Science.gov

Sample records for alaska special regulations-gates

  1. Amchitka Island, Alaska, special sampling project 1997

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office

    2000-06-28

    This 1997 special sampling project represents a special radiobiological sampling effort to augment the 1996 Long-Term Hydrological Monitoring Program (LTHMP) for Amchitka Island in Alaska. Lying in the western portion of the Aleutian Islands arc, near the International Date Line, Amchitka Island is one of the southernmost islands of the Rat Island Chain. Between 1965 and 1971, the U.S. Atomic Energy Commission conducted three underground nuclear tests on Amchitka Island. In 1996, Greenpeace collected biota samples and speculated that several long-lived, man-made radionuclides detected (i.e., americium-241, plutonium-239 and -240, beryllium-7, and cesium-137) leaked into the surface environment from underground cavities created during the testing. The nuclides of interest are detected at extremely low concentrations throughout the environment. The objectives of this special sampling project were to scientifically refute the Greenpeace conclusions that the underground cavities were leaking contaminants to the surface. This was achieved by first confirming the presence of these radionuclides in the Amchitka Island surface environment and, second, if the radionuclides were present, determining if the source is the underground cavity or worldwide fallout. This special sampling and analysis determined that the only nonfallout-related radionuclide detected was a low level of tritium from the Long Shot test, which had been previously documented. The tritium contamination is monitored and continues a decreasing trend due to radioactive decay and dilution.

  2. Alaska Special Education Recruitment and Retention Resource Manual.

    ERIC Educational Resources Information Center

    Schnorr, Janice M.; Brady, Nancy J.

    This resource manual is designed to assist Alaska school districts in recruiting and retaining special education teachers. It offers 50 practical suggestions for developing an effective recruitment program, focusing on the processes of gathering information; developing recruiters, materials, and strategies; and screening and interviewing…

  3. 45 CFR 2532.20 - Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Kuskokwim Delta of Alaska. 2532.20 Section 2532.20 Public Welfare Regulations Relating to Public Welfare... § 2532.20 Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska. (a) Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska. The President may award grants to, and enter...

  4. 45 CFR 2532.20 - Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-Kuskokwim Delta of Alaska. 2532.20 Section 2532.20 Public Welfare Regulations Relating to Public Welfare... § 2532.20 Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska. (a) Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska. The President may award grants to, and enter...

  5. 45 CFR 2532.20 - Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-Kuskokwim Delta of Alaska. 2532.20 Section 2532.20 Public Welfare Regulations Relating to Public Welfare... § 2532.20 Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska. (a) Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska. The President may award grants to, and enter...

  6. 45 CFR 2532.20 - Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-Kuskokwim Delta of Alaska. 2532.20 Section 2532.20 Public Welfare Regulations Relating to Public Welfare... § 2532.20 Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska. (a) Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska. The President may award grants to, and enter...

  7. 45 CFR 2532.20 - Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-Kuskokwim Delta of Alaska. 2532.20 Section 2532.20 Public Welfare Regulations Relating to Public Welfare... § 2532.20 Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska. (a) Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska. The President may award grants to, and enter...

  8. Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Though it's not quite spring, waters in the Gulf of Alaska (right) appear to be blooming with plant life in this true-color MODIS image from March 4, 2002. East of the Alaska Peninsula (bottom center), blue-green swirls surround Kodiak Island. These colors are the result of light reflecting off chlorophyll and other pigments in tiny marine plants called phytoplankton. The bloom extends southward and clear dividing line can be seen west to east, where the bloom disappears over the deeper waters of the Aleutian Trench. North in Cook Inlet, large amounts of red clay sediment are turning the water brown. To the east, more colorful swirls stretch out from Prince William Sound, and may be a mixture of clay sediment from the Copper River and phytoplankton. Arcing across the top left of the image, the snow-covered Brooks Range towers over Alaska's North Slope. Frozen rivers trace white ribbons across the winter landscape. The mighty Yukon River traverses the entire state, beginning at the right edge of the image (a little way down from the top) running all the way over to the Bering Sea, still locked in ice. In the high-resolution image, the circular, snow-filled calderas of two volcanoes are apparent along the Alaska Peninsula. In Bristol Bay (to the west of the Peninsula) and in a couple of the semi-clear areas in the Bering Sea, it appears that there may be an ice algae bloom along the sharp ice edge (see high resolution image for better details). Ground-based observations from the area have revealed that an under-ice bloom often starts as early as February in this region and then seeds the more typical spring bloom later in the season.

  9. Hydrologic reconnaissance of the Chilkat River basin, Southeast Alaska; with special reference to the Alaska Chilkat Bald Eagle Preserve

    USGS Publications Warehouse

    Bugliosi, E.F.

    1988-01-01

    The Chilkat River Basin of Alaska is characterized by glaciers, highly dissected mountains with steep-gradient streams, and braided rivers in broad, alluvium-filled valleys. Orographic effects and a wide seasonal range in temperature cause variations in the amount and distribution of precipitation, and thus in the resulting runoff and streamflow. Seeps and springs flowing from alluvial fans contribute to streamflow year round. Infiltration of water from the Tsirku River and its distributary channels is the most important source of groundwater recharge on the river 's alluvial fan, 20 mi north of Haines. Groundwater discharge along the toe of the fan maintains open leads in a reach of the Chilkat River downstream from the fan. This ice-free reach provides spawning habitat for a late run of salmon, which in turn attracts the world 's largest concentration of bald eagles (more than 3,000 birds). Both surface and groundwater are a calcium bicarbonate type. Stream samples had dissolved-solids concentrations < 115 mg/L; values for groundwater were slightly greater. The glacier-fed Chilkat, Tsirku, and Klehini Rivers carry large concentrations of suspended sediment during periods of high flow. (USGS)

  10. 76 FR 12558 - Amendment to Special Use Airspace Restricted Areas R-2203, and R-2205; Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... Policies and Procedures (44 FR 11034; February 26, 1979); and (3) does not warrant preparation of a....S.C. 106(g), 40103, 40113, 40120; E.O. 10854, 24 FR 9565, 3 CFR, 1959-1963 Comp., p. 389. Sec. 73.22... Alaska. There are no changes to the boundaries, designated altitudes, time of designation, or...

  11. Preliminary geologic map of the Chugach National Forest Special Study Area, Alaska

    USGS Publications Warehouse

    Nelson, Steven W.; Miller, Marti L.; Haeussler, Peter J.; Snee, Lawrence W.; Philips, Patti J.; Huber, Carol

    1999-01-01

    In 1990, both the U.S. Geological Survey and U.S. Bureau of Mines were contacted by the Chugach National Forest (CNF) for the purpose of providing mineral resource information for the CNF Master Plan during the planning period fiscal years 1991-1994. This information is to address the terms and requirements of the 1986 Settlement Agreement and to provide mineral and geologic information useful to the CNF for making land-use decisions. In early 1992 an Interagency Agreement between the U.S. Geological Survey, the U.S. Bureau of Mines and the Chugach National Forest was signed. In this agreement the U.S. Geological Survey is to provide a report which estimates the undiscovered mineral endowments of the 'special' study area and to identify the potential for mineral discovery and development. The U.S. Bureau of Mines was to prepare a report updating the discovered mineral endowment of the Special Study Area. These reports are now published (Roe and Balen, 1994; Nelson and others, 1994). This geologic map is a component of the U.S. Geological Survey contribution to the overall project.

  12. Chronic conditions, functional difficulties, and disease burden among American Indian/Alaska Native children with special health care needs, 2009-2010.

    PubMed

    Kenney, Mary Kay; Thierry, Judy

    2014-11-01

    The purpose of this study was to determine the prevalence of chronic conditions and functional difficulties of American Indian/Alaska Native (AIAN) children with special health care needs (CSHCN). We conducted bivariate and multivariable analysis of cross-sectional data on 40,202 children from the 2009-2010 National Survey of Children with Special Health Care Needs aged birth through 17 years, including 1,051 AIAN CSHCN. The prevalence of AIAN CSHCN was 15.7 %, not significantly different from the prevalence of US white CSHCN (16.3 %). As qualifiers for special needs status among AIAN children the use of or need for prescription medication was the most frequent (70 %), compared to the lower rates of need for elevated service use (44 %) and emotional, mental, or behavioral treatment/counseling (36 %). Asthma (45 %), conduct disorder (18 %), developmental delay (27 %), and migraine headaches (16 %) were significantly more common chronic conditions among AIAN CSHCN compared to white CSHCN, as were functional difficulties with respiration (52 %), communication (42 %), anxiety/depression (57 %), and behavior (54 %). AIAN CSHCN were also more likely to have 3 or more chronic conditions (39 vs. 28 %, respectively) and 3 or more functional difficulties (70 vs. 55 %, respectively) than white CSHCN. Results indicated a greater impact on the daily activities of AIAN CSHCN compared to white CSHCN (74 vs. 63 %). Significantly greater disease burden among AIAN CSHCN suggests that care must be taken to ensure an appropriate level of coordinated care in a medical home to ameliorate the severity and complexity of their conditions.

  13. Case Management to Reduce Cardiovascular Disease Risk in American Indians and Alaska Natives With Diabetes: Results From the Special Diabetes Program for Indians Healthy Heart Demonstration Project

    PubMed Central

    Jiang, Luohua; Manson, Spero M.; Beals, Janette; Henderson, William; Pratte, Katherine; Acton, Kelly J.; Roubideaux, Yvette

    2014-01-01

    Objectives. We evaluated cardiovascular disease (CVD) risk factors in American Indians/Alaska Natives (AI/ANs) with diabetes in the Special Diabetes Program for Indians Healthy Heart (SDPI-HH) Demonstration Project. Methods. Multidisciplinary teams implemented an intensive case management intervention among 30 health care programs serving 138 tribes. The project recruited 3373 participants, with and without current CVD, between 2006 and 2009. We examined data collected at baseline and 1 year later to determine whether improvements occurred in CVD risk factors and in Framingham coronary heart disease (CHD) risk scores, aspirin use, and smoking status. Results. A1c levels decreased an average of 0.2% (P < .001). Systolic and diastolic blood pressure, low-density lipoprotein (LDL) cholesterol, and triglyceride levels decreased, with the largest significant reduction in LDL cholesterol (∆ = −5.29 mg/dL; P < .001). Average Framingham CHD risk scores also decreased significantly. Aspirin therapy increased significantly, and smoking decreased. Participants with more case management visits had significantly greater reductions in LDL cholesterol and A1c values. Conclusions. SDPI-HH successfully translated an intensive case management intervention. Creative retention strategies and an improved understanding of organizational challenges are needed for future Indian health translational efforts. PMID:25211728

  14. Alaska's Cold Desert.

    ERIC Educational Resources Information Center

    Brune, Jeff; And Others

    1996-01-01

    Explores the unique features of Alaska's Arctic ecosystem, with a focus on the special adaptations of plants and animals that enable them to survive in a stressful climate. Reviews the challenges facing public and private land managers who seek to conserve this ecosystem while accommodating growing demands for development. Includes classroom…

  15. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  16. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  17. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  18. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  19. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  20. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  1. Health Promotion and Substance Abuse Prevention among American Indian and Alaska Native Communities: Issues in Cultural Competence. Cultural Competence Series 9. Special Collaborative Edition.

    ERIC Educational Resources Information Center

    Trimble, Joseph E., Ed.; Beauvais, Fred, Ed.

    Substance abuse continues to be one of the most damaging and chronic health problems faced by Indian people. American Indian and Alaska Native (AI/AN) substance abuse prevention and treatment programs must be framed within the broader context of the widening health disparities between AI/AN communities and the general population. Successful…

  2. 13 CFR 124.109 - Do Indian tribes and Alaska Native Corporations have any special rules for applying to the 8(a...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... economically disadvantaged under 43 U.S.C. 1626(e), and need not establish economic disadvantage as required by... interest and total voting power are held by the ANC and holders of its settlement common stock. (4) The... deemed to be both owned and controlled by Alaska Natives and an economically disadvantaged...

  3. 13 CFR 124.109 - Do Indian tribes and Alaska Native Corporations have any special rules for applying to the 8(a...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... economically disadvantaged under 43 U.S.C. 1626(e), and need not establish economic disadvantage as required by... interest and total voting power are held by the ANC and holders of its settlement common stock. (4) The... deemed to be both owned and controlled by Alaska Natives and an economically disadvantaged...

  4. 47 CFR 80.705 - Hours of service of Alaska-public fixed stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Hours of service of Alaska-public fixed... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Alaska Fixed Stations § 80.705 Hours of service of Alaska-public fixed stations. Each Alaska-public fixed station whose hours of service are...

  5. 47 CFR 80.705 - Hours of service of Alaska-public fixed stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Hours of service of Alaska-public fixed... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Alaska Fixed Stations § 80.705 Hours of service of Alaska-public fixed stations. Each Alaska-public fixed station whose hours of service are...

  6. Alaska Resource Data File, Noatak Quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.; Dumoulin, Julie A.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Noatak 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  7. Trans-Alaska pipeline

    SciTech Connect

    Not Available

    1991-07-01

    The Trans-Alaska Pipeline system transports nearly 25 percent of the nation's domestically produced crude oil. Since operations began in 1977, the system has delivered over 8 billion barrels of oil to Port Veldez for shipment. This paper reports that concerns have been raised about whether the system is meeting special engineering design and operations requirements imposed by federal and state regulators. GAO found that the five principal federal and state regulatory agencies have not pursued a systematic, disciplined, and coordinated approach to regulating the Trans-Alaska Pipeline System. Instead, these agencies have relied on the Alyeska Pipeline Service Company, which runs the system, to police itself. It was only after the Exxon Valdez spill and the discovery of corrosion that the regulators began to reevaluate their roles and focus on issues such as whether Alyeska's operating and maintenance procedures meet the pipelines, special engineering design and operating requirements, or whether Alyeska can adequately respond to a large oil spill. In January 1990, the regulators established a joint office to provide more effective oversight of the system. GAO believes that central leadership and a secured funding sources may help ensure that this office provides adequate oversight.

  8. American Indians and Alaska Natives with Disabilities.

    ERIC Educational Resources Information Center

    Johnson, Marilyn J.

    American Indian and Alaska Native children with special needs experience the same ineffective and inefficient services as other minority language children. This paper discusses the special needs of Native children, assessment and curriculum issues, and recommendations for improvement. It provides statistics for various categories of handicaps and…

  9. Northern Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Seasonal ice in the Beaufort Sea off Alaska's North Slope has begun its spring retreat. This true color MODIS image from March 18, 2002, shows the pack ice in the Chuckchi Sea (left) and Beaufort Sea (top) backing away from its winter position snug up against Alaska's coasts, beginning its retreat into the Arctic Ocean. While not as pronounced in the Beaufort and Chukchi Seas as other part of the Arctic, scientists studying Arctic sea ice over the course of the century have documented dramatic changes in the extent of Arctic sea ice. It retreats farther in the summer and does not advance as far in the winter than it did a half-century ago. Both global warming and natural variation in regional weather systems have been proposed as causes. Along the coastal plain of the North Slope, gray-brown tracks (see high-resolution image) hint at melting rivers. South of the North Slope, the rugged mountains of the Brooks Range make a coast-to-coast arc across the state. Coming in at the lower right of the image, the Yukon River traces a frozen white path westward across half the image before veering south and out of view. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  10. Statewide Educator Supply & Demand Report, State of Alaska, 1998.

    ERIC Educational Resources Information Center

    LaBerge, MaryEllen

    In 1998, the demand for educators in Alaska reached an all-time high. The shortage was most critical for music, math, and special education teachers, as well as for counselors. Filling positions in rural areas is especially difficult. An early retirement incentive program has caused a drain on Alaska's pool of teachers. Factors that inhibit…

  11. 43 CFR 2091.9-1 - Alaska Native selections.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.9-1 Alaska Native selections. The segregation and opening of lands authorized...

  12. 43 CFR 2091.9-1 - Alaska Native selections.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.9-1 Alaska Native selections. The segregation and opening of lands authorized...

  13. 43 CFR 2091.9-1 - Alaska Native selections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.9-1 Alaska Native selections. The segregation and opening of lands authorized...

  14. 43 CFR 2091.9-1 - Alaska Native selections.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.9-1 Alaska Native selections. The segregation and opening of lands authorized...

  15. Alaska's Children, 1997.

    ERIC Educational Resources Information Center

    Douglas, Dorothy, Ed.

    1997-01-01

    These four issues of the "Alaska's Children" provide information on the activities of the Alaska Head Start State Collaboration Project and other Head Start activities. Legal and policy changes affecting the education of young children in Alaska are also discussed. The Spring 1997 issue includes articles on brain development and the "I Am Your…

  16. Alaska's Economy: What's Ahead?

    ERIC Educational Resources Information Center

    Alaska Review of Social and Economic Conditions, 1987

    1987-01-01

    This review describes Alaska's economic boom of the early 1980s, the current recession, and economic projections for the 1990s. Alaska's economy is largely influenced by oil prices, since petroleum revenues make up 80% of the state government's unrestricted general fund revenues. Expansive state spending was responsible for most of Alaska's…

  17. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  18. Alaska Women: A Databook.

    ERIC Educational Resources Information Center

    White, Karen; Baker, Barbara

    This data book uses survey and census information to record social and economic changes of the past three decades and their effects upon the role of Alaska women in society. Results show Alaska women comprise 47% of the state population, an increase of 9% since 1950. Marriage continues as the predominant living arrangement for Alaska women,…

  19. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  20. Alaska's renewable energy potential.

    SciTech Connect

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  1. Telecommunication in Alaska. Papers in Support of the Alaska Case Study Presentation to the 1982 Pacific Telecommunications Conference (Honolulu, Hawaii, January 17-20, 1982).

    ERIC Educational Resources Information Center

    Walp, Robert M., Ed.

    The 26 papers in this collection present the history and organization, system components and techniques, social aspects, and economics of telecommunications development in Alaska, with special emphasis on the growth and use of satellite systems. The first five papers cover developments beginning when Alaska was still Russian-owned, and also…

  2. Prevention and treatment of type 2 diabetes mellitus in children, with special emphasis on American Indian and Alaska Native children. American Academy of Pediatrics Committee on Native American Child Health.

    PubMed

    Gahagan, Sheila; Silverstein, Janet

    2003-10-01

    The emergence of type 2 diabetes mellitus in the American Indian/Alaska Native pediatric population presents a new challenge for pediatricians and other health care professionals. This chronic disease requires preventive efforts, early diagnosis, and collaborative care of the patient and family within the context of a medical home.

  3. Alaska Library Directory, 1996.

    ERIC Educational Resources Information Center

    Jennings, Mary, Ed.

    This directory of Alaska's Libraries lists: members of the Alaska Library Association (AkLA) Executive Council and Committee Chairs; State Board of Education members; members of the Governor's Advisory Council on Libraries; school, academic and public libraries and their addresses, phone and fax numbers, and contact persons; personal,…

  4. Renewable Energy in Alaska

    SciTech Connect

    Not Available

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  5. Alaska geothermal bibliography

    SciTech Connect

    Liss, S.A.; Motyka, R.J.; Nye, C.J.

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  6. 50 CFR 37.32 - Special areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Special areas. 37.32 Section 37.32... NATIONAL WILDLIFE REFUGE, ALASKA Environmental Protection § 37.32 Special areas. (a) Caribou calving and post-calving special areas. The Regional Director shall designate within the coastal plain...

  7. Alaska marine ice atlas

    SciTech Connect

    LaBelle, J.C.; Wise, J.L.; Voelker, R.P.; Schulze, R.H.; Wohl, G.M.

    1982-01-01

    A comprehensive Atlas of Alaska marine ice is presented. It includes information on pack and landfast sea ice and calving tidewater glacier ice. It also gives information on ice and related environmental conditions collected over several years time and indicates the normal and extreme conditions that might be expected in Alaska coastal waters. Much of the information on ice conditions in Alaska coastal waters has emanated from research activities in outer continental shelf regions under assessment for oil and gas exploration and development potential. (DMC)

  8. 36 CFR 223.201 - Limitations on unprocessed timber harvested in Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... timber harvested in Alaska. 223.201 Section 223.201 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND....201 Limitations on unprocessed timber harvested in Alaska. Unprocessed timber from National...

  9. Libraries in Alaska: MedlinePlus

    MedlinePlus

    ... this page: https://medlineplus.gov/libraries/alaska.html Libraries in Alaska To use the sharing features on ... JavaScript. Anchorage University of Alaska Anchorage Alaska Medical Library 3211 Providence Drive Anchorage, AK 99508-8176 907- ...

  10. 75 FR 53331 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... Interest to Hadohdleekaga, Incorporated, for the Native village of Hughes, Alaska, pursuant to the Alaska... Hughes, Alaska, and are located in: Kateel River Meridian, Alaska T. 9 N., R. 23 E., Sec. 5....

  11. Alaska telemedicine: growth through collaboration.

    PubMed

    Patricoski, Chris

    2004-12-01

    The last thirty years have brought the introduction and expansion of telecommunications to rural and remote Alaska. The intellectual and financial investment of earlier projects, the more recent AFHCAN Project and the Universal Service Administrative Company Rural Health Care Division (RHCD) has sparked a new era in telemedicine and telecommunication across Alaska. This spark has been flamed by the dedication and collaboration of leaders at he highest levels of organizations such as: AFHCAN member organizations, AFHCAN Office, Alaska Clinical Engineering Services, Alaska Federal Health Care Partnership, Alaska Federal Health Care Partnership Office, Alaska Native health Board, Alaska Native Tribal health Consortium, Alaska Telehealth Advisory Council, AT&T Alascom, GCI Inc., Health care providers throughout the state of Alaska, Indian Health Service, U.S. Department of Health and Human Services, Office of U.S. Senator Ted Steens, State of Alaska, U.S. Department of Homeland Security--United States Coast Guard, United States Department of Agriculture, United States Department of Defense--Air Force and Army, United States Department of Veterans Affairs, University of Alaska, and University of Alaska Anchorage. Alaska now has one of the largest telemedicine programs in the world. As Alaska moves system now in place become self-sustaining, and 2) collaborating with all stakeholders in promoting the growth of an integrated, state-wide telemedicine network.

  12. Alaska: A frontier divided

    SciTech Connect

    O'Dell, R. )

    1986-09-01

    The superlatives surrounding Alaska are legion. Within the borders of the 49th US state are some of the world's greatest concentrations of waterfowl, bald eagles, fur seals, walrus, sea lions, otters, and the famous Kodiak brown bear. Alaska features the highest peak of North America, the 20,320-foot Mount McKinley, and the longest archipelago of small islands, the Aleutians. The state holds the greatest percentage of protected wilderness per capita in the world. The expanse of some Alaskan glaciers dwarfs entire countries. Like the periodic advance and retreat of its glaciers, Alaska appears with some regularity on the national US agenda. It last achieved prominence when President Jimmy Carter signed the Alaska National Interest Lands Conservation Act in 1980. Since then the conflict between environmental protection and economic development has been played out throughout the state, and Congress is expected to turn to Alaskan issues again in its next sessions.

  13. Alaska looks HOT!

    SciTech Connect

    Belcher, J.

    1997-07-01

    Production in Alaska has been sluggish in recent years, with activity in the Prudhoe Bay region in the North Slope on a steady decline. Alaska North Slope (ANS) production topped out in 1988 at 2.037 MMbo/d, with 1.6 MMbo/d from Prudhoe Bay. This year operators expect to produce 788 Mbo/d from Prudhoe Bay, falling to 739 Mbo/d next year. ANS production as a whole should reach 1.3 MMbo/d this year, sliding to 1.29 MMbo/d in 1998. These declining numbers had industry officials and politicians talking about the early death of the Trans-Alaskan Pipeline System-the vital link between ANS crude and markets. But enhanced drilling technology coupled with a vastly improved relationship between the state government and industry have made development in Alaska more economical and attractive. Alaska`s Democratic Gov. Tommy Knowles is fond of telling industry {open_quotes}we`re open for business.{close_quotes} New discoveries on the North Slope and in the Cook Inlet are bringing a renewed sense of optimism to the Alaska exploration and production industry. Attempts by Congress to lift a moratorium on exploration and production activity in the Arctic National Wildlife Refuge (ANWR) have been thwarted thus far, but momentum appears to be with proponents of ANWR drilling.

  14. 43 CFR 2091.9-3 - Lands in Alaska under grazing lease.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.9-3 Lands in Alaska under grazing lease. The segregation and...

  15. 43 CFR 2091.9-2 - Selections by the State of Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.9-2 Selections by the State of Alaska. The segregation and opening...

  16. 43 CFR 2091.9-2 - Selections by the State of Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.9-2 Selections by the State of Alaska. The segregation and opening...

  17. 43 CFR 2091.9-2 - Selections by the State of Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.9-2 Selections by the State of Alaska. The segregation and opening...

  18. 43 CFR 2091.9-3 - Lands in Alaska under grazing lease.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.9-3 Lands in Alaska under grazing lease. The segregation and...

  19. 43 CFR 2091.9-3 - Lands in Alaska under grazing lease.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.9-3 Lands in Alaska under grazing lease. The segregation and...

  20. 43 CFR 2091.9-3 - Lands in Alaska under grazing lease.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.9-3 Lands in Alaska under grazing lease. The segregation and...

  1. 43 CFR 2091.9-2 - Selections by the State of Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.9-2 Selections by the State of Alaska. The segregation and opening...

  2. 40 CFR 60.4216 - What requirements must I meet for engines used in Alaska?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Performance for Stationary Compression Ignition Internal Combustion Engines Special Requirements § 60.4216... internal combustion engines subject to this paragraph. ... engines used in Alaska? 60.4216 Section 60.4216 Protection of Environment ENVIRONMENTAL PROTECTION...

  3. Alaska Resource Data File: Chignik quadrangle, Alaska

    USGS Publications Warehouse

    Pilcher, Steven H.

    2000-01-01

    Descriptions of the mineral occurrences can be found in the report. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska. There is a website from which you can obtain the data for this report in text and Filemaker Pro formats

  4. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Alaska Federal Special Federal Aviation Regulation No. 97 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 97 Special Federal Aviation Regulation No. 97—Special Operating.... Expiration date This Special Federal Aviation Regulation will remain in effect until rescinded....

  5. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Alaska Federal Special Federal Aviation Regulation No. 97 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 97 Special Federal Aviation Regulation No. 97—Special Operating.... Expiration date This Special Federal Aviation Regulation will remain in effect until rescinded....

  6. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Alaska Federal Special Federal Aviation Regulation No. 97 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 97 Special Federal Aviation Regulation No. 97—Special Operating... covered under this SFAR. Section 5. Expiration date This Special Federal Aviation Regulation will...

  7. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Alaska Federal Special Federal Aviation Regulation No. 97 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 97 Special Federal Aviation Regulation No. 97—Special Operating.... Expiration date This Special Federal Aviation Regulation will remain in effect until rescinded....

  8. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Alaska Federal Special Federal Aviation Regulation No. 97 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 97 Special Federal Aviation Regulation No. 97—Special Operating.... Expiration date This Special Federal Aviation Regulation will remain in effect until rescinded....

  9. Flood frequency in Alaska

    USGS Publications Warehouse

    Childers, J.M.

    1970-01-01

    Records of peak discharge at 183 sites were used to study flood frequency in Alaska. The vast size of Alaska, its great ranges of physiography, and the lack of data for much of the State precluded a comprehensive analysis of all flood determinants. Peak stream discharges, where gaging-station records were available, were analyzed for 2-year, 5-year, 10-year, 25-year, and 50-year average-recurrence intervals. A regional analysis of the flood characteristics by multiple-regression methods gave a set of equations that can be used to estimate floods of selected recurrence intervals up to 50 years for any site on any stream in Alaska. The equations relate floods to drainage-basin characteristics. The study indicates that in Alaska the 50-year flood can be estimated from 10-year gaging- station records with a standard error of 22 percent whereas the 50-year flood can be estimated from the regression equation with a standard error of 53 percent. Also, maximum known floods at more than 500 gaging stations and miscellaneous sites in Alaska were related to drainage-area size. An envelope curve of 500 cubic feet per second per square mile covered all but 2 floods in the State.

  10. Planning Services for Young Handicapped American Indian and Alaska Native Children. 1980 Series.

    ERIC Educational Resources Information Center

    Johnson, Marilyn J., Ed.; And Others

    Eight papers examine issues in providing special education services to young native American handicapped children. B. Ramirez and J. Walker ("Background, Rationale, and Overview to Early Childhood and Special Education Services for Indian and Alaska Native Children'" consider the needs of young children as well as such special program aspects as…

  11. Accretion of southern Alaska

    USGS Publications Warehouse

    Hillhouse, J.W.

    1987-01-01

    Paleomagnetic data from southern Alaska indicate that the Wrangellia and Peninsular terranes collided with central Alaska probably by 65 Ma ago and certainly no later than 55 Ma ago. The accretion of these terranes to the mainland was followed by the arrival of the Ghost Rocks volcanic assemblage at the southern margin of Kodiak Island. Poleward movement of these terranes can be explained by rapid motion of the Kula oceanic plate, mainly from 85 to 43 Ma ago, according to recent reconstructions derived from the hot-spot reference frame. After accretion, much of southwestern Alaska underwent a counterclockwise rotation of about 50 ?? as indicated by paleomagnetic poles from volcanic rocks of Late Cretaceous and Early Tertiary age. Compression between North America and Asia during opening of the North Atlantic (68-44 Ma ago) may account for the rotation. ?? 1987.

  12. 43 CFR 36.13 - Special provisions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Special provisions. 36.13 Section 36.13 Public Lands: Interior Office of the Secretary of the Interior TRANSPORTATION AND UTILITY SYSTEMS IN AND ACROSS, AND ACCESS INTO, CONSERVATION SYSTEM UNITS IN ALASKA § 36.13 Special provisions. (a) Gates of...

  13. 43 CFR 36.13 - Special provisions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Special provisions. 36.13 Section 36.13 Public Lands: Interior Office of the Secretary of the Interior TRANSPORTATION AND UTILITY SYSTEMS IN AND ACROSS, AND ACCESS INTO, CONSERVATION SYSTEM UNITS IN ALASKA § 36.13 Special provisions. (a) Gates of...

  14. 43 CFR 36.13 - Special provisions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Special provisions. 36.13 Section 36.13 Public Lands: Interior Office of the Secretary of the Interior TRANSPORTATION AND UTILITY SYSTEMS IN AND ACROSS, AND ACCESS INTO, CONSERVATION SYSTEM UNITS IN ALASKA § 36.13 Special provisions. (a) Gates of...

  15. First Regional Super ESPC: Success on Kodiak Island, Alaska

    SciTech Connect

    Federal Energy Management Program

    2001-05-16

    This case study about energy saving performance contacts (ESPCs) presents an overview of how the Coast Guard at Kodiak Island, Alaska, established an ESPC contract and the benefits derived from it. The Federal Energy Management Program instituted these special contracts to help federal agencies finance energy-saving projects at their facilities.

  16. Public Education in Alaska. Bulletin, 1936, No. 12

    ERIC Educational Resources Information Center

    Office of Education, United States Department of the Interior, 1936

    1936-01-01

    Among areas governed by the United States, Alaska is unique in a number of ways; one of special interest to education officials and students is concerned with the maintenance within its borders of two publicly supported school systems--one by the Federal Government and one by the Territory. It was chiefly in the interest of the former that the…

  17. USGS Alaska State Mosaic

    USGS Publications Warehouse

    ,

    2008-01-01

    The Alaska State Mosaic consists of portions of scenes from the Multi-Resolution Land Characteristics 2001 (MRLC 2001) collection. The 172 selected scenes have been geometrically and radiometrically aligned to produce a seamless, relatively cloud-free image of the State. The scenes were acquired between July 1999 and September 2002, resampled to 120-meter pixels, and cropped to the State boundary. They were reprojected into a standard Alaska Albers projection with the U.S. National Elevation Dataset (NED) used to correct for relief.

  18. 78 FR 4435 - BLM Director's Response to the Alaska Governor's Appeal of the BLM Alaska State Director's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... Finding ] of No Significant Impact for the Delta River Special Recreation Management Area (SRMA) Plan and... business hours. A copy of the Delta River SRMA Plan and EARMP are available on the BLM-Alaska Web site at... Assessment (EA) and Finding of No Significant Impact for the Delta River SRMA Plan and the EARMP...

  19. Alaska Glaciers and Rivers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image on October 7, 2007, showing the Alaska Mountains of south-central Alaska already coated with snow. Purple shadows hang in the lee of the peaks, giving the snow-clad land a crumpled appearance. White gives way to brown on the right side of the image where the mountains yield to the lower-elevation Susitna River Valley. The river itself cuts a silver, winding path through deep green forests and brown wetlands and tundra. Extending from the river valley, are smaller rivers that originated in the Alaska Mountains. The source of these rivers is evident in the image. Smooth white tongues of ice extend into the river valleys, the remnants of the glaciers that carved the valleys into the land. Most of the water flowing into the Gulf of Alaska from the Susitna River comes from these mountain glaciers. Glacier melt also feeds glacier lakes, only one of which is large enough to be visible in this image. Immediately left of the Kahiltna River, the aquamarine waters of Chelatna Lake stand out starkly against the brown and white landscape.

  20. Alaska Mathematics Standards

    ERIC Educational Resources Information Center

    Alaska Department of Education & Early Development, 2012

    2012-01-01

    High academic standards are an important first step in ensuring that all Alaska's students have the tools they need for success. These standards reflect the collaborative work of Alaskan educators and national experts from the nonprofit National Center for the Improvement of Educational Assessment. Further, they are informed by public…

  1. Suicide in Northwest Alaska.

    ERIC Educational Resources Information Center

    Travis, Robert

    1983-01-01

    Between 1975 and 1979 the Alaskan Native suicide rate (90.9 per 100,000) in Northwest Alaska was more than seven times the national average. Alienation, loss of family, low income, alcohol abuse, high unemployment, and more education were factors related to suicidal behavior. Average age for suicidal behavior was 22.5. (Author/MH)

  2. Alaska's Young Entrepreneurs.

    ERIC Educational Resources Information Center

    Knapp, Marilyn R.

    1989-01-01

    Describes Edgecumbe Enterprises, a four-year-old fish exporting venture run by Mt. Edgecumbe High School in Sitka, Alaska, and the students' meeting with business leaders in Tokyo, Japan. The young entrepreneurs spent two weeks studying the Japanese marketing structure. (JOW)

  3. Seismology Outreach in Alaska

    NASA Astrophysics Data System (ADS)

    Gardine, L.; Tape, C.; West, M. E.

    2014-12-01

    Despite residing in a state with 75% of North American earthquakes and three of the top 15 ever recorded, most Alaskans have limited knowledge about the science of earthquakes. To many, earthquakes are just part of everyday life, and to others, they are barely noticed until a large event happens, and often ignored even then. Alaskans are rugged, resilient people with both strong independence and tight community bonds. Rural villages in Alaska, most of which are inaccessible by road, are underrepresented in outreach efforts. Their remote locations and difficulty of access make outreach fiscally challenging. Teacher retention and small student bodies limit exposure to science and hinder student success in college. The arrival of EarthScope's Transportable Array, the 50th anniversary of the Great Alaska Earthquake, targeted projects with large outreach components, and increased community interest in earthquake knowledge have provided opportunities to spread information across Alaska. We have found that performing hands-on demonstrations, identifying seismological relevance toward career opportunities in Alaska (such as natural resource exploration), and engaging residents through place-based experience have increased the public's interest and awareness of our active home.

  4. Current Ethnomusicology in Alaska.

    ERIC Educational Resources Information Center

    Johnston, Thomas F.

    The systematic study of Eskimo, Indian, and Aleut musical sound and behavior in Alaska, though conceded to be an important part of white efforts to foster understanding between different cultural groups and to maintain the native cultural heritage, has received little attention from Alaskan educators. Most existing ethnomusical studies lack one or…

  5. Venetie, Alaska energy assessment.

    SciTech Connect

    Jensen, Richard Pearson; Baca, Michael J.; Schenkman, Benjamin L.; Brainard, James Robert

    2013-07-01

    This report summarizes the Energy Assessment performed for Venetie, Alaska using the principals of an Energy Surety Microgrid (ESM) The report covers a brief overview of the principals of ESM, a site characterization of Venetie, a review of the consequence modeling, some preliminary recommendations, and a basic cost analysis.

  6. Field surveying and topographic mapping in Alaska: 1947-83

    USGS Publications Warehouse

    Foley, Robert C.

    1987-01-01

    This circular retraces surveying and topographic mapping by the Geological Survey in Alaska from 1947 to 1983 and describes camp life and some of the unusual happenings involved in working in virtually uninhabited country, adverse weather, and difficult terrain. A year-by-year recap of activities documents the transition from early small-scale mapping efforts to more accurate and detailed 1:63,360-scale mapping for Alaska except the Aleutian Islands and isolated islands in the Bering Sea. Recent 1:25,000-scale metric mapping and the preparation of orthophotographs and special mapping efforts for other Government agencies also are recounted.

  7. Asthma and American Indians/Alaska Natives

    MedlinePlus

    ... Minority Population Profiles > American Indian/Alaska Native > Asthma Asthma and American Indians/Alaska Natives In 2014, 218, ... Native American adults reported that they currently have asthma. American Indian/Alaska Native children are 30% more ...

  8. Educating medical students for Alaska.

    PubMed

    Fortuine, R; Dimino, M J

    1998-01-01

    Because Alaska does not have its own medical school, it has become part of WAMI (Washington, Alaska, Montana, Idaho), an educational agreement with the University of Washington School of Medicine (UWSM). Each year, 10 Alaskans are accepted into the entering class of UWSM and spend their first year at the University of Alaska Anchorage (UAA). UWSM third- and fourth-year medical students can obtain some of their clinical experience in Alaska. To meet the needs of Alaska, students are chosen based on academic and personal records, as well as the likelihood of their returning to Alaska for practice. To this end, over the last seven years 30% of accepted students have come from rural communities and 10% are Alaska Natives. The curriculum for the first year includes several sessions dedicated to Alaska health problems, cross-cultural issues, and Alaska's unique rural health care delivery system. Students do two preceptorships--one with a private primary care physician and one with a physician at the Alaska Native Medical Center. Additionally, students have the option to spend a week at a rural site to learn about the community's health care system. An Alaska track is being developed whereby an Alaskan UWSM student can do most of the third year in state via clerkships in family medicine, obstetrics/gynecology, psychiatry, internal medicine, and pediatrics. All UWSM students at the end of their first year can elect to participate for one month in the R/UOP (Rural/Underserved Opportunities Program), which includes several Alaska sites. The overall goals of these approaches are to educate UWSM students, especially Alaskans, about the state's health needs and health care system and to encourage UWSM graduates to practice in the state.

  9. Significant Alaska minerals

    SciTech Connect

    Robinson, M.S.; Bundtzen, T.K.

    1982-01-01

    Alaska ranks in the top four states in gold production. About 30.5 million troy oz have been produced from lode and placer deposits. Until 1930, Alaska was among the top 10 states in copper production; in 1981, Kennecott Copper Company had prospects of metal worth at least $7 billion. More than 85% of the 20 million oz of silver derived have been byproducts of copper mining. Nearly all lead production has been as a byproduct of gold milling. Molybdenum is a future Alaskan product; in 1987 production is scheduled to be about 12% of world demand. Uranium deposits discovered in the Southeast are small but of high grade and easily accessible; farther exploration depends on improvement of a depressed market. Little has been done with Alaskan iron and zinc, although large deposits of the latter were discovered. Alaskan jade has a market among craftspeople. A map of the mining districts is included. 2 figures, 1 table.

  10. Seabirds in Alaska

    USGS Publications Warehouse

    Hatch, Scott A.; Piatt, John F.

    1995-01-01

    Techniques for monitoring seabird populations vary according to habitat types and the breeding behavior of individual species (Hatch and Hatch 1978, 1989; Byrd et al. 1983). An affordable monitoring program can include but a few of the 1,300 seabird colonies identified in Alaska, and since the mid-1970's, monitoring effotrts have emphasized a small selection of surface-feeding and diving species, primarily kittiwakes (Rissa spp.) and murres (Uria spp.). Little or no information on trends is available for other seabirds (Hatch 1993a). The existing monitoring program occurs largely on sites within the Alaska Maritime National Wildlife Refuge, which was established primarily for the conservation of marine birds. Data are collected by refuge staff, other state and federal agencies, private organizations, university faculty, and students.

  11. Coal resources of Alaska

    SciTech Connect

    Sanders, R.B.

    1982-01-01

    In the late 1800s, whaling ships carried Alaskan coal, and it was used to thaw ground for placer gold mining. Unfortunate and costly political maneuvers in the early 1900s delayed coal removal, but the Alaska Railroad and then World War II provided incentives for opening mines. Today, 33 million acres (about 9% of the state) is classified as prospectively valuable for coal, much of it under federal title. Although the state's geology is poorly known, potential for discovery of new fields exists. The US Geological Survey estimates are outdated, although still officially used. The total Alaska onshore coal resource is estimated to be 216 to 4216 billion tons of which 141 billion tons are identified resources; an additional 1430 billion tons are believed to lie beneath Cook Inlet. Transportation over mountain ranges and wetlands is the biggest hurdle for removal. Known coal sources and types are described and mapped. 1 figure.

  12. Geologic map of Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Mull, Charles G.; Karl, Susan M.

    2015-12-31

    This Alaska compilation is unique in that it is integrated with a rich database of information provided in the spatial datasets and standalone attribute databases. Within the spatial files every line and polygon is attributed to its original source; the references to these sources are contained in related tables, as well as in stand-alone tables. Additional attributes include typical lithology, geologic setting, and age range for the map units. Also included are tables of radiometric ages.

  13. Aniakchak Crater, Alaska Peninsula

    USGS Publications Warehouse

    Smith, Walter R.

    1925-01-01

    The discovery of a gigantic crater northwest of Aniakchak Bay (see fig. 11) closes what had been thought to be a wide gap in the extensive series of volcanoes occurring at irregular intervals for nearly 600 miles along the axial line of the Alaska Peninsula and the Aleutian Islands. In this belt there are more active and recently active volcanoes than in all the rest of North America. Exclusive of those on the west side of Cook Inlet, which, however, belong to the same group, this belt contains at least 42 active or well-preserved volcanoes and about half as many mountains suspected or reported to be volcanoes. The locations of some of these mountains and the hot springs on the Alaska Peninsula and the Aleutian Islands are shown on a map prepared by G. A. Waring. Attention has been called to these volcanoes for nearly two centuries, but a record of their activity since the discovery of Alaska is far from being complete, and an adequate description of them as a group has never been written. Owing to their recent activity or unusual scenic beauty, some of the best known of the group are Mounts Katmai, Bogoslof, and Shishaldin, but there are many other beautiful and interesting cones and craters.

  14. Rural Alaska Mentoring Project (RAMP)

    ERIC Educational Resources Information Center

    Cash, Terry

    2011-01-01

    For over two years the National Dropout Prevention Center (NDPC) at Clemson University has been supporting the Lower Kuskokwim School District (LKSD) in NW Alaska with their efforts to reduce high school dropout in 23 remote Yup'ik Eskimo villages. The Rural Alaska Mentoring Project (RAMP) provides school-based E-mentoring services to 164…

  15. Alaska Native Land Claims. [Textbook].

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Written for students at the secondary level, this textbook on Alaska Native land claims includes nine chapters, eight appendices, photographs, maps, graphs, bibliography, and an index. Chapters are titled as follows: (1) Earliest Times (Alaska's first settlers, eighteenth century territories, and other claimants); (2) American Indians and Their…

  16. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2012-12-01

    Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native

  17. 2013 Alaska Performance Scholarship Outcomes Report

    ERIC Educational Resources Information Center

    Rae, Brian

    2013-01-01

    In accordance with Alaska statute the departments of Education & Early Development (EED) and Labor and Workforce Development (DOLWD), the University of Alaska (UA), and the Alaska Commission on Postsecondary Education (ACPE) present this second annual report on the Alaska Performance Scholarship (APS). Among the highlights: (1) In the public…

  18. Geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    USGS Publications Warehouse

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    2015-01-01

    The boundaries separating the Alaska Peninsula terrane from other terranes are commonly indistinct or poorly defined. A few boundaries have been defined at major faults, although the extensions of these faults are speculative through some areas. The west side of the Alaska Peninsula terrane is overlapped by Tertiary s

  19. Geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    USGS Publications Warehouse

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    2015-01-01

    The boundaries separating the Alaska Peninsula terrane from other terranes are commonly indistinct or poorly defined. A few boundaries have been defined at major faults, although the extensions of these faults are speculative through some areas. The west side of the Alaska Peninsula terrane is overlapped by Tertiary sedimentary and volcanic rocks and Quaternary deposits.

  20. 78 FR 53137 - Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ...Phillips Transportation Alaska, Inc., ExxonMobil Pipeline Company; Notice of Complaint Take notice that on... formal complaint against BP Pipelines (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc.,...

  1. 36 CFR 242.19 - Special actions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., or temporary changes for subsistence uses on public lands. (g) You may not take fish and wildlife in... MANAGEMENT REGULATIONS FOR PUBLIC LANDS IN ALASKA Program Structure § 242.19 Special actions. (a) The Board... lands when necessary to assure the continued viability of a particular fish or wildlife population,...

  2. Metamorphic facies map of Alaska

    SciTech Connect

    Dusel-Bacon, C.; O-Rourke, E.F.; Reading, K.E.; Fitch, M.R.; Klute, M.A.

    1985-04-01

    A metamorphic-facies of Alaska has been compiled, following the facies-determination scheme of the Working Group for the Cartography of the Metamorphic Belts of the World. Regionally metamorphosed rocks are divided into facies series where P/T gradients are known and into facies groups where only T is known. Metamorphic rock units also are defined by known or bracketed age(s) of metamorphism. Five regional maps have been prepared at a scale of 1:1,000,000; these maps will provide the basis for a final colored version of the map at a scale of 1:2,500,000. The maps are being prepared by the US Geological Survey in cooperation with the Alaska Division of Geological and Geophysical Surveys. Precambrian metamorphism has been documented on the Seward Peninsula, in the Baird Mountains and the northeastern Kuskokwim Mountains, and in southwestern Alaska. Pre-Ordovician metamorphism affected the rocks in central Alaska and on southern Prince of Wales Island. Mid-Paleozoic metamorphism probably affected the rocks in east-central Alaska. Most of the metamorphic belts in Alaska developed during Mesozoic or early Tertiary time in conjuction with accretion of many terranes. Examples are Jurassic metamorphism in east-central Alaska, Early Cretaceous metamorphism in the southern Brooks Range and along the rim of the Yukon-Kovyukuk basin, and late Cretaceous to early Tertiary metamorphism in the central Alaska Range. Regional thermal metamorphism was associated with multiple episodes of Cretaceous plutonism in southeastern Alaska and with early Tertiary plutonism in the Chugach Mountains. Where possible, metamorphism is related to tectonism. Meeting participants are encouraged to comment on the present version of the metamorphic facies map.

  3. Special Days, Special Ways.

    ERIC Educational Resources Information Center

    Clarke, Jacqueline

    2001-01-01

    Presents unique ways to create special rituals that recognize individual students' achievements and milestones. Ideas include throwing a send-off party for a student who is moving; holding monthly birthday luncheons; choosing an ambassador to accompany new students around school; and making a lost tooth container that students can use to safely…

  4. 50 CFR 37.23 - Special use permit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL WILDLIFE REFUGE, ALASKA Exploration Plans § 37.23 Special use permit. (a) Within 45 days, or... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Special use permit. 37.23 Section...

  5. 50 CFR 37.23 - Special use permit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL WILDLIFE REFUGE, ALASKA Exploration Plans § 37.23 Special use permit. (a) Within 45 days, or... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Special use permit. 37.23 Section...

  6. 50 CFR 37.23 - Special use permit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL WILDLIFE REFUGE, ALASKA Exploration Plans § 37.23 Special use permit. (a) Within 45 days, or... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Special use permit. 37.23 Section...

  7. 50 CFR 37.23 - Special use permit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL WILDLIFE REFUGE, ALASKA Exploration Plans § 37.23 Special use permit. (a) Within 45 days, or... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Special use permit. 37.23 Section...

  8. 50 CFR 37.23 - Special use permit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL WILDLIFE REFUGE, ALASKA Exploration Plans § 37.23 Special use permit. (a) Within 45 days, or... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Special use permit. 37.23 Section...

  9. Size and perspective in Alaska.

    PubMed

    Towle, Jim

    2006-01-01

    By far America's largest state, Alaska has only 350 members, so effective communication matters in overcoming distance. Alaska has led the way in direct reimbursement, diversity in leadership, member involvement, and a distinctive lifestyle for its practitioners. The tripartite structure of organized dentistry is crucial in building understanding the issues involved in providing oral health care to the members of this vast state. PMID:17585733

  10. Alaska Athabascan stellar astronomy

    NASA Astrophysics Data System (ADS)

    Cannon, Christopher M.

    Stellar astronomy is a fundamental component of Alaska Athabascan cultures that facilitates time-reckoning, navigation, weather forecasting, and cosmology. Evidence from the linguistic record suggests that a group of stars corresponding to the Big Dipper is the only widely attested constellation across the Northern Athabascan languages. However, instruction from expert Athabascan consultants shows that the correlation of these names with the Big Dipper is only partial. In Alaska Gwich'in, Ahtna, and Upper Tanana languages the Big Dipper is identified as one part of a much larger circumpolar humanoid constellation that spans more than 133 degrees across the sky. The Big Dipper is identified as a tail, while the other remaining asterisms within the humanoid constellation are named using other body part terms. The concept of a whole-sky humanoid constellation provides a single unifying system for mapping the night sky, and the reliance on body-part metaphors renders the system highly mnemonic. By recognizing one part of the constellation the stargazer is immediately able to identify the remaining parts based on an existing mental map of the human body. The circumpolar position of a whole-sky constellation yields a highly functional system that facilitates both navigation and time-reckoning in the subarctic. Northern Athabascan astronomy is not only much richer than previously described; it also provides evidence for a completely novel and previously undocumented way of conceptualizing the sky---one that is unique to the subarctic and uniquely adapted to northern cultures. The concept of a large humanoid constellation may be widespread across the entire subarctic and have great antiquity. In addition, the use of cognate body part terms describing asterisms within humanoid constellations is similarly found in Navajo, suggesting a common ancestor from which Northern and Southern Athabascan stellar naming strategies derived.

  11. Alaska Interagency Ecosystem Health Work Group

    USGS Publications Warehouse

    Shasby, Mark

    2009-01-01

    The Alaska Interagency Ecosystem Health Work Group is a community of practice that recognizes the interconnections between the health of ecosystems, wildlife, and humans and meets to facilitate the exchange of ideas, data, and research opportunities. Membership includes the Alaska Native Tribal Health Consortium, U.S. Geological Survey, Alaska Department of Environmental Conservation, Alaska Department of Health and Social Services, Centers for Disease Control and Prevention, U.S. Fish and Wildlife Service, Alaska Sea Life Center, U.S. Environmental Protection Agency, and Alaska Department of Fish and Game.

  12. Record of decision of the Alaska State Director on the National Petroleum Reserve in Alaska

    SciTech Connect

    Not Available

    1983-05-01

    The Alaska State Director, Bureau of Land Management (BLM), has adopted the preferred alternative from the final environmental impact statement (FEIS) for oil and gas leasing in the National Petroleum Reserve in Alaska (NPR-A) as modified by this record of decision (ROD). This decision consists of: (1) Land allocation - deletion from leasing of 1,416,000 acres in the Utukok caribou calving area and the highest density black brant molting area; special management leasing of approximately 4,350,000 acres in four zones; and special and standard stipulations for leasing in the remaining approximately 17,787,000 acres of the reserve. (2) Leasing schedule - a 5-year leasing program for these areas not deleted or deferred that will offer approximately 2,000,000 acres annually. (3) Stipulations - the stipulations identified in the FEIS are generally adequate for all future leases and will be assigned to individual tracts as deemed necessary. This ROD specifically identifies stipulations that will be assigned to tracts and those which would be permit stipulations. (4) Studies and monitoring - the BLM will cooperate closely with the state and borough, monitoring activity on the reserve, gathering priority resource data and identifying specific study and research needs. (5) Subsistence - the lease schedule, lease stipulations, sale rate, development likelihood and future site-specific coordination with the north slope borough adequately mitigate subsistence impacts. 4 figures, 2 tables.

  13. Operation IceBridge Alaska

    NASA Astrophysics Data System (ADS)

    Larsen, C.

    2015-12-01

    The University of Alaska Fairbanks (UAF) has flown LiDAR missions for Operation IceBridge in Alaska each year since 2009, expanding upon UAF's airborne laser altimetry program which started in 1994. These observations show that Alaska's regional mass balance is -75+11/-16 Gt yr-1 (1994-2013) (Larsen et al., 2015). A surprising result is that the rate of surface mass loss observed on non-tidewater glaciers in Alaska is extremely high. At these rates, Alaska contributes ~1 mm to global sea level rise every 5 years. Given the present lack of adequate satellite resources, Operation IceBridge airborne surveys by UAF are the most effective and efficient method to monitor this region's impact on global sea level rise. Ice depth measurements using radar sounding have been part of these airborne surveys since 2012. Many of Alaska's tidewater glaciers are bedded significantly below sea level. The depth and extent of glacier beds below sea level are critical factors in the dynamics of tidewater retreat. Improved radar processing tools are being used to predict clutter using forward simulation. This is essential to properly sort out true bed returns, which are often masked or obscured by valley wall returns. This presentation will provide an overview of the program, highlighting recent findings and observations from the most recent campaigns, and focusing on techniques used for the extrapolation of surface elevation changes to regional mass balances.

  14. 36 CFR 13.1002 - Subsistence resident zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....1002 Section 13.1002 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and... resident zone for Gates of the Arctic National Park: Alatna, Allakaket, Ambler, Anaktuvuk Pass,...

  15. 36 CFR 13.1006 - Customary trade.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Customary trade. 13.1006 Section 13.1006 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and...

  16. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 13.1008 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and Preserve § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park...

  17. 36 CFR 13.1006 - Customary trade.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Customary trade. 13.1006 Section 13.1006 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and...

  18. 36 CFR 13.1006 - Customary trade.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Customary trade. 13.1006 Section 13.1006 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and...

  19. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 13.1008 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and Preserve § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park...

  20. 36 CFR 13.1002 - Subsistence resident zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....1002 Section 13.1002 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and... resident zone for Gates of the Arctic National Park: Alatna, Allakaket, Ambler, Anaktuvuk Pass,...

  1. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 13.1008 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and Preserve § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park...

  2. 36 CFR 13.1002 - Subsistence resident zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....1002 Section 13.1002 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and... resident zone for Gates of the Arctic National Park: Alatna, Allakaket, Ambler, Anaktuvuk Pass,...

  3. 36 CFR 13.1006 - Customary trade.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Customary trade. 13.1006 Section 13.1006 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and...

  4. 36 CFR 13.1002 - Subsistence resident zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....1002 Section 13.1002 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and... resident zone for Gates of the Arctic National Park: Alatna, Allakaket, Ambler, Anaktuvuk Pass,...

  5. 36 CFR 13.1004 - Aircraft use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Aircraft use. 13.1004 Section 13.1004 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and...

  6. 36 CFR 13.1006 - Customary trade.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Customary trade. 13.1006 Section 13.1006 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and...

  7. 36 CFR 13.1002 - Subsistence resident zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....1002 Section 13.1002 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and... resident zone for Gates of the Arctic National Park: Alatna, Allakaket, Ambler, Anaktuvuk Pass,...

  8. Improving Student Achievement in Alaska. Alaska Goals 2000 Annual Report, 1997-98.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau.

    Alaska Goals 2000 is part of a coordinated, statewide effort to improve public education for all students in Alaska. In 1997-1998, 90% of Alaska's federal funding was used to fund grants to local school districts, and 10% was used to fund state-level activities through the Alaska Department of Education. During 1997-1998, curriculum frameworks and…

  9. Alaska GeoFORCE, A New Geologic Adventure in Alaska

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2011-12-01

    RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. A program of rigorous academic activity combines with social, cultural, and recreational activities. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. This summer RAHI is launching a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science as the hook because most kids get excited about dinosaurs, volcanoes and earthquakes, but it includes physics, chemistry, math, biology and other sciences. Students will be recruited, initially from the Arctic North Slope schools, in the 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The carrot on the end of the stick is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks, Arizona, Oregon and the Appalachians. All trips are focused on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska is being launched by UAF in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska will be managed by UAF's long-standing Rural Alaska Honors Insitute (RAHI) that has been successfully providing intense STEM educational opportunities for Alaskan high school students for almost 30 years. The Texas program, with adjustments for differences in culture and environment, will be

  10. Alaska Native Education Study: A Statewide Study of Alaska Native Values and Opinions Regarding Education in Alaska.

    ERIC Educational Resources Information Center

    McDowell Group, Juneau, AK.

    This document contains four reports detailing a four-phase research project on Alaska Natives' attitudes and values toward education. A literature review examines the history of Native education in Alaska, issues in research on American Indian and Alaska Native education, dropout studies, student assessment, language and culture, learning styles,…

  11. Profile: American Indian/Alaska Native

    MedlinePlus

    ... million American Indians and Alaska Natives. Typically, this urban clientele has less accessibility to hospitals; health clinics ... IHS and tribal health programs. Studies on the urban American Indian and Alaska Native population have documented ...

  12. Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.

    This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and

  13. Trends in Alaska's People and Economy.

    ERIC Educational Resources Information Center

    Leask, Linda; Killorin, Mary; Martin, Stephanie

    This booklet provides data on Alaska's population, economy, health, education, government, and natural resources, including specific information on Alaska Natives. Since 1960, Alaska's population has tripled and become more diverse, more stable, older, less likely to be male or married, and more concentrated. About 69 percent of the population…

  14. Alaska Pipeline Insulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Crude oil moving through the 800-mile Trans-Alaska Pipeline must be kept at a relatively high temperature, about 180 degrees Fahrenheit, to maintain the fluidity of the oil. In Arctic weather, that demands highly effective insulation. General Electric Co.'s Space Division, Valley Forge, Pennsylvania, provided it with a spinoff product called Therm-O-Trol. Shown being installed on the pipeline, Therm-O-Trol is a metal-bonded polyurethane foam especially formulated for Arctic insulation. A second GE spinoff product, Therm-O-Case, solved a related problem involved in bringing hot crude oil from 2,000-foot-deep wells to the surface without transferring oil heat to the surrounding permafrost soil; heat transfer could melt the frozen terrain and cause dislocations that might destroy expensive well casings. Therm-O-Case is a double-walled oil well casing with multi-layered insulation which provides an effective barrier to heat transfer. Therm-O-Trol and Therm-O-Case are members of a family of insulating products which stemmed from technology developed by GE Space Division in heat transferlthermal control work on Gemini, Apollo and other NASA programs.

  15. Alexander Archipelago, Southeastern Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    West of British Columbia, Canada, and south of the Yukon Territory, the southeastern coastline of Alaska trails off into the islands of the Alexander Archipelago. The area is rugged and contains many long, U-shaped, glaciated valleys, many of which terminate at tidewater. The Alexander Archipelago is home to Glacier Bay National Park. The large bay that has two forks on its northern end is Glacier Bay itself. The eastern fork is Muir inlet, into which runs the Muir glacier, named for the famous Scottish-born naturalist John Muir. Glacier Bay opens up into the Icy Strait. The large, solid white area to the west is Brady Icefield, which terminates at the southern end in Brady's Glacier. To locate more interesting features from Glacier Bay National Park, take a look at the park service map. As recently as two hundred years ago, a massive ice field extended into Icy Strait and filled the Glacier Bay. Since that time, the area has experienced rapid deglaciation, with many large glaciers retreating 40, 60, even 80 km. While temperatures have increased in the region, it is still unclear whether the rapid recession is part of the natural cycle of tidewater glaciers or is an indicator of longer-term climate change. For more on Glacier Bay and climate change, read an online paper by Dr. Dorothy Hall, a MODIS Associate Science Team Member. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  16. Alaska Energy Inventory Project: Consolidating Alaska's Energy Resources

    NASA Astrophysics Data System (ADS)

    Papp, K.; Clough, J.; Swenson, R.; Crimp, P.; Hanson, D.; Parker, P.

    2007-12-01

    Alaska has considerable energy resources distributed throughout the state including conventional oil, gas, and coal, and unconventional coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass. While much of the known large oil and gas resources are concentrated on the North Slope and in the Cook Inlet regions, the other potential sources of energy are dispersed across a varied landscape from frozen tundra to coastal settings. Despite the presence of these potential energy sources, rural Alaska is mostly dependent upon diesel fuel for both electrical power generation and space heating needs. At considerable cost, large quantities of diesel fuel are transported to more than 150 roadless communities by barge or airplane and stored in large bulk fuel tank farms for winter months when electricity and heat are at peak demands. Recent increases in the price of oil have severely impacted the price of energy throughout Alaska, and especially hard hit are rural communities and remote mines that are off the road system and isolated from integrated electrical power grids. Even though the state has significant conventional gas resources in restricted areas, few communities are located near enough to these resources to directly use natural gas to meet their energy needs. To address this problem, the Alaska Energy Inventory project will (1) inventory and compile all available Alaska energy resource data suitable for electrical power generation and space heating needs including natural gas, coal, coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass and (2) identify locations or regions where the most economic energy resource or combination of energy resources can be developed to meet local needs. This data will be accessible through a user-friendly web-based interactive map, based on the Alaska Department of Natural Resources, Land Records Information Section's (LRIS) Alaska Mapper, Google Earth, and Terrago Technologies' Geo

  17. 76 FR 13660 - Notice of Public Meeting, BLM-Alaska Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ..., Alaska 99502. On April 26, the meeting starts at 1 p.m. in the training room. On April 27, the meeting... attend and need special assistance, such as sign language interpretation, transportation, or other.... Cribley, State Director. BILLING CODE 4310-JA-P...

  18. American Indian and Alaska Native Students and U.S. High Schools. Fact Sheet

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2008

    2008-01-01

    This fact sheet highlights the statistics of the status of the American Indian and Alaska Native high school students living in the continental United States in terms of: population; graduation, dropouts, and preparedness; schools, segregation, and teacher quality; and special, gifted, and college preparatory education. There are an estimated 4.4…

  19. 43 CFR 2091.9 - Segregation and opening resulting from laws specific to Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.9 Segregation and opening resulting from... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Segregation and opening resulting from laws specific to Alaska. 2091.9 Section 2091.9 Public Lands: Interior Regulations Relating to...

  20. 43 CFR 2091.9 - Segregation and opening resulting from laws specific to Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.9 Segregation and opening resulting from... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Segregation and opening resulting from laws specific to Alaska. 2091.9 Section 2091.9 Public Lands: Interior Regulations Relating to...

  1. 43 CFR 2091.9 - Segregation and opening resulting from laws specific to Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.9 Segregation and opening resulting from... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Segregation and opening resulting from laws specific to Alaska. 2091.9 Section 2091.9 Public Lands: Interior Regulations Relating to...

  2. 43 CFR 2091.9 - Segregation and opening resulting from laws specific to Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.9 Segregation and opening resulting from... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Segregation and opening resulting from laws specific to Alaska. 2091.9 Section 2091.9 Public Lands: Interior Regulations Relating to...

  3. Issues in the Education of American Indian and Alaska Native Students with Disabilities. ERIC Digest.

    ERIC Educational Resources Information Center

    Faircloth, Susan; Tippeconnic, John W., III

    Over 10 percent of American Indian and Alaska Native (AI/AN) students in public schools and more than 18 percent of AI/AN students in Bureau of Indian Affairs and tribal schools are eligible for or placed in special education programs. This digest addresses four selected issues in the education of AI/AN students with disabilities. First, the 1997…

  4. 40 CFR 60.4216 - What requirements must I meet for engines used in Alaska?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for Stationary Compression Ignition Internal Combustion Engines Special Requirements § 60.4216... manufacturing and installing engines meeting the requirements of 40 CFR parts 94 or 1042, as appropriate, rather... engines used in Alaska? 60.4216 Section 60.4216 Protection of Environment ENVIRONMENTAL PROTECTION...

  5. 40 CFR 60.4216 - What requirements must I meet for engines used in Alaska?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Performance for Stationary Compression Ignition Internal Combustion Engines Special Requirements § 60.4216... manufacturing and installing engines meeting the requirements of 40 CFR parts 94 or 1042, as appropriate, rather... engines used in Alaska? 60.4216 Section 60.4216 Protection of Environment ENVIRONMENTAL PROTECTION...

  6. 40 CFR 60.4216 - What requirements must I meet for engines used in Alaska?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Performance for Stationary Compression Ignition Internal Combustion Engines Special Requirements § 60.4216... manufacturing and installing engines meeting the requirements of 40 CFR parts 94 or 1042, as appropriate, rather... engines used in Alaska? 60.4216 Section 60.4216 Protection of Environment ENVIRONMENTAL PROTECTION...

  7. 36 CFR 223.201 - Limitations on unprocessed timber harvested in Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Limitations on unprocessed timber harvested in Alaska. 223.201 Section 223.201 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS,...

  8. 36 CFR 223.201 - Limitations on unprocessed timber harvested in Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Limitations on unprocessed timber harvested in Alaska. 223.201 Section 223.201 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS,...

  9. 36 CFR 223.201 - Limitations on unprocessed timber harvested in Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Limitations on unprocessed timber harvested in Alaska. 223.201 Section 223.201 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS,...

  10. Alaska volcanoes guidebook for teachers

    USGS Publications Warehouse

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  11. Teshekpuk Lake, Alaska

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This ASTER image of Teshekpuk Lake on Alaska's North Slope, within the National Petroleum Reserve, was acquired on August 15, 2000. It covers an area of 58.7 x 89.9 km, and is centered near 70.4 degrees north latitude, 153 degrees west longitude.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 58.7 by 89.9 kilometers (36.4 by 55.7 miles) Location: 70.4 degrees North latitude, 153 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: ASTER 30 meters (98.4 feet) Dates Acquired: August 15, 2000

  12. Tuberculosis among Children in Alaska.

    ERIC Educational Resources Information Center

    Gessner, Bradford D.

    1997-01-01

    The incidence of tuberculosis among Alaskan children under 15 was more than twice the national rate, with Alaska Native children showing a much higher incidence. Children with household exposure to adults with active tuberculosis had a high risk of infection. About 22 percent of pediatric tuberculosis cases were identified through school…

  13. Tularemia in Alaska, 1938 - 2010

    PubMed Central

    2011-01-01

    Tularemia is a serious, potentially life threatening zoonotic disease. The causative agent, Francisella tularensis, is ubiquitous in the Northern hemisphere, including Alaska, where it was first isolated from a rabbit tick (Haemophysalis leporis-palustris) in 1938. Since then, F. tularensis has been isolated from wildlife and humans throughout the state. Serologic surveys have found measurable antibodies with prevalence ranging from < 1% to 50% and 4% to 18% for selected populations of wildlife species and humans, respectively. We reviewed and summarized known literature on tularemia surveillance in Alaska and summarized the epidemiological information on human cases reported to public health officials. Additionally, available F. tularensis isolates from Alaska were analyzed using canonical SNPs and a multi-locus variable-number tandem repeats (VNTR) analysis (MLVA) system. The results show that both F. t. tularensis and F. t. holarctica are present in Alaska and that subtype A.I, the most virulent type, is responsible for most recently reported human clinical cases in the state. PMID:22099502

  14. A Title I Refinement: Alaska.

    ERIC Educational Resources Information Center

    Hazelton, Alexander E.; And Others

    Through joint planning with a number of school districts and the Region X Title I Technical Assistance Center, and with the help of a Title I Refinement grant, Alaska has developed a system of data storage and retrieval using microcomputers that assists small school districts in the evaluation and reporting of their Title I programs. Although this…

  15. Adventures in the Alaska Economy.

    ERIC Educational Resources Information Center

    Jackstadt, Steve; Huskey, Lee

    This publication was developed to increase students' understanding of basic economic concepts and the historical development of Alaska's economy. Comics depict major historical events as they occurred, but specific characters are fictionalized. Each of nine episodes is accompanied by several pages of explanatory text, which enlarges on the episode…

  16. Tularemia in Alaska, 1938 - 2010.

    PubMed

    Hansen, Cristina M; Vogler, Amy J; Keim, Paul; Wagner, David M; Hueffer, Karsten

    2011-01-01

    Tularemia is a serious, potentially life threatening zoonotic disease. The causative agent, Francisella tularensis, is ubiquitous in the Northern hemisphere, including Alaska, where it was first isolated from a rabbit tick (Haemophysalis leporis-palustris) in 1938. Since then, F. tularensis has been isolated from wildlife and humans throughout the state. Serologic surveys have found measurable antibodies with prevalence ranging from < 1% to 50% and 4% to 18% for selected populations of wildlife species and humans, respectively. We reviewed and summarized known literature on tularemia surveillance in Alaska and summarized the epidemiological information on human cases reported to public health officials. Additionally, available F. tularensis isolates from Alaska were analyzed using canonical SNPs and a multi-locus variable-number tandem repeats (VNTR) analysis (MLVA) system. The results show that both F. t. tularensis and F. t. holarctica are present in Alaska and that subtype A.I, the most virulent type, is responsible for most recently reported human clinical cases in the state. PMID:22099502

  17. Reclamation challenges at Usibelli Coal Mine in Healy, Alaska

    SciTech Connect

    Jackson, L.P.

    1998-12-31

    Successful reclamation in the Interior of Alaska requires planning in order to avoid major setbacks. Usibelli Coal Mine is located at a North Latitude of approximately 64 degrees. Temperature extremes in the Interior of Alaska range from a high of 90 degrees Fahrenheit to a low of minus 60 degrees Fahrenheit. The challenges in this sub-arctic climate are many. Several unique reclamation challenges are present due to the cold climate. Discontinuous permafrost is prevalent on north facing slopes. This presents stability problems if placed in inappropriate locations. Very detailed planning is required to assure that no stability problems occur. The construction of drainage channels in ice-rich permafrost areas also requires extra care to assure that water flows along the surface rather than down into the spoil. Mineral topsoil is often not present on the areas to be mined. Often non-salvageable organic permafrost soils are present. These require special handling and must be isolated to avoid stability problems. Since the ground is frozen for 7--8 months a year the reestablishment of vegetation requires a very aggressive planting schedule. Grass seed is applied by fixed wing aircraft and shrubs are planted from locally collected seed. By planning properly prior to mining successful reclamation can take place in the Interior of Alaska.

  18. Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

    1991-01-01

    The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

  19. Minority Women's Health: American Indians/Alaska Natives

    MedlinePlus

    ... Health > American Indians/Alaska Natives Minority Women's Health American Indians/Alaska Natives Related information How to Talk to ... disease. Return to top Health conditions common in American Indian and Alaska Native women Accidents Alcoholism and drug ...

  20. Forestry timber typing. Tanana demonstration project, Alaska ASVT. [Alaska

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Ambrosia, V. G.

    1982-01-01

    The feasibility of using LANDSAT digital data in conjunction with topographic data to delineate commercial forests by stand size and crown closure in the Tanana River basin of Alaska was tested. A modified clustering approach using two LANDSAT dates to generate an initial forest type classification was then refined with topographic data. To further demonstrate the ability of remotely sensed data in a fire protection planning framework, the timber type data were subsequently integrated with terrain information to generate a fire hazard map of the study area. This map provides valuable assistance in initial attack planning, determining equipment accessibility, and fire growth modeling. The resulting data sets were incorporated into the Alaska Department of Natural Resources geographic information system for subsequent utilization.

  1. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... From the Federal Register Online via the Government Publishing Office ] ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 239 and 258 Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit... proposes to approve Alaska's modification of its approved Municipal Solid Waste Landfill (MSWLF)...

  2. Fisheries Education in Alaska. Conference Report. Alaska Sea Grant Report 82-4.

    ERIC Educational Resources Information Center

    Smoker, William W., Ed.

    This conference was an attempt to have the fishing industry join the state of Alaska in building fisheries education programs. Topics addressed in papers presented at the conference include: (1) fisheries as a part of life in Alaska, addressing participation of Alaska natives in commercial fisheries and national efforts; (2) the international…

  3. Alaska Native Participation in the Civilian Conservation Corps. Alaska Historical Commission Studies in History No. 206.

    ERIC Educational Resources Information Center

    Sorensen, Connor; And Others

    The report is a finding aid to the sources which document the 1937 federal policy decision mandating that 50% of the enrollees in the Civilian Conservation Corps (CCC) in Alaska must be Alaska Natives and provides a list of the Native CCC projects in Alaska. The finding aid section is organized according to the location of the collections and…

  4. Unified Ecoregions of Alaska: 2001

    USGS Publications Warehouse

    Nowacki, Gregory J.; Spencer, Page; Fleming, Michael; Brock, Terry; Jorgenson, Torre

    2003-01-01

    Major ecosystems have been mapped and described for the State of Alaska and nearby areas. Ecoregion units are based on newly available datasets and field experience of ecologists, biologists, geologists and regional experts. Recently derived datasets for Alaska included climate parameters, vegetation, surficial geology and topography. Additional datasets incorporated in the mapping process were lithology, soils, permafrost, hydrography, fire regime and glaciation. Thirty two units are mapped using a combination of the approaches of Bailey (hierarchial), and Omernick (integrated). The ecoregions are grouped into two higher levels using a 'tri-archy' based on climate parameters, vegetation response and disturbance processes. The ecoregions are described with text, photos and tables on the published map.

  5. Alaska Natural Gas Transportation System

    SciTech Connect

    Jones, V.T.

    1984-04-27

    The proven reserves of natural gas in Prudhoe Bay remain the single largest block of reserves under US control. The sponsors of the Alaska Natural Gas Transportation System, including The Williams Companies, remain convinced that Alaskan gas will be increasingly important to meet future needs here in the lower 48 states. Both Canada and the US will increasingly have to turn to more costly supplies of gas as the closer, traditional areas of gas supply are exhausted. A principal motivation for Canada's participation in the ANGTS was the prospect of a jointly sponsored pipeline through Canada which would facilitate bringing frontier gas to market - through the so-called Dempster lateral. The high cost of transportation systems in the Artic necessitates pipelines with large capacities in order to minimize the cost of transportation per unit of gas delivered. It is clear that Canada still strongly supports the ANGTS project as a means of opening up the frontier resources of both Alaska and Canada.

  6. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    USGS Publications Warehouse

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  7. 36 CFR 251.122 - Historical operator special use authorizations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... use authorizations. 251.122 Section 251.122 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Revenue-Producing Visitor Services in Alaska § 251.122 Historical operator special use authorizations. (a) A historical operator has the right to continue to provide...

  8. 36 CFR 251.122 - Historical operator special use authorizations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... use authorizations. 251.122 Section 251.122 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Revenue-Producing Visitor Services in Alaska § 251.122 Historical operator special use authorizations. (a) A historical operator has the right to continue to provide...

  9. 36 CFR 251.122 - Historical operator special use authorizations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... use authorizations. 251.122 Section 251.122 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Revenue-Producing Visitor Services in Alaska § 251.122 Historical operator special use authorizations. (a) A historical operator has the right to continue to provide...

  10. 36 CFR 251.122 - Historical operator special use authorizations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... use authorizations. 251.122 Section 251.122 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Revenue-Producing Visitor Services in Alaska § 251.122 Historical operator special use authorizations. (a) A historical operator has the right to continue to provide...

  11. 36 CFR 251.122 - Historical operator special use authorizations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... use authorizations. 251.122 Section 251.122 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Revenue-Producing Visitor Services in Alaska § 251.122 Historical operator special use authorizations. (a) A historical operator has the right to continue to provide...

  12. 24 CFR 1003.203 - Special economic development activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Special economic development activities. 1003.203 Section 1003.203 Housing and Urban Development Regulations Relating to Housing and Urban... URBAN DEVELOPMENT COMMUNITY DEVELOPMENT BLOCK GRANTS FOR INDIAN TRIBES AND ALASKA NATIVE...

  13. Holocene coastal glaciation of Alaska

    NASA Astrophysics Data System (ADS)

    Calkin, Parker E.; Wiles, Gregory C.; Barclay, David J.

    2001-01-01

    Holocene fluctuations of the three cirque glaciers on the Seward Peninsula and five groups of tidewater- and land-terminating glaciers along the northernmost Gulf of Alaska, provide a proxy record of late Holocene climatic change. Furthermore, the movements of the coastal glaciers were relevant to late Holocene native American migration. The earliest expansion was recorded about 6850 yr BP by Hubbard Glacier at the head of Yakutat Bay in the Gulf of Alaska; however, its down-fjord advance to the bay mouth was delayed until ˜2700 BP. Similarly, expansions of the Icy Bay, Bering, and McCarty glaciers occurred near their present termini by ˜3600-3000 BP, compatible with marked cooling and precipitation increases suggested by the Alaskan pollen record. Decrease in glacier activity ˜2000 BP was succeeded by advances of Gulf coastal glaciers between 1500 and 1300 BP, correlative with early Medieval expansions across the Northern Hemisphere. A Medieval Optimum, encompassing at least a few centuries prior to AD 1200 is recognized by general retreat of land-terminating glaciers, but not of all tidewater glaciers. Little Ice Age advances of land-based glaciers, many dated with the precision of tree-ring cross-dating, were centered on the middle 13th or early 15th centuries, the middle 17th and the last half of the 19th century A.D. Strong synchrony of these events across coastal Alaska is evident.

  14. Specialized Science

    PubMed Central

    Fang, Ferric C.

    2014-01-01

    As the body of scientific knowledge in a discipline increases, there is pressure for specialization. Fields spawn subfields that then become entities in themselves that promote further specialization. The process by which scientists join specialized groups has remarkable similarities to the guild system of the middle ages. The advantages of specialization of science include efficiency, the establishment of normative standards, and the potential for greater rigor in experimental research. However, specialization also carries risks of monopoly, monotony, and isolation. The current tendency to judge scientific work by the impact factor of the journal in which it is published may have roots in overspecialization, as scientists are less able to critically evaluate work outside their field than before. Scientists in particular define themselves through group identity and adopt practices that conform to the expectations and dynamics of such groups. As part of our continuing analysis of issues confronting contemporary science, we analyze the emergence and consequences of specialization in science, with a particular emphasis on microbiology, a field highly vulnerable to balkanization along microbial phylogenetic boundaries, and suggest that specialization carries significant costs. We propose measures to mitigate the detrimental effects of scientific specialism. PMID:24421049

  15. Specialized science.

    PubMed

    Casadevall, Arturo; Fang, Ferric C

    2014-04-01

    As the body of scientific knowledge in a discipline increases, there is pressure for specialization. Fields spawn subfields that then become entities in themselves that promote further specialization. The process by which scientists join specialized groups has remarkable similarities to the guild system of the middle ages. The advantages of specialization of science include efficiency, the establishment of normative standards, and the potential for greater rigor in experimental research. However, specialization also carries risks of monopoly, monotony, and isolation. The current tendency to judge scientific work by the impact factor of the journal in which it is published may have roots in overspecialization, as scientists are less able to critically evaluate work outside their field than before. Scientists in particular define themselves through group identity and adopt practices that conform to the expectations and dynamics of such groups. As part of our continuing analysis of issues confronting contemporary science, we analyze the emergence and consequences of specialization in science, with a particular emphasis on microbiology, a field highly vulnerable to balkanization along microbial phylogenetic boundaries, and suggest that specialization carries significant costs. We propose measures to mitigate the detrimental effects of scientific specialism. PMID:24421049

  16. Special Needs.

    ERIC Educational Resources Information Center

    Braswell, Ray, Ed.

    This document contains the following papers on special needs instruction and technology: (1) "Hawaii Special Education Teacher Induction" (Kalena Oliva and Quinn Avery); (2) "The Impact of Group v Individual Use of Hypermedia-Based Instruction" (Lewis R. Johnson, Louis P. Semrau, and Gail E. Fitzgerald); (3) "Assistive Technology Meets…

  17. 78 FR 39314 - Notice of Availability of the Decision Record for the Delta River Special Recreation Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... Bureau of Land Management Notice of Availability of the Decision Record for the Delta River Special... the availability of the Decision Record (DR) for the Delta River Special Recreation Management Area... Assessment (EA) for the Delta River Special Recreation Management Area (SRMA) Plan and East Alaska...

  18. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and

  19. Alaska School District Cost Study Update

    ERIC Educational Resources Information Center

    Tuck, Bradford H.; Berman, Matthew; Hill, Alexandra

    2005-01-01

    The Legislative Budget and Audit Committee of the Alaska Legislature has asked The Institute of Social and Economic Research (ISER) at the University of Alaska Anchorage to make certain changes and adjustments to the Geographic Cost of Education Index (GCEI) that the American Institutes for Research (AIR) constructed and reported on in Alaska…

  20. Bill Demmert and Native Education in Alaska

    ERIC Educational Resources Information Center

    Barnhardt, Ray

    2011-01-01

    This article describes the influences of William Demmert's formative years growing up in Alaska and his years as an educator of Native American students upon his career in Native education policy. It focuses on Alaska Native education during a ten-year period between 1980 and 1990 during which time he served as the director of the Center for…

  1. Women's Legal Rights in Alaska. Reprint.

    ERIC Educational Resources Information Center

    Tatter, Sue Ellen; Saville, Sandra K.

    This publication is intended to help women in Alaska learn about their legal rights. Some of the information is of a general nature and will be of interest to women in other states. Some of the laws and resources are relevant to Alaska only. The publication can serve as a model to other states wanting to develop a resource to inform women about…

  2. Culturally Responsive Guidelines for Alaska Public Libraries.

    ERIC Educational Resources Information Center

    Alaska Univ., Fairbanks. Alaska Native Knowledge Network.

    These guidelines are predicated on the belief that culturally appropriate service to indigenous peoples is a fundamental principle of Alaska public libraries. While the impetus for developing the guidelines was service to the Alaska Native community, they can also be applied to other cultural groups. A culturally responsive library environment is…

  3. Building a Workforce Development System in Alaska

    ERIC Educational Resources Information Center

    Spieker, Sally

    2004-01-01

    The Alaska Human Resources Investment Council developed a blueprint to guide a system that is needs-driven, accessible, interconnected, accountable, sustainable, and has collaborative governance. Vocational Technical Education Providers (VTEP) representing secondary education, technical schools, proprietary institutions, the University of Alaska,…

  4. Distance Learning in Alaska's Rural Schools.

    ERIC Educational Resources Information Center

    Bramble, William J.

    1986-01-01

    The distance education and instructional technology projects that have been undertaken in Alaska over the last decade are detailed in this paper. The basic services offered by the "Learn Alaska Network" are described in relation to three user groups: K-12 education; postsecondary education; and general public education and information. The audio…

  5. 77 FR 16314 - Alaska Disaster #AK-00024

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... ADMINISTRATION Alaska Disaster AK-00024 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Alaska dated 03/13/2012... INFORMATION CONTACT: A. Escobar, Office of Disaster Assistance, U.S. Small Business Administration, 409...

  6. 78 FR 39822 - Alaska Disaster #AK-00028

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... ADMINISTRATION Alaska Disaster AK-00028 AGENCY: U.S. Small Business Administration. ACTION: Notice SUMMARY: This is a Notice of the Presidential declaration of a major disaster for the State of Alaska (FEMA-4122-DR... INFORMATION CONTACT: A. Escobar, Office of Disaster Assistance, U.S. Small Business Administration, 409...

  7. 75 FR 43199 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... approving the conveyance of surface estate for certain lands to Beaver Kwit'chin Corporation, pursuant to... Doyon, Limited when the surface estate is conveyed to Beaver Kwit'chin Corporation. The lands are in the vicinity of Beaver, Alaska, and are located in: Fairbanks Meridian, Alaska T. 16 N., R. 1 E., Secs. 1 to...

  8. 77 FR 21802 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Kongnikilnomuit Yuita Corporation. The lands are in the vicinity of Bill Moore's Slough, Alaska, and are located... conveyance pursuant to the Alaska Native Claims Settlement Act (43 U.S.C. 1601, et seq). The subsurface... hours. Jennifer Noe, Land Law Examiner, Land Transfer Adjudication II Branch. BILLING CODE 4310-JA-P...

  9. Alaska Head Start. Annual Report for 1998.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Community and Regional Affairs, Juneau.

    This annual report details the accomplishments of the Alaska Head Start Program for fiscal year 1998. The report begins with a graphic presentation of the locations of Alaska Head Start programs and a table delineating the administrative and program partners of Head Start, its service population, eligibility requirements, funding sources, service…

  10. Facts & Figures about Education in Alaska, 1992.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau.

    This collection of tables presents selected facts and figures about education in Alaska. General and district school information about Alaska's 469 public schools in 54 districts and its 276 private and denominational schools is followed by tables of general student information, including average daily membership, enrollment, graduates, and…

  11. Integrating Intercultural Education: The Anchorage Alaska Experience.

    ERIC Educational Resources Information Center

    Fenton, Ray

    The desire for students to understand and respect each other is a primary motivation for the effort to integrate multicultural education into all aspects of the Anchorage School District (Alaska) curriculum. The Anchorage curriculum emphasizes the cultural heritage of Alaska Natives, other resident ethnic groups and Pacific Rim cultures. In recent…

  12. Viewpoints: Reflections on the Principalship in Alaska.

    ERIC Educational Resources Information Center

    Hagstrom, David A., Ed.

    In this collection, 32 Alaskan principals, retired principals, assistant principals, and principals-to-be share their experiences as administrators and reflect on their feelings about the nature of the work and about schooling issues in Alaska. Nine of the writings were selected from "Totem Tales," the newsletter of Alaska's Association of…

  13. 14 CFR 93.69 - Special requirements, Lake Campbell and Sixmile Lake Airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Special requirements, Lake Campbell and... Anchorage, Alaska, Terminal Area § 93.69 Special requirements, Lake Campbell and Sixmile Lake Airports. Each person operating an aircraft to or from Lake Campbell or Sixmile Lake Airport shall conform to the...

  14. 36 CFR 251.124 - Preferred operator competitive special use authorization procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... competitive special use authorization procedures. 251.124 Section 251.124 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Revenue-Producing Visitor Services in Alaska § 251.124 Preferred operator competitive special use authorization procedures. (a) In selecting persons...

  15. 36 CFR 251.124 - Preferred operator competitive special use authorization procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... competitive special use authorization procedures. 251.124 Section 251.124 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Revenue-Producing Visitor Services in Alaska § 251.124 Preferred operator competitive special use authorization procedures. (a) In selecting persons...

  16. 36 CFR 251.124 - Preferred operator competitive special use authorization procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... competitive special use authorization procedures. 251.124 Section 251.124 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Revenue-Producing Visitor Services in Alaska § 251.124 Preferred operator competitive special use authorization procedures. (a) In selecting persons...

  17. 36 CFR 251.124 - Preferred operator competitive special use authorization procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... competitive special use authorization procedures. 251.124 Section 251.124 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Revenue-Producing Visitor Services in Alaska § 251.124 Preferred operator competitive special use authorization procedures. (a) In selecting persons...

  18. 36 CFR 251.124 - Preferred operator competitive special use authorization procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... competitive special use authorization procedures. 251.124 Section 251.124 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Revenue-Producing Visitor Services in Alaska § 251.124 Preferred operator competitive special use authorization procedures. (a) In selecting persons...

  19. Native Pathways to Education: Alaska Rural Systemic Initiative.

    ERIC Educational Resources Information Center

    Alaska Univ., Fairbanks.

    The Alaska Federation of Natives, in cooperation with the University of Alaska, received funding to implement the Alaska Rural Systemic Initiative (AKRSI). Over a 5-year period (1995-2000), AKRSI initiatives are systematically documenting the indigenous knowledge systems of Alaska Native people and developing educational policies and practices…

  20. Infant Mortality and American Indians/Alaska Natives

    MedlinePlus

    ... Heath & Mortality Infant Mortality and American Indians/Alaska Natives American Indian/Alaska Natives have 1.5 times the ... Cause of Death (By rank) # American Indian/Alaska Native Deaths American Indian/Alaska Native Death Rate #Non- Hispanic White ...

  1. The Alaska State Writing Consortium: The First Five Years.

    ERIC Educational Resources Information Center

    Parson, Gail

    This booklet documents the first 5 years of the Alaska State Writing Consortium, an association made up of 45 Alaska school districts, the Alaska Department of Education, and the University of Alaska. The Consortium, which oversees the organization and implementation of teacher training programs in writing and the teaching of writing, has five…

  2. Special Delivery.

    ERIC Educational Resources Information Center

    Zimmer, Phil

    1986-01-01

    Specialized publications such as "Opera News,""Gourmet," and "Forbes" can bring an institution's story to targeted audiences. The experiences of Chautauqua Institution are described. Some of the benefits of marketing articles to these publications are discussed. (MLW)

  3. Metalliferous lode deposits of Alaska

    USGS Publications Warehouse

    Berg, Henry C.; Cobb, Edward Huntington

    1967-01-01

    This report summarizes from repoAs of Federal and State agencies published before August 31, 1965, the geology of Alaska's metal-bearing lodes, including their structural or stratigraphic control, host rock, mode of origin, kinds of .Q minerals, grade, past production, and extent of exploration. In addition, the lists of mineral occurrences that accompany the 35 mineral-deposit location maps constitute an inventory of the State's known lodes. A total of 692 localities where m&alliferous deposits have been found are shown on the maps. The localities include 1,739 mines, prospects, and reported occurrences, of which 821 are described individually or otherwise cited in the text.

  4. 78 FR 57106 - Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment 95 to the Fishery Management Plan for... implement Amendment 95 to the Fishery Management Plan for Groundfish of the Gulf of Alaska (FMP). This proposed action would modify halibut prohibited species catch (PSC) management in the Gulf of Alaska...

  5. Hyperspectral surveying for mineral resources in Alaska

    USGS Publications Warehouse

    Kokaly, Raymond F.; Graham, Garth E.; Hoefen, Todd M.; Kelley, Karen D.; Johnson, Michaela R.; Hubbard, Bernard E.

    2016-07-07

    Alaska is a major producer of base and precious metals and has a high potential for additional undiscovered mineral resources. However, discovery is hindered by Alaska’s vast size, remoteness, and rugged terrain. New methods are needed to overcome these obstacles in order to fully evaluate Alaska’s geology and mineral resource potential. Hyperspectral surveying is one method that can be used to rapidly acquire data about the distributions of surficial materials, including different types of bedrock and ground cover. In 2014, the U.S. Geological Survey began the Alaska Hyperspectral Project to assess the applicability of this method in Alaska. The primary study area is a remote part of the eastern Alaska Range where porphyry deposits are exposed. In collaboration with the Alaska Division of Geological and Geophysical Surveys, the University of Alaska Fairbanks, and the National Park Service, the U.S. Geological Survey is collecting and analyzing hyperspectral data with the goals of enhancing geologic mapping and developing methods to identify and characterize mineral deposits elsewhere in Alaska.

  6. Review: groundwater in Alaska (USA)

    USGS Publications Warehouse

    Callegary, J.B.; Kikuchi, C.P.; Koch, J.C.; Lilly, M.R.; Leake, S.A.

    2013-01-01

    Groundwater in the US state of Alaska is critical to both humans and ecosystems. Interactions among physiography, ecology, geology, and current and past climate have largely determined the location and properties of aquifers as well as the timing and magnitude of fluxes to, from, and within the groundwater system. The climate ranges from maritime in the southern portion of the state to continental in the Interior, and arctic on the North Slope. During the Quaternary period, topography and rock type have combined with glacial and periglacial processes to develop the unconsolidated alluvial aquifers of Alaska and have resulted in highly heterogeneous hydrofacies. In addition, the long persistence of frozen ground, whether seasonal or permanent, greatly affects the distribution of aquifer recharge and discharge. Because of high runoff, a high proportion of groundwater use, and highly variable permeability controlled in part by permafrost and seasonally frozen ground, understanding groundwater/surface-water interactions and the effects of climate change is critical for understanding groundwater availability and the movement of natural and anthropogenic contaminants.

  7. The United States National Climate Assessment - Alaska Technical Regional Report

    USGS Publications Warehouse

    Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart; Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart

    2012-01-01

    The Alaskan landscape is changing, both in terms of effects of human activities as a consequence of increased population, social and economic development and their effects on the local and broad landscape; and those effects that accompany naturally occurring hazards such as volcanic eruptions, earthquakes, and tsunamis. Some of the most prevalent changes, however, are those resulting from a changing climate, with both near term and potential upcoming effects expected to continue into the future. Alaska's average annual statewide temperatures have increased by nearly 4°F from 1949 to 2005, with significant spatial variability due to the large latitudinal and longitudinal expanse of the State. Increases in mean annual temperature have been greatest in the interior region, and smallest in the State's southwest coastal regions. In general, however, trends point toward increases in both minimum temperatures, and in fewer extreme cold days. Trends in precipitation are somewhat similar to those in temperature, but with more variability. On the whole, Alaska saw a 10-percent increase in precipitation from 1949 to 2005, with the greatest increases recorded in winter. The National Climate Assessment has designated two well-established scenarios developed by the Intergovernmental Panel on Climate Change (Nakicenovic and others, 2001) as a minimum set that technical and author teams considered as context in preparing portions of this assessment. These two scenarios are referred to as the Special Report on Emissions Scenarios A2 and B1 scenarios, which assume either a continuation of recent trends in fossil fuel use (A2) or a vigorous global effort to reduce fossil fuel use (B1). Temperature increases from 4 to 22°F are predicted (to 2070-2099) depending on which emissions scenario (A2 or B1) is used with the least warming in southeast Alaska and the greatest in the northwest. Concomitant with temperature changes, by the end of the 21st century the growing season is expected

  8. 77 FR 50712 - Information Collection: Southern Alaska Sharing Network and Subsistence Study; Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... Bureau of Ocean Energy Management Information Collection: Southern Alaska Sharing Network and Subsistence... in Alaska, ``Southern Alaska Sharing Network and Subsistence Study.'' DATES: Submit written comments.... Title: Southern Alaska Sharing Network and Subsistence Study. Abstract: The Bureau of Ocean...

  9. Geology of the Alaska-Juneau lode system, Alaska

    USGS Publications Warehouse

    Twenhofel, William Stephens

    1952-01-01

    The Alaska-Juneau lode system for many years was one of the worlds leading gold-producing areas. Total production from the years 1893 to 1946 has amounted to about 94 million dollars, with principal values in contained gold but with some silver and lead values. The principal mine is the Alaska-Juneau mine, from which the lode system takes its name. The lode system is a part of a larger gold-bearing belt, generally referred to as the Juneau gold belt, along the western border of the Coast Range batholith. The rocks of the Alaska-Juneau lode system consist of a monoclinal sequence of steeply northeasterly dipping volcanic, state, and schist rocks, all of which have been metamorphosed by dynamic and thermal processes attendant with the intrusion of the Coast Range batholith. The rocks form a series of belts that trend northwest parallel to the Coast Range. In addition to the Coast Range batholith lying a mile to the east of the lode system, there are numerous smaller intrusives, all of which are sill-like in form and are thus conformable to the regional structure. The bedded rocks are Mesozoic in age; the Coast Range batholith is Upper Jurassic and Lower Cretaceous in age. Some of the smaller intrusives pre-date the batholith, others post-date it. All of the rocks are cut by steeply dipping faults. The Alaska-Juneau lode system is confined exclusively to the footwall portion of the Perseverance slate band. The slate band is composed of black slate and black phyllite with lesser amounts of thin-bedded quartzite. Intrusive into the slate band are many sill-like bodies of rocks generally referred to as meta-gabbro. The gold deposits of the lode system are found both within the slate rocks and the meta-gabbro rocks, and particularly in those places where meta-gabbro bodies interfinger with slate. Thus the ore bodies are found in and near the terminations of meta-gabbro bodies. The ore bodies are quartz stringer-lodes composed of a great number of quartz veins from 6

  10. Special Advocate.

    ERIC Educational Resources Information Center

    Vander Weele, Maribeth

    1992-01-01

    Thomas Hehir, special education chief of Chicago Public Schools, is evangelist of integrating children with disabilities into regular classrooms. By completely reorganizing department viewed as political patronage dumping ground, Hehir has made remarkable progress in handling large number of children awaiting evaluation and placement in special…

  11. Columbia Glacier, Alaska, 1986-2011

    NASA Video Gallery

    The Columbia Glacier in Alaska is one of many vanishing around the world. Glacier retreat is one of the most direct and understandable effects of climate change. The consequences of the decline in ...

  12. 77 FR 35998 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Nunapiglluraq Corporation (Native Village of Hamilton). The decision approves the surface estate in the lands... is conveyed to Nunapiglluraq Corporation. The lands are in the vicinity of Hamilton, Alaska, and...

  13. Alaska Simulator - A Journey to Planning

    NASA Astrophysics Data System (ADS)

    Weber, Barbara; Pinggera, Jakob; Zugal, Stefan; Wild, Werner

    The Alaska Simulator is an interactive software tool developed at the University of Innsbruck which allows people to test, analyze and improve their own planning behavior. In addition, the Alaska Simulator can be used for studying research questions in the context of software project management and other related fields. Thereby, the Alaska Simulator uses a journey as a metaphor for planning a software project. In the context of software project management the simulator can be used to compare traditional rather plan-driven project management methods with more agile approaches. Instead of pre-planning everything in advance agile approaches spread planning activities throughout the project and provide mechanisms for effectively dealing with uncertainty. The biggest challenge thereby is to find the right balance between pre-planning activities and keeping options open. The Alaska Simulator allows to explore how much planning is needed under different circumstances.

  14. 76 FR 72212 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... conveyance pursuant to the Alaska Native Claims Settlement Act (43 U.S.C. 1601, et seq). The subsurface... published four times in The Delta Discovery. DATES: Any party claiming a property interest in the...

  15. 78 FR 64002 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... for conveyance pursuant to the Alaska Native Claims Settlement Act (43 U.S.C. 1601, et seq.). The... decision will also be published once a week for four ] consecutive weeks in the Delta Discovery. DATES:...

  16. 77 FR 20046 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... described below pursuant to the Alaska Native Claims Settlement Act (ANCSA) (43 U.S.C. 1601, et seq.). The lands being approved for conveyance are lands originally selected under ANCSA in the withdrawal area...

  17. Advancing Efforts to Energize Native Alaska (Brochure)

    SciTech Connect

    Not Available

    2013-04-01

    This brochure describes key programs and initiatives of the DOE Office of Indian Energy Policy and Programs to advance energy efficiency, renewable energy, and energy infrastructure projects in Alaska Native villages.

  18. Cross Cultural Scientific Communication in Alaska

    NASA Astrophysics Data System (ADS)

    Bertram, K. B.

    2006-12-01

    An example of cross-cultural education is provided by the Aurora Alive curriculum. Aurora Alive communicates science to Alaska Native students through cross-cultural educational products used in Alaska schools for more than a decade, including (1) a CDROM that provides digital graphics, bilingual (English and Athabascan language) narration-over-text and interactive elements that help students visualize scientific concepts, and (2) Teacher's Manuals containing more than 150 hands-on activities aligned to national science standards, and to Alaska Standards for Culturally Responsive Schools. Created by Native Elders and teachers working together with University Alaska Fairbanks Geophysical Institute scientists, Aurora Alive blends Native "ways of knowing" with current "western" research to teach the physics and math of the aurora.

  19. Propagation measurements in Alaska using ACTS beacons

    NASA Technical Reports Server (NTRS)

    Mayer, Charles E.

    1991-01-01

    The placement of an ACTS propagation terminal in Alaska has several distinct advantages. First is the inclusion of a new and important climatic zone to the global propagation model. Second is the low elevation look angle from Alaska to ACTS. These two unique opportunities also present problems unique to the location, such as extreme temperatures and lower power levels. These problems are examined and compensatory solutions are presented.

  20. Mercury in polar bears from Alaska

    SciTech Connect

    Lentfer, J.W.; Galster, W.A.

    1987-04-01

    Alaskan polar bear (Ursus maritimus) muscle and liver samples collected in 1972 were analyzed for total mercury. Bears north of Alaska had more mercury than bears west of Alaska. The only difference between young and adult animals was in the northern area where adults had more mercury in liver tissue than young animals. Levels were probably not high enough to be a serious threat to bears.

  1. Accretion tectonics and crustal structure in Alaska

    USGS Publications Warehouse

    Coney, P.J.; Jones, D.L.

    1985-01-01

    The entire width of the North American Cordillera in Alaska is made up of "suspect terranes". Pre-Late Cretaceous paleogeography is poorly constrained and the ultimate origins of the many fragments which make up the state are unclear. The Prince William and Chugach terranes accreted since Late Cretaceous time and represent the collapse of much of the northeast Pacific Ocean swept into what today is southern Alaska. Greater Wrangellia, a composite terrane now dispersed into fragments scattered from Idaho to southern Alaska, apparently accreted into Alaska in Late Cretaceous time crushing an enormous deep-marine flysch basin on its inboard side. Most of interior eastern Alaska is the Yukon Tanana terrane, a very large entirely fault-bounded metamorphic-plutonic assemblage covering thousands of square kilometers in Canada as well as Alaska. The original stratigraphy and relationship to North America of the Yukon-Tanana terrane are both obscure. A collapsed Mesozoic flysch basin, similar to the one inboard of Wrangellia, lies along the northern margin. Much of Arctic Alaska was apparently a vast expanse of upper Paleozoic to Early Mesozoic deep marine sediments and mafic volcanic and plutonic rocks now scattered widely as large telescoped sheets and Klippen thrust over the Ruby geanticline and the Brooks Range, and probably underlying the Yukon-Koyukuk basin and the Yukon flats. The Brooks Range itself is a stack of north vergent nappes, the telescoping of which began in Early Cretaceous time. Despite compelling evidence for thousands of kilometers of relative displacement between the accreted terranes, and large amounts of telescoping, translation, and rotation since accretion, the resulting new continental crust added to North America in Alaska carries few obvious signatures that allow application of currently popular simple plate tectonic models. Intraplate telescoping and strike-slip translations, delamination at mid-crustal levels, and large-scale lithospheric

  2. Coastal geomorphology of arctic Alaska

    USGS Publications Warehouse

    Barnes, Peter W.; Rawlinson, Stuart E.; Reimnitz, Erk

    1988-01-01

    The treeless, tundra-plain of northern Alaska merges with the Arctic Ocean along a coastal area characterized by low tundra bluffs, and sparse coastal and delta dunes. Coastal engineering projects that aggrade or degrade permafrost will alter the geomorphology and rates of coastal processes by changing coastal stability. Similarly, projects that modify the ice environment (artificial islands) or the coastal configuration (causeways) will cause nature to readjust to the new process regime, resulting in modification of the coast. In this paper the authors describe the coastal geomorphology from Barrow to the Canadian border. In addition, they provide a general outline and extensive references of the major coastal processes operating in this environment that will be useful on coastal environments elsewhere in the Arctic.

  3. Exporting Alaska's oil and gas

    SciTech Connect

    Singer, S.F.; Copulos, M.; Watkins, D.J.

    1983-02-22

    Federal legislation that prohibits the commercial export of oil and gas is creating a glut and discouraging oil production in California, while raising energy costs by shipping the fuel to the East and Gulf Coasts. The historical security reasons for blocking the export of Alaskan oil no longer exist, yet they continue to impose costs for the taxpayer. The optimum solution appears to be to export liquefied natural gas, using a pipeline paralleling the oil pipeline to Valdez. This would encourage the use and manufacture in Alaska of urea and ammonia fertilizer for export to the Far East, which would enhance US/Japan relations. The possibility of exports of additional oil, bringing a higher return for producers, will encourage production, reduce the need for OPEC oil, and moderate world oil prices. 5 references.

  4. Crustal structure of Bristol Bay Region, Alaska

    SciTech Connect

    Cooper, A.K.; McLean, H.; Marlow, M.S.

    1985-04-01

    Bristol Bay lies along the northern side of the Alaska Peninsula and extends nearly 600 km southwest from the Nushagak lowlands on the Alaska mainland to near Unimak Island. The bay is underlain by a sediment-filled crustal downwarp known as the north Aleutian basin (formerly Bristol basin) that dips southeast toward the Alaska Peninsula and is filled with more than 6 km of strata, dominantly of Cenozoic age. The thickest parts of the basin lie just north of the Alaska Peninsula and, near Port Mollar, are in fault contact with older Mesozoic sedimentary rocks. These Mesozoic rocks form the southern structural boundary of the basin and extend as an accurate belt from at least Cook Inlet to Zhemchug Canyon (central Beringian margin). Offshore multichannel seismic-reflection, sonobuoy seismic-refraction, gravity, and magnetic data collected by the USGS in 1976 and 1982 indicate that the bedrock beneath the central and northern parts of the basin comprises layered, high-velocity, and highly magnetic rocks that are locally deformed. The deep bedrock horizons may be Mesozoic(.) sedimentary units that are underlain by igneous or metamorphic rocks and may correlate with similar rocks of mainland western Alaska and the Alaska Peninsula. Regional structural and geophysical trends for these deep horizons change from northeast-southwest to northwest-southeast beneath the inner Bering shelf and may indicate a major crustal suture along the northern basin edge.

  5. Geologic Map of Central (Interior) Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Dover, James H.; Bradley, Dwight C.; Weber, Florence R.; Bundtzen, Thomas K.; Haeussler, Peter J.

    1998-01-01

    Introduction: This map and associated digital databases are the result of a compilation and reinterpretation of published and unpublished 1:250,000- and limited 1:125,000- and 1:63,360-scale mapping. The map area covers approximately 416,000 sq km (134,000 sq mi) and encompasses 25 1:250,000-scale quadrangles in central Alaska. The compilation was done as part of the U.S. Geological Survey National Surveys and Analysis project, whose goal is nationwide assemble geologic, geochemical, geophysical, and other data. This map is an early product of an effort that will eventually encompass all of Alaska, and is the result of an agreement with the Alaska Department of Natural Resources, Division of Oil And Gas, to provide data on interior basins in Alaska. A paper version of the three map sheets has been published as USGS Open-File Report 98-133. Two geophysical maps that cover the identical area have been published earlier: 'Bouguer gravity map of Interior Alaska' (Meyer and others, 1996); and 'Merged aeromagnetic map of Interior Alaska' (Meyer and Saltus, 1995). These two publications are supplied in the 'geophys' directory of this report.

  6. Alaska

    Atmospheric Science Data Center

    2014-05-15

    ... This image appears three-dimensional when viewed through red/blue glasses with the red filter over the left eye. It may help to darken the room lights when viewing the image on a computer screen. The Yukon River is ...

  7. New/Emerging Pests in Alaska: Will Climate Change Favor Insect Expansion Into Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of its geographical isolation and climatic constraints, Alaska agriculture is considered relatively free of diseases and insect pests. However, since 1973, the winter temperatures in Alaska have increased by 2-3 C'. It is logical to assume that continued global climate change could produce ...

  8. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    SciTech Connect

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  9. Building Alaska's Science and Engineering Pipeline: Evaluation of the Alaska Native Science & Engineering Program

    ERIC Educational Resources Information Center

    Bernstein, Hamutal; Martin, Carlos; Eyster, Lauren; Anderson, Theresa; Owen, Stephanie; Martin-Caughey, Amanda

    2015-01-01

    The Urban Institute conducted an implementation and participant-outcomes evaluation of the Alaska Native Science & Engineering Program (ANSEP). ANSEP is a multi-stage initiative designed to prepare and support Alaska Native students from middle school through graduate school to succeed in science, technology, engineering, and math (STEM)…

  10. Alaska Native Languages: Past, Present, and Future. Alaska Native Language Center Research Papers No. 4.

    ERIC Educational Resources Information Center

    Krauss, Michael E.

    Three papers (1978-80) written for the non-linguistic public about Alaska Native languages are combined here. The first is an introduction to the prehistory, history, present status, and future prospects of all Alaska Native languages, both Eskimo-Aleut and Athabaskan Indian. The second and third, presented as appendixes to the first, deal in…

  11. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  12. 77 FR 2972 - City and Borough of Sitka, Alaska, Alaska; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission City and Borough of Sitka, Alaska, Alaska; Notice of Availability of Environmental Assessment In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's (Commission...

  13. 75 FR 3888 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... Register on November 20, 2009 (74 FR 60228), to propose migratory bird subsistence harvest regulations in... Fish and Wildlife Service 50 CFR Part 92 RIN 1018-AW67 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2010 Season AGENCY: Fish and Wildlife...

  14. 41 CFR 302-3.218 - Are there any special circumstances when my agency may authorize me travel and transportation...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false Are there any special... Alaska or Hawaii? 302-3.218 Section 302-3.218 Public Contracts and Property Management Federal Travel...; or (b) Your agency is in need to recruit employees with special skills and knowledge and/or to...

  15. Glaciers of North America - Glaciers of Alaska

    USGS Publications Warehouse

    Molnia, Bruce F.

    2008-01-01

    Glaciers cover about 75,000 km2 of Alaska, about 5 percent of the State. The glaciers are situated on 11 mountain ranges, 1 large island, an island chain, and 1 archipelago and range in elevation from more than 6,000 m to below sea level. Alaska's glaciers extend geographically from the far southeast at lat 55 deg 19'N., long 130 deg 05'W., about 100 kilometers east of Ketchikan, to the far southwest at Kiska Island at lat 52 deg 05'N., long 177 deg 35'E., in the Aleutian Islands, and as far north as lat 69 deg 20'N., long 143 deg 45'W., in the Brooks Range. During the 'Little Ice Age', Alaska's glaciers expanded significantly. The total area and volume of glaciers in Alaska continue to decrease, as they have been doing since the 18th century. Of the 153 1:250,000-scale topographic maps that cover the State of Alaska, 63 sheets show glaciers. Although the number of extant glaciers has never been systematically counted and is thus unknown, the total probably is greater than 100,000. Only about 600 glaciers (about 1 percent) have been officially named by the U.S. Board on Geographic Names (BGN). There are about 60 active and former tidewater glaciers in Alaska. Within the glacierized mountain ranges of southeastern Alaska and western Canada, 205 glaciers (75 percent in Alaska) have a history of surging. In the same region, at least 53 present and 7 former large ice-dammed lakes have produced jokulhlaups (glacier-outburst floods). Ice-capped volcanoes on mainland Alaska and in the Aleutian Islands have a potential for jokulhlaups caused by subglacier volcanic and geothermal activity. Because of the size of the area covered by glaciers and the lack of large-scale maps of the glacierized areas, satellite imagery and other satellite remote-sensing data are the only practical means of monitoring regional changes in the area and volume of Alaska's glaciers in response to short- and long-term changes in the maritime and continental climates of the State. A review of the

  16. Gallstones in American Indian/Alaska Native Women

    MedlinePlus

    ... Asian-Americans Native Hawaiians and other Pacific Islanders American Indians/Alaska Natives Immigrant and migrant issues Taking care ... Enter email address Submit Home > Minority Women's Health > American Indians/Alaska Natives Minority Women's Health Gallstones Health conditions ...

  17. Influence of political opposition and compromise on conservation outcomes in the Tongass National Forest, Alaska.

    PubMed

    Beier, Colin M

    2008-12-01

    To understand how a highly contentious policy process influenced a major conservation effort, I examined the origins, compromises, and outcomes of the Alaska National Interest Lands Conservation Act of 1980 (ANILCA) for the Tongass National Forest. Tongass wilderness designation was among the most controversial issues in the ANILCA debate, and it faced strong opposition from influential lawmakers, land managers, and Alaska residents. To investigate the influence of this opposition on Tongass conservation outcomes, I conducted a gap analysis of Tongass reserves and a policy analysis of the ANILCA debate and traced the influence of specific interests through the amendments, negotiations, and resulting compromises needed to enact ANILCA. Overall, I found that Tongass reserves comprise a broadly representative cross-section of ecosystems and species habitats in southeastern Alaska. Redrawn reserve boundaries, industry subsidies, and special access regulations reflected compromises to minimize the impact of wilderness conservation on mining, timber, and local stakeholder interests, respectively. Fragmentation of the Admiralty Island National Monument-the most ecologically valuable and politically controversial reserve-resulted from compromises with Alaskan Native (indigenous peoples of Alaska) corporations and timber interests. Despite language to accommodate "reasonable access" to wilderness reserves, ongoing access limitations highlight the concerns of Alaska residents that opposed ANILCA several decades ago. More broadly, the Tongass case suggests that early and ambitious conservation action may offset strong political opposition; compromises needed to establish key reserves often exacerbate development impacts in unprotected areas; and efforts to minimize social conflicts are needed to safeguard the long-term viability of conservation measures.

  18. Earthquake Hazard and Risk in Alaska

    NASA Astrophysics Data System (ADS)

    Black Porto, N.; Nyst, M.

    2014-12-01

    Alaska is one of the most seismically active and tectonically diverse regions in the United States. To examine risk, we have updated the seismic hazard model in Alaska. The current RMS Alaska hazard model is based on the 2007 probabilistic seismic hazard maps for Alaska (Wesson et al., 2007; Boyd et al., 2007). The 2015 RMS model will update several key source parameters, including: extending the earthquake catalog, implementing a new set of crustal faults, updating the subduction zone geometry and reoccurrence rate. First, we extend the earthquake catalog to 2013; decluster the catalog, and compute new background rates. We then create a crustal fault model, based on the Alaska 2012 fault and fold database. This new model increased the number of crustal faults from ten in 2007, to 91 faults in the 2015 model. This includes the addition of: the western Denali, Cook Inlet folds near Anchorage, and thrust faults near Fairbanks. Previously the subduction zone was modeled at a uniform depth. In this update, we model the intraslab as a series of deep stepping events. We also use the best available data, such as Slab 1.0, to update the geometry of the subduction zone. The city of Anchorage represents 80% of the risk exposure in Alaska. In the 2007 model, the hazard in Alaska was dominated by the frequent rate of magnitude 7 to 8 events (Gutenberg-Richter distribution), and large magnitude 8+ events had a low reoccurrence rate (Characteristic) and therefore didn't contribute as highly to the overall risk. We will review these reoccurrence rates, and will present the results and impact to Anchorage. We will compare our hazard update to the 2007 USGS hazard map, and discuss the changes and drivers for these changes. Finally, we will examine the impact model changes have on Alaska earthquake risk. Consider risk metrics include average annual loss, an annualized expected loss level used by insurers to determine the costs of earthquake insurance (and premium levels), and the

  19. A History of Schooling for Alaska Native People.

    ERIC Educational Resources Information Center

    Barnhardt, Carol

    2001-01-01

    Reviews the geographic and demographic contexts of Alaska schooling, federal policies that have affected education in Alaska, and the evolution of schooling for Alaska Native people. Describes the development of a dual federal/territorial system of schools, the initiation of federal and state reform efforts, Native-sponsored educational…

  20. Chronic Liver Disease and American Indians/Alaska Natives

    MedlinePlus

    ... Disease Chronic Liver Disease and American Indians/Alaska Natives Among American Indians and Alaska Natives, chronic liver disease is ... 54. 1 At a glance – Cancer Rates for American Indian/Alaska Natives (2008-2012) Cancer Incidence Rates per 100,000 – ...

  1. 50 CFR 18.94 - Pacific walrus (Alaska).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Pacific walrus (Alaska). 18.94 Section 18... Marine Mammal Species § 18.94 Pacific walrus (Alaska). (a) Pursuant to sections 101(a)(3)(A) 103, and 109... walrus (Odobenus rosmarus) in waters or on lands subject to the jurisdiction of the State of Alaska,...

  2. 50 CFR 18.94 - Pacific walrus (Alaska).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Pacific walrus (Alaska). 18.94 Section 18... Marine Mammal Species § 18.94 Pacific walrus (Alaska). (a) Pursuant to sections 101(a)(3)(A) 103, and 109... walrus (Odobenus rosmarus) in waters or on lands subject to the jurisdiction of the State of Alaska,...

  3. 50 CFR 18.94 - Pacific walrus (Alaska).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Pacific walrus (Alaska). 18.94 Section 18... Marine Mammal Species § 18.94 Pacific walrus (Alaska). (a) Pursuant to sections 101(a)(3)(A) 103, and 109... walrus (Odobenus rosmarus) in waters or on lands subject to the jurisdiction of the State of Alaska,...

  4. 50 CFR 18.94 - Pacific walrus (Alaska).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Pacific walrus (Alaska). 18.94 Section 18... Marine Mammal Species § 18.94 Pacific walrus (Alaska). (a) Pursuant to sections 101(a)(3)(A) 103, and 109... walrus (Odobenus rosmarus) in waters or on lands subject to the jurisdiction of the State of Alaska,...

  5. 50 CFR 18.94 - Pacific walrus (Alaska).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Pacific walrus (Alaska). 18.94 Section 18... Marine Mammal Species § 18.94 Pacific walrus (Alaska). (a) Pursuant to sections 101(a)(3)(A) 103, and 109... walrus (Odobenus rosmarus) in waters or on lands subject to the jurisdiction of the State of Alaska,...

  6. Minorities in Higher Education. The Changing North: Alaska.

    ERIC Educational Resources Information Center

    Kleinfeld, Judith; And Others

    This report examines the educational status of ethnic and racial minorities in Alaska and draws attention to the ways demographic changes in Alaska may affect these groups. The Alaska Native population, as opposed to other ethnic minorities, is the focal point of this study. This is the largest minority group in the state and the one experiencing…

  7. 47 CFR 80.387 - Frequencies for Alaska fixed stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Frequencies for Alaska fixed stations. 80.387... SERVICES STATIONS IN THE MARITIME SERVICES Frequencies Alaska Fixed Stations § 80.387 Frequencies for Alaska fixed stations. (a) The carrier frequencies listed in (b) of this section are assignable for...

  8. 47 CFR 80.387 - Frequencies for Alaska fixed stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Frequencies for Alaska fixed stations. 80.387... SERVICES STATIONS IN THE MARITIME SERVICES Frequencies Alaska Fixed Stations § 80.387 Frequencies for Alaska fixed stations. (a) The carrier frequencies listed in (b) of this section are assignable for...

  9. 47 CFR 80.387 - Frequencies for Alaska fixed stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Frequencies for Alaska fixed stations. 80.387... SERVICES STATIONS IN THE MARITIME SERVICES Frequencies Alaska Fixed Stations § 80.387 Frequencies for Alaska fixed stations. (a) The carrier frequencies listed in (b) of this section are assignable for...

  10. 47 CFR 80.387 - Frequencies for Alaska fixed stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Frequencies for Alaska fixed stations. 80.387... SERVICES STATIONS IN THE MARITIME SERVICES Frequencies Alaska Fixed Stations § 80.387 Frequencies for Alaska fixed stations. (a) The carrier frequencies listed in (b) of this section are assignable for...

  11. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Alaska wildlife areas. 3101.5-3 Section... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations....

  12. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Alaska wildlife areas. 3101.5-3 Section... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations....

  13. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Alaska wildlife areas. 3101.5-3 Section... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations....

  14. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Alaska wildlife areas. 3101.5-3 Section... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations....

  15. Anchorage Kindergarten Profile: Implementing the Alaska Kindergarten Developmental Profile.

    ERIC Educational Resources Information Center

    Fenton, Ray

    This paper discusses the development of the Anchorage Kindergarten Developmental Profile in the context of the Alaska Kindergarten Developmental Profile and presents some evaluation results from studies of the Anchorage measure. Alaska mandated the completion of an Alaska Developmental Profile (ADP) on each kindergarten student and each student…

  16. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  17. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  18. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  19. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  20. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  1. Pillar Mountain Landslide, Kodiak, Alaska

    USGS Publications Warehouse

    Kachadoorian, Reuben; Slater, Willard H.

    1978-01-01

    Pillar Mountain landslide on the southeast face of Pillar Mountain is about 915 m (3,000 ft) southwest of the city of Kodiak, Alaska. The landslide is about 520 m (1,700 ft) wide at its base and extends approximately from sea level to an altitude of about 343 m (1,125 ft). The slide developed on an ancient and apparently inactive landslide. Renewed movement was first detected on December 5, 1971, following removal of about 230,000 m3 (300,000 yd3) of material from the base of the slope. Although movement of the landslide has decreased since December, 1971, movement continues and the possibility exists that it could increase as a result of an earthquake, water saturation of the landslide mass, or other causes. In the most extreme case, as much as 3.8 to 7.6 million m (5-10 million ) of debris could fall into the sea at Inner Anchorage. If this took place suddenly, it could generate a wave comparable in height to the tsunami that damaged Kodiak during the Alaskan Earthquake of 1964. Therefore, we believe that the Pillar landslide is a potential hazard to the city of Kodiak and its environs that merits a thorough investigation and evaluation.

  2. Chariot, Alaska Site Fact Sheet

    SciTech Connect

    2013-01-16

    The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.

  3. Amchitka, Alaska Site Fact Sheet

    SciTech Connect

    2011-12-15

    Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation.

  4. Southeastern Alaska tectonostratigraphic terranes revisited

    SciTech Connect

    Brew, D.A.; Ford, A.B.

    1985-04-01

    The presence of only three major tectonostratigraphic terranes (TSTs) in southeastern Alaska and northwestern British Columbia (Chugach, Wrangell, and Alexander) is indicated by critical analysis of available age, stratigraphic, and structural data. A possible fourth TST (Stikine) is probably an equivalent of part or all of the Alexander. The Yakutat block belongs to the Chugach TST, and both are closely linked to the Wrangell and Alexander(-Stikine) TSTs; the Gravina TST is an overlap assemblage. THe Alexander(-Stikine) TSTs is subdivided on the basis of age and facies. The subterranes within it share common substrates and represent large-scale facies changes in a long-lived island-arc environment. The Taku TSTs is the metamorphic equivalent of the upper part (Permian and Upper Triassic) of the Alexander(-Stikine) TSTs with some fossil evidence preserved that indicates the age of protoliths. Similarly, the Tracy Arm TST is the metamorphic equivalent of (1) the lower (Ordovician to Carboniferous) Alexander TST without any such fossil evidence and (2) the upper (Permian to Triassic) Alexander(-Stikine) with some newly discovered fossil evidence. Evidence for the ages of juxtaposition of the TSTs is limited. The Chugach TST deformed against the Wrangell and Alexander TSTs in late Cretaceous. Gravina rocks were deformed at the time and also earlier. The Wrangell TST was stitched to the Alexander(-Stikine) by middle Cretaceous plutons but may have arrived before its Late Jurassic plutons were emplaced. The Alexander(-Stikine) and Cache Creek TSTs were juxtaposed before Late Triassic.

  5. Knik Glacier, Alaska; summary of 1979, 1980, and 1981 data and introduction of new surveying techniques

    USGS Publications Warehouse

    Mayo, L.R.; Trabant, D.C.

    1982-01-01

    Knik Glacier in south-central Alaska has the potential to reform Lake George, Alaska 's largest glacier-dammed lake. Measurements of surface altitude, snow depth, terminus position, glacier speed, and ice depth are being made in an attempt to determine the mechanisms that could cause a significant re-advance of the glacier. New surveying and data reduction techniques were developed by the authors and employed successfully at Knik Glacier. These include precise geodetic surveying by the ' trisection ' technique, calculation of surface altitude at a specially-fixed ' index point ' from three point measurements on a rough, moving glacier surface, and calculation of ice thickness from low frequency radar measurements. In addition, this report summarizes the data collected from 1979 to 1981 in support of this goal. (USGS)

  6. 77 FR 38013 - Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ...--FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA 0 1. The authority citation for part 679 continues to... National Oceanic and Atmospheric Administration 50 CFR Part 679 RIN 0648-BC23 Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment 88; Correction AGENCY:...

  7. 77 FR 4290 - TransCanada Alaska Company, LLC; Notice of Public Scoping Meeting for the Planned Alaska Pipeline...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission TransCanada Alaska Company, LLC; Notice of Public Scoping Meeting for the... cancelled on January 4, 2012, because TransCanada Alaska Company, LLC (TC Alaska) had not filed its...

  8. The Alaska experience using store-and-forward telemedicine for ENT care in Alaska.

    PubMed

    Kokesh, John; Ferguson, A Stewart; Patricoski, Chris

    2011-12-01

    This article discusses the development, evaluation, and growth of telemedicine in Alaska. Store-and-forward telemedicine has been used to deliver ear, nose, and throat (ENT) care to rural Alaska since 2002. It has proved valuable in the treatment of many conditions of the head and neck, and it is particularly well suited for the diagnosis and treatment of ear disease. Usage has grown steadily as telemedicine has become widely accepted. Store-and-forward telemedicine has been shown within the Alaska Native Health System to improve access for care and reduce wait times, as well as decrease travel-associated costs for patients. PMID:22032488

  9. The Alaska experience using store-and-forward telemedicine for ENT care in Alaska.

    PubMed

    Kokesh, John; Ferguson, A Stewart; Patricoski, Chris

    2011-12-01

    This article discusses the development, evaluation, and growth of telemedicine in Alaska. Store-and-forward telemedicine has been used to deliver ear, nose, and throat (ENT) care to rural Alaska since 2002. It has proved valuable in the treatment of many conditions of the head and neck, and it is particularly well suited for the diagnosis and treatment of ear disease. Usage has grown steadily as telemedicine has become widely accepted. Store-and-forward telemedicine has been shown within the Alaska Native Health System to improve access for care and reduce wait times, as well as decrease travel-associated costs for patients.

  10. Water availability, quality, and use in Alaska

    USGS Publications Warehouse

    Balding, G.O.

    1976-01-01

    The Alaska Water Assessment, sponsored by the Water Resources Council, is a specific problem analysis for Alaska of the National Assessment of Water and Related Land Resources. The Alaska region has been divided into six hydrologic subregions and eighteen subareas. For each subarea, estimated mean annual runoff per square mile, suspended-sediment concentrations that can be expected during ' normal ' summer runoff, flood magnitudes and frequencies, and ground-water yields are illustrated on maps. Tables show water quality of both ground water and surface water from selected wells and streams. Water use according to the type of use is discussed, and estimates are given for the amounts used. Water-use categories include domestic, irrigation, livestock, seafood processing, oil and gas development, petrochemical processing, pulp mills, hydroelectric , coal processing, steam electric, mineral processing, sand and gravel mining, and fish-hatchery operations. (Woodard-USGS)

  11. Analysis of Alaska hydro power development

    SciTech Connect

    Sieber, O.V.

    1983-12-01

    Alaska leads the world in terms of total potential for hydropower development, yet Alaska is 91% dependent on fossil fuels. A mix of gas, diesel and coal-fired power plants generate all but 9% of its electricity. This dependence on fossil fuels stems from the abundance of cheap gas, coal and oil-nonrenewable resources that are becoming more costly. Hydro power is also costly; however, most hydro projects are justified by long term returns. Once the water hits the turbine in a hydro project, the operating and maintenance cost is practically nil. The successful completion of two complex thin-arch concrete dams and several other hydro projects are discussed in order to meet Alaska's power demand.

  12. Paleoindians in beringia: evidence from arctic alaska.

    PubMed

    Kunz, M L; Reanier, R E

    1994-02-01

    Excavations at the Mesa site in arctic Alaska provide evidence for a Paleoindian occupation of Beringia, the region adjacent to the Bering Strait. Eleven carbon-14 dates on hearths associated with Paleoindian projectile points place humans at the site between 9,730 and 11,660 radiocarbon years before present (years B.P.). The presence of Paleoindians in Beringia at these times challenges the notion that Paleoindian cultures arose exclusively in mid-continental North America. The age span of Paleoindians at the Mesa site overlaps with dates from two other cultural complexes in interior Alaska. A hiatus in the record of human occupation occurs between 10,300 and 11,000 years B.P. Late Glacial climatic fluctuations may have made northern Alaska temporarily unfavorable for humans and spurred their southward dispersal. PMID:17747660

  13. Regional Observations of Alaska Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Burgess, E. W.; Forster, R. R.; Hall, D. K.

    2010-12-01

    Alaska glaciers contribute more to sea level rise than any other glacierized mountain region in the world. Alaska is loosing ~84 Gt of ice annually, which accounts for ~0.23 mm/yr of SLR (Luthcke et al., 2008). Complex glacier flow dynamics, frequently related to tidewater environments, is the primary cause of such rapid mass loss (Larsen et al., 2007). Indirect observations indicate these complex flow dynamics occur on many glaciers throughout Alaska, but no comprehensive velocity measurements exist. We are working to measure glacier surface velocities throughout Alaska using synthetic aperture radar (SAR) offset tracking. This work focuses on the Seward/Malaspina, Bering, Columbia, Kaskawulsh, and Hubbard Glaciers and uses a MODIS land surface temperature "melt-day" product (Hall et al., 2006, 2008) to identify potential links between velocity variability and summertime temperature fluctuations. Hall, D., R. Williams Jr., K. Casey, N. DiGirolamo, and Z. Wan (2006), Satellite-derived, melt-season surface temperature of the Greenland Ice Sheet (2000-2005) and its relationship to mass balance, Geophysical Research Letters, 33(11). Hall, D., J. Box, K. Casey, S. Hook, C. Shuman, and K. Steffen (2008), Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland, Remote Sensing of Environment, 112(10), 3739-3749. Larsen, C. F., R. J. Motyka, A. A. Arendt, K. A. Echelmeyer, and P. E. Geissler (2007), Glacier changes in southeast Alaska and northwest British Columbia and contribution to sea level rise, J. Geophys. Res. Luthcke, S., A. Arendt, D. Rowlands, J. McCarthy, and C. Larsen (2008), Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions, Journal of Glaciology, 54(188), 767-777.

  14. Alaska Natives assessing the health of their environment.

    PubMed

    Garza, D

    2001-11-01

    The changes in Alaska's ecosystems caused by pollution, contaminants and global climate change are negatively impacting Alaska Natives and rural residents who rely on natural resources for food, culture and community identity. While Alaska commerce has contributed little to these global changes and impacts, Alaska and its resources are nonetheless affected by the changes. While Alaska Natives have historically relied on Alaska's land, water and animals for survival and cultural identity, today their faith in the safety and quality of these resources has decreased. Alaska Natives no longer believe that these wild resources are the best and many are turning to alternative store-bought foods. Such a change in diet and activity may be contributing to a decline in traditional activities and a decline in general health. Contaminants are showing up in the animals, fish and waters that Alaska Natives use. Efforts need to be expanded to empower Alaska Native Tribes to collect and analyze local wild foods for various contaminants. In addition existing information on contaminants and pollution should be made readily available to Alaska residents. Armed with this type of information Alaska Native residents will be better prepared to make informed decisions on using wild foods and materials. PMID:11768422

  15. Shaded Relief Mosaic of Umnak Island, Aleutian Islands, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image is a shaded relief mosaic of Umnak Island in Alaska's Aleutian Islands.

    It was created with Airsar data that was geocoded and combined into this mosaic as part of a NASA-funded Alaska Digital Elevation Model Project at the Alaska Synthetic Aperture Radar Facility (ASF) at the University of Alaska Geophysical Institute in Fairbanks, Alaska.

    Airsar collected the Alaska data as part of its PacRim 2000 Mission, which took the instrument to French Polynesia, American and Western Samoa, Fiji, New Zealand, Australia, New Guinea, Indonesia, Malaysia, Cambodia, Philippines, Taiwan, South Korea, Japan, Northern Marianas, Guam, Palau, Hawaii and Alaska. Airsar, part of NASA's Airborne Science Program, is managed for NASA's Earth Science Enterprise by JPL. JPL is a division of the California Institute of Technology in Pasadena.

  16. Perspective View of Umnak Island, Aleutian Islands, Alaska (#1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image is a perspective view of Umnak Island, one of Alaska's Aleutian Islands. The active Okmok volcano appears in the center of the island.

    The image was created by draping a Landsat 7 Thematic Mapper image over a digital elevation mosaic derived from Airsar data.

    This work was conducted as part of a NASA-funded Alaska Digital Elevation Model Project at the Alaska Synthetic Aperture Radar Facility (ASF) at the University of Alaska Geophysical Institute in Fairbanks, Alaska.

    Airsar collected the Alaska data as part of its PacRim 2000 Mission, which took the instrument to French Polynesia, American and Western Samoa, Fiji, New Zealand, Australia, New Guinea, Indonesia, Malaysia, Cambodia, Philippines, Taiwan, South Korea, Japan, Northern Marianas, Guam, Palau, Hawaii and Alaska. Airsar, part of NASA's Airborne Science Program, is managed for NASA's Earth Science Enterprise by JPL. JPL is a division of the California Institute of Technology in Pasadena.

  17. Perspective View of Umnak Island, Aleutian Islands, Alaska (#2)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image is a perspective view of Umnak Island, one of Alaska's Aleutian Islands. The active Okmok volcano appears in the center of the island.

    The image was created by draping a Landsat 7 Thematic Mapper image over a digital elevation mosaic derived from Airsar data.

    This work was conducted as part of a NASA-funded Alaska Digital Elevation Model Project at the Alaska Synthetic Aperture Radar Facility (ASF) at the University of Alaska Geophysical Institute in Fairbanks, Alaska.

    Airsar collected the Alaska data as part of its PacRim 2000 Mission, which took the instrument to French Polynesia, American and Western Samoa, Fiji, New Zealand, Australia, New Guinea, Indonesia, Malaysia, Cambodia, Philippines, Taiwan, South Korea, Japan, Northern Marianas, Guam, Palau, Hawaii and Alaska. Airsar, part of NASA's Airborne Science Program, is managed for NASA's Earth Science Enterprise by JPL. JPL is a division of the California Institute of Technology in Pasadena.

  18. A native corporation evaluates potential of Alaska`s Kandik area

    SciTech Connect

    Hite, D.M.

    1997-11-17

    Alaska`s regional Native corporations control large tracts of land with significant mineral and hydrocarbon potential. One of these 12 corporations, Doyon Ltd., has extensive holdings with the potential for large oil and gas accumulations. The most promising is the Kandik region of east-central Alaska. Recent compilations and research involving the organic geochemistry, stratigraphy, and timing of structural deformation in the Kandik area have resulted in much more optimistic appraisals of the oil potential. These studies indicate that known oil-prone source units may have generated 50--100 billion bbl of oil. Some of these data have recently been made available to the public through the Alaska Division of Geological and Geophysical Surveys. The paper discusses the exploration history, stratigraphy, geologic structure, hydrocarbon potential, and prospective areas.

  19. Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.

    1996-01-01

    During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).

  20. Deep-seated gravitational slope deformations near the Trans-Alaska Pipeline, east-central Alaska Range, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Newman, S. D.; Clague, J. J.; Rabus, B.; Stead, D.

    2013-12-01

    Multiple, active, deep-seated gravitational slope deformations (DSGSD) are present near the Trans-Alaska Pipeline and Richardson Highway in the east-central Alaska Range, Alaska, USA. We documented spatial and temporal variations in rates of surface movement of the DSGSDs between 2003 and 2011 using RADARSAT-1 and RADARSAT-2 D-InSAR images. Deformation rates exceed 10 cm/month over very large areas (>1 km2) of many rock slopes. Recent climatic change and strong seismic shaking, especially during the 2002 M 7.9 Denali Fault earthquake, appear to have exacerbated slope deformation. We also mapped DSGSD geological and morphological characteristics using field- and GIS-based methods, and constructed a conceptual 2D distinct-element numerical model of one of the DSGSDs. Preliminary results indicate that large-scale buckling or kink-band slumping may be occurring. The DSGSDs are capable of generating long-runout landslides that might impact the Trans-Alaska Pipeline and Richardson Highway. They could also block tributary valleys, thereby impounding lakes that might drain suddenly. Wrapped 24-day RADARSAT-2 descending spotlight interferogram showing deformation north of Fels Glacier. The interferogram is partially transparent and is overlaid on a 2009 WorldView-1 panchromatic image. Acquisition interval: August 2 - August 26, 2011. UTM Zone 6N.

  1. Birds and Wetlands of Alaska. Alaska Sea Week Curriculum Series. Alaska Sea Grant Report 88-1.

    ERIC Educational Resources Information Center

    King, James G.; King, Mary Lou

    This curriculum guide is the fourth (Series V) in a six-volume set that comprises the Sea Week Curriculum Series developed in Alaska. Twelve units contain 45 activities with worksheets that cover the following topics: (1) bird lists and field guides; (2) definitions of a bird; (3) parts of a bird; (4) bird watching; (5) bird migration; (6) wetland…

  2. Digital Shaded-Relief Image of Alaska

    USGS Publications Warehouse

    Riehle, J.R.; Fleming, Michael D.; Molnia, B.F.; Dover, J.H.; Kelley, J.S.; Miller, M.L.; Nokleberg, W.J.; Plafker, George; Till, A.B.

    1997-01-01

    Introduction One of the most spectacular physiographic images of the conterminous United States, and the first to have been produced digitally, is that by Thelin and Pike (USGS I-2206, 1991). The image is remarkable for its crispness of detail and for the natural appearance of the artificial land surface. Our goal has been to produce a shaded-relief image of Alaska that has the same look and feel as the Thelin and Pike image. The Alaskan image could have been produced at the same scale as its lower 48 counterpart (1:3,500,000). But by insetting the Aleutian Islands into the Gulf of Alaska, we were able to print the Alaska map at a larger scale (1:2,500,000) and about the same physical size as the Thelin and Pike image. Benefits of the 1:2,500,000 scale are (1) greater resolution of topographic features and (2) ease of reference to the U.S. Geological Survey (USGS) (1987) Alaska Map E and the statewide geologic map (Beikman, 1980), which are both 1:2,500,000 scale. Manually drawn, shaded-relief images of Alaska's land surface have long been available (for example, Department of the Interior, 1909; Raisz, 1948). The topography depicted on these early maps is mainly schematic. Maps showing topographic contours were first available for the entire State in 1953 (USGS, 1:250,000) (J.H. Wittmann, USGS, written commun., 1996). The Alaska Map E was initially released in 1954 in both planimetric (revised in 1973 and 1987) and shaded-relief versions (revised in 1973, 1987, and 1996); topography depicted on the shaded-relief version is based on the 1:250,000-scale USGS topographic maps. Alaska Map E was later modified to include hypsometric tinting by Raven Maps and Images (1989, revised 1993) as copyrighted versions. Other shaded-relief images were produced for The National Geographic Magazine (LaGorce, 1956; 1:3,000,000) or drawn by Harrison (1970; 1:7,500,000) for The National Atlas of the United States. Recently, the State of Alaska digitally produced a shaded-relief image

  3. Prevalence and predictors of cancer screening among American Indian and Alaska native people: the EARTH study

    PubMed Central

    Schumacher, Mary Catherine; Slattery, Martha L.; Lanier, Anne P.; Ma, Khe-Ni; Edwards, Sandra; Ferucci, Elizabeth D.; Tom-Orme, Lillian

    2008-01-01

    screened). Additional predictors of colonoscopy/sigmoidoscopy were age (men and women aged 60 years and older slightly more likely to be screened than those aged 50–59 years), family history of any cancer, family history of colorectal cancer, former smoking, language spoken at home (speakers of American Indian Alaska Native language less likely to be screened), and urban/rural residence (urban residents more likely to be screened). Conclusion Programs to improve screening among American Indian and Alaska Native people should include efforts to reach individuals of lower socioeconomic status and who do not have regular contact with the medical care system. Special attention should be made to identify and provide needed services to those who live in rural areas, and to those living in the Southwest US. PMID:18307048

  4. EDUCATION AND TRAINING DIRECTORY OF SPECIAL EDUCATION CLASSES, CONUS AND OVERSEAS.

    ERIC Educational Resources Information Center

    MASON, JOSEPH A.; AND OTHERS

    BASED ON THE BEST AVAILABLE DATA, THE DIRECTORY PROVIDES INFORMATION CONCERNING THE LOCATION OF SPECIAL EDUCATION CLASSES ON OR WITHIN COMMUTING DISTANCE (30 MILES) OF MOST U.S. MILITARY INSTALLATIONS IN THE CONTINENTAL UNITED STATES, ALASKA, HAWAII, THE CANAL ZONE, THE ATLANTIC AREAS, THE PACIFIC AREAS, AND THE EUROPEAN AREA. AN INDEX BY STATE…

  5. The Work of the Bureau of Education for the Natives of Alaska. Bulletin, 1921, No. 35

    ERIC Educational Resources Information Center

    Bureau of Education, Department of the Interior, 1921

    1921-01-01

    The work of the Bureau of Education for the natives of Alaska includes the Alaska school service, the Alaska medical service, and the Alaska reindeer service, with a field force in Alaska, in 1920, of 6 superintendents, 133 teachers, 9 physicians, and 13 nurses. This bulletin provides details on the following topics: (1) Extent of territory; (2)…

  6. Address to Yukon-Kuskokwim Delta Regional Summit on Native Education (Bethel, Alaska, April 24, 2002).

    ERIC Educational Resources Information Center

    Ongtooguk, Paul

    Remarks of Alaska Native researcher and educator Paul Ongtooguk are presented. Alaska Native students perform worse on exit exams than any other population in the state. In the past, formal education was offered to Alaska Natives only if they gave up being Alaska Natives. The current system is not designed to solve the problems of Alaska Native…

  7. The Alaska Journal of Art, 1989.

    ERIC Educational Resources Information Center

    Welter, Cole H., Ed.

    1989-01-01

    The inaugural issue of this annual journal explores issues affecting art education practices in Alaska and seeks to contribute to a national dialogue on art education policy. "Art as General Education" (Harry S. Broudy) addresses the essential value and nature of the arts in general education. It argues for visual arts education as a key to…

  8. Alaska Performance Scholarship Outcomes Report 2014

    ERIC Educational Resources Information Center

    Rae, Brian

    2014-01-01

    The 2014 Alaska Performance Scholarship (APS) Outcomes Report analyzes the characteristics of high school graduates, those who were eligible to receive the scholarship, and those who went on to make use of it during the three years of the scholarship's existence. The analysis includes their geographic, gender, ethnic, and socioeconomic…

  9. Subgroup Achievement and Gap Trends: Alaska

    ERIC Educational Resources Information Center

    Center on Education Policy, 2010

    2010-01-01

    Alaska showed improvement in reading and math in grade 8 at the proficient level for almost all racial/ethnic subgroups, low income students, and boys and girls (subgroup trends were not available at the basic or advanced levels). Most student subgroups had upward trends in percentages proficient, with a few exceptions. Gains in math tended to be…

  10. 50 CFR 17.5 - Alaska natives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS Introduction and General Provisions § 17.5 Alaska... accomplished in a wasteful manner. (b) Edible portions of endangered or threatened wildlife taken or...

  11. 50 CFR 17.5 - Alaska natives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS Introduction and General Provisions § 17.5 Alaska... accomplished in a wasteful manner. (b) Edible portions of endangered or threatened wildlife taken or...

  12. Gas hydrate resources of northern Alaska

    USGS Publications Warehouse

    Collett, T.S.

    1997-01-01

    Large amounts of natural gas, composed mainly of methane, can occur in arctic sedimentary basins in the form of gas hydrates under appropriate temperature and pressure conditions. Gas hydrates are solids, composed of rigid cages of water molecules that trap molecules of gas. These substances are regarded as a potential unconventional source of natural gas because of their enormous gas-storage capacity. Most published gas hydrate resource estimates are highly simplified and based on limited geological data. The gas hydrate resource assessment for northern Alaska presented in this paper is based on a "play analysis" scheme, in which geological factors controlling the accumulation and preservation of gas hydrates are individually evaluated and risked for each hydrate play. This resource assessment identified two gas hydrate plays; the in-place gas resources within the gas hydrates of northern Alaska are estimated to range from 6.7 to 66.8 trillion cubic metres of gas (236 to 2,357 trillion cubic feet of gas), at the 0.50 and 0.05 probability levels respectively. The mean in-place hydrate resource estimate for northern Alaska is calculated to be 16.7 trillion cubic metres of gas (590 trillion cubic feet of gas). If this assessment is valid, the amount of natural gas stored as gas hydrates in northern Alaska could be almost seven times larger then the estimated total remaining recoverable conventional natural gas resources in the entire United States.

  13. Kids Count Alaska Data Book: 1996.

    ERIC Educational Resources Information Center

    Alaska Univ., Anchorage. Inst. of Social and Economic Research.

    This statistical report examines findings on 15 indicators of children's well-being in Alaska: (1) percent of births with low birth weight; (2) infant mortality rate; (3) child poverty rate; (4) children in single parent families; (5) births to teenagers age 15 to 17; (6) teen (age 16 to 19) high school dropout rate; (7) teens not in school and…

  14. Tsunami Inundation Mapping of Coastal Alaska

    NASA Astrophysics Data System (ADS)

    Suleimani, E.; Hansen, R.; Marriott, D.; Combellick, R.

    2004-05-01

    Seismic events that occur within the Alaska-Aleutian subduction zone have a high potential for generating both local and Pacific-wide tsunamis. To help mitigate the large risk these earthquakes and tsunamis pose to Alaskan coastal communities, the Alaska Tsunami Modeling Team addresses the problem of predicting runup of tsunami waves using a numerical modeling technique. The model solves nonlinear shallow-water equations with a finite-difference method. Embedded grids of different resolution are employed to increase spatial resolution in the shelf area. Numerical simulations yield runup heights, extent of maximum inundation for chosen tsunami scenarios, depths of inundation on dry land, and maximum velocity current distribution in inundation zones. The communities for inundation mapping are selected in coordination with the Alaska Division of Emergency Services with consideration to location, infrastructure, availability of bathymetric and topographic data, and community involvement.The communities of Homer and Seldovia are located in Kachemak Bay, which is one of the high-priority region for Alaska inundation mapping. We modeled two hypothetical earthquake scenarios as potential sources of tsunami waves that affect the Kachemak Bay communities. They represent both distant and local sources, and we model them using the multiple fault approach. Seward, a community in the Prince William Sound area, suffered an extensive damage and 12 fatalities during the 1964 tsunami. The most destructive waves in Seward were local slump-generated tsunamis. We consider several tsunami scenarios for Seward inundation mapping that include both tectonic and landslide sources.

  15. 1996 annual report on Alaska's mineral resources

    USGS Publications Warehouse

    Schneider, Jill L.

    1997-01-01

    This is the fifteenth annual report that has been prepared in response to the Alaska National Interest Lands Conservation Act. Current Alaskan mineral projects and events that occurred during 1995 are summarized. For the purpose of this document, the term 'minerals' encompasses both energy resources (oil and gas, coal and peat, uranium, and geothermal) and nonfuel-mineral resources (metallic and industrial minerals).

  16. Fact Book 1992: University of Alaska Fairbanks.

    ERIC Educational Resources Information Center

    Gaylord, Thomas; And Others

    This publication presents information on the University of Alaska Fairbanks in seven sections. The first section, "Historical and General Information" details the legal establishment, mission, historical highlights, map, organizational structure, accreditation, Board of Regents, Standing Committees and advisory groups, songs, presidents and…

  17. 76 FR 43340 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-6682-B, AA-6682-D, AA-6682-E, AA-6682-G, AA-6682-H, AA-6682-I, AA- 6682-A2; LLAK965000-L14100000-KC0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management,...

  18. 77 FR 72383 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-10282, AA-10291, AA-10292, AA-10369; LLAK-944000-L14100000-HY0000- P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior. ACTION: Notice of...

  19. 76 FR 55415 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-9428, AA-9752, AA-11237, AA-9755, AA-9837, AA-10075, AA-11467; LLAK-965000-L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior....

  20. 78 FR 16527 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-10782, AA-11132, AA-10784, AA-12440, AA-11020, AA-10783, AA-10774; LLAK-944000-L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management,...

  1. 75 FR 65644 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-11937, AA-11938, AA-11939, AA-11940, AA-11944, AA-11943, AA-11941, AA-11936, AA-11933, AA-11928, AA-11929, AA-11931, AA-11932; LLAK- 962000-L14100000-HY0000-P] Alaska...

  2. 76 FR 16804 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-8102-05, AA-8102-08, AA-8102-10, AA-8102-25, AA-8102-28, AA-8102- 37, AA-8102-47; LLAK965000-L14100000-KC0000-P] Alaska Native Claims Selection AGENCY: Bureau of...

  3. 78 FR 10634 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-10756, AA-11061, AA-10764, AA-10765, AA-10766, AA-11083; LLAK- 944000-L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior....

  4. 75 FR 21033 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-6670-F, AA-6670-L, AA-6670-M, AA-6670-A2; LLAK964000-L14100000- HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior. ACTION: Notice of...

  5. 75 FR 26784 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Bureau of Land Management [AA-11973, AA-11993, AA-11968, AA-11972, AA-12018, AA-12013, AA-12014, AA-12015, AA-12016, AA-12017, AA-11984, AA-11994, AA-11995, AA-11996, AA-12003, AA-12012, AA-11967, AA-12020, AA-12021; LLAK-962000- L14100000-HY0000-P] Alaska......

  6. 75 FR 80838 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-11908, AA-11915, AA-11916, AA-11917, AA-11909, AA-11913, AA-11914; LLAK-962000-L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management,...

  7. An Overall Education Plan for Rural Alaska.

    ERIC Educational Resources Information Center

    Alaska Governor's Committee of Education, Juneau.

    A report submitted by the Alaskan Governor's Committee on Education indicates that the quality of education in rural schools, both state-sponsored and Bureau of Indian Affairs-sponsored, is in need of improvement. This plan for school reorganization in Alaska recommends consolidation of small rural schools in favor of wider curricular offerings…

  8. Ocean Observing System Demonstrated in Alaska

    NASA Astrophysics Data System (ADS)

    Schoch, G. Carl; Chao, Yi

    2010-05-01

    To demonstrate the utility of an ocean observing and forecasting system with diverse practical applications—such as search and rescue, oil spill response (perhaps relevent to the current Gulf of Mexico oil spill), fisheries, and risk management—a unique field experiment was conducted in Prince William Sound, Alaska, in July and August 2009. The objective was to quantitatively evaluate the performance of numerical models developed for the sound with an array of fixed and mobile observation platforms (Figure 1). Prince William Sound was chosen for the demonstration because of historical efforts to monitor ocean circulation following the 1989 oil spill from the Exxon Valdez tanker. The sound, a highly crenulated embayment of about 10,000 square kilometers at approximately 60°N latitude along the northern coast of the Gulf of Alaska, includes about 6900 kilometers of shoreline, numerous islands and fjords, and an extensive system of tidewater glaciers descending from the highest coastal mountain range in North America. Hinchinbrook Entrance and Montague Strait are the two main deep water connections with the Gulf of Alaska. The economic base of communities in the region is almost entirely resource-dependent. For example, Cordova's economy is based on commercial fishing and Valdez's economy is supported primarily by the trans-Alaska oil pipeline terminal.

  9. Quilts of Alaska--Student Activities.

    ERIC Educational Resources Information Center

    Alaska State Museum, Juneau.

    This student activities booklet, "Quilts of Alaska," contains historical and educational information on quilts. It is colorfully illustrated with examples of different types of quilts. The booklet describes album or signature quilts, which from 1840 to the 1890s, were a U.S. fad, such as were autograph albums. As the name suggests, these quilts…

  10. 77 FR 530 - Alaska Disaster # AK-00022

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... State of Alaska (FEMA-4050- DR), dated 12/22/2011. Incident: Severe Winter Storms and Flooding. Incident... disaster declaration on 12/22/2011, Private Non- Profit organizations that provide essential services of... REAA. The Interest Rates are: Percent For Physical Damage: Non-Profit Organizations with...

  11. Alaska's Adolescents: A Plan for the Future.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Health and Social Services, Anchorage.

    The goal of this first comprehensive report on adolescent health in Alaska is to stimulate interest, activity, and support for improved health among teenagers (ages 10-19). This plan was developed as a tool for use by governments, organizations, and communities. The plan seeks to provide information on the scope and nature of adolescent health…

  12. 76 FR 67635 - Alaska Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... March 23, 1983, Federal Register (48 FR 12274). You can also find later actions concerning Alaska's...)(1), concerning construction plans for ponds, impoundments, dams, and embankments; 11 AAC 90.101(a... AAC 90.331(d), concerning sedimentation ponds; 11 AAC 90.331(e), concerning removal of...

  13. The Alaska Mineral Resource Assessment Program

    SciTech Connect

    Detterman, R.L.; Case, J.E.; Church, S.E.; Frisken, J.G.; Wilson, F.H.; Yount, M.E.

    1990-01-01

    This book provides background information for the folio of maps that covers the geology, paleontology, geochronology, geochemistry, aeromagnetics, and mineral and energy resources of the Ugashik, Bristol Bay, and western Karluk quadrangles, Alaska Peninsula. Information on two U.S. Geological Survey miscellaneous investigations series maps and three derivative bulletins that resulted from this investigation are described also.

  14. Pacific Rim Partnerships: Alaska's Bold Initiative.

    ERIC Educational Resources Information Center

    Parrett, William H.; Calkins, Annie

    1989-01-01

    Describes the Alaska Sister Schools Network, formed in 1985 to create opportunities for Alaskan students to experience more directly the cultural and economic perspectives of their Pacific Rim neighbors. Network organizers go beyond the "pen-pal" approach to encourage three partnership levels: initial acquaintance, curriculum development, and…

  15. USGS US topo maps for Alaska

    USGS Publications Warehouse

    Anderson, Becci; Fuller, Tracy

    2014-01-01

    In July 2013, the USGS National Geospatial Program began producing new topographic maps for Alaska, providing a new map series for the state known as US Topo. Prior to the start of US Topo map production in Alaska, the most detailed statewide USGS topographic maps were 15-minute 1:63,360-scale maps, with their original production often dating back nearly fifty years. The new 7.5-minute digital maps are created at 1:25,000 map scale, and show greatly increased topographic detail when compared to the older maps. The map scale and data specifications were selected based on significant outreach to various map user groups in Alaska. This multi-year mapping initiative will vastly enhance the base topographic maps for Alaska and is possible because of improvements to key digital map datasets in the state. The new maps and data are beneficial in high priority applications such as safety, planning, research and resource management. New mapping will support science applications throughout the state and provide updated maps for parks, recreation lands and villages.

  16. The State of Adolescent Health in Alaska.

    ERIC Educational Resources Information Center

    Alaska State Office of the Commissioner, Juneau.

    A survey was conducted to provide a profile of the health status and risk behaviors of youth in Alaska. The goal was to develop a statewide database which, when coupled with morbidity and mortality data, would provide information that would allow those who plan and develop services at state and local levels to better target those services. During…

  17. 78 FR 39821 - Alaska Disaster #AK-00029

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... ADMINISTRATION Alaska Disaster AK-00029 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for the..., Fort Worth, TX 76155. FOR FURTHER INFORMATION CONTACT: A. Escobar, Office of Disaster Assistance,...

  18. 76 FR 5395 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-12252, AA-12250, AA-12280, AA-12291, AA-12292, AA-12293; LLAK- 962000-L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior....

  19. The Alaska Eskimos. A Selected, Annotated Bibliography.

    ERIC Educational Resources Information Center

    Hippler, Arthur E.; Wood, John R.

    This annotated bibliography, containing approximately 732 entries, provides a general overview of English literature concerning Alaska Eskimos and cities. Although the earliest date of publication is 1843, the majority of the works have been done since 1900; there are no entries published later than 1975. Section I lists the works alphabetically…

  20. Integrated resource inventory for southcentral Alaska (INTRISCA)

    NASA Technical Reports Server (NTRS)

    Burns, T.; Carson-Henry, C.; Morrissey, L. A.

    1981-01-01

    The Integrated Resource Inventory for Southcentral Alaska (INTRISCA) Project comprised an integrated set of activities related to the land use planning and resource management requirements of the participating agencies within the southcentral region of Alaska. One subproject involved generating a region-wide land cover inventory of use to all participating agencies. Toward this end, participants first obtained a broad overview of the entire region and identified reasonable expectations of a LANDSAT-based land cover inventory through evaluation of an earlier classification generated during the Alaska Water Level B Study. Classification of more recent LANDSAT data was then undertaken by INTRISCA participants. The latter classification produced a land cover data set that was more specifically related to individual agency needs, concurrently providing a comprehensive training experience for Alaska agency personnel. Other subprojects employed multi-level analysis techniques ranging from refinement of the region-wide classification and photointerpretation, to digital edge enhancement and integration of land cover data into a geographic information system (GIS).

  1. 76 FR 35936 - Alaska Disaster #AK-00020

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... From the Federal Register Online via the Government Publishing Office U.S. SMALL BUSINESS ADMINISTRATION Alaska Disaster AK-00020 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This... completed loan applications to: U.S. Small Business Administration, Processing and Disbursement...

  2. Alaska Standards for School Library Media Programs.

    ERIC Educational Resources Information Center

    American Association of School Librarians--Alaska, Juneau.

    Developed to encourage and promote the establishment and maintenance of standards of excellence in all school library media centers, standards presented here are designed to be the minimum acceptable for Alaska schools. Each school is urged to use the standards as a base to develop a quality library media program which reflects the unique…

  3. Prevention in Alaska: Issues and Innovations.

    ERIC Educational Resources Information Center

    Mohatt, Gerald; Hazel, Kelly L.; Mohatt, Justin W.

    Diversity of geography, climate, and culture dictate the nature of the service delivery systems in Alaska, including the provision of prevention programming in substance abuse, alcoholism, health, and behavioral health. Described here are training programs, conferences and symposia, health fairs, and culturally derived interventions that meet the…

  4. Alaska Head Start Annual Program Report, 1999.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education and Early Devolopment, Juneau. Head Start State Collaboration Office.

    This annual report details the accomplishments of the Alaska Head Start Program for fiscal year 1999. The report begins with a description of the Head Start program and its core values, and delineates the administrative and program partners of Head Start, its service population, eligibility requirements, funding sources, service models, and…

  5. Educational Programming at Alaska Psychiatric Institute.

    ERIC Educational Resources Information Center

    Konopasek, Dean E.

    The background, organization, and operation of the Alaska Psychiatric Institute (API), a residential program for behavior disordered and emotionally disturbed children and adolescents, are described. Components of the educational program at API, including academic and social assessment, individual education plans, and elementary and secondary…

  6. State Teacher Policy Yearbook, 2009. Alaska

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2009

    2009-01-01

    The Alaska edition of the National Council on Teacher Quality's (NCTQ's) 2009 "State Teacher Policy Yearbook" is the third annual look at state policies impacting the teaching profession. It is hoped that this report will help focus attention on areas where state policymakers can make changes that will have a positive impact on teacher quality and…

  7. 78 FR 53158 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ...) to Sea Lion Corporation. The decision approves the surface estate in the lands described below for... estate in these lands will be conveyed to Calista Corporation when the surface estate is conveyed to Sea Lion Corporation. The lands are in the vicinity of Hooper Bay, Alaska, and are located in:...

  8. Discovering Alaska's Salmon: A Children's Activity Book.

    ERIC Educational Resources Information Center

    Devaney, Laurel

    This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…

  9. 40 CFR 81.302 - Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... affecting § 81.302 see the List of CFR Sections Affected which appears in the Finding Aids section of the...) Unclassifiable/Attainment Barrow Election District Fairbanks N. Star Borough Area other than portion of Fairbanks... 09 Northern Alaska Intrastate Unclassifiable/Attainment Denali Borough Fairbanks North Star...

  10. University of Alaska 1997 Facilities Inventory.

    ERIC Educational Resources Information Center

    Alaska Univ., Fairbanks. Statewide Office of Institutional Research.

    This facilities inventory report presents a comprehensive listing of physical assets owned and operated by the University of Alaska and includes, for each asset, data on average age, weighted average age, gross square footage, original total project funding, and the asset's plant investment value adjusted to the current year. Facilities are listed…

  11. 75 FR 13296 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-6679-B, AA-6679-C, AA-6679-F, AA-6679-G, AA-6679-K, AA-6679-M, AA- 6679-A2, LLAK964000-L14100000-KC0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management,...

  12. 76 FR 75899 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-9915, AA-9916, AA-9921, AA-9936, AA-9937, AA-9965; LLAK-965000- L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior. ACTION: Notice...

  13. Alaska Teens Prepare for Future with FCS

    ERIC Educational Resources Information Center

    Vik, Kathleen L.

    2007-01-01

    Living in Alaska offers many extreme challenges and opportunities for family and consumer sciences (FCS) teachers to step up to the challenges of facing the future. In this article, the author describes how she started the "Stepping Up For Our Future" program. She relates that as the sole FCS teacher in Chugiak High School, she was challenged to…

  14. 75 FR 53332 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ..., Land Transfer Resolution Specialist, Branch of Preparation and Resolution. BILLING CODE 4310-JA-P ... Bureau of Land Management Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior. ACTION: Notice of decision approving lands for conveyance. SUMMARY: As required by 43 CFR...

  15. 75 FR 28816 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ..., Land Transfer Resolution Specialist, Branch of Preparation and Resolution. BILLING CODE 4310-JA-P ... Bureau of Land Management Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior. ACTION: Notice of decision approving lands for conveyance. SUMMARY: As required by 43 CFR...

  16. 75 FR 65644 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... hours a day, 7 days a week. Dina L. Torres, Land Transfer Resolution Specialist, Branch of Preparation... Bureau of Land Management Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior. ACTION: Notice of decision approving lands for conveyance. SUMMARY: As required by 43 CFR...

  17. Indicators of recent environmental change in Alaska

    SciTech Connect

    Jacoby, G.C.; D`Arrigo, R.D.; Juday, G.

    1997-12-31

    Climate models predict that global warming due to the effects of increasing trace gases will be amplified in northern high latitude regions, including Alaska. Several environmental indicators, including tree-ring based temperature reconstructions, borcal forest growth measurements and observations of glacial retreat all indicate that the general warming of the past century has been significant relative to prior centuries to millenia. The tree-ring records for central and northern Alaska indicate that annual temperature increased over the past century, peaked in the 1940s, and are still near the highest level for the past three centuries (Jacoby and D`Arrigo 1995). The tree-ring analyses also suggest that drought stress may now be a factor limiting growth at many northern sites. The recent warming combined with drier years may be altering the response of tree growth to climate and raising the likelihood of forest changes in Alaska and other boreal forests. Other tree-ring and forest data from southern and interior Alaska provide indices of the response of vegetation to extreme events (e.g., insect outbreaks, snow events) in Alaska (Juday and marler 1996). Historical maps, field measurements and satellite imagery indicate that Alaskan glaciers have receded over the past century (e.g., Hall and Benson 1996). Severe outbreaks of bark beetles may be on the increase due to warming, which can shorten their reproductive cycle. Such data and understanding of causes are useful for policy makers and others interested in evaluation of possible impacts of trace-gas induced warming and environmental change in the United States.

  18. Thermal evolution of sedimentary basins in Alaska

    USGS Publications Warehouse

    Johnsson, Mark J.; Howell, D.G.

    1996-01-01

    The complex tectonic collage of Alaska is reflected in the conjunction of rocks of widely varying thermal maturity. Indicators of the level of thermal maturity of rocks exposed at the surface, such as vitrinite reflectance and conodont color alteration index, can help constrain the tectonic evolution of such complex regions and, when combined with petrographic, modern heat flow, thermogeochronologic, and isotopic data, allow for the detailed evaluation of a region?s burial and uplift history. We have collected and assembled nearly 10,000 vitrinite-reflectance and conodont-color-alteration index values from the literature, previous U.S. Geological Survey investigations, and our own studies in Alaska. This database allows for the first synthesis of thermal maturity on a broadly regional scale. Post-accretionary sedimentary basins in Alaska show wide variability in terms of thermal maturity. The Tertiary interior basins, as well as some of the forearc and backarc basins associated with the Aleutian Arc, are presently at their greatest depth of burial, with immature rocks exposed at the surface. Other basins, such as some backarc basins on the Alaska Peninsula, show higher thermal maturities, indicating modest uplift, perhaps in conjunction with higher geothermal gradients related to the arc itself. Cretaceous ?flysch? basins, such as the Yukon-Koyukuk basin, are at much higher thermal maturity, reflecting great amounts of uplift perhaps associated with compressional regimes generated through terrane accretion. Many sedimentary basins in Alaska, such as the Yukon-Koyukuk and Colville basins, show higher thermal maturity at basin margins, perhaps reflecting greater uplift of the margins in response to isostatic unloading, owing to erosion of the hinterland adjacent to the basin or to compressional stresses adjacent to basin margins.

  19. EarthScope's Transportable Array in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Enders, M.; Miner, J.; Bierma, R. M.; Busby, R.

    2015-12-01

    EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. As the array doubles in Alaska, IRIS continues to collaborate closely with other network operators, universities and research consortia in Alaska and Canada including the Alaska Earthquake Center (AEC), the Alaska Volcano Observatory (AVO), the UNAVCO Plate Boundary Observatory (PBO), the National Tsunami Warning Center (NTWC), Natural Resources Canada (NRCAN), Canadian Hazard Information Service (CHIS), the Yukon Geologic Survey (YGS), the Pacific Geoscience Center of the Geologic Survey, Yukon College and others. During FY14 and FY15 the TA has completed upgrade work at 20 Alaska Earthquake Center stations and 2 AVO stations, TA has co-located borehole seismometers at 5 existing PBO GPS stations to augment the EarthScope observatory. We present an overview of deployment plan and the status through 2015. The performance of new Alaska TA stations including improvements to existing stations is described.

  20. Digital data for the geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    USGS Publications Warehouse

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    1999-01-01

    These digital databases are the result of the compilation and reinterpretation of published and unpublished 1:250,000- and 1:63,360-scale mapping. The map area covers approximately 62,000 sq km (23,000 sq mi) in land area and encompasses much of 13 1:250,000-scale quadrangles on the Alaska Peninsula in southwestern Alaska. The compilation was done as part of the U.S. Geological Survey's Alaska Mineral Resource Assessment project (AMRAP), whose goal was create and assemble geologic, geochemical, geophysical, and other data in order to perform mineral resource assessments on a quadrangle, regional or statewide basis. The digital data here was created to assist in the completion of a regional mineral resource assessment of the Alaska Peninsula. Mapping on the Alaska Peninsula under AMRAP began in 1977 in the Chignik and Sutwik Island 1:250,000 quadrangles (Detterman and others, 1981). Continued mapping in the Ugashik, bristol bay, and northwestern Karluk quadrangles (Detterman and others, 1987) began in 1979, followed by the Mount Katmai, eastern Naknek, and northwestern Afognak quadrangles (Riehle and others, 1987; Riehle and others, 1993), the Port Moller, Stepovak bay, and Simeonof Island quadrangles (Wilson and others, 1995) beginning in 1983. Work in the Cold bay and False Pass quadrangles (Wilson and others, 1992 [Superceded by Wilson and others 1997, but not incorporated herein]) began in 1986. The reliability of the geologic mapping is variable, based, in part, on the field time spent in each area of the map, the available support, and the quality of the existing base maps. In addition, our developing understanding of the geology of the Alaska Peninsula required revision of earlier maps, such as the Chignik and Sutwik Island quadrangles map (Detterman and others, 1981) to reflect this new knowledge. We have revised the stratigraphic nomenclature (Detterman and others, 1996) and our assignment of unit names to some rocks has been changed. All geologic maps on

  1. The United States National Climate Assessment - Alaska Technical Regional Report

    USGS Publications Warehouse

    Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart; Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart

    2012-01-01

    The Alaskan landscape is changing, both in terms of effects of human activities as a consequence of increased population, social and economic development and their effects on the local and broad landscape; and those effects that accompany naturally occurring hazards such as volcanic eruptions, earthquakes, and tsunamis. Some of the most prevalent changes, however, are those resulting from a changing climate, with both near term and potential upcoming effects expected to continue into the future. Alaska's average annual statewide temperatures have increased by nearly 4°F from 1949 to 2005, with significant spatial variability due to the large latitudinal and longitudinal expanse of the State. Increases in mean annual temperature have been greatest in the interior region, and smallest in the State's southwest coastal regions. In general, however, trends point toward increases in both minimum temperatures, and in fewer extreme cold days. Trends in precipitation are somewhat similar to those in temperature, but with more variability. On the whole, Alaska saw a 10-percent increase in precipitation from 1949 to 2005, with the greatest increases recorded in winter. The National Climate Assessment has designated two well-established scenarios developed by the Intergovernmental Panel on Climate Change (Nakicenovic and others, 2001) as a minimum set that technical and author teams considered as context in preparing portions of this assessment. These two scenarios are referred to as the Special Report on Emissions Scenarios A2 and B1 scenarios, which assume either a continuation of recent trends in fossil fuel use (A2) or a vigorous global effort to reduce fossil fuel use (B1). Temperature increases from 4 to 22°F are predicted (to 2070-2099) depending on which emissions scenario (A2 or B1) is used with the least warming in southeast Alaska and the greatest in the northwest. Concomitant with temperature changes, by the end of the 21st century the growing season is expected

  2. 25 CFR 243.12 - Are Alaska reindeer trust assets maintained by the U.S. Government for the benefit of Alaska...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Are Alaska reindeer trust assets maintained by the U.S..., DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE REINDEER IN ALASKA § 243.12 Are Alaska reindeer trust assets maintained by the U.S. Government for the benefit of Alaska Natives? Only the titles to Alaskan...

  3. 25 CFR 243.12 - Are Alaska reindeer trust assets maintained by the U.S. Government for the benefit of Alaska...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Are Alaska reindeer trust assets maintained by the U.S..., DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE REINDEER IN ALASKA § 243.12 Are Alaska reindeer trust assets maintained by the U.S. Government for the benefit of Alaska Natives? Only the titles to Alaskan...

  4. 25 CFR 243.12 - Are Alaska reindeer trust assets maintained by the U.S. Government for the benefit of Alaska...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Are Alaska reindeer trust assets maintained by the U.S..., DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE REINDEER IN ALASKA § 243.12 Are Alaska reindeer trust assets maintained by the U.S. Government for the benefit of Alaska Natives? Only the titles to Alaskan...

  5. 25 CFR 243.12 - Are Alaska reindeer trust assets maintained by the U.S. Government for the benefit of Alaska...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Are Alaska reindeer trust assets maintained by the U.S..., DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE REINDEER IN ALASKA § 243.12 Are Alaska reindeer trust assets maintained by the U.S. Government for the benefit of Alaska Natives? Only the titles to Alaskan...

  6. 25 CFR 243.12 - Are Alaska reindeer trust assets maintained by the U.S. Government for the benefit of Alaska...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Are Alaska reindeer trust assets maintained by the U.S..., DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE REINDEER IN ALASKA § 243.12 Are Alaska reindeer trust assets maintained by the U.S. Government for the benefit of Alaska Natives? Only the titles to Alaskan...

  7. 33 CFR 334.1300 - Blying Sound area, Gulf of Alaska, Alaska; air-to-air gunnery practice area, Alaskan Air Command...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Blying Sound area, Gulf of Alaska, Alaska; air-to-air gunnery practice area, Alaskan Air Command, U.S. Air Force. 334.1300 Section 334.1300... AND RESTRICTED AREA REGULATIONS § 334.1300 Blying Sound area, Gulf of Alaska, Alaska;...

  8. 33 CFR 334.1300 - Blying Sound area, Gulf of Alaska, Alaska; air-to-air gunnery practice area, Alaskan Air Command...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Blying Sound area, Gulf of Alaska, Alaska; air-to-air gunnery practice area, Alaskan Air Command, U.S. Air Force. 334.1300 Section 334.1300... AND RESTRICTED AREA REGULATIONS § 334.1300 Blying Sound area, Gulf of Alaska, Alaska;...

  9. Community and Federal Collaboration to Assess Pregnancy Outcomes in Alaska Native Women, 1997–2005

    PubMed Central

    England, Lucinda J.; Shapiro-Mendoza, Carrie K.; Wilson, Hoyt G.; Klejka, Joseph; Tucker, Myra; Lewis, Claire; Kendrick, Juliette S.

    2015-01-01

    The objectives are to report the estimated prevalence of pregnancy complications and adverse pregnancy outcomes in a defined population of Alaska Native women and also examine factors contributing to an intensive and successful collaboration between a tribal health center and the Centers for Disease Control and Prevention. Investigators abstracted medical record data from a random sample of singleton deliveries to residents of the study region occurring between 1997 and 2005. We used descriptive statistics to estimate the prevalence and 95 % confidence intervals of selected pregnancy complications and adverse pregnancy outcomes. Records were examined for 505 pregnancies ending in a singleton delivery to 469 women. Pregnancy complication rates were 5.9 % (95 % CI 4.0, 8.4) for gestational diabetes mellitus, 6.1 % (95 % CI 4.2, 8.6 %) for maternal chronic hypertension and 11.5 % (95 % CI 8.8, 14.6) for pregnancy associated hypertension, and 22.9 % (95 % CI 19.2–26.5 %) for anemia. The cesarean section rate was 5.5 % (95 % CI 3.5, 7.5) and 3.8 % (95 % CI 2.3, 5.8) of newborns weighed >4,500 g. Few previous studies reported pregnancy outcomes among Alaska Native women in a specific geographic region of Alaska and regarding the health needs in this population. We highlight components of our collaboration that contributed to the success of the study. Studies focusing on special populations such as Alaska Native women are feasible and can provide important information on health indicators at the local level. PMID:23775248

  10. Community and federal collaboration to assess pregnancy outcomes in Alaska Native women, 1997-2005.

    PubMed

    Kim, Shin Y; England, Lucinda J; Shapiro-Mendoza, Carrie K; Wilson, Hoyt G; Klejka, Joseph; Tucker, Myra; Lewis, Claire; Kendrick, Juliette S

    2014-04-01

    The objectives are to report the estimated prevalence of pregnancy complications and adverse pregnancy outcomes in a defined population of Alaska Native women and also examine factors contributing to an intensive and successful collaboration between a tribal health center and the Centers for Disease Control and Prevention. Investigators abstracted medical record data from a random sample of singleton deliveries to residents of the study region occurring between 1997 and 2005. We used descriptive statistics to estimate the prevalence and 95% confidence intervals of selected pregnancy complications and adverse pregnancy outcomes. Records were examined for 505 pregnancies ending in a singleton delivery to 469 women. Pregnancy complication rates were 5.9% (95% CI 4.0, 8.4) for gestational diabetes mellitus, 6.1% (95% CI 4.2, 8.6%) for maternal chronic hypertension and 11.5% (95% CI 8.8, 14.6) for pregnancy associated hypertension, and 22.9% (95% CI 19.2-26.5 %) for anemia. The cesarean section rate was 5.5% (95% CI 3.5, 7.5) and 3.8% (95% CI 2.3, 5.8) of newborns weighed >4,500 g. Few previous studies reported pregnancy outcomes among Alaska Native women in a specific geographic region of Alaska and regarding the health needs in this population. We highlight components of our collaboration that contributed to the success of the study. Studies focusing on special populations such as Alaska Native women are feasible and can provide important information on health indicators at the local level. PMID:23775248

  11. Long-term observations of Alaska Coastal Current in the northern Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Stabeno, Phyllis J.; Bell, Shaun; Cheng, Wei; Danielson, Seth; Kachel, Nancy B.; Mordy, Calvin W.

    2016-10-01

    The Alaska Coastal Current is a continuous, well-defined system extending for ~1700 km along the coast of Alaska from Seward, Alaska to Samalga Pass in the Aleutian Islands. The currents in this region are examined using data collected at >20 mooring sites and from >400 satellite-tracked drifters. While not continuous, the mooring data span a 30 year period (1984-2014). Using current meter data collected at a dozen mooring sites spread over four lines (Seward, Gore Point, Kennedy and Stevenson Entrances, and the exit to Shelikof Strait) total transport was calculated. Transport was significantly correlated with alongshore winds, although the correlation at the Seward Line was weak. The largest mean transport in the Alaska Coastal Current occurred at Gore Point (1.4×106 m3 s-1 in winter and 0.6×106 m3 s-1 in summer), with the transport at the exit to Shelikof Strait (1.3×106 m3 s-1 in winter and 0.6×106 m3 s-1 in summer) only slightly less. The transport was modified at the Seward Line in late summer and fall by frontal undulations associated with strong river discharge that enters onto the shelf at that time of year. The interaction of the Alaska Coastal Current and tidal currents with shallow banks in the vicinity of Kodiak Archipeligo and in Kennedy-Stevenson Entrance results in mixing and prolonged primary production throughout the summer.

  12. ESCD/Alaska: An Educational Demonstration -- The Far North.

    ERIC Educational Resources Information Center

    Orvik, James M.

    1977-01-01

    Evaluates the Educational Satellite Communications Demonstration in Alaska project in educational television within the context of the rapid social change in land ownership, employment, and schooling. (JMF)

  13. Lead-alpha age determinations of granitic rocks from Alaska

    USGS Publications Warehouse

    Matzko, John J.; Jaffe, H.W.; Waring, C.L.

    1957-01-01

    Lead-alpha activity age determinations were made on zircon from seven granitic rocks of central and southeastern Alaska. The results of the age determinations indicate two periods of igneous intrusion, one about 95 million years ago, during the Cretaceous period, and another about 53 million years ago, during the early part of the Tertiary. The individual ages determined on zircon from 2 rocks from southeastern Alaska and 1 from east-central Alaska gave results of 90, 100, and 96 million years; those determined on 4 rocks from central Alaska gave results of 47, 56, 58, and 51 million years.

  14. The Alaska Volcano Observatory - Expanded Monitoring of Volcanoes Yields Results

    USGS Publications Warehouse

    Brantley, Steven R.; McGimsey, Robert G.; Neal, Christina A.

    2004-01-01

    Recent explosive eruptions at some of Alaska's 52 historically active volcanoes have significantly affected air traffic over the North Pacific, as well as Alaska's oil, power, and fishing industries and local communities. Since its founding in the late 1980s, the Alaska Volcano Observatory (AVO) has installed new monitoring networks and used satellite data to track activity at Alaska's volcanoes, providing timely warnings and monitoring of frequent eruptions to the aviation industry and the general public. To minimize impacts from future eruptions, scientists at AVO continue to assess volcano hazards and to expand monitoring networks.

  15. Horizontal drilling techniques at Prudhoe Bay, Alaska

    SciTech Connect

    Wilkirson, J.P.; Smith, J.H.; Stagg, T.O.; Walters, D.A.

    1986-01-01

    Three extended departure horizontal wells have been drilled and completed at Prudhoe Bay, Alaska by Standard Alaska Production Company. Horizontal slotted liner completions of 1575 feet (480 m), 1637 feet (499 m), and 1163 feet (354 m) were accomplished at an average vertical depth of 9000 feet (2743 m). Improvements in technology and operating procedures have resulted in a cost per foot reduction of 40% over the three well program. When compared to conventional completions, initial production data indicates rate benefits of 300% and a major increase in ultimate recovery. This paper discusses the development of the techniques used to drill horizontal wells at Prudhoe Bay and reviews the drilling operations for each well.

  16. Caribou and petroleum development in arctic Alaska

    SciTech Connect

    Cameron, R.D.

    1983-01-01

    The intensive development of oil deposits in Alaska's northern slope (SKA) is not always being conducted with consideration of the characteristics of the caribou which inhabit the region. Although to date the losses of the customary pastures as a result of the change in the conditions in them has had only a local nature and has not negatively affected the productivity of the heart, uncontrolled and incorrectly planned operations by oil companies in the future may lead to a substantial limitation in the habitation of the caribou and may produce serious losses for all the herds in Alaska. The agencies which control the federal lands and the state lands must understand the situation which is taking shape here with respect to the activity of the oil companies and must adhere to a conservation policy in issuing exploration licenses and in developing the deposits.

  17. Surface melt dominates Alaska glacier mass balance

    USGS Publications Warehouse

    Larsen Chris F,; Burgess, E; Arendt, A.A.; O'Neel, Shad; Johnson, A.J.; Kienholz, C.

    2015-01-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of −75 ± 11 Gt yr−1 (1994–2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.

  18. Water Resources Data, Alaska, Water Year 2001

    USGS Publications Warehouse

    Meyer, D.F.; Solin, G.L.; Apgar, M.L.; Hess, D.L.; Swenson, W.A.

    2002-01-01

    Water-resources data for the 2001 water year for Alaska consists of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 112 gaging stations; stage or contents only at 4 gaging stations; water quality at 37 gaging stations; and water levels for 30 observation wells. Also included are data for 51 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

  19. 77 FR 2998 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ...As required by 43 CFR 2650.7(d), notice is hereby given that the Bureau of Land Management (BLM) will issue an appealable decision to Sea Lion Corporation. The decision approves the surface estate in the lands described below for conveyance pursuant to the Alaska Native Claims Settlement Act (43 U.S.C. 1601, et seq.). These lands lie entirely within the Clarence Rhode National Wildlife Refuge......

  20. EarthScope's Transportable Array in Alaska

    NASA Astrophysics Data System (ADS)

    Busby, R. W.; Woodward, R.; Hafner, K.

    2013-12-01

    Since 2003, EarthScope has been installing a network of seismometers, known as the Transportable Array-across the continental United States and southern Canada. The station deployments will be completed in the Conterminous US in the fall of 2013. Beginning in October, 2013, and continuing for 5 years, EarthScope's Transportable Array plans to create a grid of seismic sensors in approximately 300 locations In Alaska and Western Canada. The proposed station grid is 85 km, and target locations will supplement or enhance existing seismic stations operating in Alaska. When possible, they will also be co-located with existing GPS stations constructed by the Plate Boundary Observatory. We review the siting plans for stations, the progress towards reconnaissance and permitting, and detail the engineering concept of the stations. In order to be able to determine the required site conditions and descriptions of installation methods to the permitting agencies, the National Science Foundation (NSF) has been supporting exploratory work on seismic station design, sensor emplacement and communication concepts appropriate for the challenging high-latitude environment that is proposed for deployment. IRIS has installed several experimental stations to evaluate different sensor emplacement schemes both in Alaska and the lower-48 U.S. The goal of these tests is to maintain or enhance a station's noise performance while minimizing its footprint and the equipment, materials, and overall expense required for its construction. Motivating this approach are recent developments in posthole broadband seismometer design and the unique conditions for operating in Alaska, where most areas are only accessible by small plane or helicopter, and permafrost underlies much of the region. IRIS has experimented with different portable drills and drilling techniques to create shallow holes (1-5M) in permafrost and rock outcrops. Seasonal changes can affect the performance of seismometers in different

  1. Preserving Alaska's early Cold War legacy.

    SciTech Connect

    Hoffecker, J.; Whorton, M.

    1999-03-08

    The US Air Force owns and operates numerous facilities that were constructed during the Cold War era. The end of the Cold War prompted many changes in the operation of these properties: missions changed, facilities were modified, and entire bases were closed or realigned. The widespread downsizing of the US military stimulated concern over the potential loss of properties that had acquired historical value in the context of the Cold War. In response, the US Department of Defense in 1991 initiated a broad effort to inventory properties of this era. US Air Force installations in Alaska were in the forefront of these evaluations because of the role of the Cold War in the state's development and history and the high interest on the part of the Alaska State Historic Preservation Officer (SHPO) in these properties. The 611th Air Support Group (611 ASG) owns many of Alaska's early Cold War properties, most were associated with strategic air defense. The 611 ASG determined that three systems it operates, which were all part of the integrated defense against Soviet nuclear strategic bomber threat, were eligible for the National Register of Historic Places (NRHP) and would require treatment as historic properties. These systems include the Aircraft Control and Warning (AC&W) System, the Distant Early Warning (DEW) Line, and Forward Operating Bases (FOBs). As part of a massive cleanup operation, Clean Sweep, the 611 ASG plans to demolish many of the properties associated with these systems. To mitigate the effects of demolition, the 611 ASG negotiated agreements on the system level (e.g., the DEW Line) with the Alaska SHPO to document the history and architectural/engineering features associated with these properties. This system approach allowed the US Air Force to mitigate effects on many individual properties in a more cost-effective and efficient manner.

  2. Sea Ice, Bristol Bay, Alaska, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This north looking view shows the coast of Alaska, north of the Aleutians, and the eastern margin of the Bering Sea (58.0N, 159.5W). Bristol Bay is apparent in the foreground and Nunivak Island can be seen just below the Earth's horizon, at a distance of about 300 nautical miles. Similar views, photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs.

  3. Southwest Alaska Regional Geothermal Energy Projec

    SciTech Connect

    Holdmann, Gwen

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  4. 78 FR 76174 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ...As required by 43 CFR 2650.7(d), notice is hereby given that an appealable decision will be issued by the Bureau of Land Management (BLM) to Paimiut Corporation. The decision approves the surface estate in certain lands for conveyance pursuant to the Alaska Native Claims Settlement Act (ANCSA) (43 U.S.C. 1601, et seq.). The lands approved for conveyance lie partially within a national wildlife......

  5. Jurassic-Neocomian biostratigraphy, North Slope, Alaska

    SciTech Connect

    Mickey, M.B.; Haga, H.

    1985-04-01

    The foraminiferal and palynological biostratigraphy of subsurface Jurassic and Neocomian (Early Cretaceous) age strata from the North Slope were investigated to better define biostratigraphic zone boundaries and to help clarify the correlation of the stratigraphic units in the National Petroleum Reserve in Alaska (NPRA). Through use of micropaleontologic data, eight principal biostratigraphic units have been identified. The Neocomian and Jurassic strata have each been subdivided into four main units.

  6. Mantle Transition Zone Discontinuities Beneath Alaska

    NASA Astrophysics Data System (ADS)

    Dahm, H. H.; Gao, S. S.; Liu, K. H.; Yang, B.

    2015-12-01

    The 410 and 660 km discontinuities (d410 and d660) beneath Alaska and adjacent areas are imaged by stacking radial receiver functions recorded by about 400 broadband seismic stations with up to 30 years of recording period, using the 1D IASP91 earth model. Significant and spatially systematic variations in the apparent depths of the d410 and d660 are observed. The mean apparent depth of d410 and d660 for the entire study area is 416±1.87 km and 664±1.83 km, respectively. The variations of the apparent depths of d410 and d660 result in a complex mantle transition zone (MTZ) structure. Central and south-central Alaska are characterized by a normal MTZ thickness, suggesting that the subducting Pacific slab does not thermally affect the upper MTZ. Beneath the Yakutat microplate, a complex MTZ structure is observed with an overall thin MTZ thickness, coinciding with a low velocity zone and thin lithospheric thickness revealed by previous seismic tomography and receiver function studies. Two large regions with hot MTZ are mapped beneath NNW and NNE Alaska with abnormal temperature ranges between +360 and +390 °K. Despite of the complexity of the MTZ structure beneath Alaska, the mean MTZ thickness for the entire Alaskan orocline is 247 ±2.76 km, suggesting normal MTZ temperature on average. For the majority of the areas, our study shows that lateral upper mantle velocity variations contribute the bulk of the observed apparent undulations of the MTZ discontinuities.

  7. Reindeer ranges inventory in western Alaska

    NASA Technical Reports Server (NTRS)

    George, T. H.

    1981-01-01

    The use of LANDSAT data as a tool for reindeer range inventory on the tundra of northwestern Alaska is addressed. The specific goal is to map the range resource and estimate plant productivity of the Seward Peninsula. Information derived from these surveys is needed to develop range management plans for reindeer herding and to evaluate potential conflicting use between reindeer and caribou. The development of computer image classification techniques is discussed.

  8. Alaska SAR Facility mass storage, current system

    NASA Technical Reports Server (NTRS)

    Cuddy, David; Chu, Eugene; Bicknell, Tom

    1993-01-01

    This paper examines the mass storage systems that are currently in place at the Alaska SAR Facility (SAF). The architecture of the facility will be presented including specifications of the mass storage media that are currently used and the performances that we have realized from the various media. The distribution formats and media are also discussed. Because the facility is expected to service future sensors, the new requirements and possible solutions to these requirements are also discussed.

  9. 78 FR 7807 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ...As required by 43 CFR 2650.7(d), notice is hereby given that an appealable decision will be issued by the Bureau of Land Management (BLM) to Sitnasuak Native Corporation. The decision approves the surface estate in the lands described below for conveyance pursuant to the Alaska Native Claims Settlement Act (43 U.S.C. 1601, et seq). The subsurface estate in these lands will be conveyed to......

  10. Wildlife disease and environmental health in Alaska

    USGS Publications Warehouse

    Van Hemert, Caroline; Pearce, John; Oakley, Karen; Whalen, Mary

    2013-01-01

    Environmental health is defined by connections between the physical environment, ecological health, and human health. Current research within the U.S. Geological Survey (USGS) recognizes the importance of this integrated research philosophy, which includes study of disease and pollutants as they pertain to wildlife and humans. Due to its key geographic location and significant wildlife resources, Alaska is a critical area for future study of environmental health.

  11. Tracking glaciers with the Alaska seismic network

    NASA Astrophysics Data System (ADS)

    West, M. E.

    2015-12-01

    More than 40 years ago it was known that calving glaciers in Alaska created unmistakable seismic signals that could be recorded tens and hundreds of kilometers away. Their long monochromatic signals invited studies that foreshadowed the more recent surge in glacier seismology. Beyond a handful of targeted studies, these signals have remained a seismic novelty. No systematic attempt has been made to catalog and track glacier seismicity across the years. Recent advances in understanding glacier sources, combined with the climate significance of tidewater glaciers, have renewed calls for comprehensive tracking of glacier seismicity in coastal Alaska. The Alaska Earthquake Center has included glacier events in its production earthquake catalog for decades. Until recently, these were best thought of as bycatch—accidental finds in the process of tracking earthquakes. Processing improvements a decade ago, combined with network improvements in the past five years, have turned this into a rich data stream capturing hundreds of events per year across 600 km of the coastal mountain range. Though the source of these signals is generally found to be iceberg calving, there are vast differences in behavior between different glacier termini. Some glaciers have strong peaks in activity during the spring, while others peak in the late summer or fall. These patterns are consistent over years pointing to fundamental differences in calving behavior. In several cases, changes in seismic activity correspond to specific process changes observed through other means at particular glacier. These observations demonstrate that the current network is providing a faithful record of the dynamic behavior of several glaciers in coastal Alaska. With this as a starting point, we examine what is possible (and not possible) going forward with dedicated detection schemes.

  12. Silver in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Gallon, C.; Flegal, A.

    2009-12-01

    Dramatic increases in coal combustion in Asia over the last three decades have induced the transport of substantial atmospheric emissions over the North Pacific Ocean, where they can potentially alter trace element biogeochemical cycles in oceanic surface waters and North America. These perturbations have recently been evidenced by measurements of elevated silver, which is a geochemical marker of coal combustion, in surface waters of the North Pacific, where this metal now appears to be the most contaminated trace element, relative to its natural concentration. However measurements there have been few and far between since they were first made over two decades ago. We partially fill this void by presenting vertical profiles of silver concentration (HR-ICPMS) measured in archived samples from the VERTEX VII (Vertical Transport and Exchange) cruise (1989), which covered a North South transect extending to the Alaska Gyre, as well as in new samples from the GoA (Gulf of Alaska) cruise (2007) collected in the Alaska Gyre. Our results confirm that within the water column, silver exhibits a nutrient type behavior, as was previously observed in other oceanic waters. In intermediate depth waters, concentrations in all the profiles are higher than those measured in the southern hemisphere and North East Pacific in the early 1980s, and in the range of those reported more recently in the Western and Central North Pacific. In the Alaska Gyre, water samples collected 20 years apart present comparable silver concentrations. Measurements from this study also confirm that silver is significantly correlated with dissolved silica, with plots of Ag versus Si showing a concave shape typical of Pacific waters, suggesting that the biogeochemical cycles of these two elements are linked.

  13. 76 FR 57759 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ...As required by 43 CFR 2650.7(d), notice is hereby given that the Bureau of Land Management (BLM) will issue an appealable decision to Sitnasuak Native Corporation. The decision approves the surface estate in the lands described below for conveyance pursuant to the Alaska Native Claims Settlement Act (43 U.S.C. 1604 et seq.). The subsurface estate in these lands will be conveyed to Bering......

  14. Distribution of recoveries of Steller's Eiders banded on the lower Alaska Peninsula, Alaska

    USGS Publications Warehouse

    Dau, C.P.; Flint, P.L.; Petersen, M.R.

    2000-01-01

    Molting adult Steller's Eiders (Polysticta stelleri) were banded at Izembek Lagoon (1961-1998) and Nelson Lagoon (1995-1997) along the lower Alaska Peninsula to determine breeding distribution and movements. Of 52,985 Steller's Eiders banded, 347 were recovered. The overall low recovery rate may not be indicative of harvest levels but may be due to low reporting rates of bands. Almost all recoveries during summer were from Russia and recovery rates did not differ between sexes. We found no evidence that Steller's Eiders molting in specific locations were more likely to be recovered in specific geographic locations in Russia. Our recoveries suggest that Steller's Eiders molting along the Alaska Peninsula were from Russian breeding sites and from remnant breeding populations in Alaska.

  15. 1994 Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Doukas, Michael P.; McGimsey, Robert G.

    1995-01-01

    During 1994, the Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, or false alarms at nine volcanic centers-- Mount Sanford, Iliamna, the Katmai group, Kupreanof, Mount Veniaminof, Shishaldin, Makushin, Mount Cleveland and Kanaga (table 1). Of these volcanoes, AVO has a real time, continuously recording seismic network only at Iliamna, which is located in the Cook Inlet area of south-central Alaska (fig. 1). AVO has dial-up access to seismic data from a 5-station network in the general region of the Katmai group of volcanoes. The remaining unmonitored volcanoes are located in sparsely populated areas of the Wrangell Mountains, the Alaska Peninsula, and the Aleutian Islands (fig. 1). For these volcanoes, the AVO monitoring program relies chiefly on receipt of pilot reports, observations of local residents and analysis of satellite imagery.

  16. Triggered tremor sweet spots in Alaska

    USGS Publications Warehouse

    Gomberg, Joan; Prejean, Stephanie

    2013-01-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor “sweet spots”—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (<~0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  17. A new magnetic view of Alaska

    USGS Publications Warehouse

    Saltus, R.W.; Hudson, T.L.; Connard, G.G.

    1999-01-01

    A new, publicly available aeromagnetic data compilation spanning Alaska enables analysis of the regional crustal character of this tectonically diverse and poorly understood part of the North American Cordillera. The merged data were upward-continued by 10 km (mathematically smoothed without assumptions about sources) to enhance crustal-scale magnetic features and facilitate tectonic analysis. This analysis reveals a basic threefold magnetic character: (1) a southern region with arcuate magnetic domains closely tied to tectonostratigraphic elements, (2) a magnetically neutral interior region punctuated locally by intermediate and deep magnetic highs representing a complex history, and (3) a magnetically subdued northern region that includes a large deep magnetic high. Our tectonic view of the data supports interpretations that Paleozoic extension and continental rift basins played a significant role in the tectonic development of northern and interior Alaska. Accretion of oceanic and continental margin terranes could be restricted to the southern region. The new magnetic view of Alaska can be compared and contrasted with other Pacific margin regions where convergent margin and accretionary tectonic processes are important.

  18. Bryophytes from Tuxedni Wilderness area, Alaska

    USGS Publications Warehouse

    Schofield, W.B.; Talbot, S. S.; Talbot, S.L.

    2002-01-01

    The bryoflora of two small maritime islands, Chisik and Duck Island (2,302 ha), comprising Tuxedni Wilderness in western lower Cook Inlet, Alaska, was examined to determine species composition in an area where no previous collections had been reported. The field study was conducted from sites selected to represent the totality of environmental variation within Tuxedni Wilderness. Data were analyzed using published reports to compare the bryophyte distribution patterns at three levels, the Northern Hemisphere, North America, and Alaska. A total of 286 bryophytes were identified: 230 mosses and 56 liverworts. Bryum miniatum, Dichodontium olympicum, and Orthotrichum pollens are new to Alaska. The annotated list of species for Tuxedni Wilderness expands the known range for many species and fills distribution gaps within Hulte??n's Central Pacific Coast district. Compared with bryophyte distribution in the Northern Hemisphere, the bryoflora of Tuxedni Wilderness primarily includes taxa of boreal (61%), montane (13%), temperate (11%), arctic-alpine (7%), cosmopolitan (7%), distribution; 4% of the total moss flora are North America endemics. A brief summary of the botanical exploration of the general area is provided, as is a description of the bryophytes present in the vegetation and habitat types of Chisik and Duck Islands.

  19. Developing Gyrfalcon surveys and monitoring for Alaska

    USGS Publications Warehouse

    Fuller, Mark R.; Schempf, Philip F.; Booms, Travis L.

    2011-01-01

    We developed methods to monitor the status of Gyrfalcons in Alaska. Results of surveys and monitoring will be informative for resource managers and will be useful for studying potential changes in ecological communities of the high latitudes. We estimated that the probability of detecting a Gyrfalcon at an occupied nest site was between 64% and 87% depending on observer experience and aircraft type (fixed-wing or helicopter). The probability of detection is an important factor for estimating occupancy of nesting areas, and occupancy can be used as a metric for monitoring species' status. We conclude that surveys of nesting habitat to monitor occupancy during the breeding season are practical because of the high probability of seeing a Gyrfalcon from aircraft. Aerial surveys are effective for searching sample plots or index areas in the expanse of the Alaskan terrain. Furthermore, several species of cliff-nesting birds can be surveyed concurrently from aircraft. Occupancy estimation also can be applied using data from other field search methods (e.g., from boats) that have proven useful in Alaska. We believe a coordinated broad-scale, inter-agency, collaborative approach is necessary in Alaska. Monitoring can be facilitated by collating and archiving each set of results in a secure universal repository to allow for statewide meta-analysis.

  20. Encouraging Involvement of Alaska Natives in Geoscience Careers

    NASA Astrophysics Data System (ADS)

    Hanks, C. L.; Fowell, S. J.; Kowalsky, J.; Solie, D.

    2003-12-01

    Geologically, Alaska is a dynamic state, rich in mineral and energy resources. The impact of natural geologic hazards and mineral resource development can be especially critical in rural areas. While Alaska Natives comprise a large percentage of Alaska's rural population, few have the training to be leaders in the decision-making processes regarding natural hazard mitigation or mineral resource evaluation and exploitation. UAF, with funding from the National Science Foundation, has embarked on a three year integrated program aimed at encouraging young Alaska Natives to pursue geosciences as a career. The program combines the geologic expertise at UAF with established Alaska Native educational outreach programs. The Rural Alaska Honors Institute (RAHI) is a bridging program specifically designed to prepare rural high school students for college. To attract college-bound Alaska Native students into the geosciences, geoscience faculty have developed a college-level, field-intensive, introductory RAHI geoscience course that will fulfill geoscience degree requirements at UAF. In years two and three, this class will be supplemented by a one week field course that will focus on geologic issues encountered in most Alaskan rural communities, such as natural hazards, ground water, mineral and energy resources. In order to retain Alaska Native undergraduate students as geoscience majors, the program is providing scholarships and internship opportunities in cooperation with the Alaska Native Science and Engineering Program (ANSEP). Undergraduate geoscience majors participating in ANSEP can intern as teaching assistants for both the classroom and field courses. Besides being mentors for the RAHI students, the Alaska Native undergraduate geoscience majors have the opportunity to interact with faculty on an individual basis, examine the geologic issues facing Alaska Natives, and explore geology as a profession.

  1. The 2007 Eruption of Pavlof Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    McNutt, S. R.

    2007-12-01

    Pavlof Volcano on the Alaska Peninsula began to erupt on August 15, 2007 after a 10.7 year repose. Precursor signals consisted of low-frequency earthquakes that began on August 14 and thermal anomalies that were likely coincident with the beginning of the eruption. The mainly strombolian eruptions are occurring from a new vent high on the SE flank of the volcano, separate from the NNE vent that had been active over the last several decades. Seismic activity, monitored by a network of 6 local instruments, consists of low-frequency events, explosion earthquakes, volcanic tremor, and lahar-generated signals. One station, PVV, is located only 220 m from a lahar channel, and lahars generate an easily distinguished high-frequency seismic signal. A commonly observed sequence is an increase in eruptive activity at the vent, accompanied by stronger tremor visible on all stations, and followed 12-30 minutes later by a lahar at PVV. This suggests that the eruption pulse ejects fresh hot material, which melts additional ice and snow to form new lahars. Steam and ash plumes have generally been below 15,000 ft, but rose as high as 20,000 ft on August 29 and 30. AVHRR remote sensing data showed an ash signal on these days, consistent with pilot reports. On August 30 lightning was observed in the plume from Cold Bay, 59 km SW. In response to the eruptions, AVO has been conducting 24 hr per day surveillance. Fieldwork to date has fortified seismic stations, and installed a new webcam, pressure sensor, and electric field meter. Collaborating scientists from the University of Alaska Fairbanks have installed aerosol sampling equipment at four locations, and collaborating scientists from New Mexico Tech have installed lightning detection equipment at four stations surrounding the volcano. Based on recent eruptions of Pavlof in 1981, 1986, 1996, etc., the eruptive activity is likely to last several months and may include one or more episodes of ash columns to heights of 30,000 ft or

  2. Alaska Seismic Network Upgrade and Expansion

    NASA Astrophysics Data System (ADS)

    Sandru, J. M.; Hansen, R. A.; Estes, S. A.; Fowler, M.

    2009-12-01

    AEIC (Alaska Earthquake Information Center) has begun the task of upgrading the older regional seismic monitoring sites that have been in place for a number of years. Many of the original sites (some dating to the 1960's) are still single component analog technology. This was a very reasonable and ultra low power reliable system for its day. However with the advanced needs of today's research community, AEIC has begun upgrading to Broadband and Strong Motion Seismometers, 24 bit digitizers and high-speed two-way communications, while still trying to maintain the utmost reliability and maintaining low power consumption. Many sites have been upgraded or will be upgraded from single component to triaxial broad bands and triaxial accerometers. This provided much greater dynamic range over the older antiquated technology. The challenge is compounded by rapidly changing digital technology. Digitizersand data communications based on analog phone lines utilizing 9600 baud modems and RS232 are becoming increasingly difficult to maintain and increasingly expensive compared to current methods that use Ethernet, TCP/IP and UDP connections. Gaining a reliable Internet connection can be as easy as calling up an ISP and having a DSL connection installed or may require installing our own satellite uplink, where other options don't exist. LANs are accomplished with a variety of communications devices such as spread spectrum 900 MHz radios or VHF radios for long troublesome shots. WANs are accomplished with a much wider variety of equipment. Traditional analog phone lines are being used in some instances, however 56K lines are much more desirable. Cellular data links have become a convenient option in semiurban environments where digital cellular coverage is available. Alaska is slightly behind the curve on cellular technology due to its low population density and vast unpopulated areas but has emerged into this new technology in the last few years. Partnerships with organizations

  3. Geology of the central Copper River region, Alaska

    USGS Publications Warehouse

    Mendenhall, Walter C.

    1905-01-01

    It is an interesting evidence of the prompt responsiveness of our governmental organization to popular needs that the year 1898, which saw the first rush of argonauts to Alaska as a result of the discovery of the Klondike in 1986, saw also several well-equipped Federal parties at work in the Territory, mapping its great waterways and mountain ranges, investigating the feasible means of transportation within it, laying out routes for future lines of communication, and studying the mineral resources and the plant and animal life. It is true that before that year, in which the general attention of the world was fixed upon our heretofore lightly regarded northern province, fur traders, adventurous travelers, and hardy prospectors had made little-heralded journeys through the interior, and that one or another of the governmental departments had had representatives on special errands within its borders, but the amount of private and public energy expended there in 1898 probably exceeded that of any ten previous years.

  4. Special Education in Korea.

    ERIC Educational Resources Information Center

    Kim, Byung Ha, Ed.; Yeo, Kwang Eung

    The text on special education in Korea is divided into four major sections--a brief history of special education in Korea, the present status of special education in Korea, the special education plan of the Young Kwang Educational Foundation, and directory of schools and classes for the exceptional in Korea. Topics covered include the following:…

  5. 20 CFR 655.530 - Special provisions regarding the performance of longshore activities at locations in the State of...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Special provisions regarding the performance of longshore activities at locations in the State of Alaska. 655.530 Section 655.530 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY EMPLOYMENT OF FOREIGN WORKERS IN THE UNITED STATES Attestations...

  6. Bureau of Indian Education 2013-2014 (Based on SY 2012-2013 Data) Special Education Indicator Performance

    ERIC Educational Resources Information Center

    Bureau of Indian Education, 2014

    2014-01-01

    The Bureau of Indian Education (BIE) is responsible for approximately 41,051 American Indian and Alaska Native children at 183 elementary and secondary schools on 64 reservations in 23 states. The educational services the BIE provides is vital to current and future students who are their tribes' future. This report presents Special Education…

  7. Economic Education Experiences of Award Winning Alaska Teachers.

    ERIC Educational Resources Information Center

    Thomas, Monica, Ed.

    Award-winning economic education projects devised by Alaska teachers included three elementary (K-6) projects and three second level (7-12) ones. Faith Greenough's students (Chinook Elementary School, Anchorage) compared Tlingit traditional and market economies in Alaska, so economics became an integrated part of elementary instruction. Marie…

  8. First Report of Tobacco Rattle Virus in Peony in Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2007, scattered peony (Paeonia lactiflora ‘Sarah Bernhardt’) plants cultivated on plots at the University of Alaska Experimental Station in Fairbanks, Alaska, contained distinct leaf ringspot patterns. Leaf samples from symptomatic plants were collected in early July (6 plants) and late September...

  9. Alaska Humans Factors Safety Study: The Southern Coastal Area

    NASA Technical Reports Server (NTRS)

    Chappell, Sheryl L.; Reynard, William (Technical Monitor)

    1995-01-01

    At the request of the Alaska Air Carriers Association, researchers from the NASA Aviation Safety Reporting System, at NASA Ames Research Center, conducted a study on aspects of safety in Alaskan Part 135 air taxi operations. An interview form on human factors safety issues was created by a representative team from the FAA-Alaska, NTSB-Alaska, NASA-ASRS, and representatives of the Alaska Air Carriers Association which was subsequently used in the interviews of pilots and managers. Because of the climate and operational differences, the study was broken into two geographical areas, the southern coastal areas and the northern portion of the state. This presentation addresses the southern coastal areas, specifically: Anchorage, Dillingham, King Salmon, Kodiak, Cold Bay, Juneau, and Ketchikan. The interview questions dealt with many of the potential pressures on pilots and managers associated with the daily air taxi operations in Alaska. The impact of the environmental factors such as the lack of available communication, navigation and weather information systems was evaluated. The results of this study will be used by government and industry working in Alaska. These findings will contribute important information on specific Alaska safety issues for eventual incorporation into training materials and policies that will help to assure the safe conduct of air taxi flights in Alaska.

  10. Alaska Humans Factors Safety Study: The Northern Area

    NASA Technical Reports Server (NTRS)

    Connell, Linda; Reynard, William (Technical Monitor)

    1995-01-01

    At the request of the Alaska Air Carriers Association, researchers from the NASA Aviation Safety Reporting System, at NASA Ames Research Center, conducted a study on aspects of safety in Alaskan Part 135 air taxi operations. An interview form on human factors safety issues was created by a representative team from the FAA-Alaska, NTSB-Alaska, NASAASRS, and representatives of the Alaska Air Carriers Association which was subsequently used in the interviews of pilots and managers. Because of the climate and operational differences, the study was broken into two geographical areas, the southern coastal areas and the northern portion of the state. This presentation addresses the northern area, specifically: Bethel, Fairbanks, Nome, Kotzebue, and Barrow. The interview questions dealt with many of the potential pressures on pilots and managers associated with the daily air taxi operations in Alaska. The impact of the environmental factors such as the lack of available communication, navigation and weather information systems was evaluated. The results of this study will be used by government and industry working in Alaska. These findings will contribute important information on specific Alaska safety issues for eventual incorporation into training materials and policies that will help to assure the safe conduct of air taxi flights in Alaska.

  11. Enrollment Trends at University of Alaska Community Campuses

    ERIC Educational Resources Information Center

    Goldsmith, Scott; Hill, Alexandra; Killorin, Mary

    2005-01-01

    In this report, Institute of Social and Economic Research, University of Alaska Anchorage, investigated the factors that explain change over time in enrollments and credit hours (participation) at the community campuses of the University of Alaska using both quantitative and qualitative methods. Sections include: (1) Background; (2) Factors…

  12. Wetlands & Wildlife: Alaska Wildlife Curriculum Primary Teacher's Guide K-3.

    ERIC Educational Resources Information Center

    Sigman, Marilyn; And Others

    This curriculum guide was designed to give students at the primary level an awareness of Alaska's wetlands and the fish and wildlife that live there. This guide is divided into 13 sections consisting of learning activities covering the following topics: (1) wetland areas in Alaska; (2) water cycles; (3) plants and wildlife found in wetlands; (4)…

  13. American Indian/Alaska Native College Student Retention Strategies

    ERIC Educational Resources Information Center

    Guillory, Raphael M.

    2009-01-01

    This article presents findings from a qualitative study examining the similarities and differences between American Indian/Alaska Native student perceptions and the perceptions of state representatives, university presidents, and faculty about persistence factors and barriers to degree completion specific to American Indian/Alaska Native students…

  14. Alaska Education Directory, School Year 1999-2000.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau.

    This 1999-2000 directory provides information on Alaska's public schools, school districts, education organizations, and institutions of higher education. A statistical summary indicates that in 1998-99, Alaska enrolled 132,905 students in 503 public schools. Breakdowns by grade configuration and enrollment show that about half the schools served…

  15. Rope culture of the kelp Laminaria groenlandica in Alaska

    SciTech Connect

    Ellis, R.J.; Calvin, N.I.

    1981-02-01

    This paper is an account of rope culture of the brown seaweed or kelp, Laminaria groenlandica, in Alaska. It describes the placement of the ropes, time of first appearance of young L. groenlandica, size of the plants at various ages, and other life history features applicable to the use of rope for the culture of seaweeds in Alaska. (Refs. 3).

  16. The Alaska Public School Fund: A Permanent Fund for Education.

    ERIC Educational Resources Information Center

    Coon, E. Dean

    This paper examines the development of Alaska's Public School Fund, its current status, and its potential as a major revenue source for elementary and secondary education. The fund, which was created following the 1915 federal school lands grant to Alaska, is examined for the 1916-58 territorial period, the 1959-78 early statehood period, and the…

  17. Alaska School-to-Work Opportunities Development Grant. Final Report.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau.

    In 1994, Alaska began the process of using its grant funds from the National School-to-Work Opportunities Act to design a school-to-work system to meet the following objectives: obtain commitment and involvement from Alaska's governor and officials involved in human resource development; develop an implementation plan for a statewide system to…

  18. Alaska oil and gas: Energy wealth or vanishing opportunity

    SciTech Connect

    Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1991-01-01

    The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

  19. Authentic Alaska: Voices of Its Native Writers. American Indian Lives.

    ERIC Educational Resources Information Center

    Andrews, Susan B., Ed.; Creed, John, Ed.

    This book compiles the best selections from the Chukchi News and Information Service, a University of Alaska project that for the past decade, has published the writings of Native college students from rural and remote regions of Alaska. The writers are primarily nontraditional older students who are Inupiaq, Yup'ik, or Siberian Yup'ik Eskimos or…

  20. Age determination of late Pleistocene marine transgression in western Alaska

    USGS Publications Warehouse

    Szabo, B. J.

    1982-01-01

    Dating molluscs from sediments representing the Kotzebuan marine transgression in Alaska yields an average uranium-series age of 104,000 ?? 22,000 yrs B.P. This and other selected Pleistocene marine deposits of western Alaska are tentatively correlated with radiometrically dated units of eastern Baffin Island, Arctic Canada. ?? 1982.

  1. A Summary of Changes in the Status of Alaska Natives.

    ERIC Educational Resources Information Center

    Alaska Univ., Anchorage. Inst. of Social and Economic Research.

    Replication of 78 tables from the 1973 2(c) Report by the Secretary of the Interior using 1980 census information provided data to document the social and economic changes in the status of Alaska Natives since the passage of the Alaska Native Claims Settlement Act. Comparison of 1970 and 1980 data showed an average 2.4% growth rate in the Native…

  2. Sharing Ideas. Southeast Alaska Cultures: Teaching Ideas and Resource Information.

    ERIC Educational Resources Information Center

    Hinckley, Kay, Comp.; Kleinert, Jean, Comp.

    The product of two 1975 workshops held in Southeastern Alaska (Fairbanks and Sitka), this publication presents the following: (1) papers (written by the educators in attendance at the workshops) which address education methods and concepts relevant to the culture of Southeastern Alaska ("Tlingit Sea Lion Parable"; "Using Local Knowledge in…

  3. Yesterday Still Lives...Our Native People Remember Alaska.

    ERIC Educational Resources Information Center

    DeMarco, Pat, Ed.; And Others

    In the summer of 1978, seven teenagers and several staff members from the Fairbanks Native Association-Johnson O'Malley program set out to record some of Alaska's past by interviewing a number of older Alaska Natives and writing their biographical sketches. Some of the students spent a week along the Yukon River taping and photographing people;…

  4. Expanding Job Opportunities for Alaska Natives. (Interim Report).

    ERIC Educational Resources Information Center

    McDiarmid, G. Williamson; Goldsmith, Scott; Killorin, Mary; Sharp, Suzanne; Hild, Carl

    A majority of adults in most Alaska Native villages were without jobs in 1990, and the situation was probably not substantially better in 1998. This report summarizes current Alaska Native employment data and employment trends, provides information on public and private programs that target Native hire, and describes promising approaches for…

  5. 46 CFR 2.01-80 - Vessel inspections in Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Vessel inspections in Alaska. 2.01-80 Section 2.01-80 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC VESSEL INSPECTIONS Inspecting and Certificating of Vessels § 2.01-80 Vessel inspections in Alaska. (a) The waters...

  6. Scientific Infrastructure To Support Manned And Unmanned Aircraft, Tethered Balloons, And Related Aerial Activities At Doe Arm Facilities On The North Slope Of Alaska

    NASA Astrophysics Data System (ADS)

    Ivey, M.; Dexheimer, D.; Hardesty, J.; Lucero, D. A.; Helsel, F.

    2015-12-01

    The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) facilities, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. DOE has recently invested in improvements to facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska. A new ground facility, the Third ARM Mobile Facility, was installed at Oliktok Point Alaska in 2013. Tethered instrumented balloons were used to make measurements of clouds in the boundary layer including mixed-phase clouds. A new Special Use Airspace was granted to DOE in 2015 to support science missions in international airspace in the Arctic. Warning Area W-220 is managed by Sandia National Laboratories for DOE Office of Science/BER. W-220 was successfully used for the first time in July 2015 in conjunction with Restricted Area R-2204 and a connecting Altitude Reservation Corridor (ALTRV) to permit unmanned aircraft to operate north of Oliktok Point. Small unmanned aircraft (DataHawks) and tethered balloons were flown at Oliktok during the summer and fall of 2015. This poster will discuss how principal investigators may apply for use of these Special Use Airspaces, acquire data from the Third ARM Mobile Facility, or bring their own instrumentation for deployment at Oliktok Point, Alaska. The printed poster will include the standard DOE funding statement.

  7. Observations of the surge-type Black Rapids Glacier, Alaska, during a quiescent period, 1970-92

    USGS Publications Warehouse

    Heinrichs, Thomas A.; Mayo, L.R.; Trabant, D.C.; March, R.S.

    1995-01-01

    This report presents 23 years (1970 to 1992) of observations of Black Rapids Glacier, Alaska. Black Rapids Glacier is a surge-type glacier which most recently surged in 1936-37, and is currently in its quiescent phase. This glacier is of special interest because it is a potential hazard to the trans-Alaska oil pipeline. Ten sites on the glacier were monitored from 1972 to 1987, and three sites were monitored from 1988 to 1992. The measurement program presented here includes observations of surface mass balance, ice velocity, and surface altitude made twice each year. Additional one-time data include observations of ice thickness, previously unreported observations of the 1936-37 surge, establishment of the geodetic control monuments, and a new map of Black Rapids Glacier.

  8. Discovery: An Introduction. Alaska Sea Week Curriculum Series. Alaska Sea Grant Report 83-6.

    ERIC Educational Resources Information Center

    Mickelson, Belle; And Others

    This curriculum guide is the first (Series I) in a six-volume set that comprises the Sea Week Curriculum Series developed in Alaska. As a basic introduction, this first book in the series lends itself to the kindergarten level but can be adapted to preschool, secondary, and adult education. Six units contain 32 activities with worksheets that…

  9. 77 FR 58731 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ..., and a history, was originally addressed in the Federal Register on August 16, 2002 (67 FR 53511) and most recently on March 26, 2012 (77 FR 17353). Recent Federal Register documents, which are all... migratory birds in Alaska in a proposed rule published in the Federal Register on April 17, 2012, (77...

  10. 76 FR 68263 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ..., and a history, was originally addressed in the Federal Register on August 16, 2002 (67 FR 53511) and most recently on March 29, 2011 (76 FR 17353). Recent Federal Register documents, which are all final... migratory birds in Alaska in a proposed rule published in the Federal Register on April 8, 2011 (76 FR...

  11. Alaska Broad Scale Orthoimagery and Elevation Mapping - Current Statewide Project Progress and Historic Work in Alaska

    NASA Astrophysics Data System (ADS)

    Heinrichs, T. A.; Broderson, D.; Johnson, A.; Slife, M.

    2014-12-01

    This presentation describes the overall program goals and current status of broad scale, statewide orthoimagery and digital elevation model (DEM) projects currently underway in Alaska. As context, it will also describe the history and successes of previous statewide Alaska mapping efforts over the preceding 75 years. A new statewide orthomosaic imagery baselayer at 1:24,000 NMAS accuracy (12.2-meters CE90) is nearing completion. The entire state (1.56 million square kilometers) has been imaged with the SPOT 5 satellite, and a 2.5-meter spatial resolution, multi-spectral, nearly cloud-free, pan-sharpened orthoimage will be produced by mid-2015. A second major project is collection of an improved accuracy DEM statewide. Airborne interferometric synthetic aperture radar (IfSAR) data has been collected for about half of the state of Alaska and completion of the rest of the state is anticipated within a few years. A 5-meter post spacing, 20-foot contour interval accuracy equivalent (3-meter vertical LE90) DEM and radar backscatter intensity image is being delivered. Historic projects to be described include the 1950's USGS Alaska topographic mapping program, one of the largest and most pioneering, challenging, and successful ever undertaken in North America. These historic and current mapping programs have served as both a baselayer framework and as feedstock for science for virtually every geologic, geophysical, and terrestrial natural science project in the state.

  12. Fish and Fisheries. Alaska Sea Week Curriculum Series VI. Alaska Sea Grant Report 83-7.

    ERIC Educational Resources Information Center

    Mickelson, Belle; Barr, Nancy

    This curriculum guide is the fifth (Series VI) in a six-volume set that comprises the Sea Week Curriculum Series developed in Alaska. The book lends itself to the fifth-grade level but can be adapted to preschool, secondary, and adult education. Seven units contain 48 activities with worksheets that cover the following topics: (1) fish, their…

  13. Shells and Insects. Alaska Sea Week Curriculum Series III. Alaska Sea Grant Report 84-4.

    ERIC Educational Resources Information Center

    Kelsey, Claudia; And Others

    This curriculum guide is the third (Series III) in a six-volume set that comprises the Sea Week Curriculum Series developed in Alaska. The book lends itself to the second-grade level but can be adapted to preschool, secondary, and adult education. Ten units contain 77 activities with worksheets that cover the following topics: (1) introduction to…

  14. Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)

    SciTech Connect

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  15. Alaska Native Water Rights as Affected by the Alaska Native Claims Settlement Act

    ERIC Educational Resources Information Center

    Stoebner, Kerry; And Others

    1978-01-01

    A strong legal claim exists for retained Native water rights on Alaska Native-selected lands which are paramount to subsequent competing users. Water rights are critical to the maintenance of Native subsistence economies and continued commercial developments. These water rights can and must be asserted and secured now. (Author/JC)

  16. Flood-prone area maps of three sites along the Trans-Alaska Pipeline, Alaska

    USGS Publications Warehouse

    Lamke, Robert D.; Jones, Stanley H.

    1980-01-01

    Flood-prone areas in Alaska are delineated on aerial photographs for the Sagavanirktok River near Pump Station 3, Middle Fork Koyukuk River at Coldfoot, and Jim River near Pump Station 5. An analysis of available flood data and a description of recent flood evidence and maximum evident flood marks are included. (Kosco-USGS)

  17. Native Alaska's Floating Factoryship--She Plies the Pacific Ocean for Native Alaska.

    ERIC Educational Resources Information Center

    Wassaja, The Indian Historian, 1980

    1980-01-01

    Describes the history of the Al-Ind-Esk-A Sea, a floating fish processing factory representing a major hope for the economic independence of Alaska Natives residing outside the state. Discusses employment practices in effect on the ship. Notes interesting facts about the ship's engines and fittings. (SB)

  18. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  19. Mississippi Special Olympics: Special Events Manual.

    ERIC Educational Resources Information Center

    Heinze, Toni; Cooper, Walter E.

    Provided in the manual are organizational guidelines and suggested activities for a Special Evants segment of the Mississippi Special Olympics Program to encourage participation by low motor functioning, multihandicapped, mentally retarded persons. Information is provided concerning objectives, organizational set-up, guidelines, communication…

  20. SPECIAL CLASSES FOR STUDENTS WITH SPECIAL NEEDS.

    ERIC Educational Resources Information Center

    DOWELL, G.L.

    A SPECIAL 3-YEAR TRAINING PROGRAM IN FARM POWER AND MACHINERY WAS DEVELOPED TO PROVIDE FOR DIFFERENT LEVELS OF STUDENT ACHIEVEMENT AND TO HELP MEET THE NEED FOR SKILLED WORKERS IN THE MISSISSIPPI DELTA AREA. CHANGES IN THE LEARNING ENVIRONMENT OF STUDENTS TRANSFERRED FROM REGULAR VOCATIONAL AGRICULTURE CLASSES TO THE SPECIAL CLASSES PROVIDE A MORE…

  1. State of Alaska Student Financial Aid Programs, 1991-92 Annual Report.

    ERIC Educational Resources Information Center

    Alaska State Commission on Postsecondary Education, Juneau.

    This report briefly summarizes Alaska's student financial aid programs and the participation levels for 1991-92. After introductory remarks, more detailed sections focus on the following specific programs: (1) the Alaska Student Loan Program; (2) the Alaska Family Education Loan Program; (3) the Alaska Teacher Scholarship Loan Program; (4) the…

  2. A Model for Recruiting and Retaining Teachers in Alaska's Rural K-12 Schools

    ERIC Educational Resources Information Center

    Adams, Barbara L.; Woods, Ashley

    2015-01-01

    The Alaska Statewide Mentor Project (ASMP) is a joint effort of the University of Alaska and the Alaska Department of Education & Early Development to address the persistently low teacher retention rates in the state, especially in rural districts that predominantly serve Alaska Native (AN) students. Over six years, teacher retention in rural…

  3. 75 FR 38452 - Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska License Limitation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... private contractual arrangements. Second, Amendment 86 would exempt vessels using jig gear from the... Economic Zone Off Alaska; Central Gulf of Alaska License Limitation Program; Amendment 86 AGENCY: National...: Notification of availability of fishery management plan amendment; request for comments. SUMMARY: The...

  4. 78 FR 53419 - Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment 95 to the Fishery Management Plan for... (NOAA), Commerce. ACTION: Notification of availability of fishery management plan amendment; request for comments. SUMMARY: NMFS announces that the North Pacific Fishery Management Council has submitted...

  5. Kilbuck terrane: Oldest known rocks in Alaska

    SciTech Connect

    Box, S.E. ); Moll-Stalcup, E.J.; Wooden, J.L. ); Bradshaw, J.Y. )

    1990-12-01

    The Kilbuck terrane in southwestern Alaska is a narrow, thin crustal sliver or flake of amphibolite facies orthogneiss. The igneous protolith of this gneiss was a suite of subduction-related plutonic rocks. U-Pb data on zircons from trondhjemitic and granitic samples yield upper-intercept (igneous) ages of 2,070 {plus minus}16 and 2,040 {plus minus}74 Ma, respectively. Nd isotope data from these rocks suggest that a diorite-tonalite-trondhjemite suite ({epsilon}{sub Nd}(T) = +2.1 to +2.7; T is time of crystallization) evolved from partial melts of depleted mantle with no discernible contamination by older crust, whereas a coeval granitic pluton ({epsilon}{sub Nd}(T) = {minus}5.7) contains a significant component derived from Archean crust. Orthogneisses with similar age and Nd isotope characteristics are found in the Idono complex 250 km to the north. Early Proterozoic rocks are unknown elsewhere in Alaska. However, Phanerozoic plutons cutting several continental terranes in Alaska (southern Brooks Range and Ruby, Seward, and Yukon-Tanana terranes) have Nd isotope compositions indicative of Early Proterozoic (or older) crustal components that could be correlative with rocks of the Kilbuck terrane. Rocks with similar igneous ages in cratonal North America are rare, and those few that are known have Nd isotope compositions distinct from those of the Kilbuck terrane. Conversely, provinces with Nd model ages of 2.0-2.1 Ga are characterized by extensive 1.8 Ga or younger plutonism, which is unknown in the Kilbuck terrane. At present the case for a North American parentage of the Kilbuck terrane is not compelling. The possibility that the Kilbuck terrane was displaced from provinces of similar age in other cratons (e.g., Australian, Baltic, Guiana, and west African shields), or from the poorly dated Siberian craton, cannot be excluded.

  6. Contemporary fault mechanics in southern Alaska

    NASA Astrophysics Data System (ADS)

    Kalbas, James L.; Freed, Andrew M.; Ridgway, Kenneth D.

    Thin-shell finite-element models, constrained by a limited set of geologic slip rates, provide a tool for evaluating the organization of contemporary faulting in southeastern Alaska. The primary structural features considered in our analysis are the Denali, Duke River, Totschunda, Fairweather, Queen Charlotte, and Transition faults. The combination of fault configurations and rheological properties that best explains observed geologic slip rates predicts that the Fairweather and Totschunda faults are joined by an inferred southeast-trending strike-slip fault that crosses the St. Elias Mountains. From a regional perspective, this structure, which our models suggest slips at a rate of ˜8 mm/a, transfers shear from the Queen Charlotte fault in southeastern Alaska and British Columbia northward to the Denali fault in central Alaska. This result supports previous hypotheses that the Fairweather-Totschunda connecting fault constitutes a newly established northward extension of the Queen Charlotte-Fairweather transform system and helps accommodate right-lateral motion (˜49 mm/a) of the Pacific plate and Yakutat microplate relative to stable North America. Model results also imply that the Transition fault separating the Yakutat microplate from the Pacific plate is favorably oriented to accommodate significant thrusting (23 mm/a). Rapid dip-slip displacement on the Transition fault does not, however, draw shear off of the Queen Charlotte-Fairweather transform fault system. Our new modeling results suggest that the Totschunda fault, the proposed Fairweather-Totschunda connecting fault, and the Fairweather fault may represent the youngest stage of southwestward migration of the active strike-slip deformation front in the long-term evolution of this convergent margin.

  7. Late Paleozoic orogeny in Alaska's Farewell terrane

    USGS Publications Warehouse

    Bradley, D.C.; Dumoulin, J.; Layer, P.; Sunderlin, D.; Roeske, S.; McClelland, B.; Harris, A.G.; Abbott, G.; Bundtzen, T.; Kusky, T.

    2003-01-01

    Evidence is presented for a previously unrecognized late Paleozoic orogeny in two parts of Alaska's Farewell terrane, an event that has not entered into published scenarios for the assembly of Alaska. The Farewell terrane was long regarded as a piece of the early Paleozoic passive margin of western Canada, but is now thought, instead, to have lain between the Siberian and Laurentian (North American) cratons during the early Paleozoic. Evidence for a late Paleozoic orogeny comes from two belts located 100-200 km apart. In the northern belt, metamorphic rocks dated at 284-285 Ma (three 40Ar/39Ar white-mica plateau ages) provide the main evidence for orogeny. The metamorphic rocks are interpreted as part of the hinterland of a late Paleozoic mountain belt, which we name the Browns Fork orogen. In the southern belt, thick accumulations of Pennsylvanian-Permian conglomerate and sandstone provide the main evidence for orogeny. These strata are interpreted as the eroded and deformed remnants of a late Paleozoic foreland basin, which we name the Dall Basin. We suggest that the Browns Fork orogen and Dall Basin comprise a matched pair formed during collision between the Farewell terrane and rocks to the west. The colliding object is largely buried beneath Late Cretaceous flysch to the west of the Farewell terrane, but may have included parts of the so-called Innoko terrane. The late Paleozoic convergent plate boundary represented by the Browns Fork orogen likely connected with other zones of plate convergence now located in Russia, elsewhere in Alaska, and in western Canada. Published by Elsevier B.V.

  8. Tributyltin contamination and imposex in Alaska harbors.

    PubMed

    Tallmon, David A

    2012-02-01

    We quantified imposex in file dogwinkles (Nucella lima) and tributyltin (TBT) contamination in bay mussels (Mytilus trossulus) from 10 harbors and nearby control sites throughout Alaska. We found evidence of TBT contamination in mussels from four harbors (29-54 ng TBT/g wet tissue wt). Two of these harbors now show reduced TBT contamination relative to levels found in 1987. We were able to find and collect dogwinkles from seven sites. Of these, all three dogwinkle samples from harbor sites exhibited imposex, with 36%-87.5% females affected per site. In total, six of the 10 harbors had some evidence of TBT contamination.

  9. Meteorology: dusty ice clouds over Alaska.

    PubMed

    Sassen, Kenneth

    2005-03-24

    Particles lofted into the atmosphere by desert dust storms can disperse widely and affect climate directly through aerosol scattering and absorption. They can also affect it indirectly by changing the scattering properties of clouds and, because desert dusts are particularly active ice-forming agents, by affecting the formation and thermodynamic phase of clouds. Here I show that dust storms that occurred in Asia early in 2004 created unusual ice clouds over Alaska at temperatures far warmer than those expected for normal cirrus-cloud formation.

  10. NASA's DESDynI in Alaska

    NASA Astrophysics Data System (ADS)

    Sauber, J. M.; Hofton, M. A.; Bruhn, R. L.; Forster, R. R.; Burgess, E. W.; Cotton, M. M.

    2010-12-01

    In 2007 the National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommended an integrated L-band InSAR and multibeam Lidar mission called DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) and it is scheduled for launch in 2017. The NASA InSAR and Lidar mission is optimized for studying geohazards and global environmental change. The complex plate boundary in southern coastal Alaska provides an excellent setting for testing DESDynI capabilities to recover fundamental parameters of glacio-seismotectonic processes. Also, aircraft and satellites acquisitions of Lidar and L-band SAR have been made in this region in the last decade that can be used for DESDynI performance simulations. Since the Lidar observations would penetrate most vegetation, the accurate bald Earth elevation profiles will give new elevation information beyond the standard 30-m digital elevation models (DEM) and the Lidar-derived elevations will provide an accurate georeferenced surface for local and regional scale studies. In an earlier study we demonstrated how the Lidar observations could be used in combination with SAR to generate an improved InSAR derived DEM in the Barrow, Alaska region [Atwood et al., 2007]; here we discuss how Lidar could be fused with L-band SAR in more rugged, vegetated terrane. Based on simulations of multi-beam Lidar instrument performance over uplifted marine terraces, active faults and folds, uplift associated with the 1899 Yakataga seismic event (M=8), and elevation change on the glaciers in southern, coastal Alaska, we report on the significance of the DESDynI Lidar contiguous 25 m footprint elevation profiles for EarthScope related studies in Alaska. We are using the morphology and dynamics of glaciers derived from L-band SAR ice velocities to infer the large scale sub-ice structures that form the structural framework of the Seward-Bagley Basins. Using primarily winter acquisitions of L-band SAR data from ALOS

  11. Alaska's rare earth deposits and resource potential

    USGS Publications Warehouse

    Barker, James C.; Van Gosen, Bradley S.

    2012-01-01

    Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).

  12. Recent sedimentation, northeastern Port Valdez, Alaska

    NASA Astrophysics Data System (ADS)

    Palmer, Harold D.

    1981-09-01

    Sediments accumulating on the northeastern shore of Port Valdez, a fjord leading to Prince William Sound in southern Alaska, are derived from both deltaic and alluvial fan processes. The resulting thick wedge of Recent silts, sands, shells and gravels lies atop irregular ridges of local graywacke bedrock and scattered till deposits. Seismic reflection profiling augmented by soil borings indicates that rapid infilling and upbuilding has occurred at this site. Evidence of slumping suggests general instability of steep submarine slopes in an area characterized by strong earthquakes and large tidal ranges.

  13. Improving Sanitation and Health in Rural Alaska

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2013-01-01

    In rural Alaskan communities personal health is threatened by energy costs and limited access to clean water, wastewater management, and adequate nutrition. Fuel-­-based energy systems are significant factors in determining local accessibility to clean water, sanitation and food. Increasing fuel costs induce a scarcity of access and impact residents' health. The University of Alaska Fairbanks (UAF) School of Natural Resources and Agricultural Sciences (SNRAS), NASA's Ames Research Center, and USDA Agricultural Research Service (ARS) have joined forces to develop high-efficiency, low­-energy consuming techniques for water treatment and food production in rural circumpolar communities. Methods intended for exploration of space and establishment of settlements on the Moon or Mars will ultimately benefit Earth's communities in the circumpolar north. The initial phase of collaboration is completed. Researchers from NASA Ames Research Center and SNRAS, funded by the USDA­-ARS, tested a simple, reliable, low-energy sewage treatment system to recycle wastewater for use in food production and other reuse options in communities. The system extracted up to 70% of the water from sewage and rejected up to 92% of ions in the sewage with no carryover of toxic effects. Biological testing showed that plant growth using recovered water in the nutrient solution was equivalent to that using high-purity distilled water. With successful demonstration that the low energy consuming wastewater treatment system can provide safe water for communities and food production, the team is ready to move forward to a full-scale production testbed. The SNRAS/NASA team (including Alaska students) will design a prototype to match water processing rates and food production to meet rural community sanitation needs and nutritional preferences. This system would be operated in Fairbanks at the University of Alaska through SNRAS. Long­-term performance will be validated and operational needs of the

  14. Malaspina Glacier, Alaska, Anaglyph with Landsat Overlay

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This anaglyph view of Malaspina Glacier in southeastern Alaska was created from a Landsat satellite image and an elevation model generated by the Shuttle Radar Topography Mission (SRTM). Malaspina Glacier is considered the classic example of a piedmont glacier. Piedmont glaciers occur where valley glaciers exit a mountain range onto broad lowlands, are no longer laterally confined, and spread to become wide lobes. Malaspina Glacier is actually a compound glacier, formed by the merger of several valley glaciers, the most prominent of which seen here are Agassiz Glacier (left) and Seward Glacier (right). In total, Malaspina Glacier is up to 65 kilometers (40 miles) wide and extends up to 45 kilometers (28 miles) from the mountain front nearly to the sea.

    Glaciers erode rocks, carry them down slope, and deposit them at the edge of the melting ice, typically in elongated piles called moraines. The moraine patterns at Malaspina Glacier are quite spectacular in that they have huge contortions that result from the glacier crinkling as it gets pushed from behind by the faster-moving valley glaciers.

    Numerous other features of the glaciers and the adjacent terrain are clearly seen when viewing this image at full resolution. The series of tonal arcs on Agassiz Glacier's extension onto the piedmont are called 'ogives.' These arcs are believed to be seasonal features created by deformation of the glacier as it passes over bedrock irregularities at differing speeds through the year. Assuming one light-and-dark ogive pair per year, the rate of motion of the glacial ice can be estimated (in this case, about 200 meters per year where the ogives are most prominent). Just to the west, moraine deposits abut the eroded bedrock terrain, forming a natural dam that has created a lake. Near the northwest corner of the scene, a recent landslide has deposited rock debris atop a small glacier. Sinkholes are common in many areas of the moraine deposits. The sinkholes form when

  15. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zhang, X.; Zavodsky, B. T.; Heinrichs, T.; Broderson, D.

    2014-01-01

    A case study and monthly statistical analysis using sounder data assimilation to improve the Alaska regional weather forecast model are presented. Weather forecast in Alaska faces challenges as well as opportunities. Alaska has a large land with multiple types of topography and coastal area. Weather forecast models must be finely tuned in order to accurately predict weather in Alaska. Being in the high-latitudes provides Alaska greater coverage of polar orbiting satellites for integration into forecasting models than the lower 48. Forecasting marine low stratus clouds is critical to the Alaska aviation and oil industry and is the current focus of the case study. NASA AIRS/CrIS sounder profiles data are used to do data assimilation for the Alaska regional weather forecast model to improve Arctic marine stratus clouds forecast. Choosing physical options for the WRF model is discussed. Preprocess of AIRS/CrIS sounder data for data assimilation is described. Local observation data, satellite data, and global data assimilation data are used to verify and/or evaluate the forecast results by the MET tools Model Evaluation Tools (MET).

  16. Alaska coal geology, resources, and coalbed methane potential

    SciTech Connect

    Romeo M. Flores; Gary D. Stricker; Scott A. Kinney

    2005-11-15

    Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces, Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines. Alaskan coals have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States and are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. Another untapped potential resource is coalbed methane estimated to total 1,000 trillion cubic feet (28 trillion cubic meters).

  17. Earthquake locations determined by the Southern Alaska seismograph network for October 1971 through May 1989

    USGS Publications Warehouse

    Fogleman, Kent A.; Lahr, John C.; Stephens, Christopher D.; Page, Robert A.

    1993-01-01

    instrumentation and strengthened antenna systems. The majority of the stations installed since 1980 were operated only temporarily (from one to several years) for special studies in various areas within the network. Due to reduced funding, the network was trimmed substantially in the summer of 1985 with the closure of 15 stations, 13 of which were located in and around the Yakataga seismic gap. To further reduce costs, two telephone circuits were dropped and multiple radio relays were installed in their place. This economy reduced the reliability of these telemetry links. In addition, data collection from the areas around Cordova and Yakutat was compromised by the necessity of relying on triggered event recording using PC-based systems (Rogers, 1993) that were not fully developed and which proved to be less reliable than anticipated.The principal means of recording throughout the time period of this catalog was 20-channel oscillographs on 16-mm film (Teledyne Geotech Develocorder, Model RF400 and 4000D). Initially one Develocorder was operated at the USGS Alaskan headquarters in Anchorage, but in 1972 recording was shifted to the National Oceanic and Atmospheric Administration (NOAA) Palmer Observatory (currently the West Coast and Alaska Tsunami Warning Center). The Develocorders were turned off at the end of May 1989, and after that time recording was done in digital format at the Geophysical Institute of the University of Alaska in Fairbanks (GIUA). Thus, this catalog covers the entire period of film recording.

  18. Tobacco Use Among Southwestern Alaska Native People

    PubMed Central

    Renner, Caroline C.

    2013-01-01

    Introduction: We examined the characteristics, attitudes, beliefs, and exposure to tobacco products in a cohort of rural dwelling Alaska Native (AN) people. Methods: We conducted a study of 400 of AN adult tobacco users and nonusers living in Southwestern Alaska. Questionnaires covered variables such as demographics, tobacco-use history, current tobacco use and dependence scales, general health status, attitudes and beliefs about tobacco, and quitting history. Results: The study population smoked 7.8 cigarettes per day compared with 16.8 on average for the U.S. population: a significant proportion of the population engaged in dual use of cigarettes and smokeless tobacco products. Over one third (40.9%), first tried tobacco at age 11 or younger. The mean measures of tobacco addiction (e.g., Fagerstrom Test for Nicotine Dependence, Severson Scale of Smokeless Tobacco Dependence) scores were lower compared with other U.S. populations. Conclusions: Very high tobacco-use prevalence, dual product use, and early tobacco use are observed in Southwestern AN people. Unexpectedly these did not appear to be correlated with heavier individual tobacco use or higher levels of addiction in this population. PMID:22949573

  19. Tectono-stratigraphic terrane map of Alaska

    SciTech Connect

    Nokleberg, W.J.; Brew, D.A.; Grantz, A.; Plafker, G.; Moore, T.E.; Patton, W.W. Jr. ); Mollstalcup, E.J. ); Miller, T.P. )

    1993-04-01

    A new terrane map compelled at a scale of 2.5 million is a comprehensive portrayal of the major tectono-stratigraphic terranes, pre-accretionary plutonic rocks, faults or sutures that bound terranes, and younger overlap sedimentary , volcanic, and plutonic assemblages of Alaska. Terranes are divided by tectonic affinity into cratonal, passive continental margin, metamorphosed continental margin, continental margin arc, island arc, oceanic crust, sea mount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic environments. Overlap assemblages consist of sequences of sedimentary, volcanic, and plutonic rocks that link or weld together adjacent terranes after emplacement, and provide important constraints on the timing of tectonic juxtaposition. Groups of terranes and overlap assemblages, with similar tectonic environments and geologic histories, can be correlated within Alaska and into the adjacent Canadian Cordillera. These groups include: (1) highly deformed and metamorphosed continental margin terranes (Seward, Coldfoot, Ruby, Yukon-Tanana, Kootenay) that are interpreted either as displaced fragments of the North American or other continental margins; (2) ophiolite terranes (Angayucham, Tozitna, Inoko, Seventymile, Slide Mountain) that are interpreted as remnants of one or more major, long-lived, Paleozoic and early Mesozoic oceanic basins; (3) Jurassic and Early Cretaceous island arc terranes (Koyukuk, Togiak, Nyac) that are interpreted as remnants of a discontinuous, short-lived, Mesoxoic island arc system; and (4) the Late Jurassic and Early Cretaceous Kahiltna and Gravina-Nutzotin overlap assemblages that are interpreted as parts of a major arc and flysch sequence.

  20. Kilbuck terrane: oldest known rocks in Alaska

    USGS Publications Warehouse

    Box, S.E.; Moll-Stalcup, E. J.; Wooden, J.L.; Bradshaw, J.Y.

    1990-01-01

    The Kilbuck terrane in southwestern Alaska is a narrow, thin crustal sliver or flake of amphibolite facies orthogneiss. The igneous protolith of this gneiss was a suite of subduction-related plutonic rocks. U-Pb data on zircons from trondhjemitic and granitic samples yield upper-intercept (igneous) ages of 2070 ?? 16 and 2040 ?? 74 Ma, respectively. Nd isotope data from these rocks suggest that a diorite-tonalite-trondhjemite suite (??Nd[T] = +2.1 to +2.7; T is time of crystallization) evolved from partial melts of depleted mantle with no discernible contamination by older crust, whereas a coeval granitic pluton (??Nd[T] = -5.7) contains a significant component derived from Archean crust. Orthogneisses with similar age and Nd isotope characteristics are found in the Idono complex 250 km to the north. Early Proterozoic rocks are unknown elsewhere in Alaska. The possibility that the Kilbuck terrane was displaced from provinces of similar age in other cratons (e.g., Australian, Baltic, Guiana, and west African shields), or from the poorly dated Siberian craton, cannot be excluded. -from Authors

  1. Rural Special Education.

    ERIC Educational Resources Information Center

    Helge, Doris, Ed.

    1984-01-01

    This special issue of the journal Exceptional Children has the theme "Rural Special Education." Nine articles deal with this theme as follows: (1) "The State of the Art of Rural Special Education" (by D. Helge), looks at recent improvements, remaining challenges, and current functioning; policy recommendations are offered for national and state…

  2. Mentorship of Special Educators

    ERIC Educational Resources Information Center

    Madigan, Jennifer Booker; Schroth-Cavataio, Georganne

    2012-01-01

    The national shortage and exceptionally high attrition rate of special education teachers are impediments to serving students with special needs. Given that only 64 percent of special education teachers have access to a mentor compared with 86 percent of general education teachers, this book meets an essential need for attracting, retaining, and…

  3. Population model for Alaska Peninsula sea otters. Final report

    SciTech Connect

    Eberhardt, L.L.; Siniff, D.B.

    1988-12-31

    This study was conducted to provide a basis for assessing risks of oil spills to sea otter populations along the Alaska Peninsula. The principal efforts were devoted to analyzing the available data on population dynamics. Curves characterizing survivorship and reproduction for sea otters were devised and fitted to several data sets. A detailed review was conducted of methods of assessing population dynamics data, and several new techniques (e.g., bootstrapping) were applied to available data. A simplified model for use with Alaska Peninsula sea otter populations was devised and implemented in a 'spreadsheet' format. Various aspects of model development and data on population size in Alaska Peninsula areas were reviewed.

  4. Financing Opportunities for Renewable Energy Development in Alaska

    SciTech Connect

    Ardani, K.; Hillman, D.; Busche, S.

    2013-04-01

    This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

  5. Perspective View of Okmok Volcano, Aleutian Islands, Alaska (#1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This perspective view shows the caldera of the Okmok volcano in Alaska's Aleutian Islands.

    The shaded relief was generated from and draped over an Airsar-derived digital elevation mosaic.

    Airsar collected the Alaska data as part of its PacRim 2000 Mission, which took the instrument to French Polynesia, American and Western Samoa, Fiji, New Zealand, Australia, New Guinea, Indonesia, Malaysia, Cambodia, Philippines, Taiwan, South Korea, Japan, Northern Marianas, Guam, Palau, Hawaii and Alaska. Airsar, part of NASA's Airborne Science Program, is managed for NASA's Earth Science Enterprise by JPL. JPL is a division of the California Institute of Technology in Pasadena.

  6. Perspective View of Okmok Volcano, Aleutian Islands, Alaska (#2)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This perspective view shows the caldera of the Okmok volcano in Alaska's Aleutian Islands.

    The shaded relief was generated from and draped over an Airsar-derived digital elevation mosaic.

    Airsar collected the Alaska data as part of its PacRim 2000 Mission, which took the instrument to French Polynesia, American and Western Samoa, Fiji, New Zealand, Australia, New Guinea, Indonesia, Malaysia, Cambodia, Philippines, Taiwan, South Korea, Japan, Northern Marianas, Guam, Palau, Hawaii and Alaska. Airsar, part of NASA's Airborne Science Program, is managed for NASA's Earth Science Enterprise by JPL. JPL is a division of the California Institute of Technology in Pasadena.

  7. Seismic hazard exposure for the Trans-Alaska Pipeline

    USGS Publications Warehouse

    Cluff, L.S.; Page, R.A.; Slemmons, D.B.; Grouse, C.B.; ,

    2003-01-01

    The discovery of oil on Alaska's North Slope and the construction of a pipeline to transport that oil across Alaska coincided with the National Environmental Policy Act of 1969 and a destructive Southern California earthquake in 1971 to cause stringent stipulations, state-of-the-art investigations, and innovative design for the pipeline. The magnitude 7.9 earthquake on the Denali fault in November 2002 was remarkably consistent with the design earthquake and fault displacement postulated for the Denali crossing of the Trans-Alaska Pipeline route. The pipeline maintained its integrity, and disaster was averted. Recent probabilistic studies to update previous hazard exposure conclusions suggest continuing pipeline integrity.

  8. Impact of coastal processes on resource development with an example from Icy Bay, Alaska

    USGS Publications Warehouse

    Molnia, Bruce F.

    1978-01-01

    The coastline of Alaska is dynamic and continually readjusting to changes in the many processes that operate in the coastal zone. Because of this dynamic nature, special consideration must be made in planning for development, and. caution must be exercised in site selection for facilities to be emplaced in the coastal zone. All types of coastal processes from continuously active normal processes to the low frequency-high intensity rare event must be considered. Site-specific evaluation-s considering the broad range of possible processes must precede initiation of development. An example of the relation between coastal processes and a proposed resource treatment facility is presented for Icy Bay, Alaska. Icy Bay is the only sheltered bay near many of the offshore tracts leased for petroleum exploration in the 1976 northern Gulf of Alaska OCS (Outer Continental Shelf) lease sale. Consequently, it has been selected as a primary onshore staging site for the support of offshore exploration and development. The environment of Icy Bay has many potentially hazardous features, including a submarine moraine at the bay mouth and actively calving glaciers at the bay's head which produce many icebergs. But most significant from the point of view of locating onshore facilities and pipeline corridors are the high rates of shoreline erosion and sediment deposition. If pipelines or any onshore staging facilities are to be placed in the coastal areas of Icy Bay, then the dynamic changes in shoreline position must be considered so that man-made structures will not be eroded away or be silted in before the completion of development.

  9. 2012 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Herrick, Julie A.; Neal, Christina A.; Cameron, Cheryl E.; Dixon, James P.; McGimsey, Robert G.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, or suspected unrest at 11 volcanic centers in Alaska during 2012. Of the two verified eruptions, one (Cleveland) was clearly magmatic and the other (Kanaga) was most likely a single phreatic explosion. Two other volcanoes had notable seismic swarms that probably were caused by magmatic intrusions (Iliamna and Little Sitkin). For each period of clear volcanic unrest, AVO staff increased monitoring vigilance as needed, reviewed eruptive histories of the volcanoes in question to help evaluate likely outcomes, and shared observations and interpretations with the public. 2012 also was the 100th anniversary of Alaska’s Katmai-Novarupta eruption of 1912, the largest eruption on Earth in the 20th century and one of the most important volcanic eruptions in modern times. AVO marked this occasion with several public events.

  10. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-08-14

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  11. Timing of ore-related magmatism in the western Alaska Range, southwestern Alaska

    USGS Publications Warehouse

    Taylor, Ryan D.; Graham, Garth E.; Anderson, Eric D.; Selby, David

    2014-01-01

    This report presents isotopic age data from mineralized granitic plutons in an area of the Alaska Range located approximately 200 kilometers to the west-northwest of Anchorage in southwestern Alaska. Uranium-lead isotopic data and trace element concentrations of zircons were determined for 12 samples encompassing eight plutonic bodies ranging in age from approximately 76 to 57.4 millions of years ago (Ma). Additionally, a rhenium-osmium age of molybdenite from the Miss Molly molybdenum occurrence is reported (approx. 59 Ma). All of the granitic plutons in this study host gold-, copper-, and (or) molybdenum-rich prospects. These new ages modify previous interpretations regarding the age of magmatic activity and mineralization within the study area. The new ages show that the majority of the gold-quartz vein-hosting plutons examined in this study formed in the Late Cretaceous. Further work is necessary to establish the ages of ore-mineral deposition in these deposits.

  12. Devonian volcanogenic massive sulfide deposits and occurrences, southern Yukon-Tanana Terrace, eastern Alaska Range, Alaska

    USGS Publications Warehouse

    Lange, I.M.; Nokleberg, W.J.; Newkirk, S.R.; Aleinikoff, J.N.; Church, S.E.; Krouse, H.R.

    1993-01-01

    A belt of volcanogenic massive sulfide deposits extends for over 150km along the southern margin of the Yukon-Tanana terrane of the eastern Alaska Range. Located north of the Denali fault, the Yukon-Tanana terrane forms a major basement unit in east-central Alaska. The volcanogenic massive sulfide deposits are primarily in the Jarvis Creek Glacier subterrane, which consists of a volcanogenic massive sulfide-bearing metavolcanic rock member and a metasedimentary rock member. Two periods of regional metamorphism and penetrative deformation are indicated: an older, Early Cretaceous, amphibolite facies event and a younger, mid-Cretaceous lower greenschist facies event. The occurrence, mineralogy and sulphur isotope values are discussed. -from Authors

  13. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  14. Distribution, facies, ages, and proposed tectonic associations of regionally metamorphosed rocks in Southwestern Alaska and the Alaska Peninsula

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Doyle, E.O.; Box, S.E.

    1996-01-01

    The oldest dated metamorphic sequence in Alaska, the fault-bounded Kilbuck Terrane, consists of continental rocks that were metamorphosed under amphibolite-facies conditions during early Proterozoic (1.77 Ga) time. Proterozoic or early Paleozoic metamorphic ages are also possible for greenschist- and amphibolite-facies continental rocks in interior Alaska (Ruby and Nixon Fork terranes). Medium-grade metamorphism on the Alaska Peninsula accompanied intrusion of a Jurassic arc. North of Bristol Bay, low-grade, locally high-pressure Mesozoic metamorphism is attributed to the progressive underthrusting of a subduction complex beneath an oceanic arc followed by underthrusting of the Kilbuck Terrane beneath the subduction complex.

  15. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  16. Photogrammetrically Derived Estimates of Glacier Mass Loss in the Upper Susitna Drainage Basin, Alaska Range, Alaska

    NASA Astrophysics Data System (ADS)

    Wolken, G. J.; Whorton, E.; Murphy, N.

    2014-12-01

    Glaciers in Alaska are currently experiencing some of the highest rates of mass loss on Earth, with mass wastage rates accelerating during the last several decades. Glaciers, and other components of the hydrologic cycle, are expected to continue to change in response to anticipated future atmospheric warming, thus, affecting the quantity and timing of river runoff. This study uses sequential digital elevation model (DEM) analysis to estimate the mass loss of glaciers in the upper Susitna drainage basin, Alaska Range, for the purpose of validating model simulations of past runoff changes. We use mainly stereo optical airborne and satellite data for several epochs between 1949 and 2014, and employ traditional stereo-photogrammetric and structure from motion processing techniques to derive DEMs of the upper Susitna basin glaciers. This work aims to improve the record of glacier change in the central Alaska Range, and serves as a critical validation dataset for a hydrological model that simulates the potential effects of future glacier mass loss on changes in river runoff over the lifespan of the proposed Susitna-Watana Hydroelectric Project.

  17. (Bradfield Electric and Alaska Power Authority Presidential permit): Finding of no significant impact (FONSI)

    SciTech Connect

    Not Available

    1988-01-01

    The Economic Regulatory Administration (ERA) of the Department of Energy (DOE) is considering an application by Bradfield Electric, Inc. (Bradfield), and the Alaska Power Authority (APA) for a Presidential permit to construct, operate, maintain and connect a 69-kilovolt (kV) transmission line which would extend from the APA's Tyee Lake Hydroelectric Power Project located near Wrangell, Alaska, to a point on the US-Canadian international border just east of the South Fork Craig River. The DOE has reviewed an environmental assessment (EA) prepared by the US Forest Service (USFS) in connection with its issuance of a special use permit to construct the proposed line through the Tongass National Forest. Based on this EA, the USFS issued a decision notice and a finding of no significant impact (FONSI) for the proposed project on May 9, 1988. The DOE is adopting this EA as DOE/EA-0375 in partial satisfaction of its responsibilities under the National Environmental Policy Act of 1969 (NEPA) regarding the issuance of a Presidential permit.

  18. Geochemical and isotopic water results, Barrow, Alaska, 2012-2013

    DOE Data Explorer

    Heikoop, Jeff; Wilson, Cathy; Newman, Brent

    2012-07-18

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  19. Identification, definition and mapping of terrestrial ecosystems in interior Alaska

    NASA Technical Reports Server (NTRS)

    Anderson, J. H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A transect of the Tanana River Flats to Murphy Dome, Alaska was accomplished. The transect includes an experimental forest and information on the range of vegetation-land form types. Multispectral black and white prints of the Eagle Summit Research Area, Alaska, were studied in conjunction with aerial photography and field notes to determine the characteristics of the vegetation. Black and white MSS prints were compared with aerial photographs of the village of Wiseman, Alaska. No positive identifications could be made without reference to aerial photographs or ground truth data. Color coded density slice scenes of the Eagle Summit Research Area were produced from black and white NASA aerial photographs. Infestations of the spruce beetle in the Cook Inlet, Alaska, were studied using aerial photographs.

  20. Interferometric Synthetic Aperture radar studies of Alaska volcanoes

    USGS Publications Warehouse

    Lu, Zhong; Wicks, Charles W.; Dzurisin, Daniel; Power, John A.; Thatcher, Wayne R.; Masterlark, Timothy

    2003-01-01

    In this article, we summarize our recent InSAR studies of 13 Alaska volcanoes, including New Trident, Okmok, Akutan, Kiska, Augustine, Westdahl, Peulik, Makushin, Seguam, Shishaldin, Pavlof, Cleveland, and Korovin volcanoes.

  1. Paleomagnetism of the Mesozoic in Alaska. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Packer, D. R.

    1972-01-01

    Over 400 oriented cores of Permian, Triassic, Jurassic, and Cretaceous sedimentary and igneous rocks were collected from 34 sites at 10 areas throughout southern Alaska. After magnetic cleaning in successively higher alternating fields 179 samples were considered to be stable and to give statistically consistent results within each site and age group. Due to the lack of a sufficient number of stable samples, the results from Permian, Triassic, and Cretaceous rocks were inconclusive. The nine remaining Jurassic sites represent 100 samples from three general areas in southern Alaska. The southern Alaskan Jurassic paleomagnetic pole is significantly different from the North American Jurassic pole. This suggests that since the Jurassic, southern Alaska must have moved approximately 18 degrees north and rotated 52 degrees clockwise to reach its present position. Tectonic interpretation of these results give a possible explanation for many of the geologic features observed in southern Alaska.

  2. The U.S. Geological Survey in Alaska, 1979 programs

    USGS Publications Warehouse

    Reed, Katherine M.; Technical assistance by Gilmore, Robert F.; Harris, Linda-Lee; Tennison, Lisa D.

    1979-01-01

    This circular describes the 1979 programs of the U.S. Geological Survey in Alaska. The mission of the Geological Survey is to identify the Nation 's land, water, energy, and mineral resources; to classify federally-owned mineral lands and water-power sites; to resolve the exploration and development of energy and natural resources on Federal and Indian lands; and to explore and appraise the petroleum potential of the National Petroleum Reserve in Alaska. Alaska is at once the largest, the least populated, the least explored, and the least developed State in the Nation. More than half of the Nation 's 600 million acres of Outer Continental Shelf lies off Alaska 's coast, and nearly half of the remaining 762 million acres of Federal land are within its borders. Its resources of all kinds present an opportunity to demonstrate how the needs of both conservation and development can be met for the benefit of the American people. (Kosco-USGS)

  3. The United States Geological Survey in Alaska; accomplishments during 1978

    USGS Publications Warehouse

    Johnson, Kathleen M.; Williams, John R.

    1979-01-01

    This circular describes the 1979 programs of the U.S. Geological Survey in Alaska. The mission of the Geological Survey is to identify the Nation 's land, water, energy, and mineral resources; to classify federally-owned mineral lands and water-power sites; to resolve the exploration and development of energy and natural resources on Federal and Indian lands; and to explore and appraise the petroleum potential of the National Petroleum Reserve in Alaska. Alaska is at once the largest, the least populated, the least explored, and the least developed State in the Nation. More than half of the Nation 's 600 million acres of Outer Continental Shelf lies off Alaska 's coast, and nearly half of the remaining 762 million acres of Federal land are within its borders. Its resources of all kinds present an opportunity to demonstrate how the needs of both conservation and development can be met for the benefit of the American people. (Kosco-USGS)

  4. Indian hospitals and Aboriginal nurses: Canada and Alaska.

    PubMed

    Drees, Laurie Meijer

    2010-01-01

    Between 1945 and the early 1970s, both Indian Health Services in Canada (IHS), and the Alaska Native Health Service (ANS) initiated programs and activities aimed at recruiting and training nurses/nurses aides from Canadian and Alaskan Native communities. In Alaska, the Mt. Edgecumbe Hospital in Sitka acted as a training facility for Alaska Native nurses' aides, while in Canada, the Charles Camsell Hospital served a similar function. These initiatives occurred prior to the devolution of health care to Aboriginal communities. The histories of these two hospitals provide a comparative opportunity to reveal themes related to the history of Aboriginal nurse training and Aboriginal health policies in the north. The paper outlines the structure and function of two main hospitals within the Indian Health and Alaska Native Health Services, discusses the historic training, and role of Aboriginal nurses and caregivers within those systems using both archival and oral history sources.

  5. 78 FR 55772 - Alaska Disaster Number AK-00028

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... From the Federal Register Online via the Government Publishing Office ] SMALL BUSINESS ADMINISTRATION Alaska Disaster Number AK-00028 AGENCY: U.S. Small Business Administration. ACTION: Amendment 1... information in the original declaration remains unchanged. (Catalog of Federal Domestic Assistance...

  6. Alaska coal geology, resources, and coalbed methane potential

    USGS Publications Warehouse

    Flores, Romeo M.; Stricker, Gary D.; Kinney, Scott A.

    2004-01-01

    Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines in these two provinces. Alaskan coal resources have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. The identified resources are near existing and planned infrastructure to promote development, transportation, and marketing of this low-sulfur coal. The relatively short distances to countries in the west Pacific Rim make them more exportable to these countries than to the lower 48 States of the United States. Another untapped but potential resource of large magnitude is coalbed methane, which has been estimated to total 1,000 trillion cubic feet (28 trillion cubic meters) by T.N. Smith 1995, Coalbed methane potential for Alaska and drilling results for the upper Cook Inlet Basin: Intergas, May 15 - 19, 1995, Tuscaloosa, University of Alabama, p. 1 - 21.

  7. Understanding Energy Code Acceptance within the Alaska Building Community

    SciTech Connect

    Mapes, Terry S.

    2012-02-14

    This document presents the technical assistance provided to the Alaska Home Financing Corporation on behalf of PNNL regarding the assessment of attitudes toward energy codes within the building community in Alaska. It includes a summary of the existing situation and specific assistance requested by AHFC, the results of a questionnaire designed for builders surveyed in a suburban area of Anchorage, interviews with a lender, a building official, and a research specialist, and recommendations for future action by AHFC.

  8. Overview of environmental and hydrogeologic conditions at King Salmon, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    1994-01-01

    The Federal Aviation Administration is conducting preliminary environmental assessments at most of its present or former facilities in Alaska. Information about environmental conditions at King Salmon, Alaska are presented in this report. This report gives an overview of the geology, hydro- logy, and climate of the King Salmon area and describes general geohydrologic conditions. A thick alluvial aquifer underlies King Salmon and both ground water and surface water are plentiful in the area.

  9. Coal database for Cook Inlet and North Slope, Alaska

    USGS Publications Warehouse

    Stricker, Gary D.; Spear, Brianne D.; Sprowl, Jennifer M.; Dietrich, John D.; McCauley, Michael I.; Kinney, Scott A.

    2011-01-01

    This database is a compilation of published and nonconfidential unpublished coal data from Alaska. Although coal occurs in isolated areas throughout Alaska, this study includes data only from the Cook Inlet and North Slope areas. The data include entries from and interpretations of oil and gas well logs, coal-core geophysical logs (such as density, gamma, and resistivity), seismic shot hole lithology descriptions, measured coal sections, and isolated coal outcrops.

  10. Alaska Coastal Tundra Vegetation's Links to Climate

    NASA Astrophysics Data System (ADS)

    Bieniek, P. A.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Comiso, J. C.; Epstein, H. E.; Pinzon, J. E.; Tucker, C. J.; Thoman, R. L.; Tran, H.; Molders, N.; Ermold, W.; Zhang, J.; Steele, M.

    2012-12-01

    Changes in the seasonal climate in arctic coastal regions of Alaska have been documented during the satellite record and are linked to tundra vegetation productivity. The Arctic Normalized Difference Vegetation Index (NDVI) data set (a measure of vegetation photosynthetic capacity) has been used to document coherent temporal relationships between near-coastal sea ice, summer tundra land surface temperatures, and vegetation productivity throughout the Arctic. In the tundra of northern Alaska, significant increases have been documented in seasonal maximum (max) NDVI along the Beaufort and Chukchi Sea coasts. In contrast, maxNDVI over coastal tundra areas in southwest Alaska along the Bering Sea has declined. Increasing land surface temperatures have been documented in the Chukchi, Beaufort and Bering Sea tundra regions during the summer, but temperatures have declined in midsummer. NDVI variability has been previously tied with sea ice. The purpose of this study is to identify the climate system components that are linked to Alaska coastal tundra NDVI changes on seasonal and sub-seasonal time scales. Three coastal tundra domains were evaluated based on the Treshnikov divisions and they are named the East Bering, East Chukchi, and Beaufort, in reference to the adjacent seas. In the Beaufort and East Chukchi regions, the strength of the Beaufort High was correlated with NDVI, however the sign of the relationship changes from month to month in summer indicating a complex relationship. The maxNDVI is above average when the June Beaufort High (BH) is stronger, however, a weaker BH in July is also linked with increased TI-NDVI (time-integrated over the season). This suggests that a stronger BH, which suppresses cloudiness and increases solar insolation, may drive warming in June. Trends in wind speeds suggest that the changes in temperature are also linked with changes in the local sea breeze circulation, and stronger winds along the coast are correlated with warmer

  11. Alaska Arctic marine fish ecology catalog

    USGS Publications Warehouse

    Thorsteinson, Lyman K.; Love, Milton S.

    2016-08-08

    The marine fishes in waters of the United States north of the Bering Strait have received new and increased scientific attention over the past decade (2005–15) in conjunction with frontier qualities of the region and societal concerns about the effects of Arctic climate change. Commercial fisheries are negligible in the Chukchi and Beaufort Seas, but many marine species have important traditional and cultural values to Alaska Native residents. Although baseline conditions are rapidly changing, effective decisions about research and monitoring investments must be based on reliable information and plausible future scenarios. For the first time, this synthesis presents a comprehensive evaluation of the marine fish fauna from both seas in a single reference. Although many unknowns and uncertainties remain in the scientific understanding, information presented here is foundational with respect to understanding marine ecosystems and addressing dual missions of the U.S. Department of the Interior for energy development and resource conservation. 

  12. Southwest Alaska Regional Geothermal Energy Project

    SciTech Connect

    Holdmann, Gwen

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clear Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.

  13. 14 CFR 99.45 - Alaska ADIZ.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Zones § 99.45 Alaska ADIZ. The area is bounded by a line from 54°00′N; 136°00′W; 56°57′N; 144°00′W; 57...; 170°00′E; 60°00′00″N; 180°00′; 65°00′N; 169°00′W; then along 169°00′W; to 75°00′N; 169°00′W; then...; 67°00′N; 165°00′W; 65°40′N; 168°15′W; 63°45′N; 165°30′W; 61°20′N; 166°40′W; 59°00′N; 163°00′W;...

  14. Eruption of Alaska volcano breaks historic pattern

    USGS Publications Warehouse

    Larsen, Jessica; Neal, Christina A.; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick L.

    2009-01-01

    In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (~2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud "thunder," lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.

  15. Geologic map of Saint Lawrence Island, Alaska

    USGS Publications Warehouse

    Patton, William W.; Wilson, Frederic H.; Taylor, Theresa A.

    2011-01-01

    Saint Lawrence Island is located in the northern Bering Sea, 190 km southwest of the tip of the Seward Peninsula, Alaska, and 75 km southeast of the Chukotsk Peninsula, Russia (see index map, map sheet). It lies on a broad, shallow-water continental shelf that extends from western Alaska to northeastern Russia. The island is situated on a northwest-trending structural uplift exposing rocks as old as Paleozoic above sea level. The submerged shelf between the Seward Peninsula and Saint Lawrence Island is covered mainly with Cenozoic deposits (Dundo and Egiazarov, 1982). Northeast of the island, the shelf is underlain by a large structural depression, the Norton Basin, which contains as much as 6.5 km of Cenozoic strata (Grim and McManus, 1970; Fisher and others, 1982). Sparse test-well data indicate that the Cenozoic strata are underlain by Paleozoic and Proterozoic rocks, similar to those exposed on the Seward Peninsula (Turner and others, 1983). Saint Lawrence Island is 160 km long in an east-west direction and from 15 km to 55 km wide in a north-south direction. The east end of the island consists largely of a wave-cut platform, which has been elevated as much as 30 m above sea level. Isolated upland areas composed largely of granitic plutons rise as much as 550 m above the wave-cut platform. The central part of the island is dominated by the Kookooligit Mountains, a large Quaternary shield volcano that extends over an area of 850 km2 and rises to an elevation of 630 m. The west end of the island is composed of the Poovoot Range, a group of barren, rubble-covered hills as high as 450 m that extend from Boxer Bay on the southwest coast to Taphook Mountain on the north coast. The Poovoot Range is flanked on the southeast by the Putgut Plateau, a nearly flat, lake-dotted plain that stands 30?60 m above sea level. The west end of the island is marked by uplands underlain by the Sevuokuk pluton (unit Kg), a long narrow granite body that extends from Gambell on the

  16. Alaska Arctic marine fish ecology catalog

    USGS Publications Warehouse

    2016-01-01

    The marine fishes in waters of the United States north of the Bering Strait have received new and increased scientific attention over the past decade (2005–15) in conjunction with frontier qualities of the region and societal concerns about the effects of Arctic climate change. Commercial fisheries are negligible in the Chukchi and Beaufort Seas, but many marine species have important traditional and cultural values to Alaska Native residents. Although baseline conditions are rapidly changing, effective decisions about research and monitoring investments must be based on reliable information and plausible future scenarios. For the first time, this synthesis presents a comprehensive evaluation of the marine fish fauna from both seas in a single reference. Although many unknowns and uncertainties remain in the scientific understanding, information presented here is foundational with respect to understanding marine ecosystems and addressing dual missions of the U.S. Department of the Interior for energy development and resource conservation. 

  17. Mixed sediment beach processes: Kachemak Bay, Alaska

    USGS Publications Warehouse

    Ruggiero, P.; Adams, P.N.; Warrick, J.A.

    2007-01-01

    Mixed sediment beaches are morphologically distinct from and more complex than either sand or gravel only beaches. Three digital imaging techniques are employed to quantify surficial grain size and bedload sediment transport rates along the mixed sediment beaches of Kachemak Bay, Alaska. Applying digital imaging procedures originally developed for quickly and efficiently quantifying grain sizes of sand to coarse sediment classes gives promising results. Hundreds of grain size estimates lead to a quantitative characterization of the region's sediment at a significant reduction in cost and time as compared to traditional techniques. Both the sand and coarse fractions on this megatidal beach mobilize into self-organized bedforms that migrate alongshore with a seasonally reflecting the temporal pattern of the alongshore component of wave power. In contrast, the gravel bedforms also migrate in the cross-shore without significant seasonally suggesting that swash asymmetry is sufficient to mobilize the gravel even during low energy summer conditions. ?? 2007 ASCE.

  18. Columbia Bay, Alaska: an 'upside down' estuary

    USGS Publications Warehouse

    Walters, R.A.; Josberger, E.G.; Driedger, C.L.

    1988-01-01

    Circulation and water properties within Columbia Bay, Alaska, are dominated by the effects of Columbia Glacier at the head of the Bay. The basin between the glacier terminus and the terminal moraine (sill depth of about 22 m) responds as an 'upside down' estuary with the subglacial discharge of freshwater entering at the bottom of the basin. The intense vertical mixing caused by the bouyant plume of freshwater creates a homogeneous water mass that exchanges with the far-field water through either a two- or a three-layer flow. In general, the glacier acts as a large heat sink and creates a water mass which is cooler than that in fjords without tidewater glaciers. The predicted retreat of Columbia Glacier would create a 40 km long fjord that has characteristics in common with other fjords in Prince William Sound. ?? 1988.

  19. Geologic map of the Christian quadrangle, Alaska

    USGS Publications Warehouse

    Brosge, W.P.; Reiser, H.N.

    2000-01-01

    Most of the Christian quadrangle is in the Porcupine Plateau; the northwestern part is in the southern Brooks Range, and the southern quarter is in the Yukon Flats. Outcrops of bedrock are poor or lacking, except in the Brooks Range. Although large valley glaciers have moved through the Porcupine Plateau, along the East Fork Chandalar and Vanticlese Creek, most of the upland areas in the Porcupine Plateau have not been eroded by ice. Consequently the rocks are deeply weathered and many outcrops in the low hills east of the East Fork are only soil and rubble. The southern quarter of the quadrangle in the Yukon Flats is covered with unconsolidated glacial and alluvial deposits. The Christian quadrangle is at the east end of the southern Brooks Range schist belt. Here three geologic terranes that originate well south of the Brooks Range intersect the subterranes of the southern Brooks Range along northward-directed thrust faults and northeast-striking strike slip faults. The displaced terranes from the south have been mapped by Jones and others (1987), as the schist of the Ruby terrane, the mafic rocks and phyllite of the Tozitna terrane, and the graywacke of the Venetie terrane. The typical rocks of the southern Brooks Range Arctic Alaska terrane at this intersection are the carbonate and clastic rocks of the Hammond subterrane, and the schist of the Coldfoot subterrane. The Coldfoot schist ends at a probable strike-slip fault about 10 miles west of the Christian quadrangle. At that place the mafic rocks and phyllites of the Angayucham terrane that form the south flank of most of the Brooks Range veer sharply northeastward across the Coldfoot subterrane schist and terminate it. A small fragment of the Endicott Mountains subterrane of the Arctic Alaska terrane also lies within the Christian quadrangle, but the main body of this subterrane lies north of the quadrangle.

  20. Baseline Characteristics of Jordan Creek, Juneau, Alaska

    USGS Publications Warehouse

    Host, Randy H.; Neal, Edward G.

    2004-01-01

    Anadromous fish populations historically have found healthy habitat in Jordan Creek, Juneau, Alaska. Concern regarding potential degradation to the habitat by urban development within the Mendenhall Valley led to a cooperative study among the City and Borough of Juneau, Alaska Department of Environmental Conservation, and the U.S. Geological Survey, that assessed current hydrologic, water-quality, and physical-habitat conditions of the stream corridor. Periods of no streamflow were not uncommon at the Jordan Creek below Egan Drive near Auke Bay stream gaging station. Additional flow measurements indicate that periods of no flow are more frequent downstream of the gaging station. Although periods of no flow typically were in March and April, streamflow measurements collected prior to 1999 indicate similar periods in January, suggesting that no flow conditions may occur at any time during the winter months. This dewatering in the lower reaches likely limits fish rearing and spawning habitat as well as limiting the migration of juvenile salmon out to the ocean during some years. Dissolved-oxygen concentrations may not be suitable for fish survival during some winter periods in the Jordan Creek watershed. Dissolved-oxygen concentrations were measured as low as 2.8 mg/L at the gaging station and were measured as low as 0.85 mg/L in a tributary to Jordan Creek. Intermittent measurements of pH and dissolved-oxygen concentrations in the mid-reaches of Jordan Creek were all within acceptable limits for fish survival, however, few measurements of these parameters were made during winter-low-flow conditions. One set of water quality samples was collected at six different sites in the Jordan Creek watershed and analyzed for major ions and dissolved nutrients. Major-ion chemistry showed Jordan Creek is calcium bicarbonate type water with little variation between sampling sites.

  1. Major disruption of D″ beneath Alaska

    NASA Astrophysics Data System (ADS)

    Sun, Daoyuan; Helmberger, Don; Miller, Meghan S.; Jackson, Jennifer M.

    2016-05-01

    D″ represents one of the most dramatic thermal and compositional layers within our planet. In particular, global tomographic models display relatively fast patches at the base of the mantle along the circum-Pacific which are generally attributed to slab debris. Such distinct patches interact with the bridgmanite (Br) to post-bridgmanite (PBr) phase boundary to generate particularly strong heterogeneity at their edges. Most seismic observations for the D″ come from the lower mantle S wave triplication (Scd). Here we exploit the USArray waveform data to examine one of these sharp transitions in structure beneath Alaska. From west to east beneath Alaska, we observed three different characteristics in D″: (1) the western region with a strong Scd, requiring a sharp δVs = 2.5% increase; (2) the middle region with no clear Scd phases, indicating a lack of D″ (or thin Br-PBr layer); and (3) the eastern region with strong Scd phase, requiring a gradient increase in δVs. To explain such strong lateral variation in the velocity structure, chemical variations must be involved. We suggest that the western region represents relatively normal mantle. In contrast, the eastern region is influenced by a relic slab that has subducted down to the lowermost mantle. In the middle region, we infer an upwelling structure that disrupts the Br-PBr phase boundary. Such an interpretation is based upon a distinct pattern of travel time delays, waveform distortions, and amplitude patterns that reveal a circular-shaped anomaly about 5° across which can be modeled synthetically as a plume-like structure rising about 400 km high with a shear velocity reduction of ~5%, similar to geodynamic modeling predictions of upwellings.

  2. Geologic studies in Alaska by the U. S. Geological survey during 1987

    SciTech Connect

    Galloway, J.P.; Hamilton, T.D.

    1988-01-01

    The reports presented in this book begin with an article on the advance of Hubbard Glacier and its damming of Russell Fiord in southern Alaska followed by 40 short papers related to the five regional subdivision of Alaska and to areas offshore on the Alaska continental shelf. These papers provide a representative sample of current U.S. Geological Survey (USGS) research in Alaska. Two bibliographies cover reports about Alaska in USGS publications released in 1987 and reports about Alaska by USGS authors in outside publications in 1987.

  3. Engaging Elements of Cancer-Related Digital Stories in Alaska.

    PubMed

    Cueva, Melany; Kuhnley, Regina; Revels, Laura; Schoenberg, Nancy E; Lanier, Anne; Dignan, Mark

    2016-09-01

    The tradition of storytelling is an integral part of Alaska Native cultures that continues to be a way of passing on knowledge. Using a story-based approach to share cancer education is grounded in Alaska Native traditions and people's experiences and has the potential to positively impact cancer knowledge, understandings, and wellness choices. Community health workers (CHWs) in Alaska created a personal digital story as part of a 5-day, in-person cancer education course. To identify engaging elements of digital stories among Alaska Native people, one focus group was held in each of three different Alaska communities with a total of 29 adult participants. After viewing CHWs' digital stories created during CHW cancer education courses, focus group participants commented verbally and in writing about cultural relevance, engaging elements, information learned, and intent to change health behavior. Digital stories were described by Alaska focus group participants as being culturally respectful, informational, inspiring, and motivational. Viewers shared that they liked digital stories because they were short (only 2-3 min); nondirective and not preachy; emotional, told as a personal story and not just facts and figures; and relevant, using photos that showed Alaskan places and people. PMID:25865400

  4. Engaging Elements of Cancer-Related Digital Stories in Alaska.

    PubMed

    Cueva, Melany; Kuhnley, Regina; Revels, Laura; Schoenberg, Nancy E; Lanier, Anne; Dignan, Mark

    2016-09-01

    The tradition of storytelling is an integral part of Alaska Native cultures that continues to be a way of passing on knowledge. Using a story-based approach to share cancer education is grounded in Alaska Native traditions and people's experiences and has the potential to positively impact cancer knowledge, understandings, and wellness choices. Community health workers (CHWs) in Alaska created a personal digital story as part of a 5-day, in-person cancer education course. To identify engaging elements of digital stories among Alaska Native people, one focus group was held in each of three different Alaska communities with a total of 29 adult participants. After viewing CHWs' digital stories created during CHW cancer education courses, focus group participants commented verbally and in writing about cultural relevance, engaging elements, information learned, and intent to change health behavior. Digital stories were described by Alaska focus group participants as being culturally respectful, informational, inspiring, and motivational. Viewers shared that they liked digital stories because they were short (only 2-3 min); nondirective and not preachy; emotional, told as a personal story and not just facts and figures; and relevant, using photos that showed Alaskan places and people.

  5. Alaska Science Center: Providing Timely, Relevant, and Impartial Study of the Landscape, Natural Resources, and Natural Hazards for Alaska and Our Nation

    USGS Publications Warehouse

    USGS Alaska Science Center

    2007-01-01

    The U.S. Geological Survey (USGS), the Nation's largest water, earth, and biological science and civilian mapping agency, has studied the natural features of Alaska since its earliest geologic expeditions in the 1800s. The USGS Alaska Science Center (ASC), with headquarters in Anchorage, Alaska, studies the complex natural science phenomena of Alaska to provide scientific products and results to a wide variety of partners. The complexity of Alaska's unique landscapes and ecosystems requires USGS expertise from many science disciplines to conduct thorough, integrated research.

  6. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  7. 1996 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.

    1997-01-01

    During 1996, the Alaska Volcano Observatory (AVO) responded to eruptive activity, anomalous seismicity, or suspected volcanic activity at 10 of the approximately 40 active volcanic centers in the state of Alaska. As part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also disseminated information about eruptions and other volcanic unrest at six volcanic centers on the Kamchatka Peninsula and in the Kurile Islands, Russia.

  8. Surface Forcing from CH4 at the North Slope of Alaska and Southern Great Plains Sites

    NASA Astrophysics Data System (ADS)

    Collins, W.; Feldman, D.; Turner, D. D.

    2014-12-01

    Recent increases in atmospheric CH4 have been spatially heterogeneous as indicated by in situ flask measurements and space-borne remote-sensing retrievals from the AIRS instrument, potentially leading to increased radiative forcing. We present detailed, specialized measurements at the DOE ARM North Slope of Alaska (NSA) and Southern Great Plains (SGP) sites to derive the time-series of both CH4 atmospheric concentrations and associated radiative implications at highly-contrasting natural and anthropogenic sources. Using a combination of spectroscopic measurements, in situ observations, and ancillary data for the atmospheric thermodynamic state from radiosondes and cloud-clearing from active sounders, we can separate out the contribution of CH4 to clear-sky downwelling radiance spectra and its infrared surface forcing. The time-series indicates year-to-year variation in shoulder season increases of CH4 concentration and forcing at NSA and large signals from anthropogenic activity at SGP.

  9. The Accidental Tide Gauge: A GPS Reflection Case Study from Kachemak Bay, Alaska

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; Ray, Richard D.; Nievinski, Felipe G..; Freymueller, Jeffrey T.

    2013-01-01

    For the last decade, it has been known that reflected GPS signals observed with specialized instruments could be used to measure sea level. In this letter, data from an existing geodeticquality GPS site near Kachemak Bay, Alaska, are analyzed for a one-year time period. Daily sea-level variations are more than 7 m. Tidal coefficients have been estimated and compared with coefficients estimated from records from a traditional tide gauge at Seldovia Harbor, approximately 30 km away. The GPS and Seldovia estimates of M(sub 2) and S(sub 2) coefficients agree to better than 2%; much of this residual can be attributed to true differences in the tide over 30 km as it propagates up Kachemak Bay. For daily mean sea levels the agreement is 2.3 cm. Because a standard geodetic GPS receiver/antenna is used, this GPS instrument can measure long-term sea-level changes in a stable terrestrial reference frame.

  10. Historical and contemporary imagery to assess ecosystem change on the Arctic coastal plain of northern Alaska

    USGS Publications Warehouse

    Tape, Ken D.; Pearce, John M.; Walworth, Dennis; Meixell, Brandt W.; Fondell, Tom F.; Gustine, David D.; Flint, Paul L.; Hupp, Jerry W.; Schmutz, Joel A.; Ward, David H.

    2014-01-01

    In this report, we describe and make available a set of 61 georectified aerial images of the Arctic Coastal Plain (taken from 1948 to 2010) that were obtained by the USGS to inform research objectives of the USGS CAE Initiative. Here, we describe the origins, metadata, and public availability of these images that were obtained within four main study areas on the Arctic Coastal Plain: Teshekpuk Lake Special Area, Chipp River, the Colville River Delta, and locations along the Dalton Highway Corridor between the Brooks Range and Deadhorse. We also provide general descriptions of observable changes to the geomorphology of landscapes that are apparent by comparing historical and contemporary images. These landscape changes include altered river corridors, lake drying, coastal erosion, and new vegetation communities. All original and georectified images and metadata are available through the USGS Alaska Science Center Portal (search under ‘Project Name’ using title of this report) or by contacting ascweb@usgs.gov.

  11. Integrated Geologic and Geophysical Assessment of the Eileen Gas Hydrate Accumulation, North Slope, Alaska

    SciTech Connect

    Timothy S. Collett; David J. Taylor; Warren F. Agena; Myung W. Lee; John J. Miller; Margarita Zyrianova

    2005-04-30

    Using detailed analysis and interpretation of 2-D and 3-D seismic data, along with modeling and correlation of specially processed log data, a viable methodology has been developed for identifying sub-permafrost gas hydrate prospects within the Gas Hydrate Stability Zone (HSZ) and associated ''sub-hydrate'' free gas prospects in the Milne Point area of northern Alaska (Figure 1). The seismic data, in conjunction with modeling results from a related study, was used to characterize the conditions under which gas hydrate prospects can be delineated using conventional seismic data, and to analyze reservoir fluid properties. Monte Carlo style gas hydrate volumetric estimates using Crystal Ball{trademark} software to estimate expected in-place reserves shows that the identified prospects have considerable potential as gas resources. Future exploratory drilling in the Milne Point area should provide answers about the producibility of these shallow gas hydrates.

  12. The Decrease in the Unintentional Injury Mortality Disparity Between American Indians/Alaska Natives and Non–American Indians/Alaska Natives in New Mexico, 1980 to 2009

    PubMed Central

    Pokhrel, Pallavi; Nielsen, Larry; Landen, Michael

    2013-01-01

    Objectives. We tracked the unintentional injury death disparity between American Indians/Alaska Natives and non–American Indians/Alaska Natives in New Mexico, 1980 to 2009. Methods. We calculated age-adjusted rates and rate ratios for unintentional injury deaths and their external causes among American Indians/Alaska Natives and non–American Indians/Alaska Natives. We tested trend significance with the Mann–Kendall test. Results. The unintentional injury death rate ratio of American Indians/Alaska Natives to non–American Indians/Alaska Natives declined from 2.9 in 1980–1982 to 1.5 in 2007–2009. The rate among American Indians/Alaska Natives decreased 47.2% from 1980–1982 to 1995–1997. Among non–American Indians/Alaska Natives, the rate declined 25.3% from 1980–1982 to 1992–1994, then increased 31.9% from 1992–1994 to 2007–2009. The motor vehicle traffic and pedestrian death rates decreased 57.8% and 74.6%, respectively, among American Indians/Alaska Natives from 1980–1982 to 2007–2009. Conclusions. The unintentional injury death rate disparity decreased substantially from 1980–1982 to 2007–2009 largely because of the decrease in motor vehicle crash and pedestrian death rates among American Indians/Alaska Natives and the increase in the poisoning death rate among non–American Indians/Alaska Natives. PMID:22994193

  13. Deep-seated gravitational slope deformations near the Trans-Alaska Pipeline, east-central Alaska Range

    NASA Astrophysics Data System (ADS)

    Newman, Stephen Delmont, Jr.

    I investigated active deep-seated gravitational slope deformation (DSGSD) near the Trans-Alaska Pipeline and Richardson Highway in the east-central Alaska Range, Alaska, USA. I documented the presence, spatial extent, and rates of DSGSD using field-geology methods and optical, SAR, and D-InSAR remote-sensing images. I also documented and mapped many of the morphological, geological, and structural characteristics of slopes undergoing DSGSD, and constructed conceptual numerical models to better understand potential deformation mechanisms. Results confirm that many large DSGSD slopes in the study area are actively deforming. Deformation rates range from less than a millimetre per month to more than ten centimetres per month, and are spatially and temporally varient within each slope. Deforming slopes are characterized by differential movement of kilometre-scale rock blocks. Recent climatic changes and strong seismic shaking, especially during the recent 2002 Denali Fault earthquake, have exacerbated ongoing deformation. Study-area DSGSDs should be considered capable of generating long-runout rock avalanches that could directly sever the Trans-Alaska Pipeline and Richardson Highway, or that could dam up valleys and lead to the buildup and catastrophic failure of landslide-dammed lakes capable of impacting said infrastructure. Keywords: Deep-seated gravitational slope deformation; sackung; Trans-Alaska Pipeline; geomorphology; InSAR; Alaska Range.

  14. Tobacco Use and Cessation Among Pregnant Alaska Natives from Western Alaska Enrolled in the WIC Program, 2001–2002

    PubMed Central

    Renner, Caroline C.; Decker, Paul A.; O’Campo, Ester; Larsen, Karin; Enoch, Carrie; Offord, Kenneth P.; Hurt, Richard D.; Lanier, Anne; Kaur, Judith

    2010-01-01

    Objectives This study examined the rate of tobacco use (cigarette smoking and smokeless tobacco [ST]) at three time points: during the 3 months before pregnancy, during pregnancy, and at 6 weeks postpartum among Alaska Native women residing in the Y-K Delta region of Western Alaska. Methods A retrospective, non-randomized observational cohort design was utilized. The sample consisted of 832 Alaska Natives (mean maternal age = 26.2 years, average length of gestation = 3.8 months) seen at their first prenatal visit and enrolled in the women, infant, and children (WIC) program at the Yukon-Kuskokwim Delta Regional Hospital in Bethel, Alaska, during a 2-year-period (2001–2002). Tobacco use was assessed using an interview format at the first prenatal and at the 6-week postpartum visits. Results The rates of any tobacco use were 48% (95% CI 45%, 52%) 3 months before pregnancy, 79% (95% CI 76%, 82%) during pregnancy, and 70% (95% CI 67%, 74%) at 6 weeks postpartum. The proportion of women using ST changed significantly (P < 0.001) over the three time points (14%, 60%, and 61%, respectively) as well as the proportion of women who smoked cigarettes (P < 0.001) (40%, 42%, and 19%, respectively). Conclusions This study documents the high rate of tobacco use, particularly ST use, during pregnancy among Alaska Native women. Development of tobacco use prevention and cessation interventions during pregnancy for Alaska Native women is warranted. PMID:18340517

  15. Geographic Information Network of Alaska: Real-Time Synoptic Satellite Data for Alaska and the High Arctic, Best Available DEMs, and Highest Available Resolution Imagery for Alaska

    NASA Astrophysics Data System (ADS)

    Heinrichs, T. A.; Sharpton, V. L.; Engle, K. E.; Ledlow, L. L.; Seman, L. E.

    2006-12-01

    In support of the International Polar Year, the Geographic Information Network of Alaska (GINA) intends to make available to researchers three important Arctic data sets. The first is near-real-time synoptic scale data from GINA and NOAA/NESDIS satellite ground stations. GINA operates ground stations that receive direct readout from the AVHRR (1.1-km per pixel resolution) and MODIS (250- to 1000-meter) sensors carried on NOAA and NASA satellites. GINA works in partnership with NOAA/NESDIS's Fairbanks Command and Data Acquisition Station (FCDAS) to distribute real-time data captured by FCDAS facilities in Fairbanks and Barrow, Alaska. AVHRR and Feng Yun 1D (1.1-km) sensors are captured in Fairbanks by FCDAS and distributed by GINA. AVHRR data is captured by FCDAS in Barrow and distributed by GINA. Due to its high latitude, the station mask of the Barrow station extends well beyond the Pole, showing the status in real-time of Arctic basin cloud and sea ice conditions. Second, digital elevation models (DEM) for Alaska vary greatly in quality and availability. The best available DEMs for Alaska will be combined and served through a GINA gateway. Third, the best available imagery for more than three quarters of Alaska is 15-meter pan-sharpened Landsat data. Less than a quarter of the state is covered by 5-meter or better data. The best available imagery for Alaska will be combined and served through a GINA gateway. In accordance with the IPY Subcommittee on Data Policy and Management recommendations, all data will be made available via Open Geospatial Consortium protocols, including Web Mapping, Feature, and Coverage Services. Data will also be made available for download in georeferenced formats such as GeoTIFF, MrSID, or GRID. Metadata will be available though the National Spatial Data Infrastructure via Z39.50 GEO protocols and through evolving web-based metadata standards.

  16. Bureau of Indian Affairs Special Education Opportunities for Exceptional Children, Youth and Adults: The First Annual Report to the Department of the Interior.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Washington, DC.

    The first annual report (1979) of the 15-member Bureau of Indian Affairs (BIA) Advisory Committee for Exceptional Children (ACEC) reflects activities, concerns, and recommendations to the Department of the Interior for providing appropriate specialized programs and services for education of the projected 4,506 American Indian and Alaska Native…

  17. 45 CFR 286.175 - What special provisions apply in Alaska?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Temporary Assistance for Needy Families program. Comparability of programs must be established on the basis... Section 286.175 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN...

  18. 45 CFR 286.175 - What special provisions apply in Alaska?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Temporary Assistance for Needy Families program. Comparability of programs must be established on the basis... Section 286.175 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN...

  19. 45 CFR 286.175 - What special provisions apply in Alaska?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Temporary Assistance for Needy Families program. Comparability of programs must be established on the basis... Section 286.175 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN...

  20. 45 CFR 286.175 - What special provisions apply in Alaska?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Temporary Assistance for Needy Families program. Comparability of programs must be established on the basis... Section 286.175 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN...