising a basic component of fully automated systems developing worldwide that contribute in the efforts for a sustainable Earth's environment (e.g. Hart et al., 2006, Othman et al., 2012). They are also used as a source of data for models parameterization and as verification tools for accuracy assessment techniques of the satellite imagery. Environmental networks can be incorporated into decision support systems (e.g Rizzi et al., 2012) providing informational background along with data from satellites for decision making, manage problems, suggest solutions and best practices for a sustainable management of the environment. This is a comparative study aiming to examine and highlight the significant role of existing instrument/sensor networks for large-scale monitoring of environmental issues, especially atmospheric and marine environment as well as weather and climate. We provide characteristic examples of integrated systems based on large scale instrument/sensor networks along with other sources of data (like satellite datasets) as informational background to measure, identify, monitor, analyze and forecast a vast series of atmospheric parameters (like CO2, O3, particle matter and solar irradiance), weather, climate and their impacts (e.g., cloud systems, lightnings, rainfall, air and surface temperature

  16. The community seismic network and quake-catcher network: enabling structural health monitoring through instrumentation by community participants

    NASA Astrophysics Data System (ADS)

    Kohler, Monica D.; Heaton, Thomas H.; Cheng, Ming-Hei

    2013-04-01

    A new type of seismic network is in development that takes advantage of community volunteers to install low-cost accelerometers in houses and buildings. The Community Seismic Network and Quake-Catcher Network are examples of this, in which observational-based structural monitoring is carried out using records from one to tens of stations in a single building. We have deployed about one hundred accelerometers in a number of buildings ranging between five and 23 stories in the Los Angeles region. In addition to a USB-connected device which connects to the host's computer, we have developed a stand-alone sensor-plug-computer device that directly connects to the internet via Ethernet or wifi. In the case of the Community Seismic Network, the sensors report both continuous data and anomalies in local acceleration to a cloud computing service consisting of data centers geographically distributed across the continent. Visualization models of the instrumented buildings' dynamic linear response have been constructed using Google SketchUp and an associated plug-in to matlab with recorded shaking data. When data are available from only one to a very limited number of accelerometers in high rises, the buildings are represented as simple shear beam or prismatic Timoshenko beam models with soil-structure interaction. Small-magnitude earthquake records are used to identify the first set of horizontal vibrational frequencies. These frequencies are then used to compute the response on every floor of the building, constrained by the observed data. These tools are resulting in networking standards that will enable data sharing among entire communities, facility managers, and emergency response groups.

  17. Applications of neural networks to monitoring and decision making in the operation of nuclear power plants

    SciTech Connect

    Uhrig, R.E. Oak Ridge National Lab., TN )

    1990-01-01

    Application of neural networks to monitoring and decision making in the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (1) diagnosing specific abnormal conditions or problems in nuclear power plants, (2) detection of the change of mode of operation of the plant, (3) validating signals coming from detectors, (4) review of noise'' data from TVA's Sequoyah Nuclear Power Plant, and (5) examination of the NRC's database of Letter Event Reports'' for correlation of sequences of events in the reported incidents. Each of these projects and its status are described briefly in this paper. This broad based program has as its objective the definition of the state-of-the-art in using neural networks to enhance the performance of commercial nuclear power plants.

  18. Artificial Neural Networks Applications: from Aircraft Design Optimization to Orbiting Spacecraft On-board Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2002-01-01

    This paper reviews some of the recent applications of artificial neural networks taken from various works performed by the authors over the last four years at the NASA Glenn Research Center. This paper focuses mainly on two areas. First, artificial neural networks application in design and optimization of aircraft/engine propulsion systems to shorten the overall design cycle. Out of that specific application, a generic design tool was developed, which can be used for most design optimization process. Second, artificial neural networks application in monitoring the microgravity quality onboard the International Space Station, using on-board accelerometers for data acquisition. These two different applications are reviewed in this paper to show the broad applicability of artificial intelligence in various disciplines. The intent of this paper is not to give in-depth details of these two applications, but to show the need to combine different artificial intelligence techniques or algorithms in order to design an optimized or versatile system.

  19. Design of pathway-level bioprocess monitoring and control strategies supported by metabolic networks.

    PubMed

    Isidro, Inês A; Ferreira, Ana R; Clemente, João J; Cunha, António E; Dias, João M L; Oliveira, Rui

    2013-01-01

    In this chapter we explore the basic tools for the design of bioprocess monitoring, optimization, and control algorithms that incorporate a priori knowledge of metabolic networks. The main advantage is that this ultimately enables the targeting of intracellular control variables such as metabolic reactions or metabolic pathways directly linked with productivity and product quality. We analyze in particular design methods that target elementary modes of metabolic networks. The topics covered include the analysis of the structure of metabolic networks, computation and reduction of elementary modes, measurement methods for the envirome, envirome-guided metabolic reconstruction, and macroscopic dynamic modeling and control. These topics are illustrated with applications to a cultivation process of a recombinant Pichia pastoris X33 strain expressing a single-chain antibody fragment (scFv).

  20. Assessing and optimizing infrasound network performance: application to remote volcano monitoring

    NASA Astrophysics Data System (ADS)

    Tailpied, D.; LE Pichon, A.; Marchetti, E.; Kallel, M.; Ceranna, L.

    2014-12-01

    Infrasound is an efficient monitoring technique to remotely detect and characterize explosive sources such as volcanoes. Simulation methods incorporating realistic source and propagation effects have been developed to quantify the detection capability of any network. These methods can also be used to optimize the network configuration (number of stations, geographical location) in order to reduce the detection thresholds taking into account seasonal effects in infrasound propagation. Recent studies have shown that remote infrasound observations can provide useful information about the eruption chronology and the released acoustic energy. Comparisons with near-field recordings allow evaluating the potential of these observations to better constrain source parameters when other monitoring techniques (satellite, seismic, gas) are not available or cannot be made. Because of its regular activity, the well-instrumented Mount Etna is in Europe a unique natural repetitive source to test and optimize detection and simulation methods. The closest infrasound station part of the International Monitoring System is located in Tunisia (IS48). In summer, during the downwind season, it allows an unambiguous identification of signals associated with Etna eruptions. Under the European ARISE project (Atmospheric dynamics InfraStructure in Europe, FP7/2007-2013), experimental arrays have been installed in order to characterize infrasound propagation in different ranges of distance and direction. In addition, a small-aperture array, set up on the flank by the University of Firenze, has been operating since 2007. Such an experimental setting offers an opportunity to address the societal benefits that can be achieved through routine infrasound monitoring.

  1. Monitoring lingering oil from the Exxon Valdez spill on Gulf of Alaska armored beaches and mussel beds sixteen years post-spill

    USGS Publications Warehouse

    Irvine, G.V.; Mann, D.H.; Short, J.W.

    2008-01-01

    Final Rept. ; Prepared in Cooperation With Alaska Univ., Fairbanks. Inst. of Arctic Biology. Sponsored By National Marine Fisheries Service, Juneau, Ak. AlaskaFisheries Science Center. ; Stranded Exxon Valdez Oil Has Persisted for 16 Years At Boulder-Armored Beach Sites Along National Park Coastlines Bordering the Gulf of Alaska. These Sites Are Up to 640 Km From the Spill Origin and Were Contaminated By Oil Mousse, a Viscous Water-in-Oil Emulsion. Although Surface Oil Has Continued to Decline, Subsurface Oiling Persists in Patches. Especially Striking Is the General Lack of Weathering of Stranded Oil on Armored Beaches Over the Last 16 Years. At Three of the Four Sites Where Oil Was Sampled in 2005, the Oil Was Compositionally Similar to 11-Day Old Exxon Valdez Oil, Even After 16 Years. The Formation of Mousse Allowed Less-Weathered Oil to Be Transported Long Distances. The Sequestration of the Oil Beneath a Boulder Armor, Coupled With the Stability of the Boulder Armoring (Investigated By Examining Movement of Marked Boulders), Had Contributed to the Lengthy Persistence of This Stranded Oil. Opportunistic Sampling of Several Previously Studied Oiled Mussel Beds Indicates Continued Contamination of At Least One of the Sites By Not Very Weathered Exxon Valdez Oil. Long-Term Persistence of Oil in These Habitats Should Cause Reconsideration of Response Activities After Spills, and May Influence the Environmental Sensitivity Indices Applied to These Habitats. 

  2. A Wireless Sensor Network-Based Approach with Decision Support for Monitoring Lake Water Quality

    PubMed Central

    Huang, Xiaoci; Yi, Jianjun; Chen, Shaoli; Zhu, Xiaomin

    2015-01-01

    Online monitoring and water quality analysis of lakes are urgently needed. A feasible and effective approach is to use a Wireless Sensor Network (WSN). Lake water environments, like other real world environments, present many changing and unpredictable situations. To ensure flexibility in such an environment, the WSN node has to be prepared to deal with varying situations. This paper presents a WSN self-configuration approach for lake water quality monitoring. The approach is based on the integration of a semantic framework, where a reasoner can make decisions on the configuration of WSN services. We present a WSN ontology and the relevant water quality monitoring context information, which considers its suitability in a pervasive computing environment. We also propose a rule-based reasoning engine that is used to conduct decision support through reasoning techniques and context-awareness. To evaluate the approach, we conduct usability experiments and performance benchmarks. PMID:26610496

  3. A Real-Time Monitoring System of Industry Carbon Monoxide Based on Wireless Sensor Networks

    PubMed Central

    Yang, Jiachen; Zhou, Jianxiong; Lv, Zhihan; Wei, Wei; Song, Houbing

    2015-01-01

    Carbon monoxide (CO) burns or explodes at over-standard concentration. Hence, in this paper, a Wifi-based, real-time monitoring of a CO system is proposed for application in the construction industry, in which a sensor measuring node is designed by low-frequency modulation method to acquire CO concentration reliably, and a digital filtering method is adopted for noise filtering. According to the triangulation, the Wifi network is constructed to transmit information and determine the position of nodes. The measured data are displayed on a computer or smart phone by a graphical interface. The experiment shows that the monitoring system obtains excellent accuracy and stability in long-term continuous monitoring. PMID:26610511

  4. A Wireless Sensor Network-Based Approach with Decision Support for Monitoring Lake Water Quality.

    PubMed

    Huang, Xiaoci; Yi, Jianjun; Chen, Shaoli; Zhu, Xiaomin

    2015-11-19

    Online monitoring and water quality analysis of lakes are urgently needed. A feasible and effective approach is to use a Wireless Sensor Network (WSN). Lake water environments, like other real world environments, present many changing and unpredictable situations. To ensure flexibility in such an environment, the WSN node has to be prepared to deal with varying situations. This paper presents a WSN self-configuration approach for lake water quality monitoring. The approach is based on the integration of a semantic framework, where a reasoner can make decisions on the configuration of WSN services. We present a WSN ontology and the relevant water quality monitoring context information, which considers its suitability in a pervasive computing environment. We also propose a rule-based reasoning engine that is used to conduct decision support through reasoning techniques and context-awareness. To evaluate the approach, we conduct usability experiments and performance benchmarks.

  5. WiSPH: A Wireless Sensor Network-Based Home Care Monitoring System

    PubMed Central

    Magaña-Espinoza, Pedro; Aquino-Santos, Raúl; Cárdenas-Benítez, Néstor; Aguilar-Velasco, José; Buenrostro-Segura, César; Edwards-Block, Arthur; Medina-Cass, Aldo

    2014-01-01

    This paper presents a system based on WSN technology capable of monitoring heart rate and the rate of motion of seniors within their homes. The system is capable of remotely alerting specialists, caretakers or family members via a smartphone of rapid physiological changes due to falls, tachycardia or bradycardia. This work was carried out using our workgroup's WiSe platform, which we previously developed for use in WSNs. The proposed WSN architecture is flexible, allowing for greater scalability to better allow event-based monitoring. The architecture also provides security mechanisms to assure that the monitored and/or stored data can only be accessed by authorized individuals or devices. The aforementioned characteristics provide the network versatility and solidity required for use in health applications. PMID:24759112

  6. Climatological summary of wind and temperature data for the Hanford Meteorology Monitoring Network

    SciTech Connect

    Glantz, C.S.; Schwartz, M.N.; Burk, K.W.; Kasper, R.B.; Ligotke, M.W.; Perrault, P.J.

    1990-09-01

    This document presents climatological summaries of wind and temperature data collected at the twenty-five monitoring stations operated by the Hanford Meteorology Monitoring Network. The climatological analyses presented here involve hourly averaged wind data collected over an 8-year period beginning in 1982 (fewer wind data are available for the several monitoring stations that began full-time operation after 1982) and hourly averaged air temperature data collected over 2-year period beginning in mid-1988. The tables and figures presented in this document illustrate the spatial and temporal variation of meteorological parameters across the Hanford Site and the surrounding areas. This information is useful for emergency response applications, routine meteorological forecasting, planning and scheduling operations, facility design, and environmental impact studies.

  7. Incorpoaration of Geosensor Networks Into Internet of Things for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Habibi, R.; Alesheikh, A. A.

    2015-12-01

    Thanks to the recent advances of miniaturization and the falling costs for sensors and also communication technologies, Internet specially, the number of internet-connected things growth tremendously. Moreover, geosensors with capability of generating high spatial and temporal resolution data, measuring a vast diversity of environmental data and automated operations provide powerful abilities to environmental monitoring tasks. Geosensor nodes are intuitively heterogeneous in terms of the hardware capabilities and communication protocols to take part in the Internet of Things scenarios. Therefore, ensuring interoperability is an important step. With this respect, the focus of this paper is particularly on incorporation of geosensor networks into Internet of things through an architecture for monitoring real-time environmental data with use of OGC Sensor Web Enablement standards. This approach and its applicability is discussed in the context of an air pollution monitoring scenario.

  8. Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing

    PubMed Central

    Handcock, Rebecca N.; Swain, Dave L.; Bishop-Hurley, Greg J.; Patison, Kym P.; Wark, Tim; Valencia, Philip; Corke, Peter; O'Neill, Christopher J.

    2009-01-01

    Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle. PMID:22412327

  9. A Real-Time Monitoring System of Industry Carbon Monoxide Based on Wireless Sensor Networks.

    PubMed

    Yang, Jiachen; Zhou, Jianxiong; Lv, Zhihan; Wei, Wei; Song, Houbing

    2015-11-20

    Carbon monoxide (CO) burns or explodes at over-standard concentration. Hence, in this paper, a Wifi-based, real-time monitoring of a CO system is proposed for application in the construction industry, in which a sensor measuring node is designed by low-frequency modulation method to acquire CO concentration reliably, and a digital filtering method is adopted for noise filtering. According to the triangulation, the Wifi network is constructed to transmit information and determine the position of nodes. The measured data are displayed on a computer or smart phone by a graphical interface. The experiment shows that the monitoring system obtains excellent accuracy and stability in long-term continuous monitoring.

  10. Development of an In-Situ Decommissioning Sensor Network Test Bed for Structural Condition Monitoring - 12156

    SciTech Connect

    Zeigler, Kristine E.; Ferguson, Blythe A.

    2012-07-01

    The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials and condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors

  11. An optimized network for phosphorus load monitoring for Lake Okeechobee, Florida

    USGS Publications Warehouse

    Gain, W.S.

    1997-01-01

    Phosphorus load data were evaluated for Lake Okeechobee, Florida, for water years 1982 through 1991. Standard errors for load estimates were computed from available phosphorus concentration and daily discharge data. Components of error were associated with uncertainty in concentration and discharge data and were calculated for existing conditions and for 6 alternative load-monitoring scenarios for each of 48 distinct inflows. Benefit-cost ratios were computed for each alternative monitoring scenario at each site by dividing estimated reductions in load uncertainty by the 5-year average costs of each scenario in 1992 dollars. Absolute and marginal benefit-cost ratios were compared in an iterative optimization scheme to determine the most cost-effective combination of discharge and concentration monitoring scenarios for the lake. If the current (1992) discharge-monitoring network around the lake is maintained, the water-quality sampling at each inflow site twice each year is continued, and the nature of loading remains the same, the standard error of computed mean-annual load is estimated at about 98 metric tons per year compared to an absolute loading rate (inflows and outflows) of 530 metric tons per year. This produces a relative uncertainty of nearly 20 percent. The standard error in load can be reduced to about 20 metric tons per year (4 percent) by adopting an optimized set of monitoring alternatives at a cost of an additional $200,000 per year. The final optimized network prescribes changes to improve both concentration and discharge monitoring. These changes include the addition of intensive sampling with automatic samplers at 11 sites, the initiation of event-based sampling by observers at another 5 sites, the continuation of periodic sampling 12 times per year at 1 site, the installation of acoustic velocity meters to improve discharge gaging at 9 sites, and the improvement of a discharge rating at 1 site.

  12. The aquatic real-time monitoring network; in-situ optical sensors for monitoring the nation's water quality

    USGS Publications Warehouse

    Pellerin, Brian A.; Bergamaschi, Brian A.; Murdoch, Peter S.; Downing, Bryan D.; Saraceno, John Franco; Aiken, George R.; Striegl, Robert G.

    2011-01-01

    Floods, hurricanes, and longer-term changes in climate and land use can have profound effects on water quality due to shifts in hydrologic flow paths, water residence time, precipitation patterns, connectivity between rivers and uplands, and many other factors. In order to understand and respond to changes in hydrology and water quality, resource managers and policy makers have a need for accurate and early indicators, as well as the ability to assess possible mechanisms and likely outcomes. In-situ optical sensors-those making continuous measurements of constituents by absorbance or fluorescence properties in the environment at timescales of minutes to years-have a long history in oceanography for developing highly resolved concentrations and fluxes, but are not commonly used in freshwater systems. The United States Geological Survey (USGS) has developed the Aquatic Real-Time Monitoring Network, with high-resolution optical data collection for organic carbon, nutrients, and sediment in large coastal rivers, along with continuous measurements of discharge, water temperature, and dissolved inorganic carbon. The collecting of continuous water-quality data in the Nation?s waterways has revealed temporal trends and spatial patterns in constituents that traditional sampling approaches fail to capture, and will serve a critical role in monitoring, assessment and decision-making in a rapidly changing landscape.

  13. Teshekpuk Lake, Alaska

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This ASTER image of Teshekpuk Lake on Alaska's North Slope, within the National Petroleum Reserve, was acquired on August 15, 2000. It covers an area of 58.7 x 89.9 km, and is centered near 70.4 degrees north latitude, 153 degrees west longitude.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 58.7 by 89.9 kilometers (36.4 by 55.7 miles) Location: 70.4 degrees North latitude, 153 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: ASTER 30 meters (98.4 feet) Dates Acquired: August 15, 2000

  14. Remote monitoring of soldier safety through body posture identification using wearable sensor networks

    NASA Astrophysics Data System (ADS)

    Biswas, Subir; Quwaider, Muhannad

    2008-04-01

    The physical safety and well being of the soldiers in a battlefield is the highest priority of Incident Commanders. Currently, the ability to track and monitor soldiers rely on visual and verbal communication which can be somewhat limited in scenarios where the soldiers are deployed inside buildings and enclosed areas that are out of visual range of the commanders. Also, the need for being stealth can often prevent a battling soldier to send verbal clues to a commander about his or her physical well being. Sensor technologies can remotely provide various data about the soldiers including physiological monitoring and personal alert safety system functionality. This paper presents a networked sensing solution in which a body area wireless network of multi-modal sensors can monitor the body movement and other physiological parameters for statistical identification of a soldier's body posture, which can then be indicative of the physical conditions and safety alerts of the soldier in question. The specific concept is to leverage on-body proximity sensing and a Hidden Markov Model (HMM) based mechanism that can be applied for stochastic identification of human body postures using a wearable sensor network. The key idea is to collect relative proximity information between wireless sensors that are strategically placed over a subject's body to monitor the relative movements of the body segments, and then to process that using HMM in order to identify the subject's body postures. The key novelty of this approach is a departure from the traditional accelerometry based approaches in which the individual body segment movements, rather than their relative proximity, is used for activity monitoring and posture detection. Through experiments with body mounted sensors we demonstrate that while the accelerometry based approaches can be used for differentiating activity intensive postures such as walking and running, they are not very effective for identification and

  15. Coupling of ground biosensor networks for water monitoring with satellite observations in assessing Leptospirosis

    NASA Astrophysics Data System (ADS)

    Skouloudis, A. N.; Rickerby, D. G.

    2012-12-01

    Leptospirosis became recently a major public-health problem that is closely related with the environment (Nature review Oct 2009, Vol 7, pp 736-747). This disease originates from zoonotic pathogens associated with asymptomatic rodent carriers. Unfortunately, it effects human populations via various direct and indirect routes. This disease can claim many victims with large outbreaks during natural disasters or floods occurring during seasonal conditions. The severity of the illness ranges from subclinical infection to a fulminating fatal disease. Improved water quality monitoring techniques based on biosensor, optical, micro-fluidic and information technologies are leading to radical changes in our ability to perceive and monitor the aquatic environment. Biosensors are capable of providing specific, high spatial resolution information and allow unattended operation that will be particularly useful for water borne related diseases. Current research on biosensors is leading to solutions to problems for several contaminants that were previously irresolvable due to their high degree of complexity. Networking of the sensors enables sensitive monitoring systems allowing real-time monitoring of pollutants and facilitates data transmission between the measurement points and central control stations for continuous surveillance and to provide an early warning capability. The application of intelligent biosensor networks for water quality monitoring and detection of localized sources of pollution are discussed together with the setting up of a methodology that utilizes images from satellite coupled with in-situ sensors for anticipating the zones of potential evolution of this disease and assessing the population at risk. Environmental and climatic conditions that are associated the outbreaks are described and the rational of combining earth observations coupled with advanced in-situ biosensors is explained. The implementation of sensor networks for data collection and exposure

  16. Optimization of a Coastal Environmental Monitoring Network Based on the Kriging Method: A Case Study of Quanzhou Bay, China

    PubMed Central

    Chen, Kai; Ni, Minjie; Wang, Jun; Huang, Dongren; Chen, Huorong; Wang, Xiao; Liu, Mengyang

    2016-01-01

    Environmental monitoring is fundamental in assessing environmental quality and to fulfill protection and management measures with permit conditions. However, coastal environmental monitoring work faces many problems and challenges, including the fact that monitoring information cannot be linked up with evaluation, monitoring data cannot well reflect the current coastal environmental condition, and monitoring activities are limited by cost constraints. For these reasons, protection and management measures cannot be developed and implemented well by policy makers who intend to solve this issue. In this paper, Quanzhou Bay in southeastern China was selected as a case study; and the Kriging method and a geographic information system were employed to evaluate and optimize the existing monitoring network in a semienclosed bay. This study used coastal environmental monitoring data from 15 sites (including COD, DIN, and PO4-P) to adequately analyze the water quality from 2009 to 2012 by applying the Trophic State Index. The monitoring network in Quanzhou Bay was evaluated and optimized, with the number of sites increased from 15 to 24, and the monitoring precision improved by 32.9%. The results demonstrated that the proposed advanced monitoring network optimization was appropriate for environmental monitoring in Quanzhou Bay. It might provide technical support for coastal management and pollutant reduction in similar areas. PMID:27777951

  17. Optimization of a Coastal Environmental Monitoring Network Based on the Kriging Method: A Case Study of Quanzhou Bay, China.

    PubMed

    Chen, Kai; Ni, Minjie; Cai, Minggang; Wang, Jun; Huang, Dongren; Chen, Huorong; Wang, Xiao; Liu, Mengyang

    2016-01-01

    Environmental monitoring is fundamental in assessing environmental quality and to fulfill protection and management measures with permit conditions. However, coastal environmental monitoring work faces many problems and challenges, including the fact that monitoring information cannot be linked up with evaluation, monitoring data cannot well reflect the current coastal environmental condition, and monitoring activities are limited by cost constraints. For these reasons, protection and management measures cannot be developed and implemented well by policy makers who intend to solve this issue. In this paper, Quanzhou Bay in southeastern China was selected as a case study; and the Kriging method and a geographic information system were employed to evaluate and optimize the existing monitoring network in a semienclosed bay. This study used coastal environmental monitoring data from 15 sites (including COD, DIN, and PO4-P) to adequately analyze the water quality from 2009 to 2012 by applying the Trophic State Index. The monitoring network in Quanzhou Bay was evaluated and optimized, with the number of sites increased from 15 to 24, and the monitoring precision improved by 32.9%. The results demonstrated that the proposed advanced monitoring network optimization was appropriate for environmental monitoring in Quanzhou Bay. It might provide technical support for coastal management and pollutant reduction in similar areas.

  18. Air Monitoring Network at Tonopah Test Range: Network Description, Capabilities, and Analytical Results

    SciTech Connect

    Hartwell, William T.; Daniels, Jeffrey; Nikolich, George; Shadel, Craig; Giles, Ken; Karr, Lynn; Kluesner, Tammy

    2012-01-01

    During the period April to June 2008, at the behest of the Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Activity. DRI has operated these stations since that time. A third station was deployed in the period May to September 2011. The TTR is located within the northwest corner of the Nevada Test and Training Range (NTTR), and covers an area of approximately 725.20 km2 (280 mi2). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from Soils Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

  19. Air Monitoring Network at Tonopah Test Range: Network Description and Capabilities

    SciTech Connect

    Jeffrey Tappen; George Nikolich; Ken Giles; David Shafer; Tammy Kluesner

    2010-05-18

    During the period April to June 2008, at the behest of the U.S. Department of Energy (DOE) National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Sub-Project. The TTR is located within the boundaries of the Nevada Test and Training Range (NTTR) near the northern edge, and covers an area of approximately 725.20 km2 (179,200 acres). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from one of the three Soil Sub-Project Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

  20. EPA Regional Administrator and American Indian Environmental Office Director Present Recognition of Innovation to Alaska Native Tribal Health Consortium's LEO Network

    EPA Pesticide Factsheets

    (Anchorage - February 10, 2016) Today, U.S. EPA Region 10 Administrator Dennis McLerran and EPA American Indian Environmental Office National Director JoAnn Chase will present a Recognition of Innovation award to the Alaska Native Tribal Health Consortium'

  1. The use of existing environmental networks for the post-market monitoring of GM crop cultivation in the EU.

    PubMed

    Smets, G; Alcalde, E; Andres, D; Carron, D; Delzenne, P; Heise, A; Legris, G; Martinez Parrilla, M; Verhaert, J; Wandelt, C; Ilegems, M; Rüdelsheim, P

    2014-07-01

    The European Union (EU) Directive 2001/18/EC on the deliberate release of genetically modified organisms (GMOs) into the environment requires that both Case-Specific Monitoring (CSM) and General Surveillance (GS) are considered as post-market implementing measures. Whereas CSM is directed to monitor potential adverse effects of GMOs or their use identified in the environmental risk assessment, GS aims to detect un-intended adverse effects of GMOs or their use on human and animal health or the environment. Guidance documents on the monitoring of genetically modified (GM) plants from the Commission and EFSA clarify that, as appropriate, GS can make use of established routine surveillance practices. Networks involved in routine surveillance offer recognised expertise in a particular domain and are designed to collect information on important environmental aspects over a large geographical area. However, as the suitability of existing monitoring networks to provide relevant data for monitoring impacts of GMOs is not known, plant biotechnology companies developed an approach to describe the processes and criteria that will be used for selecting and evaluating existing monitoring systems. In this paper, the availability of existing monitoring networks for this purpose is evaluated. By cataloguing the existing environmental monitoring networks in the EU, it can be concluded that they can only be used, in the context of GMO cultivation monitoring, as secondary tools to collect baseline information.

  2. How are your berries? Perspectives of Alaska's environmental managers on trends in wild berry abundance

    PubMed Central

    Hupp, Jerry; Brubaker, Michael; Wilkinson, Kira; Williamson, Jennifer

    2015-01-01

    Background Wild berries are a valued traditional food in Alaska. Phytochemicals in wild berries may contribute to the prevention of vascular disease, cancer and cognitive decline, making berry consumption important to community health in rural areas. Little was known regarding which species of berries were important to Alaskan communities, the number of species typically picked in communities and whether recent environmental change has affected berry abundance or quality. Objective To identify species of wild berries that were consumed by people in different ecological regions of Alaska and to determine if perceived berry abundance was changing for some species or in some regions. Design We asked tribal environmental managers throughout Alaska for their views on which among 12 types of wild berries were important to their communities and whether berry harvests over the past decade were different than in previous years. We received responses from 96 individuals in 73 communities. Results Berries that were considered very important to communities differed among ecological regions of Alaska. Low-bush blueberry (Vaccinium uliginosum and V. caespitosum), cloudberry (Rubus chamaemorus) and salmonberry (Rubus spectabilis) were most frequently identified as very important berries for communities in the boreal, polar and maritime ecoregions, respectively. For 7 of the 12 berries on the survey, a majority of respondents indicated that in the past decade abundance had either declined or become more variable. Conclusions Our study is an example of how environmental managers and participants in local observer networks can report on the status of wild resources in rural Alaska. Their observations suggest that there have been changes in the productivity of some wild berries in the past decade, resulting in greater uncertainty among communities regarding the security of berry harvests. Monitoring and experimental studies are needed to determine how environmental change may affect

  3. Potential of the International Monitoring System radionuclide network for inverse modelling

    NASA Astrophysics Data System (ADS)

    Koohkan, Mohammad Reza; Bocquet, Marc; Wu, Lin; Krysta, Monika

    2012-07-01

    The International Monitoring System (IMS) radionuclide network enforces the Comprehensive Nuclear-Test-Ban Treaty which bans nuclear explosions. We have evaluated the potential of the IMS radionuclide network for inverse modelling of the source, whereas it is usually assessed by its detection capability. To do so, we have chosen the degrees of freedom for the signal (DFS), a well established criterion in remote sensing, in order to assess the performance of an inverse modelling system. Using a recent multiscale data assimilation technique, we have computed optimal adaptive grids of the source parameter space by maximising the DFS. This optimisation takes into account the monitoring network, the meteorology over one year (2009) and the relationship between the source parameters and the observations derived from the FLEXPART Lagrangian transport model. Areas of the domain where the grid-cells of the optimal adaptive grid are large emphasise zones where the retrieval is more uncertain, whereas areas where the grid-cells are smaller and denser stress regions where more source variables can be resolved. The observability of the globe through inverse modelling is studied in strong, realistic and small model error cases. The strong error and realistic error cases yield heterogeneous adaptive grids, indicating that information does not propagate far from the monitoring stations, whereas in the small error case, the grid is much more homogeneous. In all cases, several specific continental regions remain poorly observed such as Africa as well as the tropics, because of the trade winds. The northern hemisphere is better observed through inverse modelling (more than 60% of the total DFS) mostly because it contains more IMS stations. This unbalance leads to a better performance of inverse modelling in the northern hemisphere winter. The methodology is also applied to the subnetwork composed of the stations of the IMS network which measure noble gases.

  4. A new constituting lidar network for global aerosol observation and monitoring: Leone

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Sauvage Laurent, Laurent

    2010-05-01

    In order to observe and monitoring the direct and indirect impact of natural and anthropogenic aerosols on the radiative transfer and climate changing, it is necessary a continuous worldwide observation of the microphysical aerosol properties. A global observation it is of great support to the actual research in climate and it is a complement in the effort of monitoring trans-boundary pollution, and satellite validation, valorizing the use of lidar and passive sensors networks. In this framework, we have created the LEONET program, a new constituting worldwide network of EZ Lidar™ instruments. These lidars, developed by the French company LEOSPHERE, are compact and rugged eye safe UV Lidars with cross-polarisation detection capabilities, designed to monitor and study the atmospheric vertical structure of aerosols and clouds in a continuous way, night and day, over long time period in order to investigate and contribute to the climate change studies. LEONET output data, in hdf format, have the same architecture of those of NASA Micro Pulse Lidar Network (MPLNET) and will be soon available to the scientific community through the AERONET data synergy tool which provides ground-based, satellite, and model data products to characterize aerosol optical and microphysical properties, spatial and temporal distribution, transport, and chemical and radiative properties. In this work, it is presented an overview of the LEONET products and methodologies as the backscattering and extinction coefficients; the depolarization ratio, cloud layer heights and subsequent optical depths, provided to the limit of detection capability from a range of 100 m up to 20 km as well as the recent automatic height retrieval method of the different Planetary Boundary Layers (PBL). The retrieval algorithm in the future will be improved integrating, when possible, a measured Lidar ratio by a co-located sun photometer Further are presented some data examples from several diverse sites in the

  5. The USA National Phenology Network: A national science and monitoring program for understanding climate change

    NASA Astrophysics Data System (ADS)

    Weltzin, J.

    2009-04-01

    Patterns of phenology for plants and animals control ecosystem processes, determine land surface properties, control biosphere-atmosphere interactions, and affect food production, health, conservation, and recreation. Although phenological data and models have applications related to scientific research, education and outreach, agriculture, tourism and recreation, human health, and natural resource conservation and management, until recently there was no coordinated effort to understand phenology at the national scale in the United States. The USA National Phenology Network (USA-NPN; www.usanpn.org), established in 2007, is an emerging and exciting partnership between federal agencies, the academic community, and the general public to establish a national science and monitoring initiative focused on phenology. The first year of operation of USA-NPN produced many new phenology products and venues for phenology research and citizen involvement. Products include a new web-site (www.usanpn.org) that went live in June 2008; the web-site includes a tool for on-line data entry, and serves as a clearinghouse for products and inf