Sample records for alaska region protected

  1. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  2. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  3. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  4. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  5. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  6. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  7. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  8. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  9. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  10. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  11. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zhang, X.; Zavodsky, B. T.; Heinrichs, T.; Broderson, D.

    2014-01-01

    A case study and monthly statistical analysis using sounder data assimilation to improve the Alaska regional weather forecast model are presented. Weather forecast in Alaska faces challenges as well as opportunities. Alaska has a large land with multiple types of topography and coastal area. Weather forecast models must be finely tuned in order to accurately predict weather in Alaska. Being in the high-latitudes provides Alaska greater coverage of polar orbiting satellites for integration into forecasting models than the lower 48. Forecasting marine low stratus clouds is critical to the Alaska aviation and oil industry and is the current focus of the case study. NASA AIRS/CrIS sounder profiles data are used to do data assimilation for the Alaska regional weather forecast model to improve Arctic marine stratus clouds forecast. Choosing physical options for the WRF model is discussed. Preprocess of AIRS/CrIS sounder data for data assimilation is described. Local observation data, satellite data, and global data assimilation data are used to verify and/or evaluate the forecast results by the MET tools Model Evaluation Tools (MET).

  12. Palaeomagnetism of lower cretaceous tuffs from Yukon-Kuskokwim delta region, western Alaska

    USGS Publications Warehouse

    Globerman, B.R.; Coe, R.S.; Hoare, J.M.; Decker, J.

    1983-01-01

    During the past decade, the prescient arguments1-3 for the allochthoneity of large portions of southern Alaska have been corroborated by detailed geological and palaeomagnetic studies in south-central Alaska 4-9 the Alaska Peninsula10, Kodiak Island11,12 and the Prince William Sound area13 (Fig. 1). These investigations have demonstrated sizeable northward displacements for rocks of late Palaeozoic, Mesozoic, and early Tertiary age in those regions, with northward motion at times culminating in collision of the allochthonous terranes against the backstop of 'nuclear' Alaska14,15. A fundamental question is which parts of Alaska underwent significantly less latitudinal translation relative to the 'stable' North American continent, thereby serving as the 'accretionary nucleus' into which the displaced 'microplates'16 were eventually incorporated17,18? Here we present new palaeomagnetic results from tuffs and associated volcaniclastic rocks of early Cretaceous age from the Yukon-Kuskokwin delta region in western Alaska. These rocks were probably overprinted during the Cretaceous long normal polarity interval, although a remagnetization event as recent as Palaeocene cannot be ruled out. This overprint direction is not appreciably discordant from the expected late Cretaceous direction for cratonal North America. The implied absence of appreciable northward displacement for this region is consistent with the general late Mesozoic-early Tertiary tectonic pattern for Alaska, based on more definitive studies: little to no poleward displacement for central Alaska, though substantially more northward drift for the 'southern Alaska terranes' (comprising Alaska Peninsula, Kodiak Island, Prince William Sound area, and Matunuska Valley) since late Cretaceous to Palaeocene time. ?? 1983 Nature Publishing Group.

  13. Evaluation of the streamflow-gaging network of Alaska in providing regional streamflow information

    USGS Publications Warehouse

    Brabets, Timothy P.

    1996-01-01

    In 1906, the U.S. Geological Survey (USGS) began operating a network of streamflow-gaging stations in Alaska. The primary purpose of the streamflow- gaging network has been to provide peak flow, average flow, and low-flow characteristics to a variety of users. In 1993, the USGS began a study to evaluate the current network of 78 stations. The objectives of this study were to determine the adequacy of the existing network in predicting selected regional flow characteristics and to determine if providing additional streamflow-gaging stations could improve the network's ability to predict these characteristics. Alaska was divided into six distinct hydrologic regions: Arctic, Northwest, Southcentral, Southeast, Southwest, and Yukon. For each region, historical and current streamflow data were compiled. In Arctic, Northwest, and Southwest Alaska, insufficient data were available to develop regional regression equations. In these areas, proposed locations of streamflow-gaging stations were selected by using clustering techniques to define similar areas within a region and by spatial visual analysis using the precipitation, physiographic, and hydrologic unit maps of Alaska. Sufficient data existed in Southcentral and Southeast Alaska to use generalized least squares (GLS) procedures to develop regional regression equations to estimate the 50-year peak flow, annual average flow, and a low-flow statistic. GLS procedures were also used for Yukon Alaska but the results should be used with caution because the data do not have an adequate spatial distribution. Network analysis procedures were used for the Southcentral, Southeast, and Yukon regions. Network analysis indicates the reduction in the sampling error of the regional regression equation that can be obtained given different scenarios. For Alaska, a 10-year planning period was used. One scenario showed the results of continuing the current network with no additional gaging stations and another scenario showed the results

  14. The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    McCulloch, David S.; Tuthill, Samuel J.; Laird, Wilson M.; Case, J.E.; Barnes, D.F.; Plafker, George; Robbins, S.L.; Kachadoorian, Reuben; Ferrians, Oscar J.; Foster, Helen L.; Karlstrom, Thor N.V.; Kirkby, M.J.; Kirkby, Anne V.; Stanley, Kirk W.

    1966-01-01

    This is the third in a series of six reports that the U.S. Geological Survey published on the results of a comprehensive geologic study that began, as a reconnaissance survey, within 24 hours after the March 27, 1964, Magnitude 9.2 Great Alaska Earthquake and extended, as detailed investigations, through several field seasons. The 1964 Great Alaska earthquake was the largest earthquake in the U.S. since 1700. Professional Paper 543, in 10 parts, describes the regional geologic effects.

  15. Appendix 1: Regional summaries - Alaska

    Treesearch

    Jane M. Wolken; Teresa N. Hollingsworth

    2012-01-01

    Alaskan forests cover one-third of the state’s 52 million ha of land (Parson et al. 2001), and are regionally and globally significant. Ninety percent of Alaskan forests are classified as boreal, representing 4 percent of the world’s boreal forests, and are located throughout interior and south-central Alaska (fig. A1-1). The remaining 10 percent of Alaskan forests are...

  16. 76 FR 8378 - National Park Service Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-DENA] [9924-PYS] National Park Service Alaska Region's Subsistence Resource Commission (SRC) Program AGENCY: National Park Service, Interior. ACTION: Notice of public meeting for the National Park Service Alaska Region's Subsistence Resource...

  17. Selected 1970 Census Data for Alaska Communities. Part 4 - Bristol Bay-Aleutian Region.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Community and Regional Affairs, Juneau. Div. of Community Planning.

    As 1 of 6 regional reports supplying statistical information on Alaska's incorporated and unincorporated communities (those of 25 or more people), this report on Alaska's Bristol Bay-Aleutian Region presents data derived from the 1970 U.S. Census first-count microfilm. Organized via the 3 Bristol Bay-Aleutian census divisions, data are presented…

  18. 76 FR 2027 - Fisheries of the Exclusive Economic Zone Off Alaska; Steller Sea Lion Protection Measures for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    .... 101006495-0498-01] RIN 0648-BA31 Fisheries of the Exclusive Economic Zone Off Alaska; Steller Sea Lion Protection Measures for the Bering Sea and Aleutian Islands Groundfish Fisheries Off Alaska AGENCY: National... 13, 2010, to implement Steller sea lion protection measures to ensure that the Bering Sea and...

  19. 75 FR 77535 - Fisheries of the Exclusive Economic Zone Off Alaska; Steller Sea Lion Protection Measures for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    .... 101006495-0498-01] RIN 0648-BA31 Fisheries of the Exclusive Economic Zone Off Alaska; Steller Sea Lion Protection Measures for the Bering Sea and Aleutian Islands Groundfish Fisheries Off Alaska AGENCY: National... sea lion protection measures to insure that the Bering Sea and Aleutian Islands management area (BSAI...

  20. National Hydroelectric Power Resources Study:Regional Assessment: Volume XXIII: Alaska and Hawaii

    DTIC Science & Technology

    1981-09-01

    amount of recoverable geothermal energy is still unknown, a test well (HGP-A) was drilled 6,450 feet into the eastern rift of Kilauea volcano on...US Army Corps of Engineers National Hydroelectric Power Resources Study Volume XXIII September 1 981 Regional Assessment: Alaska and Hawaii ...National Hydroelectric Power Resources Study: Final Regional Assessment; Alaska and Hawaii IS. PERFORMING ORG. REPORT NUMBER IWR 82-𔃻-23 7. AUTHOR(a) 8

  1. 75 FR 81921 - Fisheries of the Exclusive Economic Zone Off Alaska; Steller Sea Lion Protection Measures for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    .... 101006495-0498-01] RIN 0648-BA31 Fisheries of the Exclusive Economic Zone Off Alaska; Steller Sea Lion Protection Measures for the Bering Sea and Aleutian Islands Groundfish Fisheries Off Alaska; Correction... interim final rule pertaining to Fisheries of the Exclusive Economic Zone Off Alaska; Steller Sea Lion...

  2. 76 FR 59997 - Newspapers To Be Used by the Alaska Region for Publication of Legal Notices of Proposed Actions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... Register. ADDRESSES: Robin Dale, Alaska Region Group Leader for Appeals, Litigation and FOIA; Forest Service, Alaska Region; P.O. Box 21628; Juneau, Alaska 99802-1628. FOR FURTHER INFORMATION CONTACT: Robin...

  3. Alaska Tidal Datum Portal - Alaska Tidal Datum Calculator | Alaska Division

    Science.gov Websites

    Coastal Hazards Program Guide to Geologic Hazards in Alaska MAPTEACH Tsunami Inundation Mapping Energy Portal main content Alaska Tidal Datum Portal Unambiguous vertical datums in the coastal environment are projects to ensure protection of human life, property, and the coastal environment. January 2017 - Update

  4. 30 CFR 250.1166 - What additional reporting is required for developments in the Alaska OCS Region?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Requirements Other Requirements § 250.1166... development in the Alaska OCS Region, you must submit an annual reservoir management report to the Regional... request an MER for each producing sensitive reservoir in the Alaska OCS Region, unless otherwise...

  5. U.S. Global Climate Change Impacts Report, Alaska Region

    NASA Astrophysics Data System (ADS)

    McGuire, D.

    2009-12-01

    The assessment of the Global Climate Change Impacts in the United States includes analyses of the potential climate change impacts in Alaska. The resulting findings are discussed in this presentation, with the effects on water resources discussed separately. Major findings include: Summers are getting hotter and drier, with increasing evaporation outpacing increased precipitation. Climate changes are already affecting water, energy, transportation, agriculture, ecosystems, and health. These impacts are different from region to region and will grow under projected climate change. Wildfires and insect problems are increasing. Climate plays a key role in determining the extent and severity of insect outbreaks and wildfire. The area burned in North America’s northern forest that spans Alaska and Canada tripled from the 1960s to the 1990s. During the 1990s, south-central Alaska experienced the largest outbreak of spruce bark beetles in the world because of warmer weather in all seasons of the year. Under changing climate conditions, the average area burned per year in Alaska is projected to double by the middle of this century10. By the end of this century, area burned by fire is projected to triple under a moderate greenhouse gas emissions scenario and to quadruple under a higher emissions scenario. Close-bodied lakes are declining in area. A continued decline in the area of surface water would present challenges for the management of natural resources and ecosystems on National Wildlife Refuges in Alaska. These refuges, which cover over 77 million acres (21 percent of Alaska) and comprise 81 percent of the U.S. National Wildlife Refuge System, provide a breeding habitat for millions of waterfowl and shorebirds that winter in the lower 48 states. Permafrost thawing will damage public and private infrastructure. Land subsidence (sinking) associated with the thawing of permafrost presents substantial challenges to engineers attempting to preserve infrastructure in

  6. Seroprevalence of Brucella antibodies in harbor seals in Alaska, USA, with age, regional, and reproductive comparisons.

    PubMed

    Hoover-Miller, A; Dunn, J L; Field, C L; Blundell, G; Atkinson, S

    2017-09-20

    Populations of harbor seal Phoca vitulina in the Gulf of Alaska have dramatically declined during the past 4 decades. Numbers of seals in Glacier Bay, in southeast Alaska, USA, have also declined despite extensive protection. Causes of the declines and slow recovery are poorly understood. Brucellosis is a zoonotic disease that adversely affects reproduction in many domestic species. We measured the seroprevalence of Brucella antibodies in 554 harbor seals in 3 Alaska locations: Prince William Sound (PWS), Glacier Bay (GB), and Tracy Arm Fords Terror (TAFT) Wilderness Area. Objectives included testing for regional, sex, age, and female reproductive state differences in Brucella antibody seroprevalence, persistence in titers in recaptured seals, and differences in titers between mother seals and their pups. Overall, 52% of adults (AD), 53% of subadults (SA), 77% of yearlings (YRL), and 26% of <5 mo old pups were seropositive. Matched mother-pup samples were consistent with dependent pups acquiring maternal passive immunity to Brucella. Results show higher seroprevalence (64%) for AD and SA seals in the depressed and declining populations in PWS and GB than in TAFT (29%). Lactating females were less likely to be seropositive than other AD females, including pregnant females. Further research is needed to seek evidence of Brucella infection in Alaskan harbor seals, identify effects on neonatal viability, and assess zoonotic implications for Alaska Natives who rely on harbor seals for food.

  7. 40 CFR 52.71 - Classification of regions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Classification of regions. 52.71... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alaska § 52.71 Classification of regions. The Alaska plan was evaluated on the basis of the following classifications: Air quality control Region...

  8. 40 CFR 52.71 - Classification of regions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Classification of regions. 52.71... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alaska § 52.71 Classification of regions. The Alaska plan was evaluated on the basis of the following classifications: Air quality control Region...

  9. 40 CFR 52.71 - Classification of regions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alaska § 52.71 Classification of regions. The Alaska plan was evaluated on the basis of the following classifications: Air quality control Region... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Classification of regions. 52.71...

  10. 40 CFR 52.71 - Classification of regions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alaska § 52.71 Classification of regions. The Alaska plan was evaluated on the basis of the following classifications: Air quality control Region... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Classification of regions. 52.71...

  11. 76 FR 41763 - Proposed Information Collection; Comment Request; Alaska Region Logbook Family of Forms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... (NMFS) Alaska Region manages the United States (U.S.) groundfish fisheries of the Exclusive Economic... monitoring of the groundfish fisheries of the EEZ off Alaska. II. Method of Collection Paper and electronic logbooks, paper and electronic reports, and telephone calls are required from participants, and methods of...

  12. 76 FR 7518 - Outer Continental Shelf Air Regulations Consistency Update for Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 55 [EPA-R10-OAR-2011-0045; FRL-9265-3] Outer Continental Shelf Air Regulations Consistency Update for Alaska AGENCY: Environmental Protection Agency (``EPA... Greaves, Federal and Delegated Air Programs Unit, U.S. Environmental Protection Agency, Region 10, 1200...

  13. Regional biomass stores and dynamics in forests of coastal Alaska

    Treesearch

    Mikhaill A. Yatskov; Mark E. Harmon; Olga N. Krankina; Tara M. Barrett; Kevin R. Dobelbower; Andrew N. Gray; Becky Fasth; Lori Trummer; Toni L. Hoyman; Chana M. Dudoit

    2015-01-01

    Coastal Alaska is a vast forested region (6.2 million ha) with the potential to store large amounts of carbon in live and dead biomass thus influencing continental and global carbon dynamics. The main objectives of this study were to assess regional biomass stores, examine the biomass partitioning between live and dead pools, and evaluate the effect of disturbance on...

  14. 76 FR 59110 - Newspapers To Be Used by the Alaska Region for Publication of Legal Notices of Proposed Hazardous...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... Federal Register. ADDRESSES: Robin Dale, Alaska Region Group Leader for Appeals, Litigation and FOIA...: Robin Dale; Alaska Region Group Leader for Appeals, Litigation and FOIA; (907) 586-9344. SUPPLEMENTARY...

  15. Regional cooperation and transportation planning in Alaska : a regional models of cooperation peer exchange summary report.

    DOT National Transportation Integrated Search

    2017-01-31

    This report summarizes the proceedings of a Regional Models of Cooperation Virtual Peer Exchange Workshop held on March 9 10, 2016 for the State of Alaska. Participants discussed the benefits and challenges of cooperation across jurisdictions and...

  16. 78 FR 4378 - Annual List of Newspapers To Be Used by the Alaska Region for Publication of Legal Notices of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... superceded by a new list, published in the Federal Register. ADDRESSES: Robin Dale, Alaska Region Group... 99802-1628. FOR FURTHER INFORMATION CONTACT: Robin Dale; Alaska Region Group Leader for Appeals...

  17. Alaska's State Forests

    Science.gov Websites

    Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans

  18. Establishing a baseline for regional scale monitoring of eelgrass (Zostera marina) habitat on the lower Alaska Peninsula

    USGS Publications Warehouse

    Hogrefe, Kyle R.; Ward, David H.; Donnelly, Tyrone F.; Dau, Niels

    2014-01-01

    Seagrass meadows, one of the world’s most widespread and productive ecosystems, provide a wide range of services with real economic value. Worldwide declines in the distribution and abundance of seagrasses and increased threats to coastal ecosystems from climate change have prompted a need to acquire baseline data for monitoring and protecting these important habitats. We assessed the distribution and abundance of eelgrass (Zostera marina) along nearly 1200 km of shoreline on the lower Alaska Peninsula, a region of expansive eelgrass meadows whose status and trends are poorly understood. We demonstrate the effectiveness of a multi-scale approach by using Landsat satellite imagery to map the total areal extent of eelgrass while integrating field survey data to improve map accuracy and describe the physical and biological condition of the meadows. Innovative use of proven methods and processing tools was used to address challenges inherent to remote sensing in high latitude, coastal environments. Eelgrass was estimated to cover ~31,000 ha, 91% of submerged aquatic vegetation on the lower Alaska Peninsula, nearly doubling the known spatial extent of eelgrass in the region. Mapping accuracy was 80%–90% for eelgrass distribution at locations containing adequate field survey data for error analysis.

  19. Relationship of Social Network to Protective Factors in Suicide and Alcohol Use Disorder Intervention for Rural Yup’ik Alaska Native Youth

    PubMed Central

    Philip, Jacques; Ford, Tara; Henry, David; Rasmus, Stacy; Allen, James

    2015-01-01

    Suicide and alcohol use disorders are significant Alaska Native health disparities, yet there is limited understanding of protection and no studies of social network factors in protection in this or other populations. The Qungasvik intervention enhances protective factors from suicide and alcohol use disorders through activities grounded in Yup’ik cultural practices and values. Identification of social network factors associated with protection within the cultural context of these tight, close knit, and high density rural Yup’ik Alaska Native communities in southwest Alaska can help identify effective prevention strategies for suicide and alcohol use disorder risk. Using data from ego-centered social network and protective factors from suicide and alcohol use disorders surveys with 50 Yup’ik adolescents, we provide descriptive data on structural and network composition variables, identify key network variables that explain major proportions of the variance in a four principal component structure of these network variables, and demonstrate the utility of these key network variables as predictors of family and community protective factors from suicide and alcohol use disorder risk. Connections to adults and connections to elders, but not peer connections, emerged as predictors of family and community level protection, suggesting these network factors as important intervention targets for intervention. PMID:27110094

  20. Late quaternary regional geoarchaeology of Southeast Alaska Karst: A progress report

    USGS Publications Warehouse

    Dixon, E.J.; Heaton, T.H.; Fifield, T.E.; Hamilton, T.D.; Putnam, D.E.; Grady, F.

    1997-01-01

    Karst systems, sea caves, and rock shelters within the coastal temperate rain forest of Alaska's Alexander Archipelago preserve important records of regional archaeology, sea level history, glacial and climatic history, and vertebrate paleontology. Two 14C AMS dates on human bone discovered in a remote cave (49-PET-408) on Prince of Wales Island document the oldest reliably dated human in Alaska to ca. 9800 B.P. A series of 14C AMS dates from cave deposits span the past 40,000 years and provide the first evidence of Pleistocene faunas from the northwest coast of North America. Other discoveries include sea caves and marine beach deposits elevated above modern sea level, extensive solution caves, and mammalian remains of species previously undocumented within the region. Records of human activity, including cave art, artifacts, and habitation sites may provide new insights into the early human colonization of the Americas. ??1997 John Wiley & Sons, Inc.

  1. Wilderness insights From Alaska: Past, present, and future

    Treesearch

    Deborah L. Williams

    2007-01-01

    For many reasons, a significant percentage of Alaska’s wildlands have been successfully protected. The passage of the Alaska National Interest Lands Conservation Act (ANILCA), in particular, represents one of the greatest land protection measures in human history. Numerous important factors have contributed to Alaska’s conservation successes, and many of these factors...

  2. The complex Chukchi Borderland region as part of the Arctic Alaska extended margin

    NASA Astrophysics Data System (ADS)

    Saltus, R.; Hutchinson, D. R.; Miller, E. L.

    2017-12-01

    The Chukchi Borderland region (CBR; includes the Chukchi Plateau and its surrounding component elevations) is a physiographically complex and somewhat enigmatic seafloor high adjacent to the broad Chukchi Shelf in the Alaska/Chukotka quadrant of the Amerasian Basin beneath the Arctic Ocean. The CBR includes several physiographic sub-components including the relatively high-standing Northwind Ridge and Northwind Plain as well as a lower-standing northern region (here called the North Chukchi Component Elevation or NCCE) that consists of several un-named knolls, ramps, and benches. The CBR shows numerous N-S physiographic features including ridges and escarpments related to extension. The CBR adjoins the Chukchi Shelf to the south, abuts the Canada Basin to the east, and is separated on the west and north from the Mendeleev and Alpha Ridges by the Chukchi Plain, the Mendeleev Plain, and the Nautilus Basin. Available geophysical data, comparative physiography/geomorphology, and geologic analysis show that the CBR is continuous with Arctic Alaska and the adjoining Chukchi Shelf. CBR, Arctic Alaska, and the Chukchi Shelf share common early Paleozoic basement elements as well as Ellesmerian and younger cover sequences. The CBR owes its complex physiographic and structural character to its central location relative to the multiple extensional domains associated with the multi-stage rift formation of the Amerasian Basin, large igneous province-influenced volcanism associated with the Alpha and Mendeleev regions on the north and west, and hyper-extension of continental crust to the east in the deep Canada Basin. The CBR is often portrayed as an independent tectonic element within Arctic tectonic reconstructions, but we argue that models for the formation of the Amerasian Basin should include the CBR as an integral component of the Arctic Alaska microplate.

  3. Alaska Interagency Ecosystem Health Work Group

    USGS Publications Warehouse

    Shasby, Mark

    2009-01-01

    The Alaska Interagency Ecosystem Health Work Group is a community of practice that recognizes the interconnections between the health of ecosystems, wildlife, and humans and meets to facilitate the exchange of ideas, data, and research opportunities. Membership includes the Alaska Native Tribal Health Consortium, U.S. Geological Survey, Alaska Department of Environmental Conservation, Alaska Department of Health and Social Services, Centers for Disease Control and Prevention, U.S. Fish and Wildlife Service, Alaska Sea Life Center, U.S. Environmental Protection Agency, and Alaska Department of Fish and Game.

  4. A Protective Factors Model for Alcohol Abuse and Suicide Prevention among Alaska Native Youth

    PubMed Central

    Allen, James; Mohatt, Gerald V.; Fok, Carlotta Ching Ting; Henry, David; Burkett, Rebekah

    2014-01-01

    This study provides an empirical test of a culturally grounded theoretical model for prevention of alcohol abuse and suicide risk with Alaska Native youth, using a promising set of culturally appropriate measures for the study of the process of change and outcome. This model is derived from qualitative work that generated an heuristic model of protective factors from alcohol (Allen at al., 2006; Mohatt, Hazel et al., 2004; Mohatt, Rasmus et al., 2004). Participants included 413 rural Alaska Native youth ages 12-18 who assisted in testing a predictive model of Reasons for Life and Reflective Processes about alcohol abuse consequences as co-occurring outcomes. Specific individual, family, peer, and community level protective factor variables predicted these outcomes. Results suggest prominent roles for these predictor variables as intermediate prevention strategy target variables in a theoretical model for a multilevel intervention. The model guides understanding of underlying change processes in an intervention to increase the ultimate outcome variables of Reasons for Life and Reflective Processes regarding the consequences of alcohol abuse. PMID:24952249

  5. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  6. Southwest Alaska Regional Geothermal Energy Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdmann, Gwen

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clearmore » Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.« less

  7. The United States National Climate Assessment - Alaska Technical Regional Report

    USGS Publications Warehouse

    Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart; Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart

    2012-01-01

    The Alaskan landscape is changing, both in terms of effects of human activities as a consequence of increased population, social and economic development and their effects on the local and broad landscape; and those effects that accompany naturally occurring hazards such as volcanic eruptions, earthquakes, and tsunamis. Some of the most prevalent changes, however, are those resulting from a changing climate, with both near term and potential upcoming effects expected to continue into the future. Alaska's average annual statewide temperatures have increased by nearly 4°F from 1949 to 2005, with significant spatial variability due to the large latitudinal and longitudinal expanse of the State. Increases in mean annual temperature have been greatest in the interior region, and smallest in the State's southwest coastal regions. In general, however, trends point toward increases in both minimum temperatures, and in fewer extreme cold days. Trends in precipitation are somewhat similar to those in temperature, but with more variability. On the whole, Alaska saw a 10-percent increase in precipitation from 1949 to 2005, with the greatest increases recorded in winter. The National Climate Assessment has designated two well-established scenarios developed by the Intergovernmental Panel on Climate Change (Nakicenovic and others, 2001) as a minimum set that technical and author teams considered as context in preparing portions of this assessment. These two scenarios are referred to as the Special Report on Emissions Scenarios A2 and B1 scenarios, which assume either a continuation of recent trends in fossil fuel use (A2) or a vigorous global effort to reduce fossil fuel use (B1). Temperature increases from 4 to 22°F are predicted (to 2070-2099) depending on which emissions scenario (A2 or B1) is used with the least warming in southeast Alaska and the greatest in the northwest. Concomitant with temperature changes, by the end of the 21st century the growing season is expected

  8. Alaska Community Forest Council

    Science.gov Websites

    Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans

  9. 30 CFR 250.1166 - What additional reporting is required for developments in the Alaska OCS Region?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and... annual reservoir management report to the Regional Supervisor. The report must contain information... sensitive reservoir in the Alaska OCS Region, unless otherwise instructed by the Regional Supervisor. ...

  10. A protective factors model for alcohol abuse and suicide prevention among Alaska Native youth.

    PubMed

    Allen, James; Mohatt, Gerald V; Fok, Carlotta Ching Ting; Henry, David; Burkett, Rebekah

    2014-09-01

    This study provides an empirical test of a culturally grounded theoretical model for prevention of alcohol abuse and suicide risk with Alaska Native youth, using a promising set of culturally appropriate measures for the study of the process of change and outcome. This model is derived from qualitative work that generated an heuristic model of protective factors from alcohol (Allen et al. in J Prev Interv Commun 32:41-59, 2006; Mohatt et al. in Am J Commun Psychol 33:263-273, 2004a; Harm Reduct 1, 2004b). Participants included 413 rural Alaska Native youth ages 12-18 who assisted in testing a predictive model of Reasons for Life and Reflective Processes about alcohol abuse consequences as co-occurring outcomes. Specific individual, family, peer, and community level protective factor variables predicted these outcomes. Results suggest prominent roles for these predictor variables as intermediate prevention strategy target variables in a theoretical model for a multilevel intervention. The model guides understanding of underlying change processes in an intervention to increase the ultimate outcome variables of Reasons for Life and Reflective Processes regarding the consequences of alcohol abuse.

  11. Alaska Timber Jobs Task Force

    Science.gov Websites

    Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans

  12. Species List of Alaskan Birds, Mammals, Fish, Amphibians, Reptiles, and Invertebrates. Alaska Region Report Number 82.

    ERIC Educational Resources Information Center

    Taylor, Tamra Faris

    This publication contains a detailed list of the birds, mammals, fish, amphibians, reptiles, and invertebrates found in Alaska. Part I lists the species by geographical regions. Part II lists the species by the ecological regions of the state. (CO)

  13. 75 FR 31761 - Proposed Information Collection; Comment Request; Alaska Region Gear Identification Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... Collection; Comment Request; Alaska Region Gear Identification Requirements AGENCY: National Oceanic and... gear aids law enforcement and enables other fishermen to report on misplaced gear. II. Method of Collection No information is submitted; this is a gear-marking requirement. III. Data OMB Control Number...

  14. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  15. Alaska Consumer Laws - Consumer Protection Topic

    Science.gov Websites

    Attorney General and Department of Law staff may not provide legal advice to private citizens or organizations. Please contact an attorney if you need legal advice. The Alaska Lawyer Referral Service or your

  16. Stakeholder perceptions of collaboration for managing nature-based recreation in a coastal protected area in Alaska

    Treesearch

    Emily F. Pomeranz; Mark D. Needham; Linda E. Kruger

    2013-01-01

    Voluntary codes of conduct and best management practices are increasingly popular methods for addressing impacts of recreation and tourism in protected areas. In southeast Alaska, for example, a collaborative stakeholder process has been used for creating, implementing, and managing the voluntary Wilderness Best Management Practices (WBMP) for the Tracy Arm- Fords...

  17. Metamorphic facies map of Southeastern Alaska; distribution, facies, and ages of regionally metamorphosed rocks

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Brew, D.A.; Douglass, S.L.

    1996-01-01

    Nearly all of the bedrock in Southeastern Alaska has been metamorphosed, much of it under medium-grade conditions during metamorphic episodes that were associated with widespread plutonism. The oldest metamorphisms affected probable arc rocks near southern Prince of Wales Island and occurred during early and middle Paleozoic orogenies. The predominant period of metamorphism and associated plutonism occurred during Early Cretaceous to early Tertiary time and resulted in the development of the Coast plutonic-metamorphic complex that extends along the inboard half of Southeastern Alaska. Middle Tertiary regional thermal metamorphism affected a large part of Baranof Island.

  18. Dental caries in rural Alaska Native children--Alaska, 2008.

    PubMed

    2011-09-23

    In April 2008, the Arctic Investigations Program (AIP) of CDC was informed by the Alaska Department of Health and Social Services (DHSS) of a large number of Alaska Native (AN) children living in a remote region of Alaska who required full mouth dental rehabilitations (FMDRs), including extractions and/or restorations of multiple carious teeth performed under general anesthesia. In this remote region, approximately 400 FMDRs were performed in AN children aged <6 years in 2007; the region has approximately 600 births per year. Dental caries can cause pain, which can affect children's normal growth and development. AIP and Alaska DHSS conducted an investigation of dental caries and associated risk factors among children in the remote region. A convenience sample of children aged 4-15 years in five villages (two with fluoridated water and three without) was examined to estimate dental caries prevalence and severity. Risk factor information was obtained by interviewing parents. Among children aged 4-5 years and 12-15 years who were evaluated, 87% and 91%, respectively, had dental caries, compared with 35% and 51% of U.S. children in those age groups. Among children from the Alaska villages, those aged 4-5 years had a mean of 7.3 dental caries, and those aged 12-15 years had a mean of 5.0, compared with 1.6 and 1.8 dental caries in same-aged U.S. children. Of the multiple factors assessed, lack of water fluoridation and soda pop consumption were significantly associated with dental caries severity. Collaborations between tribal, state, and federal agencies to provide effective preventive interventions, such as water fluoridation of villages with suitable water systems and provision of fluoride varnishes, should be encouraged.

  19. Firewood on Alaska State Lands

    Science.gov Websites

    Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans

  20. Prevalence of Hypertension and Associated Risk Factors in Western Alaska Native People: The Western Alaska Tribal Collaborative for Health (WATCH) Study.

    PubMed

    Jolly, Stacey E; Koller, Kathryn R; Metzger, Jesse S; Day, Gretchen M; Silverman, Angela; Hopkins, Scarlett E; Austin, Melissa A; Boden-Albala, Bernadette; Ebbesson, Sven O E; Boyer, Bert B; Howard, Barbara V; Umans, Jason G

    2015-10-01

    Hypertension is a common chronic disease and a key risk factor in the development of cardiovascular disease. The Western Alaska Tribal Collaborative for Health study consolidates baseline data from four major cohorts residing in the Norton Sound and Yukon-Kuskokwim regions of western Alaska. This consolidated cohort affords an opportunity for a systematic analysis of high blood pressure and its correlates in a unique population with high stroke rates over a wide age range. While the prevalence of hypertension among western Alaska Native people (30%, age-standardized) is slightly less than that of the US general population (33%), cardiovascular disease is a leading cause of mortality in this rural population. The authors found that improvement is needed in hypertension awareness as about two thirds (64%) of patients reported awareness and only 39% with hypertension were controlled on medication. Future analyses assessing risk and protective factors for incident hypertension in this population are indicated. © 2015 Wiley Periodicals, Inc.

  1. Prevalence of Hypertension and Associated Risk Factors in Western Alaska Native People: The Western Alaska Tribal Collaborative for Health (WATCH) Study

    PubMed Central

    Jolly, Stacey E.; Koller, Kathryn R.; Metzger, Jesse S.; Day, Gretchen M.; Silverman, Angela; Hopkins, Scarlett E.; Austin, Melissa A.; Boden-Albala, Bernadette; Ebbesson, Sven O.E.; Boyer, Bert B.; Howard, Barbara V.; Umans, Jason G.

    2014-01-01

    Hypertension is a common chronic disease and a key risk factor in the development of cardiovascular disease. The Western Alaska Tribal Collaborative for Health Study consolidates baseline data from four major cohorts residing in the Norton Sound and Yukon-Kuskokwim regions of western Alaska. This consolidated cohort affords an opportunity for a systematic analysis of high blood pressure and its correlates in a unique population that has high stroke rates over a wide age range. While the prevalence of hypertension among western Alaska Native people (30%, age-standardized) is slightly less than that of the U.S. general population (33%), cardiovascular disease is a leading cause of mortality in this rural population. We found that improvement is needed in hypertension awareness as about two-thirds (64%) reported awareness and only 39% with hypertension were controlled on medication. Future analyses assessing risk and protective factors for incident hypertension in this population are indicated. PMID:25644577

  2. Home Page, Alaska Department of Labor and Workforce Development

    Science.gov Websites

    Analysis Return on Investment 0.jpg 1 1 1 1 1 Play 0.jpg Alaska Gasline Workforce Plan 1.jpg Alaska Hire 2 Protection Program May 14, 2018 Alaska Workforce Investment Board Endorses Gasline Workforce Plan Subscribe Administrative Services Alaska Workforce Investment Board Workers' Compensation Appeals Commission AVTEC

  3. Petroleum exploration plays and resource estimates, 1989, onshore United States; Region 1, Alaska; Region 2, Pacific Coast

    USGS Publications Warehouse

    Powers, Richard B.

    1993-01-01

    This study provides brief discussions of the petroleum geology, play descriptions, and resource estimates of 220 individually assessed exploration plays in all 80 onshore geologic provinces within nine assessment regions of the continental United States in 1989; these 80 onshore provinces were assessed in connection with the determination of the Nation's estimated undiscovered resources of oil and gas. The present report covers the 25 provinces that make up Region 1, Alaska, and Region 2, Pacific Coast. It is our intention to issue Region 3, Colorado Plateau and Basin and Range, and Region 4, Rocky Mountains and Northern Great Plains, in book form as well. Regions 5 through 9 (West Texas and Eastern New Mexico, Gulf Coast, Midcontinent, Eastern Interior and Atlantic Coast) will be released individually, as Open-File Reports.

  4. 75 FR 59687 - Proposed Information Collection; Comment Request; Alaska Region Bering Sea & Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... among harvesters, processors, and coastal communities and monitors the ``economic stability for... Collection; Comment Request; Alaska Region Bering Sea & Aleutian Islands (BSAI) Crab Economic Data Reports... CR Program's mandatory economic data collection report (EDR) used to assess the efficacy of the CR...

  5. Modeling vulnerability to thermokarst disturbance and its consequences on regional land cover dynamic in boreal Alaska

    NASA Astrophysics Data System (ADS)

    Genet, H.; Lara, M. J.; Bolton, W. R.; McGuire, A. D.

    2016-12-01

    Estimation of the magnitude and consequences of permafrost degradation in high latitude is one of the most urgent research challenges related to contemporary and future climate change. In addition to widespread vertical degradation, ice-rich permafrost can thaw laterally, often triggering abrupt subsidence of the ground surface called thermokart. In this depression, permafrost plateau vegetation will transition to wetlands or lakes, while surface water of the surrounding landscape may drain towards it. These abrupt changes in land cover and hydrology can have dramatic consequences from wildlife habitat and biogeochemical cycles. Although recent studies have documented an acceleration of the rates of thermokarst formation in boreal and arctic peatlands, the importance of thermokarst at the regional level is still poorly understood. To better understand the vulnerability of the landscape to thermokarst disturbance in Alaska, we developed the Alaska Thermokarst Model (ATM), a state-and-transition model designed to simulate land cover change associated with thermokarst disturbance. In boreal regions, the model simulates transitions from permafrost plateau forest to thermokarst lake, bog or fen, as a function of climate and fire dynamics, permafrost characteristics and physiographic information. This model is designed and parameterized based on existing literature and a new repeated imagery analysis we conducted in a major wetland complex in boreal Alaska. We will present simulation and validation of thermokarst dynamic and associated land cover change in two wetland complexes in boreal Alaska, from 2000 to 2100 for six climate scenarios associating three AR5 emission scenarios and two global circulation model simulations. By 2100, ATM is predicting decrease between 3.5 and 9.1 % in the extent of permafrost plateau forest, mostly to the benefit of thermokarst fen, and lake. This analysis allowed us to assess the importance of thermokarst dynamics and landscape evolution

  6. Geology of the Prince William Sound and Kenai Peninsula region, Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.

    2012-01-01

    The Prince William Sound and Kenai Peninsula region includes a significant part of one of the world’s largest accretionary complexes and a small part of the classic magmatic arc geology of the Alaska Peninsula. Physiographically, the map area ranges from the high glaciated mountains of the Alaska and Aleutian Ranges and the Chugach Mountains to the coastal lowlands of Cook Inlet and the Copper River delta. Structurally, the map area is cut by a number of major faults and postulated faults, the most important of which are the Border Ranges, Contact, and Bruin Bay Fault systems. The rocks of the map area belong to the Southern Margin composite terrane, a Tertiary and Cretaceous or older subduction-related accretionary complex, and the Alaska Peninsula terrane. Mesozoic rocks between these two terranes have been variously assigned to the Peninsular or the Hidden terranes. The oldest rocks in the map area are blocks of Paleozoic age within the mélange of the McHugh Complex; however, the protolith age of the greenschist and blueschist within the Border Ranges Fault zone is not known. Extensive glacial deposits mantle the Kenai Peninsula and the lowlands on the west side of Cook Inlet and are locally found elsewhere in the map area. This map was compiled from existing mapping, without generalization, and new or revised data was added where available.

  7. Malaspina Glacier, Alaska

    NASA Image and Video Library

    2002-02-26

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating. This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03475

  8. Alaska Energy Inventory Project: Consolidating Alaska's Energy Resources

    NASA Astrophysics Data System (ADS)

    Papp, K.; Clough, J.; Swenson, R.; Crimp, P.; Hanson, D.; Parker, P.

    2007-12-01

    Alaska has considerable energy resources distributed throughout the state including conventional oil, gas, and coal, and unconventional coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass. While much of the known large oil and gas resources are concentrated on the North Slope and in the Cook Inlet regions, the other potential sources of energy are dispersed across a varied landscape from frozen tundra to coastal settings. Despite the presence of these potential energy sources, rural Alaska is mostly dependent upon diesel fuel for both electrical power generation and space heating needs. At considerable cost, large quantities of diesel fuel are transported to more than 150 roadless communities by barge or airplane and stored in large bulk fuel tank farms for winter months when electricity and heat are at peak demands. Recent increases in the price of oil have severely impacted the price of energy throughout Alaska, and especially hard hit are rural communities and remote mines that are off the road system and isolated from integrated electrical power grids. Even though the state has significant conventional gas resources in restricted areas, few communities are located near enough to these resources to directly use natural gas to meet their energy needs. To address this problem, the Alaska Energy Inventory project will (1) inventory and compile all available Alaska energy resource data suitable for electrical power generation and space heating needs including natural gas, coal, coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass and (2) identify locations or regions where the most economic energy resource or combination of energy resources can be developed to meet local needs. This data will be accessible through a user-friendly web-based interactive map, based on the Alaska Department of Natural Resources, Land Records Information Section's (LRIS) Alaska Mapper, Google Earth, and Terrago Technologies' Geo

  9. Wood and fish residuals composting in Alaska

    Treesearch

    David Nicholls; Thomas Richard; Jesse A. Micales

    2002-01-01

    The unique climates and industrial mix in southeast and south central Alaska are challenges being met by the region's organics recyclers. OMPOSTING wood residuals in Alaska has become increasingly important in recent years as wood processors and other industrial waste managers search for environmentally sound and profitable outlets. Traditionally, Alaska?s...

  10. Publications - RI 2001-1A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS RI 2001-1A Publication Details Title: Bedrock geologic map of the Chulitna region the Chulitna region, southcentral Alaska: Alaska Division of Geological & Geophysical Surveys ; Other Oversized Sheets Sheet 1 Bedrock geologic map of the Chulitna region, southcentral Alaska, scale 1

  11. Estimating regional-scale methane flux and budgets using CARVE aircraft measurements over Alaska

    NASA Astrophysics Data System (ADS)

    Hartery, Sean; Commane, Róisín; Lindaas, Jakob; Sweeney, Colm; Henderson, John; Mountain, Marikate; Steiner, Nicholas; McDonald, Kyle; Dinardo, Steven J.; Miller, Charles E.; Wofsy, Steven C.; Chang, Rachel Y.-W.

    2018-01-01

    Methane (CH4) is the second most important greenhouse gas but its emissions from northern regions are still poorly constrained. In this study, we analyze a subset of in situ CH4 aircraft observations made over Alaska during the growing seasons of 2012-2014 as part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE). Net surface CH4 fluxes are estimated using a Lagrangian particle dispersion model which quantitatively links surface emissions from Alaska and the western Yukon with observations of enhanced CH4 in the mixed layer. We estimate that between May and September, net CH4 emissions from the region of interest were 2.2 ± 0.5 Tg, 1.9 ± 0.4 Tg, and 2.3 ± 0.6 Tg of CH4 for 2012, 2013, and 2014, respectively. If emissions are only attributed to two biogenic eco-regions within our domain, then tundra regions were the predominant source, accounting for over half of the overall budget despite only representing 18 % of the total surface area. Boreal regions, which cover a large part of the study region, accounted for the remainder of the emissions. Simple multiple linear regression analysis revealed that, overall, CH4 fluxes were largely driven by soil temperature and elevation. In regions specifically dominated by wetlands, soil temperature and moisture at 10 cm depth were important explanatory variables while in regions that were not wetlands, soil temperature and moisture at 40 cm depth were more important, suggesting deeper methanogenesis in drier soils. Although similar environmental drivers have been found in the past to control CH4 emissions at local scales, this study shows that they can be used to generate a statistical model to estimate the regional-scale net CH4 budget.

  12. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA..., Waste, and Toxics, U.S. EPA, Region 10, 1200 Sixth Avenue, Suite 900, Mailstop: AWT-122, Seattle, WA...

  13. Mineral deposits and metallogeny of Alaska

    USGS Publications Warehouse

    Goldfarb, Richard J.; Meighan, Corey J.; Meinert, Lawrence D.; Wilson, Frederic H.

    2016-01-01

    Alaska, the largest State within the United States, and mainly located north of latitude 60°, is an important part of the Circum-Arctic region. Alaska is a richly endowed region with a long and complex geologic history. The mining history is short by world standards but nevertheless there are a number of world-class deposits in Alaska, of which Red Dog and Pebble are among the largest of their respective types in the world. Alaska is a collection of geologic terranes or regions having distinct histories, most of which were tectonically assembled in the period from 400 million years to 50 million years ago (late Paleozoic through early Tertiary). They now occur as numerous fault-bounded blocks in the northernmost part of the North American Cordillera on the western margin of the Laurentian craton. These terranes are comprised of rocks ranging in age from Paleoproterozoic to Recent.

  14. Does winter region affect spring arrival time and body mass of king eiders in northern Alaska?

    USGS Publications Warehouse

    Oppel, Steffen; Powell, Abby N.

    2009-01-01

    Events during the non-breeding season may affect the body condition of migratory birds and influence performance during the following breeding season. Migratory birds nesting in the Arctic often rely on endogenous nutrients for reproductive efforts, and are thus potentially subject to such carry-over effects. We tested whether king eider (Somateria spectabilis) arrival time and body mass upon arrival at breeding grounds in northern Alaska were affected by their choice of a winter region in the Bering Sea. We captured birds shortly after arrival on breeding grounds in early June 2002–2006 at two sites in northern Alaska and determined the region in which individuals wintered using satellite telemetry or stable isotope ratios of head feathers. We used generalized linear models to assess whether winter region explained variation in arrival body mass among individuals by accounting for sex, site, annual variation, and the date a bird was captured. We found no support for our hypothesis that either arrival time or arrival body mass of king eiders differed among winter regions. We conclude that wintering in different regions in the Bering Sea is unlikely to have reproductive consequences for king eiders in our study areas.

  15. Assessment of awareness of connectedness as a culturally-based protective factor for Alaska native youth.

    PubMed

    Mohatt, Nathaniel V; Fok, Carlotta Ching Ting; Burket, Rebekah; Henry, David; Allen, James

    2011-10-01

    Research with Native Americans has identified connectedness as a culturally based protective factor against substance abuse and suicide. Connectedness refers to the interrelated welfare of the individual, one's family, one's community, and the natural environment. We developed an 18-item quantitative assessment of awareness of connectedness and tested it with 284 Alaska Native youth. Evaluation with confirmatory factor analysis and item response theory identified a 12-item subset that functions satisfactorily in a second-order four-factor model. The proposed Awareness of Connectedness Scale (ACS) displays good convergent and discriminant validity, and correlates positively with hypothesized protective factors such as reasons for living and communal mastery. The measure has utility in the study of culture-specific protective factors and as an outcomes measure for behavioral health programs with Native American youth.

  16. Assessment of Awareness of Connectedness as a Culturally-based Protective Factor for Alaska Native Youth

    PubMed Central

    Mohatt, Nathaniel V.; Fok, Carlotta Ching Ting; Burket, Rebekah; Henry, David; Allen, James

    2011-01-01

    Research with Native Americans has identified connectedness as a culturally-based protective factor against substance abuse and suicide. Connectedness refers to the interrelated welfare of the individual, one’s family, one’s community, and the natural environment. We developed an 18-item quantitative assessment of awareness of connectedness and tested it with 284 Alaska Native youth. Evaluation with confirmatory factor analysis and item response theory identified a 12-item subset that functions satisfactorily in a second-order, four-factor model. The proposed Awareness of Connectedness Scale displays good convergent and discriminant validity and correlates positively with hypothesized protective factors such as reasons for living and communal mastery. The measure has utility in the study of culture-specific protective factors and as an outcomes measure for behavioral health programs with Native American youth. PMID:21988583

  17. Year-round Regional CO2 Fluxes from Boreal and Tundra Ecosystems in Alaska

    NASA Astrophysics Data System (ADS)

    Commane, R.; Lindaas, J.; Benmergui, J. S.; Luus, K. A.; Chang, R. Y. W.; Daube, B. C.; Euskirchen, E. S.; Henderson, J.; Karion, A.; Miller, J. B.; Miller, S. M.; Parazoo, N.; Randerson, J. T.; Sweeney, C.; Tans, P. P.; Thoning, K. W.; Veraverbeke, S.; Miller, C. E.; Wofsy, S. C.

    2016-12-01

    High-latitude ecosystems could release large amounts of carbon dioxide (CO2) to the atmosphere in a warmer climate. We derive temporally and spatially resolved year-round CO2 fluxes in Alaska from a synthesis of airborne and tower CO2 observations in 2012-2014. We find that tundra ecosystems were net sources of atmospheric CO2. We discuss these flux estimates in the context of long-term CO2 measurements at Barrow, AK, to asses the long term trend in carbon fluxes in the Arctic. Many Earth System Models incorrectly simulate net carbon uptake in Alaska presently. Our results imply that annual net emission of CO2 to the atmosphere may have increased markedly in this region of the Arctic in response to warming climate, supporting the view that climate-carbon feedback is strongly positive in the high Arctic.

  18. Potential for Expanding the Near Real Time ForWarn Regional Forest Monitoring System to Include Alaska

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Gasser, Gerald; Hargrove, William; Smoot, James; Kuper, Philip D.

    2014-01-01

    The on-line near real time (NRT) ForWarn system is currently deployed to monitor regional forest disturbances within the conterminous United States (CONUS), using daily MODIS Aqua and Terra NDVI data to derive monitoring products. The Healthy Forest Restoration Act of 2003 mandated such a system. Work on ForWarn began in 2006 with development and validation of retrospective MODIS NDVI-based forest monitoring products. Subsequently, NRT forest disturbance monitoring products were demonstrated, leading to the actual system deployment in 2010. ForWarn provides new CONUS forest disturbance monitoring products every 8 days, using USGS eMODIS data for current NDVI. ForWarn currently does not cover Alaska, which includes extensive forest lands at risk to multiple biotic and abiotic threats. This poster discusses a case study using Alaska eMODIS Terra data to derive ForWarn like forest change products during the 2010 growing season. The eMODIS system provides current MODIS Terra NDVI products for Alaska. Resulting forest change products were assessed with ground, aerial, and Landsat reference data. When cloud and snow free, these preliminary products appeared to capture regional forest disturbances from insect defoliation and fires; however, more work is needed to mitigate cloud and snow contamination, including integration of eMODIS Aqua data.

  19. 78 FR 10546 - Approval and Promulgation of Implementation Plans; State of Alaska; Regional Haze State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... submittal identifies organic carbon emissions from natural wildfires as the primary contributor to... 20% worst days in Denali National Park were composed of organic carbon from natural fires. Alaska... Organic Matter Carbon (OMC) and Elemental Carbon (EC), it attributes all OMC and EC in the Denali region...

  20. High Resolution Regional Climate Simulations over Alaska

    NASA Astrophysics Data System (ADS)

    Monaghan, A. J.; Clark, M. P.; Arnold, J.; Newman, A. J.; Musselman, K. N.; Barlage, M. J.; Xue, L.; Liu, C.; Gutmann, E. D.; Rasmussen, R.

    2016-12-01

    In order to appropriately plan future projects to build and maintain infrastructure (e.g., dams, dikes, highways, airports), a number of U.S. federal agencies seek to better understand how hydrologic regimes may shift across the country due to climate change. Building on the successful completion of a series of high-resolution WRF simulations over the Colorado River Headwaters and contiguous USA, our team is now extending these simulations over the challenging U.S. States of Alaska and Hawaii. In this presentation we summarize results from a newly completed 4-km resolution WRF simulation over Alaska spanning 2002-2016 at 4-km spatial resolution. Our aim is to gain insight into the thermodynamics that drive key precipitation processes, particularly the extremes that are most damaging to infrastructure.

  1. Integrated resource inventory for southcentral Alaska (INTRISCA)

    NASA Technical Reports Server (NTRS)

    Burns, T.; Carson-Henry, C.; Morrissey, L. A.

    1981-01-01

    The Integrated Resource Inventory for Southcentral Alaska (INTRISCA) Project comprised an integrated set of activities related to the land use planning and resource management requirements of the participating agencies within the southcentral region of Alaska. One subproject involved generating a region-wide land cover inventory of use to all participating agencies. Toward this end, participants first obtained a broad overview of the entire region and identified reasonable expectations of a LANDSAT-based land cover inventory through evaluation of an earlier classification generated during the Alaska Water Level B Study. Classification of more recent LANDSAT data was then undertaken by INTRISCA participants. The latter classification produced a land cover data set that was more specifically related to individual agency needs, concurrently providing a comprehensive training experience for Alaska agency personnel. Other subprojects employed multi-level analysis techniques ranging from refinement of the region-wide classification and photointerpretation, to digital edge enhancement and integration of land cover data into a geographic information system (GIS).

  2. Metabolic syndrome: prevalence among American Indian and Alaska native people living in the southwestern United States and in Alaska.

    PubMed

    Schumacher, Catherine; Ferucci, Elizabeth D; Lanier, Anne P; Slattery, Martha L; Schraer, Cynthia D; Raymer, Terry W; Dillard, Denise; Murtaugh, Maureen A; Tom-Orme, Lillian

    2008-12-01

    Metabolic syndrome occurs commonly in the United States. The purpose of this study was to measure the prevalence of metabolic syndrome among American Indian and Alaska Native people. We measured the prevalence rates of metabolic syndrome, as defined by the National Cholesterol Education Program, among four groups of American Indian and Alaska Native people aged 20 years and older. One group was from the southwestern United States (Navajo Nation), and three groups resided within Alaska. Prevalence rates were age-adjusted to the U.S. adult 2000 population and compared to rates for U.S. whites (National Health and Nutrition Examination Survey [NHANES] 1988-1994). Among participants from the southwestern United States, metabolic syndrome was found among 43.2% of men and 47.3% of women. Among Alaska Native people, metabolic syndrome was found among 26.5% of men and 31.2% of women. In Alaska, the prevalence rate varied by region, ranging among men from 18.9% (western Alaska) to 35.1% (southeast), and among women from 22.0% (western Alaska) to 38.4 % (southeast). Compared to U.S. whites, American Indian/Alaska Native men and women from all regions except western Alaska were more likely to have metabolic syndrome; men in western Alaska were less likely to have metabolic syndrome than U.S. whites, and the prevalence among women in western Alaska was similar to that of U.S. whites. The prevalence rate of metabolic syndrome varies widely among different American Indian and Alaska Native populations. Differences paralleled differences in the prevalence rates of diabetes.

  3. Trends and Disparities in Stroke Mortality by Region for American Indians and Alaska Natives

    PubMed Central

    Ayala, Carma; Valderrama, Amy L.; Veazie, Mark A.

    2014-01-01

    Objectives. We evaluated trends and disparities in stroke death rates for American Indians and Alaska Natives (AI/ANs) and White people by Indian Health Service region. Methods. We identified stroke deaths among AI/AN persons and Whites (adults aged 35 years or older) using National Vital Statistics System data for 1990 to 2009. We used linkages with Indian Health Service patient registration data to adjust for misclassification of race for AI/AN persons. Analyses excluded Hispanics and focused on Contract Health Service Delivery Area (CHSDA) counties. Results. Stroke death rates among AI/AN individuals were higher than among Whites for both men and women in CHSDA counties and were highest in the youngest age groups. Rates and AI/AN:White rate ratios varied by region, with the highest in Alaska and the lowest in the Southwest. Stroke death rates among AI/AN persons decreased in all regions beginning in 2001. Conclusions. Although stroke death rates among AI/AN populations have decreased over time, rates are still higher for AI/AN persons than for Whites. Interventions that address reducing stroke risk factors, increasing awareness of stroke symptoms, and increasing access to specialty care for stroke may be more successful at reducing disparities in stroke death rates. PMID:24754653

  4. Facts About Alaska, Alaska Kids' Corner, State of Alaska

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees State of Alaska Search Home Quick Links Departments Commissioners Employee Whitepages State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  5. Gravity survey and regional geology of the Prince William Sound epicentral region, Alaska: Chapter C in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Case, J.E.; Barnes, D.F.; Plafker, George; Robbins, S.L.

    1966-01-01

    Sedimentary and volcanic rocks of Mesozoic and early Tertiary age form a roughly arcuate pattern in and around Prince William Sound, the epicentral region of the Alaska earthquake of 1964. These rocks include the Valdez Group, a predominantly slate and graywacke sequence of Jurassic and Cretaceous age, and the Orca Group, a younger sequence of early Tertiary age. The Orca consists of a lower unit of dense-average 2.87 g per cm3 (grams per cubic centimeter) pillow basalt and greenstone intercalated with sedimentary rocks and an upper unit of lithologically variable sandstone interbedded with siltstone or argillite. Densities of the clastic rocks in both the Valdez and Orca Groups average about 2.69 g per cm3. Granitic rocks of relatively low density (2.62 g per cm3) cut the Valdez and Orca Groups at several localities. Both the Valdez and the Orca Groups were complexly folded and extensively faulted during at least three major episodes of deformation: an early period of Cretaceous or early Tertiary orogeny, a second orogeny that probably culminated in late Eocene or early Oligocene time and was accompanied or closely followed by emplacement of granitic batholiths, and a third episode of deformation that began in late Cenozoic time and continued intermittently to the present. About 500 gravity stations were established in the Prince William Sound region in conjunction with postearthquake geologic investigations. Simple Bouguer anomaly contours trend approximately parallel to the arcuate geologic structure around the sound. Bouguer anomalies decrease northward from +40 mgal (milligals) at the southwestern end of Montague Island to -70 mgal at College and Harriman Fiords. Most of this change may be interpreted as a regional gradient caused by thickening of the continental crust. Superimposed on the gradient is a prominent gravity high of as much as 65 mgal that extends from Elrington Island on the southwest, across Knight and Glacier Islands to the Ellamar Peninsula

  6. 77 FR 4578 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... Chignik Lake, Alaska, (907) 442-3890, on Wednesday, February 8, 2012. The meeting will start at 1 p.m. and conclude at 5 p.m. or until business is completed. For Further Information on the Aniakchak National.... Federal Subsistence Board Updates 9. Alaska Board of Game Updates 10. Old Business a. Subsistence...

  7. Forest dynamics in the temperate rainforests of Alaska: from individual tree to regional scales

    Treesearch

    Tara M. Barrett

    2015-01-01

    Analysis of remeasurement data from 1079 Forest Inventory and Analysis (FIA) plots revealed multi-scale change occurring in the temperate rainforests of southeast Alaska. In the western half of the region, including Prince William Sound, aboveground live tree biomass and carbon are increasing at a rate of 8 ( ± 2 ) percent per decade, driven by an increase in Sitka...

  8. Bedrock geologic map of the northern Alaska Peninsula area, southwestern Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Blodgett, Robert B.; Blome, Charles D.; Mohadjer, Solmaz; Preller, Cindi C.; Klimasauskas, Edward P.; Gamble, Bruce M.; Coonrad, Warren L.

    2017-03-03

    The northern Alaska Peninsula is a region of transition from the classic magmatic arc geology of the Alaska Peninsula to a Proterozoic and early Paleozoic carbonate platform and then to the poorly understood, tectonically complex sedimentary basins of southwestern Alaska. Physiographically, the region ranges from the high glaciated mountains of the Alaska-Aleutian Range to the coastal lowlands of Cook Inlet on the east and Bristol Bay on the southwest. The lower Ahklun Mountains and finger lakes on the west side of the map area show strong effects from glaciation. Structurally, a number of major faults cut the map area. Most important of these are the Bruin Bay Fault that parallels the coast of Cook Inlet, the Lake Clark Fault that cuts diagonally northeast to southwest across the eastern part of the map area, and the presently active Holitna Fault to the northwest that cuts surficial deposits.Distinctive rock packages assigned to three provinces are overlain by younger sedimentary rocks and intruded by widely dispersed latest Cretaceous and (or) early Tertiary granitic rocks. Much of the east half of the map area lies in the Alaska-Aleutian Range province; the Jurassic to Tertiary Alaska-Aleutian Range batholith and derivative Jurassic sedimentary rocks form the core of this province, which is intruded and overlain by the Aleutian magmatic arc. The Lime Hills province, the carbonate platform, occurs in the north-central part of the map area. The Paleozoic and Mesozoic Ahklun Mountains province in the western part of the map area includes abundant chert, argillite, and graywacke and lesser limestone, basalt, and tectonic mélange. The Kuskokwim Group, an Upper Cretaceous turbidite sequence, is extensively exposed and bounds all three provinces in the west-central part of the map area.

  9. Life cycle costs for Alaska bridges.

    DOT National Transportation Integrated Search

    2014-08-01

    A study was implemented to assist the Alaska Department of Transportation and Public Facilities (ADOT&PF) with life cycle costs for : the Alaska Highway Bridge Inventory. The study consisted of two parts. Part 1 involved working with regional offices...

  10. Wage and Hour Administration, Alaska Department of Labor

    Science.gov Websites

    Preference Enforcement; Licensing Employment Agencies; Construction Contractor Licensing; and Alaska Family Contractor Licensing program protects the public from unlicensed, unbonded contractors, while protecting

  11. 77 FR 5204 - Subsistence Management Regulations for Public Lands in Alaska-2013-14 and 2014-15 Subsistence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ...-3888 or [email protected] . For questions specific to National Forest System lands, contact Steve... economic sector, productivity, jobs, the environment, or other units of the government. (b) Whether the... Indian Affairs; Jerry Berg, Alaska Regional Office, U.S. Fish and Wildlife Service; and Steve Kessler...

  12. Bi-cultural dynamics for risk and protective factors for cardiometabolic health in an Alaska Native (Yup’ik) population

    PubMed Central

    Ryman, Tove K.; Hopkins, Scarlett E.; O'Brien, Diane M.; Bersamin, Andrea; Pomeroy, Jeremy; Thummel, Kenneth E.; Austin, Melissa A.; Boyer, Bert B.; Dombrowski, Kirk

    2017-01-01

    Alaska Native people experience disparities in mortality from heart disease and stroke. This work attempts to better understand the relationships between socioeconomic, behavioral, and cardiometabolic risk factors among Yup’ik people of southwestern Alaska, with a focus on the role of the socioeconomic, and cultural components. Using a cross-sectional sample of 486 Yup’ik adults, we fitted a Partial Least Squares Path Model (PLS-PM) to assess the associations between components, including demographic factors [age and gender], socioeconomic factors [education, economic status, Yup’ik culture, and Western culture], behavioral factors [diet, cigarette smoking and smokeless tobacco use, and physical activity], and cardiometabolic risk factors [adiposity, triglyceride-HDL and LDL lipids, glycemia, and blood pressure]. We found relatively mild associations of education and economic status with cardiometabolic risk factors, in contrast with studies in other populations. The socioeconomic factor and participation in Yup’ik culture had potentially protective associations with adiposity, triglyceride-HDL lipids, and blood pressure, whereas participation in Western culture had a protective association with blood pressure. We also found a moderating effect of participation in Western culture on the relationships between Yup’ik culture participation and both blood pressure and LDL lipids, indicating a potentially beneficial additional effect of bi-culturalism. Our results suggest that reinforcing protective effects of both Yup’ik and Western cultures could be useful for interventions aimed at reducing cardiometabolic health disparities. PMID:29091709

  13. Cardiovascular Disease Among Alaska Native Peoples.

    PubMed

    Jolly, Stacey E; Howard, Barbara V; Umans, Jason G

    2013-12-01

    Although Alaska Native peoples were thought to be protected from cardiovascular disease (CVD), data now show that this is not the case, despite traditional lifestyles and high omega-3 fatty acid intake. In this article, the current understanding of CVD and its risk factors among Alaska Native peoples, particularly among the Yupik and Inupiat populations, will be discussed, using data from three major studies funded by the National Institutes of Health: Genetics of Coronary Artery Disease among Alaska Natives (GOCADAN), Center for Native Health Research (CANHR), and Education and Research Towards Health (EARTH). Data from these epidemiologic studies have focused concern on CVD and its risk factors among Alaska Native peoples. This review will summarize the findings of these three principal studies and will suggest future directions for research and clinical practice.

  14. Functional Assessment of Alaska Peatlands in Cook Inlet Basin, Region 10 Regional Applied Research Effort (RARE)

    EPA Science Inventory

    Peatlands in south central Alaska are the dominant wetland class in the lowlands of the Cook Inlet Basin. Currently Alaska peatlands are extensive and largely pristine but these areas are facing increasing human development. This study focused on obtaining measures of ecologica...

  15. Southwest Alaska Regional Geothermal Energy Projec

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdmann, Gwen

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  16. Forestry timber typing. Tanana demonstration project, Alaska ASVT. [Alaska

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Ambrosia, V. G.

    1982-01-01

    The feasibility of using LANDSAT digital data in conjunction with topographic data to delineate commercial forests by stand size and crown closure in the Tanana River basin of Alaska was tested. A modified clustering approach using two LANDSAT dates to generate an initial forest type classification was then refined with topographic data. To further demonstrate the ability of remotely sensed data in a fire protection planning framework, the timber type data were subsequently integrated with terrain information to generate a fire hazard map of the study area. This map provides valuable assistance in initial attack planning, determining equipment accessibility, and fire growth modeling. The resulting data sets were incorporated into the Alaska Department of Natural Resources geographic information system for subsequent utilization.

  17. 77 FR 18260 - Outer Continental Shelf (OCS), Alaska OCS Region, Cook Inlet Planning Area, Proposed Oil and Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... OCS Region, Cook Inlet Planning Area, Proposed Oil and Gas Lease Sale 244 for OCS Oil and Gas Leasing...) identifies Sale 244 as a potential special interest sale for the Cook Inlet Planning Area in Alaska. While...-central region of the state, as evidenced by acreage leased in state sales and announced discoveries of...

  18. Aerosols in Alaska

    NASA Astrophysics Data System (ADS)

    Shaw, G. E.; Quinn, P. K.

    2008-12-01

    We are measuring the latitudinal gradient and time variation of aerosol chemical composition across Alaska looking for drifts that might be attributable to alteration in sources and chemical signatures that might allow the identification of sources. Alaska is a very clean region in the sense that the state has a low population density with little polluting emission sources. However it "receives" anthropogenic chemical signals from areas upstream in the westerly's, such as from China, and impacts of Arctic Haze. The region also generates sometime copious amounts of aerosol from wildfire in its boreal forests and condensed compounds from gases emitted by its surrounding oceans. The time series of aerosol composition from this small network goes back about a decade and shows clearly the spring peaking of anthropogenic signal known as Arctic Haze. This signal peaks year after year in spring months at all stations, but is most concentrated at north most stations. On the other hand, a signal indicative of products from the ocean, mainly sulfate with large fractional amounts of MSA peaks, year after year, in the summer and is strongest at the lower latitudes. We have identified not only chemical signatures associated with wildfire smoke from wildfires in Alaska, but the changed signatures from wildfires in far away regions, from Mongolia for example.

  19. An investigation of regional tropospheric methane in central interior Alaska using direct-sun FTIR

    NASA Astrophysics Data System (ADS)

    Jacobs, N.; Simpson, W. R.; Strong, K.; Conway, S. A.; Kasai, Y.; Dubey, M. K.; Parker, H. A.; Hase, F.; Blumenstock, T.; Tu, Q.

    2016-12-01

    Observations suggest that a warming climate is causing permafrost degradation in the sub-Arctic to increase and the boundaries of the Boreal Forest to advance Northward. Many low-lying (often wetland) areas that were once frozen are thawing, changing soil processes, which have the potential to alter carbon gas exchange. Possible changes in carbon emissions in subarctic ecosystems, such as those found in central interior Alaska, warrant an investigation of atmospheric methane (CH4) on a regional scale. In a joint US-Japanese project, ground-based direct-sun Fourier Transform Infrared (FTIR) spectra were collected at Poker Flat Research Range, Alaska (65.12ºN, 147.43ºW) from 2000 to 2010 using a Bruker IFS120HR spectrometer. From these spectra, vertical profiles of CH4 volume mixing ratio (VMR), as a function of altitude, were estimated with SFIT4 fitting software. A method for calculating VMRs of tropospheric CH4 proposed by Washenfelder et al. (2003, DOI: 10.1029/2003gl017969) was explored and compared to profile estimates for layers with the lowest altitude. This method uses HF total column measurements as a proxy for CH4 oxidation in the stratosphere to correct for stratospheric methane loss. Comparative timeseries were constructed relating CH4 VMR estimated for the surface layer of SFIT4 profiles, tropospheric CH4 VMR calculated using HF total columns, and in situ data from the NOAA site in Barrow, Alaska. In this presentation, we compare the various methods for tropospheric methane measurements and present a timeseries of methane over the ten-year period. The observations can be used in the future to constrain regional methane budgets in the sub-Arctic/Boreal Forest region. Similar direct-sun FTIR observations with a pair of Bruker EM27/Sun mobile spectromoters are being carried out in August and September 2016, and preliminary results from this campaign will also be presented.

  20. Alaska looks HOT!

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belcher, J.

    Production in Alaska has been sluggish in recent years, with activity in the Prudhoe Bay region in the North Slope on a steady decline. Alaska North Slope (ANS) production topped out in 1988 at 2.037 MMbo/d, with 1.6 MMbo/d from Prudhoe Bay. This year operators expect to produce 788 Mbo/d from Prudhoe Bay, falling to 739 Mbo/d next year. ANS production as a whole should reach 1.3 MMbo/d this year, sliding to 1.29 MMbo/d in 1998. These declining numbers had industry officials and politicians talking about the early death of the Trans-Alaskan Pipeline System-the vital link between ANS crude andmore » markets. But enhanced drilling technology coupled with a vastly improved relationship between the state government and industry have made development in Alaska more economical and attractive. Alaska`s Democratic Gov. Tommy Knowles is fond of telling industry {open_quotes}we`re open for business.{close_quotes} New discoveries on the North Slope and in the Cook Inlet are bringing a renewed sense of optimism to the Alaska exploration and production industry. Attempts by Congress to lift a moratorium on exploration and production activity in the Arctic National Wildlife Refuge (ANWR) have been thwarted thus far, but momentum appears to be with proponents of ANWR drilling.« less

  1. Geography of Alaska Lake Districts: Identification, Description, and Analysis of Lake-Rich Regions of a Diverse and Dynamic State

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.

    2009-01-01

    Lakes are abundant landforms and important ecosystems in Alaska, but are unevenly distributed on the landscape with expansive lake-poor regions and several lake-rich regions. Such lake-rich areas are termed lake districts and have landscape characteristics that can be considered distinctive in similar respects to mountain ranges. In this report, we explore the nature of lake-rich areas by quantitatively identifying Alaska's lake districts, describing and comparing their physical characteristics, and analyzing how Alaska lake districts are naturally organized and correspond to climatic and geophysical characteristics, as well as studied and managed by people. We use a digital dataset (National Hydrography Dataset) of lakes greater than 1 hectare, which includes 409,040 individual lakes and represents 3.3 percent of the land-surface area of Alaska. The selection criteria we used to identify lake districts were (1) a lake area (termed limnetic ratio, in percent) greater than the mean for the State, and (2) a lake density (number of lakes per unit area) greater than the mean for the State using a pixel size scaled to the area of interest and number of lakes in the census. Pixels meeting these criteria were grouped and delineated and all groups greater than 1,000 square kilometers were identified as Alaska's lake districts. These lake districts were described according to lake size-frequency metrics, elevation distributions, geology, climate, and ecoregions to better understand their similarities and differences. We also looked at where lake research and relevant ecological monitoring has occurred in Alaska relative to lake districts and how lake district lands and waters are currently managed. We identified and delineated 20 lake districts in Alaska representing 16 percent of the State, but including 65 percent of lakes and 75 percent of lake area. The largest lake districts identified are the Yukon-Kuskokwim Delta, Arctic Coastal Plain, and Iliamna lake districts with

  2. Address to Yukon-Kuskokwim Delta Regional Summit on Native Education (Bethel, Alaska, April 24, 2002).

    ERIC Educational Resources Information Center

    Ongtooguk, Paul

    Remarks of Alaska Native researcher and educator Paul Ongtooguk are presented. Alaska Native students perform worse on exit exams than any other population in the state. In the past, formal education was offered to Alaska Natives only if they gave up being Alaska Natives. The current system is not designed to solve the problems of Alaska Native…

  3. EarthScope Transportable Array Siting Outreach Activities in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Gardine, L.; Dorr, P. M.; Tape, C.; McQuillan, P.; Taber, J.; West, M. E.; Busby, R. W.

    2014-12-01

    The EarthScopeTransportable Array is working to locate over 260 stations in Alaska and western Canada. In this region, new tactics and partnerships are needed to increase outreach exposure. IRIS and EarthScope are partnering with the Alaska Earthquake Center, part of University of Alaska Geophysical Institute, to spread awareness of Alaska earthquakes and the benefits of the Transportable Array for Alaskans. Nearly all parts of Alaska are tectonically active. The tectonic and seismic variability of Alaska requires focused attention at the regional level, and the remoteness and inaccessibility of most Alaska villages and towns often makes frequent visits difficult. For this reason, Alaska outreach most often occurs at community events. When a community is accessible, every opportunity to engage the residents is made. Booths at state fairs and large cultural gatherings, such as the annual convention of the Alaska Federation of Natives, are excellent venues to distribute earthquake information and to demonstrate a wide variety of educational products and web-based applications related to seismology and the Transportable Array that residents can use in their own communities. Region-specific publications have been developed to tie in a sense of place for residents of Alaska. The Alaska content for IRIS's Active Earth Monitor will emphasize the widespread tectonic and seismic features and offer not just Alaska residents, but anyone interested in Alaska, a glimpse into what is going on beneath their feet. The concerted efforts of the outreach team will have lasting effects on Alaskan understanding of the seismic hazard and tectonics of the region. Efforts to publicize the presence of the Transportable Array in Alaska, western Canada, and the Lower 48 also continue. There have been recent articles published in university, local and regional newspapers; stories appearing in national and international print and broadcast media; and documentaries produced by some of the world

  4. 78 FR 27168 - Approval and Promulgation of Air Quality Implementation Plans; Alaska: Mendenhall Valley PM10...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... micrometers (PM 10 ) submitted by the State of Alaska on May 8, 2009 for the Mendenhall Valley nonattainment area (Mendenhall Valley NAA), and the State's request to redesignate the area to attainment for the... comments. Email: [email protected] Mail: Mr. Keith Rose, U.S. EPA Region 10, Office of Air, Waste...

  5. 75 FR 51103 - Notice of Public Meetings for the National Park Service (NPS) Alaska Region's Subsistence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... SRC and Wrangell-St. Elias SRC plan to meet to develop and continue work on National Park Service (NPS... SRC Meeting Date and Location: The Lake Clark National Park SRC meeting will be held on Tuesday... Alaska Regional Office, at (907) 644- 3603. Aniakchak National Monument SRC Meeting Date and Location...

  6. Integrated evaluation of the vulnerability to thermokarst disturbance and its implications for the regional carbon balance in boreal Alaska

    NASA Astrophysics Data System (ADS)

    Helene, G.; Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Bolton, W. R.; Romanovsky, V. E.

    2017-12-01

    Our capacity to project future ecosystem trajectories in northern permafrost regions depends on our ability to characterize complex interactions between climatic and ecological processes at play in the soil, the vegetation, and the atmosphere. We present a study that uses remote sensing analyses, field observations, and data synthesis to inform models for the prediction of ecosystem responses to climate change in the boreal zone of Alaska. Recent warming, altered precipitation and fire regimes are driving permafrost degradation, threatening to mobilize vast reservoirs of ancient carbon previously protected from decomposition. Although large scale, progressive, top-down permafrost thaw have been well studied and represented in high-latitude ecosystem models, the consequences of abrupt and local thermokarst disturbances (TK) are less well understood. To fill this gap, we conducted a detection analysis characterizing 60 years of land cover change in the Tanana Flats, a wetland complex subjected to TK disturbance in Interior Alaska, using aerial and satellite images. We observed a nonlinear loss of permafrost plateau forest associated with TK and driven by precipitation and forest fragmentation. The results of this analysis were integrated into the Alaska Thermokarst Model (ATM), a state-and-transition model that simulates land cover change associated with TK disturbance. Thermokarst-related land cover change was simulated from 2000 to 2100 across the Tanana Flats. By 2100, the model predicts a mean decrease of 7.4% (sd 1.8%) in permafrost plateau forests associated with an increase in TK fens and bogs. Transitions from permafrost plateau forests to TK wetlands are accompanied with changes in physical and biogeochemical processes affecting ecosystem carbon balance. We evaluated the consequences of TK disturbances on the regional carbon balance by coupling outputs from the ATM and from a process-based biogeochemical model. We used long-term field observations of

  7. 30 CFR 550.251 - If I propose activities in the Alaska OCS Region, what planning information must accompany the DPP?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... production activities in the Alaska OCS Region, the following planning information must accompany your DPP... Region, what planning information must accompany the DPP? 550.251 Section 550.251 Mineral Resources... IN THE OUTER CONTINENTAL SHELF Plans and Information Contents of Development and Production Plans...

  8. 30 CFR 550.251 - If I propose activities in the Alaska OCS Region, what planning information must accompany the DPP?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... production activities in the Alaska OCS Region, the following planning information must accompany your DPP... Region, what planning information must accompany the DPP? 550.251 Section 550.251 Mineral Resources... IN THE OUTER CONTINENTAL SHELF Plans and Information Contents of Development and Production Plans...

  9. 30 CFR 550.251 - If I propose activities in the Alaska OCS Region, what planning information must accompany the DPP?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... production activities in the Alaska OCS Region, the following planning information must accompany your DPP... Region, what planning information must accompany the DPP? 550.251 Section 550.251 Mineral Resources... IN THE OUTER CONTINENTAL SHELF Plans and Information Contents of Development and Production Plans...

  10. EarthScope Transportable Array Siting Outreach Activities in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Dorr, P. M.; Gardine, L.; Tape, C.; McQuillan, P.; Cubley, J. F.; Samolczyk, M. A.; Taber, J.; West, M. E.; Busby, R.

    2015-12-01

    The EarthScope Transportable Array is deploying about 260 stations in Alaska and western Canada. IRIS and EarthScope are partnering with the Alaska Earthquake Center, part of the University of Alaska's Geophysical Institute, and Yukon College to spread awareness of earthquakes in Alaska and western Canada and the benefits of the Transportable Array for people living in these regions. We provide an update of ongoing education and outreach activities in Alaska and Canada as well as continued efforts to publicize the Transportable Array in the Lower 48. Nearly all parts of Alaska and portions of western Canada are tectonically active. The tectonic and seismic variability of Alaska, in particular, requires focused attention at the regional level, and the remoteness and inaccessibility of most Alaskan and western Canadian villages and towns often makes frequent visits difficult. When a community is accessible, every opportunity to engage the residents is made. Booths at state fairs and large cultural gatherings, such as the annual convention of the Alaska Federation of Natives, are excellent venues to distribute earthquake information and to demonstrate a wide variety of educational products and web-based applications related to seismology and the Transportable Array that residents can use in their own communities. Meetings and interviews with Alaska Native Elders and tribal councils discussing past earthquakes has led to a better understanding of how Alaskans view and understand earthquakes. Region-specific publications have been developed to tie in a sense of place for residents of Alaska and the Yukon. The Alaska content for IRIS's Active Earth Monitor emphasizes the widespread tectonic and seismic features and offers not just Alaska residents, but anyone interested in Alaska, a glimpse into what is going on beneath their feet. The concerted efforts of the outreach team will have lasting effects on Alaskan and Canadian understanding of the seismic hazard and

  11. Vegetation and Environmental Gradients of the Prudhoe Bay Region, Alaska,

    DTIC Science & Technology

    1985-09-01

    to patterned-ground features , gram (IBP) to examine the tundra biome (Brown and the effects on other soil parameters. A major 1975, Tieszen 1978...ment of Environmental, Population and Organismic Biology. The study was initiat- ed in 1973 under the U.S. Tundra Biome portion of the International...contributions to the University of Alaska’s Tundra Biome Center from the Prudhoe Bay Environmental Subcommit- tee of the Alaska Oil and Gas Association

  12. Project RavenCare: global multimedia telemedicine in Alaska

    NASA Astrophysics Data System (ADS)

    Tohme, Walid G.; Collmann, Jeff R.; Mun, Seong K.; Vastola, David J.

    1995-05-01

    Project RavenCare is a testbed for assessing the utility of teleradiology, telemedicine and electronic patient records systems for delivering health care to Native Alaskans in remote villages. It is being established as a joint project between the department of radiology at Georgetown University Medical Center and the Southeast Alaska Regional Health Corporation (SEARHC) in Sitka, Alaska. This initiative will establish a sustained routine clinical multimedia telemedicine support for a village clinic in Hoonah, Alaska and a regional hospital in Sitka. It will link the village clinic in Hoonah to Mt. Edgecumbe Hospital in Sitka. This regional hospital will in turn be linked to Georgetown University Hospital through the T1- VSAT (very small aperture terminal) of the NASA-ACTS (Advanced Communication Technology Satellite). Regional physicians in Hoonah lack support in providing relatively routine care in areas such as radiology and pathology. This project is an initial step in a general plan to upgrade telecommunications in the health care system of the Southeast Alaska region and will address aspects of two problems; limited communication between the village health clinics and the hospital and lack of subspecialty support for hospital-based physicians in Sitka.

  13. 30 CFR 250.220 - If I propose activities in the Alaska OCS Region, what planning information must accompany the EP?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Region, what planning information must accompany the EP? 250.220 Section 250.220 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE... activities in the Alaska OCS Region, what planning information must accompany the EP? If you propose...

  14. MRSA USA300 at Alaska Native Medical Center, Anchorage, Alaska, USA, 2000–2006

    PubMed Central

    Rudolph, Karen M.; Hennessy, Thomas W.; Zychowski, Diana L.; Asthi, Karthik; Boyle-Vavra, Susan; Daum, Robert S.

    2012-01-01

    To determine whether methicillin-resistant Staphylococcus aureus (MRSA) USA300 commonly caused infections among Alaska Natives, we examined clinical MRSA isolates from the Alaska Native Medical Center, Anchorage, during 2000–2006. Among Anchorage-region residents, USA300 was a minor constituent among MRSA isolates in 2000–2003 (11/68, 16%); by 2006, USA300 was the exclusive genotype identified (10/10). PMID:22264651

  15. Crustal structure of the St. Elias Mountains region, southern Alaska, from regional earthquakes and ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Stachnik, J. C.; Hansen, R. A.

    2011-12-01

    STEEP (SainT Elias TEctonics and Erosion Project) is a multi-disciplinary research project that took place in southern Alaska between 2005 and 2010. An important component of this undertaking was installation and operation of a dense array of 22 broadband seismometers to augment and improve the existing regional seismic network in the St. Elias Mountains. This allowed for a lower detection threshold and better accuracy for local seismicity and also provided a rich dataset of teleseismic recordings. While the seismic stations were designed to transmit the data in real time, due to harsh weather and difficult terrain conditions some data were recorded only on site and had to be post-processed months and years later. Despite these difficulties, the recorded dataset detected and located regional earthquakes as small as magnitude 0.5 in the network core area. The recorded seismicity shows some clear patterns. A majority of the earthquakes are concentrated along the coast in a distributed area up to 100 km wide. The coastal seismicity can be further subdivided into 3 distinct clusters: Icy Bay, Bering Glacier, and the Copper River delta. This coastal seismicity is abutted by a somewhat aseismic zone that roughly follows the Bagley Ice Field. Farther inland another active region of seismicity is associated with the Denali Fault system. All this seismicity is concentrated in the upper 25 km of the crust. The only region where earthquakes as deep as 100 km occur is beneath the Wrangell volcanoes in the northwestern corner of the study area. The earthquake focal mechanisms are predominately reverse, with some areas of strike-slip faulting also present. The seismicity patterns and faulting mechanisms indicate a high concentration of thrust faulting in the coastal region. The ambient noise cross correlations from the stations in the STEEP region reveal Rayleigh wave packets with good signal-to-noise ratios yielding well-defined interstation phase velocity dispersion curves

  16. Native timber harvests in southeast Alaska.

    Treesearch

    G. Knapp

    1992-01-01

    The Alaska Native Claims Settlement Act established 13 Native corporations in southeast Alaska. There are 12 "village" corporations and 1 "regional" corporation (Sealaska Corporation). The Native corporations were entitled to select about 540,000 acres of land out of the Tongass National Forest; about 95 percent have been conveyed. This study...

  17. Catalogue of polar bear (Ursus maritimus) maternal den locations in the Beaufort Sea and neighboring regions, Alaska, 1910-2010

    USGS Publications Warehouse

    Durner, George M.; Fischbach, Anthony S.; Amstrup, Steven C.; Douglas, David C.

    2010-01-01

    This report presents data on the approximate locations and methods of discovery of 392 polar bear (Ursus maritimus) maternal dens found in the Beaufort Sea and neighboring regions between 1910 and 2010 that are archived by the U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska. A description of data collection methods, biases associated with collection method, primary time periods, and spatial resolution are provided. Polar bears in the Beaufort Sea and nearby regions den on both the sea ice and on land. Standardized VHF surveys and satellite radio telemetry data provide a general understanding of where polar bears have denned in this region over the past 3 decades. Den observations made during other research activities and anecdotal reports from other government agencies, coastal residents, and industry personnel also are reported. Data on past polar bear maternal den locations are provided to inform the public and to provide information for natural resource agencies in planning activities to avoid or minimize interference with polar bear maternity dens.

  18. 2006 Compilation of Alaska Gravity Data and Historical Reports

    USGS Publications Warehouse

    Saltus, Richard W.; Brown, Philip J.; Morin, Robert L.; Hill, Patricia L.

    2008-01-01

    Gravity anomalies provide fundamental geophysical information about Earth structure and dynamics. To increase geologic and geodynamic understanding of Alaska, the U.S. Geological Survey (USGS) has collected and processed Alaska gravity data for the past 50 years. This report introduces and describes an integrated, State-wide gravity database and provides accompanying gravity calculation tools to assist in its application. Additional information includes gravity base station descriptions and digital scans of historical USGS reports. The gravity calculation tools enable the user to reduce new gravity data in a consistent manner for combination with the existing database. This database has sufficient resolution to define the regional gravity anomalies of Alaska. Interpretation of regional gravity anomalies in parts of the State are hampered by the lack of local isostatic compensation in both southern and northern Alaska. However, when filtered appropriately, the Alaska gravity data show regional features having geologic significance. These features include gravity lows caused by low-density rocks of Cenozoic basins, flysch belts, and felsic intrusions, as well as many gravity highs associated with high-density mafic and ultramafic complexes.

  19. 40 CFR 60.4216 - What requirements must I meet for engines used in Alaska?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engines used in Alaska? 60.4216 Section 60.4216 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... alternative plan for implementing the requirements of 40 CFR part 60, subpart IIII, for public-sector electrical utilities located in rural areas of Alaska not accessible by the Federal Aid Highway System. This...

  20. Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.

    1996-01-01

    During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).

  1. Regional District Attorney's Offices - Alaska Department of Law

    Science.gov Websites

    not provide legal advice to private citizens or organizations. Please contact an attorney if you need legal advice. The Alaska Lawyer Referral Service or your local bar association may be able to assist you

  2. Alaska Department of Revenue - Alaska Film Office

    Science.gov Websites

    State Employees Alaska Film Office Alaska Film Office State of Alaska HOME CREDIT PROGRAM PUBLIC REPORTING CPA ECONOMIC DEVELOPMENT CONTACT US State of Alaska > Department of Revenue > Alaska Film Office > Text Size: A+ | A- | A Text Only Effective July 1, 2015, the film production incentive

  3. A Decade of Shear-Wave Splitting Observations in Alaska

    NASA Astrophysics Data System (ADS)

    Bellesiles, A. K.; Christensen, D. H.; Abers, G. A.; Hansen, R. A.; Pavlis, G. L.; Song, X.

    2010-12-01

    Over the last decade four PASSCAL experiments have been conducted in different regions of Alaska. ARCTIC, BEAAR and MOOS form a north-south transect across the state, from the Arctic Ocean to Price Williams Sound, while the STEEP experiment is currently deployed to the east of that line in the St Elias Mountains of Southeastern Alaska. Shear-wave splitting observations from these networks in addition to several permanent stations of the Alaska Earthquake Information Center were determined in an attempt to understand mantle flow under Alaska in a variety of different geologic settings. Results show two dominant splitting patterns in Alaska, separated by the subducted Pacific Plate. North of the subducted Pacific Plate fast directions are parallel to the trench (along strike of the subducted Pacific Plate) indicating large scale mantle flow in the northeast-southwest direction with higher anisotropy (splitting times) within the mantle wedge. Within or below the Pacific Plate fast directions are normal to the trench in the direction of Pacific Plate convergence. In addition to these two prominent splitting patterns there are several regions that do not match either of these trends. These more complex regions which include the results from STEEP could be due to several factors including effects from the edge of the Pacific Plate. The increase of station coverage that Earthscope will bring to Alaska will aid in developing a more complete model for anisotropy and mantle flow in Alaska.

  4. Glaciers of North America - Glaciers of Alaska

    USGS Publications Warehouse

    Molnia, Bruce F.

    2008-01-01

    Glaciers cover about 75,000 km2 of Alaska, about 5 percent of the State. The glaciers are situated on 11 mountain ranges, 1 large island, an island chain, and 1 archipelago and range in elevation from more than 6,000 m to below sea level. Alaska's glaciers extend geographically from the far southeast at lat 55 deg 19'N., long 130 deg 05'W., about 100 kilometers east of Ketchikan, to the far southwest at Kiska Island at lat 52 deg 05'N., long 177 deg 35'E., in the Aleutian Islands, and as far north as lat 69 deg 20'N., long 143 deg 45'W., in the Brooks Range. During the 'Little Ice Age', Alaska's glaciers expanded significantly. The total area and volume of glaciers in Alaska continue to decrease, as they have been doing since the 18th century. Of the 153 1:250,000-scale topographic maps that cover the State of Alaska, 63 sheets show glaciers. Although the number of extant glaciers has never been systematically counted and is thus unknown, the total probably is greater than 100,000. Only about 600 glaciers (about 1 percent) have been officially named by the U.S. Board on Geographic Names (BGN). There are about 60 active and former tidewater glaciers in Alaska. Within the glacierized mountain ranges of southeastern Alaska and western Canada, 205 glaciers (75 percent in Alaska) have a history of surging. In the same region, at least 53 present and 7 former large ice-dammed lakes have produced jokulhlaups (glacier-outburst floods). Ice-capped volcanoes on mainland Alaska and in the Aleutian Islands have a potential for jokulhlaups caused by subglacier volcanic and geothermal activity. Because of the size of the area covered by glaciers and the lack of large-scale maps of the glacierized areas, satellite imagery and other satellite remote-sensing data are the only practical means of monitoring regional changes in the area and volume of Alaska's glaciers in response to short- and long-term changes in the maritime and continental climates of the State. A review of the

  5. Presence of rapidly degrading permafrost plateaus in south-central Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Baughman, Carson; Romanovsky, Vladimir E.; Parsekian, Andrew D.; Babcock, Esther; Stephani, Eva; Jones, Miriam C.; Grosse, Guido; Berg, Edward E

    2016-01-01

    Permafrost presence is determined by a complex interaction of climatic, topographic, and ecological conditions operating over long time scales. In particular, vegetation and organic layer characteristics may act to protect permafrost in regions with a mean annual air temperature (MAAT) above 0 °C. In this study, we document the presence of residual permafrost plateaus in the western Kenai Peninsula lowlands of south-central Alaska, a region with a MAAT of 1.5 ± 1 °C (1981–2010). Continuous ground temperature measurements between 16 September 2012 and 15 September 2015, using calibrated thermistor strings, documented the presence of warm permafrost (−0.04 to −0.08 °C). Field measurements (probing) on several plateau features during the fall of 2015 showed that the depth to the permafrost table averaged 1.48 m but at some locations was as shallow as 0.53 m. Late winter surveys (augering, coring, and GPR) in 2016 showed that the average seasonally frozen ground thickness was 0.45 m, overlying a talik above the permafrost table. Measured permafrost thickness ranged from 0.33 to  >  6.90 m. Manual interpretation of historic aerial photography acquired in 1950 indicates that residual permafrost plateaus covered 920 ha as mapped across portions of four wetland complexes encompassing 4810 ha. However, between 1950 and ca. 2010, permafrost plateau extent decreased by 60.0 %, with lateral feature degradation accounting for 85.0 % of the reduction in area. Permafrost loss on the Kenai Peninsula is likely associated with a warming climate, wildfires that remove the protective forest and organic layer cover, groundwater flow at depth, and lateral heat transfer from wetland surface waters in the summer. Better understanding the resilience and vulnerability of ecosystem-protected permafrost is critical for mapping and predicting future permafrost extent and degradation across all permafrost regions that are currently warming

  6. Climate Change Impacts on the Cryosphere of Mountain Regions: Validation of a Novel Model Using the Alaska Range

    NASA Astrophysics Data System (ADS)

    Mosier, T. M.; Hill, D. F.; Sharp, K. V.

    2015-12-01

    Mountain regions are natural water towers, storing water seasonally as snowpack and for much longer as glaciers. Understanding the response of these systems to climate change is necessary in order to make informed decisions about prevention or mitigation measures. Yet, mountain regions are often data sparse, leading many researchers to implement simple or enhanced temperature index (ETI) models to simulate cryosphere processes. These model structures do not account for the thermal inertia of snowpack and glaciers and do not robustly capture differences in system response to climate regimes that differ from those the model was calibrated for. For instance, a temperature index calibration parameter will differ substantially in cold-dry conditions versus warm-wet ones. To overcome these issues, we have developed a cryosphere hydrology model, called the Significantly Enhanced Temperature Index (SETI), which uses an energy balance structure but parameterizes energy balance components in terms of minimum, maximum and mean temperature, precipitation, and geometric inputs using established relationships. Additionally, the SETI model includes a glacier sliding model and can therefore be used to estimate long-term glacier response to climate change. Sensitivity of the SETI model to changing climate is compared with an ETI and a simple temperature index model for several partially-glaciated watersheds within Alaska, including Wolverine glacier where multi-decadal glacier stake measurements are available, to highlight the additional fidelity attributed to the increased complexity of the SETI structure. The SETI model is then applied to the entire Alaska Range region for an ensemble of global climate models (GCMs), using representative concentration pathways 4.5 and 8.5. Comparing model runs based on ensembles of GCM projections to historic conditions, total annual snowfall within the Alaska region is not expected to change appreciably, but the spatial distribution of snow

  7. Thermal evolution of sedimentary basins in Alaska

    USGS Publications Warehouse

    Johnsson, Mark J.; Howell, D.G.

    1996-01-01

    The complex tectonic collage of Alaska is reflected in the conjunction of rocks of widely varying thermal maturity. Indicators of the level of thermal maturity of rocks exposed at the surface, such as vitrinite reflectance and conodont color alteration index, can help constrain the tectonic evolution of such complex regions and, when combined with petrographic, modern heat flow, thermogeochronologic, and isotopic data, allow for the detailed evaluation of a region?s burial and uplift history. We have collected and assembled nearly 10,000 vitrinite-reflectance and conodont-color-alteration index values from the literature, previous U.S. Geological Survey investigations, and our own studies in Alaska. This database allows for the first synthesis of thermal maturity on a broadly regional scale. Post-accretionary sedimentary basins in Alaska show wide variability in terms of thermal maturity. The Tertiary interior basins, as well as some of the forearc and backarc basins associated with the Aleutian Arc, are presently at their greatest depth of burial, with immature rocks exposed at the surface. Other basins, such as some backarc basins on the Alaska Peninsula, show higher thermal maturities, indicating modest uplift, perhaps in conjunction with higher geothermal gradients related to the arc itself. Cretaceous ?flysch? basins, such as the Yukon-Koyukuk basin, are at much higher thermal maturity, reflecting great amounts of uplift perhaps associated with compressional regimes generated through terrane accretion. Many sedimentary basins in Alaska, such as the Yukon-Koyukuk and Colville basins, show higher thermal maturity at basin margins, perhaps reflecting greater uplift of the margins in response to isostatic unloading, owing to erosion of the hinterland adjacent to the basin or to compressional stresses adjacent to basin margins.

  8. Status and distribution of the Kittlitz's Murrelet Brachyramphus brevirostris along the Alaska Peninsula and Kodiak and Aleutian Islands, Alaska

    USGS Publications Warehouse

    Madison, Erica N.; Piatt, John F.; Arimitsu, Mayumi L.; Romano, Marc D.; van Pelt, Thomas I.; Nelson, S. Kim; Williams, Jeffrey C.; DeGange, Anthony R.

    2011-01-01

    The Kittlitz's Murrelet Brachyramphus brevirostris is adapted for life in glacial-marine ecosystems, being concentrated in the belt of glaciated fjords in the northern Gulf of Alaska from Glacier Bay to Cook Inlet. Most of the remaining birds are scattered along coasts of the Alaska Peninsula and Aleutian Islands, where they reside in protected bays and inlets, often in proximity to remnant glaciers or recently deglaciated landscapes. We summarize existing information on Kittlitz's Murrelet in this mainly unglaciated region, extending from Kodiak Island in the east to the Near Islands in the west. From recent surveys, we estimated that ~2400 Kittlitz's Murrelets were found in several large embayments along the Alaska Peninsula, where adjacent ice fields feed silt-laden water into the bays. On Kodiak Island, where only remnants of ice remain today, observations of Kittlitz's Murrelets at sea were uncommon. The species has been observed historically around the entire Kodiak Archipelago, however, and dozens of nest sites were found in recent years. We found Kittlitz's Murrelets at only a few islands in the Aleutian chain, notably those with long complex shorelines, high mountains and remnant glaciers. The largest population (~1600 birds) of Kittlitz's Murrelet outside the Gulf of Alaska was found at Unalaska Island, which also supports the greatest concentration of glacial ice in the Aleutian Islands. Significant populations were found at Atka (~1100 birds), Attu (~800) and Adak (~200) islands. Smaller numbers have been reported from Unimak, Umnak, Amlia, Kanaga, Tanaga, Kiska islands, and Agattu Island, where dozens of nest sites have been located in recent years. Most of those islands have not been thoroughly surveyed, and significant pockets of Kittlitz's Murrelets may yet be discovered. Our estimate of ~6000 Kittlitz's Murrelets along the Alaska Peninsula and Aleutian Islands is also likely to be conservative because of the survey protocols we employed (i.e. early

  9. Southeast Alaska economics: a resource-abundant region competing in a global marketplace.

    Treesearch

    Lisa K. Crone

    2005-01-01

    Questions related to economics figured prominently in the priority information needs identified in the 1997 Tongass Land Management Plan. Follow-on studies in economics werc designed to improve understanding of aspects of the competitiveness of the Alaska forest sector, links between Alaska timber markets and other markets as evident in prices, and the relationship...

  10. Tourism and its effects on southeast Alaska communities and resources: case studies from Haines, Craig, and Hoonah, Alaska.

    Treesearch

    Lee K. Cerveny

    2005-01-01

    Tourism has become integral to southeast Alaska’s regional economy and has resulted in changes to the social and cultural fabric of community life as well as to natural resources used by Alaskans. This study incorporates an ethnographic approach to trace tourism development in three rural southeast Alaska communities featuring different levels and types of tourism. In...

  11. Assessment of undiscovered oil and gas resources of the Cook Inlet region, south-central Alaska, 2011

    USGS Publications Warehouse

    Stanley, Richard G.; Charpentier, Ronald R.; Cook, Troy A.; Houseknecht, David W.; Klett, Timothy R.; Lewis, Kristen A.; Lillis, Paul G.; Nelson, Philip H.; Phillips, Jeffrey D.; Pollastro, Richard M.; Potter, Christopher J.; Rouse, William A.; Saltus, Richard W.; Schenk, Christopher J.; Shah, Anjana K.; Valin, Zenon C.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed a new assessment of undiscovered, technically recoverable oil and gas resources in the Cook Inlet region of south-central Alaska. Using a geology-based assessment methodology, the USGS estimates that mean undiscovered volumes of nearly 600 million barrels of oil, about 19 trillion cubic feet of natural gas, and 46 million barrels of natural gas liquids remain to be found in this area.

  12. Tectonics of the March 27, 1964, Alaska earthquake: Chapter I in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Plafker, George

    1969-01-01

    The March 27, 1964, earthquake was accomp anied by crustal deformation-including warping, horizontal distortion, and faulting-over probably more than 110,000 square miles of land and sea bottom in south-central Alaska. Regional uplift and subsidence occurred mainly in two nearly parallel elongate zones, together about 600 miles long and as much as 250 miles wide, that lie along the continental margin. From the earthquake epicenter in northern Prince William Sound, the deformation extends eastward 190 miles almost to long 142° and southwestward slightly more than 400 miles to about long 155°. It extends across the two zones from the chain of active volcanoes in the Aleutian Range and Wrangell Mountains probably to the Aleutian Trench axis. Uplift that averages 6 feet over broad areas occurred mainly along the coast of the Gulf of Alaska, on the adjacent Continental Shelf, and probably on the continental slope. This uplift attained a measured maximum on land of 38 feet in a northwest-trending narrow belt less than 10 miles wide that is exposed on Montague Island in southwestern Prince William Sound. Two earthquake faults exposed on Montague Island are subsidiary northwest-dipping reverse faults along which the northwest blocks were relatively displaced a maximum of 26 feet, and both blocks were upthrown relative to sea level. From Montague Island, the faults and related belt of maximum uplift may extend southwestward on the Continental Shelf to the vicinity of the Kodiak group of islands. To the north and northwest of the zone of uplift, subsidence forms a broad asymmetrical downwarp centered over the Kodiak-Kenai-Chugach Mountains that averages 2½ feet and attains a measured maximum of 7½ feet along the southwest coast of the Kenai Peninsula. Maximum indicated uplift in the Alaska and Aleutian Ranges to the north of the zone of subsidence was l½ feet. Retriangulation over roughly 25,000 square miles of the deformed region in and around Prince William Sound

  13. U.S. Geological Survey (USGS) Western Region: Alaska Coastal and Ocean Science

    USGS Publications Warehouse

    Holland-Bartels, Leslie

    2009-01-01

    The U.S. Geological Survey (USGS), a bureau of the Department of the Interior (DOI), is the Nation's largest water, earth, and biological science and mapping agency. The bureau's science strategy 'Facing Tomorrow's Challenges - U.S. Geological Survey Science in the Decade 2007-2017' describes the USGS vision for its science in six integrated areas of societal concern: Understanding Ecosystems and Predicting Ecosystem Change; Climate Variability and Change; Energy and Minerals; Hazards, Risk, and Resilience; Environment and Wildlife in Human Health; and Water Census of the United States. USGS has three Regions that encompass nine geographic Areas. This fact sheet describes examples of USGS science conducted in coastal, nearshore terrestrial, and ocean environments in the Alaska Area.

  14. IMPROVING SCIENCE EDUCATION AND CAREER OPPORTUNITIES IN RURAL ALASKA:The Synergistic Connection between Educational Outreach Efforts in the Copper Valley, Alaska.

    NASA Astrophysics Data System (ADS)

    Solie, D. J.; McCarthy, S.

    2004-12-01

    The objective of the High frequency Active Auroral Research Program (HAARP) Education Outreach is to enhance the science education opportunities in the Copper Valley region in Alaska. In the process, we also educate local residents about HAARP and its research. Funded jointly by US Air Force and Navy, HAARP is located at Gakona Alaska, a very rural region of central Alaska with a predominantly Native population. The main instrument at HAARP is a vertically directed, phased array RF transmitter which is primarily an ionospheric research tool, however, its geophysical research applications range from terrestrial to near-space. Research is conducted at HAARP in collaboration with scientists and institutions world-wide. The HAARP Education Outreach Program, run through the University of Alaska Geophysical Institute has been active for over six years and in that time has become an integral part of science education in the Copper Valley for residents of all ages. HAARP education outreach efforts are through direct involvement in local schools in the Copper River School District (CRSD) and the Prince William Sound Community College (PWSCC), as well as public lectures and workshops, and intern and student research programs. These outreach efforts require cooperation and coordination between the CRSD, PWSCC, the University of Alaska Fairbanks Physics Department and the NSF sponsored Alaska Native Science & Engineering Program (ANSEP) and HAARP researchers. The HAARP Outreach program also works with other organizations promoting science education in the region, such as the National Park Service (Wrangell- St. Elias National Park) and the Wrangell Institute for Science and Environment (WISE) a newly formed regional non-profit organization. We work closely with teachers in the schools, adapting to their needs and the particular scientific topic they are covering at the time. Because of time and logistic constraints, outreach visits to schools are episodic, occurring roughly

  15. The Alaska Arctic Vegetation Archive (AVA-AK)

    Treesearch

    Donald A. Walker; Amy L. Breen; Lisa A. Druckenmiller; Lisa W. Wirth; Will Fisher; Martha K. Raynolds; Jozef Šibík; Marilyn D. Walker; Stephan Hennekens; Keith Boggs; Tina Boucher; Marcel Buchhorn; Helga Bültmann; David J. Cooper; Fred J.A Daniëls; Scott J. Davidson; James J. Ebersole; Sara C. Elmendorf; Howard E. Epstein; William A. Gould; Robert D. Hollister; Colleen M. Iversen; M. Torre Jorgenson; Anja Kade; Michael T. Lee; William H. MacKenzie; Robert K. Peet; Jana L. Peirce; Udo Schickhoff; Victoria L. Sloan; Stephen S. Talbot; Craig E. Tweedie; Sandra Villarreal; Patrick J. Webber; Donatella Zona

    2016-01-01

    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are...

  16. Economic growth and change in southeast Alaska.

    Treesearch

    Rhonda Mazza

    2004-01-01

    This report focuses on economic trends since the 1970s in rural southeast Alaska. These trends are compared with those in the Nation and in nonmetropolitan areas of the country to determine the extent to which the economy in rural southeast Alaska is affected by regional activity and by larger market forces. Many of the economic changes occurring in rural southeast...

  17. Correlates of Alaska Native Fatal and Nonfatal Suicidal Behaviors 1990-2001

    ERIC Educational Resources Information Center

    Wexler, Lisa; Hill, Ryan; Bertone-Johnson, Elizabeth; Fenaughty, Andrea

    2008-01-01

    Factors correlated with suicidal behavior in a predominately Alaska Native region of Alaska are described, and the correlates relating to fatal and nonfatal suicide behaviors in this indigenous population are distinguished. Suicide data from the region (1990-2001) were aggregated and compared to 2000 U.S. Census Data using chi-squared tests.…

  18. Alaska: A twenty-first-century petroleum province

    USGS Publications Warehouse

    Bird, K.J.

    2001-01-01

    Alaska, the least explored of all United States regions, is estimated to contain approximately 40% of total U.S. undiscovered, technically recoverable oil and natural-gas resources, based on the most recent U.S. Department of the Interior (U.S. Geological Survey and Minerals Management Service) estimates. Northern Alaska, including the North Slope and adjacent Beaufort and Chukchi continental shelves, holds the lion's share of the total Alaskan endowment of more than 30 billion barrels (4.8 billion m3) of oil and natural-gas liquids plus nearly 200 trillion cubic feet (5.7 trillion m3) of natural gas. This geologically complex region includes prospective strata within passive-margin, rift, and foreland-basin sequences. Multiple source-rock zones have charged several regionally extensive petroleum systems. Extensional and compressional structures provide ample structural objectives. In addition, recent emphasis on stratigraphic traps has demonstrated significant resource potential in shelf and turbidite systems in Jurassic to Tertiary strata. Despite robust potential, northern Alaska remains a risky exploration frontier - a nexus of geologic complexity, harsh economic conditions, and volatile policy issues. Its role as a major petroleum province in this century will depend on continued technological innovations, not only in exploration and drilling operations, but also in development of huge, currently unmarketable natural-gas resources. Ultimately, policy decisions will determine whether exploration of arctic Alaska will proceed.

  19. An overview of paleogene molluscan biostratigraphy and paleoecology of the Gulf of Alaska region

    USGS Publications Warehouse

    Marincovich, L.; McCoy, S.

    1984-01-01

    Paleogene marine strata in the Gulf of Alaska region occur in three geographic areas and may be characterized by their molluscan faunal composition and paleoecology: a western area consisting of the Alaska Peninsula, Kodiak Island, and adjacent islands; a central area encompassing Prince William Sound; and an eastern area extending from the mouth of the Copper River to Icy Point in the Lituya district. Strata in the western area include the Ghost Rocks, Narrow Cape (in part), Sitkalidak, Stepovak, Belkofski, and Tolstoi Formations; in the central area Paleogene strata are assigned entirely to the Orca Group; Paleogene strata in the eastern area include the Kulthieth and Poul Creek Formations and several coeval units. Environments ranging from marginal marine to bathyal and from subtropical to cool-temperate are inferred for the various molluscan faunas. Sediments range from interbedded coal and marine sands to deep-water turbidites. The known Paleogene molluscan faunas of these three southern Alaskan areas permit recognition of biostratigraphic schemes within each area, preliminary correlations between faunas of the three areas, and more general correlations with faunas of the Pacific Northwest, the Far Eastern U.S.S.R., and northern Japan. ?? 1984.

  20. Gap winds and their effects on regional oceanography Part II: Kodiak Island, Alaska

    NASA Astrophysics Data System (ADS)

    Ladd, Carol; Cheng, Wei; Salo, Sigrid

    2016-10-01

    Frequent gap winds, defined here as offshore-directed flow channeled through mountain gaps, have been observed near Kodiak Island in the Gulf of Alaska (GOA). Gap winds from the Iliamna Lake gap were investigated using QuikSCAT wind data. The influence of these wind events on the regional ocean was examined using satellite and in situ data combined with Regional Ocean Modeling System (ROMS) model runs. Gap winds influence the entire shelf width (> 200 km) northeast of Kodiak Island and extend an additional 150 km off-shelf. Due to strong gradients in the along-shelf direction, they can result in vertical velocities in the ocean of over 20 m d-1 due to Ekman pumping. The wind events also disrupt flow of the Alaska Coastal Current (ACC), resulting in decreased flow down Shelikof Strait and increased velocities on the outer shelf. This disruption of the ACC has implications for freshwater transport into the Bering Sea. The oceanographic response to gap winds may influence the survival of larval fishes as Arrowtooth Flounder recruitment is negatively correlated with the interannual frequency of gap-wind events, and Pacific Cod recruitment is positively correlated. The frequency of offshore directed winds exhibits a strong seasonal cycle averaging 7 days per month during winter and 2 days per month during summer. Interannual variability is correlated with the Pacific North America Index and shows a linear trend, increasing by 1.35 days per year. An accompanying paper discusses part I of our study (Ladd and Cheng, 2016) focusing on gap-wind events flowing out of Cross Sound in the eastern GOA.

  1. Research on polar bears in Alaska, 1983-1985

    USGS Publications Warehouse

    Amstrup, Steven C.

    1986-01-01

    Research on the ecology and status of polar bear populations in Alaska has continued since 1967. Research was a joint U.S. Fish and Wildlife Service/Alaska Department of Fish and Game effort until passage of the Marine Mammal Protection Act in 1972, and has been largely a Federal effort since then. In 1985, Alaskan polar beer research continues to be carried out by the Research Division of the U.S. Fish and Wildlife Service (DOI). A recent reorganization removed authority for ecological research in Alaska from the Denver Wildlife Research Center, and vested it with the newly created Alaska Office of Fish and Wildlife Research. This new research office is the center for Federal fish and Wildlife related research throughout the state of Alaska and in its coastal waters.Although the responsibility for polar bear research lies with the U.S. Fish and Wildlife Service, numerous other organizations and agencies deserve mention for their cooperation and support of the ongoing research. These include: the U.S. National Oceanic and Atmospheric Administration (DOC), The U.S. Minerals Management Service (DOI), The Canadian Wildlife Service, The Northwest Territories Wildlife Service, the Yukon Wildlife Service, Dome Petroleum Ltd, Gulf Canada, and the Alaska Department of Fish and game.

  2. 30 CFR 250.251 - If I propose activities in the Alaska OCS Region, what planning information must accompany the DPP?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Region, what planning information must accompany the DPP? 250.251 Section 250.251 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE... Development Operations Coordination Documents (docd) § 250.251 If I propose activities in the Alaska OCS...

  3. Regular tobacco use among American Indian and Alaska native adolescents: an examination of protective mechanisms.

    PubMed

    Osilla, Karen Chan; Lonczak, Heather S; Mail, Patricia D; Larimer, Mary E; Marlatt, G Alan

    2007-01-01

    American Indian and Alaska Native (AIAN) adolescents use tobacco at earlier ages and in larger quantities compared to non-AIAN peers. Regular tobacco use was examined against five protective factors (peer networks supportive of not using drugs, college aspirations, team sports, playing music, and volunteerism). Participants consisted of 112 adolescents between the ages of 13 and 19 who participated in a study testing the efficacy of a life-skills program aimed at reducing substance-related consequences. Findings indicated that, with the exception of prosocial peer networks and volunteerism, each of the above factors was significantly associated with a reduced probability of being a regular tobacco user. Gender differences were notable. These results hold important treatment implications regarding the reduction and prevention of tobacco use among AIAN youth.

  4. 75 FR 63504 - Outer Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY: Bureau of... development; (2) determine whether missing information identified by BOEMRE in the 193 FEIS was essential or... in the FEIS for Chukchi Sea Lease Sale 193 was essential or relevant under 40 CFR 1502.22; and (3...

  5. 76 FR 30956 - Outer Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY: Bureau of...: BOEMRE announces the availability of a Revised Draft SEIS, OCS Oil and Gas Lease Sale 193, Chukchi Sea.... The Revised Draft SEIS augments the analysis of the Final EIS, Oil and Gas Lease Sale 193, Chukchi Sea...

  6. 30 CFR 250.251 - If I propose activities in the Alaska OCS Region, what planning information must accompany the DPP?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false If I propose activities in the Alaska OCS Region, what planning information must accompany the DPP? 250.251 Section 250.251 Mineral Resources... AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Plans and Information Contents of...

  7. 30 CFR 250.220 - If I propose activities in the Alaska OCS Region, what planning information must accompany the EP?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false If I propose activities in the Alaska OCS Region, what planning information must accompany the EP? 250.220 Section 250.220 Mineral Resources BUREAU... GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Plans and Information Contents of...

  8. Alaska Melilotus invasions: Distribution, origin, and susceptibility of plant communities

    USGS Publications Warehouse

    Conn, J.S.; Beattie, K.L.; Shephard, M.A.; Carlson, M.L.; Lapina, I.; Hebert, M.; Gronquist, R.; Densmore, R.; Rasy, M.

    2008-01-01

    Melilotus alba and M. officinalis were introduced to Alaska in 1913 as potential forage crops. These species have become naturalized and are now invading large, exotic plant-free regions of Alaska. We determined distributions of M. alba and M. officinalis in Alaska from surveys conducted each summer from 2002 to 2005. Melilotus alba and M. officinalis occurred at 721 and 205 sites, respectively (39,756 total sites surveyed). The northward limit for M. alba and M. officinalis was 67.15??N and 64.87??N, respectively. Both species were strictly associated with soil disturbance. Melilotus alba extended no farther than 15 m from road edges except where M. alba on roadsides met river floodplains and dispersed downriver (Matanuska and Nenana Rivers). Melilotus has now reached the Tanana River, a tributary of the Yukon River. Populations on floodplains were most extensive on braided sections. On the Nenana River, soil characteristics did not differ between where M. alba was growing versus similar areas where it had not yet reached. The pH of river soils (7.9-8.3) was higher than highway soils (7.3). Upland taiga plant communities grow on acid soils which may protect them from invasion by Melilotus, which prefer alkaline soils; however, early succession communities on river floodplains are susceptible because soils are alkaline. ?? 2008 Regents of the University of Colorado.

  9. The Quaternary thrust system of the northern Alaska Range

    USGS Publications Warehouse

    Bemis, Sean P.; Carver, Gary A.; Koehler, Richard D.

    2012-01-01

    The framework of Quaternary faults in Alaska remains poorly constrained. Recent studies in the Alaska Range north of the Denali fault add significantly to the recognition of Quaternary deformation in this active orogen. Faults and folds active during the Quaternary occur over a length of ∼500 km along the northern flank of the Alaska Range, extending from Mount McKinley (Denali) eastward to the Tok River valley. These faults exist as a continuous system of active structures, but we divide the system into four regions based on east-west changes in structural style. At the western end, the Kantishna Hills have only two known faults but the highest rate of shallow crustal seismicity. The western northern foothills fold-thrust belt consists of a 50-km-wide zone of subparallel thrust and reverse faults. This broad zone of deformation narrows to the east in a transition zone where the range-bounding fault of the western northern foothills fold-thrust belt terminates and displacement occurs on thrust and/or reverse faults closer to the Denali fault. The eastern northern foothills fold-thrust belt is characterized by ∼40-km-long thrust fault segments separated across left-steps by NNE-trending left-lateral faults. Altogether, these faults accommodate much of the topographic growth of the northern flank of the Alaska Range.Recognition of this thrust fault system represents a significant concern in addition to the Denali fault for infrastructure adjacent to and transecting the Alaska Range. Although additional work is required to characterize these faults sufficiently for seismic hazard analysis, the regional extent and structural character should require the consideration of the northern Alaska Range thrust system in regional tectonic models.

  10. Long-term observations of Alaska Coastal Current in the northern Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Stabeno, Phyllis J.; Bell, Shaun; Cheng, Wei; Danielson, Seth; Kachel, Nancy B.; Mordy, Calvin W.

    2016-10-01

    The Alaska Coastal Current is a continuous, well-defined system extending for 1700 km along the coast of Alaska from Seward, Alaska to Samalga Pass in the Aleutian Islands. The currents in this region are examined using data collected at >20 mooring sites and from >400 satellite-tracked drifters. While not continuous, the mooring data span a 30 year period (1984-2014). Using current meter data collected at a dozen mooring sites spread over four lines (Seward, Gore Point, Kennedy and Stevenson Entrances, and the exit to Shelikof Strait) total transport was calculated. Transport was significantly correlated with alongshore winds, although the correlation at the Seward Line was weak. The largest mean transport in the Alaska Coastal Current occurred at Gore Point (1.4×106 m3 s-1 in winter and 0.6×106 m3 s-1 in summer), with the transport at the exit to Shelikof Strait (1.3×106 m3 s-1 in winter and 0.6×106 m3 s-1 in summer) only slightly less. The transport was modified at the Seward Line in late summer and fall by frontal undulations associated with strong river discharge that enters onto the shelf at that time of year. The interaction of the Alaska Coastal Current and tidal currents with shallow banks in the vicinity of Kodiak Archipeligo and in Kennedy-Stevenson Entrance results in mixing and prolonged primary production throughout the summer.

  11. 75 FR 13297 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... for 118.47 acres, located southeast of the Native village of Hughes, Alaska. Notice of the decision...: The Bureau of Land Management by phone at 907-271-5960, or by e-mail at ak[email protected]ak.blm.gov...

  12. 33 CFR 203.16 - Federally recognized Indian Tribes and the Alaska Native Corporations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Tribes and the Alaska Native Corporations. 203.16 Section 203.16 Navigation and Navigable Waters CORPS OF..., NATURAL DISASTER PROCEDURES Introduction § 203.16 Federally recognized Indian Tribes and the Alaska Native... recognized Indian Tribe or Alaska Native Corporation, or through the appropriate regional representative of...

  13. 33 CFR 203.16 - Federally recognized Indian Tribes and the Alaska Native Corporations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Tribes and the Alaska Native Corporations. 203.16 Section 203.16 Navigation and Navigable Waters CORPS OF..., NATURAL DISASTER PROCEDURES Introduction § 203.16 Federally recognized Indian Tribes and the Alaska Native... recognized Indian Tribe or Alaska Native Corporation, or through the appropriate regional representative of...

  14. 33 CFR 203.16 - Federally recognized Indian Tribes and the Alaska Native Corporations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Tribes and the Alaska Native Corporations. 203.16 Section 203.16 Navigation and Navigable Waters CORPS OF..., NATURAL DISASTER PROCEDURES Introduction § 203.16 Federally recognized Indian Tribes and the Alaska Native... recognized Indian Tribe or Alaska Native Corporation, or through the appropriate regional representative of...

  15. 33 CFR 203.16 - Federally recognized Indian Tribes and the Alaska Native Corporations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Tribes and the Alaska Native Corporations. 203.16 Section 203.16 Navigation and Navigable Waters CORPS OF..., NATURAL DISASTER PROCEDURES Introduction § 203.16 Federally recognized Indian Tribes and the Alaska Native... recognized Indian Tribe or Alaska Native Corporation, or through the appropriate regional representative of...

  16. Alaska Air National Guard

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Symbol Visit 168th Wing Website State of Alaska myAlaska My Government Resident Business in Alaska

  17. 77 FR 12477 - Subsistence Management Regulations for Public Lands in Alaska-Subpart C-Board Determinations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ....gov . For questions specific to National Forest System lands, contact Steve Kessler, Regional... or more on the economy or adversely affect an economic sector, productivity, jobs, the environment...; Jerry Berg, Alaska Regional Office, U.S. Fish and Wildlife Service; and Steve Kessler, Alaska Regional...

  18. Mitochondrial DNA phylogeography of least cisco Coregonus sardinella in Alaska.

    PubMed

    Padula, V M; Causey, D; López, J A

    2017-03-01

    This study presents the first detailed analysis of the mitochondrial DNA diversity of least cisco Coregonus sardinella in Alaska using a 678 bp segment of the control region (D-loop) of the mitochondrial genome. Findings suggest that the history of C. sardinella in Alaska differs from that of other species of Coregonus present in the state and surrounding regions. The examined populations of C. sardinella are genetically diverse across Alaska. Sixty-eight distinct mitochondrial haplotypes were identified among 305 individuals sampled from nine locations. The haplotype minimum spanning network and phylogeny showed a modest level of geographic segregation among haplotypes, suggesting high levels of on-going or recent connectivity among distant populations. Observed Φ ST values and the results of homogeneity and AMOVAs indicate incipient genetic differentiation between aggregations in three broad regional groups. Sites north of the Brooks Range formed one group, sites in the Yukon and Selawik Rivers formed a second group and sites south of the Yukon drainage formed the third group. Overall, the sequence data showed that a large proportion of mtDNA genetic variation in C. sardinella is shared across Alaska, but this variation is not homogeneously distributed across all regions and for all haplotype groups. © 2017 The Fisheries Society of the British Isles.

  19. Historical Trends and Regional Differences in All-Cause and Amenable Mortality Among American Indians and Alaska Natives Since 1950

    PubMed Central

    Kunitz, Stephen J.; Veazie, Mark; Henderson, Jeffrey A.

    2014-01-01

    American Indian and Alaska Native (AI/AN) death rates declined over most of the 20th century, even before the Public Health Service became responsible for health care in 1956. Since then, rates have declined further, although they have stagnated since the 1980s. These overall patterns obscure substantial regional differences. Most significant, rates in the Northern and Southern Plains have declined far less since 1949 to 1953 than those in the East, Southwest, or Pacific Coast. Data for Alaska are not available for the earlier period, so its trajectory of mortality cannot be ascertained. Socioeconomic measures do not adequately explain the differences and rates of change, but migration, changes in self-identification as an AI/AN person, interracial marriage, and variations in health care effectiveness all appear to be implicated. PMID:24754651

  20. NASA SPoRT JPSS PG Activities in Alaska

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Molthan, Andrew; Fuell, Kevin; McGrath, Kevin; Smith, Matt; LaFontaine, Frank; Leroy, Anita; White, Kris

    2018-01-01

    SPoRT (NASA's Short-term Prediction Research and Transition Center) has collaboratively worked with Alaska WFOs (Weather Forecast Offices) to introduce RGB (Red/Green/Blue false color image) imagery to prepare for NOAA-20 (National Oceanic and Atmospheric Administration, JPSS (Joint Polar Satellite System) series-20 satellite) VIIRS (Visible Infrared Imaging Radiometer Suite) and improve forecasting aviation-related hazards. Last R2O/O2R (Research-to-Operations/Operations-to-Research) steps include incorporating NOAA-20 VIIRS in RGB suite and fully transitioning client-side RGB processing to GINA (Geographic Information Network of Alaska) and Alaska Region. Alaska Region WFOs have been part of the successful R2O/O2R story to assess the use of NESDIS (National Environmental Satellite, Data, and Information Service) Snowfall Rate product in operations. SPoRT introduced passive microwave rain rate and IMERG (Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement)) (IMERG) to Alaska WFOs for use in radar-void areas and assessing flooding potential. SPoRT has been part of the multi-organization collaborative effort to introduce Gridded NUCAPS (NOAA Unique CrIS/ATMS (Crosstrack Infrared Sounder/Advanced Technology Microwave Sounder) Processing System) to the Anchorage CWSU (Center Weather Service Unit) to assess Cold Air Aloft events, [and as part of NOAA's PG (Product Generation) effort].

  1. Routine Ocean Monitoring With Synthetic Aperture Radar Imagery Obtained From the Alaska Satellite Facility

    NASA Astrophysics Data System (ADS)

    Pichel, W. G.; Clemente-Colon, P.; Li, X.; Friedman, K.; Monaldo, F.; Thompson, D.; Wackerman, C.; Scott, C.; Jackson, C.; Beal, R.; McGuire, J.; Nicoll, J.

    2006-12-01

    The Alaska Satellite Facility (ASF) has been processing synthetic aperture radar (SAR) data for research and for near-real-time applications demonstrations since shortly after the launch of the European Space Agency's ERS-1 satellite in 1991. The long coastline of Alaska, the vast extent of ocean adjacent to Alaska, a scarcity of in-situ observations, and the persistence of cloud cover all contribute to the need for all-weather ocean observations in the Alaska region. Extensive experience with SAR product processing algorithms and SAR data analysis techniques, and a growing sophistication on the part of SAR data and product users have amply demonstrated the value of SAR instruments in providing this all-weather ocean observation capability. The National Oceanic and Atmospheric Administration (NOAA) has been conducting a near-real-time applications demonstration of SAR ocean and hydrologic products in Alaska since September 1999. This Alaska SAR Demonstration (AKDEMO) has shown the value of SAR-derived, high-resolution (sub kilometer) ocean surface winds to coastal weather forecasting and the understanding of coastal wind phenomena such as gap winds, barrier jets, vortex streets, and lee waves. Vessel positions and ice information derived from SAR imagery have been used for management of fisheries, protection of the fishing fleet, enforcement of fisheries regulations, and protection of endangered marine mammals. Other ocean measurements, with potentially valuable applications, include measurement of wave state (significant wave height, dominant wave direction and wavelength, and wave spectra), mapping of oil spills, and detection of shallow-water bathymetric features. In addition to the AKDEMO, ASF-processed SAR imagery is being used: (1) in the Gulf of Mexico for hurricane wind studies, and post-hurricane oil-spill and oil-platform analyses (the latter employing ship-detection algorithms for detection of changes in oil-platform locations); (2) in the North Pacific

  2. Patterns of protective factors in an intervention for the prevention of suicide and alcohol abuse with Yup'ik Alaska Native youth.

    PubMed

    Henry, David; Allen, James; Fok, Carlotta Ching Ting; Rasmus, Stacy; Charles, Bill

    2012-09-01

    Community-based participatory research (CBPR) with American Indian and Alaska Native communities creates distinct interventions, complicating cross-setting comparisons. The objective of this study is to develop a method for quantifying intervention exposure in CBPR interventions that differ in their forms across communities, permitting multi-site evaluation. Attendance data from 195 youth from three Yup'ik communities were coded for the specific protective factor exposure of each youth, based on information from the intervention manual. The coded attendance data were then submitted to latent class analysis to obtain participation patterns. Five patterns of exposure to protective factors were obtained: Internal, External, Limits, Community/family, and Low Protection. Patterns differed significantly by community and youth age. Standardizing interventions by the functions an intervention serves (protective factors promoted) instead of their forms or components (specific activities) can assist in refining CBPR interventions and evaluating effects in culturally distinct settings.

  3. Call types of Bigg's killer whales (Orcinus orca) in western Alaska: Using vocal dialects to assess population structure

    NASA Astrophysics Data System (ADS)

    Sharpe, Deborah Lynn

    Apex predators are important indicators of ecosystem health, but little is known about the population structure of Bigg's killer whales ( Orcinus orca; i.e. 'transient' ecotype) in western Alaska. Currently, all Bigg's killer whales in western Alaska are ascribed to a single broad stock for management under the US Marine Mammal Protection Act. However, recent nuclear microsatellite and mitochondrial DNA analyses indicate that this stock is likely comprised of genetically distinct sub-populations. In accordance with what is known about killer whale vocal dialects in other locations, I sought to evaluate Bigg's killer whale population structure by examining the spatial distribution of group-specific call types in western Alaska. Digital audio recordings were collected from 33 encounters with Bigg's killer whales throughout the Aleutian and Pribilof Islands in the summers of 2001-2007 and 2009-2010. Recorded calls were perceptually classified into discrete types and then quantitatively described using 12 structural and time-frequency measures. Resulting call categories were objectively validated using a random forest approach. A total of 36 call types and subtypes were identified across the entire study area, and regional patterns of call type usage revealed three distinct dialects, each of which corresponding to proposed genetic delineations. I suggest that at least three acoustically and genetically distinct subpopulations are present in western Alaska, and put forth an initial catalog for this area describing the regional vocal repertoires of Bigg's killer whale call types.

  4. Conceptual ecological models to support detection of ecological change on Alaska National Wildlife Refuges

    USGS Publications Warehouse

    Woodward, Andrea; Beever, Erik A.

    2011-01-01

    More than 31 million hectares of land are protected and managed in 16 refuges by the U.S. Fish and Wildlife Service (USFWS) in Alaska. The vastness and isolation of Alaskan refuges give rise to relatively intact and complete ecosystems. The potential for these lands to provide habitat for trust species is likely to be altered, however, due to global climate change, which is having dramatic effects at high latitudes. The ability of USFWS to effectively manage these lands in the future will be enhanced by a regional inventory and monitoring program that integrates and supplements monitoring currently being implemented by individual refuges. Conceptual models inform monitoring programs in a number of ways, including summarizing important ecosystem components and processes as well as facilitating communication, discussion and debate about the nature of the system and important management issues. This process can lead to hypotheses regarding future changes, likely results of alternative management actions, identification of monitoring indicators, and ultimately, interpretation of monitoring results. As a first step towards developing a monitoring program, the 16 refuges in Alaska each created a conceptual model of their refuge and the landscape context. Models include prominent ecosystem components, drivers, and processes by which components are linked or altered. The Alaska refuge system also recognizes that designing and implementing monitoring at regional and ecoregional extents has numerous scientific, fiscal, logistical, and political advantages over monitoring conducted exclusively at refuge-specific scales. Broad-scale monitoring is particularly advantageous for examining phenomena such as climate change because effects are best interpreted at broader spatial extents. To enable an ecoregional perspective, a rationale was developed for deriving ecoregional boundaries for four ecoregions (Polar, Interior Alaska, Bering Coast, and North Pacific Coast) from the

  5. 78 FR 4377 - Annual List of Newspapers To Be Used by the Alaska Region for Publication of Legal Notices of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... hazardous fuel reduction project subject to this process shall be based on the date of publication of the legal notice of the project in the newspaper of record identified in this notice. The newspapers to be... List of Newspapers To Be Used by the Alaska Region for Publication of Legal Notices of Proposed...

  6. 77 FR 75570 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Salmon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    .... 120330244-2673-02] RIN 0648-BB77 Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Salmon AGENCY... the Pacific salmon that occur in the vast majority of the exclusive economic zone (EEZ) off Alaska...) maximize economic and social benefits to the Nation over time; (5) protect wild stocks and fully utilize...

  7. State of Alaska

    Science.gov Websites

    Alaska Railroad Alaska Maps Alaska Travel Safety Information Alaska Fish and Game Alaska Facts & Month Services How Do I? Education Health Jobs Safety How Do I? Apply for a Permanent Fund Dividend File Information More Dept. of Commerce, Comm... More Dept. of Labor & Workforce Dev. Safety 511 - Traveler

  8. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2012-12-01

    Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native

  9. Provisional tree seed zones and transfer guidelines for Alaska.

    Treesearch

    John N. Alden

    1991-01-01

    Four hundred and eighty-six provisional tree seed zones were delineated within 24 physiographic and climatic regions of Alaska and western Yukon Territory Estimated forest and potential forest land within altitudinal limits of tree species in Alaska was 51,853,000 hectares (128,130,000 acres) Seed transfer guidelines and standard labeling of seed collections are...

  10. Geologic maps of the eastern Alaska Range, Alaska (1:63,360 scale)

    USGS Publications Warehouse

    Nokleberg, Warren J.; Aleinikoff, John N.; Bond, Gerard C.; Ferrians, Oscar J.; Herzon, Paige L.; Lange, Ian M.; Miyaoka, Ronny T.; Richter, Donald H.; Schwab, Carl E.; Silva, Steven R.; Smith, Thomas E.; Zehner, Richard E.

    2015-01-01

    This report provides a description of map units for a suite of 44 inch-to-mile (1:63,360-scale) geologic quadrangle maps of the eastern Alaska Range. This report also contains a geologic and tectonic summary and a comprehensive list of references pertaining to geologic mapping and specialized studies of the region. In addition to the geologic maps of the eastern Alaska Range, this package includes a list of map units and an explanation of map symbols and abbreviations. The geologic maps display detailed surficial and bedrock geology, structural and stratigraphic data, portrayal of the active Denali fault that bisects the core of the east–west-trending range, and portrayal of other young faults along the north and south flanks of the range.

  11. Density and magnetic suseptibility values for rocks in the Talkeetna Mountains and adjacent region, south-central Alaska

    USGS Publications Warehouse

    Sanger, Elizabeth A.; Glen, Jonathan M.G.

    2003-01-01

    This report presents a compilation and statistical analysis of 306 density and 706 magnetic susceptibility measurements of rocks from south-central Alaska that were collected by U.S. Geological Survey (USGS) and Alaska Division of Geological and Geophysical Surveys (ADGGS) scientists between the summers of 1999 and 2002. This work is a product of the USGS Talkeetna Mountains Transect Project and was supported by USGS projects in the Talkeetna Mountains and Iron Creek region, and by Bureau of Land Management (BLM) projects in the Delta River Mining District that aim to characterize the subsurface structures of the region. These data were collected to constrain potential field models (i.e., gravity and magnetic) that are combined with other geophysical methods to identify and model major faults, terrane boundaries, and potential mineral resources of the study area. Because gravity and magnetic field anomalies reflect variations in the density and magnetic susceptibility of the underlying lithology, these rock properties are essential components of potential field modeling. In general, the average grain density of rocks in the study region increases from sedimentary, felsic, and intermediate igneous rocks, to mafic igneous and metamorphic rocks. Magnetic susceptibility measurements performed on rock outcrops and hand samples from the study area also reveal lower magnetic susceptibilities for sedimentary and felsic intrusive rocks, moderate susceptibility values for metamorphic, felsic extrusive, and intermediate igneous rocks, and higher susceptibility values for mafic igneous rocks. The density and magnetic properties of rocks in the study area are generally consistent with general trends expected for certain rock types.

  12. Home - Gold mining in Alaska - Libraries, Archives, & Museums at Alaska

    Science.gov Websites

    State Library Skip to main content State of Alaska myAlaska Departments State Employees Statewide Links × Upcoming Holiday Closure for Memorial Day The Alaska State Libraries, Archives, & Tuesday, May 29. Department of Education and Early Development Alaska State Libraries, Archives, and

  13. “Where I Have to Learn the Ways How to Live:” Youth Resilience in a Yup’ik Village in Alaska

    PubMed Central

    Rasmus, Stacy M.; Allen, James; Ford, Tara

    2014-01-01

    What is it like to grow-up Yup’ik and come-of-age today in a traditional hunting-gathering community setting located in a remote region of Alaska? Current research describes a contemporary experience often laden with trauma and crisis. Youth in Yup’ik communities today face threats to their very survival as they encounter, early on, things that their ancestors never faced – including alcohol-related deaths, violence in many forms, and high rates of suicide among their young peers. Yet all is not despair for the youth growing up in these remote indigenous communities. Many youth grow-up to become skilled hunters, strong leaders, and able parents. This paper reports findings from the Alaskan Yup’ik site of the Circumpolar Indigenous Pathways to Adulthood (CIPA) study. The goal of this study is to identify strengths and resilience in youth living in a Yup’ik community in southwest Alaska. Interviews were conducted with 25 youth age 11–18, currently residing in a southwest Alaska community. Qualitative analysis revealed important connections between local stressors, community-level protective resources, and youth-driven, solution-focused strategies for overcoming hardship and learning the ‘ways how to live.’ Findings from this study contribute critical information on indigenous youth protection and resilience, including community and cultural resilience processes beyond the individual level, and enhance our understanding of the types of resources that can lead to improved outcomes for Alaska Native youth. PMID:24823691

  14. Molluscan evidence for early middle Miocene marine glaciation in southern Alaska

    USGS Publications Warehouse

    Marincovich, L.

    1990-01-01

    Profound cooling of Miocene marine climates in southern Alaska culminated in early middle Miocene coastal marine glaciation in the northeastern Gulf of Alaska. This climatic change resulted from interaction of the Yakutat terrane with southern Alaska beginning in late Oligocene time. The ensuing extreme uplift of the coastal Chugach and St. Elias Mountains resulted in progressive regional cooling that culminated in coastal marine glaciation beginning in the early middle Miocene (15-16 Ma) and continuing to the present. The counterclockwise flow of surface water from the frigid northeastern Gulf of Alaska resulted in a cold-temperate shallow-marine environment in the western Gulf of Alaska, as it does today. Ironically, dating of Gulf of Alaska marine glaciation as early middle Miocene is strongly reinforced by the presence of a few tropical and subtropical mollusks in western Gulf of Alaska faunas. Shallow-marine waters throughout the Gulf of Alaska were cold-temperate to cold in the early middle Miocene, when the world ocean was undergoing peak Neogene warming. -Author

  15. Net emissions of CH4 and CO2 in Alaska: Implications for the region's greenhouse gas budget

    USGS Publications Warehouse

    Zhuang, Q.; Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Prinn, R.G.; Steudler, P.A.; Felzer, B.S.; Hu, S.

    2007-01-01

    We used a biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to study the net methane (CH4) fluxes between Alaskan ecosystems and the atmosphere. We estimated that the current net emissions of CH4 (emissions minus consumption) from Alaskan soils are ???3 Tg CH 4/yr. Wet tundra ecosystems are responsible for 75% of the region's net emissions, while dry tundra and upland boreal forests are responsible for 50% and 45% of total consumption over the region, respectively. In response to climate change over the 21st century, our simulations indicated that CH 4 emissions from wet soils would be enhanced more than consumption by dry soils of tundra and boreal forests. As a consequence, we projected that net CH4 emissions will almost double by the end of the century in response to high-latitude warming and associated climate changes. When we placed these CH4 emissions in the context of the projected carbon budget (carbon dioxide [CO2] and CH4) for Alaska at the end of the 21st century, we estimated that Alaska will be a net source of greenhouse gases to the atmosphere of 69 Tg CO2 equivalents/yr, that is, a balance between net methane emissions of 131 Tg CO2 equivalents/yr and carbon sequestration of 17 Tg C/yr (62 Tg CO2 equivalents/yr). ?? 2007 by the Ecological Society of America.

  16. Increasing insect reactions in Alaska: is this related to changing climate?

    PubMed

    Demain, Jeffrey G; Gessner, Bradford D; McLaughlin, Joseph B; Sikes, Derek S; Foote, J Timothy

    2009-01-01

    In 2006, Fairbanks, AK, reported its first cases of fatal anaphylaxis as a result of Hymenoptera stings concurrent with an increase in insect reactions observed throughout the state. This study was designed to determine whether Alaska medical visits for insect reactions have increased. We conducted a retrospective review of three independent patient databases in Alaska to identify trends of patients seeking medical care for adverse reactions after insect-related events. For each database, an insect reaction was defined as a claim for the International Classification of Diseases, Ninth Edition (ICD-9), codes E9053, E906.4, and 989.5. Increases in insect reactions in each region were compared with temperature changes in the same region. Each database revealed a statistically significant trend in patients seeking care for insect reactions. Fairbanks Memorial Hospital Emergency Department reported a fourfold increase in patients in 2006 compared with previous years (1992-2005). The Allergy, Asthma, and Immunology Center of Alaska reported a threefold increase in patients from 1999 to 2002 to 2003 to 2007. A retrospective review of the Alaska Medicaid database from 1999 to 2006 showed increases in medical claims for insect reactions among all regions, with the largest percentage of increases occurring in the most northern areas. Increases in insect reactions in Alaska have occurred after increases in annual and winter temperatures, and these findings may be causally related.

  17. Age, distribution and style of deformation in Alaska north of 60°N: Implications for assembly of Alaska

    USGS Publications Warehouse

    Moore, Thomas; Box, Stephen E.

    2016-01-01

    The structural architecture of Alaska is the product of a complex history of deformation along both the Cordilleran and Arctic margins of North America involving oceanic plates, subduction zones and strike-slip faults and with continental elements of Laurentia, Baltica, and Siberia. We use geological constraints to assign regions of deformation to 14 time intervals and to map their distributions in Alaska. Alaska can be divided into three domains with differing deformational histories. Each domain includes a crustal fragment that originated near Early Paleozoic Baltica. The Northern domain experienced the Early Cretaceous Brookian orogeny, an oceanic arc-continent collision, followed by mid-Cretaceous extension. Early Cretaceous opening of the oceanic Canada Basin rifted the orogen from the Canadian Arctic margin, producing the bent trends of the orogen. The second (Southern) domain consists of Neoproterozoic and younger crust of the amalgamated Peninsular-Wrangellia-Alexander arc terrane and its paired Mesozoic accretionary prism facing the Pacific Ocean basin. The third (Interior) domain, situated between the first two domains and roughly bounded by the Cenozoic dextral Denali and Tintina faults, includes the large continental Yukon Composite and Farewell terranes having different Permian deformational episodes. Although a shared deformation that might mark their juxtaposition by collisional processes is unrecognized, sedimentary linkage between the two terranes and depositional overlap of the boundary with the Northern domain occurred by early Late Cretaceous. Late Late Cretaceous deformation is the first deformation shared by all three domains and correlates temporally with emplacement of the Southern domain against the remainder of Alaska. Early Cenozoic shortening is mild across interior Alaska but is significant in the Brooks Range, and correlates in time with dextral faulting, ridge subduction and counter-clockwise rotation of southern Alaska. Late Cenozoic

  18. Using Vocal Dialects to Assess the Population Structure of Bigg's Killer Whales in Alaska

    NASA Astrophysics Data System (ADS)

    Sharpe, D. L.; Wade, P. R.; Castellote, M.; Cornick, L. A.

    2016-02-01

    Apex predators are important indicators of ecosystem health, but little is known about the population structure of Bigg's killer whales (Orcinus orca; i.e. "transient" ecotype) in western Alaska. Currently, all Bigg's killer whales in western Alaska are ascribed to a single broad stock for management under the US Marine Mammal Protection Act. However, recent nuclear microsatellite and mitochondrial DNA analyses indicate that this stock is likely comprised of genetically distinct sub-populations. In accordance with what is known about group-specific killer whale vocal dialects in other locations, we sought to evaluate and refine Bigg's killer whale population structure by using acoustic recordings to examine the spatial distribution of call types in western Alaska. Digital audio recordings were collected from 34 encounters with Bigg's killer whales throughout the Aleutian and Pribilof Islands in the summers of 2001-2007 and 2009-2010, then visually and aurally reviewed using the software Adobe Audition. High quality calls were identified and classified into discrete call types based on spectrographic characteristics and aural uniqueness. A comparative analysis of call types recorded throughout the study area revealed spatial segregation of call types, corresponding well with proposed genetic delineations. These results suggest that Bigg's killer whales exhibit regional vocal dialects, which can be used to help refine the putative sub-populations that have been genetically identified throughout western Alaska. Our findings support the proposal to restructure current stock designations.

  19. Home, Alaska Oil and Gas Conservation Commission, State of Alaska

    Science.gov Websites

    State logo Alaska Department of Administration Alaska Oil and Gas Conservation Commission Administration AOGCC Alaska Oil and Gas Conservation Commission Javascript is required to run this webpage

  20. Earthquakes in Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Plafker, George

    1995-01-01

    Earthquake risk is high in much of the southern half of Alaska, but it is not the same everywhere. This map shows the overall geologic setting in Alaska that produces earthquakes. The Pacific plate (darker blue) is sliding northwestward past southeastern Alaska and then dives beneath the North American plate (light blue, green, and brown) in southern Alaska, the Alaska Peninsula, and the Aleutian Islands. Most earthquakes are produced where these two plates come into contact and slide past each other. Major earthquakes also occur throughout much of interior Alaska as a result of collision of a piece of crust with the southern margin.

  1. Surface melt dominates Alaska glacier mass balance

    USGS Publications Warehouse

    Larsen Chris F,; Burgess, E; Arendt, A.A.; O'Neel, Shad; Johnson, A.J.; Kienholz, C.

    2015-01-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of −75 ± 11 Gt yr−1 (1994–2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.

  2. Alaska volcanoes guidebook for teachers

    USGS Publications Warehouse

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  3. Alaska goose populations: Past, present and future

    USGS Publications Warehouse

    King, James G.; Derksen, Dirk V.

    1986-01-01

    Many people think Alaska remains a pristine wilderness and that wildlife populations are still at prehistoric levels. This very likely is not true for the 11 species and subspecies of geese that nest in Alaska. Large, widely dispersed populations of geese were observed near the turn of the century. Even in the early 1970s, it was estimated that Alaskan habitats were used by 915,000 nesting and 100,000 additional migrating geese each year (King and Lensink 1971). Since then the Alaskan populations of most of these species have declined, some to dramatically low levels (Raveling 1984), even though habitats within the state have remained largely unaltered by man.The U.S. has treaties with Canada, Mexico, Japan and the Soviet Union to protect geese and other shared migratory birds, confirming international concern for the welfare of this resource. Cooperative research on Alaskan geese during the past several decades has given understanding of their migration corridors, staging and wintering habitats, and the principle places where they are hunted, thereby providing information needed to develop effective management plans. The only attempt to re-introduce geese in Alaska has been in the Aleutian Islands. Other opportunities exist.It is our intent here to: (1) review the historic and current status and important habitats of geese that occur in Alaska; (2) identify existing and potential threats to these populations; and (3) offer alternative management approaches for geese in Alaska.

  4. Regional Geochemical Results from the Reanalysis of NURE Stream Sediment Samples - Eagle 3? Quadrangle, East-Central Alaska

    USGS Publications Warehouse

    Crock, J.G.; Briggs, P.H.; Gough, L.P.; Wanty, R.B.; Brown, Z.A.

    2007-01-01

    This report presents reconnaissance geochemical data for a cooperative study in the Fortymile Mining District, east-central Alaska, initiated in 1997. This study has been funded by the U.S. Geological Survey (USGS) Mineral Resources Program. Cooperative funds were provided from various State of Alaska sources through the Alaska Department of Natural Resources. Results presented here represent the initial reconnaissance phase for this multidisciplinary cooperative study. In this phase, 239 sediment samples from the Eagle 3? Quadrangle of east-central Alaska, which had been collected and analyzed for the U.S. Department of Energy's National Uranium Resource Evaluation program (NURE) of the 1970's (Hoffman and Buttleman, 1996; Smith, 1997), are reanalyzed by newer analytical methods that are more sensitive, accurate, and precise (Arbogast, 1996; Taggart, 2002). The main objectives for the reanalysis of these samples were to establish lower limits of determination for some elements and to confirm the NURE data as a reliable predictive reconnaissance tool for future studies in Alaska's Eagle 3? Quadrangle. This study has wide implications for using the archived NURE samples and data throughout Alaska for future studies.

  5. 78 FR 34093 - An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... scientific and technical information presented in the report, the realistic mining scenario used, the data... Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska AGENCY: Environmental Protection Agency... document titled, ``An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska...

  6. 77 FR 25164 - Adequacy Status of the Eagle River, Alaska Particulate Matter Limited Maintenance Plan for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-R10-OAR-2010-1914; FRL-9664-7] Adequacy Status of the Eagle River, Alaska Particulate Matter Limited Maintenance Plan for Transportation Conformity Purposes AGENCY... notifying the public of its finding that the Eagle River, Alaska, Particulate Matter (PM 10 ) Limited...

  7. Tobacco cessation intervention during pregnancy among Alaska Native women.

    PubMed

    Patten, Christi A

    2012-04-01

    This paper describes a community-based participatory research program with Alaska Native people addressing a community need to reduce tobacco use among pregnant women and children. Tobacco use during pregnancy among Alaska Native women is described along with development of a community partnership, findings from a pilot tobacco cessation intervention, current work, and future directions. Among Alaska Native women residing in the Yukon Kuskokwim Delta region of western Alaska, the prevalence of tobacco use (cigarette smoking and/or use of smokeless tobacco) during pregnancy is 79%. Results from a pilot intervention study targeting pregnant women indicated low rates of participation and less than optimal tobacco abstinence outcomes. Developing alternative strategies to reach pregnant women and to enhance the efficacy of interventions is a community priority, and future directions are offered.

  8. Tobacco Cessation Intervention During Pregnancy Among Alaska Native Women

    PubMed Central

    2014-01-01

    This paper describes a community-based participatory research program with Alaska Native people addressing a community need to reduce tobacco use among pregnant women and children. Tobacco use during pregnancy among Alaska Native women is described along with development of a community partnership, findings from a pilot tobacco cessation intervention, current work, and future directions. Among Alaska Native women residing in the Yukon Kuskokwim Delta region of western Alaska, the prevalence of tobacco use (cigarette smoking and/or use of smokeless tobacco) during pregnancy is 79%. Results from a pilot intervention study targeting pregnant women indicated low rates of participation and less than optimal tobacco abstinence outcomes. Developing alternative strategies to reach pregnant women and to enhance the efficacy of interventions is a community priority, and future directions are offered. PMID:22311690

  9. Volcanoes of the Wrangell Mountains and Cook Inlet region, Alaska: selected photographs

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Diggles, Michael F.

    2001-01-01

    Alaska is home to more than 40 active volcanoes, many of which have erupted violently and repeatedly in the last 200 years. This CD-ROM contains 97 digitized color 35-mm images which represent a small fraction of thousands of photographs taken by Alaska Volcano Observatory scientists, other researchers, and private citizens. The photographs were selected to portray Alaska's volcanoes, to document recent eruptive activity, and to illustrate the range of volcanic phenomena observed in Alaska. These images are for use by the interested public, multimedia producers, desktop publishers, and the high-end printing industry. The digital images are stored in the 'images' folder and can be read across Macintosh, Windows, DOS, OS/2, SGI, and UNIX platforms with applications that can read JPG (JPEG - Joint Photographic Experts Group format) or PCD (Kodak's PhotoCD (YCC) format) files. Throughout this publication, the image numbers match among the file names, figure captions, thumbnail labels, and other references. Also included on this CD-ROM are Windows and Macintosh viewers and engines for keyword searches (Adobe Acrobat Reader with Search). At the time of this publication, Kodak's policy on the distribution of color-management files is still unresolved, and so none is included on this CD-ROM. However, using the Universal Ektachrome or Universal Kodachrome transforms found in your software will provide excellent color. In addition to PhotoCD (PCD) files, this CD-ROM contains large (14.2'x19.5') and small (4'x6') screen-resolution (72 dots per inch; dpi) images in JPEG format. These undergo downsizing and compression relative to the PhotoCD images.

  10. 76 FR 3156 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... located in: Seward Meridian, Alaska T. 26 N., R. 47 W., Sec. 3, those lands formerly within mining claim... claim recordation AA- 32365. Containing approximately 155 acres. T. 27 N., R. 47 W., Sec. 34, those... e-mail at ak[email protected] , or by telecommunication device (TTD) through the Federal...

  11. Alaska and the Alaska Federal Health Care Partnership

    DTIC Science & Technology

    2002-08-01

    SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT The intent of the Alaska Federal Healthcare Partnership is to expand clinical and... intent of the Alaska Federal Healthcare Partnership is to expand clinical and support capabilities of the Alaska Native Medical Center (ANMC), Third...the formation of the Partnership. Although lengthy, the information is essential to appreciate the magnitude of the Partnership and the intent behind

  12. Evaluation of Unmanned Aircraft System (UAS) to Monitor Forest Health Conditions in Alaska

    NASA Astrophysics Data System (ADS)

    Webley, P. W.; Hatfield, M. C.; Heutte, T. M.; Winton, L. M.

    2017-12-01

    US Forest Service Alaska Region Forest Health Protection (FHP) and University of Alaska Fairbanks (UAF), Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) are evaluating the capability of Unmanned Aerial Systems (UAS, "drone" informally) to monitor forest health conditions in Alaska's Interior Region. On July 17-20 2017, FHP and ACUASI deployed two different UAS at permanent forest inventory plots managed by the UAF programs Bonanza Creek Long Term Ecological Research (LTER) and Cooperative Alaska Forest Inventory (CAFI). The purpose of the mission was to explore capabilities of UAS for evaluating aspen tree mortality at inaccessible locations and at a scale and precision not generally achievable with currently used ground- or air-based methods. Drawing from experience gained during the initial 2016 campaign, this year emphasized the efficient use of UAS to accomplish practical field research in a variety of realistic situations. The vehicles selected for this years' effort included the DJI Matrice quadcopter with the Zenmuse-X3 camera to quickly capture initial video of the site and tree conditions; followed by the ING Responder (single rotor electric helicopter based on the Gaui X7 airframe) outfitted with a Nikon D810 camera to collect high-resolution stills suitable for construction of orthomosaic models. A total of 12 flights were conducted over the campaign, with two full days dedicated to the Delta Junction Gerstle River Intermediate (GRI) sites and the remaining day at the Bonanza Creek site. In addition to demonstrating the ability of UAS to operate safely and effectively in various canopy conditions, the effort also validated the ability of teams to deliver UAS and scientific payloads into challenging terrain using all-terrain vehicles (ATV) and foot traffic. Analysis of data from the campaign is underway. Because the permanent plots have been recently evaluated it is known that nearly all aspen mortality is caused by an aggressive canker

  13. Revisiting Notable Earthquakes and Seismic Patterns of the Past Decade in Alaska

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Macpherson, K. A.; Holtkamp, S. G.

    2015-12-01

    Alaska, the most seismically active region of the United States, has produced five earthquakes with magnitudes greater than seven since 2005. The 2007 M7.2 and 2013 M7.0 Andreanof Islands earthquakes were representative of the most common source of significant seismic activity in the region, the Alaska-Aleutian megathrust. The 2013 M7.5 Craig earthquake, a strike-slip event on the Queen-Charlotte fault, occurred along the transform plate boundary in southeast Alaska. The largest earthquake of the past decade, the 2014 M7.9 Little Sitkin event in the western Aleutians, occurred at an intermediate depth and ruptured along a gently dipping fault through nearly the entire thickness of the subducted Pacific plate. Along with these major earthquakes, the Alaska Earthquake Center reported over 250,000 seismic events in the state over the last decade, and its earthquake catalog surpassed 500,000 events in mid-2015. Improvements in monitoring networks and processing techniques allowed an unprecedented glimpse into earthquake patterns in Alaska. Some notable recent earthquake sequences include the 2008 Kasatochi eruption, the 2006-2008 M6+ crustal earthquakes in the central and western Aleutians, the 2010 and 2015 Bering Sea earthquakes, the 2014 Noatak swarm, and the 2014 Minto earthquake sequence. In 2013, the Earthscope USArray project made its way into Alaska. There are now almost 40 new Transportable Array stations in Alaska along with over 20 upgraded sites. This project is changing the earthquake-monitoring scene in Alaska, lowering magnitude of completeness across large, newly instrumented parts of the state.

  14. Triggered tremor sweet spots in Alaska

    NASA Astrophysics Data System (ADS)

    Gomberg, Joan; Prejean, Stephanie

    2013-12-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor "sweet spots"—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (< 0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  15. Triggered tremor sweet spots in Alaska

    USGS Publications Warehouse

    Gomberg, Joan; Prejean, Stephanie

    2013-01-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor “sweet spots”—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (<~0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  16. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  17. Traditional living and cultural ways as protective factors against suicide: perceptions of Alaska Native university students

    PubMed Central

    DeCou, Christopher R.; Skewes, Monica C.; López, Ellen D. S.

    2013-01-01

    Introduction Native peoples living in Alaska have one of the highest rates of suicide in the world. This represents a significant health disparity for indigenous populations living in Alaska. This research was part of a larger study that explored qualitatively the perceptions of Alaska Native university students from rural communities regarding suicide. This analysis explored the resilience that arose from participants’ experiences of traditional ways, including subsistence activities. Previous research has indicated the importance of traditional ways in preventing suicide and strengthening communities. Method Semi-structured interviews were conducted with 25 university students who had migrated to Fairbanks, Alaska, from rural Alaskan communities. An interview protocol was developed in collaboration with cultural and community advisors. Interviews were audio-recorded and transcribed. Participants were asked specific questions concerning the strengthening of traditional practices towards the prevention of suicide. Transcripts were analysed using the techniques of grounded theory. Findings Participants identified several resilience factors against suicide, including traditional practices and subsistence activities, meaningful community involvement and an active lifestyle. Traditional practices and subsistence activities were perceived to create the context for important relationships, promote healthy living to prevent suicide, contrast with current challenges and transmit important cultural values. Participants considered the strengthening of these traditional ways as important in suicide prevention efforts. However, subsistence and traditional practices were viewed as a diminishing aspect of daily living in rural Alaska. Conclusions Many college students from rural Alaska have been affected by suicide but are strong enough to cope with such tragic events. Subsistence living and traditional practices were perceived as important social and cultural processes with

  18. Traditional living and cultural ways as protective factors against suicide: perceptions of Alaska Native university students.

    PubMed

    DeCou, Christopher R; Skewes, Monica C; López, Ellen D S

    2013-01-01

    Native peoples living in Alaska have one of the highest rates of suicide in the world. This represents a significant health disparity for indigenous populations living in Alaska. This research was part of a larger study that explored qualitatively the perceptions of Alaska Native university students from rural communities regarding suicide. This analysis explored the resilience that arose from participants' experiences of traditional ways, including subsistence activities. Previous research has indicated the importance of traditional ways in preventing suicide and strengthening communities. Semi-structured interviews were conducted with 25 university students who had migrated to Fairbanks, Alaska, from rural Alaskan communities. An interview protocol was developed in collaboration with cultural and community advisors. Interviews were audio-recorded and transcribed. Participants were asked specific questions concerning the strengthening of traditional practices towards the prevention of suicide. Transcripts were analysed using the techniques of grounded theory. Participants identified several resilience factors against suicide, including traditional practices and subsistence activities, meaningful community involvement and an active lifestyle. Traditional practices and subsistence activities were perceived to create the context for important relationships, promote healthy living to prevent suicide, contrast with current challenges and transmit important cultural values. Participants considered the strengthening of these traditional ways as important in suicide prevention efforts. However, subsistence and traditional practices were viewed as a diminishing aspect of daily living in rural Alaska. Many college students from rural Alaska have been affected by suicide but are strong enough to cope with such tragic events. Subsistence living and traditional practices were perceived as important social and cultural processes with meaningful lifelong benefits for

  19. Resident, State of Alaska

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees State of Alaska Search Home Quick Links Departments Commissioners Employee Whitepages State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  20. Visitor, State of Alaska

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees State of Alaska Search Home Quick Links Departments Commissioners Employee Whitepages State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  1. Unified Ecoregions of Alaska: 2001

    USGS Publications Warehouse

    Nowacki, Gregory J.; Spencer, Page; Fleming, Michael; Brock, Terry; Jorgenson, Torre

    2003-01-01

    Major ecosystems have been mapped and described for the State of Alaska and nearby areas. Ecoregion units are based on newly available datasets and field experience of ecologists, biologists, geologists and regional experts. Recently derived datasets for Alaska included climate parameters, vegetation, surficial geology and topography. Additional datasets incorporated in the mapping process were lithology, soils, permafrost, hydrography, fire regime and glaciation. Thirty two units are mapped using a combination of the approaches of Bailey (hierarchial), and Omernick (integrated). The ecoregions are grouped into two higher levels using a 'tri-archy' based on climate parameters, vegetation response and disturbance processes. The ecoregions are described with text, photos and tables on the published map.

  2. Alaska Native Rural Development: The NANA Experience. Occasional Paper No. 2.

    ERIC Educational Resources Information Center

    Gaffney, Michael J.

    Faced with the need to build new social and economic institutions following the 1971 Alaska Native Claims Settlement Act, Alaska Natives formed 12 regional non-profit making corporations. One of these, Northwest Arctic Inupiat (NANA), is bringing a human resources development approach to the area in an effort to develop enduring economic and…

  3. FY10 RARE Final Report to Region 10: The functional Assessment of Alaska Peatlands in Cook Inlet Basin - report

    EPA Science Inventory

    Peatlands in south central Alaska form the predominant wetland class in the lowlands that encompass Cook Inlet. These peatlands are also in areas of increasing human development in Alaska. Currently Alaska peatlands are extensive and largely pristine. This study focused onobtaini...

  4. A conceptual model for the impact of climate change on fox rabies in Alaska, 1980-2010.

    PubMed

    Kim, B I; Blanton, J D; Gilbert, A; Castrodale, L; Hueffer, K; Slate, D; Rupprecht, C E

    2014-02-01

    The direct and interactive effects of climate change on host species and infectious disease dynamics are likely to initially manifest\\ at latitudinal extremes. As such, Alaska represents a region in the United States for introspection on climate change and disease. Rabies is enzootic among arctic foxes (Vulpes lagopus) throughout the northern polar region. In Alaska, arctic and red foxes (Vulpes vulpes) are reservoirs for rabies, with most domestic animal and wildlife cases reported from northern and western coastal Alaska. Based on passive surveillance, a pronounced seasonal trend in rabid foxes occurs in Alaska, with a peak in winter and spring. This study describes climatic factors that may be associated with reported cyclic rabies occurrence. Based upon probabilistic modelling, a stronger seasonal effect in reported fox rabies cases appears at higher latitudes in Alaska, and rabies in arctic foxes appear disproportionately affected by climatic factors in comparison with red foxes. As temperatures continue a warming trend, a decrease in reported rabid arctic foxes may be expected. The overall epidemiology of rabies in Alaska is likely to shift to increased viral transmission among red foxes as the primary reservoir in the region. Information on fox and lemming demographics, in addition to enhanced rabies surveillance among foxes at finer geographic scales, will be critical to develop more comprehensive models for rabies virus transmission in the region. © 2013 Blackwell Verlag GmbH.

  5. Phytophthora species in forest streams in Oregon and Alaska.

    PubMed

    Reeser, Paul W; Sutton, Wendy; Hansen, Everett M; Remigi, Philippe; Adams, Gerry C

    2011-01-01

    Eighteen Phytophthora species and one species of Halophytophthora were identified in 113 forest streams in Alaska, western Oregon and southwestern Oregon that were sampled by baiting or filtration of stream water with isolation on selective media. Species were identified by morphology and DNA characterization with single strand conformational polymorphism, COX spacer sequence and ITS sequence. ITS Clade 6 species were most abundant overall, but only four species, P. gonapodyides (37% of all isolates), P. taxon Salixsoil, P. taxon Oaksoil and P. pseudosyringae, were found in all three regions. The species assemblages were similar in the two Oregon regions, but P. taxon Pgchlamydo was absent in Alaska and one new species present in Alaska was absent in Oregon streams. The number of Phytophthora propagules in Oregon streams varied by season and in SW Oregon, where sampling continued year round, P. taxon Salixsoil, P. nemorosa and P. siskiyouensis were recovered only in some seasons.

  6. 76 FR 56109 - Subsistence Management Regulations for Public Lands in Alaska-Subpart B, Federal Subsistence Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... questions specific to National Forest System lands, contact Steve Kessler, Subsistence Program Leader, USDA..., productivity, jobs, the environment, or other units of the government. (b) Whether the rule will create...; Jerry Berg, Alaska Regional Office, U.S. Fish and Wildlife Service; and Steve Kessler, Alaska Regional...

  7. 78 FR 35149 - Addresses of Regional Offices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ..., and Texas), 500 Gold Avenue SW., Room 9018 (P.O. Box 1306), Albuquerque, New Mexico 87102. (c) Midwest... 01035. (f) Mountain-Prairie Regional Office (Region 6--comprising the States of Colorado, Kansas...), Lakewood, Colorado 80228. (g) Alaska Regional Office (Region 7--comprising the State of Alaska), 1011 E...

  8. Prospects for natural world heritage sites in the Northwest Pacific Region

    Treesearch

    Jim Thorsell

    2007-01-01

    Alaska, northern British Columbia (BC), and the western portion of the Yukon Territory have extensive areas of wildlands that are matched by protected area systems covering some 20 percent of the land area of the region. One of the most outstanding of these is the Kluane/Wrangell-St. Elias/Glacier Bay/Tatshenshini-Alsek Park complex that is shared by all three...

  9. Level III Ecoregions of Alaska

    EPA Pesticide Factsheets

    Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. The ecoregions of Alaska are a framework for organizing and interpreting environmental data for State, national, and international level inventory, monitoring, and research efforts. The map and descriptions for 20 ecological regions were derived by synthesizing information on the geographic distribution of environmental factors such as climate, physiography, geology, permafrost, soils, and vegetation. A qualitative assessment was used to interpret the distributional patterns and relative importance of these factors from place to place (Gallant and others, 1995). Numeric identifiers assigned to the ecoregions are coordinated with those used on the map of Ecoregions of the Conterminous United States (Omernik 1987, U.S. EPA 2010) as a continuation of efforts to map ecoregions for the United States. Additionally, the ecoregions for Alaska and the conterminous United States, along with ecological regions for Canada (Wiken 1986) and Mexico, have been combined for maps at three hierarchical levels for North America (Omernik 1995, Commission for Environmental Cooperation, 1997, 2006). A Roman numeral hierarchical scheme has been adopted for different levels of ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions. At Level III, there are currently 182

  10. 77 FR 4581 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ..., Port Alsworth, Alaska, (907) 781-2218, on Wednesday, February 22, 2012. The meeting will start at 11 a.m. and conclude at 4 p.m. or until business is completed. For Further Information On the Lake Clark... Member Status 8. Public and Other Agency Comments 9. Old Business a. Subsistence Collections and Uses of...

  11. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Alaska Region (Version 2.0)

    DTIC Science & Technology

    2007-09-01

    07-24 102 Viereck, L. A., K. Van Cleve, and C. T. Dyrness. 1986. Forest ecosystem distribution in the Taiga environment, Chapter 3. In Forest...ecosystems in the Alaska Taiga : A synthesis of structure and function. ed. K. Van Cleve, F. S. Chapin III, P. W. Flanagan, L. A. Viereck, and C. T

  12. Alaska Seismic Hazards Safety Commission

    Science.gov Websites

    State Employees ASHSC State of Alaska search Alaska Seismic Hazards Safety Commission View of Anchorage and Commissions Alaska Seismic Hazards Safety Commission (ASHSC) main contant Alaska Seismic Hazards Safety Commission logo Alaska Seismic Hazards Safety Commission (ASHSC) - Mission The Alaska Seismic

  13. NASA's DESDynI in Alaska

    NASA Astrophysics Data System (ADS)

    Sauber, J. M.; Hofton, M. A.; Bruhn, R. L.; Forster, R. R.; Burgess, E. W.; Cotton, M. M.

    2010-12-01

    In 2007 the National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommended an integrated L-band InSAR and multibeam Lidar mission called DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) and it is scheduled for launch in 2017. The NASA InSAR and Lidar mission is optimized for studying geohazards and global environmental change. The complex plate boundary in southern coastal Alaska provides an excellent setting for testing DESDynI capabilities to recover fundamental parameters of glacio-seismotectonic processes. Also, aircraft and satellites acquisitions of Lidar and L-band SAR have been made in this region in the last decade that can be used for DESDynI performance simulations. Since the Lidar observations would penetrate most vegetation, the accurate bald Earth elevation profiles will give new elevation information beyond the standard 30-m digital elevation models (DEM) and the Lidar-derived elevations will provide an accurate georeferenced surface for local and regional scale studies. In an earlier study we demonstrated how the Lidar observations could be used in combination with SAR to generate an improved InSAR derived DEM in the Barrow, Alaska region [Atwood et al., 2007]; here we discuss how Lidar could be fused with L-band SAR in more rugged, vegetated terrane. Based on simulations of multi-beam Lidar instrument performance over uplifted marine terraces, active faults and folds, uplift associated with the 1899 Yakataga seismic event (M=8), and elevation change on the glaciers in southern, coastal Alaska, we report on the significance of the DESDynI Lidar contiguous 25 m footprint elevation profiles for EarthScope related studies in Alaska. We are using the morphology and dynamics of glaciers derived from L-band SAR ice velocities to infer the large scale sub-ice structures that form the structural framework of the Seward-Bagley Basins. Using primarily winter acquisitions of L-band SAR data from ALOS

  14. Effect of root strength and soil saturation on hillslope stability in forests with natural cedar decline in headwater regions of SE Alaska.

    Treesearch

    Adelaide C. Johnson; Peter Wilcock

    1998-01-01

    A natural decline in the population of yellow-cedar (Chamaecyparis nootkatensis) is occurring in pristine southeast Alaska forests and may be the most significant forest decline in the western United States. The frequency of landslides in cedar decline areas is three times larger than in areas of healthy forest. Three regions are investigated in...

  15. Reconnaissance sedimentology of selected tertiary exposures in the upland region bordering the Yukon Flats basin, east-central Alaska

    USGS Publications Warehouse

    LePain, David L.; Stanley, Richard G.

    2017-01-01

    This report summarizes reconnaissance sedimentologic and stratigraphic observations made during six days of helicopter-supported fieldwork in 2002 on Tertiary sedimentary rocks exposed in the upland region around the flanks of the Yukon Flats basin in east-central Alaska (fig. 1). This project was a cooperative effort between the Alaska Division of Geological & Geophysical Surveys (DGGS) and the U.S. Geological Survey (USGS) to investigate the geology of the basin in preparation for an assessment of the undiscovered, technically recoverable hydrocarbon resources (Stanley and others, 2004). Field observations and interpretations summarized in this report are reconnaissance level. At most, no more than a few hours were spent on the ground at any location. Measured sections included in this report are sketch sec- tions and thicknesses shown are approximate. Relatively detailed observations were made by the authors at only three locations, including The Mudbank (Hodzana River), Rampart (east bank of the Yukon River), and Bryant Creek (along the Tintina fault near the Canada border). These three locations are described first in relative detail, then followed by general descriptions of other locations.

  16. Phylogeography of brown bears (Ursus arctos) of Alaska and paraphyly within the Ursidae.

    PubMed

    Talbot, S L; Shields, G F

    1996-06-01

    Complete nucleotide sequences of the mitochondrial cytochrome b, tRNA(prolime), and tRNA(threonine) genes were described for 166 brown bears (Ursus arctos) from 10 geographic regions of Alaska to describe natural genetic variation, construct a molecular phylogeny, and evaluate classical taxonomies. DNA sequences of brown bears were compared to homologous sequences of the polar bear (maritimus) and of the sun bear (Helarctos malayanus), which was used as an outgroup. Parsimony and neighbor-joining methods each produced essentially identical phylogenetic trees that suggest two distinct clades of mtDNA for brown bears in Alaska: one composed only of bears that now reside on some of the islands of southeastern Alaska and the other which includes bears from all other regions of Alaska. The very close relationship of the polar bear to brown bears of the islands of southeastern Alaska as previously reported by us and the paraphyletic association of polar bears to brown bears reported by others have been reaffirmed with this much larger data set. A weak correlation is suggested between types of mtDNA and habitat preference by brown bears in Alaska. Our mtDNA data support some, but not all, of the currently designated subspecies of brown bears whose descriptions have been based essentially on morphology.

  17. 77 FR 4579 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ..., Alaska, (907) 683-4500, on Thursday, February 23, 2012. The meeting will start at 9 a.m. and conclude at 5 p.m. or until business is completed. Should a quorum of members not be available on Thursday... 25, 2012. This meeting will start at 9 a.m. and conclude at 5 p.m. For Further Information on the...

  18. Case study comparison of two pellet heating facilities in southeastern Alaska

    Treesearch

    David Nicholls; Allen Brackley; Robert Deering; Daniel Parrent; Brian Kleinhenz; Craig. Moore

    2016-01-01

    Over the past decade, wood-energy use in Alaska has grown dramatically. Since 2000, several dozen new wood-energy installations have been established, with numerous others in the design or construction phase. This case study report compares two wood-pellet heating systems in Juneau, Alaska. The Tlingit-Haida Regional Housing Authority, a native housing authority that...

  19. Alaska exceptionality hypothesis: Is Alaska wilderness really different?

    Treesearch

    Gregory Brown

    2002-01-01

    The common idiom of Alaska as “The Last Frontier” suggests that the relative remoteness and unsettled character of Alaska create a unique Alaskan identity, one that is both a “frontier” and the “last” of its kind. The frontier idiom portrays the place and people of Alaska as exceptional or different from the places and people who reside in the Lower Forty- Eight States...

  20. Broadening the Quality and Capabilities of the EarthScope Alaska Transportable Array

    NASA Astrophysics Data System (ADS)

    Busby, R. W.

    2016-12-01

    In 2016, the EarthScope Transportable Array (TA) program will have 195 broadband seismic stations operating in Alaska and western Canada. This ambitious project will culminate in a network of 268 new or upgraded real-time seismic stations operating through 2019. The challenging environmental conditions and the remoteness of Alaska have motivated a new method for constructing a high-quality, temporary seismic network. The Alaska TA station design builds on experience of the Lower 48 TA deployment and adds design requirements because most stations are accessible only by helicopter. The stations utilize new high-performance posthole sensors, a specially built hammer/auger drill, and lightweight lithium ion batteries to minimize sling loads. A uniform station design enables a modest crew to build the network on a short timeline and operate them through the difficult conditions of rural Alaska. The Alaska TA deployment has increased the quality of seismic data, with some well-sited 2-3 m posthole stations approaching the performance of permanent Global Seismic Network stations emplaced in 100 m boreholes. The real-time data access, power budget, protective enclosure and remote logistics of these TA stations has attracted collaborations with NASA, NOAA, USGS, AVO and other organizations to add auxiliary sensors to the suite of instruments at many TA stations. Strong motion sensors have been added to (18) stations near the subduction trench to complement SM stations operated by AEC, ANSS and GSN. All TA and most upgraded stations have pressure and infrasound sensors, and 150 TA stations are receiving a Vaisala weather sensor, supplied by the National Weather Service Alaska Region and NASA, capable of measuring temperature, pressure, relative humidity, wind speed/direction, and precipitation intensity. We are also installing about (40) autonomous soil temperature profile kits adjacent to northern stations. While the priority continues to be collecting seismic data, these

  1. 50 CFR 37.31 - Environmental protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Environmental protection. 37.31 Section 37... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL WILDLIFE REFUGE, ALASKA Environmental Protection § 37.31 Environmental protection. (a...

  2. 50 CFR 37.31 - Environmental protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Environmental protection. 37.31 Section 37... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL WILDLIFE REFUGE, ALASKA Environmental Protection § 37.31 Environmental protection. (a...

  3. 50 CFR 37.31 - Environmental protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Environmental protection. 37.31 Section 37... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL WILDLIFE REFUGE, ALASKA Environmental Protection § 37.31 Environmental protection. (a...

  4. 50 CFR 37.31 - Environmental protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Environmental protection. 37.31 Section 37... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL WILDLIFE REFUGE, ALASKA Environmental Protection § 37.31 Environmental protection. (a...

  5. 50 CFR 37.31 - Environmental protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Environmental protection. 37.31 Section 37... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL WILDLIFE REFUGE, ALASKA Environmental Protection § 37.31 Environmental protection. (a...

  6. Multi-year Estimates of Methane Fluxes in Alaska from an Atmospheric Inverse Model

    NASA Astrophysics Data System (ADS)

    Miller, S. M.; Commane, R.; Chang, R. Y. W.; Miller, C. E.; Michalak, A. M.; Dinardo, S. J.; Dlugokencky, E. J.; Hartery, S.; Karion, A.; Lindaas, J.; Sweeney, C.; Wofsy, S. C.

    2015-12-01

    We estimate methane fluxes across Alaska over a multi-year period using observations from a three-year aircraft campaign, the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Existing estimates of methane from Alaska and other Arctic regions disagree in both magnitude and distribution, and before the CARVE campaign, atmospheric observations in the region were sparse. We combine these observations with an atmospheric particle trajectory model and a geostatistical inversion to estimate surface fluxes at the model grid scale. We first use this framework to estimate the spatial distribution of methane fluxes across the state. We find the largest fluxes in the south-east and North Slope regions of Alaska. This distribution is consistent with several estimates of wetland extent but contrasts with the distribution in most existing flux models. These flux models concentrate methane in warmer or more southerly regions of Alaska compared to the estimate presented here. This result suggests a discrepancy in how existing bottom-up models translate wetland area into methane fluxes across the state. We next use the inversion framework to explore inter-annual variability in regional-scale methane fluxes for 2012-2014. We examine the extent to which this variability correlates with weather or other environmental conditions. These results indicate the possible sensitivity of wetland fluxes to near-term variability in climate.

  7. Climate Drivers of Alaska Summer Stream Temperature

    NASA Astrophysics Data System (ADS)

    Bieniek, P.; Bhatt, U. S.; Plumb, E. W.; Thoman, R.; Trammell, E. J.

    2016-12-01

    The temperature of the water in lakes, rivers and streams has wide ranging impacts from local water quality and fish habitats to global climate change. Salmon fisheries in Alaska, a critical source of food in many subsistence communities, are sensitive to large-scale climate variability and river and stream temperatures have also been linked with salmon production in Alaska. Given current and projected climate change, understanding the mechanisms that link the large-scale climate and river and stream temperatures is essential to better understand the changes that may occur with aquatic life in Alaska's waterways on which subsistence users depend. An analysis of Alaska stream temperatures in the context of reanalysis, downscaled, station and other climate data is undertaken in this study to fill that need. Preliminary analysis identified eight stream observation sites with sufficiently long (>15 years) data available for climate-scale analysis in Alaska with one station, Terror Creek in Kodiak, having a 30-year record. Cross-correlation of summer (June-August) water temperatures between the stations are generally high even though they are spread over a large geographic region. Correlation analysis of the Terror Creek summer observations with seasonal sea surface temperatures (SSTs) in the North Pacific broadly resembles the SST anomaly fields typically associated with the Pacific Decadal Oscillation (PDO). A similar result was found for the remaining stations and in both cases PDO-like correlation patterns also occurred in the preceding spring. These preliminary results demonstrate that there is potential to diagnose the mechanisms that link the large-scale climate system and Alaska stream temperatures.

  8. Rare Clear View of Alaska [annotated

    NASA Image and Video Library

    2017-12-08

    On most days, relentless rivers of clouds wash over Alaska, obscuring most of the state’s 6,640 miles (10,690 kilometers) of coastline and 586,000 square miles (1,518,000 square kilometers) of land. The south coast of Alaska even has the dubious distinction of being the cloudiest region of the United States, with some locations averaging more than 340 cloudy days per year. That was certainly not the case on June 17, 2013, the date that the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this rare, nearly cloud-free view of the state. The absence of clouds exposed a striking tapestry of water, ice, land, forests, and even wildfires. Snow-covered mountains such as the Alaska Range and Chugach Mountains were visible in southern Alaska, while the arc of mountains that make up the Brooks Range dominated the northern part of the state. The Yukon River—the longest in Alaska and the third longest in the United States—wound its way through the green boreal forests that inhabit the interior of the state. Plumes of sediment and glacial dust poured into the Gulf of Alaska from the Copper River. And Iliamna Lake, the largest in Alaska, was ice free. The same ridge of high pressure that cleared Alaska’s skies also brought stifling temperatures to many areas accustomed to chilly June days. Talkeetna, a town about 100 miles north of Anchorage, saw temperatures reach 96°F (36°C) on June 17. Other towns in southern Alaska set all-time record highs, including Cordova, Valez, and Seward. The high temperatures also helped fuel wildfires and hastened the breakup of sea ice in the Chukchi Sea. NASA image courtesy Jeff Schmaltz, LANCE MODIS Rapid Response Team at NASA GSFC. Caption by Adam Voiland. Instrument: Terra - MODIS More info: 1.usa.gov/102MAEj Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar

  9. Alaska telemedicine: growth through collaboration.

    PubMed

    Patricoski, Chris

    2004-12-01

    The last thirty years have brought the introduction and expansion of telecommunications to rural and remote Alaska. The intellectual and financial investment of earlier projects, the more recent AFHCAN Project and the Universal Service Administrative Company Rural Health Care Division (RHCD) has sparked a new era in telemedicine and telecommunication across Alaska. This spark has been flamed by the dedication and collaboration of leaders at he highest levels of organizations such as: AFHCAN member organizations, AFHCAN Office, Alaska Clinical Engineering Services, Alaska Federal Health Care Partnership, Alaska Federal Health Care Partnership Office, Alaska Native health Board, Alaska Native Tribal health Consortium, Alaska Telehealth Advisory Council, AT&T Alascom, GCI Inc., Health care providers throughout the state of Alaska, Indian Health Service, U.S. Department of Health and Human Services, Office of U.S. Senator Ted Steens, State of Alaska, U.S. Department of Homeland Security--United States Coast Guard, United States Department of Agriculture, United States Department of Defense--Air Force and Army, United States Department of Veterans Affairs, University of Alaska, and University of Alaska Anchorage. Alaska now has one of the largest telemedicine programs in the world. As Alaska moves system now in place become self-sustaining, and 2) collaborating with all stakeholders in promoting the growth of an integrated, state-wide telemedicine network.

  10. Earthquake Hazard and Risk in Alaska

    NASA Astrophysics Data System (ADS)

    Black Porto, N.; Nyst, M.

    2014-12-01

    Alaska is one of the most seismically active and tectonically diverse regions in the United States. To examine risk, we have updated the seismic hazard model in Alaska. The current RMS Alaska hazard model is based on the 2007 probabilistic seismic hazard maps for Alaska (Wesson et al., 2007; Boyd et al., 2007). The 2015 RMS model will update several key source parameters, including: extending the earthquake catalog, implementing a new set of crustal faults, updating the subduction zone geometry and reoccurrence rate. First, we extend the earthquake catalog to 2013; decluster the catalog, and compute new background rates. We then create a crustal fault model, based on the Alaska 2012 fault and fold database. This new model increased the number of crustal faults from ten in 2007, to 91 faults in the 2015 model. This includes the addition of: the western Denali, Cook Inlet folds near Anchorage, and thrust faults near Fairbanks. Previously the subduction zone was modeled at a uniform depth. In this update, we model the intraslab as a series of deep stepping events. We also use the best available data, such as Slab 1.0, to update the geometry of the subduction zone. The city of Anchorage represents 80% of the risk exposure in Alaska. In the 2007 model, the hazard in Alaska was dominated by the frequent rate of magnitude 7 to 8 events (Gutenberg-Richter distribution), and large magnitude 8+ events had a low reoccurrence rate (Characteristic) and therefore didn't contribute as highly to the overall risk. We will review these reoccurrence rates, and will present the results and impact to Anchorage. We will compare our hazard update to the 2007 USGS hazard map, and discuss the changes and drivers for these changes. Finally, we will examine the impact model changes have on Alaska earthquake risk. Consider risk metrics include average annual loss, an annualized expected loss level used by insurers to determine the costs of earthquake insurance (and premium levels), and the

  11. A formalized approach to making effective natural resource management decisions for Alaska National Parks

    USGS Publications Warehouse

    MacCluskie, Margaret C.; Romito, Angela; Peterson, James T.; Lawler, James P.

    2015-01-01

    A fundamental goal of the National Park Service (NPS) is the long-term protection and management of resources in the National Park System. Reaching this goal requires multiple approaches, including the conservation of essential habitats and the identification and elimination of potential threats to biota and habitats. To accomplish these goals, the NPS has implemented the Alaska Region Vital Signs Inventory and Monitoring (I&M) Program to monitor key biological, chemical, and physical components of ecosystems at more than 270 national parks. The Alaska Region has four networks—Arctic, Central, Southeast, and Southwest. By monitoring vital signs over large spatial and temporal scales, park managers are provided with information on the status and trajectory of park resources as well as a greater understanding and insight into the ecosystem dynamics. While detecting and quantifying change is important to conservation efforts, to be useful for formulating remedial actions, monitoring data must explicitly relate to management objectives and be collected in such a manner as to resolve key uncertainties about the dynamics of the system (Nichols and Williams 2006). Formal decision making frameworks (versus more traditional processes described below) allow for the explicit integration of monitoring data into decision making processes to improve the understanding of system dynamics, thereby improving future decisions (Williams 2011).

  12. A conceptual model for the impact of climate change on fox rabies in Alaska, 1980–2010

    PubMed Central

    Kim, Bryan I.; Blanton, Jesse D.; Gilbert, Amy; Castrodale, Louisa; Hueffer, Karsten; Slate, Dennis; Rupprecht, Charles E.

    2013-01-01

    The direct and interactive effects of climate change on host species and infectious disease dynamics are likely to initially manifest at latitudinal extremes. As such, Alaska represents a region in the United States for introspection on climate change and disease. Rabies is enzootic among arctic foxes (Vulpes lagopus) throughout the northern polar region. In Alaska, arctic and red foxes (Vulpes vulpes) are reservoirs for rabies, with most domestic animal and wildlife cases reported from northern and western coastal Alaska. Based on passive surveillance, a pronounced seasonal trend in rabid foxes occurs in Alaska, with a peak in winter and spring. This study describes climatic factors that may be associated with reported cyclic rabies occurrence. Based upon probabilistic modeling, a stronger seasonal effect in reported fox rabies cases appears at higher latitudes in Alaska, and rabies in arctic foxes appear disproportionately affected by climatic factors in comparison to red foxes. As temperatures continue a warming trend a decrease in reported rabid arctic foxes may be expected. The overall epidemiology of rabies in Alaska is likely to shift to increased viral transmission among red foxes as the primary reservoir in the region. Information on fox and lemming demographics, in addition to enhanced rabies surveillance among foxes at finer geographic scales, will be critical to develop more comprehensive models for rabies virus transmission in the region. PMID:23452510

  13. New ichnological, paleobotanical and detrital zircon data from an unnamed rock unit in Yukon-Charley Rivers National Preserve (Cretaceous: Alaska): Stratigraphic implications for the region

    USGS Publications Warehouse

    Fiorillo, Anthony R.; Fanti, Federico; Hults, Chad; Hasiotis, Stephen T

    2014-01-01

    A paleontological reconnaissance survey on Cretaceous and Paleogene terrestrial units along the Yukon River drainage through much of east-central Alaska has provided new chronostratigraphic constraints, paleoclimatological data, and the first information on local biodiversity within an ancient, high-latitude ecosystem. The studied unnamed rock unit is most notable for its historic economic gold placer deposits, but our survey documents its relevance as a source rock for Mesozoic terrestrial vertebrates, invertebrates, and associated flora. Specifically, new U-Pb ages from detrital zircons combined with ichnological data are indicative of a Late Cretaceous age for at least the lower section of the studied rock unit, previously considered to be representative of nearly exclusively Paleogene deposition. Further, the results of our survey show that this sedimentary rock unit preserves the first record of dinosaurs in the vast east-central Alaska region. Lastly, paleobotanical data, when compared to correlative rock units, support previous interpretations that the Late Cretaceous continental ecosystem of Alaska was heterogeneous in nature and seasonal.

  14. Crustal Structure beneath Alaska from Receiver Functions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, A.

    2017-12-01

    The crustal structure in Alaska has not been well resolved due to the remote nature of much of the state. The USArray Transportable Array (TA), which is operating in Alaska and northwestern Canada, significantly increases the coverage of broadband seismic stations in the region and allows for a more comprehensive study of the crust. We have analyzed P-receiver functions from earthquake data recorded by 76 stations of the TA and AK networks. Both common conversion point (CCP) and H-K methods are used to estimate the mean crustal thickness. The results from the CCP stacking method show that the Denali fault marks a sharp transition from thick crust in the south to thin crust in the north. The thickest crust up to 52 km is located in the St. Elias Range, which has been formed by oblique collision between the Yakutat microplate and North America. A thick crust of 48 km is also observed beneath the eastern Alaska Range. These observations suggest that high topography in Alaska is largely compensated by the thick crust root. The Moho depth ranges from 28 km to 35 km beneath the northern lowlands and increases to 40-45 km under the Books Range. The preliminary crustal thickness from the H-K method generally agrees with that from the CCP stacking with thicker crust beneath high mountain ranges and thinner crust beneath lowlands and basins. However, the offshore part is not well constrained due to the limited coverage of stations. The mean Vp/Vs ratio is around 1.7 in the Yukon-Tanana terrane and central-northern Alaska. The ratio is about 1.9 in central and southern Alaska with higher values at the Alaska Range, Wrangell Mountains, and St. Elias Range. Further data analyses are needed for obtaining more details of the crustal structure in Alaska to decipher the origin and development of different tectonic terranes.

  15. Publications - RI 2001-1C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    map of the Chulitna region, southcentral Alaska, scale 1:63,360 (7.5 M) Digital Geospatial Data Digital Geospatial Data Chulitna region surficial geology Data File Format File Size Info Download

  16. Publications - RI 2001-1D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    -geologic map of the Chulitna region, southcentral Alaska, scale 1:63,360 (16.0 M) Digital Geospatial Data Digital Geospatial Data Chulitna region engineering geology Data File Format File Size Info Download

  17. The Incidence of Infant Physical Abuse in Alaska

    ERIC Educational Resources Information Center

    Gessner, Bradford D.; Moore, Martha; Hamilton, Bernita; Muth, Pam T.

    2004-01-01

    Objectives: To determine the incidence of and risk factors associated with infant (less than 1 year of age) physical abuse in Alaska. Methods: A population-based retrospective cohort study for the 1994-2000 resident birth cohort was conducted by linking data from birth certificates, Child Protective Services, a statewide hospital-based trauma…

  18. 78 FR 53137 - Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. OR13-31-000] Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc., ExxonMobil... (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc., and ExxonMobil Pipeline Company (collectively...

  19. Gold placers of the historical Fortymile River region, Alaska

    USGS Publications Warehouse

    Yeend, Warren E.

    1996-01-01

    The Fortymile River region in east-central Alaska has a long and colorful history as the site of the first major gold discovery in interior Alaska. Placer gold has been mined in the region nearly every year since its original discovery in 1886. Total gold production is approximately 500,000 troy ounces. Although many of the rich deposits have been mined, there still exist areas that contain gold. Areas of mined and unmined gold-bearing creek and terrace gravels are outlined on the accompanying geologic map. The early history of the Fortymile area centered on the small frontier settlement of Fortymile City located at the junction of the Fortymile and Yukon Rivers in Canadian territory. This was the supply and jumping-off point for prospectors who worked their way into Alaska up the Fortymile River and found gold on many of its tributaries. Hand mining, both underground and surface, using sluice boxes and (or) rockers were the earliest methods; later, hydraulicking, dredging, and draglining methods were used. More recently, bulldozers and elevated trammels have been used, as well as very portable floating suction dredges. The rich mining lore of the area is closely associated with events of the nearby world-famous Klondike District. Bedrock and placer geology and mining history of individual gold-rich creeks are herein updated. The Fortymile area, which is part of the Yukon-Tanana Upland, contains quartzite, schist, gneiss, amphibolite, marble, serpentinite, and granite overlain by basalt, sandstone, conglomerate, shale, tuff, and coal; overlying these rocks are several deposits of varying ages consisting of gold-bearing gravel and colluvium. The close spatial association of creeks containing placer gold and the gneiss, schist, amphibolite, and marble unit strongly suggests this metamorphic unit is the gold source. High terrace gravels record a time from the late Tertiary to early Pleistocene when the ancestral Fortymile River and its major tributaries, the North and

  20. Neospora caninum and Toxoplasma gondii antibody prevalence in Alaska wildlife.

    PubMed

    Stieve, Erica; Beckmen, Kimberlee; Kania, Stephen A; Widner, Amanda; Patton, Sharon

    2010-04-01

    Free-ranging caribou and moose populations in some regions of Alaska undergo periodic declines in numbers. Caribou and moose are managed by the state as valuable resources for not only sustenance and subsistence, but also for cultural heritage. Incidence and prevalence of diseases that may impact herd health and recruitment from year to year are relevant to management decisions aimed to protect the long-term viability of these herds. Neospora caninum and Toxoplasma gondii are two apicomplexan parasites that can cause neurologic disease and abortions in their intermediate hosts and less frequently cause disease in their definitive hosts. The definitive hosts of N. caninum and T. gondii are canids and felids, respectively, and prevalence in the environment is in part dependent on maintenance of the life cycle through the definitive hosts. Serum samples from caribou (Rangifer tarandus, n=453), wolf (Canis lupus, n=324), moose (Alces alces, n=201), black-tailed deer (Odocoileus hemionus, n=55), coyote (Canis latrans, n=12), and fox (Vulpes vulpes, n=9) collected in Alaska were assayed for N. caninum- and T. gondii-reactive antibodies with an immunofluorescent antibody test (IFAT) and a modified agglutination test (MAT), respectively. Seroprevalence of N. caninum was greater in caribou (11.5%) than in wolves (9.0%), moose (0.5%), or black-tailed deer (0%). Seroprevalence of T. gondii was greater in wolves (17.8%) than in caribou (0.4%), moose (0%), or black-tailed deer (0%). Seroprevalence of N. caninum and T. gondii were 16.7% and 0.0% in coyotes and 0.0% and 12.5% in fox, but small sample sizes prevented further analysis. Antibodies to N. caninum in young caribou compared to adult caribou suggest that vertical transmission may be an important component of new infections in Alaskan caribou. The spatial distribution of antibody-positive individuals across Alaska may reflect differences in frequency of definitive hosts and alteration of predation patterns among regions.

  1. 78 FR 21597 - Marine Mammals: Alaska Harbor Seal Habitats

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... Office of Protected Resources, (301) 427-8402. SUPPLEMENTARY INFORMATION: On March 12, 2013, NMFS... need to register for these workshops. Dated: April 5, 2013. Helen M. Golde, Acting Director, Office of... habitats in Alaska (78 FR 15669; March 12, 2013). During the workshops NMFS will present information...

  2. 77 FR 29961 - Fisheries of the Exclusive Economic Zone off Alaska and Pacific Halibut Fisheries; Observer Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Science Center, 7600 Sand Point Way NE., Building 4, Observer Training Room (1055), Seattle, WA 98115..., Sustainable Fisheries Division, Alaska Region NMFS, Attn: Ellen Sebastian. Mail comments to P.O. Box 21668..., Sustainable Fisheries Division, Alaska Region NMFS, Attn: Ellen Sebastian. Fax comments to 907-586-7557. Hand...

  3. Geologic studies in Alaska by the U.S. Geological Survey, 1988

    USGS Publications Warehouse

    Dover, James H.; Galloway, John P.

    1989-01-01

    This volume continues the annual series of U.S. Geological Survey (USGS) reports on geologic investigations in Alaska. Since 1975, when the first of these collections of short papers appeared under the title "The United States Geological Survey in Alaska: Accomplishments during 1975," the series has been published as USGS circulars. This bulletin departs from the circular style, in part to provide a more flexible format for longer reports with more depth of content, better documentation, and broader scope than is possible for circular articles.The 13 papers in this bulletin represent a sampling of research activities carried out in Alaska by the USGS over the past few years. The topics addressed range from mineral resource studies (including natural gas) and geochemistry, Quaternary geology, basic stratigraphic and structural problems, and the use of computer graphics in geologic map preparation, to the application of geochronology to regional tectonic problems. Geographic areas represented are numbered on figure 1 and include the North Slope (1) and Brooks Range (2, 3) of Arctic Alaska, Seward Peninsula (4), interior Alaska (5-9), and remote locations of the Alaska Peninsula (10, 11) and southeast Alaska (12, 13).Two bibliographies following the reports of investigations list (1) reports about Alaska in USGS publications released in 1988 and (2) reports about Alaska by USGS authors in publications outside the USGS in 1988. A bibliography and index of the short papers in past USGS circulars devoted to Geological Research and Accomplishments in Alaska (1975-1986) is published as USGS Open-File Report 87-420.

  4. 78 FR 35572 - Fisheries of the Exclusive Economic Zone Off Alaska; Northern Rockfish in the Bering Sea and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... Administrator, Sustainable Fisheries Division, Alaska Region NMFS, Attn: Ellen Sebastian. Mail comments to P.O... Administrator, Sustainable Fisheries Division, Alaska Region NMFS, Attn: Ellen Sebastian. Fax comments to 907-586-7557. Hand delivery to the Federal Building: Address written comments to Glenn Merrill, Assistant...

  5. Regional Fluid Flow and Basin Modeling in Northern Alaska

    USGS Publications Warehouse

    Kelley, Karen D.

    2007-01-01

    INTRODUCTION The foothills of the Brooks Range contain an enormous accumulation of zinc (Zn) in the form of zinc sulfide and barium (Ba) in the form of barite in Carboniferous shale, chert, and mudstone. Most of the resources and reserves of Zn occur in the Red Dog deposit and others in the Red Dog district; these resources and reserves surpass those of most deposits worldwide in terms of size and grade. In addition to zinc and lead sulfides (which contain silver, Ag) and barite, correlative strata host phosphate deposits. Furthermore, prolific hydrocarbon source rocks of Carboniferous and Triassic to Early Jurassic age generated considerable amounts of petroleum that may have contributed to the world-class petroleum resources of the North Slope. Deposits of Zn-Pb-Ag or barite as large as those in the Brooks Range are very rare on a global basis and, accordingly, multiple coincident favorable factors must be invoked to explain their origins. To improve our understanding of these factors and to contribute to more effective assessments of resources in sedimentary basins of northern Alaska and throughout the world, the Mineral Resources Program and the Energy Resources Program of the U.S. Geological Survey (USGS) initiated a project that was aimed at understanding the petroleum maturation and mineralization history of parts of the Brooks Range that were previously poorly characterized. The project, titled ?Regional Fluid Flow and Basin Modeling in Northern Alaska,? was undertaken in collaboration with industry, academia, and other government agencies. This Circular contains papers that describe the results of the recently completed project. The studies that are highlighted in these papers have led to a better understanding of the following: *The complex sedimentary facies relationships and depositional settings and the geochemistry of the sedimentary rocks that host the deposits (sections 2 and 3). *The factors responsible for formation of the barite and zinc deposits

  6. Technology and Engineering Advances Supporting EarthScope's Alaska Transportable Array

    NASA Astrophysics Data System (ADS)

    Miner, J.; Enders, M.; Busby, R.

    2015-12-01

    EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer of 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. Continued development of battery systems using LiFePO4 chemistries, integration of BGAN, Iridium, Cellular and VSAT technologies for real time data transfer, and modifications to electronic systems are a driving force for year two of the Alaska Transportable Array. Station deployment utilizes custom heliportable drills for sensor emplacement in remote regions. The autonomous station design evolution include hardening the sites for Arctic, sub-Arctic and Alpine conditions as well as the integration of rechargeable Lithium Iron Phosphate batteries with traditional AGM batteries We will present new design aspects, outcomes, and lessons learned from past and ongoing deployments, as well as efforts to integrate TA stations with other existing networks in Alaska including the Plate Boundary Observatory and the Alaska Volcano Observatory.

  7. Ecological niche modeling of rabies in the changing Arctic of Alaska.

    PubMed

    Huettmann, Falk; Magnuson, Emily Elizabeth; Hueffer, Karsten

    2017-03-20

    Rabies is a disease of global significance including in the circumpolar Arctic. In Alaska enzootic rabies persist in northern and western coastal areas. Only sporadic cases have occurred in areas outside of the regions considered enzootic for the virus, such as the interior of the state and urbanized regions. Here we examine the distribution of diagnosed rabies cases in Alaska, explicit in space and time. We use a geographic information system (GIS), 20 environmental data layers and provide a quantitative non-parsimonious estimate of the predicted ecological niche, based on data mining, machine learning and open access data. We identify ecological correlates and possible drivers that determine the ecological niche of rabies virus in Alaska. More specifically, our models show that rabies cases are closely associated with human infrastructure, and reveal an ecological niche in remote northern wilderness areas. Furthermore a model utilizing climate modeling suggests a reduction of the current ecological niche for detection of rabies virus in Alaska, a state that is disproportionately affected by a changing climate. Our results may help to better inform public health decisions in the future and guide further studies on individual drivers of rabies distribution in the Arctic.

  8. Geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    USGS Publications Warehouse

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    2015-01-01

    The boundaries separating the Alaska Peninsula terrane from other terranes are commonly indistinct or poorly defined. A few boundaries have been defined at major faults, although the extensions of these faults are speculative through some areas. The west side of the Alaska Peninsula terrane is overlapped by Tertiary sedimentary and volcanic rocks and Quaternary deposits.

  9. Pliocene terrace gravels of the ancestral Yukon River near Circle, Alaska: Palynology, paleobotany, paleoenvironmental reconstruction and regional correlation

    USGS Publications Warehouse

    Ager, T.A.; Matthews, J.V.; Yeend, W.

    1994-01-01

    Gravels deposited by the ancestral Yukon River are preserved in terrace remnants on the margins of the Yukon River valley near the village of Circle in east-central Alaska. Plant fossils recovered from sandy silt lenses within these gravels include cones and needles of Picea and Larix and a variety of seeds. Seed types include several taxa which no longer grow in Alaska, such as Epipremnum, Prunus and Weigela. Pollen types recovered from these deposits represent tree and shrub taxa that grow in interior Alaska today, such as Picea, Larix, Betula and Alnus, as well as several taxa that no longer grow in interior Alaska today, such as Pinus, Tsuga, Abies and Corylus. Pollen of herb taxa identified include Gramineae, Cyperaceae, Caryophyllaceae, Compositae, Polemonium and Epilobium. The fossil flora from the gravels near Circle are similar and probably age-equivalent to the flora recovered from the Nenana Gravel in the Alaska Range 250 km to the south. Palynological and tectonic evidence summarized in this paper now suggests that the Nenana Gravel was deposited during the early and middle Pliocene. The presence of plant fossils of Tsuga, Abies, Pinus, Weigela and Prunus suggests that the mean annual temperature (MAT) of eastern interior Alaska during the early and middle Pliocene was perhaps 7-9??C warmer and less continental than today's MAT of -6.4??C. ?? 1994.

  10. Basement Structure and Styles of Active Tectonic Deformation in Central Interior Alaska

    NASA Astrophysics Data System (ADS)

    Dixit, N.; Hanks, C.

    2017-12-01

    Central Interior Alaska is one of the most seismically active regions in North America, exhibiting a high concentration of intraplate earthquakes approximately 700 km away from the southern Alaska subduction zone. Based on increasing seismological evidence, intraplate seismicity in the region does not appear to be uniformly distributed, but concentrated in several discrete seismic zones, including the Nenana basin and the adjacent Tanana basin. Recent seismological and neotectonics data further suggests that these seismic zones operate within a field of predominantly pure shear driven primarily by north-south crustal shortening. Although the location and magnitude of the seismic activity in both basins are well defined by a network of seismic stations in the region, the tectonic controls on intraplate earthquakes and the heterogeneous nature of Alaska's continental interior remain poorly understood. We investigated the current crustal architecture and styles of tectonic deformation of the Nenana and Tanana basins using existing geological, geophysical and geochronological datasets. The results of our study demonstrate that the basements of the basins show strong crustal heterogeneity. The Tanana basin is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. Northeast-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. The Nenana basin has a fundamentally different geometry; it is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Fault. This study identifies two distinct modes of tectonic deformation in central Interior Alaska at present, and provides a basis for modeling the interplay between intraplate stress fields and major structural features that potentially influence the generation of intraplate earthquakes in the region.

  11. Work-related nonfatal injuries in Alaska's aviation industry, 2000-2013.

    PubMed

    Case, Samantha L; Moller, Kyle M; Nix, Nancy A; Lucas, Devin L; Snyder, Elizabeth H; O'Connor, Mary B

    2018-04-01

    Aviation is a critical component of life in Alaska, connecting communities off the road system across the state. Crash-related fatalities in the state are well understood and many intervention efforts have been aimed at reducing aircraft crashes and resulting fatalities; however, nonfatal injuries among workers who perform aviation-related duties have not been studied in Alaska. This study aimed to characterize hospitalized nonfatal injuries among these workers using data from the Alaska Trauma Registry. During 2000-2013, 28 crash-related and 89 non-crash injuries were identified, spanning various occupational groups. Falls were a major cause of injuries, accounting for over half of non-crash injuries. Based on the study findings, aviation stakeholders should review existing policies and procedures regarding aircraft restraint systems, fall protection, and other injury prevention strategies. To supplement these findings, further study describing injuries that did not result in hospitalization is recommended.

  12. Hindcast storm events in the Bering Sea for the St. Lawrence Island and Unalakleet Regions, Alaska

    USGS Publications Warehouse

    Erikson, Li H.; McCall, Robert T.; van Rooijen, Arnold; Norris, Benjamin

    2015-01-01

    This study provides viable estimates of historical storm-induced water levels in the coastal communities of Gambell and Savoonga situated on St. Lawrence Island in the Bering Sea, as well as Unalakleet located at the head of Norton Sound on the western coast of Alaska. Gambell, Savoonga, and Unalakleet are small Native Villages that are regularly impacted by coastal storms but where little quantitative information about these storms exists. The closest continuous water-level gauge is at Nome, located more than 200 kilometers from both St. Lawrence Island and Unalakleet. In this study, storms are identified and quantified using historical atmospheric and sea-ice data and then used as boundary conditions for a suite of numerical models. The work includes storm-surge (temporary rise in water levels due to persistent strong winds and low atmospheric pressures) modeling in the Bering Strait region, as well as modeling of wave runup along specified sections of the coast in Gambell and Unalakleet. Modeled historical water levels are used to develop return periods of storm surge and storm surge plus wave runup at key locations in each community. It is anticipated that the results will fill some of the data void regarding coastal flood data in western Alaska and be used for production of coastal vulnerability maps and community planning efforts.

  13. Effects of the Alaska earthquake of March 27, 1964, on shore processes and beach morphology: Chapter J in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Stanley, Kirk W.

    1968-01-01

    Some 10,000 miles of shoreline in south-central Alaska was affected by the subsidence or uplift associated with the great Alaska earthquake of March 27, 1964. The changes in shoreline processes and beach morphology that were suddenly initiated by the earthquake were similar to those ordinarily caused by gradual changes in sea level operating over hundreds of years, while other more readily visible changes were similar to some of the effects of great but short-lived storms. Phenomena became available for observation within a few hours which would otherwise not have been available for many years. In the subsided areas—including the shorelines of the Kenai Peninsula, Kodiak Island, and Cook Inlet—beaches tended to flatten in gradient and to recede shoreward. Minor beach features were altered or destroyed on submergence but began to reappear and to stabilize in their normal shapes within a few months after the earthquake. Frontal beach ridges migrated shoreward and grew higher and wider than they were before. Along narrow beaches backed by bluffs, the relatively higher sea level led to vigorous erosion of the bluff toes. Stream mouths were drowned and some were altered by seismic sea waves, but they adjusted within a few months to the new conditions. In the uplifted areas, generally around Prince William Sound, virtually all beaches were stranded out of reach of the sea. New beaches are gradually developing to fit new sea levels, but the processes are slow, in part because the material on the lower parts of the old beaches is predominantly fine grained. Streams were lengthened in the emergent areas, and down cutting and bank erosion have increased. Except at Homer and a few small villages, where groins, bulkheads, and cobble-filled baskets were installed, there has been little attempt to protect the postearthquake shorelines. The few structures that were built have been only partially successful because there was too little time to study the habits of the new shore

  14. Alaska GeoFORCE, A New Geologic Adventure in Alaska

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2011-12-01

    RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. A program of rigorous academic activity combines with social, cultural, and recreational activities. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. This summer RAHI is launching a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science as the hook because most kids get excited about dinosaurs, volcanoes and earthquakes, but it includes physics, chemistry, math, biology and other sciences. Students will be recruited, initially from the Arctic North Slope schools, in the 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The carrot on the end of the stick is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks, Arizona, Oregon and the Appalachians. All trips are focused on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska is being launched by UAF in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska will be managed by UAF's long-standing Rural Alaska Honors Insitute (RAHI) that has been successfully providing intense STEM educational opportunities for Alaskan high school students for almost 30 years. The Texas program, with adjustments for differences in culture and environment, will be

  15. Evaluation of a wetland classification system devised for management in a region with a high cover of peatlands: an example from the Cook Inlet Basin, Alaska

    EPA Science Inventory

    The manuscript is part of an FY14 RAP product: "Functional Assessment of Alaska Peatlands in Cook Inlet Basin: A report to Region 10". This report included this technical information product which is a manuscript that has now been fully revised, reviewed and published...

  16. Kaltag fault, northern Yukon, Canada: Constraints on evolution of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Lane, Larry S.

    1992-07-01

    The Kaltag fault has been linked to several strike-slip models of evolution of the western Arctic Ocean. Hundreds of kilometres of Cretaceous-Tertiary displacement have been hypothesized in models that emplace Arctic Alaska into its present position by either left- or right-lateral strike slip. However, regional-scale displacement is precluded by new potential-field data. Postulated transform emplacement of Arctic Alaska cannot be accommodated by motion on the Kaltag fault or adjacent structures. The Kaltag fault of the northern Yukon is an eastward extrapolation of its namesake in west-central Alaska; however, a connection cannot be demonstrated. Cretaceous-Tertiary displacement on the Alaskan Kaltag fault is probably accommodated elsewhere.

  17. Alaska softwood market price arbitrage.

    Treesearch

    James A. Stevens; David J. Brooks

    2003-01-01

    This study formally tests the hypothesis that markets for Alaska lumber and logs are integrated with those of similar products from the U.S. Pacific Northwest and Canada. The prices from these three supply regions are tested in a common demand market (Japan). Cointegration tests are run on paired log and lumber data. Our results support the conclusion that western...

  18. Rare Clear View of Alaska [high res

    NASA Image and Video Library

    2017-12-08

    On most days, relentless rivers of clouds wash over Alaska, obscuring most of the state’s 6,640 miles (10,690 kilometers) of coastline and 586,000 square miles (1,518,000 square kilometers) of land. The south coast of Alaska even has the dubious distinction of being the cloudiest region of the United States, with some locations averaging more than 340 cloudy days per year. That was certainly not the case on June 17, 2013, the date that the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this rare, nearly cloud-free view of the state. The absence of clouds exposed a striking tapestry of water, ice, land, forests, and even wildfires. Snow-covered mountains such as the Alaska Range and Chugach Mountains were visible in southern Alaska, while the arc of mountains that make up the Brooks Range dominated the northern part of the state. The Yukon River—the longest in Alaska and the third longest in the United States—wound its way through the green boreal forests that inhabit the interior of the state. Plumes of sediment and glacial dust poured into the Gulf of Alaska from the Copper River. And Iliamna Lake, the largest in Alaska, was ice free. The same ridge of high pressure that cleared Alaska’s skies also brought stifling temperatures to many areas accustomed to chilly June days. Talkeetna, a town about 100 miles north of Anchorage, saw temperatures reach 96°F (36°C) on June 17. Other towns in southern Alaska set all-time record highs, including Cordova, Valez, and Seward. The high temperatures also helped fuel wildfires and hastened the breakup of sea ice in the Chukchi Sea. NASA image courtesy Jeff Schmaltz, LANCE MODIS Rapid Response Team at NASA GSFC. Caption by Adam Voiland. Instrument: Terra - MODIS More info: 1.usa.gov/102MAEj Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar

  19. Topographic soil wetness index derived from combined Alaska-British Columbia datasets for the Gulf of Alaska region

    NASA Astrophysics Data System (ADS)

    D'Amore, D. V.; Biles, F. E.

    2016-12-01

    The flow of water is often highlighted as a priority in land management planning and assessments related to climate change. Improved measurement and modeling of soil moisture is required to develop predictive estimates for plant distributions, soil moisture, and snowpack, which all play important roles in ecosystem planning in the face of climate change. Drainage indexes are commonly derived from GIS tools with digital elevation models. Soil moisture classes derived from these tools are useful digital proxies for ecosystem functions associated with the concentration of water on the landscape. We developed a spatially explicit topographically derived soil wetness index (TWI) across the perhumid coastal temperate rainforest (PCTR) of Alaska and British Columbia. Developing applicable drainage indexes in complex terrain and across broad areas required careful application of the appropriate DEM, caution with artifacts in GIS covers and mapping realistic zones of wetlands with the indicator. The large spatial extent of the model has facilitated the mapping of forest habitat and the development of water table depth mapping in the region. A key element of the TWI is the merging of elevation datasets across the US-Canada border where major rivers transect the international boundary. The unified TWI allows for seemless mapping across the international border and unified ecological applications. A python program combined with the unified DEM allows end users to quickly apply the TWI to all areas of the PCTR. This common platform can facilitate model comparison and improvements to local soil moisture conditions, generation of streamflow, and ecological site conditions. In this presentation we highlight the application of the TWI for mapping risk factors related to forest decline and the development of a regional water table depth map. Improved soil moisture maps are critical for deriving spatial models of changes in soil moisture for both plant growth and streamflow across

  20. Periglacial Landforms and Processes in the Southern Kenai Mountains, Alaska.

    DTIC Science & Technology

    1985-04-01

    RD-RI57 459 PERIGLACIAL LANDFOR;S AND PROCESSES IN THE SOUTHERN i/i KENAI MOUNTAINS ALASKA(U) COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH P...PERIOD COVERED PERIGLACIAL LANDFORMS AND PROCESSES IN THE SOUTHERN KE’AI MOUNTAINS, ALASKA S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(a) S. CONTRACT OR...Gelifluction Patterned ground Geomorphology Periglacial Kenai Mountains Permafrost Nunatak 2&, ABST’RAC (T Ve nf, en revee n esee~7miy and idmy b block numabet

  1. Regional Geochemical Results from Analyses of Stream-Water, Stream-Sediment, Soil, Soil-Water, Bedrock, and Vegetation Samples, Tangle Lakes District, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Gough, L.P.; Wanty, R.B.; Lee, G.K.; Vohden, James; O'Neill, J. M.; Kerin, L.J.

    2008-01-01

    We report chemical analyses of stream-water, stream-sediment, soil, soil-water, bedrock, and vegetation samples collected from the headwaters of the Delta River (Tangle Lakes District, Mount Hayes 1:250,000-scale quadrangle) in east-central Alaska for the period June 20-25, 2006. Additionally, we present mineralogic analyses of stream sediment, concentrated by panning. The study area includes the southwestward extent of the Bureau of Land Management (BLM) Delta River Mining District (Bittenbender and others, 2007), including parts of the Delta River Archeological District, and encompasses an area of about 500 km2(approximately bordered by the Denali Highway to the south, near Round Tangle Lake, northward to the foothills of the Alaska Range (fig. 1). The primary focus of this study was the chemical characterization of native materials, especially surface-water and sediment samples, of first-order streams from the headwaters of the Delta River. The impetus for this work was the need, expressed by the Alaska Department of Natural Resources (ADNR), for an inventory of geochemical and hydrogeochemical baseline information about the Delta River Mining District. This information is needed because of a major upturn in exploration, drilling, and general mineral-resources assessments in the region since the late 1990s. Currently, the study area, called the 'MAN Project' area is being explored by Pure Nickel, Inc. (http://www.purenickel.com/s/MAN_Alaska.asp), and includes both Cu-Au-Ag and Ni-Cu-PGE (Pt-Pd-Au-Ag) mining claims. Geochemical data on surface-water, stream-sediment, soil, soil-water, grayleaf willow (Salix glauca L.), and limited bedrock samples are provided along with the analytical methodologies used and panned-concentrate mineralogy. We are releasing the data at this time with only minimal interpretation.

  2. Applications of ERTS-1 imagery to terrestrial and marine environmental analyses in Alaska

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; Mckim, H. L.; Crowder, W. K.; Haugen, R. K.; Gatto, L. W.; Marlar, T. L.

    1974-01-01

    ERTS-1 imagery provides a means of distinguishing and monitoring estuarine surface water circulation patterns and changes in the relative sediment load of discharging rivers on a regional basis. It also will aid local fishing industries by augmenting currently available hydrologic and navigation charts. The interpretation of geologic and vegetation features resulted in preparation of improved surficial geology, vegetation and permafrost terrain maps at a scale of 1:1 million utilizing ERTS-1 band 7 imagery. This information will be further utilized in a route and site selection study for the Nome to Kobuk Road in central Alaska. Large river icings along the proposed Alaska pipeline route have been monitored. Sea ice deformation and drift northeast of Point Barrow, Alaska has been measured and shorefast ice accumulation and ablation along the west coast of Alaska is being mapped for the spring and early summer seasons. These data will be used for route and site selection, regional environmental analysis, identification and inventory of natural resources, land use planning, and in land use regulation and management.

  3. Initial Conceptualization and Application of the Alaska Thermokarst Model

    NASA Astrophysics Data System (ADS)

    Bolton, W. R.; Lara, M. J.; Genet, H.; Romanovsky, V. E.; McGuire, A. D.

    2015-12-01

    Thermokarst topography forms whenever ice-rich permafrost thaws and the ground subsides due to the volume loss when ground ice transitions to water. The Alaska Thermokarst Model (ATM) is a large-scale, state-and-transition model designed to simulate transitions between landscape units affected by thermokarst disturbance. The ATM uses a frame-based methodology to track transitions and proportion of cohorts within a 1-km2 grid cell. In the arctic tundra environment, the ATM tracks thermokarst-related transitions among wetland tundra, graminoid tundra, shrub tundra, and thermokarst lakes. In the boreal forest environment, the ATM tracks transitions among forested permafrost plateau, thermokarst lakes, collapse scar fens and bogs. The transition from one cohort to another due to thermokarst processes can take place if thaw reaches ice-rich ground layers either due to pulse disturbance (i.e. large precipitation event or fires), or due to gradual active layer deepening that eventually results in penetration of the protective layer. The protective layer buffers the ice-rich soils from the land surface and is critical to determine how susceptible an area is to thermokarst degradation. The rate of terrain transition in our model is determined by a set of rules that are based upon the ice-content of the soil, the drainage efficiency (or the ability of the landscape to store or transport water), the cumulative probability of thermokarst initiation, distance from rivers, lake dynamics (increasing, decreasing, or stable), and other factors. Tundra types are allowed to transition from one type to another (for example, wetland tundra to graminoid tundra) under favorable climatic conditions. In this study, we present our conceptualization and initial simulation results from in the arctic (the Barrow Peninsula) and boreal (the Tanana Flats) regions of Alaska.

  4. Quaternary geology of the Kenai Lowland and glacial history of the Cook Inlet region, Alaska

    USGS Publications Warehouse

    Karlstrom, Thor N.V.

    1964-01-01

    The Kenai Lowland is part of the Cook Inlet Lowland physiographic subprovince that borders Cook Inlet, a major marine reentrant along the Pacific Ocean coastline of south-central Alaska. The Cook Inlet Lowland occupies a structural trough underlain by rocks of Tertiary age and mantled by Quaternary deposits of varying thicknesses. The bordering high alpine mountains—the Aleutian and Alaska Ranges to the northwest and north and the Talkeetna, Chugach, and Kenai Mountains to the northeast and southeast—are underlain by rocks of Mesozoic and older ages.

  5. Publications - GMC 333 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    following six wells from the North Slope region, Alaska: Amethyst State #1, Awuna #1, Oumalik Test #1, Susie ., 2006, Apatite Fission Track analysis of cutting samples from the following six wells from the North

  6. Alaska Center for Climate Assessment and Policy: Partnering with Decision-Makers in Climate Change Adaptation

    NASA Astrophysics Data System (ADS)

    White, D.; Trainor, S.; Walsh, J.; Gerlach, C.

    2008-12-01

    The Alaska Center for Climate Assessment and Policy (ACCAP; www.uaf.edu/accap) is one of several, NOAA funded, Regional Integrated Science and Policy (RISA) programs nation-wide (http://www.climate.noaa.gov/cpo_pa/risa/). Our mission is to assess the socio-economic and biophysical impacts of climate variability in Alaska, make this information available to local and regional decision-makers, and improve the ability of Alaskans to adapt to a changing climate. We partner with the University of Alaska?s Scenario Network for Alaska Planning (SNAP; http://www.snap.uaf.edu/), state and local government, state and federal agencies, industry, and non-profit organizations to communicate accurate and up-to-date climate science and assist in formulating adaptation and mitigation plans. ACCAP and SNAP scientists are members of the Governor?s Climate Change Sub-Cabinet Adaptation and Mitigation Advisory and Technical Working Groups (http://www.climatechange.alaska.gov/), and apply their scientific expertise to provide down-scaled, state-wide maps of temperature and precipitation projections for these groups. An ACCAP scientist also serves as co-chair for the Fairbanks North Star Borough Climate Change Task Force, assisting this group as they work through the five-step model for climate change planning put forward by the International Council for Local Environmental Initiatives (http://www.investfairbanks.com/Taskforces/climate.php). ACCAP scientists work closely with federal resource managers in on a range of projects including: partnering with the U.S. Fish and Wildlife Service to analyze hydrologic changes associated with climate change and related ecological impacts and wildlife management and development issues on Alaska?s North Slope; partnering with members of the Alaska Interagency Wildland Fire Coordinating Group in statistical modeling to predict seasonal wildfire activity and coordinate fire suppression resources state-wide; and working with Alaska Native Elders and

  7. Retaining Quality Teachers for Alaska.

    ERIC Educational Resources Information Center

    McDiarmid, G. Williamson; Larson, Eric; Hill, Alexandra

    This report examines the demand for teachers, teacher turnover, and teacher education in Alaska. Surveys were conducted with school district personnel directors, directors of Alaska teacher education programs, teachers who exited Alaska schools in 2001, and rural and urban instructional aides. Alaska is facing teacher shortages, but these are…

  8. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Li, S.; Freymueller, J. T.

    2017-12-01

    The Alaska Peninsula, including the Shumagin and Semidi segments in the Alaska-Aleutian subduction zone, is one of the best places in the world to study along-strike variations in the seismogenic zone. Understanding the cause of along-strike variations on the plate interface and seismic potential is significant for better understanding of the dynamic mechanical properties of faults and the rheology of the lower crust and lithospheric mantle in subduction zones. GPS measurements can be used to study these properties and estimate the slip deficit distribution on the plate interface. We re-surveyed pre-existing (1992-2001) campaign GPS sites in 2016 and estimated a new dense and highly precise GPS velocity field for the Alaska Peninsula. We find evidence for only minimal time variations in the slip distribution in the region. We used the TDEFNODE software package to invert for the slip deficit distribution from the new velocities. There are long-wavelength systematic misfits to the vertical velocities from the optimal model that fits the horizontal velocities well, which cannot be explained by altering the slip distribution on the subduction plate interface. Possible explanations for the systematic misfit are still under investigation since the plate geometry, GIA effect and reference frame errors do not explain the misfits. In this study, we use only the horizontal velocities. We divided the overall Alaska Peninsula area into three sub-areas, which have strong differences in the pattern of the observed deformation, and explored optimal models for each sub-area. The width of the locked region decreases step-wise from NE to SW along strike. Then we compared each of these models to all of the data to identify the locations of the along-strike boundaries that mark the transition from strongly to weakly coupled segments of the margin. We identified three sharp boundaries separating segments with different fault slip deficit rate distributions. Significant change in fault

  9. Fisheries Education in Alaska. Conference Report. Alaska Sea Grant Report 82-4.

    ERIC Educational Resources Information Center

    Smoker, William W., Ed.

    This conference was an attempt to have the fishing industry join the state of Alaska in building fisheries education programs. Topics addressed in papers presented at the conference include: (1) fisheries as a part of life in Alaska, addressing participation of Alaska natives in commercial fisheries and national efforts; (2) the international…

  10. Genetic diversity and epidemiology of infectious hematopoietic necrosis virus in Alaska

    USGS Publications Warehouse

    Emmenegger, E.G; Meyers, T.R.; Burton, T.O.; Kurath, G.

    2000-01-01

    Forty-two infectious hematopoietic necrosis virus (IHNV) isolates from Alaska were analyzed using the ribonuclease protection assay (RPA) and nucleotide sequencing. RPA analyses, utilizing 4 probes, N5, N3 (N gene), GF (G gene), and NV (NV gene), determined that the haplotypes of all 3 genes demonstrated a consistent spatial pattern. Virus isolates belonging to the most common haplotype groups were distributed throughout Alaska, whereas isolates in small haplotype groups were obtained from only 1 site (hatchery, lake, etc.). The temporal pattern of the GF haplotypes suggested a 'genetic acclimation' of the G gene, possibly due to positive selection on the glycoprotein. A pairwise comparison of the sequence data determined that the maximum nucleotide diversity of the isolates was 2.75% (10 mismatches) for the NV gene, and 1.99% (6 mismatches) for a 301 base pair region of the G gene, indicating that the genetic diversity of IHNV within Alaska is notably lower than in the more southern portions of the IHNV North American range. Phylogenetic analysis of representative Alaskan sequences and sequences of 12 previously characterized IHNV strains from Washington, Oregon, Idaho, California (USA) and British Columbia (Canada) distinguished the isolates into clusters that correlated with geographic origin and indicated that the Alaskan and British Columbia isolates may have a common viral ancestral lineage. Comparisons of multiple isolates from the same site provided epidemiological insights into viral transmission patterns and indicated that viral evolution, viral introduction, and genetic stasis were the mechanisms involved with IHN virus population dynamics in Alaska. The examples of genetic stasis and the overall low sequence heterogeneity of the Alaskan isolates suggested that they are evolutionarily constrained. This study establishes a baseline of genetic fingerprint patterns and sequence groups representing the genetic diversity of Alaskan IHNV isolates. This

  11. Presentations - Herriott, T.M. and others, 2015 | Alaska Division of

    Science.gov Websites

    fieldwork and subsurface data in a region of known oil and gas accumulations (poster): Geological Society of data in a region of known oil and gas accumulations (poster): Geological Society of America Slope, Alaska - Integration of fieldwork and subsurface data in a region of known oil and gas

  12. Umyuangcaryaraq "Reflecting": multidimensional assessment of reflective processes on the consequences of alcohol use among rural Yup'ik Alaska Native youth.

    PubMed

    Allen, James; Fok, Carlotta Ching Ting; Henry, David; Skewes, Monica

    2012-09-01

    Concerns in some settings regarding the accuracy and ethics of employing direct questions about alcohol use suggest need for alternative assessment approaches with youth. Umyuangcaryaraq is a Yup'ik Alaska Native word meaning "Reflecting." The Reflective Processes Scale was developed as a youth measure tapping awareness and thinking over potential negative consequences of alcohol misuse as a protective factor that includes cultural elements often shared by many other Alaska Native and American Indian cultures. This study assessed multidimensional structure, item functioning, and validity. Responses from 284 rural Alaska Native youth allowed bifactor analysis to assess structure, estimates of location and discrimination parameters, and convergent and discriminant validity. A bifactor model of the scale items with three content factors provided excellent fit to observed data. Item response theory analysis suggested a binary response format as optimal. Evidence of convergent and discriminant validity was established. The measure provides an assessment of reflective processes about alcohol that Alaska Native youth engage in when thinking about reasons not to drink. The concept of reflective processes has potential to extend understandings of cultural variation in mindfulness, alcohol expectancies research, and culturally mediated protective factors in Alaska Native and American Indian youth.

  13. Alaska Mental Health Board

    Science.gov Websites

    State Employees Alaska Mental Health Board DHSS State of Alaska Home Divisions and Agencies Alaska Pioneer Homes Behavioral Health Office of Children's Services Office of the Commissioner Office of Substance Misuse and Addiction Prevention Finance & Management Services Health Care Services Juvenile

  14. Publications - STATEMAP Project | Alaska Division of Geological &

    Science.gov Websites

    ., 2008, Surficial-geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska , Engineering - geologic map, Alaska Highway corridor, Delta Junction to Dot Lake, Alaska: Alaska Division of geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska Division of Geological

  15. Genetic characterization of Kenai brown bears (Ursus arctos): Microsatellite and mitochondrial DNA control region variation in brown bears of the Kenai Peninsula, south central Alaska

    USGS Publications Warehouse

    Jackson, J.V.; Talbot, S.L.; Farley, S.

    2008-01-01

    We collected data from 20 biparentally inherited microsatellite loci, and nucleotide sequence from the maternally inherited mitochondrial DNA (mtDNA) control region, to determine levels of genetic variation of the brown bears (Ursus arctos L., 1758) of the Kenai Peninsula, south central Alaska. Nuclear genetic variation was similar to that observed in other Alaskan peninsular populations. We detected no significant inbreeding and found no evidence of population substructuring on the Kenai Peninsula. We observed a genetic signature of a bottleneck under the infinite alleles model (IAM), but not under the stepwise mutation model (SMM) or the two-phase model (TPM) of microsatellite mutation. Kenai brown bears have lower levels of mtDNA haplotypic diversity relative to most other brown bear populations in Alaska. ?? 2008 NRC.

  16. Differences in cigarette and smokeless tobacco use among American Indian and Alaska Native people living in Alaska and the Southwest United States

    PubMed Central

    Lanier, Anne P.; Renner, Caroline; Smith, Julia; Tom-Orme, Lillian; Slattery, Martha L.

    2010-01-01

    Introduction: This study analyzed self-reported tobacco use among American Indian and Alaska Native (AI/AN) people enrolled in the Education and Research Towards Health Study in Alaska (n = 3,821) and the Southwest United States (n = 7,505) from 2004 to 2006. Methods: Participants (7,060 women and 4,266 men) completed a computer-assisted self-administered questionnaire on cigarette and smokeless tobacco (ST) use. Results: Current use of cigarettes was considerably higher in Alaska than in the Southwest United States (32% vs. 8%). Current ST use was also more common in Alaska than in the Southwest United States (18% vs. 8%). Additionally, smoking was more common among men, younger age, those who were not married, and who only spoke English at home, while ST use was more common among men, those with lower educational attainment and those who spoke an AI/AN language at home (p < .01). Compared with the U.S. general population, AI/AN people living in Alaska were more likely and those living in the Southwest United States were less likely to be current smokers. Rates of ST use, including homemade ST, in both regions were much higher than the U.S. general population. Discussion: Tobacco use among AI/AN people in the Southwest United States, who have a tradition of ceremonial tobacco use, was far lower than among Alaska Native people, who do not have a tribal tradition. Tobacco use is a key risk factor for multiple diseases. Reduction of tobacco use is a critical prevention measure to improve the health of AI/AN people. PMID:20525781

  17. Differences in cigarette and smokeless tobacco use among American Indian and Alaska Native people living in Alaska and the Southwest United States.

    PubMed

    Redwood, Diana; Lanier, Anne P; Renner, Caroline; Smith, Julia; Tom-Orme, Lillian; Slattery, Martha L

    2010-07-01

    This study analyzed self-reported tobacco use among American Indian and Alaska Native (AI/AN) people enrolled in the Education and Research Towards Health Study in Alaska (n = 3,821) and the Southwest United States (n = 7,505) from 2004 to 2006. Participants (7,060 women and 4,266 men) completed a computer-assisted self-administered questionnaire on cigarette and smokeless tobacco (ST) use. Current use of cigarettes was considerably higher in Alaska than in the Southwest United States (32% vs. 8%). Current ST use was also more common in Alaska than in the Southwest United States (18% vs. 8%). Additionally, smoking was more common among men, younger age, those who were not married, and who only spoke English at home, while ST use was more common among men, those with lower educational attainment and those who spoke an AI/AN language at home (p < .01). Compared with the U.S. general population, AI/AN people living in Alaska were more likely and those living in the Southwest United States were less likely to be current smokers. Rates of ST use, including homemade ST, in both regions were much higher than the U.S. general population. Tobacco use among AI/AN people in the Southwest United States, who have a tradition of ceremonial tobacco use, was far lower than among Alaska Native people, who do not have a tribal tradition. Tobacco use is a key risk factor for multiple diseases. Reduction of tobacco use is a critical prevention measure to improve the health of AI/AN people.

  18. Using Integrated Ecosystem Observations from Gulf Watch Alaska to Assess the Effects of the 2014/2015 Pacific Warm Anomaly in the Northern Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Holderied, K.; Neher, T. H.; McCammon, M.; Hoffman, K.; Hopcroft, R. R.; Lindeberg, M.; Ballachey, B.; Coletti, H.; Esler, D.; Weingartner, T.

    2016-02-01

    The response of nearshore and coastal pelagic ecosystems in the northern Gulf of Alaska to the 2014-2015 Pacific Ocean warm anomaly is being assessed with multi-disciplinary observations of the Gulf Watch Alaska long-term ecosystem monitoring program. Gulf Watch Alaska is an integrated, multi-agency program, funded by the Exxon Valdez oil spill Trustee Council to track populations of nearshore and pelagic species injured by the 1989 oil spill, as well as the marine conditions that affect those species. While the primary program goals are to support management and sustained recovery of species injured directly and indirectly by the spill, the integration of oceanographic observations with monitoring of nearshore and pelagic food webs also facilitates detection and assessment of ecosystem changes. The initial 5-year phase of the Gulf Watch Alaska program was started in 2012 and has provided marine ecosystem observations through the transition in late 2013 from anomalously cool to anomalously warm ocean conditions in the Gulf of Alaska. We review results from and linkages between oceanographic, whale, seabird, intertidal, and plankton monitoring projects in Prince William Sound, Cook Inlet and the northern Gulf of Alaska shelf. We also assess the different ecosystem responses observed between the summers of 2014 and 2015, with the region experiencing unusual amounts of seabird and marine mammal mortalities and harmful algal bloom events in 2015.

  19. 77 FR 72297 - Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska; Proposed 2013 and 2014...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... from http://www.regulations.gov or from the Alaska Region Web site at http://alaskafisheries.noaa.gov...) at 605 West 4th Avenue, Suite 306, Anchorage, AK 99501, phone 907-271-2809, or from the Council's Web... biomass trends for the following species are relatively stable: shallow-water flatfish, deep-water...

  20. Bringing It All Together: The Southeast Alaska Music Festival.

    ERIC Educational Resources Information Center

    Howey, Brad

    2003-01-01

    Describes the Southeast Alaska Music Festival discussing topics such as the role of the host school, the communities and schools within the region, and scoring procedures at the Festival. Includes a festival schedule. (CMK)

  1. Evaluation of the retail market potential for locally produced paper birch lumber in Alaska.

    Treesearch

    David L. Nicholls

    2002-01-01

    An evaluation of the retail market potential for random-width paper birch ( Betula papyrifera Marsh.) lumber in Alaska was conducted. Information from lumber manufacturers and retail managers was used to identify current barriers to customer acceptance of locally produced paper birch lumber. Major retail markets and paper birch producing regions throughout Alaska were...

  2. Climate Change Impact Assessment for Surface Transportation in the Pacific Northwest and Alaska

    DOT National Transportation Integrated Search

    2012-01-01

    The states in the Pacific Northwest and Alaska region share interconnected transportation networks for people, goods, and services that support the : regional economy, mobility, and human safety. Regional weather has and will continue to affect the p...

  3. Publications - RI 2001-1B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS RI 2001-1B Publication Details Title: Geologic map of the Chulitna region, southcentral , M.L., Reifenstuhl, R.R., and Clough, J.G., 2001, Geologic map of the Chulitna region, southcentral of the Chulitna region, southcentral Alaska, scale 1:63,360 (12.0 M) Digital Geospatial Data Digital

  4. 76 FR 3653 - Alaska Region's Subsistence Resource Commission (SRC) Program; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... subsistence management issues. The NPS SRC program is authorized under Title VIII, Section 808 of the Alaska...: 1. Call to order. 2. SRC Roll Call and Confirmation of Quorum. 3. Welcome and Introductions. 4.... c. Resource Management Program Update. 14. Public and other Agency Comments. 15. SRC Work Session...

  5. Assessing Historical and Projected Carbon Balance of Alaska: A Synthesis of Results and Policy/Management Implications.

    PubMed

    McGuire, A David; Genet, Hélène; Lyu, Zhou; Pastick, Neal; Stackpoole, Sarah; Birdsey, Richard; D'Amore, David; He, Yujie; Rupp, T Scott; Striegl, Robert; Wylie, Bruce K; Zhou, Xiaoping; Zhuang, Qianlai; Zhu, Zhiliang

    2018-06-20

    We summarize the results of a recent interagency assessment of land carbon dynamics in Alaska, in which carbon dynamics were estimated for all major terrestrial and aquatic ecosystems for the historical period (1950-2009) and a projection period (2010-2099). Between 1950 and 2009, upland and wetland (i.e., terrestrial) ecosystems of the State gained 0.4 Tg C yr -1 (0.1% of net primary production, NPP), resulting in a cumulative greenhouse gas radiative forcing of 1.68 x 10 -3 W m -2 . The change in carbon storage is spatially variable with the region of the Northwest Boreal Landscape Conservation Cooperative (LCC) losing carbon because of fire disturbance. The combined carbon transport via various pathways through inland aquatic ecosystems of Alaska was estimated to be 41.3 Tg C yr -1 (17% of terrestrial NPP). During the projection period (2010-2099), carbon storage of terrestrial ecosystems of Alaska was projected to increase (22.5 to 70.0 Tg C yr -1 ), primarily because of NPP increases of 10 to 30% associated with responses to rising atmospheric CO 2 , increased nitrogen cycling, and longer growing seasons. Although carbon emissions to the atmosphere from wildfire and wetland CH 4 were projected to increase for all of the climate projections, the increases in NPP more than compensated for those losses at the statewide level. Carbon dynamics of terrestrial ecosystems continue to warm the climate for four of the six future projections, and cool the climate for only one of the projections. The attribution analyses we conducted indicated that the response of NPP in terrestrial ecosystems to rising atmospheric CO 2 (~5% per 100 ppmv CO 2 ) saturates as CO 2 increases (between approximately +150 and +450 ppmv among projections). This response, along with the expectation that permafrost thaw would be much greater and release large quantities of permafrost carbon after 2100, suggests that projected carbon gains in terrestrial ecosystems of Alaska may not be sustained

  6. Sea ice off western Alaska

    NASA Image and Video Library

    2015-02-20

    On February 4, 2014 the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard NASA’s Aqua satellite captured a true-color image of sea ice off of western Alaska. In this true-color image, the snow and ice covered land appears bright white while the floating sea ice appears a duller grayish-white. Snow over the land is drier, and reflects more light back to the instrument, accounting for the very bright color. Ice overlying oceans contains more water, and increasing water decreases reflectivity of ice, resulting in duller colors. Thinner ice is also duller. The ocean waters are tinted with green, likely due to a combination of sediment and phytoplankton. Alaska lies to the east in this image, and Russia to the west. The Bering Strait, covered with ice, lies between to two. South of the Bering Strait, the waters are known as the Bering Sea. To the north lies the Chukchi Sea. The bright white island south of the Bering Strait is St. Lawrence Island. Home to just over 1200 people, the windswept island belongs to the United States, but sits closer to Russia than to Alaska. To the southeast of the island a dark area, loosely covered with floating sea ice, marks a persistent polynya – an area of open water surrounded by more frozen sea ice. Due to the prevailing winds, which blow the sea ice away from the coast in this location, the area rarely completely freezes. The ice-covered areas in this image, as well as the Beaufort Sea, to the north, are critical areas for the survival of the ringed seal, a threatened species. The seals use the sea ice, including ice caves, to rear their young, and use the free-floating sea ice for molting, raising the young and breeding. In December 2014, the National Oceanic and Atmospheric Administration (NOAA) proposed that much of this region be set aside as critical, protected habitat for the ringed seal. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center

  7. Climate change and health effects in Northwest Alaska.

    PubMed

    Brubaker, Michael; Berner, James; Chavan, Raj; Warren, John

    2011-01-01

    This article provides examples of adverse health effects, including weather-related injury, food insecurity, mental health issues, and water infrastructure damage, and the responses to these effects that are currently being applied in two Northwest Alaska communities. In Northwest Alaska, warming is resulting in a broad range of unusual weather and environmental conditions, including delayed freeze-up, earlier breakup, storm surge, coastal erosion, and thawing permafrost. These are just some of the climate impacts that are driving concerns about weather-related injury, the spread of disease, mental health issues, infrastructure damage, and food and water security. Local leaders are challenged to identify appropriate adaptation strategies to address climate impacts and related health effects. IMPLEMENTATION PROCESS: The tribal health system is combining local observations, traditional knowledge, and western science to perform community-specific climate change health impact assessments. Local leaders are applying this information to develop adaptation responses. The Alaska Native Tribal Health Consortium will describe relationships between climate impacts and health effects and provide examples of community-scaled adaptation actions currently being applied in Northwest Alaska. Climate change is increasing vulnerability to injury, disease, mental stress, food insecurity, and water insecurity. Northwest communities are applying adaptation approaches that are both specific and appropriate. The health impact assessment process is effective in raising awareness, encouraging discussion, engaging partners, and implementing adaptation planning. With community-specific information, local leaders are applying health protective adaptation measures.

  8. Climate change and health effects in Northwest Alaska

    PubMed Central

    Brubaker, Michael; Berner, James; Chavan, Raj; Warren, John

    2011-01-01

    This article provides examples of adverse health effects, including weather-related injury, food insecurity, mental health issues, and water infrastructure damage, and the responses to these effects that are currently being applied in two Northwest Alaska communities. Background In Northwest Alaska, warming is resulting in a broad range of unusual weather and environmental conditions, including delayed freeze-up, earlier breakup, storm surge, coastal erosion, and thawing permafrost. These are just some of the climate impacts that are driving concerns about weather-related injury, the spread of disease, mental health issues, infrastructure damage, and food and water security. Local leaders are challenged to identify appropriate adaptation strategies to address climate impacts and related health effects. Implementation process The tribal health system is combining local observations, traditional knowledge, and western science to perform community-specific climate change health impact assessments. Local leaders are applying this information to develop adaptation responses. Objective The Alaska Native Tribal Health Consortium will describe relationships between climate impacts and health effects and provide examples of community-scaled adaptation actions currently being applied in Northwest Alaska. Findings Climate change is increasing vulnerability to injury, disease, mental stress, food insecurity, and water insecurity. Northwest communities are applying adaptation approaches that are both specific and appropriate. Conclusion The health impact assessment process is effective in raising awareness, encouraging discussion, engaging partners, and implementing adaptation planning. With community-specific information, local leaders are applying health protective adaptation measures. PMID:22022304

  9. Recreation and tourism in south-central Alaska: synthesis of recent trends and prospects.

    Treesearch

    David J. Brooks; Richard W. Haynes

    2001-01-01

    Tourism has been the fastest growing component of Alaska’s economy for the past decade and is an important export sector for the regional economy. Opportunities to participate in outdoor recreation are also an important component of the quality of life for residents of Alaska. Successful planning for the Chugach National Forest therefore will require an understanding...

  10. Alaska's Economy: What's Ahead?

    ERIC Educational Resources Information Center

    Alaska Review of Social and Economic Conditions, 1987

    1987-01-01

    This review describes Alaska's economic boom of the early 1980s, the current recession, and economic projections for the 1990s. Alaska's economy is largely influenced by oil prices, since petroleum revenues make up 80% of the state government's unrestricted general fund revenues. Expansive state spending was responsible for most of Alaska's…

  11. Cooperative Alaska Forest Inventory

    Treesearch

    Thomas Malone; Jingjing Liang; Edmond C. Packee

    2009-01-01

    The Cooperative Alaska Forest Inventory (CAFI) is a comprehensive database of boreal forest conditions and dynamics in Alaska. The CAFI consists of field-gathered information from numerous permanent sample plots distributed across interior and south-central Alaska including the Kenai Peninsula. The CAFI currently has 570 permanent sample plots on 190 sites...

  12. Appellate Courts - Alaska Court System

    Science.gov Websites

    Court Cases Appellate Case Management System Oral Argument Supreme Court Calendar, Court of Appeals , which contains the Alaska cases excerpted from P.2d and P.3d. The Pacific Reporter or the Alaska the Alaska cases excerpted from P.2d and P.3d. The Pacific Reporter or the Alaska Reporter is

  13. Alaska Tidal Datum Portal | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Engineering Geology Alaska Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Portal Unambiguous vertical datums in the coastal environment are critical to the evaluation of natural human life, property, and the coastal environment. January 2017 - Update Summary Alaska Tidal Datum

  14. Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.

    This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and

  15. Alaska Job Center Network

    Science.gov Websites

    Job Centers Toll-free in Alaska (877)724-2539 *Workshop Schedules are linked under participating Job : midtown.jobcenter@alaska.gov Employers: anchorage.employers@alaska.gov Toll free Anchorage Employer Phone: 1-888-830 -1149 Phone: 842-5579 Fax: 842-5679, Toll Free: 1-800-478-5579 Job Seekers & Employers

  16. 43 CFR 2361.1 - Protection of the environment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Protection of the environment. 2361.1... Management and Protection of the National Petroleum Reserve in Alaska § 2361.1 Protection of the environment... the environment during such activities in the Reserve, and other related activities. (c) Maximum...

  17. 43 CFR 2361.1 - Protection of the environment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Protection of the environment. 2361.1... Management and Protection of the National Petroleum Reserve in Alaska § 2361.1 Protection of the environment... the environment during such activities in the Reserve, and other related activities. (c) Maximum...

  18. 43 CFR 2361.1 - Protection of the environment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Protection of the environment. 2361.1... Management and Protection of the National Petroleum Reserve in Alaska § 2361.1 Protection of the environment... the environment during such activities in the Reserve, and other related activities. (c) Maximum...

  19. 43 CFR 2361.1 - Protection of the environment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Protection of the environment. 2361.1... Management and Protection of the National Petroleum Reserve in Alaska § 2361.1 Protection of the environment... the environment during such activities in the Reserve, and other related activities. (c) Maximum...

  20. The recent warming of permafrost in Alaska

    NASA Astrophysics Data System (ADS)

    Osterkamp, T. E.

    2005-12-01

    This paper reports results of an experiment initiated in 1977 to determine the effects of climate on permafrost in Alaska. Permafrost observatories with boreholes were established along a north-south transect of Alaska in undisturbed permafrost terrain. The analysis and interpretation of annual temperature measurements in the boreholes and daily temperature measurements of the air, ground and permafrost surfaces made with automated temperature loggers are reported. Permafrost temperatures warmed along this transect coincident with a statewide warming of air temperatures that began in 1977. At two sites on the Arctic Coastal Plain, the warming was seasonal, greatest during "winter" months (October through May) and least during "summer" months (June through September). Permafrost temperatures peaked in the early 1980s and then decreased in response to slightly cooler air temperatures and thinner snow covers. Arctic sites began warming again typically about 1986 and Interior Alaska sites about 1988. Gulkana, the southernmost site, has been warming slowly since it was drilled in 1983. Air temperatures were relatively warm and snow covers were thicker-than-normal from the late 1980s into the late 1990s allowing permafrost temperatures to continue to warm. Temperatures at some sites leveled off or cooled slightly at the turn of the century. Two sites (Yukon River Bridge and Livengood) cooled during the period of observations. The magnitude of the total warming at the surface of the permafrost (through 2003) was 3 to 4 °C for the Arctic Coastal Plain, 1 to 2 °C for the Brooks Range including its northern and southern foothills, and 0.3 to 1 °C south of the Yukon River. While the data are sparse, permafrost is warming throughout the region north of the Brooks Range, southward along the transect from the Brooks Range to the Chugach Mountains (except for Yukon River and Livengood), in Interior Alaska throughout the Tanana River region, and in the region south of the

  1. Demography of Dall's sheep in northwestern Alaska

    USGS Publications Warehouse

    Kleckner, Christopher; Udevitz, Mark S.; Adams, Layne G.; Shults, Brad S.

    2003-01-01

    Dall’s sheep in northwestern Alaska declined in the early 1990s following the severe 1989-90 and 1990-91 winters. In the Baird Mountains of Noatak National Preserve, estimates of adult sheep declined by 50% from 800 in 1989 to under 400 in 1991. Population counts remained low throughout 1991 to 1996, reaching a minimum of 244 adult sheep in 1996. Few lambs were observed during annual midsummer aerial surveys in 1991 to 1994. We suspect that these declines resulted from a combination of poorer nutritional condition and increased vulnerability of sheep to predation resulting from severe winter conditions.As a result of these declines, both subsistence and sport hunting seasons were closed by emergency order in 1991, resulting in substantial management controversy. The affected publics, although willing to accept the closures, questioned the validity of the sheep survey data and strongly emphasized their interest in restoring harvests as soon as populations increased sufficiently. In 1995 the Northwest Arctic Regional Advisory Council, the local advisory committee for the Federal Subsistence Board, passed a motion supporting efforts to initiate research on sheep populations in the region to better understand the factors limiting sheep populations and to evaluate sheep survey methodologies.Currently estimates of Dall’s sheep population size and composition in the western Brooks Range are based on intensive fixed-wing aerial surveys conducted annually since 1986 in areas including the Baird Mountains. The annual variation in recent Baird Mountains aerial counts cannot be explained with reasonable assumptions about reproduction and survival, suggesting that there is some variability in the proportion of the population observed each year or that a substantial number of sheep move during the survey. Prior to our research, no attempt had been made to estimate visibility bias or precision for these surveys.Our understanding of Dall’s sheep population biology comes

  2. Can a Week Make a Difference? Changing Perceptions about Teaching and Living in Rural Alaska

    ERIC Educational Resources Information Center

    Munsch, T. R.; Boylan, Colin R.

    2008-01-01

    Many Alaskan schools are located in extremely remote or "fly-in" places. These geographical extremes affect the recruitment and retention of teachers to remote rural schools. Through a partnership between the Southwest Region School District of Alaska and the Department of Education at Alaska Pacific University (APU), 14 pre-service…

  3. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  4. Alaska Women: A Databook.

    ERIC Educational Resources Information Center

    White, Karen; Baker, Barbara

    This data book uses survey and census information to record social and economic changes of the past three decades and their effects upon the role of Alaska women in society. Results show Alaska women comprise 47% of the state population, an increase of 9% since 1950. Marriage continues as the predominant living arrangement for Alaska women,…

  5. Alaska Board of Forestry

    Science.gov Websites

    Natural Resources / Division of Forestry Alaska Board of Forestry The nine-member Alaska Board of Forestry advises the state on forest practices issues and provides a forum for discussion and resolution of forest management issues on state land. The board also reviews all proposed changes to the Alaska Forest Resources

  6. Alaska's renewable energy potential.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  7. Risk Factors for Obesity at Age 3 in Alaskan Children, Including the Role of Beverage Consumption: Results from Alaska PRAMS 2005-2006 and Its Three-Year Follow-Up Survey, CUBS, 2008-2009

    PubMed Central

    Wojcicki, Janet M.; Young, Margaret B.; Perham-Hester, Katherine A.; de Schweinitz, Peter; Gessner, Bradford D.

    2015-01-01

    Background Prenatal and early life risk factors are associated with childhood obesity. Alaska Native children have one of the highest prevalences of childhood obesity of all US racial/ethnic groups. Methods Using the Pregnancy Risk Assessment Monitoring System (PRAMS) and the follow-up survey at 3 years of age (CUBS), we evaluated health, behavioral, lifestyle and nutritional variables in relation to obesity (95th percentile for body mass index (BMI)) at 3 years of age. Multivariate logistic regression modeling was conducted using Stata 12.0 to evaluate independent risk factors for obesity in non-Native and Alaska Native children. Results We found an obesity prevalence of 24.9% in all Alaskan and 42.2% in Alaska Native 3 year olds. Among Alaska Native children, obesity prevalence was highest in the Northern/Southwest part of the state (51.6%, 95%CI (42.6-60.5)). Independent predictive factors for obesity at age 3 years in Alaska non-Native children were low income (<$10,000 in the year before the child was born (OR 3.94, 95%CI 1.22--17.03) and maternal pre-pregnancy obesity (OR 2.01, 95%CI 1.01-4.01) and longer duration of breastfeeding was protective (OR 0.95, 95%CI 0.91-0.995). Among Alaska Native children, predictive factors were witnessing domestic violence/abuse as a 3 year-old (OR 2.28, 95%CI 1.17-7.60). Among obese Alaska Native children, there was an increased daily consumption of energy dense beverages in the Northern/Southwest region of the state, which may explain higher rates of obesity in this part of the state. Conclusions The high prevalence of obesity in Alaska Native children may be explained by differences in lifestyle patterns and food consumption in certain parts of the state, specifically the Northern/Southwest region, which have higher consumption of energy dense beverages. PMID:25793411

  8. Sources and perceptions of indoor and ambient air pollution in rural Alaska.

    PubMed

    Ware, Desirae; Lewis, Johnnye; Hopkins, Scarlett; Boyer, Bert; Noonan, Curtis; Ward, Tony

    2013-08-01

    Even though Alaska is the largest state in the United States, much of the population resides in rural and underserved areas with documented disparities in respiratory health. This is especially true in the Yukon-Kuskokwim (southwest) and Ahtna (southcentral) Regions of Alaska. In working with community members, the goal of this study was to identify the air pollution issues (both indoors and outdoors) of concern within these two regions. Over a two-year period, 328 air quality surveys were disseminated within seven communities in rural Alaska. The surveys focused on understanding the demographics, home heating practices, indoor activities, community/outdoor activities, and air quality perceptions within each community. Results from these surveys showed that there is elevated potential for PM10/PM2.5 exposures in rural Alaska communities. Top indoor air quality concerns included mold, lack of ventilation or fresh air, and dust. Top outdoor air pollution concerns identified were open burning/smoke, road dust, and vehicle exhaust (e.g., snow machines, ATVs, etc.). These data can now be used to seek additional funding for interventions, implementing long-term, sustainable solutions to the identified problems. Further research is needed to assess exposures to PM10/PM2.5 and the associated impacts on respiratory health, particularly among susceptible populations such as young children.

  9. Geospatial analysis identifies critical mineral-resource potential in Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Labay, Keith A.; Jacques, Katherine; Landowski, Claire

    2017-03-03

    Alaska consists of more than 663,000 square miles (1,717,000 square kilometers) of land—more than a sixth of the total area of the United States—and large tracts of it have not been systematically studied or sampled for mineral-resource potential. Many regions of the State are known to have significant mineral-resource potential, and there are currently six operating mines in the State along with numerous active mineral exploration projects. The U.S. Geological Survey and the Alaska Division of Geological & Geophysical Surveys have developed a new geospatial tool that integrates and analyzes publicly available databases of geologic information and estimates the mineral-resource potential for critical minerals, which was recently used to evaluate Alaska. The results of the analyses highlight areas that have known mineral deposits and also reveal areas that were not previously considered to be prospective for these deposit types. These results will inform land management decisions by Federal, State, and private landholders, and will also help guide future exploration activities and scientific investigations in Alaska.

  10. Teleseismic P and S wave attenuation constraints on temperature and melt of the upper mantle in the Alaska Subduction Zone.

    NASA Astrophysics Data System (ADS)

    Soto Castaneda, R. A.; Abers, G. A.; Eilon, Z.; Christensen, D. H.

    2017-12-01

    Recent broadband deployments in Alaska provide an excellent opportunity to advance our understanding of the Alaska-Aleutians subduction system, with implications for subduction processes worldwide. Seismic attenuation, measured from teleseismic body waves, provides a strong constraint on thermal structure as well as an indirect indication of ground shaking expected from large intermediate-depth earthquakes. We measure P and S wave attenuation from pairwise amplitude and phase spectral ratios for teleseisms recorded at 204 Transportable Array, Alaska Regional, and Alaska Volcano Observatory, SALMON (Southern Alaska Lithosphere & Mantle Observation Network) and WVLF (Wrangell Volcanics & subducting Lithosphere Fate) stations in central Alaska. The spectral ratios are inverted in a least squares sense for differential t* (path-averaged attenuation operator) and travel time anomalies at every station. Our preliminary results indicate a zone of low attenuation across the forearc and strong attenuation beneath arc and backarc in the Cook Inlet-Kenai region where the Aleutian-Yakutat slab subducts, similar to other subduction zones. This attenuation differential is observed in both the volcanic Cook Inlet segment and amagmatic Denali segments of the Aleutian subduction zone. By comparison, preliminary results for the Wrangell-St. Elias region past the eastern edge of the Aleutian slab show strong attenuation beneath the Wrangell Volcanic Field, as well as much further south than in the Cook Inlet-Kenai region. This pattern of attenuation seems to indicate a short slab fragment in the east of the subduction zone, though the picture is complex. Results also suggest the slab may focus or transmit energy with minimal attenuation, adding to the complexity. To image the critical transition between the Alaska-Aleutian slab and the region to its east, we plan to incorporate new broadband data from the WVLF array, an ongoing deployment of 37 PASSCAL instruments installed in 2016

  11. Real-Time Data Processing Systems and Products at the Alaska Earthquake Information Center

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Hansen, R. A.

    2007-05-01

    The Alaska Earthquake Information Center (AEIC) receives data from over 400 seismic sites located within the state boundaries and the surrounding regions and serves as a regional data center. In 2007, the AEIC reported ~20,000 seismic events, with the largest event of M6.6 in Andreanof Islands. The real-time earthquake detection and data processing systems at AEIC are based on the Antelope system from BRTT, Inc. This modular and extensible processing platform allows an integrated system complete from data acquisition to catalog production. Multiple additional modules constructed with the Antelope toolbox have been developed to fit particular needs of the AEIC. The real-time earthquake locations and magnitudes are determined within 2-5 minutes of the event occurrence. AEIC maintains a 24/7 seismologist-on-duty schedule. Earthquake alarms are based on the real- time earthquake detections. Significant events are reviewed by the seismologist on duty within 30 minutes of the occurrence with information releases issued for significant events. This information is disseminated immediately via the AEIC website, ANSS website via QDDS submissions, through e-mail, cell phone and pager notifications, via fax broadcasts and recorded voice-mail messages. In addition, automatic regional moment tensors are determined for events with M>=4.0. This information is posted on the public website. ShakeMaps are being calculated in real-time with the information currently accessible via a password-protected website. AEIC is designing an alarm system targeted for the critical lifeline operations in Alaska. AEIC maintains an extensive computer network to provide adequate support for data processing and archival. For real-time processing, AEIC operates two identical, interoperable computer systems in parallel.

  12. College Persistence of Alaska Native Students: An Assessment of the Rural Alaska Honors Institute, 1983-88.

    ERIC Educational Resources Information Center

    Gaylord, Thomas A.; Kaul, Gitanjali

    Despite efforts by educators, full participation by Alaska native students in the state's colleges and universities has not yet been achieved. Alaska Natives are the state's only racial group that is underrepresented in enrollments at the University of Alaska (UA). This report examines the contribution of the Rural Alaska Honors Institute (RAHI)…

  13. Cold Regions Environmental Protection and Durability Test of Clothing.

    DTIC Science & Technology

    1983-07-08

    17 AD-A130 482 COLD REGIONS ENVIRONMENTAL PROTECTION AND DURABILITY 1 / TEST OF CLDTHING(U) *ARMY TEST AND EVALGATION COMMAND ABERDEEN PROVING GROUND...MD 08 JUL 83 TOP-10-2510 UNCLASSIFIED FDA 6/7 -Lm U= 1,2 2 340 12.0IIHI . 1 L1.8 j$jfLi25 .411 .6 MICROCOPY RESOLUTION TEST CHART NT’NL BUREAU C’ N j...July 1983 AD NO. COLD REGIONS ENVIRONMENTAL PROTECTION AND DURABILITY TEST OF CLOTHING Page 1 SCOPE .................................. 1 2 FACILITIES

  14. Automated system for smoke dispersion prediction due to wild fires in Alaska

    NASA Astrophysics Data System (ADS)

    Kulchitsky, A.; Stuefer, M.; Higbie, L.; Newby, G.

    2007-12-01

    Community climate models have enabled development of specific environmental forecast systems. The University of Alaska (UAF) smoke group was created to adapt a smoke forecast system to the Alaska region. The US Forest Service (USFS) Missoula Fire Science Lab had developed a smoke forecast system based on the Weather Research and Forecasting (WRF) Model including chemistry (WRF/Chem). Following the successful experience of USFS, which runs their model operationally for the contiguous U.S., we develop a similar system for Alaska in collaboration with scientists from the USFS Missoula Fire Science Lab. Wildfires are a significant source of air pollution in Alaska because the climate and vegetation favor annual summer fires that burn huge areas. Extreme cases occurred in 2004, when an area larger than Maryland (more than 25000~km2) burned. Small smoke particles with a diameter less than 10~μm can penetrate deep into lungs causing health problems. Smoke also creates a severe restriction to air transport and has tremendous economical effect. The smoke dispersion and forecast system for Alaska was developed at the Geophysical Institute (GI) and the Arctic Region Supercomputing Center (ARSC), both at University of Alaska Fairbanks (UAF). They will help the public and plan activities a few days in advance to avoid dangerous smoke exposure. The availability of modern high performance supercomputers at ARSC allows us to create and run high-resolution, WRF-based smoke dispersion forecast for the entire State of Alaska. The core of the system is a Python program that manages the independent pieces. Our adapted Alaska system performs the following steps \\begin{itemize} Calculate the medium-resolution weather forecast using WRF/Met. Adapt the near real-time satellite-derived wildfire location and extent data that are received via direct broadcast from UAF's "Geographic Information Network of Alaska" (GINA) Calculate fuel moisture using WRF forecasts and National Fire Danger

  15. Trophic ecology of introduced populations of Alaska blackfish (Dallia pectoralis) in the Cook Inlet Basin, Alaska.

    PubMed

    Eidam, Dona M; von Hippel, Frank A; Carlson, Matthew L; Lassuy, Dennis R; López, J Andrés

    2016-07-01

    Introduced non-native fishes have the potential to substantially alter aquatic ecology in the introduced range through competition and predation. The Alaska blackfish ( Dallia pectoralis ) is a freshwater fish endemic to Chukotka and Alaska north of the Alaska Range (Beringia); the species was introduced outside of its native range to the Cook Inlet Basin of Alaska in the 1950s, where it has since become widespread. Here we characterize the diet of Alaska blackfish at three Cook Inlet Basin sites, including a lake, a stream, and a wetland. We analyze stomach plus esophageal contents to assess potential impacts on native species via competition or predation. Alaska blackfish in the Cook Inlet Basin consume a wide range of prey, with major prey consisting of epiphytic/benthic dipteran larvae, gastropods, and ostracods. Diets of the introduced populations of Alaska blackfish are similar in composition to those of native juvenile salmonids and stickleback. Thus, Alaska blackfish may affect native fish populations via competition. Fish ranked third in prey importance for both lake and stream blackfish diets but were of minor importance for wetland blackfish.

  16. Trophic ecology of introduced populations of Alaska blackfish (Dallia pectoralis) in the Cook Inlet Basin, Alaska

    PubMed Central

    Eidam, Dona M.; Carlson, Matthew L.; Lassuy, Dennis R.; López, J. Andrés

    2016-01-01

    Introduced non-native fishes have the potential to substantially alter aquatic ecology in the introduced range through competition and predation. The Alaska blackfish (Dallia pectoralis) is a freshwater fish endemic to Chukotka and Alaska north of the Alaska Range (Beringia); the species was introduced outside of its native range to the Cook Inlet Basin of Alaska in the 1950s, where it has since become widespread. Here we characterize the diet of Alaska blackfish at three Cook Inlet Basin sites, including a lake, a stream, and a wetland. We analyze stomach plus esophageal contents to assess potential impacts on native species via competition or predation. Alaska blackfish in the Cook Inlet Basin consume a wide range of prey, with major prey consisting of epiphytic/benthic dipteran larvae, gastropods, and ostracods. Diets of the introduced populations of Alaska blackfish are similar in composition to those of native juvenile salmonids and stickleback. Thus, Alaska blackfish may affect native fish populations via competition. Fish ranked third in prey importance for both lake and stream blackfish diets but were of minor importance for wetland blackfish. PMID:28082763

  17. Alaska, Naturally Occurring Asbestos: Experiences, Policy and 2012 Limitation of Liability Legislation

    NASA Astrophysics Data System (ADS)

    Hargesheimer, J.; Perkins, R.

    2012-12-01

    Naturally Occurring Asbestos (NOA) occurs in mineral deposits in Alaska. There are many regions in Alaska that have minerals in surface rocks that may contain asbestos and asbestos has been discovered in many locations in Alaska. Gravel is constantly in demand for heavy construction projects, but some remote localities in Alaska do not have gravel sources that are NOA-free. Determining if NOA can be safely used in heavy construction materials and what can or should be done with NOA materials that are already in place are complex questions. Answers will depend on the amount and type of asbestos mineral, how it is handled in processing, and how it is maintained - all subject to regulation and control of operations. The State of Alaska recently enacted legislation (HB 258) providing, among other things, "… immunity for the state and for landowners, extractors, suppliers, transporters, and contractors for certain actions or claims arising in connection with the use of gravel or aggregate material containing naturally occurring asbestos in certain areas." Implementation of the law and interim regulations and guidance should enable use of NOA for heavy construction materials in Alaska, but as with any new law, it will take some time to understand its full scope and effect.

  18. Electrifying Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinemer, V.

    Alaska's diverse systems for electric power include only 4% by private utilities. Large distances and small markets make transmission impractical for the most part. Rates are variable, although the state average is low. Energy sources, except nuclear, are abundant: half the US coal reserves are in Alaska. In addition, it has geothermal, tidal, biomass, solar, wind, and hydroelectric power. Energy construction and study programs are centered in the Alaska Power Authority and include using waste heat from village diesel generators. Hydro potential is good, but access, distances, and environmental effects must be considered. The Terror Lake, Tyee Lake, Swan Lake,more » and Susitna projects are described and transmission construction, including the 345-kW Railbelt intertie, is discussed. 1 figure.« less

  19. The Relationships Between Earthquakes, Faults, and Recent Glacial Fluctuations in Southern Alaska

    NASA Astrophysics Data System (ADS)

    Wiest, K. R.; Sauber, J. M.; Doser, D. I.; Hurtado, J. M.; Velasco, A. A.

    2004-12-01

    In southern Alaska, northwestward-directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. In the tectonically complex region between the transcurrent Fairweather fault and the Alaska-Aleutian subduction zone, active crustal shortening and strike-slip faulting occurs. Since a series of large earthquakes in 1899 (Mw = 8.1, Yakataga; Mw=8.1 Yakutat), there has been only one large event (1979 St. Elias Mw = 7.4) in the Yakutat region between the aftershock zones of the 1964 Prince William Sound (Mw = 9.2) and 1958 Fairweather (Mw = 8.2) earthquakes. In this region, the glaciers are extensive and many of them have undergone significant retreat in the last 100 years. This study investigates the relationships between small to moderate magnitude events, ongoing crustal deformation, active geological structures in the region, and recent glacial fluctuations. To map earthquake locations with respect to current glacier positions, we will incorporate Ice Cloud and land Elevation Satellite (ICESat) data into an updated Digital Elevation Model (DEM) of key glaciated regions that has been created using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images in conjunction with Shuttle Radar Topography Mission (SRTM) data. For the seismological investigation, we focused on relocating events that have occurred since the last large earthquake at St. Elias in 1979 using data obtained from the Alaska Earthquake Information Center (AEIC). P-wave polarity first motion focal mechanisms were generated for the relocated events and evaluated. Our preliminary relocations suggest a dipping slab in cross-section and also show a number of shallow event clusters around local glaciers. The focal mechanisms are quite variable but, in general, indicate strike-slip and oblique-slip focal mechanisms. Some of our highest quality focal mechanisms show dip-slip faulting and are from shallow events located near glacial

  20. 76 FR 44605 - Alaska Region's Subsistence Resource Commission (SRC) Program; Public Meeting and Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... Uses of Bones, Horn, Antlers and Plants Environmental Assessment Update. 12. New Business. 13. Public... Board Update. 10. Alaska Board of Game Update. 11. Old Business: a. Subsistence Uses of Bones, Horn...

  1. Coastal Resilience and Adaptation:Working Together to go from Information to Action on Alaska's Coasts

    NASA Astrophysics Data System (ADS)

    Holman, A.; Poe, A.; Murphy, K.; Littell, J. S.; Pletnikoff, K.; Holen, D.

    2016-12-01

    The phrases "coastal resilience" and "climate adaptation" appear everywhere now—but how do they meet the needs of communities and natural resource managers on Alaska's coast? A regional consortium of The Aleutian Pribilof Islands Association, four of Alaska's Landscape Conservation Cooperatives (LCCs), NOAA, University of Alaska Fairbanks and the Alaska Climate Science Center joined numerous local partners including several Tribes and Alaska Native Organizations to host workshops in five regions to find out.The project brought together audiences from Tribal and local government, State and Federal agencies, scientists and local experts to share the state of existing knowledge on current and anticipated environmental changes and impacts and discuss potential response actions. Targeting information and tools needed for decision making and resource management, the hundreds of workshop participants identified gaps in available data, information and knowledge that needs to be filled to help communities and managers better respond to climate change. Each of the workshops built upon the other and connected stakeholders and increase resiliency by bringing local decision makers together with the researchers who can fill their needs, consolidating and leveraging research being done in the region by many different parties (western and traditional) and ensuring those results get to those who need them, and creating an adaptive, collaborative process of identifying needs, conducting work, gathering the latest science from local to national sources, presenting results for evaluation and feedback, and using that information to drive future research and management investments. The resulting "toolbox" will help management agencies and others to better understand the dynamic changes Alaska is experiencing, their impacts on communities and habitats, as well as tools and information that can help managers and community leaders work better together to adapt to climate change.

  2. A Storm-by-Storm Analysis of Alpine and Regional Precipitation Dynamics at the Mount Hunter Ice Core Site, Denali National Park, Central Alaska Range

    NASA Astrophysics Data System (ADS)

    Saylor, P. L.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Winski, D.

    2014-12-01

    In May-June 2013, an NSF-funded team from Dartmouth College and the Universities of Maine and New Hampshire collected two 1000-year ice cores to bedrock from the summit plateau of Mount Hunter in Denali National Park, Alaska (62.940291, -151.087616, 3912 m). The snow accumulation record from these ice cores will provide key insight into late Holocene precipitation variability in central Alaska, and compliment existing precipitation paleorecords from the Mt. Logan and Eclipse ice cores in coastal SE Alaska. However, correct interpretation of the Mt. Hunter accumulation record requires an understanding of the relationships between regional meteorological events and micrometeorological conditions at the Mt. Hunter ice core collection site. Here we analyze a three-month window of snow accumulation and meteorological conditions recorded by an Automatic Weather Station (AWS) at the Mt. Hunter site during the summer of 2013. Snow accumulation events are identified in the Mt. Hunter AWS dataset, and compared on a storm-by-storm basis to AWS data collected from the adjacent Kahiltna glacier 2000 m lower in elevation, and to regional National Weather Service (NWS) station data. We also evaluate the synoptic conditions associated with each Mt. Hunter accumulation event using NWS surface maps, NCEP-NCAR Reanalysis data, and the NOAA HYSPLIT back trajectory model. We categorize each Mt. Hunter accumulation event as pure snow accumulation, drifting, or blowing snow events based on snow accumulation, wind speed and temperature data using the method of Knuth et al (2009). We analyze the frequency and duration of events within each accumulation regime, in addition to the overall contribution of each event to the snowpack. Preliminary findings indicate that a majority of Mt. Hunter accumulation events are of pure accumulation nature (55.5%) whereas drifting (28.6%) and blowing (15.4%) snow events play a secondary role. Our results will characterize the local accumulation dynamics on

  3. 78 FR 60309 - Notice of Public Meeting, BLM-Alaska Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    [email protected] . Persons who use a telecommunications device for the deaf (TDD) may call the Federal... variety of planning and management issues associated with public land management in Alaska. At this meeting, topics planned for discussion include: Land Use Planning. Integrated Arctic Management and...

  4. New Insights on the Geologic Framework of Alaska and Potential Targets of Opportunity for Future Research

    NASA Astrophysics Data System (ADS)

    Ridgway, K.; Trop, J. M.; Finzel, E.; Brennan, P. R.; Gilbert, H. J.; Flesch, L. M.

    2015-12-01

    Studies the past decade have fundamentally changed our perspective on the Mesozoic and Cenozoic tectonic configuration of Alaska. New concepts include: 1) A link exists between Mesozoic collisional zones, Cenozoic strike-slip fault systems, and active deformation that is related to lithospheric heterogeneities that remain over geologic timescales. The location of the active Denali fault and high topography, for example, is within a Mesozoic collisional zone. Rheological differences between juxtaposed crustal blocks and crustal thickening in this zone have had a significant influence on deformation and exhumation in south-central Alaska. In general, the original configuration of the collisional zone appears to set the boundary conditions for long-term and active deformation. 2) Subduction of a spreading ridge has significantly modified the convergent margin of southern Alaska. Paleocene-Eocene ridge subduction resulted in surface uplift, unconformity development and changes in deposystems in the forearc region, and magmatism that extended from the paleotrench to the retroarc region. 3) Oligocene to Recent shallow subduction of an oceanic plateau has markedly reconfigured the upper plate of the southern Alaska convergent margin. This ongoing process has prompted growth of some of the largest mountain ranges on Earth, exhumation of the forearc and backarc regions above the subducted slab, development of a regional gap in arc magmatism above the subducted slab as well as slab-edge magmatism, and displacement on the Denali fault system. In the light of these new tectonic concepts for Alaska, we will discuss targets of opportunity for future integrated geologic and geophysical studies. These targets include regional strike-slip fault systems, the newly recognized Bering plate, and the role of spreading ridge and oceanic plateau subduction on the location and pace of exhumation, sedimentary basin development, and magmatism in the upper plate.

  5. Alaska digital aeromagnetic database description

    USGS Publications Warehouse

    Connard, G.G.; Saltus, R.W.; Hill, P.L.; Carlson, L.; Milicevic, B.

    1999-01-01

    Northwest Geophysical Associates, Inc. (NGA) was contracted by the U.S. Geological Survey (USGS) to construct a database containing original aeromagnotic data (in digital form) from surveys, maps and grids for the State of Alaska from existing public-domain magnetic data. This database facilitates thedetailed study and interpretation of aeromagnetic data along flightline profiles and allows construction of custom grids for selected regions of Alaska. The database is linked to and reflect? the work from the statewide gridded compilation completed under a prior contract. The statewide gridded compilation is also described in Saltus and Simmons (1997) and in Saltus and others (1999). The database area generally covers the on-shore portion of the State of Alaska and the northern Gulf of Alaska excluding the Aleutian Islands. The area extends from 54'N to 72'N latitude and 129'W to 169'W longitude. The database includes the 85 surveys that were included in the previous statewide gridded compilation. Figure (1) shows the extents of the 85 individual data sets included in the statewide grids. NGA subcontracted a significant portion of the work described in this report to Paterson, Grant, and Watson Limited (PGW). Prior work by PGW (described in Meyer and Saltus, 1995 and Meyer and others, 1998) for the interior portion of Alrska (INTAK) is included in this present study. The previous PGW project compiled 25 of the 85 surveys included in the statewide grids. PGW also contributed 10 additional data sets that were not included in either of the prior contracts or the statewide grids. These additional data sets are included in the current project in the interest of making the database as complete as possible. Figure (2) shows the location of the additional data sets.

  6. Occupational safety and health training in Alaska.

    PubMed

    Hild, C M

    1992-01-01

    We have eleven years of experience delivering a wide variety of worker education programs in cross-cultural settings to reduce the levels of occupational fatalities and injuries in Alaska. We published an instructional manual and informational poster for workers, on Alaska's "Right-To-Know" law regarding chemical and physical hazards. The "Job Hazard Recognition Program" curriculum for high school students has received national acclaim for being proactive in dealing with worker safety education before the student becomes a member of the work force. Adult educational programs and materials have been designed to include less lecture and formal presentation, and more practical "hands on" and on-the-job experience for specific trades and hazards. New industry specific manuals deal with hazardous waste reduction as a method to reduce harm to the employee. Difficulty in getting instructors and training equipment to rural locations is dealt with by becoming creative in scheduling classes, using locally available equipment, and finding regional contacts who support the overall program. Alternative approaches to funding sources include building on regional long-term plans and establishing complementary program objectives.

  7. Effects of recent volcanic eruptions on aquatic habitat in the Drift River, Alaska, USA: Implications at other Cook Inlet region volcanoes

    USGS Publications Warehouse

    Dorava, J.M.; Milner, A.M.

    1999-01-01

    Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano: During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano.

  8. Publications - GMC 193 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical materials: Alaska State F #1, washed cuttings (13,980' - 13,990'); West Mikkelsen State #1, Canning River

  9. Analysis of Seasonal Variability in Gulf of Alaska Glacier Mass Balance using GRACE

    NASA Astrophysics Data System (ADS)

    Arendt, A. A.; Luthcke, S. B.; Oneel, S.; Gardner, A. S.; Hill, D. F.

    2011-12-01

    Mass variations of glaciers in Alaska/northwestern Canada must be quantified in order to assess impacts on ecosystems, human infrastructure, and global sea level. Here we combine Gravity Recovery and Climate Experiment (GRACE) observations with a wide range of satellite and field data to investigate drivers of these recent changes, with a focus on seasonal variations. Our central focus will be the exceptionally high mass losses of 2009, which do not correlate with weather station temperature and precipitation data, but may be linked to ash fall from the March 31, 2009 eruption of Mt. Redoubt. The eruption resulted in a significant decrease in MODIS-derived surface albedo over many Alaska glacier regions, and likely contributed to some of the 2009 anomalous mass loss observed by GRACE. We also focus on the Juneau and Stikine Icefield regions that are far from the volcanic eruption but experienced the largest mass losses of any region in 2009. Although rapid drawdown of tidewater glaciers was occurring in southeast Alaska during 2009, we show these changes were probably not sufficiently widespread to explain all of the GRACE signal in those regions. We examine additional field and satellite datasets to quantify potential errors in the climate and GRACE fields that could result in the observed discrepancy.

  10. Alternatives to clearcutting in the old-growth forests of southeast Alaska: study plan and establishment report.

    Treesearch

    Michael H. McClellan; Douglas N. Swanston; Paul E. Hennon; Robert L. Deal; Toni L. de Santo; Mark S. Wipfli

    2000-01-01

    Much is known about the ecological effects, economics, and social impacts of clearcutting, but little documented experience with other silvicultural systems exists in southeast Alaska. The Pacific Northwest Research Station and the Alaska Region of the USDA Forest Service have cooperatively established an interdisciplinary study of ecosystem and social responses to...

  11. New Insights into Tectonics of the Saint Elias, Alaska, Region Based on Local Seismicity and Tomography

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Zabelina, I.; Freymueller, J. T.

    2013-12-01

    Saint Elias Mountains in southern Alaska are manifestation of ongoing tectonic processes that include collision of the Yakutat block with and subduction of the Yakutat block and Pacific plate under the North American plate. Interaction of these tectonic blocks and plates is complex and not well understood. In 2005 and 2006 a network of 22 broadband seismic sites was installed in the region as part of the SainT Elias TEctonics and Erosion Project (STEEP), a five-year multi-disciplinary study that addressed evolution of the highest coastal mountain range on Earth. High quality seismic data provides unique insights into earthquake occurrence and velocity structure of the region. Local earthquake data recorded between 2005 and 2010 became a foundation for detailed study of seismotectonic features and crustal velocities. The highest concentration of seismicity follows the Chugach-St.Elias fault, a major on land tectonic structure in the region. This fault is also delineated in tomographic images as a distinct contrast between lower velocities to the south and higher velocities to the north. The low-velocity region corresponds to the rapidly-uplifted and exhumed sediments on the south side of the range. Earthquake source parameters indicate high degree of compression and undertrusting processes along the coastal area, consistent with multiple thrust structures mapped from geological studies in the region. Tomographic inversion reveals velocity anomalies that correlate with sedimentary basins, volcanic features and subducting Yakutat block. We will present precise earthquake locations and source parameters recorded with the STEEP and regional seismic network along with the results of P- and S-wave tomographic inversion.

  12. Operational Draft Regional Guidebook for the Rapid Assessment of Wetlands in the North Slope Region of Alaska

    DTIC Science & Technology

    2017-08-31

    U.S. Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS); Richard Darden, USACE Alaska District; and representatives from...Slope Science Initiative USDA-NRCS U.S. Department of Agriculture – Natural Resources Conservation Service USDOI-BLM U.S. Department of the Interior... Agriculture , Forest Service, Pacific Southwest Research Station. Reddy, K. R., and R. D. DeLaune. 2008. Biogeochemistry of wetlands: Science and

  13. Remote identification of polar bear maternal den habitat in northern Alaska

    USGS Publications Warehouse

    Durner, George M.; Amstrup, Steven C.; Ambrosius, Ken J.

    2001-01-01

    Polar bears (Ursus maritimus) give birth in dens of ice and snow to protect their altricial young. During the snow-free season, we visited 25 den sites located previously by radiotelemetry and characterized the den site physiognomy. Seven dens occurred in habitats with minimal relief. Eighteen dens (72%) were in coastal and river banks. These "banks" were identifiable on aerial photographs. We then searched high-resolution aerial photographs (n = 3000) for habitats similar to those of the 18 dens. On aerial photos, we mapped 1782 km of bank habitats suitable for denning. Bank habitats comprised 0.18% of our study area between the Colville River and the Tamayariak River in northern Alaska. The final map, which correctly identified 88% of bank denning habitat in this region, will help minimize the potential for disruptions of maternal dens by winter petroleum exploration activities.

  14. Atmospheric deposition and critical loads for nitrogen and metals in Arctic Alaska: Review and current status

    USGS Publications Warehouse

    Linder, Greg L.; Brumbaugh, William G.; Neitlich, Peter; Little, Edward

    2013-01-01

    To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being col- lected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.

  15. 49 CFR 71.11 - Alaska zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Alaska zone. 71.11 Section 71.11 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.11 Alaska zone. The sixth zone, the Alaska standard time zone, includes the entire State of Alaska, except as provided in § 71.12...

  16. The Alaska Arctic Vegetation Archive (AVA-AK)

    DOE PAGES

    Walker, Donald; Breen, Amy; Druckenmiller, Lisa; ...

    2016-05-17

    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are stored in a Turboveg database. A standardized Pan Arctic Species List provides a consistent nomenclature for vascular plants, bryophytes, and lichens in the archive. A web-based online Alaska Arctic Geoecological Atlas (AGA-AK) allows viewing and downloading the species data in a variety of formats, and providesmore » access to a wide variety of ancillary data. We conducted a preliminary cluster analysis of the first 16 datasets (1,613 plots) to examine how the spectrum of derived clusters is related to the suite of datasets, habitat types, and environmental gradients. Here, we present the contents of the archive, assess its strengths and weaknesses, and provide three supplementary files that include the data dictionary, a list of habitat types, an overview of the datasets, and details of the cluster analysis.« less

  17. The Alaska Arctic Vegetation Archive (AVA-AK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Donald; Breen, Amy; Druckenmiller, Lisa

    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are stored in a Turboveg database. A standardized Pan Arctic Species List provides a consistent nomenclature for vascular plants, bryophytes, and lichens in the archive. A web-based online Alaska Arctic Geoecological Atlas (AGA-AK) allows viewing and downloading the species data in a variety of formats, and providesmore » access to a wide variety of ancillary data. We conducted a preliminary cluster analysis of the first 16 datasets (1,613 plots) to examine how the spectrum of derived clusters is related to the suite of datasets, habitat types, and environmental gradients. Here, we present the contents of the archive, assess its strengths and weaknesses, and provide three supplementary files that include the data dictionary, a list of habitat types, an overview of the datasets, and details of the cluster analysis.« less

  18. The geophysical character of southern Alaska - Implications for crustal evolution

    USGS Publications Warehouse

    Saltus, R.W.; Hudson, T.L.; Wilson, Frederic H.

    2007-01-01

    The southern Alaska continental margin has undergone a long and complicated history of plate convergence, subduction, accretion, and margin-parallel displacements. The crustal character of this continental margin is discernible through combined analysis of aeromagnetic and gravity data with key constraints from previous seismic interpretation. Regional magnetic data are particularly useful in defining broad geophysical domains. One of these domains, the south Alaska magnetic high, is the focus of this study. It is an intense and continuous magnetic high up to 200 km wide and ∼1500 km long extending from the Canadian border in the Wrangell Mountains west and southwest through Cook Inlet to the Bering Sea shelf. Crustal thickness beneath the south Alaska magnetic high is commonly 40–50 km. Gravity analysis indicates that the south Alaska magnetic high crust is dense. The south Alaska magnetic high spatially coincides with the Peninsular and Wrangellia terranes. The thick, dense, and magnetic character of this domain requires significant amounts of mafic rocks at intermediate to deep crustal levels. In Wrangellia these mafic rocks are likely to have been emplaced during Middle and (or) Late Triassic Nikolai Greenstone volcanism. In the Peninsular terrane, the most extensive period of mafic magmatism now known was associated with the Early Jurassic Talkeetna Formation volcanic arc. Thus the thick, dense, and magnetic character of the south Alaska magnetic high crust apparently developed as the response to mafic magmatism in both extensional (Wrangellia) and subduction-related arc (Peninsular terrane) settings. The south Alaska magnetic high is therefore a composite crustal feature. At least in Wrangellia, the crust was probably of average thickness (30 km) or greater prior to Triassic mafic magmatism. Up to 20 km (40%) of its present thickness may be due to the addition of Triassic mafic magmas. Throughout the south Alaska magnetic high, significant crustal growth

  19. Dust storm in Alaska

    NASA Image and Video Library

    2013-11-18

    Dust storm in Alaska captured by Aqua/MODIS on Nov. 17, 2013 at 21:45 UTC. When glaciers grind against underlying bedrock, they produce a silty powder with grains finer than sand. Geologists call it “glacial flour” or “rock flour.” This iron- and feldspar-rich substance often finds its ways into rivers and lakes, coloring the water brown, grey, or aqua. When river or lake levels are low, the flour accumulates on drying riverbanks and deltas, leaving raw material for winds to lift into the air and create plumes of dust. Scientists are monitoring Arctic dust for a number of reasons. Dust storms can reduce visibility enough to disrupt air travel, and they can pose health hazards to people on the ground. Dust is also a key source of iron for phytoplankton in regional waters. Finally, there is the possibility that dust events are becoming more frequent and severe due to ongoing recession of glaciers in coastal Alaska. To read more about dust storm in this region go to: earthobservatory.nasa.gov/IOTD/view.php?id=79518 Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Identification of unrecognized tundra fire events on the north slope of Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Breen, Amy L.; Gaglioti, Benjamin V.; Mann, Daniel H.; Rocha, Adrian V.; Grosse, Guido; Arp, Christopher D.; Kunz, Michael L.; Walker, Donald A.

    2013-01-01

    Characteristics of the natural fire regime are poorly resolved in the Arctic, even though fire may play an important role cycling carbon stored in tundra vegetation and soils to the atmosphere. In the course of studying vegetation and permafrost-terrain characteristics along a chronosequence of tundra burn sites from AD 1977, 1993, and 2007 on the North Slope of Alaska, we discovered two large, previously unrecognized tundra fires. The Meade River fire burned an estimated 500 km2 and the Ketik River fire burned an estimated 1200 km2. Based on radiocarbon dating of charred twigs, analysis of historic aerial photography, and regional climate proxy data, these fires likely occurred between AD 1880 and 1920. Together, these events double the estimated burn area on the North Slope of Alaska over the last ~100 to 130 years. Assessment of vegetation succession along the century-scale chronosequence of tundra fire disturbances demonstrates for the first time on the North Slope of Alaska that tundra fires can facilitate the invasion of tundra by shrubs. Degradation of ice-rich permafrost was also evident at the fire sites and likely aided in the presumed changes of the tundra vegetation postfire. Other previously unrecognized tundra fire events likely exist in Alaska and other Arctic regions and identification of these sites is important for better understanding disturbance regimes and carbon cycling in Arctic tundra.

  1. Contaminants and sea ducks in Alaska and the circumpolar region

    USGS Publications Warehouse

    Henny, Charles J.; Rudis, Deborah D.; Roffe, Thomas J.; Robinson-Wilson, Everett

    1995-01-01

    We review nesting sea duck population declines in Alaska during recent decades and explore the possibility that contaminants may be implicated. Aerial surveys of the surf scoter (Melanitta perspicillata), white-winged scoter (M. fusca), black scoter (M. nigra), oldsquaw (Clangula hyemalis), spectacled eider (Somateria fischeri), and Steller's eider (Polysticta stelleri) show long-term breeding population declines, especially the latter three species. The spectacled eider was recently classified threatened under the Endangered Species Act. In addition, three other diving ducks, which commonly winter in coastal areas, have declined from unknown causes. Large die-offs of all three species of scoters during molt, a period of high energy demand, were documented in August 1990, 1991, and 1992 at coastal reefs in southeastern Alaska. There was no evidence of infectious diseases in those scoters. The die-offs may or may not be associated with the long-term declines. Many scoters had elevated renal concentrations of cadmium (high of 375 μg/g dry weight [dw]). Effects of cadmium in sea ducks are not well understood. Selenium concentrations in livers of nesting white-winged scoters were high; however, the eggs they laid contained less selenium than expected based on relationships for freshwater bird species. Histological evaluation found a high prevalence of hepatocellular vacuolation (49%), a degenerative change frequently associated with sublethal toxic insult. Cadmium and selenium mean liver concentrations were generally higher in those birds with more severe vacuolation; however, relationships were not statistically significant. We do not know if sea duck population declines are related to metals or other contaminants.

  2. Contaminants and sea ducks in Alaska and the circumpolar region

    USGS Publications Warehouse

    Henny, C.J.; Rudis, D.D.; Roffe, T.J.; Robinson-Wilson, E.

    1995-01-01

    We review nesting sea duck population declines in Alaska during recent decades and explore the possibility that contaminants may be implicated. Aerial surveys of the surf scoter (Melanitta perspicillata) , white-winged scoter (M. fusca) , black scoter (M. nigra) , oldsquaw (Clangula hyemalis) , spectacled eider (Somateria fischeri) , and Steller's eider (Polysticta stelleri) show long-term breeding population declines, especially the latter three species. The spectacled eider was recently classified threatened under the Endangered Species Act. In addition, three other diving ducks, which commonly winter in coastal areas, have declined from unknown causes. Large die-offs of all three species of scoters during molt, a period of high energy demand, were documented in August 1990, 1991, and 1992 at coastal reefs in southeastern Alaska. There was no evidence of infectious diseases in those scoters. The die-offs may or may not be associated with the long-term declines. Many scoters had elevated renal concentrations of cadmium (high of 375 ?g/g dry weight [dw]). Effects of cadmium in sea ducks are not well understood. Selenium concentrations in livers of nesting white-winged scoters were high ; however, the eggs they laid contained less selenium than expected based on relationships for freshwater bird species. Histological evaluation found a high prevalence of hepatocellular vacuolation (49%) , a degenerative change frequently associated with sublethal toxic insult. Cadmium and selenium mean liver concentrations were generally higher in those birds with more severe vacuolation ; however, relationships were not statistically significant. We do not know if sea duck population declines are related to metals or other contaminants.

  3. Effects of Intensified 21st Century Drought on the Boreal Forest of Alaska

    NASA Astrophysics Data System (ADS)

    Juday, G. P.; Alix, C. M.; Jess, R.; Grant, T. A., III

    2014-12-01

    A long term perspective on several quasi-decadal cycles of intensifying drought stress across boreal Alaska has been synthesized from monitoring of forest reference stands at Bonanza Creek LTER, Interior Alaska Research Natural Areas, and tree ring sampling across Alaska. The Alaska boreal forest is largely made up of tree populations with two growth responses to temperature increases. Negative responders are more common, and found across the warm, dry Interior. Positive responders are largely in western Alaska, a maritime climate region near the Bering Sea, and at high elevation of the Brooks and Alaska Ranges. Following the North Pacific climate regime shift in 1976-77, negative responder Interior white and black spruce, aspen, and birch all experienced major growth reductions, particularly in warm drought years. Elevated summer temperatures and low annual precipitation of recent decades at low elevations of the Tanana and central Yukon Valleys were outside the values which previously defined the species distributions limits, Long term survival prospects are questionable. Simultaneously, recent elevated temperatures were associated with growth increases of positive responders. On fertile floodplain sites of the lower Yukon and Kuskokwim Rivers, the growth rate of positive responding white spruce is now greater than negative responders for the first time in centuries. NDVI trends in recent decades confirm these opposite growth trends in their respective regions. During peak warm/dry anomalies, forest disturbance, an important process for tree regeneration over the long term, intensified in boreal Alaska. Several insect outbreaks of wood-boring and defoliating species associated with warm temperature/drought stress anomalies appeared, many of them severe, and some not previously known to outbreak. Significant tree injury (e.g. top dieback) and mortality resulted. Wildfire extent and severity increased and reached record levels. The overall pattern has been

  4. Expression of Aleutian Low variations by a proxy record of precipitation oxygen isotopes in the Matanuska-Susitna region on Cook Inlet, south central Alaska

    NASA Astrophysics Data System (ADS)

    Finney, B.; Anderson, L.; Engstrom, D. R.

    2017-12-01

    North Pacific ocean-atmosphere processes strongly influence the climatology of Alaska by altering the strength and position of the Aleutian Low. During the past decade, the development of oxygen isotope proxy records that reflect the isotope composition of precipitation has provided substantial evidence of hydroclimatic variability in Alaska in response to Aleutian Low variations during the Holocene. However, a clear understanding of how the isotopic composition of precipitation reflects Aleutian Low variations remains uncertain because modern and proxy observations and modeling studies provide different predictions for regions (coastal and interior), elevations (0 to 5000 m), and time-scales (seasonal to century) that cannot be adequately tested by existing data. Precipitation isotope proxy records from Mount Logan, Denali, Jellybean Lake and Horse Trail Fen provide valuable perspectives at high elevation and interior (leeward) locations but no data has been available from near sea level on the coastal (windward) side of the Alaska and Chugach Mountain Ranges. Here we present newly recovered marl lake sediment cores from the Matanuska-Susitna region of Knik Arm on Cook Inlet, near Wasilla, 50 km north of Anchorage, AK that provide complete de-glacial and Holocene records of precipitation oxygen isotopes. Geochronology is underway based on identification of known tephras and AMS radiocarbon dating of terrestrial macrofossils. Modern and historic sediments are dated by 210Pb. The groundwater fed site is hydrologically open, unaffected by evaporation, has exceptionally high rates of marl sedimentation and preliminary results indicate clearly defined oxygen isotope excursions in the late 1970's and early 1940's, periods when North Pacific ocean-atmosphere forcing of the Aleutian Low is known to have undergone shifts. These results help to evaluate contrasting models of atmospheric circulation and associated isotope fractionation which is critical for proxy

  5. Use of SAR data to study active volcanoes in Alaska

    USGS Publications Warehouse

    Dean, K.G.; Engle, K.; Lu, Z.; Eichelberger, J.; Near, T.; Doukas, M.

    1996-01-01

    Synthetic Aperture Radar (SAR) data of the Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analysed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analysed using data from the European Remote Sensing Satellites (ERS), the Japanese Earth Resources Satellite (JERS) and the US Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.

  6. Spatial and temporal variation in winter condition of juvenile Pacific herring (Clupea pallasii) in Prince William Sound, Alaska: Oceanographic exchange with the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Gorman, Kristen B.; Kline, Thomas C.; Roberts, Megan E.; Sewall, Fletcher F.; Heintz, Ron A.; Pegau, W. Scott

    2018-01-01

    Spatial variability in early and late winter measures of whole body energy density of juvenile (age-0) Pacific herring (Clupea pallasii) of Prince William Sound (PWS), Alaska was examined over nine years of study. Pacific herring in this region remain considered as an injured resource over the 25 years following the Exxon Valdez oil spill, however factors responsible for the lack of recovery by herring in PWS are a source of ongoing debate. Given the species' key ecological role in energy transfer to higher predators, and its economic role in a historical commercial fishery within the region, significant research effort has focused on understanding environmental factors that shape nutritional processes and the quality of these young forage fish. During November (early winter), factors such as juvenile herring body size, hydrological region of PWS, year, and the interaction between carbon (δ13C‧) or nitrogen (δ15N) stable isotope signature and hydrological region were all important predictors of juvenile herring energy density. In particular, analyses indicated that in the northern and western regions of PWS, juvenile herring with more depleted δ13C‧ values (which reflect a Gulf of Alaska carbon source) were more energy dense. Results suggest that intrusion of water derived from the Gulf of Alaska enhances the condition of age-0 herring possibly through alterations in zooplankton community structure and abundance, particularly in the northern and western regions of PWS in the fall, which is consistent with regional circulation. During March (late winter), factors such as juvenile herring body size, year, and the interaction between δ13C‧ or δ15N isotope signature and year were all important predictors of juvenile herring energy density. Results differed for early and late winter regarding the interaction between stable isotope signatures and region or year, suggesting important seasonal aspects of circulation contribute to variation in PWS juvenile

  7. Are you prepared for the next big earthquake in Alaska?

    USGS Publications Warehouse

    2006-01-01

    Scientists have long recognized that Alaska has more earthquakes than any other region of the United States and is, in fact, one of the most seismically active areas of the world. The second-largest earthquake ever recorded shook the heart of southern Alaska on March 27th, 1964. The largest strike-slip slip earthquake in North America in almost 150 years occurred on the Denali Fault in central Alaska on November 3rd, 2002. “Great” earthquakes (larger than magnitude 8) have rocked the state on an average of once every 13 years since 1900. It is only a matter of time before another major earthquake will impact a large number of Alaskans.Alaska has changed significantly since the damaging 1964 earthquake, and the population has more than doubled. Many new buildings are designed to withstand intense shaking, some older buildings have been reinforced, and development has been discouraged in some particularly hazardous areas. Despite these precautions, future earthquakes may still cause damage to buildings, displace items within buildings, and disrupt the basic utilities that we take for granted. We must take every reasonable action to prepare for damaging earthquakes in order to lower these risks.

  8. Publications - RDF 2015-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  9. Publications - RI 2009-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  10. Publications - RDF 2016-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  11. Publications - RDF 2016-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  12. Publications - RDF 2014-22 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  13. Publications - RDF 2015-8 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    from the Tonsina area, Valdez Quadrangle, Alaska: Alaska Division of Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  14. U.S. Geological Survey 2011 assessment of undiscovered oil and gas resources of the Cook Inlet region, south-central Alaska

    USGS Publications Warehouse

    Stanley, Richard G.; Pierce, Brenda S.; Houseknecht, David W.

    2011-01-01

    The U.S. Geological Survey (USGS) has completed an assessment of the volumes of undiscovered, technically recoverable oil and gas resources in conventional and continuous accumulations in Cook Inlet. The assessment used a geology-based methodology and results from new scientific research by the USGS and the State of Alaska, Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas (DOG). In the Cook Inlet region, the USGS estimates mean undiscovered volumes of nearly 600 million barrels of oil, about 19 trillion cubic feet of gas, and about 46 million barrels of natural gas liquids.

  15. Publications - RDF 2015-16 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    rocks collected in 2015 in the Wrangellia mineral assessment area, Alaska: Alaska Division of Geological Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  16. Publications - RDF 2015-9 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    samples from the Zane Hills, Hughes and Shungnak quadrangles, Alaska: Alaska Division of Geological & Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  17. Conceptualization and Simulation of the Alaskan Arctic Tundra Landscape Evolution Using the Alaska Thermokarst Model

    NASA Astrophysics Data System (ADS)

    Bolton, W. R.; Lara, M. J.; Genet, H.; Romanovsky, V. E.; McGuire, A. D.

    2016-12-01

    The Arctic, including Alaska, is currently undergoing a change in climate, with observed increases in both mean surface temperature and precipitation. The combination of these increases in precipitation and temperature has resulted in a permafrost condition that is susceptible to thermokarst. Changes in the landscape due to thermokarst takes place whenever ice-rich permafrost thaws and the land surface subsides due to the volume loss when ground-ice transitions to water. The important processes associated with thermokarst include surface ponding, changes in topography, vegetation distribution, soil moisture conditions, drainage patterns, and related erosion. The Alaska Thermokarst Model (ATM) is a large-scale, state-and-transition model designed to simulate transitions between landscape units affected by thermokarst disturbance. The ATM using a frame-based methodology to track cohorts transitions and their respective proportions within each model grid cell. In the arctic tundra environment, the ATM tracks thermokarst related transitions among wetland tundra, graminoid tundra,shrub tundra and lakes. The transition from one cohort to another due to thermokarst processes can take place if thaw reaches ice-rich ground layers either due to pulse disturbance or due to gradual active layer deepening that eventually results in penetration of the protective layer. The protective layer buffers the ice-rich soils from the land surface and is critical to determine how susceptible an area is to thermokarst degradation. The initial landcover distribution is based upon analysis of compiled remote sensing data sets at 30-m resolution. Remote sensing analysis and field measurements from previous and ongoing studies are used to determine the ice-content of the soil, the drainage efficiency (or the ability of the landscape to store or transport water), the cumulative probability of thermokarst initiation, distance from rivers, lake dynamics (increasing, decreasing, or stable), and

  18. Alaska geology revealed

    USGS Publications Warehouse

    Wilson, Frederic H.; Labay, Keith A.

    2016-11-09

    This map shows the generalized geology of Alaska, which helps us to understand where potential mineral deposits and energy resources might be found, define ecosystems, and ultimately, teach us about the earth history of the State. Rock units are grouped in very broad categories on the basis of age and general rock type. A much more detailed and fully referenced presentation of the geology of Alaska is available in the Geologic Map of Alaska (http://dx.doi.org/10.3133/sim3340). This product represents the simplification of thousands of individual rock units into just 39 broad groups. Even with this generalization, the sheer complexity of Alaskan geology remains evident.

  19. Publications - PDF 96-17 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska the Fairbanks Mining District, Alaska, scale 1:63,360 (15.0 M) Digital Geospatial Data Digital © 2010 Webmaster State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State

  20. Publications - MP 156 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska /29446 Publication Products Report Report Information mp156.pdf (126.0 K) Digital Geospatial Data Digital State of Alaska © 2010 Webmaster State of Alaska myAlaska My Government Resident Business in Alaska

  1. Regional patterns of Mesozoic-Cenozoic magmatism in western Alaska revealed by new U-Pb and 40Ar/39Ar ages: Chapter D in Studies by the U.S. Geological Survey in Alaska, vol. 15

    USGS Publications Warehouse

    Bradley, Dwight C.; Miller, Marti L.; Friedman, Richard M.; Layer, Paul W.; Bleick, Heather A.; Jones, James V.; Box, Steven E.; Karl, Susan M.; Shew, Nora B.; White, Timothy S.; Till, Alison B.; Dumoulin, Julie A.; Bundtzen, Thomas K.; O'Sullivan, Paul B.; Ullrich, Thomas D.

    2017-03-02

    In support of regional geologic framework studies, we obtained 50 new argon-40/argon-39 (40Ar/39Ar) ages and 33 new uranium-lead (U-Pb) ages from igneous rocks of southwestern Alaska. Most of the samples are from the Sleetmute and Taylor Mountains quadrangles; smaller collections or individual samples are from the Bethel, Candle, Dillingham, Goodnews Bay, Holy Cross, Iditarod, Kantishna River, Lake Clark, Lime Hills, McGrath, Medfra, Talkeetna, and Tanana quadrangles.A U-Pb zircon age of 317.7±0.6 million years (Ma) reveals the presence of Pennsylvanian intermediate igneous (probably volcanic) rocks in the Tikchik terrane, Bethel quadrangle. A U-Pb zircon age of 229.5±0.2 Ma from gabbro intruding the Rampart Group of the Angayucham-Tozitna terrane, Tanana quadrangle, confirms and tightens a previously cited Triassic age for this intrusive suite. A fresh mafic dike in Goodnews Bay quadrangle yielded a 40Ar/39Ar whole rock age of 155.0±1.9 Ma; this establishes a Jurassic or older age for the previously unconstrained (Paleozoic? to Mesozoic?) sandstone unit that it intrudes. A thick felsic tuff in the Gemuk Group in Taylor Mountains quadrangle yielded a U-Pb zircon age of 153.0±2.0 Ma, extending the age of magmatism in this part of the Togiak terrane back into the Late Jurassic. We report three new U-Pb zircon ages between 120 and 110 Ma—112.0±0.9 Ma from syenite in the Candle quadrangle, 114.9±0.3 Ma from orthogneiss assigned to the Ruby terrane in Iditarod quadrangle, and 116.6±0.1 Ma from a gabbro of the Dishna River mafic-ultramafic complex in Iditarod quadrangle. The latter result requires a substantial age revision, from Triassic to Cretaceous, for at least some rocks that have been mapped as the Dishna River mafic-ultramafic complex. A tuff in the Upper Cretaceous Kuskokwim Group yielded a U-Pb zircon (sensitive high-resolution ion microprobe, SHRIMP) age of 88.3±1.0 Ma; we speculate that the eruptive source was an arc along the trend of the Pebble

  2. Alaska Administrative Manual

    Science.gov Websites

    Search the Division of Finance site DOF State of Alaska Finance Home Content Area Accounting Charge Cards Administrative Manual Table of Contents Contains State of Alaska accounting/payroll policies and information clarifying accounting and payroll procedures. Policies are carried out through standard statewide procedures

  3. Publications - GMC 410 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ) Keywords Geochemistry; Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  4. Publications - GMC 409 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ) Keywords Geochemistry; Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  5. Publications - GMC 183 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical materials: AK State C #1, Bush Federal #1, Echooka Unit #1, Fin Creek Unit #1, E. De K. Leffingwell #1, Nora

  6. Alaska Native Education: Issues in the Nineties. Alaska Native Policy Papers.

    ERIC Educational Resources Information Center

    Kleinfeld, Judith

    This booklet identifies several crucial problems in Alaska Native education, for example: (1) Fetal Alcohol Syndrome (FAS) and Fetal Alcohol Effects (FAE) occur in Alaska Native populations at relatively high rates and can produce mental retardation, hyperactivity, attention deficits, and learning disabilities; (2) while many Native rural school…

  7. Economics of wild salmon ecosystems: Bristol Bay, Alaska

    Treesearch

    John W. Duffield; Christopher J. Neher; David A. Patterson; Oliver S. Goldsmith

    2007-01-01

    This paper provides an estimate of the economic value of wild salmon ecosystems in the major watershed of Bristol Bay, Alaska. The analysis utilizes both regional economic and social benefit-cost accounting frameworks. Key sectors analyzed include subsistence, commercial fishing, sport fishing, hunting, and nonconsumptive wildlife viewing and tourism. The mixed cash-...

  8. 78 FR 78954 - Extension of Comment Period for the Alaska Seafood Processing Effluent Limitation Guidelines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ...The Environmental Protection Agency (EPA) is extending the comment period for the Alaska Seafood Processing Effluent Limitation Guidelines Notice of Data Availability. EPA is extending the comment period in response to stakeholder requests for an extension.

  9. Alaska Public Offices Commission, Department of Administration, State of

    Science.gov Websites

    Visiting Alaska State Employees State of Alaska Department of Administration Alaska Public Offices Commission Alaska Department of Administration, Alaska Public Offices Commission APOC Home Commission Filer ; AO's Contact Us Administration > Alaska Public Offices Commission Alaska Public Offices Commission

  10. Prehistoric Alaska: The land

    USGS Publications Warehouse

    Wilson, Frederic H.; Weber, Florence R.; Rennick, Penny

    1994-01-01

    Many Alaskans know the dynamic nature of Alaska’s landscape firsthand. The 1964 earthquake, the 1989 eruption of Mount Redoubt volcano, the frequent earthquakes in the Aleutians and the ever-shifting meanders of the Yukon and Kuskokwim rivers remind them of constant changes to the land. These changes are part of the continuing story of the geologic growth and development of Alaska during hundreds of millions of years. By geologic time, Alaska has only recently come into existence and the dynamic processes that formed it continue to affect it. The landscape we see today has been shaped by glacier and stream erosion or their indirect effects, and to a lesser extent by volcanoes. Most prominently, if less obviously, Alaska has been built by slow movements of the Earth’s crust we call tectonic or mountain-building.During 5 billion years of geologic time, the Earth’s crust has repeatedly broken apart into plates. These plates have recombined, and have shifted positions relative to each other, to the Earth’s rotational axis and to the equator. Large parts of the Earth’s crust, including Alaska, have been built and destroyed by tectonic forces. Alaska is a collage of transported and locally formed fragments of crusts As erosion and deposition reshape the land surface, climatic changes, brought on partly by changing ocean and atmospheric circulation patterns, alter the location and extent of tropical, temperate and arctic environments. We need to understand the results of these processes as they acted upon Alaska to understand the formation of Alaska. Rocks can provide hints of previous environments because they contain traces of ocean floor and lost lands, bits and pieces of ancient history.

  11. Publications - GMC 370 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    (249.0 K) Keywords Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  12. Publications - GMC 159 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical State #1, Kuparuk Unit #1, Mikkelsen Bay State 13-09-19, Ravik State #1, Pt. Thomson Unit #2, West

  13. LearnAlaska Portal

    Science.gov Websites

    ESS (Employee Self Service) E-Travel Online Login IRIS FIN/PROC Login IRIS HRM Login LearnAlaska SFOA SharePoint Site TRIPS (Traveler Integrated Profile System) Vendor Self Service (VSS) Resources Alaska & Resources Manuals Payment Detail Report Salary Schedules SFOA SharePoint Site (SOA Only) Training

  14. Deep-seated gravitational slope deformations near the Trans-Alaska Pipeline, east-central Alaska Range, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Newman, S. D.; Clague, J. J.; Rabus, B.; Stead, D.

    2013-12-01

    Multiple, active, deep-seated gravitational slope deformations (DSGSD) are present near the Trans-Alaska Pipeline and Richardson Highway in the east-central Alaska Range, Alaska, USA. We documented spatial and temporal variations in rates of surface movement of the DSGSDs between 2003 and 2011 using RADARSAT-1 and RADARSAT-2 D-InSAR images. Deformation rates exceed 10 cm/month over very large areas (>1 km2) of many rock slopes. Recent climatic change and strong seismic shaking, especially during the 2002 M 7.9 Denali Fault earthquake, appear to have exacerbated slope deformation. We also mapped DSGSD geological and morphological characteristics using field- and GIS-based methods, and constructed a conceptual 2D distinct-element numerical model of one of the DSGSDs. Preliminary results indicate that large-scale buckling or kink-band slumping may be occurring. The DSGSDs are capable of generating long-runout landslides that might impact the Trans-Alaska Pipeline and Richardson Highway. They could also block tributary valleys, thereby impounding lakes that might drain suddenly. Wrapped 24-day RADARSAT-2 descending spotlight interferogram showing deformation north of Fels Glacier. The interferogram is partially transparent and is overlaid on a 2009 WorldView-1 panchromatic image. Acquisition interval: August 2 - August 26, 2011. UTM Zone 6N.

  15. Geotechnical reconnaissance of the 2002 Denali fault, Alaska, earthquake

    USGS Publications Warehouse

    Kayen, R.; Thompson, E.; Minasian, D.; Moss, R.E.S.; Collins, B.D.; Sitar, N.; Dreger, D.; Carver, G.

    2004-01-01

    The 2002 M7.9 Denali fault earthquake resulted in 340 km of ruptures along three separate faults, causing widespread liquefaction in the fluvial deposits of the alpine valleys of the Alaska Range and eastern lowlands of the Tanana River. Areas affected by liquefaction are largely confined to Holocene alluvial deposits, man-made embankments, and backfills. Liquefaction damage, sparse surrounding the fault rupture in the western region, was abundant and severe on the eastern rivers: the Robertson, Slana, Tok, Chisana, Nabesna and Tanana Rivers. Synthetic seismograms from a kinematic source model suggest that the eastern region of the rupture zone had elevated strong-motion levels due to rupture directivity, supporting observations of elevated geotechnical damage. We use augered soil samples and shear-wave velocity profiles made with a portable apparatus for the spectral analysis of surface waves (SASW) to characterize soil properties and stiffness at liquefaction sites and three trans-Alaska pipeline pump station accelerometer locations. ?? 2004, Earthquake Engineering Research Institute.

  16. Feasibility analysis of a smart grid photovoltaics system for the subarctic rural region in Alaska

    NASA Astrophysics Data System (ADS)

    Yao, Lei

    A smart grid photovoltaics system was developed to demonstrate that the system is feasible for a similar off-grid rural community in the subarctic region in Alaska. A system generation algorithm and a system business model were developed to determine feasibility. Based on forecasts by the PV F-Chart software, a 70° tilt angle in winter, and a 34° tilt angle in summer were determined to be the best angles for electrical output. The proposed system's electricity unit cost was calculated at 32.3 cents/kWh that is cheaper than current unsubsidized electricity price (46.8 cents/kWh) in off-grid rural communities. Given 46.8 cents/kWh as the electricity unit price, the system provider can break even when 17.3 percent of the total electrical revenue through power generated by the proposed system is charged. Given these results, the system can be economically feasible during the life-cycle period. With further incentives, the system may have a competitive advantage.

  17. Publications - MP 142 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  18. Publications - SR 70 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  19. Publications - MP 38 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  20. Publications - SR 45 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  1. Publications - MP 43 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  2. Publications - MP 149 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  3. Presentations - Wypych, Alicja and others, 2015 | Alaska Division of

    Science.gov Websites

    Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of (AVO) Mineral Resources Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem

  4. Geologic framework and petroleum systems of Cook Inlet basin, south-central Alaska

    USGS Publications Warehouse

    LePain, D.L.; Stanley, Richard G.; Helmold, K.P.; Shellenbaum, D.P.; Stone, D.M.; Hite, D.M.

    2013-01-01

    This report provides a comprehensive overview of the stratigraphy, structure, tectonics, and petroleum systems of the Cook Inlet basin, an important oil- and gas-producing region in south-central Alaska.

  5. A GIS-based method to evaluate undeveloped BLM lands in Alaska

    Treesearch

    Jason Geck

    2007-01-01

    As Alaska’s largest land management agency, the Bureau of Land Management (BLM) has responsibility for over 87 million acres (35 million ha) of public lands throughout the state. By using datasets and Landsat scenes within a Geographical Information System (GIS), this study prioritizes wilderness protection through the ranking of BLM blocks (contiguous land parcels),...

  6. Reporting Child Abuse & Neglect in Alaska. Information for the General Public.

    ERIC Educational Resources Information Center

    Alaska State Library, Juneau.

    Everyone is responsible for the welfare of the children in our communities. Some persons, such as school teachers and peace officers, are required by law in Alaska to report known or suspected child abuse and neglect. The general public is also encouraged to report such knowledge or suspicions so that children can be protected and families can…

  7. Deformation Styles Along the Southern Alaska Margin Constrained by GPS

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Freymueller, J. T.; Larsen, C. F.

    2009-12-01

    The present-day deformation observed in southcentral and southeast Alaska and the adjacent region of Canada is controlled by two main factors: ~ 50 mm/yr relative motion between the Pacific plate and North America and the Yakutat block’s collision with and accretion to southern Alaska. Over 45 mm/yr of NW-SE directed convergence from the collision is currently accommodated within the St. Elias orogen. The Fairweather, St. Elias, and Chugach ranges show the spectacular consequences of the relative tectonic motions, but the details of the plate interactions have not been well understood. Here we present GPS data from a network of over 170 campaign sites across the region. We use the data to constrain block models and forward models that characterize the nature and extent of the tectonic deformation along the Pacific-Yakutat-North America boundary. Tectonics in southeast Alaska can be described by block motion, with the Pacific plate bounding the region to the west. The fastest block motions occur along the coastal regions. The Yakutat block has a velocity of 51 ± 2.7 mm/yr towards N22 ± 2.5 deg W relative to North America. This velocity has a magnitude almost identical to that of the Pacific plate, but the azimuth is more westerly. The northeastern edge of the Yaktuat block is deforming, represented in our model by two small blocks outboard of the Fairweather fault. East of that fault, the Fairweather block rotates clockwise relative to North America, resulting in transpression along the Duke River and Eastern Denali faults. There is a clear transfer of strain from the coastal region hundreds of kilometers eastward into the Northern Cordillera block, confirming earlier suggestions that the effects of the Yakutat collision are far-reaching along its eastern margin. In contrast, deformation along the leading edge of the Yakutat collision is relatively narrowly focused within the southern half of the St. Elias orogen. The current deformation front of the Yakutat

  8. Sections | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    State Employees DGGS State of Alaska search Department of Natural Resources, Division of Geological & Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors' Proposals STATEMAP

  9. Publications - RDF 2015-7 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the northeastern Alaska Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  10. Regional seismic lines reprocessed using post-stack processing techniques; National Petroleum Reserve, Alaska

    USGS Publications Warehouse

    Miller, John J.; Agena, W.F.; Lee, M.W.; Zihlman, F.N.; Grow, J.A.; Taylor, D.J.; Killgore, Michele; Oliver, H.L.

    2000-01-01

    This CD-ROM contains stacked, migrated, 2-Dimensional seismic reflection data and associated support information for 22 regional seismic lines (3,470 line-miles) recorded in the National Petroleum Reserve ? Alaska (NPRA) from 1974 through 1981. Together, these lines constitute about one-quarter of the seismic data collected as part of the Federal Government?s program to evaluate the petroleum potential of the Reserve. The regional lines, which form a grid covering the entire NPRA, were created by combining various individual lines recorded in different years using different recording parameters. These data were reprocessed by the USGS using modern, post-stack processing techniques, to create a data set suitable for interpretation on interactive seismic interpretation computer workstations. Reprocessing was done in support of ongoing petroleum resource studies by the USGS Energy Program. The CD-ROM contains the following files: 1) 22 files containing the digital seismic data in standard, SEG-Y format; 2) 1 file containing navigation data for the 22 lines in standard SEG-P1 format; 3) 22 small scale graphic images of each seismic line in Adobe Acrobat? PDF format; 4) a graphic image of the location map, generated from the navigation file, with hyperlinks to the graphic images of the seismic lines; 5) an ASCII text file with cross-reference information for relating the sequential trace numbers on each regional line to the line number and shotpoint number of the original component lines; and 6) an explanation of the processing used to create the final seismic sections (this document). The SEG-Y format seismic files and SEG-P1 format navigation file contain all the information necessary for loading the data onto a seismic interpretation workstation.

  11. Geology of the central Copper River region, Alaska

    USGS Publications Warehouse

    Mendenhall, Walter C.

    1905-01-01

    It is an interesting evidence of the prompt responsiveness of our governmental organization to popular needs that the year 1898, which saw the first rush of argonauts to Alaska as a result of the discovery of the Klondike in 1986, saw also several well-equipped Federal parties at work in the Territory, mapping its great waterways and mountain ranges, investigating the feasible means of transportation within it, laying out routes for future lines of communication, and studying the mineral resources and the plant and animal life. It is true that before that year, in which the general attention of the world was fixed upon our heretofore lightly regarded northern province, fur traders, adventurous travelers, and hardy prospectors had made little-heralded journeys through the interior, and that one or another of the governmental departments had had representatives on special errands within its borders, but the amount of private and public energy expended there in 1898 probably exceeded that of any ten previous years.

  12. Rayleigh Wave Phase Velocities in Alaska from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Pepin, K. S.; Li, A.; Yao, Y.

    2016-12-01

    We have analyzed ambient noise data recorded at 136 broadband stations from the USArray Transportable Array and other permanent seismic networks in Alaska and westernmost Canada. Daily cross-correlations are obtained using vertical component seismograms and are stacked to form a single trace for each station pair. Rayleigh wave signals are extracted from the stacked traces and are used to calculate phase velocities in the Alaska region. Preliminary phase velocity maps show similar trends to those from previous studies, but also yield new anomalies given the wider geographical range provided by the Transportable Array. At short periods (6-12s), a high velocity anomaly is observed directly northeast of the Fairweather-Queen Charlotte fault, and a high velocity trend appears in the eastern Yukon terrane between the Denali and Tintina fault, probably reflecting mafic igneous crustal rocks. Significantly slow anomalies are present at the Prince William Sound, Cook Inlet, and the basins in southwestern and central Alaska, indicating sediment effects. The slow anomalies gradually shift to southeastern and south-central Alaska with increasing period (up to 40s), corresponding to the Wrangell volcano belt and the volcano arc near Cook Inlet. A broad high-velocity zone is also observed in central Alaska to the north of the Denali fault at long periods (30-40s). The Yakutat terrane is characterized as a high-velocity anomaly from period 14s to 25s but not imaged at longer periods due to poor resolution.

  13. Presentations - Twelker, Evan and others, 2014 | Alaska Division of

    Science.gov Websites

    magmatic Ni-Cu-Co-PGE system in the Talkeetna Mountains, central Alaska (poster): Society of Economic Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of

  14. 78 FR 48638 - Approval and Promulgation of State Implementation Plans: Alaska; Fairbanks Carbon Monoxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... Promulgation of State Implementation Plans: Alaska; Fairbanks Carbon Monoxide Limited Maintenance Plan AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: The EPA is proposing to approve a carbon... carbon monoxide National Ambient Air Quality Standards through the second 10- year maintenance period...

  15. 76 FR 81247 - Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment 88

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... Atmospheric Administration 50 CFR Part 679 Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of... Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment 88 AGENCY: National Marine... conservation, management, safety, and economic gains realized under the Central Gulf of Alaska Rockfish Pilot...

  16. 78 FR 11988 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ...-management process involving the Service, the Alaska Department of Fish and Game, and Alaska Native... developed under a co-management process involving the Service, the Alaska Department of Fish and Game, and... Fish and Game's request to expand the Fairbanks North Star Borough excluded area to include the Central...

  17. Alaska North Slope regional gas hydrate production modeling forecasts

    USGS Publications Warehouse

    Wilson, S.J.; Hunter, R.B.; Collett, T.S.; Hancock, S.; Boswell, R.; Anderson, B.J.

    2011-01-01

    A series of gas hydrate development scenarios were created to assess the range of outcomes predicted for the possible development of the "Eileen" gas hydrate accumulation, North Slope, Alaska. Production forecasts for the "reference case" were built using the 2002 Mallik production tests, mechanistic simulation, and geologic studies conducted by the US Geological Survey. Three additional scenarios were considered: A "downside-scenario" which fails to identify viable production, an "upside-scenario" describes results that are better than expected. To capture the full range of possible outcomes and balance the downside case, an "extreme upside scenario" assumes each well is exceptionally productive.Starting with a representative type-well simulation forecasts, field development timing is applied and the sum of individual well forecasts creating the field-wide production forecast. This technique is commonly used to schedule large-scale resource plays where drilling schedules are complex and production forecasts must account for many changing parameters. The complementary forecasts of rig count, capital investment, and cash flow can be used in a pre-appraisal assessment of potential commercial viability.Since no significant gas sales are currently possible on the North Slope of Alaska, typical parameters were used to create downside, reference, and upside case forecasts that predict from 0 to 71??BM3 (2.5??tcf) of gas may be produced in 20 years and nearly 283??BM3 (10??tcf) ultimate recovery after 100 years.Outlining a range of possible outcomes enables decision makers to visualize the pace and milestones that will be required to evaluate gas hydrate resource development in the Eileen accumulation. Critical values of peak production rate, time to meaningful production volumes, and investments required to rule out a downside case are provided. Upside cases identify potential if both depressurization and thermal stimulation yield positive results. An "extreme upside

  18. 76 FR 62090 - Public Meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Arctic Heritage Center, 171 Third Avenue in Kotzebue, Alaska, (907) 442-3890, on Thursday, November 17...' Workshop. 12. New Business. a. Gates of the Arctic National Park SRC Draft Hunting Plan Recommendation 10...

  19. Migration and wintering areas of glaucous-winged Gulls from south-central Alaska

    USGS Publications Warehouse

    Hatch, Shyla A.; Gill, V.A.; Mulcahy, D.M.

    2011-01-01

    We used satellite telemetry to investigate the migration patterns and wintering areas of Glaucouswinged Gulls (Larus glaucescens) from Middleton Island, Alaska, where this species' population increased tenfold from the 1970s to the 1990s. Fall migration spanned 11 weeks, including numerous stopovers en route, apparently for feeding. Spring migration from wintering sites to Middleton Island was shorter (4 weeks) and more direct. One juvenile spent several months in southern Prince William Sound. An adult spent several months near Craig, southeast Alaska, while three others overwintered in southern British Columbia. For all four wintering adults use of refuse-disposal sites was evident or strongly suggested. Commensalism with humans may have contributed to the increase on Middleton, but a strong case can also be made for a competing explanation-regional recruitment of gulls to high-quality nesting habitat in Alaska created after the earthquake of 1964. An analysis of band returns reveals broad overlap in the wintering grounds of gulls from different Alaska colonies and of gulls banded on the west coast from British Columbia to California. The seasonal movement of many gulls from Alaska is decidedly migratory, whereas gulls from British Columbia, Washington, and Oregon disperse locally in winter. ?? The Cooper Ornithological Society 2011.

  20. Migration And wintering areas Of Glaucous-winged Gulls From south-central Alaska

    USGS Publications Warehouse

    Hatch, Scott A.; Gill, V.A.; Mulcahy, Daniel M.

    2011-01-01

    We used satellite telemetry to investigate the migration patterns and wintering areas of Glaucous-winged Gulls (Larus glaucescens) from Middleton Island, Alaska, where this species' population increased tenfold from the 1970s to the 1990s. Fall migration spanned 11 weeks, including numerous stopovers en route, apparently for feeding. Spring migration from wintering sites to Middleton Island was shorter (4 weeks) and more direct. One juvenile spent several months in southern Prince William Sound. An adult spent several months near Craig, southeast Alaska, while three others overwintered in southern British Columbia. For all four wintering adults use of refuse-disposal sites was evident or strongly suggested. Commensalism with humans may have contributed to the increase on Middleton, but a strong case can also be made for a competing explanation-regional recruitment of gulls to high-quality nesting habitat in Alaska created after the earthquake of 1964. An analysis of band returns reveals broad overlap in the wintering grounds of gulls from different Alaska colonies and of gulls banded on the west coast from British Columbia to California. The seasonal movement of many gulls from Alaska is decidedly migratory, whereas gulls from British Columbia, Washington, and Oregon disperse locally in winter.

  1. A Tree-Ring Temperature Reconstruction from the Wrangell Mountains, Alaska (1593-1992): Evidence for Pronounced Regional Cooling During the Maunder Minimum

    NASA Astrophysics Data System (ADS)

    DArrigo, R.; Davi, N.; Jacoby, G.; Wiles, G.

    2002-05-01

    The Maunder Minimum interval (from the mid-1600s-early 1700s) is believed to have been one of the coldest periods of the past thousand years in the Northern Hemisphere. A maximum latewood density temperature reconstruction for the Wrangell Mountains, southern Alaska (1593-1992) provides information on regional temperature change during the Maunder Minimum and other periods of severe cold over the past four centuries. The Wrangell density record, which reflects warm season (July-September) temperatures, shows an overall cooling over the Maunder Minimum period with annual values reaching as low as -1.8oC below the long-term mean. Ring widths, which can integrate annual as well as summer conditions, also show pronounced cooling at the Wrangell site during this time, as do Arctic and hemispheric-scale temperature reconstructions based on tree rings and other proxy data. Maximum ages of glacial advance based on kill dates from overrun logs (which reflect cooler temperatures) coincide temporally with the cooling seen in the density and ring width records. In contrast, a recent modeling study indicates that during this period there was cold season (November-April) warming over much of Alaska, but cooling over other northern continental regions, as a result of decreased solar irradiance initiating low Arctic Oscillation index conditions. The influence of other forcings on Alaskan climate, the absence of ocean dynamical feedbacks in the model, and the different seasonality represented by the model and the trees may be some of the possible explanations for the different model and proxy results.

  2. Publications - GMC 53C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Paleozoic through Tertiary sandstones, North Slope, Alaska Authors: Alaska Research Associates Publication through Tertiary sandstones, North Slope, Alaska: Alaska Division of Geological & Geophysical Surveys

  3. Ground breakage and associated effects in the Cook Inlet area, Alaska, resulting from the March 27, 1964 earthquake: Chapter F in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Foster, Helen L.; Karlstrom, Thor N.V.

    1967-01-01

    The great 1964 Alaska earthquake caused considerable ground breakage in the Cook Inlet area of south-central Alaska. The breakage occurred largely in thick deposits of unconsolidated sediments. The most important types of ground breakage were (1) fracturing or cracking and the extrusion of sand and gravel with ground water along fractures in various types of landforms, and (2) slumping and lateral extension of unconfined faces, particularly along delta fronts. The principal concentration of ground breakage within the area covered by this report was in a northeast-trending zone about 60 miles long and 6 miles wide in the northern part of the Kenai Lowland. The zone cut across diverse topography and stratigraphy. Cracks were as much as 30 feet across and 25 feet deep. Sand, gravel, and pieces of coal and lignite were extruded along many fissures. It is suggested that the disruption in this zone may be due to movement along a fault in the underlying Tertiary rocks. The outwash deltas of Tustumena and Skilak Lakes in the Kenai Lowland, of Eklutna Lake and Lake George in the Chugach Mountains, of Bradley Lake in the Kenai Mountains, and at the outlet of upper Beluga Lake at the base of the Alaska Range showed much slumping, as did the delta of the Susitna River. Parts of the flood plains of the Skilak River, Fox River, and Eagle River were extensively cracked. A few avalanches and slumps occurred along the coast of Cook Inlet in scattered localities. Some tidal flats were cracked. However, in view of the many thick sections of unconsolidated sediments and the abundance of steep slopes, the cracking was perhaps less than might have been expected. Observations along the coasts indicated changes in sea level which, although caused partly by compaction of unconsolidated sediments, may largely be attributed to crus1tal deformation accompanying the earthquake. Most of the Cook Inlet area was downwarped, although the northwest side of Cook Inlet may have been slightly unwarped

  4. Publications - MP 150 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska larger work. Please see DDS 3 for more information. Digital Geospatial Data Digital Geospatial Data Business in Alaska Visiting Alaska State Employees

  5. Publications - RI 2011-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska district, Circle Quadrangle, Alaska, scale 1:50,000 (16.0 M) Digital Geospatial Data Digital Geospatial Business in Alaska Visiting Alaska State Employees

  6. Timber resource statistics of south-central Alaska, 2003.

    Treesearch

    Willem W.S. van Hees

    2005-01-01

    Estimates of timber resources for south-central Alaska are presented. Data collection began in 2000 and was completed in 2003. All forest lands over all ownerships were considered for sampling. The inventory unit was, roughly, the region between Icy Bay to the east and Kodiak Island to the west. Forest lands within national forest wilderness study areas and recommended...

  7. Publications - AR 2010 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical DGGS AR 2010 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual Report Authors: DGGS Staff Publication Date: Jan 2011 Publisher: Alaska Division of Geological &

  8. A multi-year estimate of methane fluxes in Alaska from CARVE atmospheric observations

    PubMed Central

    Miller, Scot M.; Miller, Charles E.; Commane, Roisin; Chang, Rachel Y.-W.; Dinardo, Steven J.; Henderson, John M.; Karion, Anna; Lindaas, Jakob; Melton, Joe R.; Miller, John B.; Sweeney, Colm; Wofsy, Steven C.; Michalak, Anna M.

    2016-01-01

    Methane (CH4) fluxes from Alaska and other arctic regions may be sensitive to thawing permafrost and future climate change, but estimates of both current and future fluxes from the region are uncertain. This study estimates CH4 fluxes across Alaska for 2012–2014 using aircraft observations from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) and a geostatistical inverse model (GIM). We find that a simple flux model based on a daily soil temperature map and a static map of wetland extent reproduces the atmospheric CH4 observations at the state-wide, multi-year scale more effectively than global-scale, state-of-the-art process-based models. This result points to a simple and effective way of representing CH4 flux patterns across Alaska. It further suggests that contemporary process-based models can improve their representation of key processes that control fluxes at regional scales, and that more complex processes included in these models cannot be evaluated given the information content of available atmospheric CH4 observations. In addition, we find that CH4 emissions from the North Slope of Alaska account for 24% of the total statewide flux of 1.74 ± 0.44 Tg CH4 (for May–Oct.). Contemporary global-scale process models only attribute an average of 3% of the total flux to this region. This mismatch occurs for two reasons: process models likely underestimate wetland area in regions without visible surface water, and these models prematurely shut down CH4 fluxes at soil temperatures near 0°C. As a consequence, wetlands covered by vegetation and wetlands with persistently cold soils could be larger contributors to natural CH4 fluxes than in process estimates. Lastly, we find that the seasonality of CH4 fluxes varied during 2012–2014, but that total emissions did not differ significantly among years, despite substantial differences in soil temperature and precipitation; year-to-year variability in these environmental conditions did not affect

  9. A multi-year estimate of methane fluxes in Alaska from CARVE atmospheric observations.

    PubMed

    Miller, Scot M; Miller, Charles E; Commane, Roisin; Chang, Rachel Y-W; Dinardo, Steven J; Henderson, John M; Karion, Anna; Lindaas, Jakob; Melton, Joe R; Miller, John B; Sweeney, Colm; Wofsy, Steven C; Michalak, Anna M

    2016-10-01

    Methane (CH 4 ) fluxes from Alaska and other arctic regions may be sensitive to thawing permafrost and future climate change, but estimates of both current and future fluxes from the region are uncertain. This study estimates CH 4 fluxes across Alaska for 2012-2014 using aircraft observations from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) and a geostatistical inverse model (GIM). We find that a simple flux model based on a daily soil temperature map and a static map of wetland extent reproduces the atmospheric CH 4 observations at the state-wide, multi-year scale more effectively than global-scale, state-of-the-art process-based models. This result points to a simple and effective way of representing CH 4 flux patterns across Alaska. It further suggests that contemporary process-based models can improve their representation of key processes that control fluxes at regional scales, and that more complex processes included in these models cannot be evaluated given the information content of available atmospheric CH 4 observations. In addition, we find that CH 4 emissions from the North Slope of Alaska account for 24% of the total statewide flux of 1.74 ± 0.44 Tg CH 4 ( for May-Oct.). Contemporary global-scale process models only attribute an average of 3% of the total flux to this region. This mismatch occurs for two reasons: process models likely underestimate wetland area in regions without visible surface water, and these models prematurely shut down CH 4 fluxes at soil temperatures near 0°C. As a consequence, wetlands covered by vegetation and wetlands with persistently cold soils could be larger contributors to natural CH 4 fluxes than in process estimates. Lastly, we find that the seasonality of CH 4 fluxes varied during 2012-2014, but that total emissions did not differ significantly among years, despite substantial differences in soil temperature and precipitation; year-to-year variability in these environmental conditions did not

  10. Publications - RI 2009-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska , northeastern Brooks Range, Alaska, scale 1:63,360 (129.0 M) Digital Geospatial Data Digital Geospatial Data Resident Business in Alaska Visiting Alaska State Employees

  11. Satellite monitoring of remote volcanoes improves study efforts in Alaska

    NASA Astrophysics Data System (ADS)

    Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K.

    Satellite monitoring of remote volcanoes is greatly benefitting the Alaska Volcano Observatory (AVO), and last year's eruption of the Okmok Volcano in the Aleutian Islands is a good case in point. The facility was able to issue and refine warnings of the eruption and related activity quickly, something that could not have been done using conventional seismic surveillance techniques, since seismometers have not been installed at these locations.AVO monitors about 100 active volcanoes in the North Pacific (NOPAC) region, but only a handful are observed by costly and logistically complex conventional means. The region is remote and vast, about 5000 × 2500 km, extending from Alaska west to the Kamchatka Peninsula in Russia (Figure 1). Warnings are transmitted to local communities and airlines that might be endangered by eruptions. More than 70,000 passenger and cargo flights fly over the region annually, and airborne volcanic ash is a threat to them. Many remote eruptions have been detected shortly after the initial magmatic activity using satellite data, and eruption clouds have been tracked across air traffic routes. Within minutes after eruptions are detected, information is relayed to government agencies, private companies, and the general public using telephone, fax, and e-mail. Monitoring of volcanoes using satellite image data involves direct reception, real-time monitoring, and data analysis. Two satellite data receiving stations, located at the Geophysical Institute, University of Alaska Fairbanks (UAF), are capable of receiving data from the advanced very high resolution radiometer (AVHRR) on National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from synthetic aperture radar (SAR) equipped satellites.

  12. Alaska State Legislature

    Science.gov Websites

    The Alaska State Legislature search menu Home Senate Current Members Past Members By Session search Home Get Started About the Legislative Branch Legislative Branch The Legislative Branch is responsible for enacting the laws of the State of Alaska and appropriating the money necessary to operate the

  13. Climatic Atlas of the Outer Continental Shelf Waters and Coastal Regions of Alaska. Volume 1. Gulf of Alaska, Revision

    DTIC Science & Technology

    1988-01-01

    SOO , . 978 Kilometers 972 ’ 1,r 1ni gc g March April 1-21 Tides Tides in the Gulf of Alaska are generally of the mixed type with two high waters and...good does not breathe the liquid into his lungs. the clothing. Keeping clothing dry preserves its indicators. The pulse is generally slow and Alcohol ...7 9 11 13 15 17 19 21 23 25 27 29 2 Precipitation types - graphs 30 32 34 36 38 40 42 44 46 48 50 52 54 Wind / visibility / cloudiness - maps 33 35

  14. Use of the micro-deval test for assessing Alaska aggregates : [summary].

    DOT National Transportation Integrated Search

    2012-12-01

    Choosing the right material is half the battle in building roads for Alaska. The extreme conditions typical to cold regions require a : durable, abrasion resistant and freeze-thaw resistant aggregate. Recently the state has been wondering exactly how...

  15. Climate Variations and Alaska Tundra Vegetation Productivity Declines in Spring

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Bieniek, P.; Raynolds, M. K.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2015-12-01

    While sea ice has continued to decline, vegetation productivity increases have declined particularly during spring in Alaska as well as many parts of the Arctic tundra. To understand the processes behind these features we investigate spring climate variations that includes temperature, circulation patterns, and snow cover to determine how these may be contributing to spring browning. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2014. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), atmospheric reanalysis data, dynamically downscaled climate data, meteorological station data, and snow water equivalent (GlobSnow, assimilated snow data set). We analyzed the data for the full period (1982-2014) and for two sub-periods (1982-1998 and 1999-2014), which were chosen based on the declining Alaska SWI since 1998. MaxNDVI has increased from 1982-2014 over most of the Arctic but has declined from 1999 to 2014 southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but display widespread declines over the 1999-2014 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999 and these declines are particularly noteworthy during spring in Alaska. Spring declines in Alaska have been linked to increased spring snow cover that can delay greenup (Bieniek et al. 2015) but recent ground observations suggest that after an initial warming and greening, late season freezing temperature are damaging the plants. The late season freezing temperature hypothesis will be explored with meteorological climate/weather data sets for Alaska tundra regions. References P.A. Bieniek, US Bhatt, DA Walker, MK Raynolds, JC Comiso, HE Epstein, JE Pinzon, CJ Tucker, RL Thoman, H Tran, N M

  16. Spatiotemporal remote sensing of ecosystem change and causation across Alaska.

    PubMed

    Pastick, Neal J; Jorgenson, M Torre; Goetz, Scott J; Jones, Benjamin M; Wylie, Bruce K; Minsley, Burke J; Genet, Hélène; Knight, Joseph F; Swanson, David K; Jorgenson, Janet C

    2018-05-28

    Contemporary climate change in Alaska has resulted in amplified rates of press and pulse disturbances that drive ecosystem change with significant consequences for socio-environmental systems. Despite the vulnerability of Arctic and boreal landscapes to change, little has been done to characterize landscape change and associated drivers across northern high-latitude ecosystems. Here we characterize the historical sensitivity of Alaska's ecosystems to environmental change and anthropogenic disturbances using expert knowledge, remote sensing data, and spatiotemporal analyses and modeling. Time-series analysis of moderate-and high-resolution imagery was used to characterize land- and water-surface dynamics across Alaska. Some 430,000 interpretations of ecological and geomorphological change were made using historical air photos and satellite imagery, and corroborate land-surface greening, browning, and wetness/moisture trend parameters derived from peak-growing season Landsat imagery acquired from 1984 to 2015. The time series of change metrics, together with climatic data and maps of landscape characteristics, were incorporated into a modeling framework for mapping and understanding of drivers of change throughout Alaska. According to our analysis, approximately 13% (~174,000 ± 8700 km 2 ) of Alaska has experienced directional change in the last 32 years (±95% confidence intervals). At the ecoregions level, substantial increases in remotely sensed vegetation productivity were most pronounced in western and northern foothills of Alaska, which is explained by vegetation growth associated with increasing air temperatures. Significant browning trends were largely the result of recent wildfires in interior Alaska, but browning trends are also driven by increases in evaporative demand and surface-water gains that have predominately occurred over warming permafrost landscapes. Increased rates of photosynthetic activity are associated with stabilization and recovery

  17. Summary appraisals of the Nation's ground-water resources; Alaska

    USGS Publications Warehouse

    Zenone, Chester; Anderson, Gary S.

    1978-01-01

    Present deficiencies in the ground-water information base are obvious limiting factors to ground-water development in Alaska. There is a need to extend the ground-water data-collection network and to pursue special research into the quantitative aspects of ground-water hydrology in cold regions, particularly the continuous permafrost zone.

  18. Polar bear management in Alaska 1997-2000

    USGS Publications Warehouse

    Schliebe, Scott L.; Bridges, John W.; Evans, Thomas J.; Fischbach, Anthony S.; Kalxdorff, Susanne B.; Lierheimer, Lisa J.; Lunn, Nicholas J.; Schliebe, Scott L.; Born, Erik W.; Lunn, Nicholas J.; Schliebe, Scott L.; Born, Erik W.

    2002-01-01

    Since the Twelfth Working Meeting of the IUCN/SSC Polar Bear Specialist Group in 1997, a number of changes in the management of polar bears have occurred in Alaska. On October 16, 2000, the governments of the United States and the Russian Federation signed the “Agreement on the Conservation and Management of the Alaska-Chukotka Polar Bear Population.” This agreement provides substantial benefits for the effective conservation of polar bears shared between the U.S. and Russia. It will require enactment of enabling legislation by the U.S. Congress and other steps by Russia before the agreement has the force of law. A copy of the agreement is included as Appendix 1 to this report. Also, during this period, regulations were developed to implement 1994 amendments to the Marine Mammal Protection Act (MMPA), which allow polar bear trophies taken in approved Canadian populations by U.S. citizens to be imported into the U.S. A summary of the regulatory actions and a table listing populations approved for importation and the number of polar bears imported into the U.S. since 1997 is included in this report. Regarding oil and gas activities in polar bear habitat, three sets of regulations were published authorizing the incidental, non-intentional, taking of small numbers of polar bears concurrent to oil and gas activities.Cooperation continued with the Alaska Nanuuq Commission, representing the polar bear hunting communities in Alaska, as well as with the North Slope Borough and the Inuvialuit Game Council in their agreement for the management of the Southern Beaufort Sea polar bear population. Harvest summaries and technical assistance in designing and assistance in conducting a National Park Service/Alaska Nanuuq Commission study to collect traditional ecological knowledge of polar bear habitat use in Chukotka were provided. In addition, a long-range plan was developed to address and minimize polar bear-human conflicts in North Slope communities.We continued to monitor

  19. Traces of Old Glaciations in East-central Alaska

    NASA Astrophysics Data System (ADS)

    Duk-Rodkin, A.; Barendregt, R. W.; Weber, F.

    2001-12-01

    The East-central Alaska record of glaciations is similar to that preserved in the west-central Yukon. Surficial geologic mapping of the Yukon-Tanana upland has indicated at least 5 glacial periods including at least one early Holocene. The two earliest glaciations are of pre-Mid Pleistocene age and followed regional erosion and renewed uplift ca.4 Ma. The earliest glaciation of west-central Yukon occurred between 2.6 and 2.9 Ma, forming a continuous carapace of ice covering all the mountain ranges except for a small part of the Dawson Range. This first glaciation was also the most extensive in the region, and resulted in the NW diversion of Yukon River into Alaska by the Cordilleran Ice Sheet. Stratigraphic evidence of 6 glaciations of pre-Mid Pleistocene age is preserved in the western Canadian sector of the Tintina Trench. The limits of these glaciations have been mapped in Yukon on the basis of glacial landforms and the distribution of erratics. Although morphological features of older glaciations (Plio-Pleistocene) are generally not well preserved, there is relatively good control on the distribution of glacial features for two of the older glaciations in Mt.Harper, Alaska. Stratigraphic evidence of at least 3 older glaciations is found in the Goodpastor River. An initial magnetostratigraphic study of three sites in east-central Alaska have yielded normal magnetic polarities only. The sites are:(1) a relatively weathered lowermost till outcropping along Goodpastor River on the Yukon-Tanana upland,(2) an extremely weathered high level moraine (609m) on the western side of the Gerstle River, near Granite Mt.in the Alaska Range and (3)ca.914m pediment containing glacial erratics and a luvisol at its surface, located on Tok River, Tanana Valley, Alaska Range. The normal polarity of the first site likely indicates a Brunhes age rather than a normal subchron within the Matuyama Reversed Chron based on the modest degree of weathering of the till and lack of any

  20. Alaska Workforce Investment Board

    Science.gov Websites

    ! Looking for a job? Click here. About Us Board Member Documents Phone: (907) 269-7485 Toll Free: (888) 412 : 907-269-7485 Toll Free: 888-412-4742 Fax: 907-269-7489 State of Alaska myAlaska My Government Resident

  1. The evolving Alaska mapping program.

    USGS Publications Warehouse

    Brooks, P.D.; O'Brien, T. J.

    1986-01-01

    This paper describes the development of mapping in Alaska, the current status of the National Mapping Program, and future plans for expanding and improving the mapping coverage. Research projects with Landsat Multispectral Scanner and Return Vidicon imagery and real- and synthetic-aperture radar; image mapping programs; digital mapping; remote sensing projects; the Alaska National Interest Lands Conservation Act; and the Alaska High-Altitude Aerial Photography Program are also discussed.-from Authors

  2. Publications - GMC 16 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska's Mineral and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a

  3. Publications - RDF 2010-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Prospect; Trace Elements; Trace Metals; Triassic; Wrangellia Terrane; geoscientificInformation Top of Page Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  4. Publications - RDF 2015-6 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Sediments; Trace Elements; Trace Geochemical; Trace Metals; geoscientificInformation Top of Page Department Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  5. How are your berries? Perspectives of Alaska's environmental managers on trends in wild berry abundance.

    PubMed

    Hupp, Jerry; Brubaker, Michael; Wilkinson, Kira; Williamson, Jennifer

    2015-01-01

    Wild berries are a valued traditional food in Alaska. Phytochemicals in wild berries may contribute to the prevention of vascular disease, cancer and cognitive decline, making berry consumption important to community health in rural areas. Little was known regarding which species of berries were important to Alaskan communities, the number of species typically picked in communities and whether recent environmental change has affected berry abundance or quality. To identify species of wild berries that were consumed by people in different ecological regions of Alaska and to determine if perceived berry abundance was changing for some species or in some regions. We asked tribal environmental managers throughout Alaska for their views on which among 12 types of wild berries were important to their communities and whether berry harvests over the past decade were different than in previous years. We received responses from 96 individuals in 73 communities. Berries that were considered very important to communities differed among ecological regions of Alaska. Low-bush blueberry (Vaccinium uliginosum and V. caespitosum), cloudberry (Rubus chamaemorus) and salmonberry (Rubus spectabilis) were most frequently identified as very important berries for communities in the boreal, polar and maritime ecoregions, respectively. For 7 of the 12 berries on the survey, a majority of respondents indicated that in the past decade abundance had either declined or become more variable. Our study is an example of how environmental managers and participants in local observer networks can report on the status of wild resources in rural Alaska. Their observations suggest that there have been changes in the productivity of some wild berries in the past decade, resulting in greater uncertainty among communities regarding the security of berry harvests. Monitoring and experimental studies are needed to determine how environmental change may affect berry abundance.

  6. How are your berries? Perspectives of Alaska's environmental managers on trends in wild berry abundance.

    PubMed

    Hupp, Jerry; Brubaker, Michael; Wilkinson, Kira; Williamson, Jennifer

    2015-01-01

    Background Wild berries are a valued traditional food in Alaska. Phytochemicals in wild berries may contribute to the prevention of vascular disease, cancer and cognitive decline, making berry consumption important to community health in rural areas. Little was known regarding which species of berries were important to Alaskan communities, the number of species typically picked in communities and whether recent environmental change has affected berry abundance or quality. Objective To identify species of wild berries that were consumed by people in different ecological regions of Alaska and to determine if perceived berry abundance was changing for some species or in some regions. Design We asked tribal environmental managers throughout Alaska for their views on which among 12 types of wild berries were important to their communities and whether berry harvests over the past decade were different than in previous years. We received responses from 96 individuals in 73 communities. Results Berries that were considered very important to communities differed among ecological regions of Alaska. Low-bush blueberry (Vaccinium uliginosum and V. caespitosum), cloudberry (Rubus chamaemorus) and salmonberry (Rubus spectabilis) were most frequently identified as very important berries for communities in the boreal, polar and maritime ecoregions, respectively. For 7 of the 12 berries on the survey, a majority of respondents indicated that in the past decade abundance had either declined or become more variable. Conclusions Our study is an example of how environmental managers and participants in local observer networks can report on the status of wild resources in rural Alaska. Their observations suggest that there have been changes in the productivity of some wild berries in the past decade, resulting in greater uncertainty among communities regarding the security of berry harvests. Monitoring and experimental studies are needed to determine how environmental change may affect

  7. How are your berries? Perspectives of Alaska's environmental managers on trends in wild berry abundance

    PubMed Central

    Hupp, Jerry; Brubaker, Michael; Wilkinson, Kira; Williamson, Jennifer

    2015-01-01

    Background Wild berries are a valued traditional food in Alaska. Phytochemicals in wild berries may contribute to the prevention of vascular disease, cancer and cognitive decline, making berry consumption important to community health in rural areas. Little was known regarding which species of berries were important to Alaskan communities, the number of species typically picked in communities and whether recent environmental change has affected berry abundance or quality. Objective To identify species of wild berries that were consumed by people in different ecological regions of Alaska and to determine if perceived berry abundance was changing for some species or in some regions. Design We asked tribal environmental managers throughout Alaska for their views on which among 12 types of wild berries were important to their communities and whether berry harvests over the past decade were different than in previous years. We received responses from 96 individuals in 73 communities. Results Berries that were considered very important to communities differed among ecological regions of Alaska. Low-bush blueberry (Vaccinium uliginosum and V. caespitosum), cloudberry (Rubus chamaemorus) and salmonberry (Rubus spectabilis) were most frequently identified as very important berries for communities in the boreal, polar and maritime ecoregions, respectively. For 7 of the 12 berries on the survey, a majority of respondents indicated that in the past decade abundance had either declined or become more variable. Conclusions Our study is an example of how environmental managers and participants in local observer networks can report on the status of wild resources in rural Alaska. Their observations suggest that there have been changes in the productivity of some wild berries in the past decade, resulting in greater uncertainty among communities regarding the security of berry harvests. Monitoring and experimental studies are needed to determine how environmental change may affect

  8. Alaska Natives assessing the health of their environment.

    PubMed

    Garza, D

    2001-11-01

    The changes in Alaska's ecosystems caused by pollution, contaminants and global climate change are negatively impacting Alaska Natives and rural residents who rely on natural resources for food, culture and community identity. While Alaska commerce has contributed little to these global changes and impacts, Alaska and its resources are nonetheless affected by the changes. While Alaska Natives have historically relied on Alaska's land, water and animals for survival and cultural identity, today their faith in the safety and quality of these resources has decreased. Alaska Natives no longer believe that these wild resources are the best and many are turning to alternative store-bought foods. Such a change in diet and activity may be contributing to a decline in traditional activities and a decline in general health. Contaminants are showing up in the animals, fish and waters that Alaska Natives use. Efforts need to be expanded to empower Alaska Native Tribes to collect and analyze local wild foods for various contaminants. In addition existing information on contaminants and pollution should be made readily available to Alaska residents. Armed with this type of information Alaska Native residents will be better prepared to make informed decisions on using wild foods and materials.

  9. The Late Triassic bivalve Monotis in accreted terranes of Alaska

    USGS Publications Warehouse

    Silberling, Norman J.; Grant-Mackie, J. A.; Nichols, K.M.

    1997-01-01

    Late Triassic bivalves of the genus Monotis occur in at least 16 of the lithotectonic terranes and subterranes that together comprise nearly all of Alaska, and they also occur in the Upper Yukon region of Alaska where Triassic strata are regarded as representing non-accretionary North America. On the basis of collections made thus far, 14 kinds of Monotis that differ at the species or subspecies level can be recognized from alaska. These are grouped into the subgenera Monotis (Monotis), M. (Pacimonotis), M. (Entomonotis), and M. (Eomonotis). In places, Monotis shells of one kind or another occur in rock-forming abundance. On the basis of superpositional data from Alaska, as well as from elsewhere in North America and Far Eastern Russia, at least four distince biostratigraphic levels can be discriminated utilizing Monotis species. Different species of M. (Eomonotis) characterize two middle Norian levels, both probably within the supper middle Norian Columbianus Ammonite Zone. Two additional levels are recognized in the lower upper Norian Cordilleranus Ammonite Zone utilizing species of M. (Monotis) or M. (Entomonotis), both of which subgenera are restricted to the late Norian. An attached-floating mode of life is commonly attributed to Monotis; thus, these bivalves would have been pseudoplanktonic surface dwellers that were sensitive to surface-water temperature and paleolatitude. Distinctly different kinds of Monotis occur at different paleolatitudes along the Pacific and Arctic margins of the North American craton inboard of the accreted terranes. Comparison between thse craton-bound Monotis faunas and those of the Alaskan terranes in southern Alaska south of the Denali fault were paleoequatorial in latitude during Late Triassic time. Among these terranes, the Alexander terrane was possibly in the southern hemisphere at that time. Terranes of northern Alaska, on the other hand, represent middle, possibly high-middle, northern paleolatitudes.

  10. Geochemical evidence for a brooks range mineral belt, Alaska

    USGS Publications Warehouse

    Marsh, S.P.; Cathrall, J.B.

    1981-01-01

    Geochemical studies in the central Brooks Range, Alaska, delineate a regional, structurally controlled mineral belt in east-west-trending metamorphic rocks and adjacent metasedimentary rocks. The mineral belt extends eastward from the Ambler River quadrangle to the Chandalar and Philip Smith quadrangles, Alaska, from 147?? to 156??W. longitude, a distance of more than 375 km, and spans a width from 67?? to 69??N. latitude, a distance of more than 222 km. Within this belt are several occurrences of copper and molybdenum mineralization associated with meta-igneous, metasedimentary, and metavolcanic rocks; the geochemical study delineates target areas for additional occurrences. A total of 4677 stream-sediment and 2286 panned-concentrate samples were collected in the central Brooks Range, Alaska, from 1975 to 1979. The -80 mesh ( 2.86) nonmagnetic fraction of the panned concentrates from stream sediment were analyzed by semiquantitative spectrographic methods. Two geochemical suites were recognized in this investigation; a base-metal suite of copper-lead-zinc and a molybdenum suite of molybdenum-tin-tungsten. These suites suggest several types of mineralization within the metamorphic belt. Anomalies in molybdenum with associated Cu and W suggest a potential porphyry molybdenum system associated with meta-igneous rocks. This regional study indicates that areas of metaigneous rocks in the central metamorphic belt are target areas for potential mineralized porphyry systems and that areas of metavolcanic rocks are target areas for potential massive sulfide mineralization. ?? 1981.

  11. Publications - GMC 171 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Arco Alaska Inc. Delta State #2 well Authors: Pawlewicz, Mark Publication Date: 1990 Publisher: Alaska , Vitrinite reflectance data of cuttings (3270'-10760') from the Arco Alaska Inc. Delta State #2 well: Alaska

  12. Publications - RDF 2012-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Assessment Project; Trace Elements; geoscientificInformation Top of Page Department of Natural Resources Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  13. Publications - RDF 2005-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    District; Trace Elements; Trace Metals; Tungsten; Uranium; Vanadium; Yttrium; Zinc; Zirconium Top of Page Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  14. Publications - RDF 2016-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Major-oxide and trace-element geochemistry of mafic rocks in the Carboniferous Lisburne Group, Ivishak Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  15. Publications - RDF 2000-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Oxides; Palladium; Platinum; Rare Earth Elements; STATEMAP Project; Trace Metals Top of Page Department Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  16. Trends in Alaska's People and Economy.

    ERIC Educational Resources Information Center

    Leask, Linda; Killorin, Mary; Martin, Stephanie

    This booklet provides data on Alaska's population, economy, health, education, government, and natural resources, including specific information on Alaska Natives. Since 1960, Alaska's population has tripled and become more diverse, more stable, older, less likely to be male or married, and more concentrated. About 69 percent of the population…

  17. Alaska Native Participation in the Civilian Conservation Corps. Alaska Historical Commission Studies in History No. 206.

    ERIC Educational Resources Information Center

    Sorensen, Connor; And Others

    The report is a finding aid to the sources which document the 1937 federal policy decision mandating that 50% of the enrollees in the Civilian Conservation Corps (CCC) in Alaska must be Alaska Natives and provides a list of the Native CCC projects in Alaska. The finding aid section is organized according to the location of the collections and…

  18. 78 FR 4435 - BLM Director's Response to the Alaska Governor's Appeal of the BLM Alaska State Director's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... Bureau of Land Management (BLM) is publishing this notice to explain why the BLM Director is rejecting... Director's Response to the Alaska Governor's Appeal of the BLM Alaska State Director's Governor's... the BLM Alaska State Director. The State Director determined the Governor's Finding was outside the...

  19. Agro-climate Projections for a Warming Alaska

    NASA Astrophysics Data System (ADS)

    Lader, R.; Walsh, J. E.; Bhatt, U. S.; Bieniek, P.

    2017-12-01

    In the context of greenhouse warming, agro-meteorological indices suggest widespread disruption to current food supply chains during the coming decades. Much of the western United States is projected to have more dry days, and the southern states are likely to experience greater plant heat stress. Considering these difficulties, it could become necessary for more northerly locations, including Alaska, to increase agricultural production to support local communities and offset supply shortages. This study employs multiple dynamically downscaled regional climate model simulations from the CMIP5 to investigate projected changes to agro-climate conditions across Alaska. The metric used here, the start-of-field operations index (SFO), identifies the date during which the sum of daily average temperature, starting from January 1st and excluding negative values, exceeds 200 ˚C. Using the current trajectory of greenhouse radiative forcing, RCP 8.5, this study indicates a doubling to 71,960 km2 of Alaska land area that meets the required thermal accumulation for crop production when comparing a historical period (1981-2010) to the future (2071-2100). The SFO shows a correlation coefficient of 0.91 with the independently produced green-up index for Fairbanks from 1981-2010. Among the land areas that currently reach the necessary thermal accumulation, there is a projected increase in growing season length (63-82 days), earlier date of last spring frost (28-48 days), and later date of first autumn frost (24-47 days) across the five USDA Census of Agriculture areas for Alaska. Both an average statewide decrease of annual frost days (71 fewer), and an increase in days with extreme warmth (28 more) are also projected.

  20. Publications - SR 37 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Section; Resource Assessment; Tyonek Formation; Type Section Top of Page Department of Natural Resources State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home

  1. Presentations - Twelker, Evan and others, 2014 | Alaska Division of

    Science.gov Websites

    Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Details Title: Preliminary results from 2014 geologic mapping in the Talkeetna Mountains, Alaska Lande, Lauren, 2014, Preliminary results from 2014 geologic mapping in the Talkeetna Mountains, Alaska

  2. Publications - RDF 2004-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ; Trace Elements; Trace Metals; Tungsten; Vanadium; Yttrium; Zinc; Zirconium Top of Page Department of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  3. Publications - SR 32 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS SR 32 Publication Details Title: Oil and gas basins map of Alaska Authors: Ehm, Arlen Publication ): Alaska Statewide Bibliographic Reference Ehm, Arlen, 1983, Oil and gas basins map of Alaska: Alaska Sheets Sheet 1 Oil and gas basins map of Alaska, scale 1:2,500,000 (21.0 M) Keywords Alaska Statewide

  4. RESEARCH: Effects of Recent Volcanic Eruptions on Aquatic Habitat in the Drift River, Alaska, USA: Implications at Other Cook Inlet Region Volcanoes.

    PubMed

    DORAVA; MILNER

    1999-02-01

    / Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano. During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano. KEY WORDS: Aquatic habitat; Volcanoes; Lahars; Lahar-runout flows; Macroinvertebrates; Community structure; Community composition

  5. Geospatial analysis of lake and landscape interactions within the Toolik Lake region, North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Pathak, Prasad A.

    The Arctic region of Alaska is experiencing severe impacts of climate change. The Arctic lakes ecosystems are bound to undergo alterations in its trophic structure and other chemical properties. However, landscape factors controlling the lake influxes were not studied till date. This research has examined the currently existing lake landscape interactions using Remote Sensing and GIS technology. The statistical modeling was carried out using Regression and CART methods. Remote sensing data was applied to derive the required landscape indices. Remote sensing in the Arctic Alaska faces many challenges including persistent cloud cover, low sun angle and limited snow free period. Tundra vegetation types are interspersed and intricate to classify unlike managed forest stands. Therefore, historical studies have remained underachieved with respect thematic accuracies. However, looking at vegetation communities at watershed level and the implementation of expert classification system achieved the accuracies up to 90%. The research has highlighted the probable role of interactions between vegetation root zones, nutrient availability within active zone, as well as importance of permafrost thawing. Multiple regression analyses and Classification Trees were developed to understand relationships between landscape factors with various chemical parameters as well as chlorophyll readings. Spatial properties of Shrubs and Riparian complexes such as complexity of individual patches at watershed level and within proximity of water channels were influential on Chlorophyll production of lakes. Till-age had significant impact on Total Nitrogen contents. Moreover, relatively young tills exhibited significantly positive correlation with concentration of various ions and conductivity of lakes. Similarly, density of patches of Heath complexes was found to be important with respect to Total Phosphorus contents in lakes. All the regression models developed in this study were significant at 95

  6. Publications - GMC 395 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    investigations of the diatom stratigraphy of Borehole TA8, Portage Alaska: Alaska Division of Geological & Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical DGGS GMC 395 Publication Details Title: Preliminary investigations of the diatom stratigraphy of

  7. 76 FR 45217 - Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska Rockfish Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ..., management, safety, and economic gains realized under the Rockfish Pilot Program and viability of the Gulf of...-BA97 Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska Rockfish Program... available for public review and comment. The groundfish fisheries in the exclusive economic zone of Alaska...

  8. The forest ecosystem of southeast Alaska: 1. The setting.

    Treesearch

    Arland S. Harris; O. Keith Hutchison; William R. Meehan; Douglas N. Swanston; Austin E. Helmers; John C. Hendee; Thomas M. Collins

    1974-01-01

    A description of the discovery and exploration of southeast Alaska sets the scene for a discussion of the physical and biological features of this region. Subjects discussed include geography, climate, vegetation types, geology, minerals, forest products, soils, fish, wildlife, water, recreation, and aesthetic values. This is the first of a series of publications...

  9. 76 FR 45253 - Public Water Supply Supervision Program; Program Revision for the State of Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9444-8] Public Water Supply Supervision Program; Program... Water Supply Supervision Primacy Program. Alaska has adopted regulations analogous to the EPA's Ground Water Rule. The EPA has determined that these revisions are no less stringent than the corresponding...

  10. 76 FR 5157 - Public Water Supply Supervision Program; Program Revision for the State of Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9259-6] Public Water Supply Supervision Program; Program... Water Supply Supervision Primacy Program. Alaska has adopted regulations analogous to EPA's Stage 2 Disinfectants and Disinfection Byproducts Rule; Long Term 2 Enhanced Surface Water Treatment Rule; and Lead and...

  11. Alaska Department of Labor and Workforce Development

    Science.gov Websites

    Market Information Alaska Job Centers Hot Topics Get Paid to Learn a Trade! Apprenticeship Alaska Career USAJOBS - Federal Gov. Jobs Apprenticeship Alaska Career Information System Veterans' Services Youth

  12. Water Quality in the Tanana River Basin, Alaska, Water Years 2004-06

    USGS Publications Warehouse

    Moran, Edward H.

    2007-01-01

    OVERVIEW This report contains water-quality data collected from 84 sites in Tanana River basin during water years 2004 through 2006 (October 2003 through September 2006) as part of a cooperative study between the U.S. Geological Survey (USGS) and Alaska Department of Environmental Conservation (ADEC) Alaska Monitoring and Assessment Program (AKMAP), supported in part through the U.S. Environmental Protection Agency (USEPA) Office of Water, Cooperative Assistance Agreement X7-97078801. A broad range of chemical analyses are presented for 93 sets of samples collected at 59 tributaries to the Tanana River and at 25 locations along the mainstem. These data are to provide a means to assess baseline characteristics and establish indicators that are ecologically important, affordable, and relevant to society.

  13. Tourism in rural Alaska

    Treesearch

    Katrina Church-Chmielowski

    2007-01-01

    Tourism in rural Alaska is an education curriculum with worldwide relevance. Students have started small businesses, obtained employment in the tourism industry and gotten in touch with their people. The Developing Alaska Rural Tourism collaborative project has resulted in student scholarships, workshops on website development, marketing, small...

  14. Presentations - Twelker, Evan and Lande, Lauren, 2015 | Alaska Division of

    Science.gov Websites

    Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of (AVO) Mineral Resources Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem

  15. The antioxidant level of Alaska's wild berries: high, higher and highest.

    PubMed

    Dinstel, Roxie Rodgers; Cascio, Julie; Koukel, Sonja

    2013-01-01

    In the last few years, antioxidants have become the stars of the nutritional world. Antioxidants are important in terms of their ability to protect against oxidative cell damage that can lead to conditions, such as Alzheimer's disease, cancer and heart disease--conditions also linked with chronic inflammation. The antioxidant and anti-inflammatory effects of Alaska's wild berries may have the potential to help prevent these diseases. To discover the antioxidant levels of Alaska wild berries and the ways these antioxidant levels translate when preservation methods are applied to the berry. This research centred on both the raw berries and products made from the berries. In the first year, a variety of wild berries were tested to discover their oxygen radical absorption capacity (ORAC) in the raw berries. The second level of the research project processed 4 different berries--blueberries, lingonberries, salmonberries, highbush cranberries--into 8 or 9 products made from these berries. The products were tested for both ORAC as well as specific antioxidants. The Alaska wild berries collected and tested in the first experiment ranged from 3 to 5 times higher in ORAC value than cultivated berries from the lower 48 states. For instance, cultivated blueberries have an ORAC scale of 30. Alaska wild dwarf blueberries measure 85. This is also higher than lower 48 wild blueberries, which had a score of 61. All of the Alaskan berries tested have a level of antioxidant considered nutritionally valuable, ranging from 19 for watermelon berries to 206 for lingonberries on the ORAC scale. With the processed products made from 4 Alaska wild berries, one of the unexpected outcomes of the research was that the berries continued to have levels of antioxidants considered high, despite the effects of commonly used heat-processing techniques. When berries were dehydrated, per gram ORAC values increased. Alaska wild berries have extraordinarily high antioxidant levels. Though cooking

  16. Feasibility of a tobacco cessation intervention for pregnant Alaska Native women

    PubMed Central

    Windsor, Richard A.; Renner, Caroline C.; Enoch, Carrie; Hochreiter, Angela; Nevak, Caroline; Smith, Christina A.; Decker, Paul A.; Bonnema, Sarah; Hughes, Christine A.; Brockman, Tabetha

    2010-01-01

    Background: Among Alaska Native women residing in the Yukon-Kuskokwim (Y-K) Delta region of Western Alaska, about 79% smoke cigarettes or use smokeless tobacco during pregnancy. Treatment methods developed and evaluated among Alaska Native pregnant tobacco users do not exist. This pilot study used a randomized two-group design to assess the feasibility and acceptability of a targeted cessation intervention for Alaska Native pregnant women. Methods: Recruitment occurred over an 8-month period. Enrolled participants were randomly assigned to the control group (n = 18; brief face-to-face counseling at the first visit and written materials) or to the intervention group (n = 17) consisting of face-to-face counseling at the first visit, four telephone calls, a video highlighting personal stories, and a cessation guide. Interview-based assessments were conducted at baseline and follow-up during pregnancy (≥60 days postrandomization). Feasibility was determined by the recruitment and retention rates. Results: The participation rate was very low with only 12% of eligible women (35/293) enrolled. Among enrolled participants, the study retention rates were high in both the intervention (71%) and control (94%) groups. The biochemically confirmed abstinence rates at follow-up were 0% and 6% for the intervention and control groups, respectively. Discussion: The low enrollment rate suggests that the program was not feasible or acceptable. Alternative approaches are needed to improve the reach and efficacy of cessation interventions for Alaska Native women. PMID:20018946

  17. Volcanogenic massive sulphide and orogenic gold deposits of northern southeast Alaska

    USGS Publications Warehouse

    Sack, Patrick J; Karl, Susan M.; Steeves, Nathan; Gemmell, J Bruce

    2016-01-01

    This five-day field trip visits the most significant mineral deposits in northern southeast Alaska. The trip begins and ends with regional transects in the interior Intermontane terranes around Whitehorse, Yukon, and the Insular terranes along the northern Chatham Strait region of southeast Alaska (Fig. A-1 and Fig. A-2; Plate-1). To put the deposits in a regional tectonic framework, the guidebook begins with an introduction to northern Cordilleran geology, tectonics and metallogeny. The foci of the deposit portion of the field trip are Late Triassic volcanogenic massive sulphide (VMS) deposits of the Alexander Triassic metallogenic belt and Paleogene orogenic gold deposits of the Juneau gold belt. Details of the local geology are further elaborated in each segment of the guide book (Days 1-5). The data that provide the basis for the VMS deposit interpretations come from a series of PhD and MSc studies by the Centre of Excellence in Ore Deposit Research (CODES) at the University of Tasmania and the University of Ottawa. These deposit-scale studies are complimented by a long history of regional mapping and research by the U.S. Geological Survey (USGS).

  18. Publications - Geospatial Data | Alaska Division of Geological &

    Science.gov Websites

    from rocks collected in the Richardson mining district, Big Delta Quadrangle, Alaska: Alaska Division , 40Ar/39Ar data, Alaska Highway corridor from Delta Junction to Canada border, parts of Mount Hayes

  19. Publications - DDS 7 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Alaska DGGS DDS 7 Publication Details Title: Alaska Coastal Profile Tool (ACPT) Authors: DGGS Staff ): Alaska Statewide Bibliographic Reference DGGS Staff, 2014, Alaska Coastal Profile Tool (ACPT): Alaska

  20. The forest ecosystem of Southeast Alaska: 4. Wildlife habitats.

    Treesearch

    William R. Meehan

    1974-01-01

    The effects of logging and associated activities on the habitat of the major forest wildlife species in southeast Alaska are discussed and research results applicable to this region are summarized. Big game, furbearers, and non-game species are considered with respect to their habitat requirements and behavior. Recommendations are made for habitat management with...

  1. Conservation assessment for the northern goshawk in southeast Alaska.

    Treesearch

    George C. Iverson; Gregory D. Hayward; Kimberly Titus; Eugene DeGayner; Richard E. Lowell; D. Coleman Crocker-Bedford; Philip F. Schempf; John Lindell

    1996-01-01

    The conservation status of northern goshawks in southeast Alaska is examined through developing an understanding of goshawk ecology in relation to past, present, and potential future habitat conditions in the region under the current Tongass land management plan. Forest ecosystem dynamics are described, and a history of forest and goshawk management in the Tongass...

  2. Soggy soils and sustainability: forested wetlands in southeast Alaska.

    Treesearch

    Sally Duncan

    2002-01-01

    The question has risen over whether forested wetlands in southeast Alaska are suitable for sustainable timber production. A significant factor limiting forest productivity in this region is excess soil moisture. Very little is known about the soil conditions that influence tree growth on forested wetlands. A research study was completed to provide information on the...

  3. Harvesting morels after wildfire in Alaska.

    Treesearch

    Tricia L. Wurtz; Amy L. Wiita; Nancy S. Weber; David Pilz

    2005-01-01

    Morels are edible, choice wild mushrooms that sometimes fruit prolifically in the years immediately after an area has been burned by wildfire. Wildfires are common in interior Alaska; an average of 708,700 acres burned each year in interior Alaska between 1961 and 2000, and in major fire years, over 2 million acres burned. We discuss Alaska's boreal forest...

  4. The State of Alaska Agency Directory

    Science.gov Websites

    State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting /Fishing License Get a Birth Certificate, Marriage License, etc. Alaska Permanent Fund Dividend Statewide Highway Conditions Take a University Class Look up Alaska Laws Recreation Find a Recreational Area Alaska

  5. Publications - AR 2006 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2006 main content DGGS AR 2006 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  6. Publications - AR 2000 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2000 main content DGGS AR 2000 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  7. Publications - AR 2003 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2003 main content DGGS AR 2003 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  8. Publications - AR 2004 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2004 main content DGGS AR 2004 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  9. ALASKA MARINE VHF VOICE

    Science.gov Websites

    Tsunamis 406 EPIRB's National Weather Service Marine Forecasts ALASKA MARINE VHF VOICE Marine Forecast greater danger near shore or any shallow waters? NATIONAL WEATHER SERVICE PRODUCTS VIA ALASKA MARINE VHF VOICE NOAA broadcasts offshore forecasts, nearshore forecasts and storm warnings on marine VHF channels

  10. Hyperspectral surveying for mineral resources in Alaska

    USGS Publications Warehouse

    Kokaly, Raymond F.; Graham, Garth E.; Hoefen, Todd M.; Kelley, Karen D.; Johnson, Michaela R.; Hubbard, Bernard E.

    2016-07-07

    Alaska is a major producer of base and precious metals and has a high potential for additional undiscovered mineral resources. However, discovery is hindered by Alaska’s vast size, remoteness, and rugged terrain. New methods are needed to overcome these obstacles in order to fully evaluate Alaska’s geology and mineral resource potential. Hyperspectral surveying is one method that can be used to rapidly acquire data about the distributions of surficial materials, including different types of bedrock and ground cover. In 2014, the U.S. Geological Survey began the Alaska Hyperspectral Project to assess the applicability of this method in Alaska. The primary study area is a remote part of the eastern Alaska Range where porphyry deposits are exposed. In collaboration with the Alaska Division of Geological and Geophysical Surveys, the University of Alaska Fairbanks, and the National Park Service, the U.S. Geological Survey is collecting and analyzing hyperspectral data with the goals of enhancing geologic mapping and developing methods to identify and characterize mineral deposits elsewhere in Alaska.

  11. Project report: Alaska Iways architecture

    DOT National Transportation Integrated Search

    2005-01-01

    The Alaska Department of Transportation and Public Facilities (ADOT&PF) is continually looking at ways to improve the efficiency, safety, and reliability of Alaskas transportation system. This effort includes the application of advanced communicat...

  12. High seroprevalence of antibodies to avian influenza viruses among wild waterfowl in Alaska: implications for surveillance

    USGS Publications Warehouse

    Wilson, Heather M.; Hall, Jeffery S.; Flint, Paul L.; Franson, J. Christian; Ely, Craig R.; Schmutz, Joel A.; Samuel, Michael D.

    2013-01-01

    We examined seroprevalence (presence of detectable antibodies in serum) for avian influenza viruses (AIV) among 4,485 birds, from 11 species of wild waterfowl in Alaska (1998–2010), sampled during breeding/molting periods. Seroprevalence varied among species (highest in eiders (Somateria and Polysticta species), and emperor geese (Chen canagica)), ages (adults higher than juveniles), across geographic locations (highest in the Arctic and Alaska Peninsula) and among years in tundra swans (Cygnus columbianus). All seroprevalence rates in excess of 60% were found in marine-dependent species. Seroprevalence was much higher than AIV infection based on rRT-PCR or virus isolation alone. Because pre-existing AIV antibodies can infer some protection against highly pathogenic AIV (HPAI H5N1), our results imply that some wild waterfowl in Alaska could be protected from lethal HPAIV infections. Seroprevalence should be considered in deciphering patterns of exposure, differential infection, and rates of AIV transmission. Our results suggest surveillance programs include species and populations with high AIV seroprevalences, in addition to those with high infection rates. Serologic testing, including examination of serotype-specific antibodies throughout the annual cycle, would help to better assess spatial and temporal patterns of AIV transmission and overall disease dynamics.

  13. High Seroprevalence of Antibodies to Avian Influenza Viruses among Wild Waterfowl in Alaska: Implications for Surveillance

    PubMed Central

    Wilson, Heather M.; Hall, Jeffery S.; Flint, Paul L.; Franson, J. Christian; Ely, Craig R.; Schmutz, Joel A.; Samuel, Michael D.

    2013-01-01

    We examined seroprevalence (presence of detectable antibodies in serum) for avian influenza viruses (AIV) among 4,485 birds, from 11 species of wild waterfowl in Alaska (1998–2010), sampled during breeding/molting periods. Seroprevalence varied among species (highest in eiders (Somateria and Polysticta species), and emperor geese (Chen canagica)), ages (adults higher than juveniles), across geographic locations (highest in the Arctic and Alaska Peninsula) and among years in tundra swans (Cygnus columbianus). All seroprevalence rates in excess of 60% were found in marine-dependent species. Seroprevalence was much higher than AIV infection based on rRT-PCR or virus isolation alone. Because pre-existing AIV antibodies can infer some protection against highly pathogenic AIV (HPAI H5N1), our results imply that some wild waterfowl in Alaska could be protected from lethal HPAIV infections. Seroprevalence should be considered in deciphering patterns of exposure, differential infection, and rates of AIV transmission. Our results suggest surveillance programs include species and populations with high AIV seroprevalences, in addition to those with high infection rates. Serologic testing, including examination of serotype-specific antibodies throughout the annual cycle, would help to better assess spatial and temporal patterns of AIV transmission and overall disease dynamics. PMID:23472177

  14. Interim report on the St. Elias, Alaska earthquake of 28 February 1979

    USGS Publications Warehouse

    Lahr, John C.; Plafker, George; Stephens, C.D.; Foglean, K.A.; Blackford, M.E.

    1979-01-01

    On 28 February 1979 an earthquake with surface wave magnitude (Ms) of 7.7 (W. Person, personal communication, 1979) occurred beneath the Chugach and St. Elias mountains of southern Alaska (fig. 1). This is a region of complex tectonics resulting from northwestward convergence between the Pacific and North American plates. To the east, the northwest-trending Fairweather fault accommodates the movement with dextral slip of about 5.5 cm/yr (Plafker, Hudson, and others, 1978); to the west, the Pacific plate underthrusts Alaska at the Aleutian trench, which trends southwestward (Plafker 1969). The USGS has operated a telemetered seismic network in southern Alaska since 1971 and it was greatly expanded along the eastern Gulf of Alaska in September 1974. The current configuration of stations is shown in Figure 9. Technical details of the network are available in published earthquake catalogs (Lahr, Page, and others, 1974; Fogleman, Stephens, and others, 1978). Preliminary analysis of the data from this network covering the time period September 1, 1978 through March 10, 1979, as well as worldwide data for the main shock will be discussed in this paper.

  15. Current Issues in Alaska Wetland Management

    DTIC Science & Technology

    1994-08-01

    studies at a range of northern wetlands over about 20% of the state have been sites in North America , Europe and Russia mapped at a scale of 1:63,360...arctic or subspecies of waterfowl than any comparable wetlands do not regulate spring runoff or store area in North America , while the Yukon Flats in...Alaska. U.S. tion in arctic and subarctic North America . A Fish and Wildlife Service, FWS/OB5-82/22. literature review, USA Cold Regions Research and

  16. Resistance and resilience of floating mat fens in interior Alaska following airboat disturbance

    Treesearch

    Amy Zacheis; Kate Doran

    2009-01-01

    The floating mat fens of the Tanana Flats in interior Alaska are productive wetlands near the urban center of Fairbanks. Airboat traffic has created a network of trails through the floating vegetation mats. We established protected areas along established trails, which allowed for measurement of plant community resistance to airboat traffic and resilience following...

  17. Seasonal and Intra-annual Controls on CO 2 Flux in Arctic Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oechel, Walter; Kalhori, Aram

    2015-12-01

    In order to advance the understanding of the patterns and controls on the carbon budget in the Arctic region, San Diego State University has maintained eddy covariance flux towers at three sites in Arctic Alaska, starting in 1997.

  18. Distribution of near-surface permafrost in Alaska: estimates of present and future conditions

    USGS Publications Warehouse

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Nield, Shawn J.; Johnson, Kristofer D.; Finley, Andrew O.

    2015-01-01

    High-latitude regions are experiencing rapid and extensive changes in ecosystem composition and function as the result of increases in average air temperature. Increasing air temperatures have led to widespread thawing and degradation of permafrost, which in turn has affected ecosystems, socioeconomics, and the carbon cycle of high latitudes. Here we overcome complex interactions among surface and subsurface conditions to map nearsurface permafrost through decision and regression tree approaches that statistically and spatially extend field observations using remotely sensed imagery, climatic data, and thematic maps of a wide range of surface and subsurface biophysical characteristics. The data fusion approach generated medium-resolution (30-m pixels) maps of near-surface (within 1 m) permafrost, active-layer thickness, and associated uncertainty estimates throughout mainland Alaska. Our calibrated models (overall test accuracy of ~85%) were used to quantify changes in permafrost distribution under varying future climate scenarios assuming no other changes in biophysical factors. Models indicate that near-surface permafrost underlies 38% of mainland Alaska and that near-surface permafrost will disappear on 16 to 24% of the landscape by the end of the 21st Century. Simulations suggest that near-surface permafrost degradation is more probable in central regions of Alaska than more northerly regions. Taken together, these results have obvious implications for potential remobilization of frozen soil carbon pools under warmer temperatures. Additionally, warmer and drier conditions may increase fire activity and severity, which may exacerbate rates of permafrost thaw and carbon remobilization relative to climate alone. The mapping of permafrost distribution across Alaska is important for land-use planning, environmental assessments, and a wide-array of geophysical studies.

  19. Recruiting first generation college students into the Geosciences: Alaska's EDGE project

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Connor, C.

    2008-12-01

    practice sessions at the University and then in an actual competition in a Regional High School Science Fair at which they could qualify to compete at the Intel International Science and Engineering fair. Thirty-four teachers, 30 high school students (over 40 percent of whom were Alaska Native) and over 1000 middle school students (25 percent Alaska natives) participated in EDGE activities, increasing their knowledge of Earth science, GIS skills, and data management and analysis. More information on the EDGE project is available at www.edge.alaska.edu.

  20. Storm-surge flooding on the Yukon-Kuskokwim Delta, Alaska

    USGS Publications Warehouse

    Terenzi, John; Ely, Craig R.; Jorgenson, M. Torre

    2014-01-01

    Coastal regions of Alaska are regularly affected by intense storms of ocean origin, the frequency and intensity of which are expected to increase as a result of global climate change. The Yukon-Kuskokwim Delta (YKD), situated in western Alaska on the eastern edge of the Bering Sea, is one of the largest deltaic systems in North America. Its low relief makes it especially susceptible to storm-driven flood tides and increases in sea level. Little information exists on the extent of flooding caused by storm surges in western Alaska and its effects on salinization, shoreline erosion, permafrost thaw, vegetation, wildlife, and the subsistence-based economy. In this paper, we summarize storm flooding events in the Bering Sea region of western Alaska during 1913 – 2011 and map both the extent of inland flooding caused by autumn storms on the central YKD, using Radarsat-1 and MODIS satellite imagery, and the drift lines, using high-resolution IKONOS satellite imagery and field surveys. The largest storm surges occurred in autumn and were associated with high tides and strong (> 65 km hr-1) southwest winds. Maximum inland extent of flooding from storm surges was 30.3 km in 2005, 27.4 km in 2006, and 32.3 km in 2011, with total flood area covering 47.1%, 32.5%, and 39.4% of the 6730 km2 study area, respectively. Peak stages for the 2005 and 2011 storms were 3.1 m and 3.3 m above mean sea level, respectively—almost as high as the 3.5 m amsl elevation estimated for the largest storm observed (in November 1974). Several historically abandoned village sites lie within the area of inundation of the largest flood events. With projected sea level rise, large storms are expected to become more frequent and cover larger areas, with deleterious effects on freshwater ponds, non-saline habitats, permafrost, and landscapes used by nesting birds and local people.

  1. 25 CFR 243.12 - Are Alaska reindeer trust assets maintained by the U.S. Government for the benefit of Alaska...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Are Alaska reindeer trust assets maintained by the U.S. Government for the benefit of Alaska Natives? 243.12 Section 243.12 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE REINDEER IN ALASKA § 243.12 Are Alaska reindeer trust assets maintained by the U.S. Government for the...

  2. Publications - GMC 222 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a BP Exploration (Alaska) Inc. Malguk #1 well Authors: Unknown Publication Date: 1994 Publisher: Alaska reflectance data from cuttings (440-11,375') of the BP Exploration (Alaska) Inc. Malguk #1 well: Alaska

  3. Law Library - Alaska Court System

    Science.gov Websites

    , Federal Info, US Supreme Court, State Links, 9th Circuit Links Library Databases & eBooks WestlawNext state agencies Alaska Supreme Court briefs (1960-current) Alaska Court of Appeals briefs (1980-current

  4. Disease-mediated declines in N-fixation inputs by Alnus tenuifolia to early-successional floodplains in interior and south-central Alaska

    Treesearch

    R.W. Ruess; J.M. McFarland; L.M. Trummer; J.K. Rohrs-Richey

    2009-01-01

    Atmospheric nitrogen (N) fixation by Alnus tenuifolia can account for up to 70 percent of the N accumulated during vegetation development along river flood plains in interior Alaska. We assessed disease incidence and related mortality of a recent outbreak or fungal stem cankers on A. tenuifolia across three regions in Alaska...

  5. 77 FR 1414 - Approval and Promulgation of State Implementation Plans: Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... the index, some information may not be publicly available, i.e., Confidential Business Information or... section to schedule your inspection. The Regional Office's official hours of business are Monday through... revision submitted by Alaska included a technical analysis using EPA approved models and methods to...

  6. Combined analysis of roadside and off-road breeding bird survey data to assess population change in Alaska

    USGS Publications Warehouse

    Handel, Colleen M.; Sauer, John

    2017-01-01

    Management interest in North American birds has increasingly focused on species that breed in Alaska, USA, and Canada, where habitats are changing rapidly in response to climatic and anthropogenic factors. We used a series of hierarchical models to estimate rates of population change in 2 forested Bird Conservation Regions (BCRs) in Alaska based on data from the roadside North American Breeding Bird Survey (BBS) and the Alaska Landbird Monitoring Survey, which samples off-road areas on public resource lands. We estimated long-term (1993–2015) population trends for 84 bird species from the BBS and short-term (2003–2015) trends for 31 species from both surveys. Among the 84 species with long-term estimates, 11 had positive trends and 17 had negative trends in 1 or both BCRs; negative trends were primarily found among aerial insectivores and wetland-associated species, confirming range-wide negative continental trends for many of these birds. Three species with negative trends in the contiguous United States and southern Canada had positive trends in Alaska, suggesting different population dynamics at the northern edges of their ranges. Regional population trends within Alaska differed for several species, particularly those represented by different subspecies in the 2 BCRs, which are separated by rugged, glaciated mountain ranges. Analysis of the roadside and off-road data in a joint hierarchical model with shared parameters resulted in improved precision of trend estimates and suggested a roadside-related difference in underlying population trends for several species, particularly within the Northwestern Interior Forest BCR. The combined analysis highlights the importance of considering population structure, physiographic barriers, and spatial heterogeneity in habitat change when assessing patterns of population change across a landscape as broad as Alaska. Combined analysis of roadside and off-road survey data in a hierarchical framework may be particularly

  7. The C-terminal region of alpha-crystallin: involvement in protection against heat-induced denaturation

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Emmons, T.; Horwitz, J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Recent studies have demonstrated that the alpha-crystallins can protect other proteins against heat-induced denaturation and aggregation. To determine the possible involvement of the C-terminal region in this activity, the alpha-crystallins were subjected to limited tryptic digestion, and the amount of cleavage from the N-terminal and C-terminal regions of the alpha-A and alpha-B crystallin chains was assessed using antisera specific for these regions. Limited tryptic digestion resulted in cleavage only from the C-terminal region of alpha-A crystallin. This trypsin-treated alpha-A crystallin preparation showed a decreased ability to protect proteins from heat-induced aggregation using an in vitro assay. Together, these results demonstrate that the C-terminal region of alpha-A crystallin is important for its ability to protect against heat-induced aggregation, which is consistent with the hypothesis that post-translational changes that are known to occur at the C-terminal region may have significant effects on the ability of alpha-A crystallin to protect against protein denaturation in vivo.

  8. Spatial and temporal ecological variability in the northern Gulf of Alaska: What have we learned since the Exxon Valdez oil spill?

    NASA Astrophysics Data System (ADS)

    Aderhold, Donna G. R.; Lindeberg, Mandy R.; Holderied, Kris; Pegau, W. Scott

    2018-01-01

    This special issue examines oceanographic and biological variability in the northern Gulf of Alaska region with an emphasis on recent monitoring efforts of the Gulf Watch Alaska (GWA) and Herring Research and Monitoring (HRM) programs funded by the Exxon Valdez Oil Spill Trustee Council (EVOSTC). These programs are designed to improve our understanding of how changing environmental conditions affect Gulf of Alaska ecosystems and the long-term status of resources injured by the Exxon Valdez oil spill.

  9. Publications - NL 2002-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical 2002 Publisher: Alaska Division of Geological & Geophysical Surveys Ordering Info: Download below Reference DGGS Staff, and Werdon, M.B., 2002, Alaska GeoSurvey News - Geologic Investigations in the Salcha

  10. Geologic Map of Central (Interior) Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Dover, James H.; Bradley, Dwight C.; Weber, Florence R.; Bundtzen, Thomas K.; Haeussler, Peter J.

    1998-01-01

    Introduction: This map and associated digital databases are the result of a compilation and reinterpretation of published and unpublished 1:250,000- and limited 1:125,000- and 1:63,360-scale mapping. The map area covers approximately 416,000 sq km (134,000 sq mi) and encompasses 25 1:250,000-scale quadrangles in central Alaska. The compilation was done as part of the U.S. Geological Survey National Surveys and Analysis project, whose goal is nationwide assemble geologic, geochemical, geophysical, and other data. This map is an early product of an effort that will eventually encompass all of Alaska, and is the result of an agreement with the Alaska Department of Natural Resources, Division of Oil And Gas, to provide data on interior basins in Alaska. A paper version of the three map sheets has been published as USGS Open-File Report 98-133. Two geophysical maps that cover the identical area have been published earlier: 'Bouguer gravity map of Interior Alaska' (Meyer and others, 1996); and 'Merged aeromagnetic map of Interior Alaska' (Meyer and Saltus, 1995). These two publications are supplied in the 'geophys' directory of this report.

  11. Geology and tectonic development of the continental margin north of Alaska

    USGS Publications Warehouse

    Grantz, A.; Eittreim, S.; Dinter, D.A.

    1979-01-01

    The continental margin north of Alaska, as interpreted from seismic reflection profiles, is of the Atlantic type and consists of three sectors of contrasting structure and stratigraphy. The Chukchi sector, on the west, is characterized by the deep late Mesozoic and Tertiary North Chukchi basin and the Chukchi Continental Borderland. The Barrow sector of central northern Alaska is characterized by the Barrow arch and a moderately thick continental terrace build of Albian to Tertiary clastic sediment. The terrace sedimentary prism is underlain by lower Paleozoic metasedimentary rocks. The Barter Island sector of northeastern Alaska and Yukon Territory is inferred to contain a very thick prism of Jurassic, Cretaceous and Tertiary marine and nonmarine clastic sediment. Its structure is dominated by a local deep Tertiary depocenter and two regional structural arches. We postulate that the distinguishing characteristics of the three sectors are inherited from the configuration of the rift that separated arctic Alaska from the Canadian Arctic Archipelago relative to old pre-rift highlands, which were clastic sediment sources. Where the rift lay relatively close to northern Alaska, in the Chukchi and Barter Island sectors, and locally separated Alaska from the old source terranes, thick late Mesozoic and Tertiary sedimentary prisms extend farther south beneath the continental shelf than in the intervening Barrow sector. The boundary between the Chukchi and Barrow sectors is relatively well defined by geophysical data, but the boundary between the Barrow and Barter Island sectors can only be inferred from the distribution and thickness of Jurassic and Cretaceous sedimentary rocks. These boundaries may be extensions of oceanic fracture zones related to the rifting that is postulated to have opened the Canada Basin, probably beginning during the Early Jurassic. ?? 1979.

  12. Southern Alaska Glaciers: Spatial and Temporal Variations in Ice Volume

    NASA Astrophysics Data System (ADS)

    Sauber, J.; Molnia, B. F.; Luthcke, S.; Rowlands, D.; Harding, D.; Carabajal, C.; Hurtado, J. M.; Spada, G.

    2004-12-01

    Although temperate mountain glaciers comprise less than 1% of the glacier-covered area on Earth, they are important because they appear to be melting rapidly under present climatic conditions and, therefore, make significant contributions to rising sea level. In this study, we use ICESat observations made in the last 1.5 years of southern Alaska glaciers to estimate ice elevation profiles, ice surface slopes and roughness, and bi-annual and/or annual ice elevation changes. We report initial results from the near coastal region between Yakutat Bay and Cape Suckling that includes the Malaspina and Bering Glaciers. We show and interpret ice elevations changes across the lower reaches of the Bagley Ice Valley for the period between October 2003 and May 2004. In addition, we use off-nadir pointing observations to reference tracks over the Bering and Malaspina Glaciers in order to estimate annual ice elevation change. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Shuttle Radar Topography Mission (SRTM) derived DEMs are used to estimate across track regional slopes between ICESat data acquisitions. Although the distribution and quantity of ICESat elevation profiles with multiple, exact repeat data is currently limited in Alaska, individual ICESat data tracks, provide an accurate reference surface for comparison to other elevation data (e.g. ASTER and SRTM X- and C-band derived DEMs). Specifically we report the elevation change over the Malaspina Glacier's piedmont lobe between a DEM derived from SRTM C-band data acquired in Feb. 2000 and ICESat Laser #2b data from Feb.-March 2004. We also report use of ICESat elevation data to enhance ASTER derived absolute DEMs. Mountain glaciers generally have rougher surfaces and steeper regional slopes than the ice sheets for which the ICESat design was optimized. Therefore, rather than averaging ICESat observations over large regions or relying on crossovers, we are working with well-located ICESat

  13. Publications - GMC 167 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Arco Alaska W. Mikkelsen Unit #2 well Authors: Pawlewicz, Mark Publication Date: 1990 Publisher: Alaska , Vitrinite reflectance data of cuttings (6160'-11030') from the Arco Alaska W. Mikkelsen Unit #2 well: Alaska

  14. Publications - GMC 257 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ARCO Alaska Inc. Colville River #1 well Authors: Unknown Publication Date: 1995 Publisher: Alaska reflectance data from cuttings (1,470-7,300') of the ARCO Alaska Inc. Colville River #1 well: Alaska Division

  15. Publications - GMC 258 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ARCO Alaska Inc. Kuukpik #3 well Authors: Unknown Publication Date: 1995 Publisher: Alaska Division of from cuttings (3,220-6,570') of the ARCO Alaska Inc. Kuukpik #3 well: Alaska Division of Geological

  16. Committee opinion no. 515: Health care for urban American Indian and Alaska Native women.

    PubMed

    2012-01-01

    Sixty percent of American Indian and Alaska Native women live in metropolitan areas. Most are not eligible for health care provided by the federal Indian Health Service (IHS). The IHS partly funds 34 Urban Indian Health Organizations, which vary in size and services. Some are small informational and referral sites that are limited even in the scope of outpatient services provided. Compared with other urban populations, urban American Indian and Alaska Native women have higher rates of teenaged pregnancy, late or no prenatal care, and alcohol and tobacco use in pregnancy. Their infants have higher rates of preterm birth, mortality, and sudden infant death syndrome than infants in the general population. Barriers to care experienced by American Indian and Alaska Native women should be addressed. The American College of Obstetricians and Gynecologists encourages Fellows to be aware of the risk profile of their urban American Indian and Alaska Native patients and understand that they often are not eligible for IHS coverage and may need assistance in gaining access to other forms of coverage. The American College of Obstetricians and Gynecologists also recommends that Fellows encourage their federal legislators to support adequate funding for the Indian Health Care Improvement Act, permanently authorized as part of the Patient Protection and Affordable Care Act.

  17. Effects of the earthquake of March 27, 1964 in the Copper River Basin area, Alaska: Chapter E in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Ferrians, Oscar J.

    1966-01-01

    The Copper River Basin area is in south-central Alaska and covers 17,800 square miles. It includes most of the Copper River Basin and parts of the surrounding Alaska Range and the Talkeetna, Chugach, and Wrangell Mountains. On March 27, 1964, shortly after 5:36 p.m. Alaska standard time, a great earthquake having a Richter magnitude of about 8.5 struck south-central Alaska. Computations by the U.S. Coast and Geodetic Survey place the epicenter of the main shock at lat 61.1° N. and long 147.7° W., and the hypocenter, or actual point of origin, from 20 to 50 kilometers below the surface. The epicenter is near the western shore of Unakwik Inlet in northern Prince William Sound; it is 30 miles from the closest point within the area of study and 180 miles from the farthest point. Releveling data obtained in 1964 after the earthquake indicates that broad areas of south-central Alaska were warped by uplift and subsidence. The configuration of these areas generally parallels the trend of the major tectonic elements of the region. Presumably a large part of this change took place during and immediately after the 1964 earthquake. The water level in several wells in the area lowered appreciably, and the water in many became turbid; generally, however, within a few days after the earthquake the water level returned to normal and the suspended sediment settled out. Newspaper reports that the Copper River was completely dammed and Tazlina Lake drained proved erroneous. The ice on most lakes was cracked, especially around the margins of the lakes where floating ice broke free from the ice frozen to the shore. Ice on Tazlina, Klutina, and Tonsina Lakes was intensely fractured by waves generated by sublacustrine landslides off the fronts of deltas. These waves stranded large blocks of ice above water level along the shores. River ice was generally cracked in the southern half of the area and was locally cracked in the northern half. In the area of study, the majority of the

  18. Publications - DDS 4 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Datasets of Alaska: Alaska Division of Geological & Geophysical Surveys Digital Data Series 4, http ; Alaska Statewide Maps; Alaska, State of; Digital Elevation Model; Digital Surface Model (DSM); Geologic

  19. Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA

    USGS Publications Warehouse

    ,

    2009-01-01

    Fifty years of U.S. Geological Survey (USGS) research on glacier change shows recent dramatic shrinkage of glaciers in three climatic regions of the United States. These long periods of record provide clues to the climate shifts that may be driving glacier change. The USGS Benchmark Glacier Program began in 1957 as a result of research efforts during the International Geophysical Year (Meier and others, 1971). Annual data collection occurs at three glaciers that represent three climatic regions in the United States: South Cascade Glacier in the Cascade Mountains of Washington State; Wolverine Glacier on the Kenai Peninsula near Anchorage, Alaska; and Gulkana Glacier in the interior of Alaska (fig. 1).

  20. Geologic effects of the March 1964 earthquake and associated seismic sea waves on Kodiak and nearby islands, Alaska: Chapter D in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Plafker, George; Kachadoorian, Reuben

    1966-01-01

    Kodiak Island and the nearby islands constitute a mountainous landmass with an aggregate area of 4,900 square miles that lies at the western border of the Gulf of Alaska and from 20 to 40 miles off the Alaskan mainland. Igneous and metamorphic rocks underlie most of the area except for a narrow belt of moderately to poorly indurated rocks bordering the Gulf of Alaska coast and local accumulations of unconsolidated alluvial and marine deposits along the streams and coast. The area is relatively undeveloped and is sparsely inhabited. About 4,800 of the 5,700 permanent residents in the area live in the city of Kodiak or at the Kodiak Naval Station. The great earthquake, which occurred on March 27, 1964, at 5:36 p.m. Alaska standard time (March 28,1964, 0336 Greenwich mean time), and had a Richter magnitude of 8.4-8.5, was the most severe earthquake felt on Kodiak Island and its nearby islands in modern times. Although the epicenter lies in Prince William Sound 250 miles northeast of Kodiak—the principal city of the area—the areal distribution of the thousands of aftershocks that followed it, the local tectonic deformation, and the estimated source area of the subsequent seismic sea wave, all suggest that the Kodiak group of islands lay immediately adjacent to, and northwest of, the focal region from which the elastic seismic energy was radiated. The duration of strong ground motion in the area was estimated at 2½ minutes. Locally, the tremors were preceded by sounds audible to the human ear and were reportedly accompanied in several places by visible ground waves. Intensity and felt duration of the shocks during the main earthquake and aftershock sequence varied markedly within the area and were strongly influenced by the local geologic environment. Estimated Mercalli intensities in most areas underlain by unconsolidated Quaternary deposits ranged from VIII to as high as IX. In contrast, intensities in areas of upper Tertiary rock ranged from VII to VIII, and in