Science.gov

Sample records for alaska wind-diesel projects

  1. Systems Performance Analyses of Alaska Wind-Diesel Projects; Selawik, Alaska (Fact Sheet)

    SciTech Connect

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Selawik, Alaska. Data provided for this project include community load data, wind turbine output, diesel plant output, thermal load data, average wind speed, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, and estimated fuel savings.

  2. Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)

    SciTech Connect

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  3. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kasigluk, Alaska (Fact Sheet)

    SciTech Connect

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kasigluk, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  4. Technology, Performance, and Market of Wind-Diesel Applications for Remote and Island Communities (Poster)

    SciTech Connect

    Baring-Gould, E. I.; Dabo, M.

    2009-05-01

    The market for wind-diesel power systems in Alaska and other areas has proven that the integration of wind turbines with conventional isolated generation is a commercial reality. During the past few years, the use of wind energy to reduce diesel fuel consumption has increased, providing economic, environmental, social, and security benefits to communities' energy supply. This poster provides an overview of markets, project examples, technology advances, and industry challenges.

  5. Renewable Energy in China: Xiao Qing Dao Village Power Wind/Diesel Hybrid Pilot Project

    SciTech Connect

    Not Available

    2006-01-01

    In 2000, DOE/NREL and the State Power Corporation of China (SPCC) developed a pilot project to electrify Xiao Qing Dao, a small island located in China's Yellow Sea. The project demonstrates the practicality of renewable energy systems for medium-scale, off-grid applications. It consists of four 10 k-W wind turbines connected to a 30-kW diesel generator, a 40-kW inverter and a battery bank.

  6. Status of the Wind-Diesel Market (Presentation)

    SciTech Connect

    Baring-Gould, E. I.

    2014-02-01

    This presentation offers an overview of the wind-diesel market, including the range of power systems, recent progress, current energy situation of remote communities, operating projects, current market approaches and ongoing challenges.

  7. Technology, Performance, and Market Report of Wind-Diesel Applications for Remote and Island Communities: Preprint

    SciTech Connect

    Baring-Gould, I.; Dabo, M.

    2009-05-01

    This paper describes the current status of wind-diesel technology and its applications, the current research activities, and the remaining system technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems will be discussed, as well as how recent development to explore distributed energy generation solutions for wind generation can benefit from the performance experience of operating systems. The paper also includes a detailed discussion of the performance of wind-diesel applications in Alaska, where 10 wind-diesel stations are operating and additional systems are currently being implemented. Additionally, because this application represents an international opportunity, a community of interest committed to sharing technical and operating developments is being formed. The authors hope to encourage this expansion while allowing communities and nations to investigate the wind-diesel option for reducing their dependence on diesel-driven energy sources.

  8. Technology, Performance, and Market Report of Wind-Diesel Applications for Remote and Island Communities: Preprint

    SciTech Connect

    Baring-Gould, I.; Dabo, M.

    2009-02-01

    This paper describes the current status of wind-diesel technology and its applications, the current research activities, and the remaining system technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems will be discussed, as well as how recent development to explore distributed energy generation solutions for wind generation can benefit from the performance experience of operating systems. The paper also includes a detailed discussion of the performance of wind-diesel applications in Alaska, where 10 wind-diesel stations are operating and additional systems are currently being implemented. Additionally, because this application represents an international opportunity, a community of interest committed to sharing technical and operating developments is being formed. The authors hope to encourage this expansion while allowing communities and nations to investigate the wind-diesel option for reducing their dependence on diesel-driven energy sources.

  9. Status of Wind-Diesel Applications in Arctic Climates: Preprint

    SciTech Connect

    Baring-Gould, I.; Corbus, D.

    2007-12-01

    The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

  10. Rural Alaska Mentoring Project (RAMP)

    ERIC Educational Resources Information Center

    Cash, Terry

    2011-01-01

    For over two years the National Dropout Prevention Center (NDPC) at Clemson University has been supporting the Lower Kuskokwim School District (LKSD) in NW Alaska with their efforts to reduce high school dropout in 23 remote Yup'ik Eskimo villages. The Rural Alaska Mentoring Project (RAMP) provides school-based E-mentoring services to 164…

  11. DOE/NREL supported wind energy activities in Alaska

    SciTech Connect

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy projects implemented in Alaska. The first, a sustainable technology energy partnerships (STEP) wind energy deployment project in Kotzebue will install 6 AOC 15/50 wind turbines and connect to the existing village diesel grid, consisting of approximately 1 MW average load. It seeks to develop solutions to the problems of arctic wind energy installations (transport, foundations, erection, operation, and maintenance), to establish a wind turbine test site, and to establish the Kotzebue Electric Association as a training and deployment center for wind/diesel technology in rural Alaska. The second project, a large village medium-penetration wind/diesel system, also in Kotzebue, will install a 1-2 MW windfarm, which will supplement the AOC turbines of the STEP project. The program will investigate the impact of medium penetration wind energy on power quality and system stability. The third project, the Alaska high-penetration wind/diesel village power pilot project in Wales will install a high penetration (80-100%) wind/diesel system in a remote Alaskan village. The system will include about 180 kW installed wind capacity, meeting an average village load of about 60 kW. This program will provide a model for high penetration wind retrofits to village diesel power systems and build the capability in Alaska to operate, maintain, and replicate wind/diesel technology. The program will also address problems of: effective use of excess wind energy; reliable diesel-off operation; and the role of energy storage.

  12. TRNSYS HYBRID wind diesel PV simulator

    SciTech Connect

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J.

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  13. Alaska Energy Inventory Project: Consolidating Alaska's Energy Resources

    NASA Astrophysics Data System (ADS)

    Papp, K.; Clough, J.; Swenson, R.; Crimp, P.; Hanson, D.; Parker, P.

    2007-12-01

    Alaska has considerable energy resources distributed throughout the state including conventional oil, gas, and coal, and unconventional coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass. While much of the known large oil and gas resources are concentrated on the North Slope and in the Cook Inlet regions, the other potential sources of energy are dispersed across a varied landscape from frozen tundra to coastal settings. Despite the presence of these potential energy sources, rural Alaska is mostly dependent upon diesel fuel for both electrical power generation and space heating needs. At considerable cost, large quantities of diesel fuel are transported to more than 150 roadless communities by barge or airplane and stored in large bulk fuel tank farms for winter months when electricity and heat are at peak demands. Recent increases in the price of oil have severely impacted the price of energy throughout Alaska, and especially hard hit are rural communities and remote mines that are off the road system and isolated from integrated electrical power grids. Even though the state has significant conventional gas resources in restricted areas, few communities are located near enough to these resources to directly use natural gas to meet their energy needs. To address this problem, the Alaska Energy Inventory project will (1) inventory and compile all available Alaska energy resource data suitable for electrical power generation and space heating needs including natural gas, coal, coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass and (2) identify locations or regions where the most economic energy resource or combination of energy resources can be developed to meet local needs. This data will be accessible through a user-friendly web-based interactive map, based on the Alaska Department of Natural Resources, Land Records Information Section's (LRIS) Alaska Mapper, Google Earth, and Terrago Technologies' Geo

  14. Alaska's Children, 1998. Alaska Head Start State Collaboration Project, Quarterly Report.

    ERIC Educational Resources Information Center

    Douglas, Dorothy, Ed.

    1998-01-01

    This document consists of four issues of the quarterly report "Alaska's Children," which provides information on the Alaska Head Start State Collaboration Project and updates on Head Start activities in Alaska. Regular features in the issues include a calendar of conferences and meetings, a status report on Alaska's children, reports…

  15. Data acquisition system of the NANOSAW-2 stand alone wind diesel plant. Document and user's guide

    NASA Astrophysics Data System (ADS)

    Manninen, L. M.

    1993-12-01

    This document is the report of a wind-diesel measurement and modeling project. A measurement system comprising signal transducers, wiring, data logger, and data acquisition software has been constructed. The system produces comprehensive data of high quality. Remote control of measurement system and monitoring of plant status is also possible. The selected data logging unit has proved to be reliable. The logger and software can also be applied to other data acquisition applications with minor changes. Chapters 2 and 3 describe the physical measurement system excluding the data logger. The data acquisition including the hardware (data logger) and the software are discussed in chapter 4. Chapter 5 contains the user instructions.

  16. Energy Storage System Scheduling in Wind-Diesel Microgrids

    NASA Astrophysics Data System (ADS)

    Ross, Michael

    This thesis proposes a knowledge based expert system tool that can be used as an online controller for the charging/discharging of an energy storage system in a wind-diesel microgrid. The wind-diesel microgrid is modelled, and a typical energy storage system is implemented to test the functionality of the controller using hourly-discrete power values. The results are compared against an offline optimization that was provided 24-hour lookahead wind values, as well as a controller that was implemented using artificial neural networks. The knowledge based expert system is then used to analyze the cost of energy, by means of a parametric analysis, consisting of varying the wind penetration, energy storage system power rating and energy rating to determine for which wind penetration values a storage system implementation would be technically and economically viable. Different storage technologies are tested in a one-year time frame to determine which would be best suited for this particular application. The energy storage systems are implemented as single-layer and dual-layer, in which the knowledge based expert system is modified for the latter analysis, in order to determine whether or not there are advantages to having a dual-layer storage system. Throughout these analyses, the flexibility of the knowledge based expert system controller to various energy storage systems and microgrid models is verified. It also demonstrates that, in a context of high base generation costs, energy storage can be a viable solution to managing wind power variations.

  17. 75 FR 2126 - Regulations Governing the Conduct of Open Seasons for Alaska Natural Gas Transportation Projects...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... Gas Transportation Projects; Notice of Alaska Natural Gas Transportation Projects Open Season Pre... season for an Alaska Natural Gas Transportation Project. The Workshop is being hosted by the Alaska... docket, FERC enacted regulations under the Alaska Natural Gas Pipeline Act which established...

  18. A Compilation and Review of Alaska Energy Projects

    SciTech Connect

    Arlon Tussing; Steve Colt

    2008-12-31

    There have been many energy projects proposed in Alaska over the past several decades, from large scale hydro projects that have never been built to small scale village power projects to use local alternative energy sources, many of which have also not been built. This project was initially intended to review these rejected projects to evaluate the economic feasibility of these ideas in the light of current economics. This review included contacting the agencies responsible for reviewing and funding these projects in Alaska, including the Alaska Energy Authority, the Denali Commission, and the Arctic Energy Technology Development Laboratory, obtaining available information about these projects, and analyzing the economic data. Unfortunately, the most apparent result of this effort was that the data associated with these projects was not collected in a systematic way that allowed this information to be analyzed.

  19. Forestry timber typing. Tanana demonstration project, Alaska ASVT. [Alaska

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Ambrosia, V. G.

    1982-01-01

    The feasibility of using LANDSAT digital data in conjunction with topographic data to delineate commercial forests by stand size and crown closure in the Tanana River basin of Alaska was tested. A modified clustering approach using two LANDSAT dates to generate an initial forest type classification was then refined with topographic data. To further demonstrate the ability of remotely sensed data in a fire protection planning framework, the timber type data were subsequently integrated with terrain information to generate a fire hazard map of the study area. This map provides valuable assistance in initial attack planning, determining equipment accessibility, and fire growth modeling. The resulting data sets were incorporated into the Alaska Department of Natural Resources geographic information system for subsequent utilization.

  20. Amchitka Island, Alaska, special sampling project 1997

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office

    2000-06-28

    This 1997 special sampling project represents a special radiobiological sampling effort to augment the 1996 Long-Term Hydrological Monitoring Program (LTHMP) for Amchitka Island in Alaska. Lying in the western portion of the Aleutian Islands arc, near the International Date Line, Amchitka Island is one of the southernmost islands of the Rat Island Chain. Between 1965 and 1971, the U.S. Atomic Energy Commission conducted three underground nuclear tests on Amchitka Island. In 1996, Greenpeace collected biota samples and speculated that several long-lived, man-made radionuclides detected (i.e., americium-241, plutonium-239 and -240, beryllium-7, and cesium-137) leaked into the surface environment from underground cavities created during the testing. The nuclides of interest are detected at extremely low concentrations throughout the environment. The objectives of this special sampling project were to scientifically refute the Greenpeace conclusions that the underground cavities were leaking contaminants to the surface. This was achieved by first confirming the presence of these radionuclides in the Amchitka Island surface environment and, second, if the radionuclides were present, determining if the source is the underground cavity or worldwide fallout. This special sampling and analysis determined that the only nonfallout-related radionuclide detected was a low level of tritium from the Long Shot test, which had been previously documented. The tritium contamination is monitored and continues a decreasing trend due to radioactive decay and dilution.

  1. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    SciTech Connect

    King, W.R.; Johnson, B.L. III )

    1991-04-01

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries'' (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study. 86 refs.

  2. Alaska Broad Scale Orthoimagery and Elevation Mapping - Current Statewide Project Progress and Historic Work in Alaska

    NASA Astrophysics Data System (ADS)

    Heinrichs, T. A.; Broderson, D.; Johnson, A.; Slife, M.

    2014-12-01

    This presentation describes the overall program goals and current status of broad scale, statewide orthoimagery and digital elevation model (DEM) projects currently underway in Alaska. As context, it will also describe the history and successes of previous statewide Alaska mapping efforts over the preceding 75 years. A new statewide orthomosaic imagery baselayer at 1:24,000 NMAS accuracy (12.2-meters CE90) is nearing completion. The entire state (1.56 million square kilometers) has been imaged with the SPOT 5 satellite, and a 2.5-meter spatial resolution, multi-spectral, nearly cloud-free, pan-sharpened orthoimage will be produced by mid-2015. A second major project is collection of an improved accuracy DEM statewide. Airborne interferometric synthetic aperture radar (IfSAR) data has been collected for about half of the state of Alaska and completion of the rest of the state is anticipated within a few years. A 5-meter post spacing, 20-foot contour interval accuracy equivalent (3-meter vertical LE90) DEM and radar backscatter intensity image is being delivered. Historic projects to be described include the 1950's USGS Alaska topographic mapping program, one of the largest and most pioneering, challenging, and successful ever undertaken in North America. These historic and current mapping programs have served as both a baselayer framework and as feedstock for science for virtually every geologic, geophysical, and terrestrial natural science project in the state.

  3. Alaska Native Community Energy Planning and Projects (Fact Sheet)

    SciTech Connect

    Not Available

    2013-06-01

    This fact sheet provides information on the Alaska Native villages selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  4. The Alaska Native Women's Wellness Project.

    PubMed

    Stillwater, B

    1999-01-01

    Alaska Native women have encountered many obstacles in the health care system which deter them from adhering to cancer screening recommendations. To improve access, it was necessary for us to listen to them and their attitudes about health care. As a result of this assessment, we changed our approach resulting in an overall increase in screening rates from 14% to 62%. A case example is presented to demonstrate barriers to cancer screening and our techniques for overcoming them.

  5. 45 CFR 2532.20 - Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Kuskokwim Delta of Alaska. 2532.20 Section 2532.20 Public Welfare Regulations Relating to Public Welfare... § 2532.20 Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska. (a) Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska. The President may award grants to, and enter...

  6. 45 CFR 2532.20 - Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-Kuskokwim Delta of Alaska. 2532.20 Section 2532.20 Public Welfare Regulations Relating to Public Welfare... § 2532.20 Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska. (a) Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska. The President may award grants to, and enter...

  7. 45 CFR 2532.20 - Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-Kuskokwim Delta of Alaska. 2532.20 Section 2532.20 Public Welfare Regulations Relating to Public Welfare... § 2532.20 Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska. (a) Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska. The President may award grants to, and enter...

  8. 77 FR 22770 - Termination of Provider Reimbursement Demonstration Project for the State of Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... of the Secretary Termination of Provider Reimbursement Demonstration Project for the State of Alaska... provides a termination of the demonstration project in the State of Alaska for individual provider payment... professional providers in the State of Alaska have been set at a rate higher than the Medicare rate. The...

  9. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    SciTech Connect

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-08-04

    The objective of this project is to eliminate three closely inter-related barriers to oil production in Alaska through the use of a geographic information system (GIS) and other information technology strategies. These barriers involve identification of oil development potential from existing wells, planning projects to efficiently avoid conflicts with other interests, and gaining state approvals for exploration and development projects. Each barrier is the result of either current labor-intensive methods or poorly accessible information. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. This web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information online. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. The application will include an on-line diagnostic Coastal Project Questionnaire to determine the suite of permits required for a specific project. The application will also automatically create distribution lists based on the location and type of project, populate document templates for project review start-ups, public notices and findings, allow submission of e-comments, and post project status information on the Internet. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production

  10. Southwest Alaska Regional Geothermal Energy Project

    SciTech Connect

    Holdmann, Gwen

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clear Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.

  11. Compensation of Reactive Power of Isolated Wind-Diesel Hybrid Power Systems

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Bhatti, T. S.; Ramakrishna, K. S. S.

    2012-03-01

    This paper presents the automatic reactive power control of an isolated wind-diesel hybrid power system with a synchronous generator (SG) for a diesel genset and an induction generator (IG) with wind energy conversion systems (WECS) to generate electricity. To reduce the gap between reactive power generation and demand, a variable source of reactive power is used such as static synchronous compensator (STATCOM). The mathematical model of the system based on reactive power flow equations is developed. Three examples of the wind-diesel hybrid power systems are considered with different wind power generation capacities to study the effect of the wind power generation on the system performance. The study is based on small signal analysis by considering IEEE type-1 excitation system for the SG. The paper also shows the transient performance of the hybrid systems for 1 % step increase in reactive power load and 1 % step increase in reactive power load plus 1 % step increase in input wind power.

  12. Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska

    SciTech Connect

    1998-05-01

    The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

  13. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    SciTech Connect

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-11-19

    This is the second technical report, covering the period from April 1, 2003 through September 30, 2003. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. The geo-technical component is a shared effort between the State Department of Administration and the US Department of Energy. The Alaska Oil and Gas Conservation Commission is rapidly converting high volumes of paper documents and geo-technical information to formats suitable for search and retrieval over the Internet. The permitting component is under the lead of the DNR Office of Project Management and Permitting. A web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information on-line. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. Structural changes are taking place in terms of organization, statutory authority, and regulatory requirements. Geographic Information Systems are a central component to the organization of information, and the delivery of on-line services. Progress has been made to deploy the foundation system for the shared GIS based on open GIS protocols to the extent feasible. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells.

  14. Alaska Oil and Gas Exploration, Development, and Permitting Project

    SciTech Connect

    Richard McMahon; Robert Crandall

    2006-03-31

    This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

  15. Alaska Wood Biomass Energy Project Final Report

    SciTech Connect

    Jonathan Bolling

    2009-03-02

    The purpose of the Craig Wood Fired Boiler Project is to use waste wood from local sawmilling operations to provide heat to local public buildings, in an effort to reduce the cost of operating those buildings, and put to productive use a byproduct from the wood milling process that otherwise presents an expense to local mills. The scope of the project included the acquisition of a wood boiler and the delivery systems to feed wood fuel to it, the construction of a building to house the boiler and delivery systems, and connection of the boiler facility to three buildings that will benefit from heat generated by the boiler: the Craig Aquatic Center, the Craig Elementary School, and the Craig Middle School buildings.

  16. 75 FR 6370 - Regulations Governing the Conduct of Open Seasons for Alaska Natural Gas Transportation Projects...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... Energy Regulatory Commission Regulations Governing the Conduct of Open Seasons for Alaska Natural Gas Transportation Projects; Notice of Alaska Natural Gas Transportation Projects Open Season Pre-Filing Workshop... hold a workshop on the procedures and process for holding and commenting on an open season for...

  17. Wind-fuel cell hybrid project in rural Alaska

    SciTech Connect

    David Lockard

    2000-02-18

    This is a summary of the work performed on the Wind-Fuel Cell Hybrid Project: (1) On October 5th, Tim Howell of the Golden Field Office and Tom Anderson of Battelle Labs arrived in Anchorage. They met with David Lockard, Project Manager, and Percy Frisby, Director of the Alaska Rural Energy Programs Group. (2) On October 6th, Tim, Tom and David flew to Nome to inspect the proposed wind turbine site and meet with John Handeland, Director of the Nome Joint Utility System. They visited the proposed site as well as several private, residential-sized wind turbines operating in the Nome area. (3)Tim and Tom flew to Unalaska on October 7th to meet with Mike Golat, City of Unalaska Public Utility Director, and to inspect the proposed wind turbine sites at Pyramid Creek and Pyramid Valley. (4)Tim sent a scoping letter on December 17th to a variety of local, state and federal agencies requesting comments on the proposed wind turbine project. (5) David discussed this project with Marc Schwartz and Gerry Nix at NREL. Marc provided David with a list of wind prospectors and meteorologists. (6) Tom raised the question of FAA permits for structures over 200 feet tall. Gerry provided information on NREL's experience with FAA permitting on other projects. David summarized the potential turbine choices and heights in a spreadsheet and initiated contact with the Alaska region FAA office regarding the permitting process. (7) David responded to a list of design questions from Tom regarding the project foundations, power output, and size for use in developing the environmental assessment. (8) David tried to get wind data for the Nome Anvil Mountain White Alice site from the Corps of Engineers and the Air Force, but was not able to find any. (9) David solicited quotes from vendors of wind monitoring equipment and provided cost information to Doug Hooker, federal grant manager in preparation for ordering the equipment.

  18. Final 2014 Remedial Action Report Project Chariot, Cape Thompson, Alaska

    SciTech Connect

    None, None

    2015-03-01

    This report was prepared to document remedial action (RA) work performed at the former Project Chariot site located near Cape Thompson, Alaska during 2014. The work was managed by the U.S. Army Corps of Engineers (USACE) Alaska District for the U.S. Department of Energy (DOE) Office of Legacy Management (LM). Due to the short field season and the tight barge schedule, all field work was conducted at the site July 6 through September 12, 2014. Excavation activities occurred between July 16 and August 26, 2014. A temporary field camp was constructed at the site prior to excavation activities to accommodate the workers at the remote, uninhabited location. A total of 785.6 tons of petroleum, oil, and lubricants (POL)-contaminated soil was excavated from four former drill sites associated with test holes installed circa 1960. Diesel was used in the drilling process during test hole installations and resulted in impacts to surface and subsurface soils at four of the five sites (no contamination was identified at Test Hole Able). Historic information is not definitive as to the usage for Test Hole X-1; it may have actually been a dump site and not a drill site. In addition to the contaminated soil, the steel test hole casings were decommissioned and associated debris was removed as part of the remedial effort.

  19. Alaska

    SciTech Connect

    Jones, B.C.; Sears, D.W.

    1981-10-01

    Twenty-five exploratory wells were drilled in Alaska in 1980. Five oil or gas discovery wells were drilled on the North Slope. One hundred and seventeen development and service wells were drilled and completed, primarily in the Prudhoe Bay and Kuparuk River fields on the North Slope. Geologic-geophysical field activity consisted of 115.74 crew months, an increase of almost 50% compared to 1979. These increases affected most of the major basins of the state as industry stepped up preparations for future lease sales. Federal acreage under lease increased slightly, while state lease acreage showed a slight decline. The year's oil production showed a increase of 16%, while gas production was down slightly. The federal land freeze in Alaska showed signs of thawing, as the US Department of Interior asked industry to identify areas of interest onshore for possible future leasing. National Petroleum Reserve in Alaska was opened to private exploration, and petroleum potential of the Arctic Wildlife Refuge will be studied. One outer continental shelf lease sale was held in the eastern Gulf of Alaska, and a series of state and federal lease sales were announced for the next 5 years. 5 figures, 5 tables.

  20. 75 FR 81210 - Wrangell Ranger District; Alaska; Wrangell Island Project Environmental Impact Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Forest Service Wrangell Ranger District; Alaska; Wrangell Island Project Environmental Impact Statement...) for the Wrangell Island Project located on Wrangell Island, part of the Wrangell Ranger District of... to: SWCA, 317 Forest Park Drive, Ketchikan, AK 99901, Attn: Wrangell Island Project EIS. Comments...

  1. 77 FR 14727 - Tongass National Forest Wrangell Ranger District; Alaska; Wrangell Island Project Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... Forest Service Tongass National Forest Wrangell Ranger District; Alaska; Wrangell Island Project..., Attn: Wrangell Island Project EIS. Comments may be hand-delivered to the Wrangell Ranger District, 525 Bennett Drive, Wrangell, AK 99929, Attn: Wrangell Island Project EIS. Comments may also be sent via...

  2. The Alaska Land Carbon Assessment: Baseline and Projected Future Carbon Storage and Greenhouse-gas Fluxes in Ecosystems of Alaska

    NASA Astrophysics Data System (ADS)

    McGuire, A. D.; Genet, H.; He, Y.; Stackpoole, S. M.; D'Amore, D. V.; Rupp, S. T.; Wylie, B. K.; Zhou, X.; Zhu, Z.

    2015-12-01

    The Alaska Land Carbon Assessment was conducted to inform mitigation and adaptation policies and land management decisions at sub-regional, regional, and national scales. Ecosystem carbon balance of Alaska was estimated for two time periods, a historical period (1950-2009) and a projected period (2010-2099) by synthesizing results for upland, wetland, and inland aquatic ecosystems. The total area of Alaska considered in this assessment was 1,474,844 km2, which is composed of 84 percent uplands, 12 percent wetlands, and 4 percent inland waters. Between 1950 and 2009 the upland and wetland ecosystems of the state sequestered an average of 4.4 TgC/yr, which is almost 2 percent of net primary production (NPP) by upland and wetland ecosystems. However, this sequestration is spatially variable with the northern boreal sub-region losing C because of fire disturbance and other sub-regions gaining carbon. For inland aquatic ecosystems, there was a net combined carbon flux through various pathways of 41.2 TgC/yr, or about 17 percent of upland and wetland NPP. The greenhouse gas forcing potential of upland and wetland ecosystems of Alaska was approximately neutral during the historical period, but the state as a whole could be a source for greenhouse gas forcing to the climate system from methane emissions from lake ecosystems, which were not considered in the assessment. During the projected period (2010-2099), carbon sequestration of upland and wetland ecosystems of Alaska would increase substantially (18.2 to 34.4 TgC/yr) primarily because of an increase in NPP of 8 to 19 percent associated with responses to rising atmospheric CO2, increased nitrogen cycling, and longer growing seasons. Although C emissions to the atmosphere from wildfire increase substantially for all of the projected climates, the increases in NPP more than compensate for those losses. The analysis indicates that upland and wetland ecosystems would be sinks for greenhouse gases for all scenarios during

  3. Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Though it's not quite spring, waters in the Gulf of Alaska (right) appear to be blooming with plant life in this true-color MODIS image from March 4, 2002. East of the Alaska Peninsula (bottom center), blue-green swirls surround Kodiak Island. These colors are the result of light reflecting off chlorophyll and other pigments in tiny marine plants called phytoplankton. The bloom extends southward and clear dividing line can be seen west to east, where the bloom disappears over the deeper waters of the Aleutian Trench. North in Cook Inlet, large amounts of red clay sediment are turning the water brown. To the east, more colorful swirls stretch out from Prince William Sound, and may be a mixture of clay sediment from the Copper River and phytoplankton. Arcing across the top left of the image, the snow-covered Brooks Range towers over Alaska's North Slope. Frozen rivers trace white ribbons across the winter landscape. The mighty Yukon River traverses the entire state, beginning at the right edge of the image (a little way down from the top) running all the way over to the Bering Sea, still locked in ice. In the high-resolution image, the circular, snow-filled calderas of two volcanoes are apparent along the Alaska Peninsula. In Bristol Bay (to the west of the Peninsula) and in a couple of the semi-clear areas in the Bering Sea, it appears that there may be an ice algae bloom along the sharp ice edge (see high resolution image for better details). Ground-based observations from the area have revealed that an under-ice bloom often starts as early as February in this region and then seeds the more typical spring bloom later in the season.

  4. Modeling and analysis of dynamic behavior of hybrid wind-diesel power plants

    NASA Astrophysics Data System (ADS)

    Garcia, Sergio Leonardo

    This thesis develops small-signal and large-signal models to investigate the dynamic performance of a hybrid wind-diesel energy system interfaced to a utility grid. The study system comprises a 3.5-MVA diesel-generator unit operating in parallel with a 750-kVA variable-speed, squirrel-cage induction generator, wind unit. The wind unit is interfaced to the power network through a back-to-back voltage-sourced converter system. The controllers of the machine-side converter regulate the mechanical torque and the shaft speed of the induction generator to obtain maximum power production under fluctuating wind-speed conditions. The controllers of the grid-side converter maintain the dc-link voltage and the ac-side converter terminal voltage within the specified limits and ensure delivery of the captured wind power to the network. The diesel-generator unit is equipped with excitation and governor systems to compensate for (i) output power changes of the wind unit due to the intermittent nature of the wind, and (ii) changes in the load demand. Based on small-signal (eigen) analyses in the MATLABRTM software environment, the controller parameters of the wind and the diesel units are selected to guarantee (i) minimization of transients due to switch over between two consecutive modes of operation, (ii) voltage/angle stability during islanded (autonomous) mode of operation, and (iii) local load requirements in terms of voltage and real/reactive power. The results obtained from time-domain simulations, in the PSCAD RTM/EMTDCRTM software environment, demonstrate that proper adjustment of the controllers of the wind and diesel units promote "ride-through" capability in the event of (i) pre-planned transitions between different modes of operation, (ii) pre-planned islanding and re-connection of the units to the power network, and (iii) short circuits, accidental islanding and subsequent re-connection attempts to the network. The developed eigen analysis tool is structured to

  5. Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The

  6. Recruiting first generation college students into the Geosciences: Alaska's EDGE project

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Connor, C.

    2008-12-01

    Funded in 2005-2008, by the National Science Foundation's Geoscience Education Division, the Experiential Discoveries in Geoscience Education (EDGE) project was designed to use glacier and watershed field experiences as venues for geospatial data collected by Alaska's grade 6-12 middle and high school teachers and their students. EDGE participants were trained in GIS and learned to analyze geospatial data to answer questions about the warming Alaska environment and to determine rates of ongoing glacier recession. Important emphasis of the program was the recruitment of Alaska Native students of Inupiat, Yup'ik, Athabascan, and Tlingit populations, living in both rural and urban areas around the state. Twelve of Alaska's 55 school districts have participated in the EDGE program. To engage EDGE students in the practice of scientific inquiry, each was required to carry out a semester scale research project using georeferenced data, guided by their EDGE teacher and mentor. Across Alaska students investigated several Earth systems processes including freezing conditions of lake ice; the changes in water quality in storm drains after rainfall events; movements of moose, bears, and bison across Alaskan landscapes; changes in permafrost depth in western Alaska; and the response of migrating waterfowl to these permafrost changes. Students correlated the substrate beneath their schools with known earthquake intensities; measured cutbank and coastal erosion on northern rivers and southeastern shorelines; tracked salmon infiltration of flooded logging roads; noted the changing behavior of eagles during late winter salmon runs; located good areas for the use of tidal power for energy production; tracked the extent and range of invasive plant species with warming; and the change of forests following deglaciation. Each cohort of EDGE students and teachers finished the program by attended a 3-day EDGE symposium at which students presented their research projects first in a

  7. Knocking at the College Door: Projections of High School Graduates. Alaska

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2013

    2013-01-01

    National and regional trends mask important variation among states in the supply of high school graduates. This profile provides brief indicators for Alaska related to: current levels of educational attainment, projections of high school graduates into the future, and two common barriers to student access and success--insufficient academic…

  8. A concept of wind-diesel hybrid systems for the electrification of small rural communities in Brazil

    SciTech Connect

    Pinho, J.T.; Bezerra, U.H.

    1997-12-31

    This work presents the concept of a wind-diesel hybrid system for the electrification of a small rural community in the Northern Region of Brazil, which can be used in many other places with similar characteristics. The system consists of two small diesel units and two wind turbines, one of which was designed and developed as a prototype with the purpose of gaining some insight in the field of wind turbine technology. Some considerations about small communities of the Northern Region of Brazil, and about electrification concepts are also made.

  9. 77 FR 14006 - Proposed Development of the Alaska Stand Alone Gas Pipeline Project (ASAP), From the North Slope...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF DEFENSE Department of the Army, Corps of Engineers Proposed Development of the Alaska Stand Alone Gas Pipeline Project (ASAP), From the North Slope to South Central Alaska, Draft Environmental Impact Statement...

  10. Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)

    SciTech Connect

    Not Available

    2010-02-01

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  11. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of Alaska

    USGS Publications Warehouse

    Zhu, Zhiliang; McGuire, A. David

    2016-06-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to contribute to knowledge of the storage, fluxes, and balance of carbon and methane gas in ecosystems of Alaska. The carbon and methane variables were examined for major terrestrial ecosystems (uplands and wetlands) and inland aquatic ecosystems in Alaska in two time periods: baseline (from 1950 through 2009) and future (projections from 2010 through 2099). The assessment used measured and observed data and remote sensing, statistical methods, and simulation models. The national assessment, conducted using the methodology described in SIR 2010-5233, has been completed for the conterminous United States, with results provided in three separate regional reports (PP 1804, PP 1797, and PP 1897).

  12. Healy Clean Coal Project, Healy, Alaska final Environmental Monitoring Plan

    SciTech Connect

    Not Available

    1994-06-14

    This Environmental Monitoring Plan (EMP) provides the mechanism to evaluate the integrated coal combustion/emission control system being demonstrated by the Healy Clean Coal Project (HCCP) as part-of the third solicitation of the US Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCT-III). The EMP monitoring is intended to satisfy two objectives: (1) to develop the information base necessary for identification, assessment, and mitigation of potential environmental problems arising from replication of the technology and (2) to identify and quantify project-specific and site-specific environmental impacts predicted in the National Environmental Policy Act (NEPA) documents (Environmental Impact Statement and Record of Decision). The EMP contains a description of the background and history of development of the project technologies and defines the processes that will take place in the combustion and spray dryer absorber systems, including the formation of flash-calcined material (FCM) and its use in sulfur dioxide (SO{sub 2}) removal from the flue gases. It also contains a description of the existing environmental resources of the project area. The EMP includes two types of environmental monitoring that are to be used to demonstrate the technologies of the HCCP: compliance monitoring and supplemental monitoring. Compliance monitoring activities include air emissions, wastewater effluents, and visibility. Monitoring of these resources provide the data necessary to demonstrate that the power plant can operate under the required state and federal statutes, regulations, and permit requirements.

  13. Geologic cross section, gas desorption, and other data from four wells drilled for Alaska rural energy project, Wainwright, Alaska, coalbed methane project, 2007-2009

    USGS Publications Warehouse

    Clark, Arthur C.; Roberts, Stephen B.; Warwick, Peter D.

    2010-01-01

    Energy costs in rural Alaskan communities are substantial. Diesel fuel, which must be delivered by barge or plane, is used for local power generation in most off-grid communities. In addition to high costs incurred for the purchase and transport of the fuel, the transport, transfer, and storage of fuel products pose significant difficulties in logistically challenging and environmentally sensitive areas. The Alaska Rural Energy Project (AREP) is a collaborative effort between the United States Geological Survey (USGS) and the Bureau of Land Management Alaska State Office along with State, local, and private partners. The project is designed to identify and evaluate shallow (<3,000 ft) subsurface resources such as coalbed methane (CBM) and geothermal in the vicinity of rural Alaskan communities where these resources have the potential to serve as local-use power alternatives. The AREP, in cooperation with the North Slope Borough, the Arctic Slope Regional Corporation, and the Olgoonik Corporation, drilled and tested a 1,613 ft continuous core hole in Wainwright, Alaska, during the summer of 2007 to determine whether CBM represents a viable source of energy for the community. Although numerous gas-bearing coal beds were encountered, most are contained within the zone of permafrost that underlies the area to a depth of approximately 1,000 ft. Because the effective permeability of permafrost is near zero, the chances of producing gas from these beds are highly unlikely. A 7.5-ft-thick gas-bearing coal bed, informally named the Wainwright coal bed, was encountered in the sub-permafrost at a depth of 1,242 ft. Additional drilling and testing conducted during the summers of 2008 and 2009 indicated that the coal bed extended throughout the area outlined by the drill holes, which presently is limited to the access provided by the existing road system. These tests also confirmed the gas content of the coal reservoir within this area. If producible, the Wainwright coal bed

  14. Environmental Restoration of Diesel-Range Organics from Project Chariot, Cape Thompson, Alaska

    SciTech Connect

    Kautsky, Mark; Hutton, Rick; Miller, Judy

    2016-03-06

    The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. Project Chariot was part of the Plowshare Program, created in 1957 by the US Atomic Energy Commission (AEC), a predecessor agency of the US Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than 40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site (Figure 1) was cancelled because of strong public opposition [1]. No nuclear explosions were ever conducted at the site.

  15. Snettisham Hydroelectric Project, Alaska second stage development, Crater lake. Final foundation report. Final report

    SciTech Connect

    Not Available

    1992-09-04

    The important geologic features and methods used to construct the Crater Lake stage of the Snettisham Hydroelectric project, built between 1985 and 1989, are discussed. The project added 31 megawatts of non-polluting, renewable electric power for Juneau, Alaska and the surrounding area. Features of the report include the power tunnel and access adits, penstock excavation, surge shaft, gate shaft and lake top. Construction aspects include the general geology, design features, construction methods, geologic conditions encountered, ground support requirements, grouting, instrumentation and tunnel filling. Foundation conditions for the Crater Lake status were excellent, permitting the power and penstock tunnel and shafts to be constructed essentially unlined. The basic rock type throughout the project is a high-quality, quartz diorite gneiss with randomly spaced, subparallel basalt dikes.... Unlined rock tunnels, Power tunnel, Penstocks, Lake tap, Surge shaft.

  16. Performance Analysis of Solar-Wind-Diesel-Battery Hybrid Energy System for KLIA Sepang Station of Malaysia

    NASA Astrophysics Data System (ADS)

    Shezan, S. K. A.; Saidur, R.; Hossain, A.; Chong, W. T.; Kibria, M. A.

    2015-09-01

    A large number of populations of the world live in rural or remote areas those are geographically isolated. Power supply and uninterrupted fuel transportation to produce electrical power for these remote areas poses a great challenge. Using renewable energy in hybrid energy system might be a pathway to solve this problem. Malaysia is a large hilly land with the gift of renewable energy resources. There is a good chance to utilize these renewable resources to produce electrical power and to limit the dependency on the fossil fuel as well as reduce the carbon emissions. In this perspective, a research is carried out to analyze the performance of a solar-wind-diesel-battery hybrid energy system for a remote area named “KLIA Sepang station” in the state of Selangor, Malaysia. In this study, a 56 kW hybrid energy system has been proposed that is capable to support more than 50 households and 6 shops in that area. Real time field data of solar radiation and wind speed is used for the simulation and optimization of operations using “Homer” renewable energy software. The proposed system can reduce CO2 emission by about 16 tons per year compared to diesel generator only. In the same time the Cost of energy (COE) of the optimized system is USD 5.126/kWh.The proposed hybrid energy system might be applicable for other parts of the world where the climate conditions are similar.

  17. Haines - Scagway Submarine Cable Intertie Project, Haines to Scagway, Alaska Final Technical and Construction Report

    SciTech Connect

    See, Alan; Rinehart, Bennie N; Marin, Glen

    1998-11-01

    The Haines to Skagway submarine cable project is located n Taiya Inlet, at the north end of Lynn Canal, in Southeast Alaska. The cable is approximately 15 miles long, with three landings and splice vaults. The cable is 35 kV, 3-Phase, and armored. The cable interconnects the Goat Lake Hydro Project near Skagway with the community of Haines. Both communities are now on 100% hydroelectric power. The Haines to Skagway submarine cable is the result of AP&T's goal of an alternative, economic, and environmentally friendly energy source for the communities served and to eliminate the use of diesel fuel as the primary source of energy. Diesel units will continue to be used as a backup system.

  18. Effect of glacier ablation on the Snettisham Hydroelectric Project, Long Lake and Crater Lake Basins, Alaska

    USGS Publications Warehouse

    Sloan, C.E.; Emery, P.A.; Fair, Diana

    1986-01-01

    Long Lake Basin in the Snettisham Project Area southeast of Juneau, Alaska, yields water used for the production of hydroelectric power. Development of adjacent Crater Lake is planned to increase the Project 's generating capacity. Estimates of the hydroelectric potential of the lakes are based on streamflow records which are influenced by glaciers that cover 25% of the combined basins. Analysis of streamflow records shows that the quality and extent of records in the area are sufficient to predict flow from the Crater Creek basin with a fairly high degree of confidence. Comparison of aerial photographs indicates that glacier ablation and recession have been continuous since at least 1929. Estimates of ice-volume change from photogrammetric measurements indicate that less than 2.5% of the average runoff from the basins of Long and Crater Lakes has been from reduction in glacier-ice storage. (Author 's abstract)

  19. Seismic component of the STEEP project, Alaska: Results of the first field season

    NASA Astrophysics Data System (ADS)

    Hansen, R. A.; Estes, S.; Stachnik, J.; Lafevers, M.; Roush, J.; Sanches, R.; Fuerst, E.; Sandru, J.; Ruppert, N.; Pavlis, G.; Bauer, M.

    2005-12-01

    STEEP (SainT Elias Erosion/tectonics Project) is a five year, multi-disciplinary study that addresses evolution of the highest coastal mountain range on Earth - the St. Elias Mountains of southern Alaska and northwestern Canada. The overall goal of the project is to develop a comprehensive model for the St. Elias orogen that accounts for the interaction of regional plate tectonic processes, structural development, and rapid erosion. The seismic component of this project includes passive seismic experiment utilizing the IRIS PASSCAL Program instruments. The total project consists of 22 new, telemetered, digital broad band seismic stations, most accessible by helicopter only. There are 12 existing short period stations in the area. Eight new stations were installed in the coastal region in June 2005. Freewave IP radios provide the telemetry to the newly installed VSAT at the Bering Glacier camp site. The challenge was to find ice-free locations, on bedrock, large enough to install equipment and still have a helicopter landing zone nearby. The stations consist of Quanterra Q330 digitizers with baler, a STS-2 seismometer installed in a vault, a Freewave IP radio, a Scala 900 Mhz antenna, twenty 100 AH rechargeable batteries with a 2400AH backup Celair primary battery, and three solar panels mounted on hut. The acquired data is recorded in real time at the Alaska Earthquake Information Center located in Fairbanks and is incorporated into the standard data processing procedures. High quality data allows for more reliable automatic earthquake detections in the region with lower magnitude threshold. In addition to tectonic earthquakes, glacial events that occur within the vast ice fields of the region are also regularly detected. Broadband instruments complement regional broadband network for more reliable calculations of the regional moment tensors.

  20. Tazimina hydroelectric project, Iliamna, Alaska. Final technical and construction cost report

    SciTech Connect

    1998-08-01

    The Iliamna-Newhalen-Nondalton Electric Cooperative (INNEC) provides electrical power to three communities of the same names. These communities are located near the north shore of Iliamna Lake in south-central Alaska approximately 175 miles southwest of Anchorage. A hydroelectric project was constructed for these communities, starting in the spring of 1996 and ending in the spring of 1998. The project site is on the Tazimina River about 12 miles northeast of Iliamna Lake. The taximina River flows west from the Aleutian Range. The project site is at Tazimina Falls about 9 miles upstream of the confluence of the Tazimina River and the Newhalen River. The project has an installed capacity of 824 kilowatts (kW) and is expandable to 1.5 megawatts (MW). The project is run-of-the-river (no storage) and uses the approximately 100 feet of natural head provided by the falls. The project features include a channel control sill, intake structure, penstock, underground powerhouse, tailrace, surface control building, buried transmission line and communication cable, and access road.

  1. Alaska/Canada. Prudhoe Bay operators lay plans for mammoth seawater injection project

    SciTech Connect

    Not Available

    1980-02-25

    Production at Prudhoe Bay has passed the billion-barrel mark, and 2 issues are now in the forefront for the operators of North America's largest oil field. First, how should a $2-billion waterflood be developed for the sprawling, complex reservoir. Second, how will gas sales from the field (in contrast to reinjection of produced gas) affect ultimate production of crude, gas, and liquids when the proposed gas pipeline is built. The major producers at Prudhoe Bay - Atlantic Richfield Co., Sohio Alaska Petroleum Co., and Exxon Co - have each constructed 3-dimensional computer models of Prudhoe Bay predicting future reservoir behavior. Also, the State of Alaska has contracted for a similar model to compare with the projections by the companies. The results of these studies (the so-called decline or production curve for the field under various parameters fed into the computer) are not yet available to the general public. Producers at Prudhoe Bay are confident that the reservoir is performing much as they had anticipated when production began in June 1977 and that, with proper management, the long-predicted 40% recovery of original in-place oil in the reservoir can be realized.

  2. Tazimina Hydroelectric Project, Iliamna, Alaska Final Technical and Construction Cost Report

    SciTech Connect

    HDR Alaska, Inc.

    1998-11-01

    The Iliamna-Newhalen-Nondalton Electric Cooperative (INNEC) provides electrical power to three communities of the same names. These communities are located near the north shore of Iliamna Lake in south-central Alaska approximately 175 miles southwest of Anchorage. These communities have a combined population of approximately 600 residents. There is no direct road connection from these villages to larger population centers. Electric power has been generated by INNEC since 1983 using diesel generators located in the community of Newhalen. Fuel for these generators was transported up the Kvichak River, an important salmon river, and across Iliamna Lake. In dry years the river is low and fuel is flown into Iliamna and then trucked five miles into Newhalen. The cost, difficult logistics and potential spill hazard of this fuel was a primary reason for development of hydroelectric power in this area. A hydroelectric project was constructed for these communities, starting in the spring of 1996 and ending in the spring of 1998. The project site is at Tazimina Falls about 9 miles upstream of the confluence of the Tazimina River and the Newhalen River. The project has an installed capacity of 824 kilowatts (kW) and is expandable to 1.5 megawatts (MW). The project is run-of-the-river (no storage) and uses the approximately 100 feet of natural head provided by the falls. The project features include a channel control sill, intake structure, penstock, underground powerhouse, tailrace, surface control building, buried transmission line and communication cable, and access road.

  3. Proposed IMS infrastructure improvement project, Seward, Alaska. Final environmental impact statement

    SciTech Connect

    Not Available

    1994-09-01

    This Environmental Impact Statement (EIS) examines a proposal for improvements at the existing University of Alaska, Fairbanks, Institute of Marine Science (IMS), Seward Marine Center. The Exxon Valdez Oil Spill (EVOS) Trustee Council is proposing to improve the existing research infrastructure to enhance the EVOS Trustee Council`s capabilities to study and rehabilitate marine mammals, marine birds, and the ecosystem injured by the Exxon Valdez oil spill. The analysis in this document focuses on the effects associated with construction and operation of the proposed project and its proposed alternatives. The EIS gives a detailed description of all major elements of the proposed project and its alternatives; identifies resources of major concern that were raised during the scoping process; describes the environmental background conditions of those resources; defines and analyzes the potential effects of the proposed project and its alternatives on these conditions; and identifies mitigating measures that are part of the project design as well as those proposed to minimize or reduce the adverse effects. Included in the EIS are written and oral comments received during the public comment period.

  4. Alaska's Children, 1997.

    ERIC Educational Resources Information Center

    Douglas, Dorothy, Ed.

    1997-01-01

    These four issues of the "Alaska's Children" provide information on the activities of the Alaska Head Start State Collaboration Project and other Head Start activities. Legal and policy changes affecting the education of young children in Alaska are also discussed. The Spring 1997 issue includes articles on brain development and the…

  5. Alaska's Economy: What's Ahead?

    ERIC Educational Resources Information Center

    Alaska Review of Social and Economic Conditions, 1987

    1987-01-01

    This review describes Alaska's economic boom of the early 1980s, the current recession, and economic projections for the 1990s. Alaska's economy is largely influenced by oil prices, since petroleum revenues make up 80% of the state government's unrestricted general fund revenues. Expansive state spending was responsible for most of Alaska's…

  6. Alaska low-rank coal-water fuel diesel demonstration project

    SciTech Connect

    Benson, C.; Wilson, R.; Walsh, D.; Ward, C.; Willson, W.

    1997-12-31

    A Coal-Water Fuel (CWF)-Diesel Demonstration Project developed by ADLittle (ADL) and Cooper-Energy Systems (CES) was selected for funding in US Dept. of Energy`s (DOE`s) Clean Coal Technology Program (CCT). The $38.3 million demonstration was originally planned for a utility in Maryland using CWF made from cleaned Ohio bituminous coal. When the host utility withdrew from the project, the sponsors sought a new location. During this time the technical feasibility of producing a premium low-rank coal-water fuel (LRCWF) from hydrothermally treated (HT) ultra-low S Alaskan subbituminous coal had been demonstrated at the pilot-scale. Since preliminary cost analyses showed Alaskan LRCWF to be competitive with Chinese bituminous CWF and oil priced at about $18 per barrel, an Alaskan consortium was seeking funding for a commercial-scale LRCWF demonstration project proposed for the University of Alaska Fairbanks (UAF). Since the engine developers at CES were already familiar with the features of LRCWF, the projects were combined and DOE approved relocating the LRCWF-Diesel CCT Project to UAF. The combined project will feature a 6.3 MWe diesel generation set with advanced emission controls capable of operating with either LRCWF or diesel, an oil-designed boiler also modified to use LRCWF or oil, and a nominal 120 tpd LRCWF production plant. Key project objectives are to develop commercial-scale LRCWF production costs, determine derating requirements and deratings for oil-designed boilers fired with LRCWF and to operate a LRCWF-fired diesel engine long enough to establish operating and wear characteristics.

  7. Costa de Cocos 11-kW wind-diesel hybrid system

    SciTech Connect

    Corbus, D; Bergey, M

    1997-09-01

    Costa de Cocos is a small resort located in the state of Quintana Roo, Mexico. Using the existing diesel generator, the resort`s power system was retrofitted to a wind-hybrid diesel system. The reason for this retrofit was to supply 24-hour power, to reduce diesel fuel by using wind energy, and to reduce diesel air and noise emissions in order to promote ecotourism. The wind system was installed in October 1996 with cost-shared funding from the U.S. Department of Energy/U.S. Agency for International Development renewable energy program in Mexico. The National Renewable Energy Laboratory (NREL) supplied technical assistance to the project. Discussed in this paper are the system design, installation, and initial performance.

  8. Costa de Cocos 11-kW wind-diesel hybrid system

    SciTech Connect

    Corbus, D.; Bergey, M.

    1997-12-31

    Costa de Cocos is a small resort located in the state of Quintana Roo, Mexico. Using the existing diesel generator, the resort`s power system was retrofitted to a wind-hybrid diesel system. The reason for this retrofit was to supply 24-hour power, to reduce diesel fuel by using wind energy, and to reduce diesel air and noise emissions in order to promote ecotourism. The wind system was installed in October 1996 with cost-shared funding from the U.S. Department of Energy/U.S. Agency for International Development renewable energy program in Mexico. The National Renewable Energy Laboratory (NREL) supplied technical assistance to the project. Discussed in this paper are the system design, installation, and initial performance.

  9. Post-Cleanup Communication and Records Plan for Project Chariot, Alaska

    SciTech Connect

    2005-01-01

    The Project Chariot Site resides in a remote and isolated area in the Cape Thompson region of northwest Alaska (Figure 1-1). The Project Chariot Site was a proposed test location for the U.S. Atomic Energy Commission (AEC) Plowshare Program in 1958. In 1962, the United States Geological Survey (USGS) conducted environmental studies using less than 30 mCi of short-lived mixed fission products. The location of the studies was about 0.75 mile (1.2 km) north of the Project Chariot Site base camp. Radioactive material was spread over the 12 test plots: 10 were used for overland transport tracer tests, one for a sediment transport experiment, and one for an 18-hour percolation test. The 11 test plots constituted an area less than 0.9 percent of an acre. At the conclusion of the August 1962 tracer test, USGS scraped the ground surface of the test plots and the percolation test location. The scraped soil and vegetation were mixed with native soil, deposited in a mound on two of the plots, and covered with 4 ft (1.22 m) of uncontaminated soil (DOE 1993).

  10. Projected changes in wildlife habitats in Arctic natural areas of northwest Alaska

    USGS Publications Warehouse

    Marcot, Bruce G.; Jorgenson, M. Torre; Lawler, James P.; Handel, Colleen M.; DeGange, Anthony R.

    2015-01-01

    We project the effects of transitional changes among 60 vegetation and other land cover types (“ecotypes”) in northwest Alaska over the 21st century on habitats of 162 bird and 39 mammal species known or expected to occur regularly in the region. This analysis, encompassing a broad suite of arctic and boreal wildlife species, entailed building wildlife-habitat matrices denoting levels of use of each ecotype by each species, and projecting habitat changes under historic and expected accelerated future rates of change from increasing mean annual air temperature based on the average of 5 global climate models under the A1B emissions scenario, and from potential influence of a set of 23 biophysical drivers. Under historic rates of change, we project that 52 % of the 201 species will experience an increase in medium- and high-use habitats, 3 % no change, and 45 % a decrease, and that a greater proportion of mammal species (62 %) will experience habitat declines than will bird species (50 %). Outcomes become more dire (more species showing habitat loss) under projections made from effects of biophysical drivers and especially from increasing temperature, although species generally associated with increasing shrub and tree ecotypes will likely increase in distribution. Changes in wildlife habitats likely will also affect trophic cascades, ecosystem function, and ecosystem services; of particular significance are the projected declines in habitats of most small mammals that form the prey base for mesocarnivores and raptors, and habitat declines in 25 of the 50 bird and mammal species used for subsistence hunting and trapping.

  11. Equity in Fine Arts: A Training Module. Equity in Education. The Alaska Project.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Office of Curriculum Services.

    Alaska's sex equity law, which prohibits sex discrimination in public school education, was passed by the Alaska legislature in 1981. Regulations require school districts to establish the training of personnel in the recognition of sex bias, and in the use of techniques and materials that may be used to overcome the effects of sex bias. This…

  12. Evidence and implications of recent and projected climate change in Alaska's forest ecosystems

    USGS Publications Warehouse

    Wolken, Jane M.; Hollingsworth, Teresa N.; Rupp, T. Scott; Chapin, Stuart III; Trainor, Sarah F.; Barrett, Tara M.; Sullivan, Patrick F.; McGuire, A. David; Euskirchen, Eugénie S.; Hennon, Paul E.; Beever, Erik A.; Conn, Jeff S.; Crone, Lisa K.; D'Amore, David V.; Fresco, Nancy; Hanley, Thomas A.; Kielland, Knut; Kruse, James J.; Patterson, Trista; Schuur, Edward A.G.; Verbyla, David L.; Yarie, John

    2011-01-01

    The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of climate-change impacts on all forested ecosystems of Alaska, highlighting changes in the most critical biophysical factors of each region. We developed a conceptual framework describing climate drivers, biophysical factors and types of change to illustrate how the biophysical and social subsystems of Alaskan forests interact and respond directly and indirectly to a changing climate. We then identify the regional and global implications to the climate system and associated socio-economic impacts, as presented in the current literature. Projections of temperature and precipitation suggest wildfire will continue to be the dominant biophysical factor in the Interior-boreal forest, leading to shifts from conifer- to deciduous-dominated forests. Based on existing research, projected increases in temperature in the Southcentral- and Kenai-boreal forests will likely increase the frequency and severity of insect outbreaks and associated wildfires, and increase the probability of establishment by invasive plant species. In the Coastal-temperate forest region snow and ice is regarded as the dominant biophysical factor. With continued warming, hydrologic changes related to more rapidly melting glaciers and rising elevation of the winter snowline will alter discharge in many rivers, which will have important consequences for terrestrial and marine ecosystem productivity. These climate-related changes will affect plant species distribution and wildlife habitat, which have regional societal consequences, and trace-gas emissions and radiation budgets, which are globally important. Our conceptual framework facilitates

  13. Eastern Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this SeaWiFS image of eastern Alaska, the Aleutian Islands, Kodiak Island, Yukon and Tanana rivers are clearly visible. Also visible, but slightly hidden beneath the clouds, is a bloom in Bristol Bay. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  14. 45 CFR 2532.20 - Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... nonprofit organizations known as the Yukon-Kuskokwim Health Corporation and the Alaska Village Council Presidents; (ii) Take into consideration— (A) The primarily noncash economy of the region; and (B) The...

  15. 45 CFR 2532.20 - Special Demonstration Project for the Yukon-Kuskokwim Delta of Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... nonprofit organizations known as the Yukon-Kuskokwim Health Corporation and the Alaska Village Council Presidents; (ii) Take into consideration— (A) The primarily noncash economy of the region; and (B) The...

  16. Alaska telemedicine: growth through collaboration.

    PubMed

    Patricoski, Chris

    2004-12-01

    The last thirty years have brought the introduction and expansion of telecommunications to rural and remote Alaska. The intellectual and financial investment of earlier projects, the more recent AFHCAN Project and the Universal Service Administrative Company Rural Health Care Division (RHCD) has sparked a new era in telemedicine and telecommunication across Alaska. This spark has been flamed by the dedication and collaboration of leaders at he highest levels of organizations such as: AFHCAN member organizations, AFHCAN Office, Alaska Clinical Engineering Services, Alaska Federal Health Care Partnership, Alaska Federal Health Care Partnership Office, Alaska Native health Board, Alaska Native Tribal health Consortium, Alaska Telehealth Advisory Council, AT&T Alascom, GCI Inc., Health care providers throughout the state of Alaska, Indian Health Service, U.S. Department of Health and Human Services, Office of U.S. Senator Ted Steens, State of Alaska, U.S. Department of Homeland Security--United States Coast Guard, United States Department of Agriculture, United States Department of Defense--Air Force and Army, United States Department of Veterans Affairs, University of Alaska, and University of Alaska Anchorage. Alaska now has one of the largest telemedicine programs in the world. As Alaska moves system now in place become self-sustaining, and 2) collaborating with all stakeholders in promoting the growth of an integrated, state-wide telemedicine network.

  17. Concentrations of chlorinated hydrocarbons, heavy metals and other elements in tissues banked by the Alaska marine mammal tissue archival project

    SciTech Connect

    Becker, P.R.; Mackey, E.A.; Schantz, M.M.; Demiralp, R.; Greenberg, R.R.

    1995-03-01

    The National Oceanic and Atmospheric Administration maintains two marine mammals tissue banks within NIST`s National Biomonitoring Specimen Bank. The document is the second report in the NIST Interagency Report Series in which analytical data on samples collected and banked as part of the Alaska Marine Mammal Tissue Archival Project are summarized. Results for inorganic constituents in liver tissues from 15 bulukha whales, 14 ringed seals, 3 bowhead whales, 3 beared seals, and 1 spotted seal, and for organic contaminants in blubber tissues from 12 belukha whales are presented and discussed.

  18. 78 FR 49722 - Tongass National Forest Wrangell Ranger District; Alaska; Wrangell Island Project Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... that meets market demand annually and for the planning cycle. An additional need identified by this NOI... Water Act (CWA), as revised by the Oil Pollution Act, or as required under 40 CFR part 112. State of...) for point source and stormwater discharges; Certification of Compliance with Alaska Water...

  19. Conducting rigorous research with subgroups of at-risk youth: lessons learned from a teen pregnancy prevention project in Alaska

    PubMed Central

    Hohman-Billmeier, Kathryn; Nye, Margaret; Martin, Stephanie

    2016-01-01

    In 2010, Alaska Department of Health and Social Services (DHSS) received federal funding to test an evidence-based teen pregnancy prevention program. The grant required a major modification to an existing program and a randomized control trial (RCT) to test its effectiveness. As the major modifications, Alaska used peer educators instead of adults to deliver the program to youth aged 14–19 instead of the original curriculum intended age range of 12–14. Cultural and approach adaptations were included as well. After 4 years of implementation and data collection, the sample was too small to provide statistically significant results. The lack of findings gave no information about the modification, nor any explanation of how the curriculum was received, or reasons for the small sample. This paper reports on a case study follow-up to the RCT to better understand outcome and implementation results. For this study, researchers reviewed project documents and interviewed peer educators, state and local staff, and evaluators. Three themes emerged from the data: (a) the professional growth of peer educators and development of peer education, (b) difficulties resulting from curriculum content, especially for subpopulations of sexually active youth, youth identified as lesbian, gay, bisexual, transgender, queer, intersex and/or asexual, pregnant, and parenting youth and (c) the appropriateness of an RCT with subpopulations of at-risk youth. Three recommendations emerged from the case study. First, including as many stakeholders as possible in the program and evaluation design phases is essential, and must be supported by appropriate funding streams and training. Second, there must be recognition of the multiple small subpopulations found in Alaska when adapting programs designed for a larger and more homogeneous population. Third, RCTs may not be appropriate for all population subgroups. PMID:27938637

  20. Mobile VLBI deployment plans of the Crustal Dynamics Project for the western United States and Alaska

    NASA Astrophysics Data System (ADS)

    Trask, D. W.; Vegos, C. J.

    Current plans for the Mobile VLBI program are addressed. Present mobile stations and their past activities are summarized, and past and future modes of obtaining data are compared, including the 'burst' and 'leap frog' modes. The observational campaign for Mobile VLBI is described, emphasizing the portions in Canada and Alaska. The extent to which the mobile stations are utilized and the ways in which the site visit yield may be increased are discussed.

  1. Mobile VLBI deployment plans of the Crustal Dynamics Project for the western United States and Alaska

    NASA Technical Reports Server (NTRS)

    Trask, D. W.; Vegos, C. J.

    1983-01-01

    Current plans for the Mobile VLBI program are addressed. Present mobile stations and their past activities are summarized, and past and future modes of obtaining data are compared, including the 'burst' and 'leap frog' modes. The observational campaign for Mobile VLBI is described, emphasizing the portions in Canada and Alaska. The extent to which the mobile stations are utilized and the ways in which the site visit yield may be increased are discussed.

  2. The saber microwave-powered helicopter project and related WPT research at the University of Alaska Fairbanks

    NASA Astrophysics Data System (ADS)

    Hawkins, Joe; Houston, Shawn; Hatfield, Michael; Brown, William

    1998-01-01

    This paper describes the current status of three projects at the University of Alaska Fairbanks with potential applications to Solar Power Satellites (SPS). The Semi-Autonomous BEam Rider (SABER) project is a model helicopter powered by a 1 horsepower electric motor and a rotor with a diameter of 1.15 m. It receives the power necessary to hover from a 1 kW microwave transmitter operating at 2.45 GHz. This project is intended to provide a test bed for development of Wireless Power Transmission (WPT) technology and an easily transportable demonstration of this technology. The power is received by an array of rectenna elements mounted beneath the helicopter. The ultimate goal is to integrate sensor and control subsystems onto the helicopter to measure the helicopter's attitude and position, and allow it to autonomously hover over the incident microwave beam. A second project consists of the continued refinement of a Magnetron Directional Amplifier (MDA) to provide an efficient, high power microwave source with independent control of phase and amplitude. Several MDA modules may be combined to provide an electronically-steerable phased array antenna in the future. A third project consists of computer simulations and optimization of sparse array antennas for SPS applications.

  3. Displacement of diesel fuel with wind energy in rural Alaskan villages. Final progress and project closeout report

    SciTech Connect

    Meiners, Dennis; Drouhilet, Steve; Reeve, Brad; Bergen, Matt

    2002-03-11

    The basic concept behind this project was to construct a wind diesel hybrid power system which combines and maximizes the intermittent and variable energy output of wind turbine(s) with diesel generator(s) to provide continuous high quality electric power to weak isolated mini-grids.

  4. Alaska Marine Mammal Tissue Archival Project: Sample inventory and results of analyses of selected samples for organic compounds and trace elements

    SciTech Connect

    Becker, P.R.; Wise, S.A.; Schantz, M.M.; Koster, B.J.; Zeisler, R.

    1992-02-01

    In 1987, the Alaska Marine Mammal Tissue Archival Project (AMMTAP) was established as part of the National Biomonitoring Specimen Bank (NBSB) program at the National Institute of Standards and Technology (NIST).The purpose of the AMMTAP was to establish a representative collection of Alaska marine mammal tissues for future contaminant analyses and documentation of long-term trends in environmental quality. Since 1987, specimens have been collected from 65 animals (seven species) from six different sites. The report contains the current sample inventory and the results of the analysis of selected samples for the measurement of inorganic and organic compounds.

  5. LAPS Lidar Measurements at the ARM Alaska Northslope Site (Support to FIRE Project)

    NASA Technical Reports Server (NTRS)

    Philbrick, C. Russell; Lysak, Daniel B., Jr.; Petach, Tomas M.; Esposito, Steven T.; Mulik, Karoline R.

    1998-01-01

    This report consists of data summaries of the results obtained during the May 1998 measurement period at Barrow Alaska. This report does not contain any data interpretation or analysis of the results which will follow this activity. This report is forwarded with a data set on magnetic media which contains the reduced data from the LAPS lidar in 15 minute intervals. The data was obtained during the period 15-30 May 1998. The measurement period overlapped with several aircraft flights conducted by NASA as part of the FIRE project. The report contains a summary list of the data obtained plus figures that have been prepared to help visualize the measurement periods. The order of the presentation is as follows: Section 1. A copy of the Statement of Work for the planned activity of the second measurement period at the ARM Northslope site is provided. Section 2. A list of the data collection periods shows the number of one minute data records stored during each hour of operation and the corresponding size (Mbytes) of the one hour data folders. The folder and file names are composed from the year, month, day, hour and minute. The date/time information is given in UTC for easier comparison with other data sets. Section 3. A set of 4 comparisons between the LAPS lidar results and the sondes released by the ARM scientists from a location nearby the lidar. The lidar results show the +/- 1 sigma statistical error on each of the independent 75 m altitude bins of the data. This set of 4 comparisons was used to set and validate the calibration value which was then used for the complete data set. Section 4. A set of false color figures with up to 10 hours of specific humidity measurements are shown in each graph. Two days of measurements are shown on each page. These plots are crude representations of the data and permit a survey which indicates when the clouds were very low or where interesting events may occur in the results. These plots are prepared using the real time sequence

  6. Alaska's Secondary Science Teachers and Students Receive Earth Systems Science Knowledge, GIS Know How and University Technical Support for Pre- College Research Experiences: The EDGE Project

    NASA Astrophysics Data System (ADS)

    Connor, C. L.; Prakash, A.

    2007-12-01

    Alaska's secondary school teachers are increasingly required to provide Earth systems science (ESS) education that integrates student observations of local natural processes related to rapid climate change with geospatial datasets and satellite imagery using Geographic Information Systems (GIS) technology. Such skills are also valued in various employment sectors of the state where job opportunities requiring Earth science and GIS training are increasing. University of Alaska's EDGE (Experiential Discoveries in Geoscience Education) program has provided training and classroom resources for 3 cohorts of inservice Alaska science and math teachers in GIS and Earth Systems Science (2005-2007). Summer workshops include geologic field experiences, GIS instruction, computer equipment and technical support for groups of Alaska high school (HS) and middle school (MS) science teachers each June and their students in August. Since 2005, EDGE has increased Alaska science and math teachers' Earth science content knowledge and developed their GIS and computer skills. In addition, EDGE has guided teachers using a follow-up, fall online course that provided more extensive ESS knowledge linked with classroom standards and provided course content that was directly transferable into their MS and HS science classrooms. EDGE teachers were mentored by University faculty and technical staff as they guided their own students through semester-scale, science fair style projects using geospatial data that was student- collected. EDGE program assessment indicates that all teachers have improved their ESS knowledge, GIS knowledge, and the use of technology in their classrooms. More than 230 middle school students have learned GIS, from EDGE teachers and 50 EDGE secondary students have conducted original research related to landscape change and its impacts on their own communities. Longer-term EDGE goals include improving student performance on the newly implemented (spring 2008) 10th grade

  7. Psychosocial Predictors of Weight Loss among American Indian and Alaska Native Participants in a Diabetes Prevention Translational Project.

    PubMed

    Dill, Edward J; Manson, Spero M; Jiang, Luohua; Pratte, Katherine A; Gutilla, Margaret J; Knepper, Stephanie L; Beals, Janette; Roubideaux, Yvette

    2016-01-01

    The association of psychosocial factors (psychological distress, coping skills, family support, trauma exposure, and spirituality) with initial weight and weight loss among American Indians and Alaska Natives (AI/ANs) in a diabetes prevention translational project was investigated. Participants (n = 3,135) were confirmed as prediabetic and subsequently enrolled in the Special Diabetes Program for Indians Diabetes Prevention (SDPI-DP) demonstration project implemented at 36 Indian health care programs. Measures were obtained at baseline and after completing a 16-session educational curriculum focusing on weight loss through behavioral changes. At baseline, psychological distress and negative family support were linked to greater weight, whereas cultural spirituality was correlated with lower weight. Furthermore, psychological distress and negative family support predicted less weight loss, and positive family support predicted greater weight loss, over the course of the intervention. These bivariate relationships between psychosocial factors and weight remained statistically significant within a multivariate model, after controlling for sociodemographic characteristics. Conversely, coping skills and trauma exposure were not significantly associated with baseline weight or change in weight. These findings demonstrate the influence of psychosocial factors on weight loss in AI/AN communities and have substantial implications for incorporating adjunctive intervention components.

  8. Psychosocial Predictors of Weight Loss among American Indian and Alaska Native Participants in a Diabetes Prevention Translational Project

    PubMed Central

    Dill, Edward J.; Manson, Spero M.; Jiang, Luohua; Pratte, Katherine A.; Gutilla, Margaret J.; Knepper, Stephanie L.; Beals, Janette; Roubideaux, Yvette; Special Diabetes Program for Indians Diabetes Prevention Demonstration Project

    2016-01-01

    The association of psychosocial factors (psychological distress, coping skills, family support, trauma exposure, and spirituality) with initial weight and weight loss among American Indians and Alaska Natives (AI/ANs) in a diabetes prevention translational project was investigated. Participants (n = 3,135) were confirmed as prediabetic and subsequently enrolled in the Special Diabetes Program for Indians Diabetes Prevention (SDPI-DP) demonstration project implemented at 36 Indian health care programs. Measures were obtained at baseline and after completing a 16-session educational curriculum focusing on weight loss through behavioral changes. At baseline, psychological distress and negative family support were linked to greater weight, whereas cultural spirituality was correlated with lower weight. Furthermore, psychological distress and negative family support predicted less weight loss, and positive family support predicted greater weight loss, over the course of the intervention. These bivariate relationships between psychosocial factors and weight remained statistically significant within a multivariate model, after controlling for sociodemographic characteristics. Conversely, coping skills and trauma exposure were not significantly associated with baseline weight or change in weight. These findings demonstrate the influence of psychosocial factors on weight loss in AI/AN communities and have substantial implications for incorporating adjunctive intervention components. PMID:26649314

  9. Alaska provides icy training ground

    SciTech Connect

    Rintoul, B.

    1983-04-01

    Offshore oil drilling platforms and oil exploration off the coast of Alaska are discussed. Sohio is investigating the feasibility of platform supporters from shore such as icebreakers and air-cushion vehicles. At Prudhoe Bay Arco is embarking on the first tertiary oil recovery project to take place on Alaska's North Slope.

  10. Impact of the Alaska gas conditioning facilities project on the Prudhoe Bay environment

    SciTech Connect

    Plain, D.R.

    1983-01-01

    The purpose of this study is to 1) assemble project data into a current project description, 2) assemble data currently available on the Prudhoe Bay environment, and 3) to evaluate these data to identify potential project-related environmental impacts so that appropriate mitigation/protection programs can be developed. Project data represent current design and operation specifications. However, these specifications are not final; substantial changes in the project may occur before construction begins. Data on the Prudhoe Bay environment were collected from the literature, government documents, and studies conducted by environmental consultants. Despite the extensive mount of development that has occurred in this area, relatively little environmental data are available. Environmental parameters discussed in this study include meteorology, geology, hydrology/water quality, air quality, noise, terrestrial flora and fauna, aquatic flora and fauna, land use, socioeconomic conditions, recreational potential and aesthetics, and cultural resources. The potential exists for the AGCF project to significantly enhance these impacts. Prevention of enhancement of impacts will require further identification of baseline environmental conditions at Prudhoe Bay and establishment of a monitoring program designed to detect changes in baseline parameters both during construction and operation of the AGCF. Data from these programs are needed to develop impact mitigation programs. The data will also be useful in determining incremental costs associated with future expansions of oil and gas production facilities.

  11. The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change.

    PubMed

    Fan, Zhaosheng; David McGuire, Anthony; Turetsky, Merritt R; Harden, Jennifer W; Michael Waddington, James; Kane, Evan S

    2013-02-01

    It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process-based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS-TEM), was calibrated with data collected during 2005-2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water-table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios.

  12. The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change

    USGS Publications Warehouse

    Fan, Zhaosheng; McGuire, Anthony David; Turetsky, Merritt R.; Harden, Jennifer W.; Waddington, James Michael; Kane, Evan S.

    2013-01-01

    It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process-based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS-TEM), was calibrated with data collected during 2005–2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water-table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios.

  13. Community-based participatory research projects and policy engagement to protect environmental health on St Lawrence Island, Alaska

    PubMed Central

    Miller, Pamela K.; Waghiyi, Viola; Welfinger-Smith, Gretchen; Byrne, Samuel Carter; Kava, Jane; Gologergen, Jesse; Eckstein, Lorraine; Scrudato, Ronald; Chiarenzelli, Jeff; Carpenter, David O.; Seguinot-Medina, Samarys

    2013-01-01

    Objectives This article synthesizes discussion of collaborative research results, interventions and policy engagement for St Lawrence Island (SLI), Alaska, during the years 2000–2012. Methods As part of on-going community-based participatory research (CBPR) studies on SLI, 5 discrete exposure-assessment projects were conducted: (a) a biomonitoring study of human blood serum; (b–d) 3 investigations of levels of contaminants in environmental media at an abandoned military site at Northeast Cape – using sediment cores and plants, semi-permeable membrane devices and blackfish, respectively; and (e) a study of traditional foods. Results Blood serum in residents of SLI showed elevated levels of polychlorinated biphenyls (PCBs) with higher levels among those exposed to the military site at Northeast Cape, an important traditional subsistence-use area. Environmental studies at the military site demonstrated that the site is a continuing source of PCBs to a major watershed, and that clean-up operations at the military site generated PCB-contaminated dust on plants in the region. Important traditional foods eaten by the people of SLI showed elevated concentrations of PCBs, which are primarily derived from the long-range transport of persistent pollutants that are transported by atmospheric and marine currents from more southerly latitudes to the north. Interventions An important task for all CBPR projects is to conduct intervention strategies as needed in response to research results. Because of the findings of the CBPR projects on SLI, the CBPR team and the people of the Island are actively engaging in interventions to ensure cleanup of the formerly used military sites; reform chemicals policy on a national level; and eliminate persistent pollutants internationally. The goal is to make the Island and other northern/Arctic communities safe for themselves and future generations. Conclusions As part of the CBPR projects conducted from 2000 to 2012, a series of exposure

  14. Recent U.S. Geological Survey Studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada-Results of a 5-Year Project

    USGS Publications Warehouse

    Gough, Larry P.; Day, Warren C.

    2010-01-01

    This report presents summary papers of work conducted between 2002 and 2007 under a 5-year project effort funded by the U.S. Geological Survey Mineral Resources Program, formerly entitled 'Tintina Metallogenic Province: Integrated Studies on Geologic Framework, Mineral Resources, and Environmental Signatures.' As the project progressed, the informal title changed from 'Tintina Metallogenic Province' project to 'Tintina Gold Province' project, the latter being more closely aligned with the terminology used by the mineral industry. As Goldfarb and others explain in the first chapter of this report, the Tintina Gold Province is a convenient term used by the mineral exploration community for a 'region of very varied geology, gold deposit types, and resource potential'. The Tintina Gold Province encompasses roughly 150,000 square kilometers, bounded by the Kaltag-Tintina fault system on the north and the Farewell-Denali fault system on the south. It extends westward in a broad arc, some 200 km wide, from northernmost British Columbia, through the Yukon, through southeastern and central Alaska, to southwestern Alaska. The climate is subarctic and, in Alaska, includes major physiographic delineations and ecoregions such as the Yukon-Tanana Upland, Tanana-Kuskokwim Lowlands, Yukon River Lowlands, and the Kuskokwim Mountains. Although the Tintina Gold Province is historically important for some of the very first placer and lode gold discoveries in northern North America, it has recently seen resurgence in mineral exploration, development, and mining activity. This resurgence is due to both new discoveries (for example, Pogo and Donlin Creek) and to the application of modern extraction methods to previously known, but economically restrictive, low-grade, bulk-tonnage gold resources (for example, Fort Knox, Clear Creek, and Scheelite Dome). In addition, the Tintina Gold Province hosts numerous other mineral deposit types, possessing both high and low sulfide content, which

  15. Minto, Alaska Lakeview Lodge START Program Weatherization and Rehab Project Final Report

    SciTech Connect

    Titus, Bessie; Messier, Dave

    2015-11-20

    This report details the process that Minto Village Council undertook during the DOE sponsored START program and the work that was completed on the main energy consumer in the community, the Minto Lakeview Lodge. The report takes a look at the steps leading up to the large weatherization and renovation project, the work the was completed as a result of the funding and the results in terms of effect on the community and real energy savings.

  16. Socioeconomic Disparities in Weight and Behavioral Outcomes Among American Indian and Alaska Native Participants of a Translational Lifestyle Intervention Project

    PubMed Central

    Huang, Haixiao; Johnson, Ann; Dill, Edward J.; Beals, Janette; Manson, Spero M.; Roubideaux, Yvette

    2015-01-01

    OBJECTIVE To investigate possible socioeconomic disparities in weight and behavioral outcomes among American Indian and Alaska Native (AI/AN) participants in a translational diabetes prevention project. RESEARCH DESIGN AND METHODS We analyzed data from the Special Diabetes Program for Indians Diabetes Prevention (SDPI-DP) Program, an evidence-based lifestyle intervention to prevent diabetes in 36 AI/AN grantee sites. A total of 2,553 participants started the 16-session Lifestyle Balance Curriculum between 1 January 2006 and 31 July 2008. Linear mixed models were used to evaluate the relationships of participant and staff socioeconomic characteristics with weight and behavioral outcomes at the end of the curriculum. RESULTS A strong, graded association existed between lower household income and less BMI reduction, which remained significant after adjusting for other socioeconomic characteristics. Compared with others, participants with annual income <$15,000 also had less improvement in physical activity and unhealthy food consumption in bivariate models, but the relationships were only marginally significant in multivariate regressions. Furthermore, grantee sites with fewer professionally prepared staff were less successful at improving participant BMI and healthy food consumption than the other sites. The strong association between income and BMI reduction was reduced by 20–30% in the models with changes in diet variables but was unrelated to changes in physical activity. CONCLUSIONS Significant socioeconomic disparities exist in weight outcomes of lifestyle intervention at both participant and site staff levels. Helping low-income participants choose more affordable healthy foods and increasing the proportion of professionally trained staff might be practical ways to maximize the effectiveness of lifestyle interventions implemented in “real-world” settings. PMID:26494807

  17. USGS Alaska State Mosaic

    USGS Publications Warehouse

    ,

    2008-01-01

    The Alaska State Mosaic consists of portions of scenes from the Multi-Resolution Land Characteristics 2001 (MRLC 2001) collection. The 172 selected scenes have been geometrically and radiometrically aligned to produce a seamless, relatively cloud-free image of the State. The scenes were acquired between July 1999 and September 2002, resampled to 120-meter pixels, and cropped to the State boundary. They were reprojected into a standard Alaska Albers projection with the U.S. National Elevation Dataset (NED) used to correct for relief.

  18. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  19. National Assessment of Oil and Gas Project: geologic assessment of undiscovered gas hydrate resources on the North Slope, Alaska

    USGS Publications Warehouse

    USGS AK Gas Hydrate Assessment Team: Collett, Timothy S.; Agena, Warren F.; Lee, Myung Woong; Lewis, Kristen A.; Zyrianova, Margarita V.; Bird, Kenneth J.; Charpentier, Ronald R.; Cook, Troy A.; Houseknecht, David W.; Klett, Timothy R.; Pollastro, Richard M.

    2014-01-01

    Scientists with the U.S. Geological Survey have completed the first assessment of the undiscovered, technically recoverable gas hydrate resources beneath the North Slope of Alaska. This assessment indicates the existence of technically recoverable gas hydrate resources—that is, resources that can be discovered, developed, and produced using current technology. The approach used in this assessment followed standard geology-based USGS methodologies developed to assess conventional oil and gas resources. In order to use the USGS conventional assessment approach on gas hydrate resources, three-dimensional industry-acquired seismic data were analyzed. The analyses indicated that the gas hydrates on the North Slope occupy limited, discrete volumes of rock bounded by faults and downdip water contacts. This assessment approach also assumes that the resource can be produced by existing conventional technology, on the basis of limited field testing and numerical production models of gas hydrate-bearing reservoirs. The area assessed in northern Alaska extends from the National Petroleum Reserve in Alaska on the west through the Arctic National Wildlife Refuge on the east and from the Brooks Range northward to the State-Federal offshore boundary (located 3 miles north of the coastline). This area consists mostly of Federal, State, and Native lands covering 55,894 square miles. Using the standard geology-based assessment methodology, the USGS estimated that the total undiscovered technically recoverable natural-gas resources in gas hydrates in northern Alaska range between 25.2 and 157.8 trillion cubic feet, representing 95 percent and 5 percent probabilities of greater than these amounts, respectively, with a mean estimate of 85.4 trillion cubic feet.

  20. ISEA (International geodetic project in SouthEastern Alaska) for Rapid Uplifting Caused by Glacial Retreat: (2) Establishment of Continuous GPS Sites (CGPS)

    NASA Astrophysics Data System (ADS)

    Kaufman, A. M.; Freymueller, J. T.; Miura, S.; Cross, R. S.; Sato, T.; Sun, W.; Fujimoto, H.

    2006-12-01

    Rapid disintegration and thinning of Glacier Bay's tidewater glaciers and ice fields followed the end of the Little Ice Age. Geodetic studies by Larsen et al. have quantified average rates of post-glacial isostatic rebound (PGR) in the vicinity of Glacier Bay in Southeast Alaska. PGR continues today with maximum uplift rates of 30 mm/yr in Glacier Bay's upper West Arm and 32 mm/yr in the Yakutat Icefield. ISEA is a collaborative Japanese-American project which will combine CGPS measurements of uplift with absolute gravity and gravity tide observations in Southeast Alaska. ISEA will build on previous work in Glacier Bay with a multi-pronged geophysical approach similar to that used by Sato et al. in Svalbard, Norway. CGPS data sets from Gustavus and elsewhere in Alaska show seasonal variability in vertical velocity. We hypothesize this is due to winter snow loading and summer ice loss in adjacent mountain ranges. If uplift rates are found to accelerate over the five year span of this project, this would suggest increasing rates of present day ice loss in Glacier Bay. CGPS measurements of seasonal crustal deformation might be used as a powerful integrating tool for mass balance monitoring over an extensive, glacierized area. ISEA supplements existing CGPS stations [U.S. Coast Guard and Plate Boundary Observatory (PBO)] and improves the spatial array with new stations in and around Glacier Bay. During June and September of 2006, an ISEA field team established five new CGPS stations. Two new sites within Glacier Bay National Park, at Blue Mouse Cove and Queen Inlet, are near the zone of maximum uplift. The third CGPS was placed to the east, on Eldred Rock, in northern Lynn Canal. The fourth site, to the west near Dry Bay, completes a 200 km east-west "transect" through this uplift peak. The fifth site lies to the northeast along the Haines Highway in Yukon, Canada. A sixth site in the Tatshenshini River region, north of Glacier Bay, is proposed for 2007. Site

  1. Seismology Outreach in Alaska

    NASA Astrophysics Data System (ADS)

    Gardine, L.; Tape, C.; West, M. E.

    2014-12-01

    Despite residing in a state with 75% of North American earthquakes and three of the top 15 ever recorded, most Alaskans have limited knowledge about the science of earthquakes. To many, earthquakes are just part of everyday life, and to others, they are barely noticed until a large event happens, and often ignored even then. Alaskans are rugged, resilient people with both strong independence and tight community bonds. Rural villages in Alaska, most of which are inaccessible by road, are underrepresented in outreach efforts. Their remote locations and difficulty of access make outreach fiscally challenging. Teacher retention and small student bodies limit exposure to science and hinder student success in college. The arrival of EarthScope's Transportable Array, the 50th anniversary of the Great Alaska Earthquake, targeted projects with large outreach components, and increased community interest in earthquake knowledge have provided opportunities to spread information across Alaska. We have found that performing hands-on demonstrations, identifying seismological relevance toward career opportunities in Alaska (such as natural resource exploration), and engaging residents through place-based experience have increased the public's interest and awareness of our active home.

  2. A Model for Recruiting and Retaining Teachers in Alaska's Rural K-12 Schools

    ERIC Educational Resources Information Center

    Adams, Barbara L.; Woods, Ashley

    2015-01-01

    The Alaska Statewide Mentor Project (ASMP) is a joint effort of the University of Alaska and the Alaska Department of Education & Early Development to address the persistently low teacher retention rates in the state, especially in rural districts that predominantly serve Alaska Native (AN) students. Over six years, teacher retention in rural…

  3. Distance Learning in Alaska's Rural Schools.

    ERIC Educational Resources Information Center

    Bramble, William J.

    1986-01-01

    The distance education and instructional technology projects that have been undertaken in Alaska over the last decade are detailed in this paper. The basic services offered by the "Learn Alaska Network" are described in relation to three user groups: K-12 education; postsecondary education; and general public education and information.…

  4. Alaska Simulator - A Journey to Planning

    NASA Astrophysics Data System (ADS)

    Weber, Barbara; Pinggera, Jakob; Zugal, Stefan; Wild, Werner

    The Alaska Simulator is an interactive software tool developed at the University of Innsbruck which allows people to test, analyze and improve their own planning behavior. In addition, the Alaska Simulator can be used for studying research questions in the context of software project management and other related fields. Thereby, the Alaska Simulator uses a journey as a metaphor for planning a software project. In the context of software project management the simulator can be used to compare traditional rather plan-driven project management methods with more agile approaches. Instead of pre-planning everything in advance agile approaches spread planning activities throughout the project and provide mechanisms for effectively dealing with uncertainty. The biggest challenge thereby is to find the right balance between pre-planning activities and keeping options open. The Alaska Simulator allows to explore how much planning is needed under different circumstances.

  5. ESCD/Alaska: An Educational Demonstration -- The Far North.

    ERIC Educational Resources Information Center

    Orvik, James M.

    1977-01-01

    Evaluates the Educational Satellite Communications Demonstration in Alaska project in educational television within the context of the rapid social change in land ownership, employment, and schooling. (JMF)

  6. Numerical modeling of submarine landslide-generated tsunamis as a component of the Alaska Tsunami Inundation Mapping Project

    USGS Publications Warehouse

    Suleimani, E.; Lee, H.; Haeussler, Peter J.; Hansen, R.

    2006-01-01

    Tsunami waves are a threat for manyAlaska coastal locations, and community preparedness plays an important role in saving lives and property. The GeophysicalInstitute of the University of Alaska Fairbanks participates in the National Tsunami Hazard Mitigation Program by evaluating andmapping potential tsunami inundation of selected coastal communities in Alaska. We develop hypothetical tsunamiscenarios based on the parameters of potential underwater earthquakes and landslides for a specified coastal community. The modeling results are delivered to the community for localtsunami hazard planning and construction of evacuation maps. For the community of Seward, located at the head of Resurrection Bay, tsunami potential from tectonic and submarinelandslide sources must be evaluated for comprehensiveinundation mapping. Recent multi-beam and high-resolution sub-bottom profile surveys of Resurrection Bay show medium- and large-sized blocks, which we interpret as landslide debris that slid in the 1964 earthquake. Numerical modeling of the 1964 underwater slides and tsunamis will help to validate and improve the models. In order to construct tsunami inundation maps for Seward, we combine two different approaches for estimating tsunami risk. First, we observe inundation and runup due to tsunami waves generated by the 1964 earthquake. Next we model tsunami wave dynamics in Resurrection Bay caused by superposition of the local landslide- generated waves and the major tectonic tsunami. We compare modeled and observed values from 1964 to calibrate the numerical tsunami model. In our second approach, we perform a landslide tsunami hazard assessment using underwater slope stability analysis and available characteristics of potentially unstable sediment bodies. The approach produces hypothetical underwater slides and resulting tsunami waves. We use a three-dimensional numerical model of an incompressible viscous slide with full interaction between the slide

  7. Common murre restoration monitoring in the Barren Islands, Alaska, 1993. Restoration project 93049. Exxon Valdez oil spill restoration project final report

    SciTech Connect

    Roseneau, D.G.; Kettle, A.B.; Byrd, G.V.

    1995-06-01

    This report summarizes the results of the second year of common murre (Uria aalge) restoration monitoring work conducted in the northern Gulf of Alaska for the Exxon Valdez Oil Spill Trustee Council. Information on population numbers, nesting chronology, and productivity of murres were collected by U.S. Fish and Wildlife Service (FWS) biologists at the injured East of Amatuli Island - Light Rock and Nord Island - Northwest Islet colonies in the Barren Islands during the 1993 breeding season. These data are presented and statistically compared with information reported in the 1989-1992 FWS murre damage assessment and restoration studies.

  8. An Alaska Soil Carbon Database

    NASA Astrophysics Data System (ADS)

    Johnson, Kristofer; Harden, Jennifer

    2009-05-01

    Database Collaborator's Meeting; Fairbanks, Alaska, 4 March 2009; Soil carbon pools in northern high-latitude regions and their response to climate changes are highly uncertain, and collaboration is required from field scientists and modelers to establish baseline data for carbon cycle studies. The Global Change Program at the U.S. Geological Survey has funded a 2-year effort to establish a soil carbon network and database for Alaska based on collaborations from numerous institutions. To initiate a community effort, a workshop for the development of an Alaska soil carbon database was held at the University of Alaska Fairbanks. The database will be a resource for spatial and biogeochemical models of Alaska ecosystems and will serve as a prototype for a nationwide community project: the National Soil Carbon Network (http://www.soilcarb.net). Studies will benefit from the combination of multiple academic and government data sets. This collaborative effort is expected to identify data gaps and uncertainties more comprehensively. Future applications of information contained in the database will identify specific vulnerabilities of soil carbon in Alaska to climate change, disturbance, and vegetation change.

  9. Advancing Efforts to Energize Native Alaska (Brochure)

    SciTech Connect

    Not Available

    2013-04-01

    This brochure describes key programs and initiatives of the DOE Office of Indian Energy Policy and Programs to advance energy efficiency, renewable energy, and energy infrastructure projects in Alaska Native villages.

  10. Fiscal Year 1988 program report: Alaska Water Research Center

    SciTech Connect

    Kane, D.L.

    1990-01-01

    The contents of this study includes: water problems and issues of Alaska; program goals and priorities; research project synopses are: radium levels in, and removal from, ground waters of interior alaska; assessment of stream-flow sediment transport for engineering projects; productivity within deep glacial gravels under subarctic Alaska rivers; nitrogen-cycle dynamics in a subarctic lake; and the use of peat mounds for treatment of household waste water.

  11. Alaska Native and Rural Youths' Views of Sexual Health: A Focus Group Project on Sexually Transmitted Diseases, HIV/AIDS, and Unplanned Pregnancy

    ERIC Educational Resources Information Center

    Leston, Jessica D.; Jessen, Cornelia M.; Simons, Brenna C.

    2012-01-01

    Background: The disparity in rates of sexually transmitted diseases (STDs), HIV/AIDS, and unplanned pregnancy between Alaska Native (AN) and non-AN populations, particularly among young adults and females, is significant and concerning. Focus groups were conducted to better understand the knowledge, attitudes, and beliefs of rural Alaska youth…

  12. Alaska and Bering Sea Bloom

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Alaska was relatively clear as was part of the Bering Sea where the aquamarine bloom is still visible in this SeaWiFS image. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  13. Alaska Resource Data File, Noatak Quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.; Dumoulin, Julie A.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Noatak 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  14. Economic Education Experiences of Award Winning Alaska Teachers.

    ERIC Educational Resources Information Center

    Thomas, Monica, Ed.

    Award-winning economic education projects devised by Alaska teachers included three elementary (K-6) projects and three second level (7-12) ones. Faith Greenough's students (Chinook Elementary School, Anchorage) compared Tlingit traditional and market economies in Alaska, so economics became an integrated part of elementary instruction. Marie…

  15. Hyperspectral surveying for mineral resources in Alaska

    USGS Publications Warehouse

    Kokaly, Raymond F.; Graham, Garth E.; Hoefen, Todd M.; Kelley, Karen D.; Johnson, Michaela R.; Hubbard, Bernard E.

    2016-07-07

    Alaska is a major producer of base and precious metals and has a high potential for additional undiscovered mineral resources. However, discovery is hindered by Alaska’s vast size, remoteness, and rugged terrain. New methods are needed to overcome these obstacles in order to fully evaluate Alaska’s geology and mineral resource potential. Hyperspectral surveying is one method that can be used to rapidly acquire data about the distributions of surficial materials, including different types of bedrock and ground cover. In 2014, the U.S. Geological Survey began the Alaska Hyperspectral Project to assess the applicability of this method in Alaska. The primary study area is a remote part of the eastern Alaska Range where porphyry deposits are exposed. In collaboration with the Alaska Division of Geological and Geophysical Surveys, the University of Alaska Fairbanks, and the National Park Service, the U.S. Geological Survey is collecting and analyzing hyperspectral data with the goals of enhancing geologic mapping and developing methods to identify and characterize mineral deposits elsewhere in Alaska.

  16. Predicting the effects of climate change on ecosystems and wildlife habitat in northwest Alaska: results from the WildCast project

    USGS Publications Warehouse

    DeGange, Anthony R.; Marcot, Bruce G.; Lawler, James; Jorgenson, Torre; Winfree, Robert

    2014-01-01

    We used a modeling framework and a recent ecological land classification and land cover map to predict how ecosystems and wildlife habitat in northwest Alaska might change in response to increasing temperature. Our results suggest modest increases in forest and tall shrub ecotypes in Northwest Alaska by the end of this century thereby increasing habitat for forest-dwelling and shrub-using birds and mammals. Conversely, we predict declines in several more open low shrub, tussock, and meadow ecotypes favored by many waterbird, shorebird, and small mammal species.

  17. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  18. Financing Opportunities for Renewable Energy Development in Alaska

    SciTech Connect

    Ardani, K.; Hillman, D.; Busche, S.

    2013-04-01

    This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

  19. EarthScope's Transportable Array in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Enders, M.; Miner, J.; Bierma, R. M.; Busby, R.

    2015-12-01

    EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. As the array doubles in Alaska, IRIS continues to collaborate closely with other network operators, universities and research consortia in Alaska and Canada including the Alaska Earthquake Center (AEC), the Alaska Volcano Observatory (AVO), the UNAVCO Plate Boundary Observatory (PBO), the National Tsunami Warning Center (NTWC), Natural Resources Canada (NRCAN), Canadian Hazard Information Service (CHIS), the Yukon Geologic Survey (YGS), the Pacific Geoscience Center of the Geologic Survey, Yukon College and others. During FY14 and FY15 the TA has completed upgrade work at 20 Alaska Earthquake Center stations and 2 AVO stations, TA has co-located borehole seismometers at 5 existing PBO GPS stations to augment the EarthScope observatory. We present an overview of deployment plan and the status through 2015. The performance of new Alaska TA stations including improvements to existing stations is described.

  20. Observed and Potential Responses of Upland Tundra Ecosystems to a Changing Climate: Results from the Arctic Long-Term Ecological Research Project, North Slope, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Bowden, W. B.

    2014-12-01

    The Arctic is one of the most rapidly changing biomes on earth. Research at the Toolik Field Station by the Arctic Long-Term Ecological Research project provides a perspective on changes that are impacting the upland tussock tundra region of the North Slope of Alaska, a region that is typical of ~15% of the arctic region. The arctic is responding to a combination of long-term, gradual changes (presses) and short-term, event-driven changes (pulses). The most important press, of course, is the persistent rise in average annual air temperature observed in most places (though not at Toolik). Associated with this increase in SAT is a well-documented increase in shallow permafrost temperature (which is observed around Toolik). Our long-term research shows that this trend will favor taller and more productive shrub and grass vegetation. Higher SAT translates to earlier spring breakup and later onset of winter. This change in seasonality is affecting interactions between shrub leaf-out, insect emergence, and bird nesting. Persistent and more frequent droughts are having important impacts on the ability of Arctic grayling - the top consumer is most upland tundra streams - to survive and has the potential to block their ability to migrate to essential overwintering lakes. The interaction between temperature (which is changing) and light (which is not) creates a "seasonal asynchrony" that may be increasing the loading of nutrients - notably nitrate - to upland tundra streams late in the season, with impacts that we do not fully understand yet. The upland tundra environment is also responding to an increasing frequency of pulses, most notably wildfires and the development of thermo-erosional failures (TEFs). Wildfires transfer large quantities of carbon and nitrogen directly to the atmosphere. TEFs may deliver large quantities of sediment and nutrients to streams and lakes. Currently these pulse disturbances seem to be having only limited, local impacts. However, as shallow

  1. Workshop report: Residual shoreline oiling. Exxon Valdez Oil Spill Restoration Project. Final report (restoration project 95266). Held in Chenega Bay, Alaska on November 1-2, 1995

    SciTech Connect

    Loeffler, R.M.; Piper, E.; Munson, D.

    1996-02-01

    Significant surface and subsurface oil from the 1989 Exxon Valdez oil spill remains at numerous locations in Prince William Sound, many of which are near the village of Chenega Bay. The Trustee Council sponsored the workshop on Residual Shoreline Oil to attempt to answer the significant technical, social, and policy questions that surround this issue. These include the financial cost, environmental cost, and benefits of additional shoreline treatment. Workshop attendees concluded that it was possible to construct a treatment program that might provide significant benefits to residents of Chenega Bay without incurring environmental harm with area-wide significance. To provide options for Trustee Council consideration, DEC and residents of Chenega Bay constructed five treatment alternatives. Costs include estimates for treatent, monitoring, and agency project management. The workshop also made recommendations with respect to future monitoring of the persistence or degradation of surface and subsurface oil on shorelines in the spill area.

  2. Survey of pigeon guillemot colonies in Prince William sound, Alaska. Restoration project 93034. Exxon Valdez oil spill restoration project final report

    SciTech Connect

    Sanger, G.A.; Cody, M.B.

    1994-06-01

    During a survey of 98% of Prince William Sound`s (the Sound) shoreline in May and June 1993 the authors found 184 pigeon guillemot colonies, most of which were previously unknown. There were no guillemots at 14 former colony sites, but the authors found new colonies within a few km of eight of these sites. The authors counted a total of 3028 pigeon guillemots, including 1012 that were unassociated with colonies. The authors` count is within the range of a Sound-wide estimate of 3000 to 4900 guillemots from pelagic and shoreline surveys by another project in July 1993. These figures reflect a continuing depressed population compared with a 1970`s high of about 15,000.

  3. Geologic Map of Central (Interior) Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Dover, James H.; Bradley, Dwight C.; Weber, Florence R.; Bundtzen, Thomas K.; Haeussler, Peter J.

    1998-01-01

    Introduction: This map and associated digital databases are the result of a compilation and reinterpretation of published and unpublished 1:250,000- and limited 1:125,000- and 1:63,360-scale mapping. The map area covers approximately 416,000 sq km (134,000 sq mi) and encompasses 25 1:250,000-scale quadrangles in central Alaska. The compilation was done as part of the U.S. Geological Survey National Surveys and Analysis project, whose goal is nationwide assemble geologic, geochemical, geophysical, and other data. This map is an early product of an effort that will eventually encompass all of Alaska, and is the result of an agreement with the Alaska Department of Natural Resources, Division of Oil And Gas, to provide data on interior basins in Alaska. A paper version of the three map sheets has been published as USGS Open-File Report 98-133. Two geophysical maps that cover the identical area have been published earlier: 'Bouguer gravity map of Interior Alaska' (Meyer and others, 1996); and 'Merged aeromagnetic map of Interior Alaska' (Meyer and Saltus, 1995). These two publications are supplied in the 'geophys' directory of this report.

  4. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  5. 77 FR 76425 - Fisheries of the Exclusive Economic Zone Off Alaska; Reallocation of Pacific Cod in the Central...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ... Off Alaska; Reallocation of Pacific Cod in the Central Regulatory Area of the Gulf of Alaska... projected unused amount of Pacific cod from catcher vessels using trawl gear to vessels using pot gear and... catch of Pacific cod to be harvested. DATES: Effective December 26, 2012, through 2400 hrs, Alaska...

  6. 77 FR 71588 - Alaska Electric Light and Power Company, et al.; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... Energy Regulatory Commission Alaska Electric Light and Power Company, et al.; Notice of Petition for Declaratory Order ] Alaska Electric Light and Power Company....... Docket Nos. EL13-24-000; Project No. 2307... Commission's (Commission) Rules of Practice and Procedure 18 CFR 385.207(a)(2), Alaska Electric Light...

  7. Creation of a full color geologic map by computer: A case history from the Port Moller project resource assessment, Alaska Peninsula: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1988

    USGS Publications Warehouse

    Wilson, Frederic H.

    1989-01-01

    Graphics programs on computers can facilitate the compilation and production of geologic maps, including full color maps of publication quality. This paper describes the application of two different programs, GSMAP and ARC/INFO, to the production of a geologic map of the Port Meller and adjacent 1:250,000-scale quadrangles on the Alaska Peninsula. GSMAP was used at first because of easy digitizing on inexpensive computer hardware. Limitations in its editing capability led to transfer of the digital data to ARC/INFO, a Geographic Information System, which has better editing and also added data analysis capability. Although these improved capabilities are accompanied by increased complexity, the availability of ARC/INFO's data analysis capability provides unanticipated advantages. It allows digital map data to be processed as one of multiple data layers for mineral resource assessment. As a result of development of both software packages, it is now easier to apply both software packages to geologic map production. Both systems accelerate the drafting and revision of maps and enhance the compilation process. Additionally, ARC/ INFO's analysis capability enhances the geologist's ability to develop answers to questions of interest that were previously difficult or impossible to obtain.

  8. Alaska's renewable energy potential.

    SciTech Connect

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  9. 1996 annual report on Alaska's mineral resources

    USGS Publications Warehouse

    Schneider, Jill L.

    1997-01-01

    This is the fifteenth annual report that has been prepared in response to the Alaska National Interest Lands Conservation Act. Current Alaskan mineral projects and events that occurred during 1995 are summarized. For the purpose of this document, the term 'minerals' encompasses both energy resources (oil and gas, coal and peat, uranium, and geothermal) and nonfuel-mineral resources (metallic and industrial minerals).

  10. University of Alaska 1997 Facilities Inventory.

    ERIC Educational Resources Information Center

    Alaska Univ., Fairbanks. Statewide Office of Institutional Research.

    This facilities inventory report presents a comprehensive listing of physical assets owned and operated by the University of Alaska and includes, for each asset, data on average age, weighted average age, gross square footage, original total project funding, and the asset's plant investment value adjusted to the current year. Facilities are listed…

  11. 75 FR 6199 - TransCanada Alaska Company LLC; Notice of Request for Approval of Plan for Conducting an Open Season

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... to either (1) the Alaska/Canada border for onward delivery to Alberta, Canada; or (2) to Valdez...). James K. Morse_james.morse@exxonmobil.com, Alaska Pipeline Project-- Law Manager, ExxonMobil...

  12. Activities of the Alaska District, Water Resources Division, U.S. Geological Survey, 1990

    USGS Publications Warehouse

    Snyder, Elisabeth F.

    1990-01-01

    Thirteen projects of the U.S. Geological Survey, Water Resource Division active in Alaska in 1990 are described. Each description includes information on period of project, chief, funding sources, location, purpose, current status, and published or planned reports. The compilation also contains a bibliography of reports published by the Alaska District from 1987 through January 1990. (USGS)

  13. Alaska geothermal bibliography

    SciTech Connect

    Liss, S.A.; Motyka, R.J.; Nye, C.J.

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  14. Renewable Energy in Alaska

    SciTech Connect

    Not Available

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  15. Alaska Problem Resource Manual: Alaska Future Problem Solving Program. Alaska Problem 1985-86.

    ERIC Educational Resources Information Center

    Gorsuch, Marjorie, Ed.

    "Alaska's Image in the Lower 48," is the theme selected by a Blue Ribbon panel of state and national leaders who felt that it was important for students to explore the relationship between Alaska's outside image and the effect of that image on the federal programs/policies that impact Alaska. An overview of Alaska is presented first in…

  16. 18 CFR 157.37 - Project design.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Project design. 157.37... Seasons for Alaska Natural Gas Transportation Projects § 157.37 Project design. In reviewing any application for an Alaska natural gas pipeline project, the Commission will consider the extent to which...

  17. 18 CFR 157.37 - Project design.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Project design. 157.37... Seasons for Alaska Natural Gas Transportation Projects § 157.37 Project design. In reviewing any application for an Alaska natural gas pipeline project, the Commission will consider the extent to which...

  18. 18 CFR 157.37 - Project design.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Project design. 157.37... Seasons for Alaska Natural Gas Transportation Projects § 157.37 Project design. In reviewing any application for an Alaska natural gas pipeline project, the Commission will consider the extent to which...

  19. Effects of the earthquake of March 27, 1964, on the Eklutna Hydroelectric Project, Anchorage, Alaska, with a section on television examination of earthquake damage to underground communication and electrical systems in Anchorage: Chapter A in The Alaska earthquake, March 27, 1964: effects on transportation, communications, and utilities

    USGS Publications Warehouse

    Logan, Malcolm H.; with a section on Television Examination of Earthquake Damage to Underground Communication and Electrical Systems in Anchorage by Burton, Lynn R.

    1967-01-01

    The March 27, 1964, Alaska earthquake and its associated aftershocks caused damage requiring several million dollars worth of repair to the Eklwtna Hydroelectric Project, 34 miles northeast of Anchorage. Electric service from the Eklutna powerplant was interrupted during the early phase of the March 27 earthquake, built was restored (intermittently) until May 9,1964, when the plant was closed for inspection and repair. Water for Eklutna project is transported from Eklutna Lake to the powerplant at tidewater on Knik Arm of Cook Inlet by an underwater intake connected to a 4.46-mile tunnel penstock. The primary damage caused by the earthquake was 1at the intake structure in Eklutna Lake. No damage to the power tunnel was observed. The piles-supported powerplant and appurtenant structures, Anchorage and Palmer substations, and the transmission lines suffered minor dammage. Most damage occurred to facilities constructed on un-consolidated sediments and overburden which densified and subsided during the earthquake. Structures built on bedrock experienced little or no damage. Underground communication and electrical systems in Anchorage were examined with a small-diameter television camera to locate damaged areas requiring repair. Most of the damage was concentrated at or near valley slopes. Those parts of the systems within the major slide areas of the city were destroyed.

  20. Libraries in Alaska: MedlinePlus

    MedlinePlus

    ... this page: https://medlineplus.gov/libraries/alaska.html Libraries in Alaska To use the sharing features on ... JavaScript. Anchorage University of Alaska Anchorage Alaska Medical Library 3211 Providence Drive Anchorage, AK 99508-8176 907- ...

  1. UAFSmoke Modeling in Alaska

    NASA Astrophysics Data System (ADS)

    Stuefer, M.; Grell, G.; Freitas, S.; Newby, G.

    2008-12-01

    Alaska wildfires have strong impact on air pollution on regional Arctic, Sub-Arctic and even hemispheric scales. In response to a high number of wildfires in Alaska, emphasis has been placed on developing a forecast system for wildfire smoke dispersion in Alaska. We have developed a University of Alaska Fairbanks WRF/Chem smoke (UAFSmoke) dispersion system, which has been adapted and initialized with source data suitable for Alaska. UAFSmoke system modules include detection of wildfire location and area using Alaska Fire Service information and satellite remote sensing data from the MODIS instrument. The fire emissions are derived from above ground biomass fuel load data in one-kilometer resolution. WRF/Chem Version 3 with online chemistry and online plume dynamics represents the core of the UAFSmoke system. Besides wildfire emissions and NOAA's Global Forecast System meteorology, WRF/Chem initial and boundary conditions are updated with anthropogenic and sea salt emission data from the Georgia Institute of Technology-Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) Model. System runs are performed at the Arctic Region Supercomputing Center's Sun Opteron cluster "Midnight". During the 2008 fire season once daily UAFSmoke runs were presented at a dedicated webpage at http://smoke.arsc.edu. We present examples from these routine runs and from the extreme 2004 Alaska wildfire season.

  2. Landscape geochemistry near mineralized areas of eastern Alaska: Chapter H in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    Wang, Bronwen; Gough, Larry P.; Wanty, Richard B.; Crock, James G.; Lee, Gregory K.; Day, Warren C.; Vohden, Jim

    2007-01-01

    The Pogo lode gold deposit was discovered in eastern Alaska in the early 1990s and provided the opportunity to study elemental distribution and mobility in the natural environment prior to mine development. Studying mineralized systems prior to mining allows us to compare the natural biogeochemical signature in mineralized versus nonmineralized areas. The resultant data and interpretation also provide a baseline for evaluating what, if any, changes in elemental distribution result from development. This report investigates the chemistry of stream water, streambed sediment, and soil in the context of regional bedrock geology. The major-ion chemistry of the waters reflects a rock-dominated aqueous system, and the waters are classified as Ca2+ and Mg2+ - HCO3- to Ca2+ and Mg2+ - SO4-2 waters. Creeks draining the gneissic lithologies tend to be more sulfate dominated than those draining the intrusive units. Sulfate also dominated creeks draining mineralized areas; however, the underlying paragneiss unit could be contributing substantially to the sulfate concentration, and the sulfate concentration in these creeks may reflect a complex baltholith-paragneiss boundary rather than mineralization. Arsenic concentrations in bed sediments were elevated in mineralized areas relative to nonmineralized areas. Elevated concentrations of nickel, chromium, iron, manganese, and cobalt appear to reflect the presence of ultramafic rocks in the drainage. In general, aqueous metal concentrations were below the State of Alaska’s Aquatic Life Criteria and Drinking Water Standards, with the exception of arsenic in stream water, which ranged in concentration from less than 1 to 14 micrograms per liter (μg/L) and exceeded the drinking water standard at one site. The arsenic and antimony concentration in the A, B, and C soil horizons ranged from 3 to 410 milligrams per kilogram (mg/kg), 6.1 to 440 mg/kg, and 2 to 300 mg/kg, respectively, for arsenic and 0.4 to 24 mg/kg, 0.6 to 25 mg

  3. Proximate composition and fatty acid signatures of selected forage fish species in Prince William Sound, Alaska. Exxon Valdez Oil Spill Restoration Project 95121. Final report

    SciTech Connect

    Worth, G.A.J.; Miculka, T.A.

    1997-12-31

    The proximate composition and fatty acid signatures of several prey species, which are important for sea birds and marine mammals in Prince William Sound, Alaska, were determined. Fish were collected as part of the SEA cruises in the fall of 1995 and were frozen immediately and then shipped to Galveston for analysis. Fatty acid signatures of herring, pollock, and tomcod were consistent with previously reported data, Three different species of sole (English, rock, and flathead) were also consistent with previously reported data for yellowfin sole. Detailed analyses of individual rock fish suggest that this species may exhibit trends in some specific fatty acids (20:5 n-3, 22:6 n-3) which differ from herring or pollock.

  4. Alaska marine ice atlas

    SciTech Connect

    LaBelle, J.C.; Wise, J.L.; Voelker, R.P.; Schulze, R.H.; Wohl, G.M.

    1982-01-01

    A comprehensive Atlas of Alaska marine ice is presented. It includes information on pack and landfast sea ice and calving tidewater glacier ice. It also gives information on ice and related environmental conditions collected over several years time and indicates the normal and extreme conditions that might be expected in Alaska coastal waters. Much of the information on ice conditions in Alaska coastal waters has emanated from research activities in outer continental shelf regions under assessment for oil and gas exploration and development potential. (DMC)

  5. Alaska geology revealed

    USGS Publications Warehouse

    Wilson, Frederic H.; Labay, Keith A.

    2016-11-09

    This map shows the generalized geology of Alaska, which helps us to understand where potential mineral deposits and energy resources might be found, define ecosystems, and ultimately, teach us about the earth history of the State. Rock units are grouped in very broad categories on the basis of age and general rock type. A much more detailed and fully referenced presentation of the geology of Alaska is available in the Geologic Map of Alaska (http://dx.doi.org/10.3133/sim3340). This product represents the simplification of thousands of individual rock units into just 39 broad groups. Even with this generalization, the sheer complexity of Alaskan geology remains evident.

  6. Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.

    This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and

  7. Alaska Resource Data File, Nabesna quadrangle, Alaska

    USGS Publications Warehouse

    Hudson, Travis L.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  8. Alaska Resource Data File, Wiseman quadrangle, Alaska

    USGS Publications Warehouse

    Britton, Joe M.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  9. Alaska Resource Data File, Juneau quadrangle, Alaska

    USGS Publications Warehouse

    Barnett, John C.; Miller, Lance D.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  10. Alaska: A frontier divided

    SciTech Connect

    O'Dell, R. )

    1986-09-01

    The superlatives surrounding Alaska are legion. Within the borders of the 49th US state are some of the world's greatest concentrations of waterfowl, bald eagles, fur seals, walrus, sea lions, otters, and the famous Kodiak brown bear. Alaska features the highest peak of North America, the 20,320-foot Mount McKinley, and the longest archipelago of small islands, the Aleutians. The state holds the greatest percentage of protected wilderness per capita in the world. The expanse of some Alaskan glaciers dwarfs entire countries. Like the periodic advance and retreat of its glaciers, Alaska appears with some regularity on the national US agenda. It last achieved prominence when President Jimmy Carter signed the Alaska National Interest Lands Conservation Act in 1980. Since then the conflict between environmental protection and economic development has been played out throughout the state, and Congress is expected to turn to Alaskan issues again in its next sessions.

  11. Hawkweed Control in Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several hawkweed species from Europe have escaped ornamental planting and have colonized roadsides and grasslands in south central and southeast Alaska. These plants form near monotypic stands, reducing plant diversity and decreasing pasture productivity. A replicated greenhouse study was conducted ...

  12. Alaska Resource Data File, Point Lay quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Point Lay 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  13. Alaska looks HOT!

    SciTech Connect

    Belcher, J.

    1997-07-01

    Production in Alaska has been sluggish in recent years, with activity in the Prudhoe Bay region in the North Slope on a steady decline. Alaska North Slope (ANS) production topped out in 1988 at 2.037 MMbo/d, with 1.6 MMbo/d from Prudhoe Bay. This year operators expect to produce 788 Mbo/d from Prudhoe Bay, falling to 739 Mbo/d next year. ANS production as a whole should reach 1.3 MMbo/d this year, sliding to 1.29 MMbo/d in 1998. These declining numbers had industry officials and politicians talking about the early death of the Trans-Alaskan Pipeline System-the vital link between ANS crude and markets. But enhanced drilling technology coupled with a vastly improved relationship between the state government and industry have made development in Alaska more economical and attractive. Alaska`s Democratic Gov. Tommy Knowles is fond of telling industry {open_quotes}we`re open for business.{close_quotes} New discoveries on the North Slope and in the Cook Inlet are bringing a renewed sense of optimism to the Alaska exploration and production industry. Attempts by Congress to lift a moratorium on exploration and production activity in the Arctic National Wildlife Refuge (ANWR) have been thwarted thus far, but momentum appears to be with proponents of ANWR drilling.

  14. Digital data for the geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    USGS Publications Warehouse

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    1999-01-01

    These digital databases are the result of the compilation and reinterpretation of published and unpublished 1:250,000- and 1:63,360-scale mapping. The map area covers approximately 62,000 sq km (23,000 sq mi) in land area and encompasses much of 13 1:250,000-scale quadrangles on the Alaska Peninsula in southwestern Alaska. The compilation was done as part of the U.S. Geological Survey's Alaska Mineral Resource Assessment project (AMRAP), whose goal was create and assemble geologic, geochemical, geophysical, and other data in order to perform mineral resource assessments on a quadrangle, regional or statewide basis. The digital data here was created to assist in the completion of a regional mineral resource assessment of the Alaska Peninsula. Mapping on the Alaska Peninsula under AMRAP began in 1977 in the Chignik and Sutwik Island 1:250,000 quadrangles (Detterman and others, 1981). Continued mapping in the Ugashik, bristol bay, and northwestern Karluk quadrangles (Detterman and others, 1987) began in 1979, followed by the Mount Katmai, eastern Naknek, and northwestern Afognak quadrangles (Riehle and others, 1987; Riehle and others, 1993), the Port Moller, Stepovak bay, and Simeonof Island quadrangles (Wilson and others, 1995) beginning in 1983. Work in the Cold bay and False Pass quadrangles (Wilson and others, 1992 [Superceded by Wilson and others 1997, but not incorporated herein]) began in 1986. The reliability of the geologic mapping is variable, based, in part, on the field time spent in each area of the map, the available support, and the quality of the existing base maps. In addition, our developing understanding of the geology of the Alaska Peninsula required revision of earlier maps, such as the Chignik and Sutwik Island quadrangles map (Detterman and others, 1981) to reflect this new knowledge. We have revised the stratigraphic nomenclature (Detterman and others, 1996) and our assignment of unit names to some rocks has been changed. All geologic maps on

  15. Review of the Alaska Statutes for Sex Discrimination.

    ERIC Educational Resources Information Center

    Gleason, Sharon L.

    Findings of a project to review Alaska statutes for evidence of sex discrimination is divided into 14 sections. An introduction provides an overview of the project scope, history, organization, and research procedure. A section on insurance looks at gender-based insurance rates and conversion and continuation of health benefits. Under the category…

  16. Integrated resource inventory for southcentral Alaska (INTRISCA)

    NASA Technical Reports Server (NTRS)

    Burns, T.; Carson-Henry, C.; Morrissey, L. A.

    1981-01-01

    The Integrated Resource Inventory for Southcentral Alaska (INTRISCA) Project comprised an integrated set of activities related to the land use planning and resource management requirements of the participating agencies within the southcentral region of Alaska. One subproject involved generating a region-wide land cover inventory of use to all participating agencies. Toward this end, participants first obtained a broad overview of the entire region and identified reasonable expectations of a LANDSAT-based land cover inventory through evaluation of an earlier classification generated during the Alaska Water Level B Study. Classification of more recent LANDSAT data was then undertaken by INTRISCA participants. The latter classification produced a land cover data set that was more specifically related to individual agency needs, concurrently providing a comprehensive training experience for Alaska agency personnel. Other subprojects employed multi-level analysis techniques ranging from refinement of the region-wide classification and photointerpretation, to digital edge enhancement and integration of land cover data into a geographic information system (GIS).

  17. Alaska Native Parkinson’s Disease Registry

    DTIC Science & Technology

    2012-07-01

    Investigator 4 A. Introduction Parkinsonism (PS) is a syndrome characterized by tremor , rigidity, slowness of movement, and problems with walking...2011. The aims of this project are: Specific Aim 1: Identify cases of parkinsonism among Alaska Native people and populate a secure electronic...registry database. Specific Aim 2: Provide education on parkinsonism and its treatment to primary care physicians and other health care providers

  18. Alaska Native Parkinson’s Disease Registry

    DTIC Science & Technology

    2013-07-01

    07-1-0001 TITLE: Alaska Native Parkinson’s Disease Registry PRINCIPAL INVESTIGATOR: Caroline M. Tanner, M.D...The views, opinions and/or findings contained in this report are those of the author( s ) and should not be construed as an official Department...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: 5f. WORK UNIT NUMBER 7. PERFORMING

  19. Alaska Resource Data File: Chignik quadrangle, Alaska

    USGS Publications Warehouse

    Pilcher, Steven H.

    2000-01-01

    Descriptions of the mineral occurrences can be found in the report. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska. There is a website from which you can obtain the data for this report in text and Filemaker Pro formats

  20. 78 FR 69844 - Alaska Village Electric Cooperative, Inc.; Notice of Application Tendered for Filing With the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Alaska Village Electric Cooperative, Inc.; Notice of Application Tendered.... b. Project No.: 13272-003. c. Date Filed: November 1, 2013. d. Applicant: Alaska Village...

  1. 77 FR 6492 - Fisheries of the Exclusive Economic Zone Off Alaska; Community Development Quota Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... Exclusive Economic Zone Off Alaska; Community Development Quota Program AGENCY: National Marine Fisheries... support economic development in western Alaska, to alleviate poverty and provide economic and social.... Royalties and income from CDQ harvesting activities are used to fund economic development projects in...

  2. 75 FR 17707 - Alaska Power & Telephone Company; Notice of Declaration of Intention and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... & Telephone Company. e. Name of Project: Neck Lake Hydroelectric Project. f. Location: The proposed Neck Lake Hydroelectric Project will be located on Neck Lake outlet stream, near the community of Whale Pass, Alaska, (T... Project: The proposed Neck Lake Hydroelectric Project would consist of: (1) A small reservoir; (2) a...

  3. Satellite Applications for Public Service: Project Summaries.

    ERIC Educational Resources Information Center

    Lauffer, Sandra; And Others

    Summaries of 18 different projects involving the use of satellite communications are presented in this report, including PEACESAT Education and Communication Experiments, USP Network Satellite Communication Project, Project Satellite, Satellite Instructional Television Experiment (SITE), Appalachian Education Satellite Program, Alaska Education…

  4. EPSCoR Final Report

    SciTech Connect

    Holdmann, Gwen

    2016-12-20

    Alaska is considered a world leader in renewable energy and microgrid technologies. Our workplan started as an analysis of existing wind-diesel systems, many of which were not performing as designed. We aimed to analyze and understand the performance of existing wind-diesel systems, to establish a knowledge baseline from which to work towards improvement and maximizing renewable energy utilization. To accomplish this, we worked with the Alaska Energy Authority to develop a comprehensive database of wind system experience, including underlying climatic and socioeconomic characteristics, actual operating data, projected vs. actual capital and O&M costs, and a catalogue of catastrophic anomalies. This database formed the foundation for the rest of the research program, with the overarching goal of delivering low-cost, reliable, and sustainable energy to diesel microgrids.

  5. Accretion of southern Alaska

    USGS Publications Warehouse

    Hillhouse, J.W.

    1987-01-01

    Paleomagnetic data from southern Alaska indicate that the Wrangellia and Peninsular terranes collided with central Alaska probably by 65 Ma ago and certainly no later than 55 Ma ago. The accretion of these terranes to the mainland was followed by the arrival of the Ghost Rocks volcanic assemblage at the southern margin of Kodiak Island. Poleward movement of these terranes can be explained by rapid motion of the Kula oceanic plate, mainly from 85 to 43 Ma ago, according to recent reconstructions derived from the hot-spot reference frame. After accretion, much of southwestern Alaska underwent a counterclockwise rotation of about 50 ?? as indicated by paleomagnetic poles from volcanic rocks of Late Cretaceous and Early Tertiary age. Compression between North America and Asia during opening of the North Atlantic (68-44 Ma ago) may account for the rotation. ?? 1987.

  6. 2012 Alaska Performance Scholarship Outcomes Report

    ERIC Educational Resources Information Center

    Rae, Brian

    2012-01-01

    As set forth in Alaska Statute 14.43.840, Alaska's Departments of Education & Early Development (EED) and Labor and Workforce Development (DOLWD), the University of Alaska (UA), and the Alaska Commission on Postsecondary Education (ACPE) present this first annual report on the Alaska Performance Scholarship to the public, the Governor, and the…

  7. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army – Project 276 Renewable Resource Development on Department of Defense Bases in Alaska: Challenges and Opportunities

    SciTech Connect

    Warwick, William M.

    2010-09-30

    The potential to increase utilization of renewable energy sources among military facilities in Alaska through coordinated development and operation is the premise of this task. The US Army Pacific Command requested assistance from PNNL to help develop a more complete understanding of the context for wheeling power within Alaska, including legal and regulatory barriers that may prohibit the DOD facilities from wheeling power among various locations to optimize the development and use of renewable resources.

  8. Geologic Map of the Ikpikpuk River Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2005-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  9. Geologic Map of the Utukok River Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2006-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically.

  10. Geologic Map of the Lookout Ridge Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2006-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  11. Geologic Map of the Point Lay Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2008-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  12. Alaska's Cold Desert.

    ERIC Educational Resources Information Center

    Brune, Jeff; And Others

    1996-01-01

    Explores the unique features of Alaska's Arctic ecosystem, with a focus on the special adaptations of plants and animals that enable them to survive in a stressful climate. Reviews the challenges facing public and private land managers who seek to conserve this ecosystem while accommodating growing demands for development. Includes classroom…

  13. Alaska Mathematics Standards

    ERIC Educational Resources Information Center

    Alaska Department of Education & Early Development, 2012

    2012-01-01

    High academic standards are an important first step in ensuring that all Alaska's students have the tools they need for success. These standards reflect the collaborative work of Alaskan educators and national experts from the nonprofit National Center for the Improvement of Educational Assessment. Further, they are informed by public comments.…

  14. Alaska Glaciers and Rivers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image on October 7, 2007, showing the Alaska Mountains of south-central Alaska already coated with snow. Purple shadows hang in the lee of the peaks, giving the snow-clad land a crumpled appearance. White gives way to brown on the right side of the image where the mountains yield to the lower-elevation Susitna River Valley. The river itself cuts a silver, winding path through deep green forests and brown wetlands and tundra. Extending from the river valley, are smaller rivers that originated in the Alaska Mountains. The source of these rivers is evident in the image. Smooth white tongues of ice extend into the river valleys, the remnants of the glaciers that carved the valleys into the land. Most of the water flowing into the Gulf of Alaska from the Susitna River comes from these mountain glaciers. Glacier melt also feeds glacier lakes, only one of which is large enough to be visible in this image. Immediately left of the Kahiltna River, the aquamarine waters of Chelatna Lake stand out starkly against the brown and white landscape.

  15. Venetie, Alaska energy assessment.

    SciTech Connect

    Jensen, Richard Pearson; Baca, Michael J.; Schenkman, Benjamin L.; Brainard, James Robert

    2013-07-01

    This report summarizes the Energy Assessment performed for Venetie, Alaska using the principals of an Energy Surety Microgrid (ESM) The report covers a brief overview of the principals of ESM, a site characterization of Venetie, a review of the consequence modeling, some preliminary recommendations, and a basic cost analysis.

  16. Alaska's Logging Camp School.

    ERIC Educational Resources Information Center

    Millward, Robert E.

    1999-01-01

    A visit to Ketchikan, Alaska, reveals a floating, one-teacher logging-camp school that uses multiage grouping and interdisciplinary teaching. There are 10 students. The school gym and playground, bunkhouse, fuel tanks, mess hall, and students' homes bob up and down and are often moved to other sites. (MLH)

  17. Chariot, Alaska Site Fact Sheet

    SciTech Connect

    2013-01-16

    The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.

  18. Marine bird and sea otter population abundance of Prince william sound, Alaska: Trends following the t/v Exxon Valdez oil spill, 1989-93. Restoration project 93045. Exxon Valdez oil spill restoration project final report

    SciTech Connect

    Agler, B.A.; Seiser, P.E.; Kendall, S.J.; Irons, D.B.

    1994-05-01

    We conducted small boat surveys to estimate marine bird and sea otter (Enhdra lutris) populations in Prince William Sound, Alaska during March and July 1993, using methods developed for the 1989-91 surveys (Klosiewski and Laing 1994). During 1993, we recorded 65 birds and 13 mammal species. We estimated that 402,760 + or - 167,697 marine birds were in the Sound during March 1993, an increase of >200,000 birds over 1990 and 1991. To examine trends in our marine bird population estimates from 1989-93, we assumed that in the absence of oil spill effects, population estimates in the oiled zone would change at the same rate as those in the unoiled zone. For Prince William Sound as a whole, we examined population trends from 1989-1993, using regression analyses. We also examined the relative abundance of the species groups seen in Prince William Sound from 1972 to 1993. Sea otter populations in 1993 were estimated at 6,813 + or - 1,861 for March and 8,216 + or - 2,435 for July. We found no difference in the rate of change between the oiled and unoiled zones from 1989-93 for either the March or July population estimates. There was no significant trend in the total number of sea otters in Prince William Sound from 1989-93.

  19. Winter marine bird and sea otter abundance of Prince William Sound, Alaska: Trends following the t/v Exxon Valdez oil spill from 1990-94. Restoration project 94159. Exxon Valdez oil spill restoration project final report

    SciTech Connect

    Agler, B.A.; Seiser, P.E.; Kendall, S.J.; Irons, D.B.

    1995-05-01

    We conducted small boat surveys to determine population abundance of marine birds and sea otters (Enhydra lutris) in Prince William Sound, Alaska during March 1994. We observed 45 bird and 8 mammal species in Prince William Sound, and we estimated that 320,470 + or - 63,640 marine birds were present. We estimated trends in the March population estimates from 1990-94 by determining whether estimates in the oiled zone changed at the same rate as those in the unoiled zone. For Prince William Sound as a whole, we also examined the population trends from 1990-94 using regression analyses. We found significant positive trends for harlequin duck (Histrionicus), goldeneye, merganser, bald eagle (Haliaeetus leucocephalus), black-legged kittiwake (Rissa tridactyla) and gull (Larus and Rissa spp.) populations. We also examined the relative abundance of marine bird species groups from 1972 to 1994. During March 1994, we estimated that the sea otter population was 7,746 + or - 2,073 otters. We found no difference in the rate of change between the oiled and unoiled zones from 1990-94, and there was no significant trend in the total number of sea otters in Prince William Sound from 1990-94.

  20. Education in Alaska. A Report to the People, FY 1986.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau.

    In fiscal year (FY) 1986, the Alaska State Board of Education continued to work towards its objectives of improving education in the areas of: school finance (by developing a fair and equitable distribution system for state public school funds and funding school construction projects); fiscal accountability (by establishing a system for the entire…

  1. National Environmental/Energy Workforce Assessment for Alaska.

    ERIC Educational Resources Information Center

    National Field Research Center Inc., Iowa City, IA.

    This report presents existing workforce levels, training programs and career potentials and develops staffing level projections (1976-1982) based on available information for the State of Alaska. The study concerns itself with the environmental pollution control areas of air, noise, potable water, pesticides, radiation, solid waste, wastewater,…

  2. First Regional Super ESPC: Success on Kodiak Island, Alaska

    SciTech Connect

    Federal Energy Management Program

    2001-05-16

    This case study about energy saving performance contacts (ESPCs) presents an overview of how the Coast Guard at Kodiak Island, Alaska, established an ESPC contract and the benefits derived from it. The Federal Energy Management Program instituted these special contracts to help federal agencies finance energy-saving projects at their facilities.

  3. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer

    Bob Busey; Larry Hinzman

    2012-04-01

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  4. Active Tectonics and Seismic Potential of Alaska

    NASA Astrophysics Data System (ADS)

    Freymueller, Jeffrey T.; Haeussler, Peter J.; Wesson, Robert L.; Ekström, Göran

    This multidisciplinary monograph provides the first modern integrative summary focused on the most spectacular active tectonic systems in North America. Encompassing seismology, tectonics, geology, and geodesy, it includes papers that summarize the state of knowledge, including background material for those unfamiliar with the region; address global hypotheses using data from Alaska; and test important global hypotheses using data from this region. It is organized around four major themes: • subduction and great earthquakes at the Aleutian Arc, • the transition from strike slip to accretion and subduction of the Yakutat microplate, • the Denali fault and related structures and their role in accommodating permanent deformation of the overriding plate, and • regional integration and large-scale models and the use of data from Alaska to address important global questions and hypotheses. The book's publication near the beginning of the National Science Foundation's EarthScope project makes it especially timely because Alaska is perhaps the least understood area within the EarthScope footprint, and interest in the region can be expected to rise with time as more EarthScope data become available.

  5. Coal resources of Alaska

    SciTech Connect

    Sanders, R.B.

    1982-01-01

    In the late 1800s, whaling ships carried Alaskan coal, and it was used to thaw ground for placer gold mining. Unfortunate and costly political maneuvers in the early 1900s delayed coal removal, but the Alaska Railroad and then World War II provided incentives for opening mines. Today, 33 million acres (about 9% of the state) is classified as prospectively valuable for coal, much of it under federal title. Although the state's geology is poorly known, potential for discovery of new fields exists. The US Geological Survey estimates are outdated, although still officially used. The total Alaska onshore coal resource is estimated to be 216 to 4216 billion tons of which 141 billion tons are identified resources; an additional 1430 billion tons are believed to lie beneath Cook Inlet. Transportation over mountain ranges and wetlands is the biggest hurdle for removal. Known coal sources and types are described and mapped. 1 figure.

  6. Seabirds in Alaska

    USGS Publications Warehouse

    Hatch, Scott A.; Piatt, John F.

    1995-01-01

    Techniques for monitoring seabird populations vary according to habitat types and the breeding behavior of individual species (Hatch and Hatch 1978, 1989; Byrd et al. 1983). An affordable monitoring program can include but a few of the 1,300 seabird colonies identified in Alaska, and since the mid-1970's, monitoring effotrts have emphasized a small selection of surface-feeding and diving species, primarily kittiwakes (Rissa spp.) and murres (Uria spp.). Little or no information on trends is available for other seabirds (Hatch 1993a). The existing monitoring program occurs largely on sites within the Alaska Maritime National Wildlife Refuge, which was established primarily for the conservation of marine birds. Data are collected by refuge staff, other state and federal agencies, private organizations, university faculty, and students.

  7. Geologic map of Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Mull, Charles G.; Karl, Susan M.

    2015-12-31

    This Alaska compilation is unique in that it is integrated with a rich database of information provided in the spatial datasets and standalone attribute databases. Within the spatial files every line and polygon is attributed to its original source; the references to these sources are contained in related tables, as well as in stand-alone tables. Additional attributes include typical lithology, geologic setting, and age range for the map units. Also included are tables of radiometric ages.

  8. The United States Geological Survey in Alaska: Accomplishments during 1977

    USGS Publications Warehouse

    Johnson, Kathleen M.

    1978-01-01

    United States Geological Survey projects in Alaska study a wide range of topics of economic and scientific interest. Work done in 1977 includes contributions to economic geology, regional geology, stratigraphy, engineering geology, hydrology, and marine geology. Many maps and reports covering various aspects of the geology and mineral and water resources of the State were published. In addition, the published 1:1,000,000-scale map of the State has been revised in two areas. A bibliography containing 263 reports on Alaska published in 1977 is included. (Woodard-USGS)

  9. Renewable energy and sustainable communities: Alaska's wind generator experience†

    PubMed Central

    Konkel, R. Steven

    2013-01-01

    Background In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. Method This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Results Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers:changing environmental conditions in remote Alaska villages,impacts associated

  10. 77 FR 54838 - Fisheries of the Exclusive Economic Zone Off Alaska; Reallocation of Pacific Cod in the Western...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... Economic Zone Off Alaska; Reallocation of Pacific Cod in the Western Regulatory Area of the Gulf of Alaska... projected unused amount of Pacific cod from catcher vessels using trawl gear to vessels using jig gear in... the 2012 total allowable catch of Pacific cod to be harvested. DATES: Effective September 1,...

  11. 78 FR 55228 - Fisheries of the Exclusive Economic Zone Off Alaska; Reallocation of Pacific Cod in the Western...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... Economic Zone Off Alaska; Reallocation of Pacific Cod in the Western Regulatory Area of the Gulf of Alaska... projected unused amount of Pacific cod from trawl catcher/processors to catcher vessels using hook-and- line... necessary to allow the 2013 total allowable catch of Pacific cod in the Western Regulatory Area of the...

  12. Alaska K-12 & School Choice Survey: What Do Voters Say about K-12 Education? Polling Paper No. 3

    ERIC Educational Resources Information Center

    DiPerna, Paul

    2011-01-01

    The "Alaska K-12 & School Choice Survey" project, commissioned by The Friedman Foundation for Educational Choice and conducted by Braun Research Incorporated (BRI), measures Alaska registered voters' familiarity and views on a range of K-12 education issues and school choice reforms. The author and his colleagues report response…

  13. 2013 Alaska Performance Scholarship Outcomes Report

    ERIC Educational Resources Information Center

    Rae, Brian

    2013-01-01

    In accordance with Alaska statute the departments of Education & Early Development (EED) and Labor and Workforce Development (DOLWD), the University of Alaska (UA), and the Alaska Commission on Postsecondary Education (ACPE) present this second annual report on the Alaska Performance Scholarship (APS). Among the highlights: (1) In the public…

  14. Alaska High Altitude Photography Program

    NASA Technical Reports Server (NTRS)

    Petersen, Earl V.; Knutson, Martin A.; Ekstrand, Robert E.

    1986-01-01

    In 1978, the Alaska High Altitude Photography Program was initiated to obtain simultaneous black and white and color IR aerial photography of Alaska. Dual RC-10 and Zeiss camera systems were used for this program on NASA's U-2 and WB-57F, respectively. Data collection, handling, and distribution are discussed as well as general applications and the current status.

  15. The United States Geological Survey in Alaska: Accomplishments during 1979

    USGS Publications Warehouse

    Albert, Nairn R.D.; Hudson, Travis

    1981-01-01

    This circular describes the 1980 programs of the U.S. Geological Survey in Alaska. A brief description of the Alaskan operations of each major division of the Survey is followed by project descriptions arranged by geographic regions in which the work takes place. The mission of the Geological Survey is to identify the Nation 's land, water, energy, and mineral resources; to classify federally-owned mineral lands and waterpower sites; to resolve the exploration and development of energy and natural resources on Federal and Indian lands; and to explore and appraise the petroleum potential of the National Petroleum Reserve in Alaska. Alaska is at once the largest, the least populated, the least explored, and the least developed State in the Nation. More than half of the Nation 's 600 million acres of Outer Continental Shelf lies off Alaska 's coast. The land area of Alaska contains 375 million acres, 16 percent of the onshore land of the Nation. Its resources of all kinds present an opportunity to demonstrate how the needs of both conservation and development can be met for the benefit of the American people.

  16. The U.S. Geological Survey in Alaska 1980 programs

    USGS Publications Warehouse

    Reed, Katherine M.

    1980-01-01

    This circular describes the 1980 programs of the U.S. Geological Survey in Alaska. A brief description of the Alaskan operations of each major division of the Survey is followed by project descriptions arranged by geographic regions in which the work takes place. The mission of the Geological Survey is to identify the Nation 's land, water, energy, and mineral resources; to classify federally-owned mineral lands and waterpower sites; to resolve the exploration and development of energy and natural resources on Federal and Indian lands; and to explore and appraise the petroleum potential of the National Petroleum Reserve in Alaska. Alaska is at once the largest, the least populated, the least explored, and the least developed State in the Nation. More than half of the Nation 's 600 million acres of Outer Continental Shelf lies off Alaska 's coast. The land area of Alaska contains 375 million acres, 16 percent of the onshore land of the Nation. Its resources of all kinds present an opportunity to demonstrate how the needs of both conservation and development can be met for the benefit of the American people. (USGS)

  17. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2012-12-01

    Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native

  18. Geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    USGS Publications Warehouse

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    2015-01-01

    The boundaries separating the Alaska Peninsula terrane from other terranes are commonly indistinct or poorly defined. A few boundaries have been defined at major faults, although the extensions of these faults are speculative through some areas. The west side of the Alaska Peninsula terrane is overlapped by Tertiary sedimentary and volcanic rocks and Quaternary deposits.

  19. Relationships between the health of Alaska Native communities and our environment -- phase 1, exploring and communicating

    USGS Publications Warehouse

    Smith, Durelle

    2013-01-01

    Alaska Natives depend on local natural resources for nutritional and, for many, spiritual health. As a result, public health in Alaska is strongly influenced by the relationship between people and their surrounding physical, chemical, and biological environments. Alaska is vast with diverse wildlife and plant communities that are valued as subsistence foods (fig. 1). These resources are supported by equally diverse ecosystems and their underpinning landforms and geologies. The U.S. Geological Survey (USGS) is attempting to integrate physical, chemical, and biological information to better describe current (2013) environments and project scenarios for the future. Integrating ecological data into the public health dialogue is challenging for the more than 280 rural communities of Alaska. This fact sheet reviews a recent USGS effort, the Geographic Information System (GIS) Native Health Project, to better incorporate scientific information into such dialogue.

  20. The Moon Project

    ERIC Educational Resources Information Center

    Trundle, Kathy Cabe; Willmore, Sandra; Smith, Walter S.

    2006-01-01

    What Australia, Alaska, Qatar, Indiana, and Ohio have in common is the authentic writing More Observations Of Nature (MOON) project. In this unique project, teachers from these disparate geographic locations teamed up to instruct children in grades four through eight via the internet on a nearly universally challenging subject for teachers in the…

  1. Metamorphic facies map of Alaska

    SciTech Connect

    Dusel-Bacon, C.; O-Rourke, E.F.; Reading, K.E.; Fitch, M.R.; Klute, M.A.

    1985-04-01

    A metamorphic-facies of Alaska has been compiled, following the facies-determination scheme of the Working Group for the Cartography of the Metamorphic Belts of the World. Regionally metamorphosed rocks are divided into facies series where P/T gradients are known and into facies groups where only T is known. Metamorphic rock units also are defined by known or bracketed age(s) of metamorphism. Five regional maps have been prepared at a scale of 1:1,000,000; these maps will provide the basis for a final colored version of the map at a scale of 1:2,500,000. The maps are being prepared by the US Geological Survey in cooperation with the Alaska Division of Geological and Geophysical Surveys. Precambrian metamorphism has been documented on the Seward Peninsula, in the Baird Mountains and the northeastern Kuskokwim Mountains, and in southwestern Alaska. Pre-Ordovician metamorphism affected the rocks in central Alaska and on southern Prince of Wales Island. Mid-Paleozoic metamorphism probably affected the rocks in east-central Alaska. Most of the metamorphic belts in Alaska developed during Mesozoic or early Tertiary time in conjuction with accretion of many terranes. Examples are Jurassic metamorphism in east-central Alaska, Early Cretaceous metamorphism in the southern Brooks Range and along the rim of the Yukon-Kovyukuk basin, and late Cretaceous to early Tertiary metamorphism in the central Alaska Range. Regional thermal metamorphism was associated with multiple episodes of Cretaceous plutonism in southeastern Alaska and with early Tertiary plutonism in the Chugach Mountains. Where possible, metamorphism is related to tectonism. Meeting participants are encouraged to comment on the present version of the metamorphic facies map.

  2. Technology and Engineering Advances Supporting EarthScope's Alaska Transportable Array

    NASA Astrophysics Data System (ADS)

    Miner, J.; Enders, M.; Busby, R.

    2015-12-01

    EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer of 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. Continued development of battery systems using LiFePO4 chemistries, integration of BGAN, Iridium, Cellular and VSAT technologies for real time data transfer, and modifications to electronic systems are a driving force for year two of the Alaska Transportable Array. Station deployment utilizes custom heliportable drills for sensor emplacement in remote regions. The autonomous station design evolution include hardening the sites for Arctic, sub-Arctic and Alpine conditions as well as the integration of rechargeable Lithium Iron Phosphate batteries with traditional AGM batteries We will present new design aspects, outcomes, and lessons learned from past and ongoing deployments, as well as efforts to integrate TA stations with other existing networks in Alaska including the Plate Boundary Observatory and the Alaska Volcano Observatory.

  3. Polychlorinated Biphenyls, Organochlorines & PD Risk: A Case Control Study in Alaska

    DTIC Science & Technology

    2009-05-01

    Organochlorines & PD Risk: A Case Control Study in Alaska 5b. GRANT NUMBER W81XWH-04-1-0490 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...biphenyl (PCBs) residues, organochlorine pesticides and methylmercury with PD. The hypothesis is that increased exposure to these compounds will be...Parkinson’s disease, polychlorinated biphenyl, organochlorine pesticides, methylmercury, Alaska natives, neurodegeneration 16. SECURITY

  4. Mosaicked Historic Airborne Imagery from Seward Peninsula, Alaska, Starting in the 1950's

    SciTech Connect

    Cherry, Jessica; Wirth, Lisa

    2016-12-06

    Historical airborne imagery for each Seward Peninsula NGEE Arctic site - Teller, Kougarok, Council - with multiple years for each site. This dataset includes mosaicked, geolocated and, where possible, orthorectified, historic airborne and recent satellite imagery. The older photos were sourced from USGS's Earth Explorer site and the newer, satellite imagery is from the Statewide Digital Mapping Initiative (SDMI) project managed by the Geographic Information Network of Alaska on behalf of the state of Alaska.

  5. Photogrammetrically Derived Estimates of Glacier Mass Loss in the Upper Susitna Drainage Basin, Alaska Range, Alaska

    NASA Astrophysics Data System (ADS)

    Wolken, G. J.; Whorton, E.; Murphy, N.

    2014-12-01

    Glaciers in Alaska are currently experiencing some of the highest rates of mass loss on Earth, with mass wastage rates accelerating during the last several decades. Glaciers, and other components of the hydrologic cycle, are expected to continue to change in response to anticipated future atmospheric warming, thus, affecting the quantity and timing of river runoff. This study uses sequential digital elevation model (DEM) analysis to estimate the mass loss of glaciers in the upper Susitna drainage basin, Alaska Range, for the purpose of validating model simulations of past runoff changes. We use mainly stereo optical airborne and satellite data for several epochs between 1949 and 2014, and employ traditional stereo-photogrammetric and structure from motion processing techniques to derive DEMs of the upper Susitna basin glaciers. This work aims to improve the record of glacier change in the central Alaska Range, and serves as a critical validation dataset for a hydrological model that simulates the potential effects of future glacier mass loss on changes in river runoff over the lifespan of the proposed Susitna-Watana Hydroelectric Project.

  6. Alaska Interagency Ecosystem Health Work Group

    USGS Publications Warehouse

    Shasby, Mark

    2009-01-01

    The Alaska Interagency Ecosystem Health Work Group is a community of practice that recognizes the interconnections between the health of ecosystems, wildlife, and humans and meets to facilitate the exchange of ideas, data, and research opportunities. Membership includes the Alaska Native Tribal Health Consortium, U.S. Geological Survey, Alaska Department of Environmental Conservation, Alaska Department of Health and Social Services, Centers for Disease Control and Prevention, U.S. Fish and Wildlife Service, Alaska Sea Life Center, U.S. Environmental Protection Agency, and Alaska Department of Fish and Game.

  7. Summary terrane, mineral deposit, and metallogenic belt maps of the Russian Far East, Alaska, and the Canadian Cordillera

    USGS Publications Warehouse

    Nokleberg, Warren J.; West, Timothy D.; Dawson, Kenneth M.; Shpikerman, Vladimir I.; Bundtzen, Thomas K.; Parfenov, Leonid M.; Monger, James W.; Ratkin, Vladimir V.; Baranov, Boris V.; Byalobzhesky, Stanislauv G.; Diggles, Michael F.; Eremin, Roman A.; Fujita, Kazuya; Gordey, Steven P.; Gorodinskiy, Mary E.; Goryachev, Nikolai A.; Feeney, Tracey D.; Frolov, Yuri F.; Grantz, Arthur; Khanchuk, Alexander I.; Koch, Richard D.; Natal'in, Boris A.; Natapov, Lev M.; Norton, Ian O.; Patton, William W.; Plafker, George; Pozdeev, Anany I.; Rozenblum, Ilya S.; Scholl, David W.; Sokolov, Sergei D.; Sosunov, Gleb M.; Stone, David B.; Tabor, Rowland W.; Tsukanov, Nickolai V.; Vallier, Tracy L.

    1998-01-01

    This report is part of a project on the major mineral deposits, metallogenesis, and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. The project is to provide critical information for collaborators and customers on bedrock geology and geophysics, tectonics, major metalliferous mineral resources, metallogenic patterns, and crustal origin and evolution of mineralizing systems for the Russian Far East, Alaska, and the Canadian Cordillera.

  8. Vegetation and terrain mapping in Alaska using Landsat MSS and digital terrain data

    USGS Publications Warehouse

    Shasby, Mark; Carneggie, David M.

    1986-01-01

    During the past 5 years, the U.S. Geological Survey's (USGS) Earth Resources Observation Systems (EROS) Data Center Field Office in Anchorage, Alaska has worked cooperatively with Federal and State resource management agencies to produce land-cover and terrain maps for 245 million acres of Alaska. The need for current land-cover information in Alaska comes principally from the mandates of the Alaska National Interest Lands Conservation Act (ANILCA), December 1980, which requires major land management agencies to prepare comprehensive management plans. The land-cover mapping projects integrate digital Landsat data, terrain data, aerial photographs, and field data. The resultant land-cover and terrain maps and associated data bases are used for resource assessment, management, and planning by many Alaskan agencies including the U.S. Fish and Wildlife Service, U.S. Forest Service, Bureau of Land Management, and Alaska Department of Natural Resources. Applications addressed through use of the digital land-cover and terrain data bases range from comprehensive refuge planning to multiphased sampling procedures designed to inventory vegetation statewide. The land-cover mapping programs in Alaska demonstrate the operational utility of digital Landsat data and have resulted in a new land-cover mapping program by the USGS National Mapping Division to compile 1:250,000-scale land-cover maps in Alaska using a common statewide land-cover map legend.

  9. Pilot test of a cervical cancer prevention video developed for Alaska Native women.

    PubMed Central

    Stillwater, B; Echavarria, V A; Lanier, A P

    1995-01-01

    Cancer of the cervix is twice as likely to occur among Alaska Native women than among Caucasian women in the United State. To understand some of the factors associated with this high incidence, a random sample of 528 Alaska Native women were surveyed about their knowledge, attitudes, and behavior regarding cervical cancer and its risk factors. From the results of the Alaska Native Women's Health Project study, the need for more public education related to cervical cancer prevention was identified. A review of existing educational resources revealed that no culturally appropriate materials related to cervical cancer had been developed for Alaska Native women. To increase Native women's knowledge about cervical cancer and to motivate them to obtain annual Papanicolaou tests, a 12-minute videotape presentation was developed specifically for this population. The videotape portrayed Alaska Native women as role models from the community discussing cervical cancer and Papanicolaou tests and engaging in healthy lifestyles. The videotape was pilot tested with several groups of Alaska Native women. The women were surveyed before and after watching the video and were asked to rate the tape and make comments about it. The results of the posttest demonstrated a significant increase in the knowledge level of the participants. The videotape was well received because of its cultural sensitivity and appropriateness. On the basis of this study, the development of additional culturally appropriate educational materials related to cancer prevention of Alaska Native women is recommended. Images p213-a PMID:7631000

  10. Operation IceBridge Alaska

    NASA Astrophysics Data System (ADS)

    Larsen, C.

    2015-12-01

    The University of Alaska Fairbanks (UAF) has flown LiDAR missions for Operation IceBridge in Alaska each year since 2009, expanding upon UAF's airborne laser altimetry program which started in 1994. These observations show that Alaska's regional mass balance is -75+11/-16 Gt yr-1 (1994-2013) (Larsen et al., 2015). A surprising result is that the rate of surface mass loss observed on non-tidewater glaciers in Alaska is extremely high. At these rates, Alaska contributes ~1 mm to global sea level rise every 5 years. Given the present lack of adequate satellite resources, Operation IceBridge airborne surveys by UAF are the most effective and efficient method to monitor this region's impact on global sea level rise. Ice depth measurements using radar sounding have been part of these airborne surveys since 2012. Many of Alaska's tidewater glaciers are bedded significantly below sea level. The depth and extent of glacier beds below sea level are critical factors in the dynamics of tidewater retreat. Improved radar processing tools are being used to predict clutter using forward simulation. This is essential to properly sort out true bed returns, which are often masked or obscured by valley wall returns. This presentation will provide an overview of the program, highlighting recent findings and observations from the most recent campaigns, and focusing on techniques used for the extrapolation of surface elevation changes to regional mass balances.

  11. 77 FR 58731 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2013... Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the... and Wildlife Service (Service or we) proposes migratory bird subsistence harvest regulations in...

  12. Alaska Athabascan stellar astronomy

    NASA Astrophysics Data System (ADS)

    Cannon, Christopher M.

    2014-01-01

    Stellar astronomy is a fundamental component of Alaska Athabascan cultures that facilitates time-reckoning, navigation, weather forecasting, and cosmology. Evidence from the linguistic record suggests that a group of stars corresponding to the Big Dipper is the only widely attested constellation across the Northern Athabascan languages. However, instruction from expert Athabascan consultants shows that the correlation of these names with the Big Dipper is only partial. In Alaska Gwich'in, Ahtna, and Upper Tanana languages the Big Dipper is identified as one part of a much larger circumpolar humanoid constellation that spans more than 133 degrees across the sky. The Big Dipper is identified as a tail, while the other remaining asterisms within the humanoid constellation are named using other body part terms. The concept of a whole-sky humanoid constellation provides a single unifying system for mapping the night sky, and the reliance on body-part metaphors renders the system highly mnemonic. By recognizing one part of the constellation the stargazer is immediately able to identify the remaining parts based on an existing mental map of the human body. The circumpolar position of a whole-sky constellation yields a highly functional system that facilitates both navigation and time-reckoning in the subarctic. Northern Athabascan astronomy is not only much richer than previously described; it also provides evidence for a completely novel and previously undocumented way of conceptualizing the sky---one that is unique to the subarctic and uniquely adapted to northern cultures. The concept of a large humanoid constellation may be widespread across the entire subarctic and have great antiquity. In addition, the use of cognate body part terms describing asterisms within humanoid constellations is similarly found in Navajo, suggesting a common ancestor from which Northern and Southern Athabascan stellar naming strategies derived.

  13. The United States Geological Survey in Alaska; accomplishments during 1976

    USGS Publications Warehouse

    Blean, Kathleen M.

    1977-01-01

    United States Geological Survey projects in Alaska include a wide range of topics of economic and scientific interest. Studies in 1976 include economic geology, regional geology, stratigraphy, environmental geology, engineering geology, hydrology, and marine geology. Discussions of the findings or, in some instances, narratives of the course of the investigations are grouped in eight subdivisions corresponding to the six major onshore geographic regions, the offshore projects, and projects that are statewide in scope. Locations of the study areas are shown. In addition, many reports and maps covering various aspects of the geology and mineral and water resources of the State were published. These publications are listed. (Woodard-USGS)

  14. 75 FR 42742 - Alaska Village Electric Cooperative; Notice of Environmental Site Review and Scoping Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... Project. c. Location: On Mountain Creek, near the town of Old Harbor, Kodiak Island Borough, Alaska. d... to 18 CFR 5.6 of the Commission's regulations. The PAD described the proposed project location, facilities, and operations and included information on the existing environment and any known and...

  15. Seismicity trends and potential for large earthquakes in the Alaska-Aleutian region

    USGS Publications Warehouse

    Bufe, C.G.; Nishenko, S.P.; Varnes, D.J.

    1994-01-01

    The high likelihood of a gap-filling thrust earthquake in the Alaska subduction zone within this decade is indicated by two independent methods: analysis of historic earthquake recurrence data and time-to-failure analysis applied to recent decades of instrumental data. Recent (May 1993) earthquake activity in the Shumagin Islands gap is consistent with previous projections of increases in seismic release, indicating that this segment, along with the Alaska Peninsula segment, is approaching failure. Based on this pattern of accelerating seismic release, we project the occurrence of one or more M???7.3 earthquakes in the Shumagin-Alaska Peninsula region during 1994-1996. Different segments of the Alaska-Aleutian seismic zone behave differently in the decade or two preceding great earthquakes, some showing acceleration of seismic release (type "A" zones), while others show deceleration (type "D" zones). The largest Alaska-Aleutian earthquakes-in 1957, 1964, and 1965-originated in zones that exhibit type D behavior. Type A zones currently showing accelerating release are the Shumagin, Alaska Peninsula, Delarof, and Kommandorski segments. Time-to-failure analysis suggests that the large earthquakes could occur in these latter zones within the next few years. ?? 1994 Birkha??user Verlag.

  16. Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy

    SciTech Connect

    David O. Ogbe; Shirish L. Patil; Doug Reynolds

    2005-06-30

    The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

  17. Alaska GeoFORCE, A New Geologic Adventure in Alaska

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2011-12-01

    RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. A program of rigorous academic activity combines with social, cultural, and recreational activities. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. This summer RAHI is launching a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science as the hook because most kids get excited about dinosaurs, volcanoes and earthquakes, but it includes physics, chemistry, math, biology and other sciences. Students will be recruited, initially from the Arctic North Slope schools, in the 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The carrot on the end of the stick is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks, Arizona, Oregon and the Appalachians. All trips are focused on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska is being launched by UAF in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska will be managed by UAF's long-standing Rural Alaska Honors Insitute (RAHI) that has been successfully providing intense STEM educational opportunities for Alaskan high school students for almost 30 years. The Texas program, with adjustments for differences in culture and environment, will be

  18. Geospatial analysis identifies critical mineral-resource potential in Alaska

    USGS Publications Warehouse

    Karl, Susan; Labay, Keith; Jacques, Katherine; Landowski, Claire

    2017-03-03

    Alaska consists of more than 663,000 square miles (1,717,000 square kilometers) of land—more than a sixth of the total area of the United States—and large tracts of it have not been systematically studied or sampled for mineral-resource potential. Many regions of the State are known to have significant mineral-resource potential, and there are currently six operating mines in the State along with numerous active mineral exploration projects. The U.S. Geological Survey and the Alaska Division of Geological & Geophysical Surveys have developed a new geospatial tool that integrates and analyzes publicly available databases of geologic information and estimates the mineral-resource potential for critical minerals, which was recently used to evaluate Alaska. The results of the analyses highlight areas that have known mineral deposits and also reveal areas that were not previously considered to be prospective for these deposit types. These results will inform land management decisions by Federal, State, and private landholders, and will also help guide future exploration activities and scientific investigations in Alaska.

  19. Alaska Power Administration combined financial statements, schedules and supplemental reports, September 30, 1995 and 1994

    SciTech Connect

    1995-12-31

    This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s Alaska Power Administration`s (Alaska) financial statements as of September 30, 1995. The auditors have expressed an unqualified opinion on the 1995 statements. Their reports on Alaska`s internal control structure and on compliance with laws and regulations are also provided. The Alaska Power Administration operates and maintains two hydroelectric projects that include five generator units, three power tunnels and penstocks, and over 88 miles of transmission line. Additional information about Alaska Power Administration is provided in the notes to the financial statements. The 1995 financial statement audit was made under the provisions of the Inspector General Act (5 U.S.C. App.), as amended, the Chief Financial Officers (CFO) Act (31 U.S.C. 1500), and Office of Management and Budget implementing guidance to the CFO Act. The auditor`s work was conducted in accordance with generally accepted government auditing standards. To fulfill the audit responsibilities, the authors contracted with the independent public accounting firm of KPMG Peat Marwick (KPMG) to conduct the audit for us, subject to review. The auditor`s report on Alaska`s internal control structure disclosed no reportable conditions that could have a material effect on the financial statements. The auditor also considered the overview and performance measure data for completeness and material consistency with the basic financial statements, as noted in the internal control report. The auditor`s report on compliance with laws and regulations disclosed no instances of noncompliance by Alaska.

  20. Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization – Human Capacity Development

    SciTech Connect

    Wiita, Joanne

    2013-07-30

    The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members’ homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paid OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.

  1. Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska

    SciTech Connect

    Hiester, T.R.

    1980-06-01

    This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

  2. Remote sensing of global snowpack energy and mass balance: In-situ measurements on the snow of interior and Arctic Alaska

    NASA Technical Reports Server (NTRS)

    Benson, Carl S.

    1994-01-01

    This project is continuing along the lines of the semiannual report dated January 1993. Four major tasks have been addressed: analysis of variability in the seasonal snow of interior and arctic Alaska, the interpretation of microwave brightness temperature across Alaska on transects from south to north, study of nonclimatic controls which affect glaciers, and the location of glacier facies boundaries.

  3. 50 CFR 17.5 - Alaska natives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... resides in Alaska; or (2) Any non-native permanent resident of an Alaskan native village who is primarily... pursuant to paragraph (a) of this section may be sold in native villages or towns in Alaska for native consumption within native villages and towns in Alaska. (c) Non-edible by-products of endangered or...

  4. Alaska Women's Commission Regional Conferences 1986.

    ERIC Educational Resources Information Center

    Callahan, Christine

    This booklet describes the work of the Alaska Women's Commission, a state agency dedicated to the achievement of equal legal, economic, social, and political status for women in Alaska. Since its inception, the Alaska Women's Commission has provided funding for regional women's conferences in rural parts of the state. The document describes four…

  5. 75 FR 45649 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... to the Alaska Native Claims Settlement Act. The lands are in the vicinity of Holy Cross, Alaska, and... Bureau of Land Management Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior. ACTION: Notice of decision approving lands for conveyance. SUMMARY: As required by 43 CFR...

  6. Alaska Performance Scholarship Outcome Report 2015

    ERIC Educational Resources Information Center

    Rae, Brian

    2015-01-01

    The Alaska Performance Scholarship was established in state law in 2011 and first offered to Alaska high school graduates beginning with the class of 2011. Described as "an invitation to excellence" to Alaska's high school students, its goal was to inspire students to push themselves academically in areas that correlate to success in…

  7. Trends in Alaska's People and Economy.

    ERIC Educational Resources Information Center

    Leask, Linda; Killorin, Mary; Martin, Stephanie

    This booklet provides data on Alaska's population, economy, health, education, government, and natural resources, including specific information on Alaska Natives. Since 1960, Alaska's population has tripled and become more diverse, more stable, older, less likely to be male or married, and more concentrated. About 69 percent of the population…

  8. Facilitating Adaptation to Changing Storm Surge Patterns in Western Alaska.

    NASA Astrophysics Data System (ADS)

    Murphy, K. A.; Holman, A.; Reynolds, J.

    2014-12-01

    Coastal regions of North America are already experiencing the effects of climate change and the consequences of new storm patterns and sea level rise. These climate change effects are even more pronounced in western Alaska where the loss of sea ice in early winter and spring are exposing the coast to powerful winter storms that are visibly altering the landscape, putting coastal communities at risk, and are likely impacting important coastal wildlife habitat in ways we don't yet understand. The Western Alaska Landscape Conservation Cooperative has funded a suite of projects to improve the information available to assist managers and communities to adapt changes in coastal storms and their impacts. Projects range from modeling tide, wave and storm surge patters, to ShoreZone and NHD mapping, to bathymetry mapping, community vulnerability assessments and risks to important wildlife habitat. This group of diverse projects has helped stimulate momentum among partners which will lead to better tools for communities to respond to dangerous storms. For example, the State of Alaska and NOAA are working together to compile a series of community-scale maps that utilize best-available datasets to streamline communication about forecasted storm surges, local elevations and potentially impacted infrastructure during storm events that may lead to coastal flooding.

  9. Revisiting Notable Earthquakes and Seismic Patterns of the Past Decade in Alaska

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Macpherson, K. A.; Holtkamp, S. G.

    2015-12-01

    Alaska, the most seismically active region of the United States, has produced five earthquakes with magnitudes greater than seven since 2005. The 2007 M7.2 and 2013 M7.0 Andreanof Islands earthquakes were representative of the most common source of significant seismic activity in the region, the Alaska-Aleutian megathrust. The 2013 M7.5 Craig earthquake, a strike-slip event on the Queen-Charlotte fault, occurred along the transform plate boundary in southeast Alaska. The largest earthquake of the past decade, the 2014 M7.9 Little Sitkin event in the western Aleutians, occurred at an intermediate depth and ruptured along a gently dipping fault through nearly the entire thickness of the subducted Pacific plate. Along with these major earthquakes, the Alaska Earthquake Center reported over 250,000 seismic events in the state over the last decade, and its earthquake catalog surpassed 500,000 events in mid-2015. Improvements in monitoring networks and processing techniques allowed an unprecedented glimpse into earthquake patterns in Alaska. Some notable recent earthquake sequences include the 2008 Kasatochi eruption, the 2006-2008 M6+ crustal earthquakes in the central and western Aleutians, the 2010 and 2015 Bering Sea earthquakes, the 2014 Noatak swarm, and the 2014 Minto earthquake sequence. In 2013, the Earthscope USArray project made its way into Alaska. There are now almost 40 new Transportable Array stations in Alaska along with over 20 upgraded sites. This project is changing the earthquake-monitoring scene in Alaska, lowering magnitude of completeness across large, newly instrumented parts of the state.

  10. 18 CFR 157.37 - Project design.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Project design. 157.37... Seasons for Alaska Natural Gas Transportation Projects § 157.37 Project design. In reviewing any... proposed project has been designed to accommodate the needs of shippers who have made conforming...

  11. 18 CFR 157.37 - Project design.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Project design. 157.37... Seasons for Alaska Natural Gas Transportation Projects § 157.37 Project design. In reviewing any... proposed project has been designed to accommodate the needs of shippers who have made conforming...

  12. Alaska Center for Climate Assessment and Policy: Partnering with Decision-Makers in Climate Change Adaptation

    NASA Astrophysics Data System (ADS)

    White, D.; Trainor, S.; Walsh, J.; Gerlach, C.

    2008-12-01

    The Alaska Center for Climate Assessment and Policy (ACCAP; www.uaf.edu/accap) is one of several, NOAA funded, Regional Integrated Science and Policy (RISA) programs nation-wide (http://www.climate.noaa.gov/cpo_pa/risa/). Our mission is to assess the socio-economic and biophysical impacts of climate variability in Alaska, make this information available to local and regional decision-makers, and improve the ability of Alaskans to adapt to a changing climate. We partner with the University of Alaska?s Scenario Network for Alaska Planning (SNAP; http://www.snap.uaf.edu/), state and local government, state and federal agencies, industry, and non-profit organizations to communicate accurate and up-to-date climate science and assist in formulating adaptation and mitigation plans. ACCAP and SNAP scientists are members of the Governor?s Climate Change Sub-Cabinet Adaptation and Mitigation Advisory and Technical Working Groups (http://www.climatechange.alaska.gov/), and apply their scientific expertise to provide down-scaled, state-wide maps of temperature and precipitation projections for these groups. An ACCAP scientist also serves as co-chair for the Fairbanks North Star Borough Climate Change Task Force, assisting this group as they work through the five-step model for climate change planning put forward by the International Council for Local Environmental Initiatives (http://www.investfairbanks.com/Taskforces/climate.php). ACCAP scientists work closely with federal resource managers in on a range of projects including: partnering with the U.S. Fish and Wildlife Service to analyze hydrologic changes associated with climate change and related ecological impacts and wildlife management and development issues on Alaska?s North Slope; partnering with members of the Alaska Interagency Wildland Fire Coordinating Group in statistical modeling to predict seasonal wildfire activity and coordinate fire suppression resources state-wide; and working with Alaska Native Elders and

  13. The Alaska SAR processor

    NASA Technical Reports Server (NTRS)

    Carande, R. E.; Charny, B.

    1988-01-01

    The Alaska SAR processor was designed to process over 200 100 km x 100 km (Seasat like) frames per day from the raw SAR data, at a ground resolution of 30 m x 30 m from ERS-1, J-ERS-1, and Radarsat. The near real time processor is a set of custom hardware modules operating in a pipelined architecture, controlled by a general purpose computer. Input to the processor is provided from a high density digital cassette recording of the raw data stream as received by the ground station. A two pass processing is performed. During the first pass clutter-lock and auto-focus measurements are made. The second pass uses the results to accomplish final image formation which is recorded on a high density digital cassette. The processing algorithm uses fast correlation techniques for range and azimuth compression. Radiometric compensation, interpolation and deskewing is also performed by the processor. The standard product of the ASP is a high resolution four-look image, with a low resolution (100 to 200 m) many look image provided simultaneously.

  14. Alaska Pipeline Insulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Crude oil moving through the 800-mile Trans-Alaska Pipeline must be kept at a relatively high temperature, about 180 degrees Fahrenheit, to maintain the fluidity of the oil. In Arctic weather, that demands highly effective insulation. General Electric Co.'s Space Division, Valley Forge, Pennsylvania, provided it with a spinoff product called Therm-O-Trol. Shown being installed on the pipeline, Therm-O-Trol is a metal-bonded polyurethane foam especially formulated for Arctic insulation. A second GE spinoff product, Therm-O-Case, solved a related problem involved in bringing hot crude oil from 2,000-foot-deep wells to the surface without transferring oil heat to the surrounding permafrost soil; heat transfer could melt the frozen terrain and cause dislocations that might destroy expensive well casings. Therm-O-Case is a double-walled oil well casing with multi-layered insulation which provides an effective barrier to heat transfer. Therm-O-Trol and Therm-O-Case are members of a family of insulating products which stemmed from technology developed by GE Space Division in heat transferlthermal control work on Gemini, Apollo and other NASA programs.

  15. Alexander Archipelago, Southeastern Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    West of British Columbia, Canada, and south of the Yukon Territory, the southeastern coastline of Alaska trails off into the islands of the Alexander Archipelago. The area is rugged and contains many long, U-shaped, glaciated valleys, many of which terminate at tidewater. The Alexander Archipelago is home to Glacier Bay National Park. The large bay that has two forks on its northern end is Glacier Bay itself. The eastern fork is Muir inlet, into which runs the Muir glacier, named for the famous Scottish-born naturalist John Muir. Glacier Bay opens up into the Icy Strait. The large, solid white area to the west is Brady Icefield, which terminates at the southern end in Brady's Glacier. To locate more interesting features from Glacier Bay National Park, take a look at the park service map. As recently as two hundred years ago, a massive ice field extended into Icy Strait and filled the Glacier Bay. Since that time, the area has experienced rapid deglaciation, with many large glaciers retreating 40, 60, even 80 km. While temperatures have increased in the region, it is still unclear whether the rapid recession is part of the natural cycle of tidewater glaciers or is an indicator of longer-term climate change. For more on Glacier Bay and climate change, read an online paper by Dr. Dorothy Hall, a MODIS Associate Science Team Member. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  16. Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.

    SciTech Connect

    Pacific Northwest and Alaska Bioenergy Program; United States. Bonneville Power Administration.

    1994-04-01

    The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

  17. U.S. Global Climate Change Impacts Report, Alaska Region

    NASA Astrophysics Data System (ADS)

    McGuire, D.

    2009-12-01

    The assessment of the Global Climate Change Impacts in the United States includes analyses of the potential climate change impacts in Alaska. The resulting findings are discussed in this presentation, with the effects on water resources discussed separately. Major findings include: Summers are getting hotter and drier, with increasing evaporation outpacing increased precipitation. Climate changes are already affecting water, energy, transportation, agriculture, ecosystems, and health. These impacts are different from region to region and will grow under projected climate change. Wildfires and insect problems are increasing. Climate plays a key role in determining the extent and severity of insect outbreaks and wildfire. The area burned in North America’s northern forest that spans Alaska and Canada tripled from the 1960s to the 1990s. During the 1990s, south-central Alaska experienced the largest outbreak of spruce bark beetles in the world because of warmer weather in all seasons of the year. Under changing climate conditions, the average area burned per year in Alaska is projected to double by the middle of this century10. By the end of this century, area burned by fire is projected to triple under a moderate greenhouse gas emissions scenario and to quadruple under a higher emissions scenario. Close-bodied lakes are declining in area. A continued decline in the area of surface water would present challenges for the management of natural resources and ecosystems on National Wildlife Refuges in Alaska. These refuges, which cover over 77 million acres (21 percent of Alaska) and comprise 81 percent of the U.S. National Wildlife Refuge System, provide a breeding habitat for millions of waterfowl and shorebirds that winter in the lower 48 states. Permafrost thawing will damage public and private infrastructure. Land subsidence (sinking) associated with the thawing of permafrost presents substantial challenges to engineers attempting to preserve infrastructure in

  18. Alaska volcanoes guidebook for teachers

    USGS Publications Warehouse

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  19. Alaska Resource Data File, Talkeetna Mountains quadrangle, Alaska

    USGS Publications Warehouse

    Rogers, Robert K.; Schmidt, Jeanine M.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  20. Alaska Resource Data File, McCarthy quadrangle, Alaska

    USGS Publications Warehouse

    Hudson, Travis L.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  1. Alaska, Naturally Occurring Asbestos: Experiences, Policy and 2012 Limitation of Liability Legislation

    NASA Astrophysics Data System (ADS)

    Hargesheimer, J.; Perkins, R.

    2012-12-01

    Naturally Occurring Asbestos (NOA) occurs in mineral deposits in Alaska. There are many regions in Alaska that have minerals in surface rocks that may contain asbestos and asbestos has been discovered in many locations in Alaska. Gravel is constantly in demand for heavy construction projects, but some remote localities in Alaska do not have gravel sources that are NOA-free. Determining if NOA can be safely used in heavy construction materials and what can or should be done with NOA materials that are already in place are complex questions. Answers will depend on the amount and type of asbestos mineral, how it is handled in processing, and how it is maintained - all subject to regulation and control of operations. The State of Alaska recently enacted legislation (HB 258) providing, among other things, "… immunity for the state and for landowners, extractors, suppliers, transporters, and contractors for certain actions or claims arising in connection with the use of gravel or aggregate material containing naturally occurring asbestos in certain areas." Implementation of the law and interim regulations and guidance should enable use of NOA for heavy construction materials in Alaska, but as with any new law, it will take some time to understand its full scope and effect.

  2. Teshekpuk Lake, Alaska

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This ASTER image of Teshekpuk Lake on Alaska's North Slope, within the National Petroleum Reserve, was acquired on August 15, 2000. It covers an area of 58.7 x 89.9 km, and is centered near 70.4 degrees north latitude, 153 degrees west longitude.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 58.7 by 89.9 kilometers (36.4 by 55.7 miles) Location: 70.4 degrees North latitude, 153 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: ASTER 30 meters (98.4 feet) Dates Acquired: August 15, 2000

  3. Dental caries in rural Alaska Native children--Alaska, 2008.

    PubMed

    2011-09-23

    In April 2008, the Arctic Investigations Program (AIP) of CDC was informed by the Alaska Department of Health and Social Services (DHSS) of a large number of Alaska Native (AN) children living in a remote region of Alaska who required full mouth dental rehabilitations (FMDRs), including extractions and/or restorations of multiple carious teeth performed under general anesthesia. In this remote region, approximately 400 FMDRs were performed in AN children aged <6 years in 2007; the region has approximately 600 births per year. Dental caries can cause pain, which can affect children's normal growth and development. AIP and Alaska DHSS conducted an investigation of dental caries and associated risk factors among children in the remote region. A convenience sample of children aged 4-15 years in five villages (two with fluoridated water and three without) was examined to estimate dental caries prevalence and severity. Risk factor information was obtained by interviewing parents. Among children aged 4-5 years and 12-15 years who were evaluated, 87% and 91%, respectively, had dental caries, compared with 35% and 51% of U.S. children in those age groups. Among children from the Alaska villages, those aged 4-5 years had a mean of 7.3 dental caries, and those aged 12-15 years had a mean of 5.0, compared with 1.6 and 1.8 dental caries in same-aged U.S. children. Of the multiple factors assessed, lack of water fluoridation and soda pop consumption were significantly associated with dental caries severity. Collaborations between tribal, state, and federal agencies to provide effective preventive interventions, such as water fluoridation of villages with suitable water systems and provision of fluoride varnishes, should be encouraged.

  4. Adventures in the Alaska Economy.

    ERIC Educational Resources Information Center

    Jackstadt, Steve; Huskey, Lee

    This publication was developed to increase students' understanding of basic economic concepts and the historical development of Alaska's economy. Comics depict major historical events as they occurred, but specific characters are fictionalized. Each of nine episodes is accompanied by several pages of explanatory text, which enlarges on the episode…

  5. Survey of Alaska Information Systems.

    ERIC Educational Resources Information Center

    Allen, Anda; Sokolov, Barbara J.

    This survey by the Arctic Environmental Information and Data Center at the University of Alaska identifies and describes information and data collections within Alaskan libraries and agency offices which pertain to fish and wildlife or their habitat. Included in the survey are descriptions of the location, characteristics, and availability of…

  6. Licensed Optometrists in Alaska 1973.

    ERIC Educational Resources Information Center

    Health Resources Administration (DHEW/PHS), Bethesda, MD. Div. of Manpower Intelligence.

    This report presents preliminary findings from a mail survey of all optometrists licensed to practice in the State of Alaska. The survey was conducted in 1973 by the International Association of Boards of Examiners in Optometry as part of a national endeavor to collect data on all optometrists in the United States. Since there was a 100 percent…

  7. Legal Guide for Alaska Youth.

    ERIC Educational Resources Information Center

    Nesbitt, Buell, Ed.; And Others

    This legal guide, developed by the Alaska Congress of Parents and Teachers, is intended for young citizens and parents to advise youth of their civil rights and explain what constitutes a criminal offense. The aim is to objectively state the law in understandable terms. The book is arranged in four sections. Section one explains the legal rights…

  8. Tuberculosis among Children in Alaska.

    ERIC Educational Resources Information Center

    Gessner, Bradford D.

    1997-01-01

    The incidence of tuberculosis among Alaskan children under 15 was more than twice the national rate, with Alaska Native children showing a much higher incidence. Children with household exposure to adults with active tuberculosis had a high risk of infection. About 22 percent of pediatric tuberculosis cases were identified through school…

  9. Antidote: Civic Responsibility. Alaska Law.

    ERIC Educational Resources Information Center

    Phi Alpha Delta Law Fraternity International, Washington, DC.

    Designed for middle school through high school students, this unit contains eight lesson plans that focus on Alaska state law. The state lessons correspond to lessons in the volume, "Antidote: Civic Responsibility. Drug Avoidance Lessons for Middle School & High School Students." Developed to be presented by educators, law student,…

  10. Minority Women's Health: American Indians/Alaska Natives

    MedlinePlus

    ... Minority Women's Health > American Indians/Alaska Natives Minority Women's Health American Indians/Alaska Natives Related information How ... conditions common in American Indian and Alaska Native women Accidents Alcoholism and drug abuse Breast cancer Cancer ...

  11. Chronic Liver Disease and American Indians/Alaska Natives

    MedlinePlus

    ... American Indian/Alaska Native > Chronic Liver Disease Chronic Liver Disease and American Indians/Alaska Natives Among American Indians and Alaska Natives, chronic liver disease is a leading cause of death. While ...

  12. Stroke Mortality Among Alaska Native People

    PubMed Central

    Horner, Ronnie D.; Day, Gretchen M.; Lanier, Anne P.; Provost, Ellen M.; Hamel, Rebecca D.

    2009-01-01

    Objectives. We aimed to describe the epidemiology of stroke among Alaska Natives, which is essential for designing effective stroke prevention and intervention efforts for this population. Methods. We conducted an analysis of death certificate data for the state of Alaska for the period 1984 to 2003, comparing age-standardized stroke mortality rates among Alaska Natives residing in Alaska vs US Whites by age category, gender, stroke type, and time. Results. Compared with US Whites, Alaska Natives had significantly elevated stroke mortality from 1994 to 2003 but not from 1984 to 1993. Alaska Native women of all age groups and Alaska Native men younger than 45 years of age had the highest risk, although the rates for those younger than 65 years were statistically imprecise. Over the 20-year study period, the stroke mortality rate was stable for Alaska Natives but declined for US Whites. Conclusions. Stroke mortality is higher among Alaska Natives, especially women, than among US Whites. Over the past 20 years, there has not been a significant decline in stroke mortality among Alaska Natives. PMID:19762671

  13. Ocean acidification risk assessment for Alaska's fishery sector

    NASA Astrophysics Data System (ADS)

    Mathis, J. T.; Cooley, S. R.; Lucey, N.; Colt, S.; Ekstrom, J.; Hurst, T.; Hauri, C.; Evans, W.; Cross, J. N.; Feely, R. A.

    2015-08-01

    The highly productive fisheries of Alaska are located in seas projected to experience strong global change, including rapid transitions in temperature and ocean acidification-driven changes in pH and other chemical parameters. Many of the marine organisms that are most intensely affected by ocean acidification (OA) contribute substantially to the state's commercial fisheries and traditional subsistence way of life. Prior studies of OA's potential impacts on human communities have focused only on possible direct economic losses from specific scenarios of human dependence on commercial harvests and damages to marine species. However, other economic and social impacts, such as changes in food security or livelihoods, are also likely to result from climate change. This study evaluates patterns of dependence on marine resources within Alaska that could be negatively impacted by OA and current community characteristics to assess the potential risk to the fishery sector from OA. Here, we used a risk assessment framework based on one developed by the Intergovernmental Panel on Climate Change to analyze earth-system global ocean model hindcasts and projections of ocean chemistry, fisheries harvest data, and demographic information. The fisheries examined were: shellfish, salmon and other finfish. The final index incorporates all of these data to compare overall risk among Alaska's federally designated census areas. The analysis showed that regions in southeast and southwest Alaska that are highly reliant on fishery harvests and have relatively lower incomes and employment alternatives likely face the highest risk from OA. Although this study is an intermediate step toward our full understanding, the results presented here show that OA merits consideration in policy planning, as it may represent another challenge to Alaskan communities, some of which are already under acute socio-economic strains.

  14. Sampson v. state of Alaska: in the Supreme Court of the state of Alaska.

    PubMed

    Bostrom, B A

    2001-01-01

    HELD: The Alaska Constitution's guarantees of privacy and liberty do not afford terminally ill persons the right to a physician's assistance in committing suicide and Alaska's statute prohibiting suicide assistance does not violate their right of equal protection.

  15. Tectonic setting and metallogenesis of volcanogenic massive sulfide deposits in the Bonnifield Mining District, Northern Alaska Range: Chapter B in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Aleinikoff, John N.; Premo, Wayne R.; Paradis, Suzanne; Lohr-Schmidt, Ilana; Gough, Larry P.; Day, Warren C.

    2007-01-01

    This paper summarizes the results of field and laboratory investigations, including whole-rock geochemistry and radiogenic isotopes, of outcrop and drill core samples from volcanogenic massive sulfide (VMS) deposits and associated metaigneous rocks in the Wood River area of the Bonnifield mining district, northern Alaska Range (see fig. 1 of Editors’ Preface and Overview). U-Pb zircon igneous crystallization ages from felsic rocks indicate a prolonged period of Late Devonian to Early Mississippian (373±3 to 357±4 million years before present, or Ma) magmatism. This magmatism occurred in a basinal setting along the ancient Pacific margin of North America. The siliceous and carbonaceous compositions of metasedimentary rocks, Precambrian model ages based on U-Pb dating of zircon and neodymium ages, and for some units, radiogenic neodymium isotopic compositions and whole-rock trace-element ratios similar to those of continental crust are evidence for this setting. Red Mountain (also known as Dry Creek) and WTF, two of the largest VMS deposits, are hosted in peralkaline metarhyolite of the Mystic Creek Member of the Totatlanika Schist. The Mystic Creek Member is distinctive in having high concentrations of high-field-strength elements (HFSE) and rare-earth elements (REE), indicative of formation in a within-plate (extensional) setting. Mystic Creek metarhyolite is associated with alkalic, within-plate basalt of the Chute Creek Member; neodymium isotopic data indicate an enriched mantle component for both members of this bimodal (rhyolite-basalt) suite. Anderson Mountain, the other significant VMS deposit, is hosted by the Wood River assemblage. Metaigneous rocks in the Wood River assemblage span a wide compositional range, including andesitic rocks, which are characteristic of arc volcanism. Our data suggest that the Mystic Creek Member likely formed in an extensional, back-arc basin that was associated with an outboard continental-margin volcanic arc that included

  16. Sensor emplacement testing at Poker Flat, Alaska

    NASA Astrophysics Data System (ADS)

    Reusch, A.; Beaudoin, B. C.; Anderson, K. E.; Azevedo, S.; Carothers, L.; Love, M.; Miller, P. E.; Parker, T.; Pfeifer, M.; Slad, G.; Thomas, D.; Aderhold, K.

    2013-12-01

    PASSCAL provides equipment and support for temporary seismic projects. Speed and efficiency of deployments are essential. A revised emplacement technique of putting broadband sensors directly into soil (aka direct burial) is being tested. The first phase (fall 2011 to spring 2013) comparing data quality and sensor stability between the direct burial and the traditional 1 m deep temporary PASSCAL-style vault in a wet and noisy site near San Antonio, NM is complete. Results suggest there is little or no difference in sensor performance in the relatively high-noise environment of this initial test. The second phase was started in November 2012 with the goal of making the same comparison, but at Poker Flat, Alaska, in a low-noise, high-signal, cold and wet environment, alongside a Transportable Array (TA) deployment to be used as a performance control. This location is in an accessible and secure area with very low site noise. In addition to benefiting future worldwide PASSCAL deployments, the Poker Flat experiment serves a secondary purpose of testing modifications necessary to successfully deploy and recover broadband stations in a cold environment with the limited logistics anticipated for remote Flexible Array (FA) and PASSCAL Program deployments in Alaska. Developing emplacement techniques that maintain high data quality and data return while minimizing logistics is critical to enable principle investigators to effectively and efficiently co-locate within the future TA Alaska footprint. Three Nanometrics sensors were installed in November 2012 in power-augered holes 76 cm in depth: a Trillium Compact Posthole (PH) and two Trillium 120PH units (one standard PH and one enhanced PHQ). The installations took less than 8 hours in -30°C conditions with 4 hours of usable daylight. The Compact PH and the 120PHQ are delivering data in realtime, while the 120PH is testing standalone power and data collection systems. Preliminary results compare favorably to each other as

  17. Time-slice maps showing age, distribution, and style of deformation in Alaska north of 60° N.

    USGS Publications Warehouse

    Moore, Thomas E.; Box, Stephen E.

    2016-08-29

    The structural architecture of Alaska is the product of a complex history of tectonism that occurred along the Cordilleran and Arctic margins of North America through interactions with ancient and modern ocean plates and with continental elements derived from Laurentia, Siberia, and Baltica. To unravel the tectonic history of Alaska, we constructed maps showing the age, distribution, structural style, and kinematics of contractional and penetrative extensional deformation in Alaska north of latitude 60° N. at a scale of 1:5,000,000. These maps use the Geologic Map of the Arctic (Harrison and others, 2011) as a base map and follow the guidelines in the Tectonic Map of the Arctic project (Petrov and others, 2013) for construction, including use of the International Commission on Stratigraphy time scale (Cohen and others, 2013) divided into 20 time intervals. We find evidence for deformation in 14 of the 20 time intervals and present maps showing the known or probable extent of deformation for each time interval. Maps and descriptions of deformational style, age constraints, kinematics, and information sources for each deformational episode are discussed in the text and are reported in tabular form. This report also contains maps showing the lithologies and structural geology of Alaska, a terrane map, and the distribution of tectonically important units including post-tectonic sedimentary basins, accretionary complexes, ophiolites, metamorphic rocks.These new maps show that most deformational belts in Alaska are relatively young features, having developed during the late Mesozoic and Cenozoic. The oldest episode of deformation recognized anywhere in Alaska is found in the basement of the Farewell terrane (~1.75 Ga). Paleozoic and early Mesozoic deformational events, including Devonian deformation in the Arctic Alaska terrane, Pennsylvanian deformation in the Alexander terrane, Permian deformation in the Yukon Composite (Klondike orogeny) and Farewell terranes (Browns

  18. Diagnosing the drivers of rain on snow events in Alaska using dynamical downscaling

    NASA Astrophysics Data System (ADS)

    Bieniek, P.; Bhatt, U. S.; Lader, R.; Walsh, J. E.; Rupp, S. T.

    2015-12-01

    Rain on snow (ROS) events are fairly rare in Alaska but have broad impacts ranging from economic losses to hazardous driving conditions to difficult caribou foraging due to ice formation on the snow. While rare, these events have recently increased in frequency in Alaska and may continue to increase under the projected warming climate. Dynamically downscaled data are now available for Alaska based on historical reanalysis for 1979-2013, while CMIP5 historical and future scenario downscaling are in progress. These new data offer a detailed, gridded product of rain and snowfall not previously possible in the spatially and temporally coarser reanalysis and GCM output currently available. Preliminary analysis shows that the dynamical downscaled data can identify extreme ROS events in Interior Alaska. The ROS events in the dynamically downscaled data are analyzed against observations and the ERA-Interim reanalysis data used to force the historical downscaling simulations. Additionally, the synoptic atmospheric circulations conditions that correspond to major ROS events in various regions of Alaska are identified with Self-Organizing Map (SOM) analysis. Such analysis is beneficial for operational forecasters with the National Weather Service and for diagnosing the mechanisms of change in future climate projections.

  19. Wildlife, Snow, Coffee, and Video: The IPY Activities of the University of Alaska Young Researchers' Network

    NASA Astrophysics Data System (ADS)

    Pringle, D.; Alvarez-Aviles, L.; Carlson, D.; Harbeck, J.; Druckenmiller, M.; Newman, K.; Mueller, D.; Petrich, C.; Roberts, A.; Wang, Y.

    2007-12-01

    The University of Alaska International Polar Year (IPY) Young Researchers' Network is a group of graduate students and postdoctoral fellows. Our interdisciplinary group operates as a volunteer network to promote the International Polar Year through education and outreach aimed at the general public and Alaskan students of all ages. The Young Researchers' Network sponsors and organizes science talks or Science Cafés by guest speakers in public venues such as coffee shops and bookstores. We actively engage high school students in IPY research concerning the ionic concentrations and isotopic ratios of precipitation through Project Snowball. Our network provides hands-on science activities to encourage environmental awareness and initiate community wildlife monitoring programs such as Wildlife Day by Day. We mentor individual high school students pursuing their own research projects related to IPY through the Alaska High School Science Symposium. Our group also interacts with the general public at community events and festivals to share the excitement of IPY for example at the World Ice Art Championship and Alaska State Fair. The UA IPY Young Researchers' Network continues to explore new partnerships with educators and students in an effort to enhance science and education related to Alaska and the polar regions in general. For more information please visit: http://ipy-youth.uaf.edu or e-mail: ipy-youth@alaska.edu

  20. Geology and origin of epigenetic lode gold deposits, Tintina Gold Province, Alaska and Yukon: Chapter A in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    Goldfarb, Richard J.; Marsh, Erin E.; Hart, Craig J.R.; Mair, John L.; Miller, Marti L.; Johnson, Craig; Gough, Larry P.; Day, Warren C.

    2007-01-01

    -rich and 18O-rich crustal fluids, most commonly of low salinity. The older group of ores includes the low-grade intrusion-related gold systems at Fort Knox near Fairbanks and those in Yukon, with fluids exsolved from fractionating melts at depths of 3 to 9 kilometers and forming a zoned sequence of auriferous mineralization styles extending outward to the surrounding metasedimentary country rocks. The causative plutons are products of potassic mafic magmas generated in the subcontinental lithospheric mantle that interacted with overlying lower to middle crust to generate the more felsic ore-related intrusions. In addition, the older ores include spatially associated, high-grade, shear-zonerelated orogenic gold deposits formed at the same depths from upward-migrating metamorphic fluids; the Pogo deposit is a relatively deep-seated example of such. The younger gold ores, restricted to southwestern Alaska, formed in unmetamorphosed sedimentary rocks of the Kuskokwim basin within 1 to 2 kilometers of the surface. Most of these deposits formed via fluid exsolution from shallowly emplaced, highly evolved igneous complexes generated mainly as mantle melts. However, the giant Donlin Creek orogenic gold deposit is a product of either metamorphic devolatilization deep in the basin or of a gold-bearing fluid released from a flysch-melt igneous body.

  1. Fisheries Education in Alaska. Conference Report. Alaska Sea Grant Report 82-4.

    ERIC Educational Resources Information Center

    Smoker, William W., Ed.

    This conference was an attempt to have the fishing industry join the state of Alaska in building fisheries education programs. Topics addressed in papers presented at the conference include: (1) fisheries as a part of life in Alaska, addressing participation of Alaska natives in commercial fisheries and national efforts; (2) the international…

  2. Selected 1970 Census Data for Alaska Communities. Part 2 - Northwest Alaska.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Community and Regional Affairs, Juneau. Div. of Community Planning.

    As 1 of 6 regional reports supplying statistical information on Alaska's incorporated and unincorporated communities (those of 25 or more people), this report on Northwest Alaska presents data derived from the 1970 U.S. Census first-count microfilm. Organized via the 3 Northwest Alaska census division, data are presented for the 32 communities of…

  3. 78 FR 53137 - Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., Conoco... Pipeline Proceedings, 18 CFR 343.2 (2013), Flint Hills Resources Alaska, LLC (FHR or Complainant) filed...

  4. 76 FR 68263 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... Department of the Interior Fish and Wildlife Service 50 CFR Part 92 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2012 Season; Proposed Rule #0;#0...-1231-9BPP-L2] RIN 1018-AX55 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations...

  5. 78 FR 11988 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... Fish and Wildlife Service 50 CFR Part 92 RIN 1018-AY70 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2013 Season AGENCY: Fish and Wildlife Service... migratory bird subsistence harvest regulations in Alaska for the 2013 season. These regulations enable...

  6. 77 FR 17353 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... Fish and Wildlife Service 50 CFR Part 92 RIN 1018-AX55 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2012 Season AGENCY: Fish and Wildlife Service... migratory bird subsistence harvest regulations in Alaska for the 2012 season. These regulations will...

  7. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... AGENCY 40 CFR Parts 239 and 258 Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit... proposes to approve Alaska's modification of its approved Municipal Solid Waste Landfill (MSWLF) permit... Domenic Calabro, Office of Air, Waste, and Toxics, U.S. EPA, Region 10, 1200 Sixth Avenue, Suite...

  8. Alaska Native Elders' Contribution to Education: The Fairbanks AISES Science Camp.

    ERIC Educational Resources Information Center

    Bradley, Claudette; Reyes, Maria Elena

    The Fairbanks American Indian Science and Engineering Society (AISES) Science Camp was designed for Alaska Native middle school students from 11 school districts. The camp enables students to learn from Native Elders while completing hands-on science projects; stimulates interest and confidence in mathematics, science, and engineering among Alaska…

  9. Geochemistry and geophysics field maps used during the USGS 2011 field season in southwest Alaska

    USGS Publications Warehouse

    Giles, Stuart A.

    2013-01-01

    The US Geological Survey (USGS) has been studying a variety of geochemical and geophyscial assessment techniques for concealed mineral deposits. The 2011 field season for this project took place in southwest Alaska, northeast of Bristol Bay between Dillingham and Iliamna Lake. Four maps were created for the geochemistry and geophysics teams to use during field activities.

  10. Cold Climate Gardening and Root Cellaring in Alaska: An Instructional Guide. Agricultural Education Publication No. 3.

    ERIC Educational Resources Information Center

    Weston, Shann C.; Kirts, Carla A.

    This instructor's guide contains three units for teaching gardening and root cellaring in Alaska. The units are intended to be used in long-term gardening projects so students can learn fundamental principles and techniques and apply them to a gardening situation. Each unit contains an overview that provides a basic framework for understanding the…

  11. Telemedicine in Alaska: The ATS-6 Satellite Biomedical Demonstration. Final Report.

    ERIC Educational Resources Information Center

    Foote, Dennis; And Others

    A demonstration project explored the potential of satellite video consulation to improve the quality of rural health care in Alaska. Satellite ground stations permitting both transmission and reception of black and white television were installed at clinics in Fairbanks, Fort Yukon, Galena, and Tanana. Receive-only television capability was…

  12. Building Healthy Hearts for American Indians and Alaska Natives: A Background Report.

    ERIC Educational Resources Information Center

    Lising, Mimi

    In keeping with its priority to reduce the disproportionate burden of heart, lung, and blood diseases in minority populations, the National Heart, Lung, and Blood Institute has established an outreach project called Building Healthy Hearts for American Indians and Alaska Natives. This background report provides an overview of the cardiovascular…

  13. Map and table showing isotopic age data in Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Shew, Nora B.; DuBois, G.D.

    1994-01-01

    wrong Given that the basic Conditions of each dating method were met, each method determines an age based on the equilibration of its particular isotopic system, yet these are different systems and they react to heat, pressure, and recrystallization in different ways.This map is a compilation and not a synthesis or interpretation. Its purpose is to help the user determine the dating coverage of areas of Alaska and gain access to the available data for the state or a project area. Interpretation of that data and evaluation of its suitability for use with any particular project is left to the user. Compilations, with sample data, have been published for much of the state; and are as follows: Wilson, and others (1979), southeastern Alaska; Wilson (1981), Aleutian Islands and Alaska Peninsula, Shew and Wilson (1981), southwestern Alaska; Wilson and others (1985), Yukon Crystalline terrane; Grybeck and others (1977), northern Alaska; Dadisman (1980), south-central Alaska.

  14. The Black Mountain tectonic zone--a reactivated northeast-trending crustal shear zone in the Yukon-Tanana Upland of east-central Alaska: Chapter D in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    O'Neill, J. Michael; Day, Warren C.; Alienikoff, John N.; Saltus, Richard W.; Gough, Larry P.; Day, Warren C.

    2007-01-01

    The Black Mountain tectonic zone in the YukonTanana terrane of east-central Alaska is a belt of diverse northeast-trending geologic features that can been traced across Black Mountain in the southeast corner of the Big Delta 1°×3° degree quadrangle. Geologic mapping in the larger scale B1 quadrangle of the Big Delta quadrangle, in which Black Mountain is the principal physiographic feature, has revealed a continuous zone of normal and left-lateral strikeslip high-angle faults and shear zones, some of which have late Tertiary to Quaternary displacement histories. The tectonic zone includes complexly intruded wall rocks and intermingled apophyses of the contiguous mid-Cretaceous Goodpaster and Mount Harper granodioritic plutons, mafic to intermediate composite dike swarms, precious metal mineralization, early Tertiary volcanic activity and Quaternary fault scarps. These structures define a zone as much as 6 to 13 kilometers (km) wide and more than 40 km long that can be traced diagonally across the B1 quadrangle into the adjacent Eagle 1°×3° quadrangle to the east. Recurrent activity along the tectonic zone, from at least mid-Cretaceous to Quaternary, suggests the presence of a buried, fundamental tectonic feature beneath the zone that has influenced the tectonic development of this part of the Yukon-Tanana terrane. The tectonic zone, centered on Black Mountain, lies directly above a profound northeast-trending aeromagnetic anomaly between the Denali and Tintina fault systems. The anomaly separates moderate to strongly magnetic terrane on the northwest from a huge, weakly magnetic terrane on the southeast. The tectonic zone is parallel to the similarly oriented left-lateral, strike-slip Shaw Creek fault zone 85 km to the west.

  15. Unified Ecoregions of Alaska: 2001

    USGS Publications Warehouse

    Nowacki, Gregory J.; Spencer, Page; Fleming, Michael; Brock, Terry; Jorgenson, Torre

    2003-01-01

    Major ecosystems have been mapped and described for the State of Alaska and nearby areas. Ecoregion units are based on newly available datasets and field experience of ecologists, biologists, geologists and regional experts. Recently derived datasets for Alaska included climate parameters, vegetation, surficial geology and topography. Additional datasets incorporated in the mapping process were lithology, soils, permafrost, hydrography, fire regime and glaciation. Thirty two units are mapped using a combination of the approaches of Bailey (hierarchial), and Omernick (integrated). The ecoregions are grouped into two higher levels using a 'tri-archy' based on climate parameters, vegetation response and disturbance processes. The ecoregions are described with text, photos and tables on the published map.

  16. USGS releases Alaska oil assessment

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    With the U.S. Congress gearing up for a House-Senate conference committee battle about whether to open the Alaska National Wildlife Refuge (ANWR) for oil drilling, a new assessment of the amount of oil in the federal portion of the U.S. National Petroleum Reserve in Alaska (NRPA) is influencing the debate.The U.S. Geological Survey has found that the NPRA holds "significantly greater" petroleum resources than had been estimated previously This finding was disclosed in a 16 May report. The assessment estimated that technically recoverable oil on NPRA federal lands are between 5.9 and 13.2 billion barrels of oil; a 1980 assessment estimated between 0.3 and 5.4 billion barrels.

  17. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    USGS Publications Warehouse

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  18. Third International Volcanological Field School in Kamchatka and Alaska

    NASA Astrophysics Data System (ADS)

    Melnikov, D.; Eichelberger, J.; Gordeev, E.; Malcolm, J.; Shipman, J.; Izbekov, P.

    2005-12-01

    The Kamchatka State University, Institute of Volcanology and Seismology FEB RAS (Petropavlovsk-Kamchatsky, Russia) and University of Alaska Fairbanks have developed an international field school focused on explosive volcanism of the North Pacific. The concept of the field school envisages joint field studies by young Russian scientists and their peers from the United States and Japan. Beyond providing first-hand experience with some of Earth's most remarkable volcanic features, the intent is to foster greater interest in language study, cultures, and ultimately in international research collaborations. The students receive both theoretical and practical knowledge of active volcanic systems, as well experience in working productively in a harsh environment. Each year, the class is offered in both Alaska and Kamchatka. The Alaska session is held in the Valley of Ten Thousand Smokes, Katmai National Park, product of the greatest volcanic eruption of the 20th century. A highlight in 2005 was the discovery of a new 70-m crater atop Trident Volcano. Also this year, we added the Great Tolbachik Eruption of 1975-76 to the itinerary of the Kamchatka school. Day trips were conducted to summit craters of New Tolbachik volcanoes and Plosky Tolbachik, Tolbachik lava flows; fumarole fields of Mutnovsky volcano, and a geothermal area and 60 MWe power plant. Students who attended both the Alaska and Kamchatka sessions could ponder the implications of great lateral separation of active vents - 10 km at Katmai and 30 km at Tolbachik - with multiple magmas and non-eruptive caldera collapse at the associated stratocones. During the evenings and on days of bad weather, the school faculty conducted lectures on various topics of volcanology in either Russian or English, with translation. The field school is a strong stimulus for growth of young volcanologists and cooperation among Russia, USA and Japan, leading naturally to longer student exchange visits and to joint research projects.

  19. The United States Geological Survey in Alaska; organization and status of programs in 1978

    USGS Publications Warehouse

    Johnson, Kathleen M.

    1978-01-01

    United States Geological Survey projects in Alaska study a wide range of topics of economic and scientific interest. Work done in 1977 includes contributions to economic geology, regional geology, stratigraphy, engineering geology, hydrology, and marine geology. Many maps and reports covering various aspects of the geology and mineral and water resources of the State were published. In addition, the published 1:1,000,000-scale map of the State has been revised in two areas. A bibliography containing 263 reports on Alaska published in 1977 is included. (Woodard-USGS)

  20. Alaska Natives and Alaska Higher Education, 1960-1972: A Descriptive Study. Alaska Native Human Resources Development Program, Publication 1.

    ERIC Educational Resources Information Center

    Jacquot, Louis F.

    Utilizing data derived from numerous sources (institutions, Alaska Native organizations, Federal and State agencies, conferences, etc.), this descriptive study is divided into 6 chapters which trace the evolution of and the necessity for Alaska Native higher education. Following a detailed introduction, Chapter 2 describes the physical and…

  1. ORTHOPHOTOQUAD MAPPING PROGRAM FOR ALASKA.

    USGS Publications Warehouse

    Plasker, James R.

    1985-01-01

    The U. S. Geological Survey (USGS) is the lead civilian mapping agency in the United States and is responsible for creating and maintaining numerous map series. In Alaska the standard topographic map series is at a scale of 1:63,360, and maps at that scale have been available from the USGS since the late 1940's. In 1981 USGS initiated production of orthophotoquads of Alaska, also at a scale of 1:63,360 to be compatible with the topographic map series. An orthophotoquad (OQ) is prepared from a rectified or differentially rectified and scaled black-and-white photographic image published in quadrangle format. The current status of the Alaska OQ program is summarized and sample OQ's are illustrated. Engineering applications of orthophotoquads are discussed, with an emphasis on their use in the on-shore and near-shore areas. A combination of orthophoto imagery and topographic line maps is described as a planning and engineering tool. Sources of map separates and orthophotoquads are provided.

  2. Project summaries

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Lunar base projects, including a reconfigurable lunar cargo launcher, a thermal and micrometeorite protection system, a versatile lifting machine with robotic capabilities, a cargo transport system, the design of a road construction system for a lunar base, and the design of a device for removing lunar dust from material surfaces, are discussed. The emphasis on the Gulf of Mexico project was on the development of a computer simulation model for predicting vessel station keeping requirements. An existing code, used in predicting station keeping requirements for oil drilling platforms operating in North Shore (Alaska) waters was used as a basis for the computer simulation. Modifications were made to the existing code. The input into the model consists of satellite altimeter readings and water velocity readings from buoys stationed in the Gulf of Mexico. The satellite data consists of altimeter readings (wave height) taken during the spring of 1989. The simulation model predicts water velocity and direction, and wind velocity.

  3. Want To Work in Alaska's Schools? A Guide for Educators.

    ERIC Educational Resources Information Center

    LaBerge, MaryEllen

    This manual offers practical advice to educators on conducting a job search and obtaining a position in Alaska. Alaska Teacher Placement (University of Alaska Fairbanks) is a statewide clearinghouse for the placement of educators. Although Alaska's certification requirements are similar to those of other states, school administrators are also…

  4. 40 CFR 81.402 - Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Alaska. 81.402 Section 81.402 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF... Visibility Is an Important Value § 81.402 Alaska. Area name Acreage Public Law establishing Federal...

  5. 43 CFR 9239.3 - Grazing, Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Grazing, Alaska. 9239.3 Section 9239.3..., DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.3 Grazing, Alaska. (a) Reindeer. (1) Any use of the Federal lands for reindeer grazing purposes, unless authorized by a...

  6. Alaska School District Cost Study Update

    ERIC Educational Resources Information Center

    Tuck, Bradford H.; Berman, Matthew; Hill, Alexandra

    2005-01-01

    The Legislative Budget and Audit Committee of the Alaska Legislature has asked The Institute of Social and Economic Research (ISER) at the University of Alaska Anchorage to make certain changes and adjustments to the Geographic Cost of Education Index (GCEI) that the American Institutes for Research (AIR) constructed and reported on in Alaska…

  7. Some Books about Alaska Received in 1990.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of State Libraries.

    This annual bibliography of Alaska- and Arctic-related publications received by the Alaska Division of State Libraries is divided into three categories. There are 26 titles in the "Juvenile Fiction" section, 122 in the "Adult Non-Fiction" section, and 19 in the "Adult Fiction" section. Government publications are…

  8. 75 FR 9427 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ..., Limited. The lands are in the vicinity of Holy Cross and Huslia, Alaska, and are located in: Kateel River... Bureau of Land Management [AA-8103-63, AA-8103-65, F-21902-06, F-21903-54, F-21903-55, F-21903- 56; LLAK-96400-L14100000-KC0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management,...

  9. Alaska Performance Scholarship Outcome Report 2016

    ERIC Educational Resources Information Center

    Rae, Brian

    2016-01-01

    Five years ago Alaska's high school graduating class of 2011 became the first with the opportunity to accept the state's "invitation to excellence," the Alaska Performance Scholarship (APS), to pursue their postsecondary studies. Eligible graduates could receive up to $4,755 per year for up to four years to study at a participating…

  10. Viewpoints: Reflections on the Principalship in Alaska.

    ERIC Educational Resources Information Center

    Hagstrom, David A., Ed.

    In this collection, 32 Alaskan principals, retired principals, assistant principals, and principals-to-be share their experiences as administrators and reflect on their feelings about the nature of the work and about schooling issues in Alaska. Nine of the writings were selected from "Totem Tales," the newsletter of Alaska's Association…

  11. Alaska Native Parkinson’s Disease Registry

    DTIC Science & Technology

    2011-06-01

    Investigator Parkinsonism (PS) is a syndrome characterized by tremor , rigidity, slowness of movement, and problems with walking and balance...2. Developing an identification protocol. The primary source of parkinsonism cases will be the Indian Health Service (IHS) provider database, called...of parkinsonism among Alaska Natives. Status: Complete 3. Developing a secure Alaska Native parkinsonism registry database. Status: The database

  12. Building a Workforce Development System in Alaska

    ERIC Educational Resources Information Center

    Spieker, Sally

    2004-01-01

    The Alaska Human Resources Investment Council developed a blueprint to guide a system that is needs-driven, accessible, interconnected, accountable, sustainable, and has collaborative governance. Vocational Technical Education Providers (VTEP) representing secondary education, technical schools, proprietary institutions, the University of Alaska,…

  13. 75 FR 43199 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... approving the conveyance of surface estate for certain lands to Beaver Kwit'chin Corporation, pursuant to... Doyon, Limited when the surface estate is conveyed to Beaver Kwit'chin Corporation. The lands are in the vicinity of Beaver, Alaska, and are located in: Fairbanks Meridian, Alaska T. 16 N., R. 1 E., Secs. 1 to...

  14. Alaska interim land cover mapping program

    USGS Publications Warehouse

    ,

    1987-01-01

    In order to meet the requirements of the Alaska National Interest Lands Conservation Act (ANILCA) for comprehensive resource and management plans from all major land management agencies in Alaska, the USGS has begun a program to classify land cover for the entire State using Landsat digital data. Vegetation and land cover classifications, generated in cooperation with other agencies, currently exist for 115 million acres of Alaska. Using these as a base, the USGS has prepared a comprehensive plan for classifying the remaining areas of the State. The development of this program will lead to a complete interim vegetation and land cover classification system for Alaska and allow the dissemination of digital data for those areas classified. At completion, 153 Alaska 1:250,000-scale quadrangles will be published and will include land cover from digital Landsat classifications, statistical summaries of all land cover by township, and computer-compatible tapes. An interagency working group has established an Alaska classification system (table 1) composed of 18 classes modified from "A land use and land cover classification system for use with remote sensor data" (Anderson and others, 1976), and from "Revision of a preliminary classification system for vegetation of Alaska" (Viereck and Dyrness, 1982) for the unique ecoregions which are found in Alaska.

  15. Women's Legal Rights in Alaska. Reprint.

    ERIC Educational Resources Information Center

    Tatter, Sue Ellen; Saville, Sandra K.

    This publication is intended to help women in Alaska learn about their legal rights. Some of the information is of a general nature and will be of interest to women in other states. Some of the laws and resources are relevant to Alaska only. The publication can serve as a model to other states wanting to develop a resource to inform women about…

  16. Bill Demmert and Native Education in Alaska

    ERIC Educational Resources Information Center

    Barnhardt, Ray

    2011-01-01

    This article describes the influences of William Demmert's formative years growing up in Alaska and his years as an educator of Native American students upon his career in Native education policy. It focuses on Alaska Native education during a ten-year period between 1980 and 1990 during which time he served as the director of the Center for…

  17. Strong motions in Alaska-type subduction zone environments

    SciTech Connect

    Jacob, K.H.; Mori, J.

    1984-01-01

    Peak accelerations of Alaska-Aleutian strong motion records are compared with those collected mostly in the western US. The most prominent difference is the larger scatter of Alaskan peak accelerations. The high scatter is attributed primarily to high variability of stress drops typical for some subduction zones. For critical engineering projects that must satisfy high probabilities of non-exceedence it implies that in Alaskan-type environments higher design peak accelerations may have to be adopted than under comparable cricumstances in the western US.

  18. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and

  19. The trans-Alaska pipeline controversy: Technology, conservation, and the frontier

    SciTech Connect

    Coates, P.A.

    1991-01-01

    The Trans-Alaska Pipeline was the object of perhaps the most passionately fought conservation battle in the U.S. Although numerous authors documented the pipeline construction during its construction, there is, surprisingly, no previous scholarly treatment of this event written by an historian. Coates is an environmental historian who views the most interesting aspect of the controversy to be [open quote]its relationship to earlier engineering projects and technological innovations in Alaska and the debates that accompanied them.[close quotes] Thus, he describes how the conservationist and environmental ideas arose during numerous earlier major Alaskan projects and controversies, including the Alaska Highway (1938-41), Canol Pipeline (1943-45), exploration of Naval Petroleum Reserve Number Four (Pet 4, 1944-1953), DEWline (1953-57), oil development in the Kenai National Moose Range (1957-58), statehood (1958), the creation of the Arctic Wildlife Refuge (1960), Project Chariot (1958-63), and Rampart Dam (1959-67). The history starts with the acquisition of Alaska in 1867 and finishes about the time of the Valdez oil spill in 1989.

  20. University of Alaska Coastal Marine Institute annual report number 5, fiscal year 1998

    SciTech Connect

    Alexander, V.

    1998-12-18

    The University of Alaska Coastal Marine Institute (CMI) was created by a cooperative agreement between the University of Alaska and the Minerals Management Service (MMS) in June 1993 and the first full funding cycle began late in (federal) fiscal year 1994. CMI is pleased to present this 1998 Annual Report for studies ongoing in Oct 1997--Sep 1998. Only abstracts and study products for ongoing projects are included here. They include: An Economic Assessment of the Marine Biotechnology; Kachemak Bay Experimental and Monitoring Studies; Historical Changes in Trace Metals and Hydrocarbons in the Inner Shelf Sediments; Beaufort Sea: Prior and Subsequent to Petroleum-Related Industrial Developments; Physical-Biological Numerical Modeling on Alaskan Arctic Shelves; Defining Habitats for Juvenile Flatfishes in Southcentral Alaska; Relationship of Diet to Habitat Preferences of Juvenile Flatfishes, Phase 1; Subsistence Economies and North Slope Oil Development; Wind Field Representations and Their Effect on Shelf Circulation Models: A Case Study in the Chukchi Sea; Interaction between Marine Humic Matter and Polycyclic Aromatic Hydrocarbons in Lower Cook Inlet and Port Valdez, Alaska; Correction Factor for Ringed Seal Surveys in Northern Alaska; Feeding Ecology of Maturing Sockeye Salmon (Oncorhynchus nerka) in Nearshore Waters of the Kodiak Archipelago; and Circulation, Thermohaline Structure, and Cross-Shelf Transport in the Alaskan Beaufort Sea.

  1. A qualitative study of motivation in Alaska Native Science and Engineering Program (ANSEP) precollege students

    NASA Astrophysics Data System (ADS)

    Yatchmeneff, Michele

    The dramatic underrepresentation of Alaska Natives in science, technology, engineering and mathematics (STEM) degrees and professions calls for rigorous research in how students access these fields. Research has shown that students who complete advanced mathematics and science courses while in high school are more academically prepared to pursue and succeed in STEM degree programs and professions. There is limited research on what motivates precollege students to become more academically prepared before they graduate from high school. In Alaska, Alaska Native precollege students regularly underperform on required State of Alaska mathematics and science exams when compared to non-Alaska Native students. Research also suggests that different things may motivate Alaska Native students than racial majority students. Therefore there is a need to better understand what motivates Alaska Native students to take and successfully complete advanced mathematics and science courses while in high school so that they are academically prepared to pursue and succeed in STEM degrees and professions. The Alaska Native Science & Engineering Program (ANSEP) is a longitudinal STEM educational enrichment program that works with Alaska Native students starting in middle school through doctoral degrees and further professional endeavors. Research suggests that Alaska Native students participating in ANSEP are completing STEM degrees at higher rates than before the program was available. ANSEP appears to be unique due to its longitudinal approach and the large numbers of Alaska Native precollege, university, and graduate students it supports. ANSEP provides precollege students with opportunities to take advanced high school and college-level mathematics and science courses and complete STEM related projects. Students work and live together on campus during the program components. Student outcome data suggests that ANSEP has been successful at motivating precollege participants to

  2. Spatial distribution of thermokarst landforms across Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Farquharson, L. M.; Grosse, G.; Romanovsky, V. E.; Jones, B. M.; Arp, C. D.; McGuire, A. D.

    2013-12-01

    Arctic Alaska is characterized by widespread past and present thaw of ice rich permafrost and subsequent thermokarst development. Variations in ice content and distribution, and topography across Arctic Alaska result in thermokarst landform diversity. Thermokarst causes a number of biogeochemical and ecological shifts that include changes in soil carbon dynamics, nutrient cycling, vegetation composition, wildlife habitat, and fresh water availability. Ongoing climate change may lead to an increase in thermokarst landscape features. Thus, a better understanding of the current temporal and spatial dynamics of thermokarst is needed in order to project its future dynamics. Understanding how vulnerable Arctic Alaska is to future thermokarst development is critical for resource management, industry development, and subsistence hunting. We focused on the distribution of thermokarst landforms among ten study sites aligned with the NSF CALON (Towards a Circum-Arctic Lakes Observation Network) project in Arctic Alaska. Sites represent diverse substrates including eolian silt, eolian sand, marine sand, deltaic, and marine silt. We conducted thermokarst landform mapping and spatial and morphometric analyses using high-resolution aerial photography, an interferometric synthetic aperture radar derived digital elevation model (IfSAR DEM), and hydrographic layers from the National Land Cover Database derived from Landsat-7. Non-lake thermokarst landforms were visually mapped and hand digitized using aerial photographs and the IfSAR DEM. Initial results show thermokarst forms are most prevalent in marine silt areas with up to 99% of study areas affected by thermokarst activity. Eolian sand areas are the least thermokarst affected (mean of 57%). Drained thermokarst lake basins, thermokarst lakes, and areas affected by thermokarst pit formation were the dominant thermokarst landforms, covering up to 70%, 54%, and 8% of the landscape. The number of overlapping lake and basin

  3. The United States National Climate Assessment - Alaska Technical Regional Report

    USGS Publications Warehouse

    Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart; Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart

    2012-01-01

    to lengthen by 15-25 days in some areas of Alaska, with much of that corresponding with earlier spring snow melt. Future projections of precipitation (30-80 years) over Alaska show an increase across the State, with the largest changes in the northwest and smallest in the southeast. Because of increasing temperatures and growing season length, however, increased precipitation may not correspond with increased water availability, due to temperature related increased evapotranspiration. The extent of snow cover in the Northern Hemisphere has decreased by about 10 percent since the late 1960s, with stronger trends noted since the late 1980s. Alaska has experienced similar trends, with a strong decrease in snow cover extent occurring in May. When averaged across the State, the disappearance of snow in the spring has occurred from 4 to 6 days earlier per decade, and snow return in fall has occurred approximately 2 days later per decade. This change appears to be driven by climate warming rather than a decrease in winter precipitation, with average winter temperatures also increasing by about 2.5°F. The extent of sea ice has been declining, as has been widely published in both national and scientific media outlets, and is projected to continue to decline during this century. The observed decline in annual sea ice minimum extent (September) has occurred more rapidly than was predicted by climate models and has been accompanied by decreases in ice thickness and in the presence of multi-year ice. This decrease was first documented by satellite imagery in the late 1970s for the Bering and Chukchi Seas, and is projected to continue, with the potential for the disappearance of summer sea ice by mid- to late century. A new phenomenon that was not reported in previous assessments is ocean acidification. Uptake of carbon dioxide (CO2) by oceans has a significant effect on marine biogeochemistry by reducing seawater pH. Ocean acidification is of particular concern in Alaska

  4. Science for Alaska: Public Understanding of University Research Priorities

    NASA Astrophysics Data System (ADS)

    Campbell, D.

    2015-12-01

    Science for Alaska: Public Understanding of Science D. L. Campbell11University of Alaska Fairbanks, USA Around 200 people brave 40-below-zero temperatures to listen to university researchers and scientists give lectures about their work at an event called the Science for Alaska Lecture Series, hosted by the University of Alaska Fairbanks Geophysical Institute. It is held once a week, for six weeks during the coldest part of a Fairbanks, Alaska, winter. The topics range from space physics to remote sensing. The lectures last for 45 minutes with 15 minutes for audience questions and answers. It has been popular for about 20 years and is one of many public outreach efforts of the institute. The scientists are careful in their preparations for presentations and GI's Public Relations staff chooses the speakers based on topic, diversity and public interest. The staff also considers the speaker's ability to speak to a general audience, based on style, clarity and experience. I conducted a qualitative research project to find out about the people who attended the event, why they attend and what they do with the information they hear about. The participants were volunteers who attended the event and either stayed after the lectures for an interview or signed up to be contacted later. I used used an interview technique with open-ended questions, recorded and transcribed the interview. I identified themes in the interviews, using narrative analysis. Preliminary data show that the lecture series is a form of entertainment for people who are highly educated and work in demanding and stressful jobs. They come with family and friends. Sometimes it's a date with a significant other. Others want to expose their children to science. The findings are in keeping with the current literature that suggests that public events meant to increase public understanding of science instead draws like-minded people. The findings are different from Campbell's hypothesis that attendance was based

  5. Alaska Village Electric Load Calculator

    SciTech Connect

    Devine, M.; Baring-Gould, E. I.

    2004-10-01

    As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

  6. Metalliferous lode deposits of Alaska

    USGS Publications Warehouse

    Berg, Henry C.; Cobb, Edward Huntington

    1967-01-01

    This report summarizes from repoAs of Federal and State agencies published before August 31, 1965, the geology of Alaska's metal-bearing lodes, including their structural or stratigraphic control, host rock, mode of origin, kinds of .Q minerals, grade, past production, and extent of exploration. In addition, the lists of mineral occurrences that accompany the 35 mineral-deposit location maps constitute an inventory of the State's known lodes. A total of 692 localities where m&alliferous deposits have been found are shown on the maps. The localities include 1,739 mines, prospects, and reported occurrences, of which 821 are described individually or otherwise cited in the text.

  7. Organic geochemistry data of Alaska

    USGS Publications Warehouse

    complied by Threlkeld, Charles N.; Obuch, Raymond C.; Gunther, G.L.

    2000-01-01

    In order to archive the results of various petroleum geochemical analyses of the Alaska resource assessment, the USGS developed an Alaskan Organic Geochemical Data Base (AOGDB) in 1978 to house the data generated from USGS and subcontracted laboratories. Prior to the AOGDB, the accumulated data resided in a flat data file entitled 'PGS' that was maintained by Petroleum Information Corporation with technical input from the USGS. The information herein is a breakout of the master flat file format into a relational data base table format (akdata).

  8. Exploring ecology in Alaska: Reflective storytelling as a model for environmental education

    NASA Astrophysics Data System (ADS)

    Shoemaker, Kay Warren

    This professional project is formatted as a book that was written as a part of a qualitativeparticipatory action research study exploring best practices for diverse communities in Alaska to access reflective storytelling method as environmental education. Non-invasive assessment was utilized with participants in the form of talking circles, where program leaders and educators met in small groups with youth to practice sharing and reflecting on their experiential education activity. Youth voice and educator opinions were gathered in structured and unstructured interviews. Along with interviews, standard practice methods for a qualitative research project were utilized, including: participant observation, non-participant observation, field notes, reflexive journals, and analysis of documents and materials. The current book project was designed as a tool to assist with the implementation of the Alaska Natural Resource and Environmental Literacy Plan. Through place-based curriculum and experiential learning techniques, it shares examples of a unique method of teaching outdoor environmental education through storytelling.

  9. Biological specimen banking in Arctic research: an Alaska perspective.

    PubMed

    Becker, P R; Koster, B J; Wise, S A; Zeisler, R

    1993-11-01

    The cryogenic archival of biological specimens for retrospective analysis is of significant value for present and future research on population genetics, pathology, systematics, toxicology and environmental monitoring. This realization is emphasized by the increasing support of this activity by various government agencies, institutions and international groups. The international Arctic community is no exception. Canada has been conducting such activities in association with environmental monitoring programs for many years. Similar efforts appear to be underway in other polar nations. From the perspective of the United States Arctic, the Alaska Marine Mammal Tissue Archival Project (AMMTAP) was the earliest organized effort to develop an environmental specimen bank specifically designed for longterm archival of biological specimens under cryogenic conditions. The AMMTAP emphasizes use of standardized rigorous sampling and archival protocols, procedures that minimize contamination of samples during collection and maintaining a detailed record of sample history. The development of this specimen bank, recent activities of this project and other cryogenic specimen banks being developed in Alaska are described.

  10. Alaska LandCarbon wetland distribution map

    USGS Publications Warehouse

    Wylie, Bruce K.; Pastick, Neal J.

    2017-01-01

    This product provides regional estimates of specific wetland types (bog and fen) in Alaska. Available wetland types mapped by the National Wetlands Inventory (NWI) program were re-classed into bog, fen, and other. NWI mapping of wetlands was only done for a portion of the area so a decision tree mapping algorithm was then developed to estimate bog, fen, and other across the state of Alaska using remote sensing and GIS spatial data sets as inputs. This data was used and presented in two chapters on the USGS Alaska LandCarbon Report.

  11. Review: groundwater in Alaska (USA)

    USGS Publications Warehouse

    Callegary, J.B.; Kikuchi, C.P.; Koch, J.C.; Lilly, M.R.; Leake, S.A.

    2013-01-01

    Groundwater in the US state of Alaska is critical to both humans and ecosystems. Interactions among physiography, ecology, geology, and current and past climate have largely determined the location and properties of aquifers as well as the timing and magnitude of fluxes to, from, and within the groundwater system. The climate ranges from maritime in the southern portion of the state to continental in the Interior, and arctic on the North Slope. During the Quaternary period, topography and rock type have combined with glacial and periglacial processes to develop the unconsolidated alluvial aquifers of Alaska and have resulted in highly heterogeneous hydrofacies. In addition, the long persistence of frozen ground, whether seasonal or permanent, greatly affects the distribution of aquifer recharge and discharge. Because of high runoff, a high proportion of groundwater use, and highly variable permeability controlled in part by permafrost and seasonally frozen ground, understanding groundwater/surface-water interactions and the effects of climate change is critical for understanding groundwater availability and the movement of natural and anthropogenic contaminants.

  12. Inundation Mapping and Hazard Assessment of Tectonic and Landslide Tsunamis in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Suleimani, E.; Nicolsky, D.; Koehler, R. D., III

    2014-12-01

    The Alaska Earthquake Center conducts tsunami inundation mapping for coastal communities in Alaska, and is currently focused on the southeastern region and communities of Yakutat, Elfin Cove, Gustavus and Hoonah. This activity provides local emergency officials with tsunami hazard assessment, planning, and mitigation tools. At-risk communities are distributed along several segments of the Alaska coastline, each having a unique seismic history and potential tsunami hazard. Thus, a critical component of our project is accurate identification and characterization of potential tectonic and landslide tsunami sources. The primary tectonic element of Southeast Alaska is the Fairweather - Queen Charlotte fault system, which has ruptured in 5 large strike-slip earthquakes in the past 100 years. The 1958 "Lituya Bay" earthquake triggered a large landslide into Lituya Bay that generated a 540-m-high wave. The M7.7 Haida Gwaii earthquake of October 28, 2012 occurred along the same fault, but was associated with dominantly vertical motion, generating a local tsunami. Communities in Southeast Alaska are also vulnerable to hazards related to locally generated waves, due to proximity of communities to landslide-prone fjords and frequent earthquakes. The primary mechanisms for local tsunami generation are failure of steep rock slopes due to relaxation of internal stresses after deglaciation, and failure of thick unconsolidated sediments accumulated on underwater delta fronts at river mouths. We numerically model potential tsunami waves and inundation extent that may result from future hypothetical far- and near-field earthquakes and landslides. We perform simulations for each source scenario using the Alaska Tsunami Model, which is validated through a set of analytical benchmarks and tested against laboratory and field data. Results of numerical modeling combined with historical observations are compiled on inundation maps and used for site-specific tsunami hazard assessment by

  13. Lower prices wreak havoc on Alaska oil patch

    SciTech Connect

    Bradner, T.

    1986-07-01

    The decline in oil prices has slowed drilling activity at Prudhoe Bay even while offshore field construction work continues. By winter, the layoff of about 14 drilling rigs will mean unemployment for an estimated 1400 workers at one field. New construction projects include a plant to process natural gas liquids for the trans-Alaska pipeline and a miscible injection project. The potential of the limestone reservoir at the Lisburne field will remain an unknown until information is available on the effects of gas injection and waterflooding. The author describes work in progress at Lisburne, Kuparuk River, Endicott, and Milne Point Fields to illustrate the bleak prospects for North Slope development. Higher prices in the future, however, will leave the US with large reserves to develop if the companies can weather the lean years. 1 figure.

  14. Geology of the Alaska-Juneau lode system, Alaska

    USGS Publications Warehouse

    Twenhofel, William Stephens

    1952-01-01

    The Alaska-Juneau lode system for many years was one of the worlds leading gold-producing areas. Total production from the years 1893 to 1946 has amounted to about 94 million dollars, with principal values in contained gold but with some silver and lead values. The principal mine is the Alaska-Juneau mine, from which the lode system takes its name. The lode system is a part of a larger gold-bearing belt, generally referred to as the Juneau gold belt, along the western border of the Coast Range batholith. The rocks of the Alaska-Juneau lode system consist of a monoclinal sequence of steeply northeasterly dipping volcanic, state, and schist rocks, all of which have been metamorphosed by dynamic and thermal processes attendant with the intrusion of the Coast Range batholith. The rocks form a series of belts that trend northwest parallel to the Coast Range. In addition to the Coast Range batholith lying a mile to the east of the lode system, there are numerous smaller intrusives, all of which are sill-like in form and are thus conformable to the regional structure. The bedded rocks are Mesozoic in age; the Coast Range batholith is Upper Jurassic and Lower Cretaceous in age. Some of the smaller intrusives pre-date the batholith, others post-date it. All of the rocks are cut by steeply dipping faults. The Alaska-Juneau lode system is confined exclusively to the footwall portion of the Perseverance slate band. The slate band is composed of black slate and black phyllite with lesser amounts of thin-bedded quartzite. Intrusive into the slate band are many sill-like bodies of rocks generally referred to as meta-gabbro. The gold deposits of the lode system are found both within the slate rocks and the meta-gabbro rocks, and particularly in those places where meta-gabbro bodies interfinger with slate. Thus the ore bodies are found in and near the terminations of meta-gabbro bodies. The ore bodies are quartz stringer-lodes composed of a great number of quartz veins from 6

  15. Cross Cultural Scientific Communication in Alaska

    NASA Astrophysics Data System (ADS)

    Bertram, K. B.

    2006-12-01

    An example of cross-cultural education is provided by the Aurora Alive curriculum. Aurora Alive communicates science to Alaska Native students through cross-cultural educational products used in Alaska schools for more than a decade, including (1) a CDROM that provides digital graphics, bilingual (English and Athabascan language) narration-over-text and interactive elements that help students visualize scientific concepts, and (2) Teacher's Manuals containing more than 150 hands-on activities aligned to national science standards, and to Alaska Standards for Culturally Responsive Schools. Created by Native Elders and teachers working together with University Alaska Fairbanks Geophysical Institute scientists, Aurora Alive blends Native "ways of knowing" with current "western" research to teach the physics and math of the aurora.

  16. 75 FR 43198 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... Alaska Native Claims Settlement Act. The subsurface estate in these lands will be conveyed to Bristol Bay... times in the Bristol Bay Times. DATES: Any party claiming a property interest in the lands affected...

  17. 76 FR 67472 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... lands are located east of Teller, Alaska, and contain 47.87 acres. Notice of the decision will also be... email at ak.blm.conveyance@blm.gov . Persons who use a Telecommunications Device for the Deaf (TDD)...

  18. American Indians, Alaska Natives, and the Flu

    MedlinePlus

    ... CDC Features American Indians, Alaska Natives, and the Flu Recommend on Facebook Tweet Share Compartir Vaccination against ... the flu. Protect Indian Country by Getting Your Flu Vaccine A flu vaccine not only protects you ...

  19. Columbia Glacier, Alaska, 1986-2011

    NASA Video Gallery

    The Columbia Glacier in Alaska is one of many vanishing around the world. Glacier retreat is one of the most direct and understandable effects of climate change. The consequences of the decline in ...

  20. Renewed unrest at Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  1. Cardiovascular Disease Among Alaska Native Peoples

    PubMed Central

    Jolly, Stacey E.; Howard, Barbara V.; Umans, Jason G.

    2013-01-01

    Although Alaska Native peoples were thought to be protected from cardiovascular disease (CVD), data now show that this is not the case, despite traditional lifestyles and high omega-3 fatty acid intake. In this article, the current understanding of CVD and its risk factors among Alaska Native peoples, particularly among the Yupik and Inupiat populations, will be discussed, using data from three major studies funded by the National Institutes of Health: Genetics of Coronary Artery Disease among Alaska Natives (GOCADAN), Center for Native Health Research (CANHR), and Education and Research Towards Health (EARTH). Data from these epidemiologic studies have focused concern on CVD and its risk factors among Alaska Native peoples. This review will summarize the findings of these three principal studies and will suggest future directions for research and clinical practice. PMID:24367710

  2. 78 FR 53158 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ...) to Sea Lion Corporation. The decision approves the surface estate in the lands described below for... Lion Corporation. The lands are in the vicinity of Hooper Bay, Alaska, and are located in:...

  3. Major disruption of D'' beneath Alaska: D'' Beneath Alaska

    SciTech Connect

    Sun, Daoyuan; Helmberger, Don; Miller, Meghan S.; Jackson, Jennifer M.

    2016-05-01

    D'' represents one of the most dramatic thermal and compositional layers within our planet. In particular, global tomographic models display relatively fast patches at the base of the mantle along the circum-Pacific which are generally attributed to slab debris. Such distinct patches interact with the bridgmanite (Br) to post-bridgmanite (PBr) phase boundary to generate particularly strong heterogeneity at their edges. Most seismic observations for the D'' come from the lower mantle S wave triplication (Scd). Here we exploit the USArray waveform data to examine one of these sharp transitions in structure beneath Alaska. From west to east beneath Alaska, we observed three different characteristics in D'': (1) the western region with a strong Scd, requiring a sharp δVs = 2.5% increase; (2) the middle region with no clear Scd phases, indicating a lack of D'' (or thin Br-PBr layer); and (3) the eastern region with strong Scd phase, requiring a gradient increase in δVs. To explain such strong lateral variation in the velocity structure, chemical variations must be involved. We suggest that the western region represents relatively normal mantle. In contrast, the eastern region is influenced by a relic slab that has subducted down to the lowermost mantle. In the middle region, we infer an upwelling structure that disrupts the Br-PBr phase boundary. Such an interpretation is based upon a distinct pattern of travel time delays, waveform distortions, and amplitude patterns that reveal a circular-shaped anomaly about 5° across which can be modeled synthetically as a plume-like structure rising about 400 km high with a shear velocity reduction of ~5%, similar to geodynamic modeling predictions of upwellings.

  4. Propagation measurements in Alaska using ACTS beacons

    NASA Technical Reports Server (NTRS)

    Mayer, Charles E.

    1991-01-01

    The placement of an ACTS propagation terminal in Alaska has several distinct advantages. First is the inclusion of a new and important climatic zone to the global propagation model. Second is the low elevation look angle from Alaska to ACTS. These two unique opportunities also present problems unique to the location, such as extreme temperatures and lower power levels. These problems are examined and compensatory solutions are presented.

  5. Mercury in polar bears from Alaska

    SciTech Connect

    Lentfer, J.W.; Galster, W.A.

    1987-04-01

    Alaskan polar bear (Ursus maritimus) muscle and liver samples collected in 1972 were analyzed for total mercury. Bears north of Alaska had more mercury than bears west of Alaska. The only difference between young and adult animals was in the northern area where adults had more mercury in liver tissue than young animals. Levels were probably not high enough to be a serious threat to bears.

  6. Oil-and-gas resources of Alaska

    SciTech Connect

    Not Available

    1985-01-01

    This is a short information circular on the history of oil-and-gas development in Alaska. It discusses the past discoveries and the future prospects and the estimated reserve base of the state. It also briefly discusses the oil-and-gas leasing program and exploration activity in the Arctic National Wildlife Refuge. A map of Alaska showing oil-and-gas fields, reserves, and lease boundaries is also provided.

  7. Accretion tectonics and crustal structure in Alaska

    USGS Publications Warehouse

    Coney, P.J.; Jones, D.L.

    1985-01-01

    The entire width of the North American Cordillera in Alaska is made up of "suspect terranes". Pre-Late Cretaceous paleogeography is poorly constrained and the ultimate origins of the many fragments which make up the state are unclear. The Prince William and Chugach terranes accreted since Late Cretaceous time and represent the collapse of much of the northeast Pacific Ocean swept into what today is southern Alaska. Greater Wrangellia, a composite terrane now dispersed into fragments scattered from Idaho to southern Alaska, apparently accreted into Alaska in Late Cretaceous time crushing an enormous deep-marine flysch basin on its inboard side. Most of interior eastern Alaska is the Yukon Tanana terrane, a very large entirely fault-bounded metamorphic-plutonic assemblage covering thousands of square kilometers in Canada as well as Alaska. The original stratigraphy and relationship to North America of the Yukon-Tanana terrane are both obscure. A collapsed Mesozoic flysch basin, similar to the one inboard of Wrangellia, lies along the northern margin. Much of Arctic Alaska was apparently a vast expanse of upper Paleozoic to Early Mesozoic deep marine sediments and mafic volcanic and plutonic rocks now scattered widely as large telescoped sheets and Klippen thrust over the Ruby geanticline and the Brooks Range, and probably underlying the Yukon-Koyukuk basin and the Yukon flats. The Brooks Range itself is a stack of north vergent nappes, the telescoping of which began in Early Cretaceous time. Despite compelling evidence for thousands of kilometers of relative displacement between the accreted terranes, and large amounts of telescoping, translation, and rotation since accretion, the resulting new continental crust added to North America in Alaska carries few obvious signatures that allow application of currently popular simple plate tectonic models. Intraplate telescoping and strike-slip translations, delamination at mid-crustal levels, and large-scale lithospheric

  8. Environmental Assessment for North Warning System (Alaska)

    DTIC Science & Technology

    1986-11-10

    native villages; thus, an Environmental Impact Statement (EIS) on the Alaskan portion of the NWS was judged necessary. A recent reconfiguration of tile... Native and non- Native individuals. Thaw lake - A lake or pond formed by localized thawing of permafrost. Thermokarst - Refers to irregular topography...Preservation AFOSH - Air Force Occupational Safety and Health Standard AFR - Air Force Regulation AHRS - Alaska Heritage Resource Survey ANCSA - Alaska Native

  9. Alaska Native Parkinson’s Disease Registry

    DTIC Science & Technology

    2007-11-01

    Questionable 0 DK f. seborrheic dermatitis 0 Yes 0 No 0 Questionable 0 DK Exclusion criteria O Prominent postural instability in the first 3...4 A. Introduction Parkinsonism (PS) is a syndrome characterized by tremor, rigidity, slowness of movement, and problems with walking and balance...the Alaska Native Medical Center. B. Body The intent of this proposal is to establish a registry of parkinsonism cases among Alaska native

  10. Crustal structure of Bristol Bay Region, Alaska

    SciTech Connect

    Cooper, A.K.; McLean, H.; Marlow, M.S.

    1985-04-01

    Bristol Bay lies along the northern side of the Alaska Peninsula and extends nearly 600 km southwest from the Nushagak lowlands on the Alaska mainland to near Unimak Island. The bay is underlain by a sediment-filled crustal downwarp known as the north Aleutian basin (formerly Bristol basin) that dips southeast toward the Alaska Peninsula and is filled with more than 6 km of strata, dominantly of Cenozoic age. The thickest parts of the basin lie just north of the Alaska Peninsula and, near Port Mollar, are in fault contact with older Mesozoic sedimentary rocks. These Mesozoic rocks form the southern structural boundary of the basin and extend as an accurate belt from at least Cook Inlet to Zhemchug Canyon (central Beringian margin). Offshore multichannel seismic-reflection, sonobuoy seismic-refraction, gravity, and magnetic data collected by the USGS in 1976 and 1982 indicate that the bedrock beneath the central and northern parts of the basin comprises layered, high-velocity, and highly magnetic rocks that are locally deformed. The deep bedrock horizons may be Mesozoic(.) sedimentary units that are underlain by igneous or metamorphic rocks and may correlate with similar rocks of mainland western Alaska and the Alaska Peninsula. Regional structural and geophysical trends for these deep horizons change from northeast-southwest to northwest-southeast beneath the inner Bering shelf and may indicate a major crustal suture along the northern basin edge.

  11. Reconnaissance for radioactive deposits in Alaska, 1953

    USGS Publications Warehouse

    Matzko, John J.; Bates, Robert G.

    1955-01-01

    During the summer of 1953 the areas investigated for radioactive deposits in Alaska were on Nikolai Creek near Tyonek and on Likes Creek near Seward in south-central Alaska where carnotite-type minerals had been reported; in the headwaters of the Peace River in the eastern part of the Seward Peninsula and at Gold Bench on the South Fork of the Koyukuk River in east-central Alaska, where uranothorianite occurs in places associated with base metal sulfides and hematite; in the vicinity of Port Malmesbury in southeastern Alaska to check a reported occurrence of pitchblende; and, in the Miller House-Circle Hot Springs area of east-central Alaska where geochemical studies were made. No significant lode deposits of radioactive materials were found. However, the placer uranothorianite in the headwaters of the Peace River yet remains as an important lead to bedrock radioactive source materials in Alaska. Tundra cover prevents satisfactory radiometric reconnaissance of the area, and methods of geochemical prospecting such as soil and vegetation sampling may ultimately prove more fruitful in the search for the uranothorianite-sulfide lode source than geophysical methods.

  12. The future of successful aging in Alaska

    PubMed Central

    Lewis, Jordan

    2013-01-01

    Background There is a paucity of research on Alaska Natives and their views on whether or not they believe they will age successfully in their home and community. There is limited understanding of aging experiences across generations. Objective This research explores the concept of successful aging from an urban Alaska Native perspective and explores whether or not they believe they will achieve a healthy older age. Design A cultural consensus model (CCM) approach was used to gain a sense of the cultural understandings of aging among young Alaska Natives aged 50 years and younger. Results Research findings indicate that aging successfully is making the conscious decision to live a clean and healthy life, abstaining from drugs and alcohol, but some of Alaska Natives do not feel they will age well due to lifestyle factors. Alaska Natives see the inability to age well as primarily due to the decrease in physical activity, lack of availability of subsistence foods and activities, and the difficulty of living a balanced life in urban settings. Conclusions This research seeks to inform future studies on successful aging that incorporates the experiences and wisdom of Alaska Natives in hopes of developing an awareness of the importance of practicing a healthy lifestyle and developing guidelines to assist others to age well. PMID:23984300

  13. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  14. 78 FR 73144 - Subsistence Management Program for Public Lands in Alaska; Western Interior Alaska Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... Subsistence Management Program for Public Lands in Alaska; Western Interior Alaska Federal Subsistence... purpose of the Council is to provide recommendations and information to the Federal Subsistence Board, to review policies and management plans, and to provide a public forum for subsistence issues. DATES:...

  15. 75 FR 3888 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... Fish and Wildlife Service 50 CFR Part 92 RIN 1018-AW67 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2010 Season AGENCY: Fish and Wildlife Service... Wildlife Service, are reopening the public comment period on our proposed rule to establish migratory...

  16. 77 FR 2972 - City and Borough of Sitka, Alaska, Alaska; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission City and Borough of Sitka, Alaska, Alaska; Notice of Availability of Environmental Assessment In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's (Commission...

  17. Building Alaska's Science and Engineering Pipeline: Evaluation of the Alaska Native Science & Engineering Program

    ERIC Educational Resources Information Center

    Bernstein, Hamutal; Martin, Carlos; Eyster, Lauren; Anderson, Theresa; Owen, Stephanie; Martin-Caughey, Amanda

    2015-01-01

    The Urban Institute conducted an implementation and participant-outcomes evaluation of the Alaska Native Science & Engineering Program (ANSEP). ANSEP is a multi-stage initiative designed to prepare and support Alaska Native students from middle school through graduate school to succeed in science, technology, engineering, and math (STEM)…

  18. Alaska Native Languages: Past, Present, and Future. Alaska Native Language Center Research Papers No. 4.

    ERIC Educational Resources Information Center

    Krauss, Michael E.

    Three papers (1978-80) written for the non-linguistic public about Alaska Native languages are combined here. The first is an introduction to the prehistory, history, present status, and future prospects of all Alaska Native languages, both Eskimo-Aleut and Athabaskan Indian. The second and third, presented as appendixes to the first, deal in…

  19. Trophic ecology of introduced populations of Alaska blackfish (Dallia pectoralis) in the Cook Inlet Basin, Alaska.

    PubMed

    Eidam, Dona M; von Hippel, Frank A; Carlson, Matthew L; Lassuy, Dennis R; López, J Andrés

    2016-07-01

    Introduced non-native fishes have the potential to substantially alter aquatic ecology in the introduced range through competition and predation. The Alaska blackfish (Dallia pectoralis) is a freshwater fish endemic to Chukotka and Alaska north of the Alaska Range (Beringia); the species was introduced outside of its native range to the Cook Inlet Basin of Alaska in the 1950s, where it has since become widespread. Here we characterize the diet of Alaska blackfish at three Cook Inlet Basin sites, including a lake, a stream, and a wetland. We analyze stomach plus esophageal contents to assess potential impacts on native species via competition or predation. Alaska blackfish in the Cook Inlet Basin consume a wide range of prey, with major prey consisting of epiphytic/benthic dipteran larvae, gastropods, and ostracods. Diets of the introduced populations of Alaska blackfish are similar in composition to those of native juvenile salmonids and stickleback. Thus, Alaska blackfish may affect native fish populations via competition. Fish ranked third in prey importance for both lake and stream blackfish diets but were of minor importance for wetland blackfish.

  20. Alaska public health law reform.

    PubMed

    Meier, Benjamin Mason; Hodge, James G; Gebbie, Kristine M

    2008-04-01

    The Turning Point Model State Public Health Act (Turning Point Act), published in September 2003, provides a comprehensive template for states seeking public health law modernization. This case study examines the political and policy efforts undertaken in Alaska following the development of the Turning Point Act. It is the first in a series of case studies to assess states' consideration of the Turning Point Act for the purpose of public health law reform. Through a comparative analysis of these case studies and ongoing legislative tracking in all fifty states, researchers can assess (1) how states codify the Turning Point Act into state law and (2) how these modernized state laws influence or change public health practice, leading to improved health outcomes.

  1. Breaking New Ground for American Indian and Alaska Native Youth at Risk: Program Summaries. OSAP Technical Report 3.

    ERIC Educational Resources Information Center

    National Center for American Indian and Alaska Native Mental Health Research, Denver, CO.

    This technical report examines the literature on substance abuse prevention programs among American Indian and Alaska Native populations, particularly high-risk youth, and reports on aspects of demonstration projects. The literature was reviewed for specific mention of attempted intervention activities focusing on alcohol and drug abuse prevention…

  2. Alaska Wildlife Week--Upper Elementary Teachers' Guide. Unit 7. Together, We Can Help Wildlife. April 23-29, 1989.

    ERIC Educational Resources Information Center

    Sigman, Marilyn, Ed.

    Wildlife is often described as one of Alaska's most important and valuable resources. Helping wildlife can take many forms. In this educational packet, a variety of activities are included to help intermediate students understand which human activities help wildlife and which harm wildlife. In addition, suggestions on planning hands-on projects to…

  3. Alaska dominates exploration and development activity on U. S. West Coast

    SciTech Connect

    Williams, B.

    1991-04-08

    Alaska's accelerating exploration and development activity is setting the pace for the U.S. West Coast. Continued wildcatting in the Chukchi Sea and Beaufort Sea--albeit hamstrung by permitting problems--significant new development projects on the North Slope, and the most ambitious lease sale schedule in years highlight Alaskan action in 1991. California highlights include expansion of massive steamflood projects in San Joaquin Valley giant heavy oil fields and start-up of the long-delayed Point Arguello project. There is little of note in the Pacific Northwest outside extension of the Mist gas complex in Oregon.

  4. The United States Geological Survey in Alaska; organization and status of programs in 1977

    USGS Publications Warehouse

    Blean, Kathleen M.

    1977-01-01

    United States Geological Survey projects in Alaska include a wide range of topics of economic and scientific interest. Studies in 1976 include economic geology, regional geology, stratigraphy, environmental geology, engineering geology, hydrology, and marine geology. Discussions of the findings or, in some instances, narratives of the course of the investigations are grouped in eight subdivisions corresponding to the six major onshore geographic regions, the offshore projects, and projects that are statewide in scope. Locations of the study areas are shown. In addition, many reports and maps covering various aspects of the geology and mineral and water resources of the State were published. These publications are listed. (Woodard-USGS)

  5. Project: "Project!"

    ERIC Educational Resources Information Center

    Grayson, Katherine

    2007-01-01

    In November 2006, the editors of "Campus Technology" launched their first-ever High-Resolution Projection Study, to find out if the latest in projector technology could really make a significant difference in teaching, learning, and educational innovation on US campuses. The author and her colleagues asked campus educators,…

  6. The Alaska resource data files: Mount Katmai (MK) quadrangle

    USGS Publications Warehouse

    Wilson, Frederic H.; Church, Stanley E.; Bickerstaff, Damon P.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Mount Katmai 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  7. Glaciers of North America - Glaciers of Alaska

    USGS Publications Warehouse

    Molnia, Bruce F.

    2008-01-01

    Glaciers cover about 75,000 km2 of Alaska, about 5 percent of the State. The glaciers are situated on 11 mountain ranges, 1 large island, an island chain, and 1 archipelago and range in elevation from more than 6,000 m to below sea level. Alaska's glaciers extend geographically from the far southeast at lat 55 deg 19'N., long 130 deg 05'W., about 100 kilometers east of Ketchikan, to the far southwest at Kiska Island at lat 52 deg 05'N., long 177 deg 35'E., in the Aleutian Islands, and as far north as lat 69 deg 20'N., long 143 deg 45'W., in the Brooks Range. During the 'Little Ice Age', Alaska's glaciers expanded significantly. The total area and volume of glaciers in Alaska continue to decrease, as they have been doing since the 18th century. Of the 153 1:250,000-scale topographic maps that cover the State of Alaska, 63 sheets show glaciers. Although the number of extant glaciers has never been systematically counted and is thus unknown, the total probably is greater than 100,000. Only about 600 glaciers (about 1 percent) have been officially named by the U.S. Board on Geographic Names (BGN). There are about 60 active and former tidewater glaciers in Alaska. Within the glacierized mountain ranges of southeastern Alaska and western Canada, 205 glaciers (75 percent in Alaska) have a history of surging. In the same region, at least 53 present and 7 former large ice-dammed lakes have produced jokulhlaups (glacier-outburst floods). Ice-capped volcanoes on mainland Alaska and in the Aleutian Islands have a potential for jokulhlaups caused by subglacier volcanic and geothermal activity. Because of the size of the area covered by glaciers and the lack of large-scale maps of the glacierized areas, satellite imagery and other satellite remote-sensing data are the only practical means of monitoring regional changes in the area and volume of Alaska's glaciers in response to short- and long-term changes in the maritime and continental climates of the State. A review of the

  8. Alaska

    Atmospheric Science Data Center

    2014-05-15

    ... help to darken the room lights when viewing the image on a computer screen. The Yukon River is seen wending its way from upper left to ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  9. The lab and the land: overcoming the Arctic in Cold War Alaska.

    PubMed

    Farish, Matthew

    2013-03-01

    The militarization of Alaska during and after World War II created an extraordinary set of new facilities. But it also reshaped the imaginative role of Alaska as a hostile environment, where an antagonistic form of nature could be defeated with the appropriate combination of technology and training. One of the crucial sites for this reformulation was the Arctic Aeromedical Laboratory, based at Ladd Air Force Base in Fairbanks. In the first two decades of the Cold War, its employees conducted numerous experiments on acclimatization and survival. The laboratory is now best known for an infamous set of tests involving the application of radioactive tracers to indigenous Alaskans--experiments publicized by post-Cold War panels established to evaluate the tragic history of atomic-era human subject research. But little else has been written about the laboratory's relationship with the populations and landscapes that it targeted for study. This essay presents the laboratory as critical to Alaska's history and the history of the Cold War sciences. A consideration of the laboratory's various projects also reveals a consistent fascination with race. Alaskan Natives were enrolled in experiments because their bodies were understood to hold clues to the mysteries of northern nature. A scientific solution would aid American military campaigns not only in Alaska, but in cold climates everywhere.

  10. National Petroleum Reserve-Alaska (NPRA) core images and well data

    USGS Publications Warehouse

    Houseknecht, D. W.

    2002-01-01

    This report contains photographic images and data from petroleum exploration wells drilled within and near the National Petroleum Reserve-Alaska (NPRA). The volume is organized into six chapters, each of which contains images and well data (including a GIS project of public domain cores) pertinent to the geology and petroleum potential of NPRA. This product is a compilation of data not available elsewhere and contains limited interpretive material.

  11. Habitat Utilization by Juvenile Pink and Chum Salmon in Upper Resurrection Bay, Alaska

    DTIC Science & Technology

    1989-11-01

    Shell- fish Migration." The Technical Monitors for the study were Dr. John Bushman, Mr. David P. Buelow, and Mr. David Mathis of HQUSACE. This report was...Mr. Edward J. Pullen, Chief, Coastal Ecology Group; Dr. Conrad J. Kirby, Chief, Environmental Resources Division; and Dr. John Harrison, Chief...at the Heads of Boca de Quadra and Wilson Arm/ Smeaton Bay During 1981," Quartz Hill Molybdenum Project, Southeast Alaska, prepared for United States

  12. Pap prevalence and cervical cancer prevention among Alaska Native women.

    PubMed

    Lanier, A P; Kelly, J J; Holck, P

    1999-01-01

    The goals of the Alaska Native Women's Health Project (WHP) were to determine the following: (1) Pap prevalence based on chart review before and during an intervention period; (2) the level of understanding of cancer and cancer screening services with emphasis on cervical cancer; (3) use and satisfaction with current health maintenance services; and (4) improvement in knowledge and cancer screening rates following intervention. A random sample of 481 Alaska Native (Eskimo, Aleut, Indian) women living in Anchorage were interviewed face to face about their understanding of cancer risk factors (tobacco use, sexually transmitted diseases (STDs), reproductive issues), cancer screening examinations (Pap test, breast self-examination (BSE), breast exam by a provider, mammography), and their attitudes about health care and health care services. Sixty-two percent of control women were documented to have had at least one Pap test within the 3-year period prior to the beginning of the study; however, only 9% were documented to have had annual Pap screening. The intervention included distribution of educational materials, counseling on any woman's health issue, special evening clinics, and reminders (mail/phone call) of scheduled Pap appointments.

  13. Resilience of Alaska's Boreal Forest to Climatic Change

    NASA Technical Reports Server (NTRS)

    Chapin, F. S., III; McGuire, A. D.; Ruess, R. W.; Hollingsworth, T. N.; Mack, M. C.; Johnstone, J. F.; Kasischke, E. S.; Euskirchen, E. S.; Jones, J. B.; Jorgenson, M. T.; Kielland, K.; Kofinas, G. P.; Turetsky, M. R.; Yarie, J.; Lloyd, A. H.; Taylor, D. L.

    2010-01-01

    This paper assesses the resilience of Alaska s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  14. Landscape Level Analyses of Vegetation Cover in Northern Alaska

    NASA Astrophysics Data System (ADS)

    Botting, T.; Hollister, R. D.

    2013-12-01

    Many International Tundra Experiment (ITEX) studies have been conducted to identify vegetation changes due to warming. However, knowledge gaps remain. For example, most of these studies are conducted at the plot level, not the landscape level, potentially masking larger scale impacts of climate change. An Arctic Systems Science (ARCSS) grid was established in Atqasuk, Alaska and Barrow, Alaska in the mid 1990's. In 2010, approximately 100 untreated vegetation plots were implemented at each grid site. These vegetation plots are 1 meter squared, spaced 100 meters apart, and span 1 kilometer squared. Each vegetation plot represents 100 square meters along the grid. This project will focus on how vegetation cover has changed at the landscape level, using the point frame method, from 2010 to 2013. Preliminary data analysis indicates that in Atqasuk, graminoids, deciduous shrubs, and evergreen shrubs show increased cover, while little change has occurred with bryophytes, forbs and lichens. In Barrow, graminoids, lichens and forbs have shown an increase in cover, while little change has occurred with bryophytes and deciduous shrubs. At both sites, graminoids represent the greatest increase in cover of all growth forms analyzed. This study will be the foundation for later work, with the purpose of predicting what ARCSS grid vegetation community compositions will be in the future. These expectations will be based on anticipated warming data from ITEX passively warmed vegetation plots. This will be the first time that ITEX vegetation warming research is applied to landscape level research in Barrow and Atqasuk.

  15. Marine debris in five national parks in Alaska.

    PubMed

    Polasek, L; Bering, J; Kim, H; Neitlich, P; Pister, B; Terwilliger, M; Nicolato, K; Turner, C; Jones, T

    2017-04-15

    Marine debris is a management issue with ecological and recreational impacts for agencies, especially on remote beaches not accessible by road. This project was implemented to remove and document marine debris from five coastal National Park Service units in Alaska. Approximately 80km of coastline were cleaned with over 10,000kg of debris collected. Marine debris was found at all 28 beaches surveyed. Hard plastics were found on every beach and foam was found at every beach except one. Rope/netting was the next most commonly found category, present at 23 beaches. Overall, plastic contributed to 60% of the total weight of debris. Rope/netting (14.6%) was a greater proportion of the weight from all beaches than foam (13.3%). Non-ferrous metal contributed the smallest amount of debris by weight (1.7%). The work forms a reference condition dataset of debris surveyed in the Western Arctic and the Gulf of Alaska within one season.

  16. Bioventing to treat hydrocarbon contaminated soils in Alaska

    SciTech Connect

    Marlow, H.J. Jr.; Muniz, H.R.; Geyer, D.J.

    1995-12-31

    Hart Crowser has designed or is currently operating 9 in situ and 6 ex situ bioventing systems in various locations throughout the state of Alaska. The objective of these projects was to design, install, and operate a remediation system capable of reducing the existing petroleum hydrocarbon levels to below the Alaska Department of Environmental Conservation clean-up action levels. Prior to the design of the bioventing systems, Hart Crowser initiated site investigations including soil borings and installation of monitoring wells to determine site geological characteristics, and the extent of the hydrocarbon impacted soils. Laboratory biofeasibility testing or in situ respirometry testing was accomplished to determine the biological activity at the sites and provide information to optimize the remedial design. Degradation rates for the various sites ranged from 0.92 mgkg{sup -1}d{sup -1} to 17.6 mgkg{sup -1}d{sup -1}. Three in situ bioventing case studies will be presented. The results of treatability testing, considerations for the design of the bioventing systems, systems installation, and the results from two years of operation will be outlined.

  17. Sea water intrusion model of Amchitka Island, Alaska

    SciTech Connect

    Wheatcraft, S.W.

    1995-09-01

    During the 1960s and 1970s, Amchitka Island, Alaska, was the site of three underground nuclear tests, referred to as Milrow, Long Shot and Cannikin. Amchitka Island is located in the western part of the Aleutian Island chain, Alaska. The groundwater systems affected by the three underground nuclear tests at Amchitka Island are essentially unmonitored because all of the current monitoring wells are too shallow and not appropriately placed to detect migration from the cavities. The dynamics of the island`s fresh water-sea water hydrologic system will control contaminant migration from the three event cavities, with migration expected in the direction of the Bering Sea from Long shot and Cannikin and the Pacific Ocean from Milrow. The hydrogeologic setting (actively flowing groundwater system to maintain a freshwater lens) suggests a significant possibility for relatively rapid contaminant migration from these sites, but also presents an opportunity to use projected flowpaths to a monitoring advantage. The purpose of this investigation is to develop a conceptual model of the Amchitka groundwater system and to produce computer model simulations that reflect the boundary conditions and hydraulic properties of the groundwater system. The simulations will be used to assess the validity of the proposed conceptual model and highlight the uncertainties in hydraulic properties of the aquifer. The uncertainties will be quantified by sensitivity analyses on various model parameters. Within the limitations of the conceptual model and the computer simulations, conclusions will be drawn regarding potential radionuclide migration from the three underground nuclear tests.

  18. Seamonster: A Smart Sensor Web in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Heavner, M. J.; Hood, E.; Connor, C.; Nagorski, S.

    2006-12-01

    The NASA Research Opportunities in Space and Earth Science (ROSES) program is supporting a wireless sensor network project as part of its Advanced Information Systems Technology "Smart Sensor Web" initiative. The project, entitled Seamonster (for SouthEast Alaska MONitoring Network for Science, Telecomm, and Education Research) is led by the University of Alaska Southeast (Juneau) in collaboration with Microsoft- Vexcel in Boulder Colorado. This paper describes both the data acquisition components and science research objectives of Seamonster. The underlying data acquisition concept is to facilitate geophysics data acquisition by providing a wireless backbone for data recovery. Other researchers would be encouraged to emplace their own sensors together with short-range wireless (ZigBee, Bluetooth, etc). Through a common protocol the backbone will receive data from these sensors and relay them to a wired server. This means that the investigator can receive their data via email on a daily basis thereby cutting cost and monitoring sensor health. With environmental hardening and fairly high bandwidth and long range (100kbps/50km to 5mpbs/15km per hop) the network is intended to cover large areas and operate in harsh environments. Low power sensors and intelligent power management within the backbone are the dual ideas to contend with typical power/cost/data dilemmas. Seamonster science will focus over the next three years on hydrology and glaciology in a succession of valleys near Juneau in various stages of deglaciation, in effect providing a synopsis of a millennium-timescale process in a single moment. The instrumentation will include GPS, geophones, digital photography, met stations, and a suite of stream state and water quality sensors. Initial focus is on the Lemon Creek watershed with expansion to follow in subsequent years. The project will ideally expand to include marine and biological monitoring components.

  19. Digital release of the Alaska Quaternary fault and fold database

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Farrell, R.; Burns, P.; Combellick, R. A.; Weakland, J. R.

    2011-12-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) has designed a Quaternary fault and fold database for Alaska in conformance with standards defined by the U.S. Geological Survey for the National Quaternary fault and fold database. Alaska is the most seismically active region of the United States, however little information exists on the location, style of deformation, and slip rates of Quaternary faults. Thus, to provide an accurate, user-friendly, reference-based fault inventory to the public, we are producing a digital GIS shapefile of Quaternary fault traces and compiling summary information on each fault. Here, we present relevant information pertaining to the digital GIS shape file and online access and availability of the Alaska database. This database will be useful for engineering geologic studies, geologic, geodetic, and seismic research, and policy planning. The data will also contribute to the fault source database being constructed by the Global Earthquake Model (GEM), Faulted Earth project, which is developing tools to better assess earthquake risk. We derived the initial list of Quaternary active structures from The Neotectonic Map of Alaska (Plafker et al., 1994) and supplemented it with more recent data where available. Due to the limited level of knowledge on Quaternary faults in Alaska, pre-Quaternary fault traces from the Plafker map are shown as a layer in our digital database so users may view a more accurate distribution of mapped faults and to suggest the possibility that some older traces may be active yet un-studied. The database will be updated as new information is developed. We selected each fault by reviewing the literature and georegistered the faults from 1:250,000-scale paper maps contained in 1970's vintage and earlier bedrock maps. However, paper map scales range from 1:20,000 to 1:500,000. Fault parameters in our GIS fault attribute tables include fault name, age, slip rate, slip sense, dip direction, fault line type

  20. 77 FR 13683 - Alaska Federal Lands Long Range Transportation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Federal Highway Administration Alaska Federal Lands Long Range Transportation Plan AGENCY: Federal Highway..., announced the availability of the draft Alaska Federal Lands Long Range Transportation Plans (LRTP) for... Alaska Federal Lands draft Long Range Transportation Plans. The draft Plans are available on our...

  1. Alaska Native Population and Manpower: 1975. A Report.

    ERIC Educational Resources Information Center

    Bland, Laurel L.

    Numbering approximately 62,005 and representing 15.3% of the total Alaska population in 1975, Alaska Natives are a finite and predominately rural subpopulation. However, a significant portion of the Alaska Native Work Force (estimated at 13,854) now resides in the major urban areas and is available to the Statewide Work Force. Statistics from May,…

  2. 50 CFR 18.94 - Pacific walrus (Alaska).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Pacific walrus (Alaska). 18.94 Section 18... Marine Mammal Species § 18.94 Pacific walrus (Alaska). (a) Pursuant to sections 101(a)(3)(A) 103, and 109... walrus (Odobenus rosmarus) in waters or on lands subject to the jurisdiction of the State of Alaska,...

  3. 50 CFR 18.94 - Pacific walrus (Alaska).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Pacific walrus (Alaska). 18.94 Section 18... Marine Mammal Species § 18.94 Pacific walrus (Alaska). (a) Pursuant to sections 101(a)(3)(A) 103, and 109... walrus (Odobenus rosmarus) in waters or on lands subject to the jurisdiction of the State of Alaska,...

  4. 50 CFR 18.94 - Pacific walrus (Alaska).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Pacific walrus (Alaska). 18.94 Section 18... Marine Mammal Species § 18.94 Pacific walrus (Alaska). (a) Pursuant to sections 101(a)(3)(A) 103, and 109... walrus (Odobenus rosmarus) in waters or on lands subject to the jurisdiction of the State of Alaska,...

  5. 24 CFR 598.515 - Alaska and Hawaii.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 3 2013-04-01 2013-04-01 false Alaska and Hawaii. 598.515 Section 598.515 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....515 Alaska and Hawaii. A nominated area in Alaska or Hawaii is deemed to satisfy the criteria...

  6. 24 CFR 598.515 - Alaska and Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 3 2014-04-01 2013-04-01 true Alaska and Hawaii. 598.515 Section 598.515 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....515 Alaska and Hawaii. A nominated area in Alaska or Hawaii is deemed to satisfy the criteria...

  7. 24 CFR 598.515 - Alaska and Hawaii.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false Alaska and Hawaii. 598.515 Section 598.515 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....515 Alaska and Hawaii. A nominated area in Alaska or Hawaii is deemed to satisfy the criteria...

  8. 24 CFR 598.515 - Alaska and Hawaii.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Alaska and Hawaii. 598.515 Section 598.515 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....515 Alaska and Hawaii. A nominated area in Alaska or Hawaii is deemed to satisfy the criteria...

  9. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  10. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  11. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  12. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  13. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  14. A History of Schooling for Alaska Native People.

    ERIC Educational Resources Information Center

    Barnhardt, Carol

    2001-01-01

    Reviews the geographic and demographic contexts of Alaska schooling, federal policies that have affected education in Alaska, and the evolution of schooling for Alaska Native people. Describes the development of a dual federal/territorial system of schools, the initiation of federal and state reform efforts, Native-sponsored educational…

  15. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Alaska wildlife areas. 3101.5-3 Section... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations....

  16. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Alaska wildlife areas. 3101.5-3 Section... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations....

  17. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Alaska wildlife areas. 3101.5-3 Section... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations....

  18. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Alaska wildlife areas. 3101.5-3 Section... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations....

  19. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  20. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  1. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  2. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  3. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  4. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska final report

    SciTech Connect

    Wright, Bruce Albert

    2014-05-07

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data

  5. Rural Energy Conference Project

    SciTech Connect

    Dennis Witmer; Shannon Watson

    2008-12-31

    Alaska remains, even at the beginning of the 21st century, a place with many widely scattered, small, remote communities, well beyond the end of both the road system and the power grid. These communities have the highest energy costs of any place in the United States, despite the best efforts of the utilities that service them. This is due to the widespread dependence on diesel electric generators, which require small capital investments, but recent increases in crude oil prices have resulted in dramatic increases in the cost of power. In the enabling legislation for the Arctic Energy Office in 2001, specific inclusion was made for the study of ways of reducing the cost of electrical power in these remote communities. As part of this mandate, the University of Alaska has, in conjunction with the US Department of Energy, the Denali Commission and the Alaska Energy Authority, organized a series of rural energy conferences, held approximately every 18 months. The goal of these meeting was to bring together rural utility operators, rural community leaders, government agency representatives, equipment suppliers, and researchers from universities and national laboratories to discuss the current state of the art in rural power generation, to discuss current projects, including successes as well as near successes. Many of the conference presenters were from industry and not accustomed to writing technical papers, so the typical method of organizing a conference by requesting abstracts and publishing proceedings was not considered viable. Instead, the organizing committee solicited presentations from appropriate individuals, and requested that (if they were comfortable with computers) prepare Power point presentations that were collected and posted on the web. This has become a repository of many presentations, and may be the best single source of information about current projects in the state of Alaska.

  6. Geologic framework of the Aleutian arc, Alaska

    USGS Publications Warehouse

    Vallier, Tracy L.; Scholl, David W.; Fisher, Michael A.; Bruns, Terry R.; Wilson, Frederic H.; von Huene, Roland E.; Stevenson, Andrew J.

    1994-01-01

    The Aleutian arc is the arcuate arrangement of mountain ranges and flanking submerged margins that forms the northern rim of the Pacific Basin from the Kamchatka Peninsula (Russia) eastward more than 3,000 km to Cooke Inlet (Fig. 1). It consists of two very different segments that meet near Unimak Pass: the Aleutian Ridge segment to the west and the Alaska Peninsula-the Kodiak Island segment to the east. The Aleutian Ridge segment is a massive, mostly submerged cordillera that includes both the islands and the submerged pedestal from which they protrude. The Alaska Peninsula-Kodiak Island segment is composed of the Alaska Peninsula, its adjacent islands, and their continental and insular margins. The Bering Sea margin north of the Alaska Peninsula consists mostly of a wide continental shelf, some of which is underlain by rocks correlative with those on the Alaska Peninsula.There is no pre-Eocene record in rocks of the Aleutian Ridge segment, whereas rare fragments of Paleozoic rocks and extensive outcrops of Mesozoic rocks occur on the Alaska Peninsula. Since the late Eocene, and possibly since the early Eocene, the two segments have evolved somewhat similarly. Major plutonic and volcanic episodes, however, are not synchronous. Furthermore, uplift of the Alaska Peninsula-Kodiak Island segment in late Cenozoic time was more extensive than uplift of the Aleutian Ridge segment. It is probable that tectonic regimes along the Aleutian arc varied during the Tertiary in response to such factors as the directions and rates of convergence, to bathymetry and age of the subducting Pacific Plate, and to the volume of sediment in the Aleutian Trench.The Pacific and North American lithospheric plates converge along the inner wall of the Aleutian trench at about 85 to 90 mm/yr. Convergence is nearly at right angles along the Alaska Peninsula, but because of the arcuate shape of the Aleutian Ridge relative to the location of the plates' poles of rotation, the angle of convergence

  7. Earthquake Hazard and Risk in Alaska

    NASA Astrophysics Data System (ADS)

    Black Porto, N.; Nyst, M.

    2014-12-01

    Alaska is one of the most seismically active and tectonically diverse regions in the United States. To examine risk, we have updated the seismic hazard model in Alaska. The current RMS Alaska hazard model is based on the 2007 probabilistic seismic hazard maps for Alaska (Wesson et al., 2007; Boyd et al., 2007). The 2015 RMS model will update several key source parameters, including: extending the earthquake catalog, implementing a new set of crustal faults, updating the subduction zone geometry and reoccurrence rate. First, we extend the earthquake catalog to 2013; decluster the catalog, and compute new background rates. We then create a crustal fault model, based on the Alaska 2012 fault and fold database. This new model increased the number of crustal faults from ten in 2007, to 91 faults in the 2015 model. This includes the addition of: the western Denali, Cook Inlet folds near Anchorage, and thrust faults near Fairbanks. Previously the subduction zone was modeled at a uniform depth. In this update, we model the intraslab as a series of deep stepping events. We also use the best available data, such as Slab 1.0, to update the geometry of the subduction zone. The city of Anchorage represents 80% of the risk exposure in Alaska. In the 2007 model, the hazard in Alaska was dominated by the frequent rate of magnitude 7 to 8 events (Gutenberg-Richter distribution), and large magnitude 8+ events had a low reoccurrence rate (Characteristic) and therefore didn't contribute as highly to the overall risk. We will review these reoccurrence rates, and will present the results and impact to Anchorage. We will compare our hazard update to the 2007 USGS hazard map, and discuss the changes and drivers for these changes. Finally, we will examine the impact model changes have on Alaska earthquake risk. Consider risk metrics include average annual loss, an annualized expected loss level used by insurers to determine the costs of earthquake insurance (and premium levels), and the

  8. 77 FR 4290 - TransCanada Alaska Company, LLC; Notice of Public Scoping Meeting for the Planned Alaska Pipeline...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission TransCanada Alaska Company, LLC; Notice of Public Scoping Meeting for the... cancelled on January 4, 2012, because TransCanada Alaska Company, LLC (TC Alaska) had not filed its...

  9. 76 FR 78642 - TransCanada Alaska Company, LLC; Notice of Public Scoping Meetings for the Planned Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... Federal Energy Regulatory Commission TransCanada Alaska Company, LLC; Notice of Public Scoping Meetings... would transport gas produced on the Alaska North Slope to the Alaska-Canada border to connect with a pipeline system in Canada for onward delivery to markets in North America. The APP is being...

  10. 76 FR 33171 - Fisheries of the Exclusive Economic Zone Off Alaska; Alaska Plaice in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Economic Zone Off Alaska; Alaska Plaice in the Bering Sea and Aleutian Islands Management Area AGENCY... Bering Sea and Aleutian Islands management area (BSAI). This action is necessary to prevent exceeding the 2011 Alaska plaice total allowable catch (TAC) specified for the BSAI. DATES: Effective 1200...

  11. 76 FR 33172 - Fisheries of the Exclusive Economic Zone Off Alaska; Alaska Plaice in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Economic Zone Off Alaska; Alaska Plaice in the Bering Sea and Aleutian Islands Management Area AGENCY... of the non-specified reserve to the initial total allowable catch of Alaska plaice in the Bering Sea and Aleutian Islands management area (BSAI). This action is necessary to allow the fisheries...

  12. Alaska Native Languages: A Bibliographical Catalogue. Part One: Indian Languages. Alaska Native Language Center Research Papers, Number 3.

    ERIC Educational Resources Information Center

    Krauss, Michael E.; McGary, Mary Jane

    This catalogue describes Alaska native language materials at the research library and archive of the Alaska Native Language Center, University of Alaska, Fairbanks. The volume covers the sections of the library devoted to Indian languages as well as the general and bibliography sections. Since the collection is almost exhaustive, the catalogue is…

  13. Alaska climate divisions based on objective methods

    NASA Astrophysics Data System (ADS)

    Angeloff, H.; Bieniek, P. A.; Bhatt, U. S.; Thoman, R.; Walsh, J. E.; Daly, C.; Shulski, M.

    2010-12-01

    Alaska is vast geographically, is located at high latitudes, is surrounded on three sides by oceans and has complex topography, encompassing several climate regions. While climate zones exist, there has not been an objective analysis to identify regions of homogeneous climate. In this study we use cluster analysis on a robust set of weather observation stations in Alaska to develop climate divisions for the state. Similar procedures have been employed in the contiguous United States and other parts of the world. Our analysis, based on temperature and precipitation, yielded a set of 10 preliminary climate divisions. These divisions include an eastern and western Arctic (bounded by the Brooks Range to the south), a west coast region along the Bering Sea, and eastern and western Interior regions (bounded to the south by the Alaska Range). South of the Alaska Range there were the following divisions: an area around Cook Inlet (also including Valdez), coastal and inland areas along Bristol Bay including Kodiak and Lake Iliamna, the Aleutians, and Southeast Alaska. To validate the climate divisions based on relatively sparse station data, additional sensitivity analysis was performed. Additional clustering analysis utilizing the gridded North American Regional Reanalysis (NARR) was also conducted. In addition, the divisions were evaluated using correlation analysis. These sensitivity tests support the climate divisions based on cluster analysis.

  14. History of petroleum development in Arctic Alaska

    SciTech Connect

    Gryc, G. )

    1991-03-01

    Long before recorded history, tar from oil seepages and oil shale that burned like wood were used for fuel by the Inuit (native people of Arctic Alaska). The first published descriptions of these oil seepages that identified Arctic Alaska as a petroliferous province appeared in 1909. In 1921, several applications for prospecting permits were filed by private groups under the old mining laws, but the permits were never issued. In 1923, President Harding set aside about half of the North Slope of Alaska, including most of the seepage areas, as Naval Petroleum Reserve No. 4. This was followed by three periods of federally sponsored exploration programs in the reserve and the adjoining areas during the periods 1923 to 1926, 1944 to 1952, and 1974 to 1982. Noncommercial oil and gas deposits were discovered in the reserve, the gas deposits at Barrow were developed for local use, and the feasibility of petroleum exploration and development in the Arctic was established. Industry exploration began in 1958 when the lands adjacent to the reserve were opened for lease. Prudhoe Bay, North America's largest oil field, was discovered in 1968. The history of petroleum development in Arctic Alaska provides an interesting study of the building of a geologic, geographic, and logistic base, of the lead time required for resource exploitation, of the interaction of government and industry, and of the expansion of the US resource base during a time of expanding ecologic awareness. Petroleum exploration in the Canadian Arctic region was stimulated by the activity across the border in Alaska.

  15. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Science and Implementation Plan

    SciTech Connect

    Biraud, S

    2015-05-01

    Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO₂ and/or CH₄) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols, and cloud properties at the North Slope of Alaska are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections.

  16. Enabling Scientific and Technological Improvements to Meet Core Partner Service Requirements in Alaska - An Arctic Test Bed

    NASA Astrophysics Data System (ADS)

    Petrescu, E. M.; Scott, C. A.

    2014-12-01

    NOAA/NWS Test beds, such as the Joint Hurricane Test Bed (Miami, FL) and the Hazardous Weather Test Bed (Norman, OK) have been highly effective in meeting unique or pressing science and service challenges for the NWS. NWS Alaska Region leadership has developed plans for a significant enhancement to our operational forecast and decision support capabilities in Alaska to address the emerging requirements of the Arctic: An Arctic Test Bed. Historically, the complexity of forecast operations and the inherent challenges in Alaska have not been addressed well by the R&D programs and projects that support the CONUS regions of the NWS. In addition, there are unique science,technology, and support challenges (e.g., sea ice forecasts and arctic drilling prospects) and opportunities (Bilateral agreements with Canada, Russia, and Norway) that would best be worked through Alaska operations. A dedicated test bed will provide a mechanism to transfer technology, research results, and observations advances into operations in a timely and effective manner in support of Weather Ready Nation goals and to enhance decision support services in Alaska. A NOAA Arctic Test Bed will provide a crucial nexus for ensuring NOAA's developers understand Alaska's needs, which are often cross disciplinary (atmosphere, ocean, cryosphere, and hydrologic), to improve NOAA's responsiveness to its Arctic-related science and service priorities among the NWS and OAR (CPO and ESRL), and enable better leveraging of other research initiatives and data sources external to NOAA, including academia, other government agencies, and the private sector, which are particular to the polar region (e.g., WWRP Polar Prediction Project). Organization, capabilities and opportunities will be presentation.

  17. Research drilling at Katmai, Alaska

    NASA Astrophysics Data System (ADS)

    Eichelberger, John C.; Hildreth, Wes

    1986-10-01

    Drilling observations made in a young igneous system following a single, recent, well-described volcanic event can greatly improve our understanding of magmatic and hydrothermal processes and of the rates at which these processes operate. A group of geoscientists (Table 1) has been working since May 1985 to formulate and advance a plan for research at the site of the historically important 1912 eruption at Katmai, Alaska, as part of the Continental Scientific Drilling Program (CSDP). The plan was presented at the June 12-13, 1986, CSDP Workshop, held in Rapid City, S.Dak., and has now entered a more formal proposal development stage for consideration by the U.S. Department of Energy, National Science Foundation, and U.S. Geological Survey as an interagency effort. This report is provided to inform the geoscience community of the rationale for CSDP research at Katmai and of the forthcoming opportunities for participation in this multidisciplinary effort in the field of magmatic processes.

  18. Southeastern Alaska tectonostratigraphic terranes revisited

    SciTech Connect

    Brew, D.A.; Ford, A.B.

    1985-04-01

    The presence of only three major tectonostratigraphic terranes (TSTs) in southeastern Alaska and northwestern British Columbia (Chugach, Wrangell, and Alexander) is indicated by critical analysis of available age, stratigraphic, and structural data. A possible fourth TST (Stikine) is probably an equivalent of part or all of the Alexander. The Yakutat block belongs to the Chugach TST, and both are closely linked to the Wrangell and Alexander(-Stikine) TSTs; the Gravina TST is an overlap assemblage. THe Alexander(-Stikine) TSTs is subdivided on the basis of age and facies. The subterranes within it share common substrates and represent large-scale facies changes in a long-lived island-arc environment. The Taku TSTs is the metamorphic equivalent of the upper part (Permian and Upper Triassic) of the Alexander(-Stikine) TSTs with some fossil evidence preserved that indicates the age of protoliths. Similarly, the Tracy Arm TST is the metamorphic equivalent of (1) the lower (Ordovician to Carboniferous) Alexander TST without any such fossil evidence and (2) the upper (Permian to Triassic) Alexander(-Stikine) with some newly discovered fossil evidence. Evidence for the ages of juxtaposition of the TSTs is limited. The Chugach TST deformed against the Wrangell and Alexander TSTs in late Cretaceous. Gravina rocks were deformed at the time and also earlier. The Wrangell TST was stitched to the Alexander(-Stikine) by middle Cretaceous plutons but may have arrived before its Late Jurassic plutons were emplaced. The Alexander(-Stikine) and Cache Creek TSTs were juxtaposed before Late Triassic.

  19. Amchitka, Alaska Site Fact Sheet

    SciTech Connect

    2011-12-15

    Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation.

  20. Moose soup shigellosis in Alaska.

    PubMed Central

    Gessner, B D; Beller, M

    1994-01-01

    Following a community gathering held in early September 1991, an outbreak of gastroenteritis occurred in Galena, Alaska. We conducted an epidemiologic investigation to determine the cause of the outbreak. A case of gastroenteritis was defined as diarrhea or at least 2 other symptoms of gastrointestinal illness occurring in a Galena resident within a week of the gathering. Control subjects included asymptomatic residents who either resided with an affected person or were contacted by us during a telephone survey. Of 25 case-patients, 23 had attended the gathering compared with 33 of 58 controls. Among persons who attended the gathering and from whom we obtained a food consumption history, 17 of 19 case-patients and 11 of 22 controls ate moose soup. No other foods served at the gathering were associated with illness. Ten case-patients had culture-confirmed Shigella sonnei. Many pots of moose soup were served each day, and persons attended the gathering and ate moose soup on more than 1 day. Moose soup was prepared in private homes, allowed to cool, and usually served the same day. We identified 5 women who had prepared soup for the gathering and in whose homes at least 1 person had a gastrointestinal illness occur at the time of or shortly before soup preparation. This investigation suggests that eating contaminated moose soup at a community gathering led to an outbreak of shigellosis and highlights the risk of eating improperly prepared or stored foods at public gatherings. PMID:8048226

  1. Correlation of tertiary formations of Alaska

    USGS Publications Warehouse

    MacNeil, F.S.; Wolfe, J.A.; Miller, D.J.; Hopkins, D.M.

    1961-01-01

    Recent stratigraphic and paleontologic studies have resulted in substantial revision of the age assignments and inter-basin correlations of the Tertiary formations of Alaska as given in both an earlier compilation by P. S. Smith (1939) and a tentative chart prepared for distribution at the First International Symposium on Arctic Geology at Calgary, Alberta (Miller, MacNeil, and Wahrhaftig, 1960). Current work in Alaska by the U. S. Geological Survey and several oil companies is furnishing new information at a rapid rate and further revisions may be expected. The correlation chart (Fig. 1), the first published chart to deal exclusively with the Tertiary of Alaska, had the benefit of a considerable amount of stratigraphic data and fossil collections from some oil companies, but recent surface mapping and drilling by other oil companies in several Tertiary basins undoubtedly must have produced much more information. Nevertheless, the extent of available data justifies the publication of a revised correlation chart at this time.

  2. First regional super ESPC a success on Kodiak Island, Alaska

    SciTech Connect

    Epstein, K.

    2000-12-23

    The Coast Guard military base on Kodiak Island, Alaska, is the largest Coast Guard base in the world. By taking a leadership role in a pilot program to streamline Federal financing and procurement for energy saving projects, the Coast Guard is saving more than $220,000 a year in energy costs at this base. Using the Super ESPC (Energy Savings Performance Contracting) program, the Coast Guard was able to quickly contract with an experienced contractor with energy savings expertise. Working with ERI, one of FEMP's (Federal Energy Management Program) approved energy services contractors, the Coast Guard determined areas of potential energy savings and designed a retrofit to upgrade inefficient equipment and infrastructure. When energy-efficient modifications are complete, the base will be 30% more cost effective.

  3. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  4. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope

    USGS Publications Warehouse

    Collett, T.S.; Lee, M.W.; Agena, W.F.; Miller, J.J.; Lewis, K.A.; Zyrianova, M.V.; Boswell, R.; Inks, T.L.

    2011-01-01

    In the 1960s Russian scientists made what was then a bold assertion that gas hydrates should occur in abundance in nature. Since this early start, the scientific foundation has been built for the realization that gas hydrates are a global phenomenon, occurring in permafrost regions of the arctic and in deep water portions of most continental margins worldwide. In 1995, the U.S. Geological Survey made the first systematic assessment of the in-place natural gas hydrate resources of the United States. That study suggested that the amount of gas in the gas hydrate accumulations of northern Alaska probably exceeds the volume of known conventional gas resources on the North Slope. Researchers have long speculated that gas hydrates could eventually become a producible energy resource, yet technical and economic hurdles have historically made gas hydrate development a distant goal. This view began to change in recent years with the realization that this unconventional resource could be developed with existing conventional oil and gas production technology. One of the most significant developments was the completion of the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope, which along with the Mallik project in Canada, have for the first time allowed the rational assessment of gas hydrate production technology and concepts. Almost 40 years of gas hydrate research in northern Alaska has confirmed the occurrence of at least two large gas hydrate accumulations on the North Slope. We have also seen in Alaska the first ever assessment of how much gas could be technically recovered from gas hydrates. However, significant technical concerns need to be further resolved in order to assess the ultimate impact of gas hydrate energy resource development in northern Alaska. ?? 2009 Elsevier Ltd.

  5. Regional Observations of Alaska Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Burgess, E. W.; Forster, R. R.; Hall, D. K.

    2010-12-01

    Alaska glaciers contribute more to sea level rise than any other glacierized mountain region in the world. Alaska is loosing ~84 Gt of ice annually, which accounts for ~0.23 mm/yr of SLR (Luthcke et al., 2008). Complex glacier flow dynamics, frequently related to tidewater environments, is the primary cause of such rapid mass loss (Larsen et al., 2007). Indirect observations indicate these complex flow dynamics occur on many glaciers throughout Alaska, but no comprehensive velocity measurements exist. We are working to measure glacier surface velocities throughout Alaska using synthetic aperture radar (SAR) offset tracking. This work focuses on the Seward/Malaspina, Bering, Columbia, Kaskawulsh, and Hubbard Glaciers and uses a MODIS land surface temperature "melt-day" product (Hall et al., 2006, 2008) to identify potential links between velocity variability and summertime temperature fluctuations. Hall, D., R. Williams Jr., K. Casey, N. DiGirolamo, and Z. Wan (2006), Satellite-derived, melt-season surface temperature of the Greenland Ice Sheet (2000-2005) and its relationship to mass balance, Geophysical Research Letters, 33(11). Hall, D., J. Box, K. Casey, S. Hook, C. Shuman, and K. Steffen (2008), Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland, Remote Sensing of Environment, 112(10), 3739-3749. Larsen, C. F., R. J. Motyka, A. A. Arendt, K. A. Echelmeyer, and P. E. Geissler (2007), Glacier changes in southeast Alaska and northwest British Columbia and contribution to sea level rise, J. Geophys. Res. Luthcke, S., A. Arendt, D. Rowlands, J. McCarthy, and C. Larsen (2008), Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions, Journal of Glaciology, 54(188), 767-777.

  6. Identifying the main drivers of soil carbon response to climate change in arctic and boreal Alaska.

    NASA Astrophysics Data System (ADS)

    Genet, H.; McGuire, A. D.; He, Y.; Johnson, K.; Wylie, B. K.; Pastick, N. J.; Zhuang, Q.; Zhu, Z.

    2015-12-01

    Boreal and arctic regions represent the largest reservoir of carbon among terrestrial biomes. Most of this carbon is stored deep in the soil in permafrost where frozen organic matter is protected from decomposition. The vulnerability of soil carbon stocks to a changing climate in high latitudes depends on a number of physical and ecological processes. The importance of these processes in controlling the dynamics of soil carbon stocks vary across regions because of variability in vegetation composition, drainage condition, and permafrost characteristics. To better understand the main drivers of the vulnerability of soil carbon stocks to climate change in Alaska, we ran a process-based ecosystem model, the Terrestrial Ecosystem Model. This model explicitly simulates interactions between the carbon cycle and permafrost dynamics and was coupled with a disturbance model and a model of biogenic methane dynamics to assess historical and projected soil carbon dynamics in Alaska, from 1950 to 2100. The uncertainties related to climate, fire regime and atmospheric CO2projections on soil carbon dynamics were quantified by running simulations using climate projections from 2 global circulation models, 3 fossil fuel emission scenarios and 3 alternative fire management scenarios. During the historical period [1950-2009], soil carbon stocks increased by 4.7 TgC/yr in Alaska. Soil carbon stocks decreased in boreal Alaska due to substantial fire activity in the early 2000's. This loss was offset by carbon accumulation in the arctic. Changes in soil carbon stocks from 2010 to 2099 ranged from 8.9 to 25.6 TgC/yr, depending on the climate projections. Soil carbon accumulation was slower in lowlands than in uplands and slower in the boreal than in the arctic regions because of the negative effect of fire activity on soil carbon stocks. Tundra ecosystems were more vulnerable to carbon loss from fire than forest ecosystems because of a lower productivity. As a result, the increase in

  7. Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.

    1996-01-01

    During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).

  8. S. 737: A Bill to extend the deadlines applicable to certain hydroelectric projects, and for other purposes. Introduced in the Senate of the United States, One Hundred Fourth Congress, First session

    SciTech Connect

    1995-12-31

    This bill was proposed to extend the deadlines applicable to certain hydroelectric projects, and for other purposes. The bill proposes extending the deadlines applying to certain hydroelectric projects in West Virginia, Kentucky, Washington, Oregon, and Arkansas. It proposes limited exemptions for licensing provisions for a power transmission project in New Mexico, extends Alaska`s state jurisdiction over small hydroelectric projects in the state, and amends the jurisdiction of FERC for licensing fresh water hydroelectric projects in Hawaii.

  9. Digital Shaded-Relief Image of Alaska

    USGS Publications Warehouse

    Riehle, J.R.; Fleming, Michael D.; Molnia, B.F.; Dover, J.H.; Kelley, J.S.; Miller, M.L.; Nokleberg, W.J.; Plafker, George; Till, A.B.

    1997-01-01

    Introduction One of the most spectacular physiographic images of the conterminous United States, and the first to have been produced digitally, is that by Thelin and Pike (USGS I-2206, 1991). The image is remarkable for its crispness of detail and for the natural appearance of the artificial land surface. Our goal has been to produce a shaded-relief image of Alaska that has the same look and feel as the Thelin and Pike image. The Alaskan image could have been produced at the same scale as its lower 48 counterpart (1:3,500,000). But by insetting the Aleutian Islands into the Gulf of Alaska, we were able to print the Alaska map at a larger scale (1:2,500,000) and about the same physical size as the Thelin and Pike image. Benefits of the 1:2,500,000 scale are (1) greater resolution of topographic features and (2) ease of reference to the U.S. Geological Survey (USGS) (1987) Alaska Map E and the statewide geologic map (Beikman, 1980), which are both 1:2,500,000 scale. Manually drawn, shaded-relief images of Alaska's land surface have long been available (for example, Department of the Interior, 1909; Raisz, 1948). The topography depicted on these early maps is mainly schematic. Maps showing topographic contours were first available for the entire State in 1953 (USGS, 1:250,000) (J.H. Wittmann, USGS, written commun., 1996). The Alaska Map E was initially released in 1954 in both planimetric (revised in 1973 and 1987) and shaded-relief versions (revised in 1973, 1987, and 1996); topography depicted on the shaded-relief version is based on the 1:250,000-scale USGS topographic maps. Alaska Map E was later modified to include hypsometric tinting by Raven Maps and Images (1989, revised 1993) as copyrighted versions. Other shaded-relief images were produced for The National Geographic Magazine (LaGorce, 1956; 1:3,000,000) or drawn by Harrison (1970; 1:7,500,000) for The National Atlas of the United States. Recently, the State of Alaska digitally produced a shaded-relief image

  10. Deep-seated gravitational slope deformations near the Trans-Alaska Pipeline, east-central Alaska Range, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Newman, S. D.; Clague, J. J.; Rabus, B.; Stead, D.

    2013-12-01

    Multiple, active, deep-seated gravitational slope deformations (DSGSD) are present near the Trans-Alaska Pipeline and Richardson Highway in the east-central Alaska Range, Alaska, USA. We documented spatial and temporal variations in rates of surface movement of the DSGSDs between 2003 and 2011 using RADARSAT-1 and RADARSAT-2 D-InSAR images. Deformation rates exceed 10 cm/month over very large areas (>1 km2) of many rock slopes. Recent climatic change and strong seismic shaking, especially during the 2002 M 7.9 Denali Fault earthquake, appear to have exacerbated slope deformation. We also mapped DSGSD geological and morphological characteristics using field- and GIS-based methods, and constructed a conceptual 2D distinct-element numerical model of one of the DSGSDs. Preliminary results indicate that large-scale buckling or kink-band slumping may be occurring. The DSGSDs are capable of generating long-runout landslides that might impact the Trans-Alaska Pipeline and Richardson Highway. They could also block tributary valleys, thereby impounding lakes that might drain suddenly. Wrapped 24-day RADARSAT-2 descending spotlight interferogram showing deformation north of Fels Glacier. The interferogram is partially transparent and is overlaid on a 2009 WorldView-1 panchromatic image. Acquisition interval: August 2 - August 26, 2011. UTM Zone 6N.

  11. Birds and Wetlands of Alaska. Alaska Sea Week Curriculum Series. Alaska Sea Grant Report 88-1.

    ERIC Educational Resources Information Center

    King, James G.; King, Mary Lou

    This curriculum guide is the fourth (Series V) in a six-volume set that comprises the Sea Week Curriculum Series developed in Alaska. Twelve units contain 45 activities with worksheets that cover the following topics: (1) bird lists and field guides; (2) definitions of a bird; (3) parts of a bird; (4) bird watching; (5) bird migration; (6) wetland…

  12. Characteristics of Small-scale Gravity Wave Propagation in the Mesopause Region over Alaska

    NASA Astrophysics Data System (ADS)

    Kubota, M.; Yamaguchi, Y.; Kawamura, S.; Murayama, Y.; Kita, K.

    2014-12-01

    We investigated characteristics of the atmospheric gravity waves (AGWs) propagation using sodium airglow images obtained by an all-sky imager installed at Poker Flat Research Range (65.1N, 147.4W, MLAT 65.6) in Alaska. In this study, we developed data analysis programs which automatically derive the unambiguous 2-D power spectrum from the sodium airglow images, using a method by Coble et al. (1998). The power spectrums of the AGWs which have horizontal wavelengths between 2 - 400 km and periods up to 8 hours were obtained by these programs. Statistical study of the AGW data and mesospheric wind data by an MF radar during two winter seasons from October 2000 to April 2002 indicates the following characteristics. - During these periods, the AGW dominantly propagated westward in the zonal direction. - The meridional propagation direction frequently changed. This change seems to be explained by filtering effect by the mesospheric wind. - Total power of the AGW increased in December and January. In this paper, we discuss the relationship between these characteristics of the AGW propagation and unique phenomena in high-latitude region such as auroral precipitation. Acknowledgements This work is conducted as a part of "Alaska Project", the cooperative research project between NICT and Geophysical Institute of University of Alaska. Reference Coble, M. R., G. C. Papen, and C. S. Gardner, Computing two-dimensional unambiguous horizontal wavenumber spectra from OH airglow images, IEEE Trans. Geosci. and Remote Sens., 36, 368--382, 1998.

  13. Collaborative Sounding Rocket launch in Alaska and Development of Hybrid Rockets

    NASA Astrophysics Data System (ADS)

    Ono, Tomohisa; Tsutsumi, Akimasa; Ito, Toshiyuki; Kan, Yuji; Tohyama, Fumio; Nakashino, Kyouichi; Hawkins, Joseph

    Tokai University student rocket project (TSRP) was established in 1995 for a purpose of the space science and engineering hands-on education, consisting of two space programs; the one is sounding rocket experiment collaboration with University of Alaska Fairbanks and the other is development and launch of small hybrid rockets. In January of 2000 and March 2002, two collaborative sounding rockets were successfully launched at Poker Flat Research Range in Alaska. In 2001, the first Tokai hybrid rocket was successfully launched at Alaska. After that, 11 hybrid rockets were launched to the level of 180-1,000 m high at Hokkaido and Akita in Japan. Currently, Tokai students design and build all parts of the rockets. In addition, they are running the organization and development of the project under the tight budget control. This program has proven to be very effective in providing students with practical, real-engineering design experience and this program also allows students to participate in all phases of a sounding rocket mission. Also students learn scientific, engineering subjects, public affairs and system management through experiences of cooperative teamwork. In this report, we summarize the TSRP's hybrid rocket program and discuss the effectiveness of the program in terms of educational aspects.

  14. From Texas to Alaska: Leading Hearing Impaired Elementary Students in Texas to Engage in Science of the Northern Lights Performed in Alaska.

    NASA Astrophysics Data System (ADS)

    Jahn, J. M.; Ibarra, S.; Pfeifer, M. D.; Samara, M.; Michell, R.

    2014-12-01

    Interacting with hearing impaired students who communicate using auditory/oral methods provides challenges and opportunities to education/outreach activities. Despite many advances in assistive technologies, these hearing impaired students will learn much less incidentally than their peers with typical hearing. In other words, they will often require repeated auditory and perhaps visual reinforcement in order to learn a new word or a new concept. This need leads to a much more deliberate and conscious interaction between educators or scientists and the students. We are reporting from a unique joint project between the Sunshine Cottage School for Deaf Children and the Southwest Research Institute (SwRI), to bring actual space research to life for hearing impaired elementary school students. During this project, we combined the unique capabilities of Deaf Education educators with the excitement and wonder of researching the northern lights. For three consecutive winters, we conducted a series of informal yet structured activities each year with fourth and fifth grade students. Our interactions went beyond typical classroom activities and readily available educational materials. Our goal was to engage and excite the students. To do so, we set up a series of interactions and mini-projects that introduced the students to actual research and actual researchers. From "meet the scientists" visits to school over a field trip to the SwRI space research facilities to observing and predicting the aurora using real-time space weather data, we engaged students in the "who" and "how" of doing research and field work in Alaska's winter. Over the course of this project, students connected with a remote school in the interior of Alaska, participated in the excitement of a NASA sounding rocket campaign in in Poker Flat, AK, skyped with researchers and students in Alaska, and made aurora predictions using NOAA real time space weather data. The highlight of the program each year was

  15. Selected environmental and geohydrologic reports for the Fort Wainwright and Fairbanks areas, Alaska as of July 1995

    USGS Publications Warehouse

    Lilly, M.R.; DePalma, K.L.; Benson, S.L.

    1995-01-01

    As part of its effort to help collect data and gather information for geohydrologic investigations, the U.S. Geological Survey (USGS) collects and reviews environmental and technical reports relating to geology, hydrology, and geohydrology. The USGS investigation efforts are coordinated with ongoing technical investigations by the Water Research Center of the University of Alaska Fairbanks and the U.S. Army Cold Regions Research and Engineering Laboratory. One project objective for Fort Wainwright includes maintaining a library of report references for USGS project use and for use by the U.S. Army, Alaska (USARAK), USARAK contractors, and other Federal and State agencies. This report presents an annotated bibliography of reports relating to the project study area or geohydrologic processes important to investigations in the study area.

  16. Framework for ecological monitoring on lands of Alaska National Wildlife Refuges and their partners

    USGS Publications Warehouse

    Woodward, Andrea; Beever, Erik A.

    2010-01-01

    National Wildlife Refuges in Alaska and throughout the U.S. have begun developing a spatially comprehensive monitoring program to inform management decisions, and to provide data to broader research projects. In an era of unprecedented rates of climate change, monitoring is essential to detecting, understanding, communicating and mitigating climate-change effects on refuge and other resources under the protection of U.S. Fish and Wildlife Service, and requires monitoring results to address spatial scales broader than individual refuges. This document provides guidance for building a monitoring program for refuges in Alaska that meets refuge-specific management needs while also allowing synthesis and summary of ecological conditions at the ecoregional and statewide spatial scales.

  17. Pharmacogenetic research in partnership with American Indian and Alaska Native communities

    PubMed Central

    Woodahl, Erica L; Lesko, Lawrence J; Hopkins, Scarlett; Robinson, Renee F; Thummel, Kenneth E; Burke, Wylie

    2014-01-01

    Pharmacogenetics is a subset of personalized medicine that applies knowledge about genetic variation in gene–drug pairs to help guide optimal dosing. There is a lack of data, however, about pharmacogenetic variation in underserved populations. One strategy for increasing participation of underserved populations in pharmacogenetic research is to include communities in the research process. We have established academic–community partnerships with American Indian and Alaska Native people living in Alaska and Montana to study pharmacogenetics. Key features of the partnership include community oversight of the project, research objectives that address community health priorities, and bidirectional learning that builds capacity in both the community and the research team. Engaging the community as coresearchers can help build trust to advance pharmacogenetic research objectives. PMID:25141898

  18. Combined High-Resolution LIDAR Topography and Multibeam Bathymetry for Northern Resurrection Bay, Seward, Alaska

    USGS Publications Warehouse

    Labay, Keith A.; Haeussler, Peter J.

    2008-01-01

    A new Digital Elevation Model was created using the best available high-resolution topography and multibeam bathymetry surrounding the area of Seward, Alaska. Datasets of (1) LIDAR topography collected for the Kenai Watershed Forum, (2) Seward harbor soundings from the U.S. Army Corp of Engineers, and (3) multibeam bathymetry from the National Oceanic and Atmospheric Administration contributed to the final combined product. These datasets were placed into a common coordinate system, horizontal datum, vertical datum, and data format prior to being combined. The projected coordinate system of Universal Transverse Mercator Zone 6 North American Datum of 1927 was used for the horizontal coordinates. Z-values in meters were referenced to the tidal datum of Mean High Water. Gaps between the datasets were interpolated to create the final seamless 5-meter grid covering the area of interest around Seward, Alaska.

  19. Applicability of the ecosystem type approach to model permafrost dynamics across the Alaska North Slope

    NASA Astrophysics Data System (ADS)

    Nicolsky, D. J.; Romanovsky, V. E.; Panda, S. K.; Marchenko, S. S.; Muskett, R. R.

    2017-01-01

    Thawing and freezing of Arctic soils is affected by many factors, with air temperature, vegetation, snow accumulation, and soil physical properties and soil moisture among the most important. We enhance the Geophysical Institute Permafrost Laboratory model and develop several high spatial resolution scenarios of changes in permafrost characteristics in the Alaskan Arctic in response to observed and projected climate change. The ground thermal properties of surface vegetation and soil column are upscaled using the Ecosystems of Northern Alaska map and temperature data assimilation from the shallow boreholes across the Alaska North Slope. Soil temperature dynamics are simulated by solving the 1-D nonlinear heat equation with phase change, while the snow temperature and thickness are simulated by considering the snow accumulation, compaction, and melting processes. The model is verified by comparing with available active layer thickness at the Circumpolar Active Layer Monitoring sites, permafrost temperature, and snow depth records from existing permafrost observatories in the North Slope region.

  20. The use of targeting techniques with the Global Hawk to improve storm forecasts over Alaska

    NASA Astrophysics Data System (ADS)

    Peevey, T. R.; Wang, H.; Kren, A.; English, J. M.; Cucurull, L.

    2015-12-01

    Unmanned aerial vehicles (UAVs) have been shown to be a useful tool for addressing scientific questions, such as how clouds develop, and mitigating the impact of extreme weather events by providing additional observations in areas sensitive to larger error growth. Targeting techniques are used in this study to design the optimal flight path for the NASA Global Hawk during a planned flight campaign off the coast of Alaska in September 2015 under the Sensing Hazards with Operational Unmanned Technology (SHOUT) project. This technique will be described along with a few case studies we investigated in detail in order to understand the overall patterns of storms over Alaska prior to and in preparation for the real flight campaign. If available, the impact of data collected from the Global Hawk from September's campaign on forecast accuracy will be discussed.

  1. Conceiving a Trans-National Education Project.

    ERIC Educational Resources Information Center

    Zilber, Julie

    2002-01-01

    Four elementary schools in Washington, Alaska, and British Columbia are cooperating on a project to explore issues surrounding the Pacific salmon fisheries. Place-based techniques and interactive media are used to bring together science; global concerns; the histories of Canada, the United States, and First Nations peoples; background on the…

  2. Late Quaternary and Future Biome Simulations for Alaska and Eastern Russia

    NASA Astrophysics Data System (ADS)

    Hendricks, Amy; Walsh, John; Saito, Kazuyuki; Bigelow, Nancy

    2015-04-01

    We simulated Arctic biomes across a region including Alaska and Eastern Russia using the BIOME4 biogeochemical and biogeography vegetation model. BIOME4, which produces an equilibrium vegetation distribution under a given climate condition, was forced by CMIP5/PMIP3 climate data. We are exploring vegetation and permafrost distributions during the last 21,000 years and future projections (2100 C.E.) to gain an understanding of the effects of climate shifts on this complex subsystem. When forced with the baseline modern climatology, compiled from the University of Delaware temperature and precipitation climatology and ERA-40 sunshine data, our biome simulations were generally consistent with current vegetation observations in the study region. Much of the study area was simulated to have evergreen and deciduous taiga and shrub tundras. Paleoclimatological simulations were compared with pollen data samples taken through the study region. Simulations for the Last Glacial Maximum show the Bering Land Bridge covered almost entirely by cushion forb, lichen, and moss tundra, shrub tundra, and graminoid tundra. Three out of the five models' climate data produce evergreen and deciduous taiga in what is now southwestern Alaska. The distributions of cushion forb, lichen, and moss tundra and graminoid tundra differ noticeably between models, however, shrub tundra distributions are generally in agreement. Simulations for the Mid-Holocene are in better agreement on pollen-based distributions of biomes. Shrub tundra is simulated along the Arctic coast, and in some cases along the eastern coast of Russia. All models show evergreen taiga along the southern coast of Russia as well as covering the southern half of present-day Alaska. Deciduous taiga is simulated in the interior regions of eastern Russia and Alaska, though the distributions in Alaska differ between models. Pre-Industrial biome simulations were very similar to Mid-Holocene simulations. Differences include more shrub

  3. The Alaska Journal of Art, 1989.

    ERIC Educational Resources Information Center

    Welter, Cole H., Ed.

    1989-01-01

    The inaugural issue of this annual journal explores issues affecting art education practices in Alaska and seeks to contribute to a national dialogue on art education policy. "Art as General Education" (Harry S. Broudy) addresses the essential value and nature of the arts in general education. It argues for visual arts education as a key…

  4. USGS US topo maps for Alaska

    USGS Publications Warehouse

    Anderson, Becci; Fuller, Tracy

    2014-01-01

    In July 2013, the USGS National Geospatial Program began producing new topographic maps for Alaska, providing a new map series for the state known as US Topo. Prior to the start of US Topo map production in Alaska, the most detailed statewide USGS topographic maps were 15-minute 1:63,360-scale maps, with their original production often dating back nearly fifty years. The new 7.5-minute digital maps are created at 1:25,000 map scale, and show greatly increased topographic detail when compared to the older maps. The map scale and data specifications were selected based on significant outreach to various map user groups in Alaska. This multi-year mapping initiative will vastly enhance the base topographic maps for Alaska and is possible because of improvements to key digital map datasets in the state. The new maps and data are beneficial in high priority applications such as safety, planning, research and resource management. New mapping will support science applications throughout the state and provide updated maps for parks, recreation lands and villages.

  5. The State of Adolescent Health in Alaska.

    ERIC Educational Resources Information Center

    Alaska State Office of the Commissioner, Juneau.

    A survey was conducted to provide a profile of the health status and risk behaviors of youth in Alaska. The goal was to develop a statewide database which, when coupled with morbidity and mortality data, would provide information that would allow those who plan and develop services at state and local levels to better target those services. During…

  6. 14 CFR 99.45 - Alaska ADIZ.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Alaska ADIZ. 99.45 Section 99.45 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SECURITY CONTROL OF AIR TRAFFIC Designated Air Defense...

  7. Discovering Alaska's Salmon: A Children's Activity Book.

    ERIC Educational Resources Information Center

    Devaney, Laurel

    This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…

  8. American Indians and Alaska Natives with Disabilities.

    ERIC Educational Resources Information Center

    Johnson, Marilyn J.

    American Indian and Alaska Native children with special needs experience the same ineffective and inefficient services as other minority language children. This paper discusses the special needs of Native children, assessment and curriculum issues, and recommendations for improvement. It provides statistics for various categories of handicaps and…

  9. 33 CFR 110.232 - Southeast Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ANCHORAGE REGULATIONS Anchorage Grounds § 110.232 Southeast Alaska. (a) The anchorage grounds—(1) Hassler Harbor—explosives anchorage. The waters of Hassler Harbor within a circular area with a radius of 1,500...) Except in an emergency, only a vessel that is transporting, loading or discharging explosives may...

  10. 77 FR 24217 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... Bureau of Land Management Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior...), notice is hereby given that the Bureau of Land Management (BLM) will issue an appealable decision to Iqfijouaq Company. The decision approves for conveyance the surface estate in the lands described...

  11. 50 CFR 17.5 - Alaska natives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS Introduction and General Provisions § 17.5 Alaska... endangered wildlife, and any provision of subpart D of this part relating to the importation or the taking...

  12. 40 CFR 81.302 - Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Unclassifiable/Attainment Barrow Election District Fairbanks N. Star Borough Area other than portion of Fairbanks... 09 Northern Alaska Intrastate Unclassifiable/Attainment Denali Borough Fairbanks North Star Borough... Star Borough Unclassifiable/Attainment. Nome Census Area Unclassifiable/Attainment. North Slope...

  13. 40 CFR 81.302 - Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fairbanks N. Star Borough Area other than portion of Fairbanks urban area designated Nonattainment Kobuk... Denali Borough Fairbanks North Star Borough Nome Census Area North Slope Borough Northwest Arctic Borough... Alaska Intrastate: Denali Borough Unclassifiable/Attainment. Fairbanks North Star Borough...

  14. 40 CFR 81.302 - Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fairbanks N. Star Borough Area other than portion of Fairbanks urban area designated Nonattainment Kobuk... Unclassifiable/Attainment Denali Borough Fairbanks North Star Borough Nome Census Area North Slope Borough... Northern Alaska Intrastate: Denali Borough Unclassifiable/Attainment. Fairbanks North Star...

  15. 78 FR 16527 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-10782, AA-11132, AA-10784, AA-12440, AA-11020, AA-10783, AA-10774; LLAK-944000-L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management,...

  16. 76 FR 5395 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-12252, AA-12250, AA-12280, AA-12291, AA-12292, AA-12293; LLAK- 962000-L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior....

  17. 76 FR 75899 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-9915, AA-9916, AA-9921, AA-9936, AA-9937, AA-9965; LLAK-965000- L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior. ACTION: Notice...

  18. 75 FR 13296 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-6679-B, AA-6679-C, AA-6679-F, AA-6679-G, AA-6679-K, AA-6679-M, AA- 6679-A2, LLAK964000-L14100000-KC0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management,...

  19. 75 FR 65644 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-11937, AA-11938, AA-11939, AA-11940, AA-11944, AA-11943, AA-11941, AA-11936, AA-11933, AA-11928, AA-11929, AA-11931, AA-11932; LLAK- 962000-L14100000-HY0000-P] Alaska...

  20. 76 FR 55415 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-9428, AA-9752, AA-11237, AA-9755, AA-9837, AA-10075, AA-11467; LLAK-965000-L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior....

  1. 75 FR 21033 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-6670-F, AA-6670-L, AA-6670-M, AA-6670-A2; LLAK964000-L14100000- HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior. ACTION: Notice of...

  2. 75 FR 80838 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-11908, AA-11915, AA-11916, AA-11917, AA-11909, AA-11913, AA-11914; LLAK-962000-L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management,...

  3. 77 FR 72383 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-10282, AA-10291, AA-10292, AA-10369; LLAK-944000-L14100000-HY0000- P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior. ACTION: Notice of...

  4. 76 FR 43340 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-6682-B, AA-6682-D, AA-6682-E, AA-6682-G, AA-6682-H, AA-6682-I, AA- 6682-A2; LLAK965000-L14100000-KC0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management,...

  5. 78 FR 10634 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-10756, AA-11061, AA-10764, AA-10765, AA-10766, AA-11083; LLAK- 944000-L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior....

  6. 76 FR 16804 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-8102-05, AA-8102-08, AA-8102-10, AA-8102-25, AA-8102-28, AA-8102- 37, AA-8102-47; LLAK965000-L14100000-KC0000-P] Alaska Native Claims Selection AGENCY: Bureau of...

  7. Kids Count Alaska, 2000 Data Book.

    ERIC Educational Resources Information Center

    Leask, Linda, Ed.

    This Kids Count Data Book examines statewide trends in the well-being of Alaska's children. The statistical portrait is based on key indicators in six areas: (1) infancy, including prenatal care, low birth weight, and infant mortality; (2) economic well-being, including child poverty, children with no parent working full-time, and teen births; (3)…

  8. Kids Count Alaska Data Book: 1996.

    ERIC Educational Resources Information Center

    Alaska Univ., Anchorage. Inst. of Social and Economic Research.

    This statistical report examines findings on 15 indicators of children's well-being in Alaska: (1) percent of births with low birth weight; (2) infant mortality rate; (3) child poverty rate; (4) children in single parent families; (5) births to teenagers age 15 to 17; (6) teen (age 16 to 19) high school dropout rate; (7) teens not in school and…

  9. Ocean Observing System Demonstrated in Alaska

    NASA Astrophysics Data System (ADS)

    Schoch, G. Carl; Chao, Yi

    2010-05-01

    To demonstrate the utility of an ocean observing and forecasting system with diverse practical applications—such as search and rescue, oil spill response (perhaps relevent to the current Gulf of Mexico oil spill), fisheries, and risk management—a unique field experiment was conducted in Prince William Sound, Alaska, in July and August 2009. The objective was to quantitatively evaluate the performance of numerical models developed for the sound with an array of fixed and mobile observation platforms (Figure 1). Prince William Sound was chosen for the demonstration because of historical efforts to monitor ocean circulation following the 1989 oil spill from the Exxon Valdez tanker. The sound, a highly crenulated embayment of about 10,000 square kilometers at approximately 60°N latitude along the northern coast of the Gulf of Alaska, includes about 6900 kilometers of shoreline, numerous islands and fjords, and an extensive system of tidewater glaciers descending from the highest coastal mountain range in North America. Hinchinbrook Entrance and Montague Strait are the two main deep water connections with the Gulf of Alaska. The economic base of communities in the region is almost entirely resource-dependent. For example, Cordova's economy is based on commercial fishing and Valdez's economy is supported primarily by the trans-Alaska oil pipeline terminal.

  10. 75 FR 2154 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... also be published four times in the Tundra Drums. DATES: The time limits for filing an appeal are: 1. Any party claiming a property interest which is adversely affected by the decision shall have until.... ADDRESSES: A copy of the decision may be obtained from: Bureau of Land Management, Alaska State Office,...

  11. Prevention in Alaska: Issues and Innovations.

    ERIC Educational Resources Information Center

    Mohatt, Gerald; Hazel, Kelly L.; Mohatt, Justin W.

    Diversity of geography, climate, and culture dictate the nature of the service delivery systems in Alaska, including the provision of prevention programming in substance abuse, alcoholism, health, and behavioral health. Described here are training programs, conferences and symposia, health fairs, and culturally derived interventions that meet the…

  12. Persistence of triclopyr in Alaska subarctic environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field dissipation and vertical mobility of the butoxyethyl ester of triclopyr was assessed in two distinct geographic locations within the state of Alaska. Interior sites near Delta Junction included vegetated plots within highway rights-of-way (ROW) and Conservation Reserve Program (CRP) fields and...

  13. Alaska's Adolescents: A Plan for the Future.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Health and Social Services, Anchorage.

    The goal of this first comprehensive report on adolescent health in Alaska is to stimulate interest, activity, and support for improved health among teenagers (ages 10-19). This plan was developed as a tool for use by governments, organizations, and communities. The plan seeks to provide information on the scope and nature of adolescent health…

  14. The Alaska SAR processor - Operations and control

    NASA Technical Reports Server (NTRS)

    Carande, Richard E.

    1989-01-01

    The Alaska SAR (synthetic-aperture radar) Facility (ASF) will be capable of receiving, processing, archiving, and producing a variety of SAR image products from three satellite-borne SARs: E-ERS-1 (ESA), J-ERS-1 (NASDA) and Radarsat (Canada). Crucial to the success of the ASF is the Alaska SAR processor (ASP), which will be capable of processing over 200 100-km x 100-km (Seasat-like) frames per day from the raw SAR data, at a ground resolution of about 30 m x 30 m. The processed imagery is of high geometric and radiometric accuracy, and is geolocated to within 500 m. Special-purpose hardware has been designed to execute a SAR processing algorithm to achieve this performance. This hardware is currently undergoing acceptance testing for delivery to the University of Alaska. Particular attention has been devoted to making the operations semi-automated and to providing a friendly operator interface via a computer workstation. The operations and control of the Alaska SAR processor are described.

  15. Alaska Teens Prepare for Future with FCS

    ERIC Educational Resources Information Center

    Vik, Kathleen L.

    2007-01-01

    Living in Alaska offers many extreme challenges and opportunities for family and consumer sciences (FCS) teachers to step up to the challenges of facing the future. In this article, the author describes how she started the "Stepping Up For Our Future" program. She relates that as the sole FCS teacher in Chugiak High School, she was…

  16. The Alaska Mineral Resource Assessment Program

    SciTech Connect

    Detterman, R.L.; Case, J.E.; Church, S.E.; Frisken, J.G.; Wilson, F.H.; Yount, M.E.

    1990-01-01

    This book provides background information for the folio of maps that covers the geology, paleontology, geochronology, geochemistry, aeromagnetics, and mineral and energy resources of the Ugashik, Bristol Bay, and western Karluk quadrangles, Alaska Peninsula. Information on two U.S. Geological Survey miscellaneous investigations series maps and three derivative bulletins that resulted from this investigation are described also.

  17. 76 FR 35936 - Alaska Disaster #AK-00020

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... Doc No: 2011-15127] U.S. SMALL BUSINESS ADMINISTRATION [Disaster Declaration 12632 and 12633] Alaska Disaster AK-00020 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of... to: U.S. Small Business Administration, Processing and Disbursement Center, 14925 Kingsport...

  18. Kids Count Alaska Data Book, 2001.

    ERIC Educational Resources Information Center

    Leask, Linda, Ed.

    This Kids Count Data Book examines statewide trends in the well-being of Alaska's children. The statistical portrait is based on key indicators in six areas: (1) infancy, including prenatal care, low birth weight, and infant mortality; (2) economic well-being, including child poverty, children with no parent working full-time, and teen births; (3)…

  19. Kids Count Alaska Data Book, 2002.

    ERIC Educational Resources Information Center

    Leask, Linda, Ed.

    This Kids Count Data Book examines statewide trends in the well-being of Alaska's children. The statistical portrait is based on key indicators in six areas: (1) infancy, including prenatal care, low birth weight, and infant mortality; (2) economic well-being, including child poverty, children with no parent working full-time, children in single…

  20. Quilts of Alaska--Student Activities.

    ERIC Educational Resources Information Center

    Alaska State Museum, Juneau.

    This student activities booklet, "Quilts of Alaska," contains historical and educational information on quilts. It is colorfully illustrated with examples of different types of quilts. The booklet describes album or signature quilts, which from 1840 to the 1890s, were a U.S. fad, such as were autograph albums. As the name suggests, these…

  1. Human Impacts on Wildfires in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Calef, M. P.; McGuire, A. D.; Chapin, F. S.; Dewilde, L.

    2004-12-01

    The effects of human activities on the fire regime of high latitude ecosystems, which has not been well investigated, has the potential to influence water, energy, and carbon dioxide exchange with the atmosphere by influencing land cover and ecosystem dynamics. In this study we assessed the potential footprint of human presence on fire regime in Interior Alaska by investigating three research questions: 1) Does the type of fire ignition (human or lightning) have a significant impact on fire size?; 2) Does human impact on fire regime vary with population size?; and 3) Does distance from towns, roads or rivers affect fire size and ignition? To evaluate these questions, we overlaid the large-firescar database (fires >0.4 km2 for 1988-2002) and the fire ignition database (1956-2000) of the Alaska Fire Service with towns (all named settlements), major roads, and major rivers in Interior Alaska. Currently, humans are responsible for high fire frequency near towns and roads; however, human caused fires are generally much smaller than lightning ignited fires. Human impact on fire regime is a function of town size, and distance to roads and to a lesser extent rivers play an important role as they allow humans access to remote areas. Thus, it is clear that human activities influence fire regime in localized areas of Interior Alaska. Our next challenge is to evaluate if these effects of humans on the fire regime influence water, energy, and carbon dioxide exchange at the regional scale.

  2. 76 FR 67635 - Alaska Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ...) through (f), concerning a subsidence control plan and the definition of material damage; 11 AAC 90.173(b... (l), concerning subsidence control; 11 AAC 90.491(f), concerning the requirements for construction... Mining Control and Reclamation Act of 1977 (``SMCRA'' or ``the Act''). Alaska intends to revise its...

  3. Alaska Performance Scholarship Outcomes Report 2014

    ERIC Educational Resources Information Center

    Rae, Brian

    2014-01-01

    The 2014 Alaska Performance Scholarship (APS) Outcomes Report analyzes the characteristics of high school graduates, those who were eligible to receive the scholarship, and those who went on to make use of it during the three years of the scholarship's existence. The analysis includes their geographic, gender, ethnic, and socioeconomic…

  4. Indians, Eskimos and Aleuts of Alaska.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Washington, DC.

    Brief descriptions of the historical and cultural background of the Eskimo, Aleut, Athapascan, Tlingit, and Haida Indian groups of Alaska are presented. Further information is given concerning the educational, health, employment, and economic opportunities available to the natives today. A list is included of activities and points of interest in…

  5. Gas hydrate resources of northern Alaska

    USGS Publications Warehouse

    Collett, T.S.

    1997-01-01

    Large amounts of natural gas, composed mainly of methane, can occur in arctic sedimentary basins in the form of gas hydrates under appropriate temperature and pressure conditions. Gas hydrates are solids, composed of rigid cages of water molecules that trap molecules of gas. These substances are regarded as a potential unconventional source of natural gas because of their enormous gas-storage capacity. Most published gas hydrate resource estimates are highly simplified and based on limited geological data. The gas hydrate resource assessment for northern Alaska presented in this paper is based on a "play analysis" scheme, in which geological factors controlling the accumulation and preservation of gas hydrates are individually evaluated and risked for each hydrate play. This resource assessment identified two gas hydrate plays; the in-place gas resources within the gas hydrates of northern Alaska are estimated to range from 6.7 to 66.8 trillion cubic metres of gas (236 to 2,357 trillion cubic feet of gas), at the 0.50 and 0.05 probability levels respectively. The mean in-place hydrate resource estimate for northern Alaska is calculated to be 16.7 trillion cubic metres of gas (590 trillion cubic feet of gas). If this assessment is valid, the amount of natural gas stored as gas hydrates in northern Alaska could be almost seven times larger then the estimated total remaining recoverable conventional natural gas resources in the entire United States.

  6. 77 FR 24217 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... for conveyance lie partially within the Clarence Rhode National Wildlife Range in existence on the... lands are in the vicinity of Kotlik, Alaska and are described as: Lands within the Clarence Rhode... the Clarence Rhode National Wildlife Range (Public Land Order No. 4589), now known as the Yukon...

  7. Cultural Preservation Program for Alaska

    ERIC Educational Resources Information Center

    Barbaran, Francisco Ramon

    2011-01-01

    In this technical report, an innovative cultural preservation program for implementation in Athabascan villages is presented. The parameters for success in implementing such a project is discussed based on a workshop with Athabascan elders.

  8. Indicators of recent environmental change in Alaska

    SciTech Connect

    Jacoby, G.C.; D`Arrigo, R.D.; Juday, G.

    1997-12-31

    Climate models predict that global warming due to the effects of increasing trace gases will be amplified in northern high latitude regions, including Alaska. Several environmental indicators, including tree-ring based temperature reconstructions, borcal forest growth measurements and observations of glacial retreat all indicate that the general warming of the past century has been significant relative to prior centuries to millenia. The tree-ring records for central and northern Alaska indicate that annual temperature increased over the past century, peaked in the 1940s, and are still near the highest level for the past three centuries (Jacoby and D`Arrigo 1995). The tree-ring analyses also suggest that drought stress may now be a factor limiting growth at many northern sites. The recent warming combined with drier years may be altering the response of tree growth to climate and raising the likelihood of forest changes in Alaska and other boreal forests. Other tree-ring and forest data from southern and interior Alaska provide indices of the response of vegetation to extreme events (e.g., insect outbreaks, snow events) in Alaska (Juday and marler 1996). Historical maps, field measurements and satellite imagery indicate that Alaskan glaciers have receded over the past century (e.g., Hall and Benson 1996). Severe outbreaks of bark beetles may be on the increase due to warming, which can shorten their reproductive cycle. Such data and understanding of causes are useful for policy makers and others interested in evaluation of possible impacts of trace-gas induced warming and environmental change in the United States.

  9. Do oil and gold mix in Alaska

    SciTech Connect

    Bailey, R.V.

    1985-04-01

    Excellent potential for sea-floor-placer heavy mineral deposits exists locally along the coast of Alaska within lands owned by the state. Aspen Exploration first applied for precious metal offshore prospecting permits (OPPs) from the state in 1980 for certain lands in Cook Inlet, including lands that are prospective for oil and gas production. Exploration to date has included geologic mapping, beach sampling at many locations, and a 6400 mile low-level aeromagnetic survey. More than 20,000 ft of sediments underlie areas that appear most prospective for placer gold deposits, thereby facilitating geophysical interpretation of sea-floor magnetic anomalies. Work to date, now suspended, suggests large, linear, offshore heavy mineral concentrations, which likely include gold. Obtaining permits in Alaska is difficult, frustrating, and expensive. After 5 years of effort, no permits have been issues to Aspen. Primary opposition has come from the Alaska Department of Fish and Game, which has taken the position that insufficient biological resource information is available in the prospect areas. These same offshore areas, however, are held under oil and gas leases from the state by various companies. The difficulties encountered by smaller oil companies in attempting to carry out exploration in Alaska, which have forced virtually all of them to abandon their efforts in this state, are compared with difficulties hard-mineral companies are encountering. It is important to recognize that income to the state of Alaska from oil royalties and taxes is of such magnitude, that needed support for hard-mineral exploration and mining is being suppressed by a hostile bureaucracy and by preservationists.

  10. Thermal evolution of sedimentary basins in Alaska

    USGS Publications Warehouse

    Johnsson, Mark J.; Howell, D.G.

    1996-01-01

    The complex tectonic collage of Alaska is reflected in the conjunction of rocks of widely varying thermal maturity. Indicators of the level of thermal maturity of rocks exposed at the surface, such as vitrinite reflectance and conodont color alteration index, can help constrain the tectonic evolution of such complex regions and, when combined with petrographic, modern heat flow, thermogeochronologic, and isotopic data, allow for the detailed evaluation of a region?s burial and uplift history. We have collected and assembled nearly 10,000 vitrinite-reflectance and conodont-color-alteration index values from the literature, previous U.S. Geological Survey investigations, and our own studies in Alaska. This database allows for the first synthesis of thermal maturity on a broadly regional scale. Post-accretionary sedimentary basins in Alaska show wide variability in terms of thermal maturity. The Tertiary interior basins, as well as some of the forearc and backarc basins associated with the Aleutian Arc, are presently at their greatest depth of burial, with immature rocks exposed at the surface. Other basins, such as some backarc basins on the Alaska Peninsula, show higher thermal maturities, indicating modest uplift, perhaps in conjunction with higher geothermal gradients related to the arc itself. Cretaceous ?flysch? basins, such as the Yukon-Koyukuk basin, are at much higher thermal maturity, reflecting great amounts of uplift perhaps associated with compressional regimes generated through terrane accretion. Many sedimentary basins in Alaska, such as the Yukon-Koyukuk and Colville basins, show higher thermal maturity at basin margins, perhaps reflecting greater uplift of the margins in response to isostatic unloading, owing to erosion of the hinterland adjacent to the basin or to compressional stresses adjacent to basin margins.

  11. Anticipated impacts of climate warming on ecosystems in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Douglas, T. A.; Liljedahl, A. K.; Astley, B. N.; Downer, C. W.; Jorgenson, T. T.; Bagley, C.; Burks-Copes, K.

    2011-12-01

    Future climate scenarios predict a roughly 5 degree increase in mean annual air temperatures for the Alaskan Interior over the next 80 years. This is expected to be enough to initiate permafrost degradation in Interior Alaska which could lead to widespread thermokarst and talik development and potentially a thicker seasonally thawed (active) layer. These changes could dramatically affect hydrology, ground surface topography and vegetation. Forecasting ecological responses to climate warming is complicated by many factors including variations in soil type, precipitation, surface and ground water hydrology, vegetation, slope, aspect, fire prevalence, and the thermal state of permafrost. We are making field measurements and time series repeat imagery at upland and lowland landscapes to determine where and what ecosystem processes may be most susceptible for rapid or unpredictable changes with climate warming or changing land use activities. By integrating existing cryospheric (permafrost and snow), hydrologic and vegetation succession modeling capabilities we hope to enhance our ability to predict how climate change and other stressors may affect ecosystem dynamics and fire susceptibility. We will include the effects of non-climate related anthropogenic stressors like changes in land use activities and infrastructure development. Numerous electrical resistivity geophysical measurements have been made across a variety of landscapes to investigate how vegetation, soils, and land use relates to permafrost distribution. Our project results will be synthesized into a spatially-explicit decision support system to assist with land use management decision-making for Interior Alaska. This Geographic Information Systems (GIS)-based tool is being developed through a combination of field work and modeling. We will identify challenges for management activities given the projected ecosystem response to anticipated climate change by the end-of-the century. This presentation will

  12. Development of a Quantitative Food Frequency Questionnaire for Use among the Yup'ik People of Western Alaska

    PubMed Central

    Kolahdooz, Fariba; Simeon, Desiree; Ferguson, Gary; Sharma, Sangita

    2014-01-01

    Alaska Native populations are experiencing a nutrition transition and a resulting decrease in diet quality. The present study aimed to develop a quantitative food frequency questionnaire to assess the diet of the Yup'ik people of Western Alaska. A cross-sectional survey was conducted using 24-hour recalls and the information collected served as a basis for developing a quantitative food frequency questionnaire. A total of 177 males and females, aged 13-88, in six western Alaska communities, completed up to three 24-hour recalls as part of the Alaska Native Dietary and Subsistence Food Assessment Project. The frequency of the foods reported in the 24-hour recalls was tabulated and used to create a draft quantitative food frequency questionnaire, which was pilot tested and finalized with input from community members. Store-bought foods high in fat and sugar were reported more frequently than traditional foods. Seven of the top 26 foods most frequently reported were traditional foods. A 150-item quantitative food frequency questionnaire was developed that included 14 breads and crackers; 3 cereals; 11 dairy products; 69 meats, poultry and fish; 13 fruit; 22 vegetables; 9 desserts and snacks; and 9 beverages. The quantitative food frequency questionnaire contains 39 traditional food items. This quantitative food frequency questionnaire can be used to assess the unique diet of the Alaska Native people of Western Alaska. This tool will allow for monitoring of dietary changes over time as well as the identification of foods and nutrients that could be promoted in a nutrition intervention program intended to reduce chronic disease. PMID:24963718

  13. 33 CFR 334.1300 - Blying Sound area, Gulf of Alaska, Alaska; air-to-air gunnery practice area, Alaskan Air Command...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Blying Sound area, Gulf of Alaska, Alaska; air-to-air gunnery practice area, Alaskan Air Command, U.S. Air Force. 334.1300 Section 334.1300... AND RESTRICTED AREA REGULATIONS § 334.1300 Blying Sound area, Gulf of Alaska, Alaska;...

  14. 50 CFR Table I to Part 36 - Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL WILDLIFE REFUGES Pt. 36, Table I Table I to Part 36—Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act... National Wildlife Refuges established by the Alaska Lands Act....

  15. 50 CFR Table I to Part 36 - Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL WILDLIFE REFUGES Pt. 36, Table I Table I to Part 36—Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act... National Wildlife Refuges established by the Alaska Lands Act....

  16. 50 CFR Table I to Part 36 - Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL WILDLIFE REFUGES Pt. 36, Table I Table I to Part 36—Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act... National Wildlife Refuges established by the Alaska Lands Act....

  17. 50 CFR Table I to Part 36 - Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL WILDLIFE REFUGES Pt. 36, Table I Table I to Part 36—Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act... National Wildlife Refuges established by the Alaska Lands Act....

  18. Time for Change in the Education of Alaska Natives: A Statement of Preliminary Findings and Recommendations Relating to the Education of Alaska Natives.

    ERIC Educational Resources Information Center

    Alaska Governor's Commission on Cross-Cultural Education, Juneau.

    The study presents findings and recommendations regarding education of Alaska natives (Eskimos, Indians, and Aleuts). The paper was prepared for the governor of Alaska by the Commission on Cross-Cultural Education of Alaska, which was designed to find ways to provide new meaning to education for Alaska's multicultural society and to provide…

  19. World War 2 in Alaska: A Historic and Resources Management Plan. Volume 1. A History of World War 2 in Alaska and Management Plan

    DTIC Science & Technology

    1987-05-01

    Aum M 1& ?VPT do SM a Pft CWAW" U.S. Army, Corps of Engineers Documentary P.O. Box 898 1912-1946 (Final Report) Anchorage, Alaska 99506-0898 14 IL...factors: I) impressions gained .. from the examination of the huge body of primary documentary information which is included in the project data base, 2...which are of interest for other reasons noted in documentary sources. For instance, the Bureau of Indian Affairs operated an extensive radio network in

  20. Tundra Rehabilitation in Alaska's Arctic

    NASA Astrophysics Data System (ADS)

    Lynn, L. A.

    2012-12-01

    Oil exploration in Alaska's Arctic has been conducted for more than 40 years, resulting in over 3,640 ha of gravel fill placed for roads, pads, and airstrips to support the industry. Likewise, tundra disturbance from burying power lines and by tundra vehicle travel are also common. Rehabilitation of disturbed sites began around 2002, with well over 150 ha that has been previously treated or is currently being rehabilitated. Two primary goals of rehabilitation efforts have been 1) revegetation by indigenous species, and 2) limiting thermokarst. Early efforts were concerned that removing gravel and having exposed bare ground would lead to extensive subsidence and eolian erosion. Native grass cultivars (e.g. Poa glauca, Arctagrostis latifolia, and Festuca rubra) were seeded to create vegetation cover quickly with the expectation that these grasses would survive only temporarily. The root masses and leaf litter were also expected to trap indigenous seed to enhance natural recolonization by indigenous plants. Due to the remote location of these sites, many of which are only accessible by helicopter, most are visited only two to three times following cultivation treatments, providing a limited data pool. At many sites, the total live seeded grass cover declined about 15% over the first 5¬-6 years (from around 30% to 15% cover), while total live indigenous vascular cover increased from no or trace cover to an average of 10% cover in that time. Cover of indigenous vascular plants at sites that were not seeded with native grass cultivars averaged just less than 10% after 10 years, showing no appreciable difference between the two approaches. Final surface elevations at the sites affect local hydrology and soil moisture. Other factors that influence the success of vegetation cover are proximity to the Arctic coast (salt effects), depth of remaining gravel, and changes in characteristics of the near-surface soil. Further development of rehabilitation techniques and the

  1. Proceedings of the Alaska-Russia Native Peoples Health and Social Issues Conference. May 1992, Alaska.

    PubMed

    Marshall, D L; Soule, S

    1993-04-01

    An Alaska-Russia Native People's Health and Social Issues Conference, sponsored by the Alaska Department of Health and Social Services, the Alaska Native Foundation, the University of Anchorage Institute for Circumpolar Health Studies, the International Scientific Center "ARTIKA" (Magadan, Russia), the Associations of Native People of Chukotka and Kolyma, and the Magadan Native Association, was held in Wasilla, Alaska in May, 1992. The conference brought together Native people, primarily health and social services workers, to discuss differences and similarities in issues and approaches, and to lay the foundation for future collaboration. The primary participants came mostly from rural villages and small regional cities, and represented Native Health Corporations, Native Associations, and villages. Additional participants came from the University of Alaska, the Alaska Department of Health and Social Services, the Indian Health Service, the Magadan Health Department, the Inuit Circumpolar Conference, and the International Union for Circumpolar Health. A Total of 39 people participated, including: eight Russian Natives (Chukchi, Even, and Siberian Yup'ik); three non-Native Russians; 18 Alaska Natives (Aleut, Athabaskan, Inupiat, Siberian Yup'ik, Yup'ik); nine non-Native Alaskans; one Canadian. The issues discussed in individual and panel presentations, and in small groups, included history, demography, settlement patterns, the cash and subsistence economies, mental and physical health (epidemiology, etiology, treatment and prevention), education, governance, culture and language. As the conference participants came to know each other better, the discussions became increasingly open, and, particularly around shared feelings of cultural oppression and loss, emotional.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Snow and Ice Climatology of the Western United States and Alaska from MODIS

    NASA Astrophysics Data System (ADS)

    Rittger, K. E.; Painter, T. H.; Mattmann, C. A.; Seidel, F. C.; Burgess, A.; Brodzik, M.

    2013-12-01

    The climate and hydroclimate of the Western US and Alaska are tightly coupled to their snow and ice cover. The Western US depends on mountain snowmelt for the majority of its water supply to agriculture, industrial and urban use, hydroelectric generation, and recreation, all driven by increasing population and demand. Alaskan snow and glacier cover modulate regional climate and, as with the Western US, dominate water supply and hydroelectric generation in much of the state. Projections of climate change in the Western US and Alaska suggest that the most pronounced impacts will include reductions of mountain snow and ice cover, earlier runoff, and a greater fraction of rain instead of snow. We establish a snow and ice climatology of the Western US and Alaska using physically based MODIS Snow Covered Area and Grain size model (MODSCAG) for fractional snow cover, the MODIS Dust Radiative Forcing in Snow model (MODDRFS) for radiative forcing by light absorbing impurities in snow, and the MODIS Permanent Ice model (MODICE) for annual minimum exposed snow. MODSCAG and MODDRFS use EOS MOD09GA historical reflectance data (2000-2012) to provide daily and 8-day composites and near real time products since the beginning of 2013, themselves ultimately composited to 8-day products. The compositing method considers sensor-viewing geometry, solar illumination, clouds, cloud shadows, aerosols and noisy detectors in order to select the best pixel for an 8-day period. The MODICE annual minimum exposed snow and ice product uses the daily time series of fractional snow and ice from MODSCAG to generate annual maps. With this project we have established an ongoing, national-scale, consistent and replicable approach to assessing current and projected climate impacts and climate-related risk in the context of other stressors. We analyze the products in the Northwest, Southwest, and Alaska/Arctic regions of the National Climate Assessment for the last decade, the nation's hottest on record

  3. Stable Isotopic Constraints on the Geographic Sources of Marijuana in Alaska

    NASA Astrophysics Data System (ADS)

    Booth, A. L.; Wooller, M. J.; Haubenstock, N. A.; Howe, T. A.

    2007-12-01

    Marijuana in Alaska can have numerous sources. Confiscated plants are known to originate either from within the state (e.g., Fairbanks and the Matanuska-Susitna Valley) or from numerous areas outside the state (e.g., Latin America, Canada and the contiguous United States). Latin America reportedly supplies a large percentage of the marijuana currently distributed in the lower 48 states of the U.S.A. However, in more remote areas of the country such as Fairbanks, Alaska, the supply proportions from different geographic areas are not well known. This is due to an insufficient ability to trace source regions from which confiscated marijuana was originally grown. As such, we have analyzed multiple stable isotopes (C, N, O and H) preserved in marijuana samples to identify the likely geographic source from which the marijuana originated (Drug Enforcement Agency license # RW0324551). These samples were confiscated in Fairbanks, Alaska and supplied to us by the University of Alaska Fairbanks (UAF) Police Department. Among 36 marijuana plant samples, we found an unexpectedly large range in the stable carbon isotope compositions (‰13C = -62.2‰ to -24.4‰), with twelve of the 36 samples exhibiting exceedingly low δ13C (-36.1‰ to -62.2‰) relative to typical δ13C of other C3 plants. Interior growing conditions (e.g., hydroponics and/or greenhouses) and a variety of CO2 sources (e.g., CO2 from tanks and fermentation CO2 generators) frequently supplied to growing marijuana to improve yields may account for these exceptionally low δ13C values. Stable oxygen and hydrogen isotope compositions (δ18O and δD vs. V-SMOW) of the marijuana samples were found to range from 10.0‰ to 27.6‰ and -197.1‰ to -134.9‰ respectively. The large range of values suggests that the samples originated from multiple sources ranging from low to high latitudes. δ15N of the marijuana samples also exhibited a large range (-7.0‰ to 14.8‰). This project has implications for the

  4. Routine Ocean Monitoring With Synthetic Aperture Radar Imagery Obtained From the Alaska Satellite Facility

    NASA Astrophysics Data System (ADS)

    Pichel, W. G.; Clemente-Colon, P.; Li, X.; Friedman, K.; Monaldo, F.; Thompson, D.; Wackerman, C.; Scott, C.; Jackson, C.; Beal, R.; McGuire, J.; Nicoll, J.

    2006-12-01

    The Alaska Satellite Facility (ASF) has been processing synthetic aperture radar (SAR) data for research and for near-real-time applications demonstrations since shortly after the launch of the European Space Agency's ERS-1 satellite in 1991. The long coastline of Alaska, the vast extent of ocean adjacent to Alaska, a scarcity of in-situ observations, and the persistence of cloud cover all contribute to the need for all-weather ocean observations in the Alaska region. Extensive experience with SAR product processing algorithms and SAR data analysis techniques, and a growing sophistication on the part of SAR data and product users have amply demonstrated the value of SAR instruments in providing this all-weather ocean observation capability. The National Oceanic and Atmospheric Administration (NOAA) has been conducting a near-real-time applications demonstration of SAR ocean and hydrologic products in Alaska since September 1999. This Alaska SAR Demonstration (AKDEMO) has shown the value of SAR-derived, high-resolution (sub kilometer) ocean surface winds to coastal weather forecasting and the understanding of coastal wind phenomena such as gap winds, barrier jets, vortex streets, and lee waves. Vessel positions and ice information derived from SAR imagery have been used for management of fisheries, protection of the fishing fleet, enforcement of fisheries regulations, and protection of endangered marine mammals. Other ocean measurements, with potentially valuable applications, include measurement of wave state (significant wave height, dominant wave direction and wavelength, and wave spectra), mapping of oil spills, and detection of shallow-water bathymetric features. In addition to the AKDEMO, ASF-processed SAR imagery is being used: (1) in the Gulf of Mexico for hurricane wind studies, and post-hurricane oil-spill and oil-platform analyses (the latter employing ship-detection algorithms for detection of changes in oil-platform locations); (2) in the North Pacific

  5. Subsurface Tectonics and Pingos of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Skirvin, S.; Casavant, R.; Burr, D.

    2008-12-01

    We describe preliminary results of a two-phase study that investigated links between subsurface structural and stratigraphic controls, and distribution of hydrostatic pingos on the central coastal plain of Arctic Alaska. Our 2300 km2 study area is underlain by a complete petroleum system that supports gas, oil and water production from 3 of the largest oil fields in North America. In addition, gas hydrate deposits exist in this area within and just below the permafrost interval at depths of 600 to 1800 feet below sea level. Phase 1 of the study compared locations of subsurface faults and pingos for evidence of linkages between faulting and pingo genesis and distribution. Several hundred discrete fault features were digitized from published data and georeferenced in a GIS database. Fault types were determined by geometry and sense of slip derived from well log and seismic maps. More than 200 pingos and surface sediment type associated with their locations were digitized from regional surficial geology maps within an area that included wire line and seismic data coverage. Beneath the pingos lies an assemblage of high-angle normal and transtensional faults that trend NNE and NW; subsidiary trends are EW and NNW. Quaternary fault reactivation is evidenced by faults that displaced strata at depths exceeding 3000 meters below sea level and intersect near-surface units. Unpublished seismic images and cross-section analysis support this interpretation. Kinematics and distribution of reactivated faults are linked to polyphase deformational history of the region that includes Mesozoic rift events, succeeded by crustal shortening and uplift of the Brooks Range to the south, and differential subsidence and segmentation of a related foreland basin margin beneath the study area. Upward fluid migration, a normal process in basin formation and fault reactivation, may play yet unrecognized roles in the genesis (e.g. fluid charging) of pingos and groundwater hydrology. Preliminary

  6. Long-term observations of Alaska Coastal Current in the northern Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Stabeno, Phyllis J.; Bell, Shaun; Cheng, Wei; Danielson, Seth; Kachel, Nancy B.; Mordy, Calvin W.

    2016-10-01

    The Alaska Coastal Current is a continuous, well-defined system extending for ~1700 km along the coast of Alaska from Seward, Alaska to Samalga Pass in the Aleutian Islands. The currents in this region are examined using data collected at >20 mooring sites and from >400 satellite-tracked drifters. While not continuous, the mooring data span a 30 year period (1984-2014). Using current meter data collected at a dozen mooring sites spread over four lines (Seward, Gore Point, Kennedy and Stevenson Entrances, and the exit to Shelikof Strait) total transport was calculated. Transport was significantly correlated with alongshore winds, although the correlation at the Seward Line was weak. The largest mean transport in the Alaska Coastal Current occurred at Gore Point (1.4×106 m3 s-1 in winter and 0.6×106 m3 s-1 in summer), with the transport at the exit to Shelikof Strait (1.3×106 m3 s-1 in winter and 0.6×106 m3 s-1 in summer) only slightly less. The transport was modified at the Seward Line in late summer and fall by frontal undulations associated with strong river discharge that enters onto the shelf at that time of year. The interaction of the Alaska Coastal Current and tidal currents with shallow banks in the vicinity of Kodiak Archipeligo and in Kennedy-Stevenson Entrance results in mixing and prolonged primary production throughout the summer.

  7. Lead-alpha age determinations of granitic rocks from Alaska

    USGS Publications Warehouse

    Matzko, John J.; Jaffe, H.W.; Waring, C.L.

    1957-01-01

    Lead-alpha activity age determinations were made on zircon from seven granitic rocks of central and southeastern Alaska. The results of the age determinations indicate two periods of igneous intrusion, one about 95 million years ago, during the Cretaceous period, and another about 53 million years ago, during the early part of the Tertiary. The individual ages determined on zircon from 2 rocks from southeastern Alaska and 1 from east-central Alaska gave results of 90, 100, and 96 million years; those determined on 4 rocks from central Alaska gave results of 47, 56, 58, and 51 million years.

  8. The Alaska Volcano Observatory - Expanded Monitoring of Volcanoes Yields Results

    USGS Publications Warehouse

    Brantley, Steven R.; McGimsey, Robert G.; Neal, Christina A.

    2004-01-01

    Recent explosive eruptions at some of Alaska's 52 historically active volcanoes have significantly affected air traffic over the North Pacific, as well as Alaska's oil, power, and fishing industries and local communities. Since its founding in the late 1980s, the Alaska Volcano Observatory (AVO) has installed new monitoring networks and used satellite data to track activity at Alaska's volcanoes, providing timely warnings and monitoring of frequent eruptions to the aviation industry and the general public. To minimize impacts from future eruptions, scientists at AVO continue to assess volcano hazards and to expand monitoring networks.

  9. Crustal implications of bedrock geology along the Trans-Alaska Crustal Transect (TACT) in the Brooks Range, northern Alaska

    USGS Publications Warehouse

    Moore, T.E.; Wallace, W.K.; Mull, C.G.; Adams, K.E.; Plafker, G.; Nokleberg, W.J.

    1997-01-01

    Geologic mapping of the Trans-Alaska Crustal Transect (TACT) project along the Dalton Highway in northern Alaska indicates that the Endicott Mountains allochthon and the Hammond terrane compose a combined allochthon that was thrust northward at least 90 km in the Early Cretaceous. The basal thrust of the combined allochthon climbs up section in the hanging wall from a ductile shear zone, in the south through lower Paleozoic rocks of the Hammond terrane and into Upper Devonian rocks of the Endicott Mountains allochthon at the Mount Doonerak antiform, culminating in Early Cretaceous shale in the northern foothills of the Brooks Range. Footwall rocks north of the Mount Doonerak antiform are everywhere parautochthonous Permian and Triassic shale of the North Slope terrane rather than Jurassic and Lower Cretaceous strata of the Colville Basin as shown in most other tectonic models of the central Brooks Range. Stratigraphic and structural relations suggest that this thrust was the basal detachment for Early Cretaceous deformation. Younger structures, such as the Tertiary Mount Doonerak antiform, deform the Early Cretaceous structures and are cored by thrusts that root at a depth of about 10 to 30 km along a deeper detachment than the Early Cretaceous detachment. The Brooks Range, therefore, exposes (1) an Early Cretaceous thin-skinned deformational belt developed during arc-continent collision and (2) a mainly Tertiary thick-skinned orogen that is probably the northward continuation of the Rocky Mountains erogenic belt. A down-to-the-south zone of both ductile and brittle normal faulting along the southern margin of the Brooks Range probably formed in the mid-Cretaceous by extensional exhumation of the Early Cretaceous contractional deformation. copyright. Published in 1997 by the American Geophysical Union.

  10. 75 FR 19645 - Denali-The Alaska Gas Pipeline LLC; Notice of Request for Approval of Plan for Conducting an Open...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... Open Season April 8, 2010. Take notice that on April 7, 2010, pursuant to section 157.38 of the Commission's Regulations governing Open Seasons for Alaska Natural Gas Transportation Projects, Denali--The... Open Season. The proposed Open Season is being held to solicit binding commitments for gas...

  11. U.S. Geological Survey Activities Related to American Indians and Alaska Natives: Fiscal Year 2005

    USGS Publications Warehouse

    Marcus, Susan M.

    2007-01-01

    Introduction This report describes the activities that the U.S. Geological Survey (USGS) conducted with American Indian and Alaska Native governments, educational institutions, and individuals during Federal fiscal year (FY) 2005. Most of these USGS activities were collaborations with Tribes, Tribal organizations, or professional societies. Others were conducted cooperatively with the Bureau of Indian Affairs (BIA) or other Federal entities. The USGS is the earth and natural science bureau within the U.S. Department of the Interior (DOI). The USGS does not have regulatory or land management responsibilities. As described in this report, there are many USGS activities that are directly relevant to American Indians, Alaska Natives, and to Native lands. A USGS website, dedicated to making USGS more accessible to American Indians, Alaska Natives, their governments, and institutions, is available at www.usgs.gov/indian. This website includes information on how to contact USGS American Indian/Alaska Native Liaisons, training opportunities, and links to other information resources. This report and previous editions are also available through the website. The USGS realizes that Native knowledge and cultural traditions of living in harmony with nature result in unique Native perspectives that enrich USGS studies. USGS seeks to increase the sensitivity and openness of its scientists to the breadth of Native knowledge, expanding the information on which their research is based. USGS scientific studies include data collection, mapping, natural resource modeling, and research projects. These projects typically last 2 or 3 years, although some are parts of longer-term activities. Some projects are funded cooperatively, with USGS funds matched or supplemented by individual Tribal governments, or by the BIA. These projects may also receive funding from the U.S. Environmental Protection Agency (USEPA), the Indian Health Service (part of the Department of Health and Human Services

  12. Promoting positive youth development and highlighting reasons for living in Northwest Alaska through digital storytelling.

    PubMed

    Wexler, Lisa; Gubrium, Aline; Griffin, Megan; DiFulvio, Gloria

    2013-07-01

    Using a positive youth development framework, this article describes how a 3-year digital storytelling project and the 566 digital stories produced from it in Northwest Alaska promote protective factors in the lives of Alaska Native youth and serve as digital "hope kits," a suicide prevention approach that emphasizes young people's reasons for living. Digital stories are short, participant-produced videos that combine photos, music, and voice. We present process data that indicate the ways that digital stories serve as a platform for youth to reflect on and represent their lives, important relationships and achievements. In so doing, youth use the digital storytelling process to identify and highlight encouraging aspects of their lives, and develop more certain and positive identity formations. These processes are correlated with positive youth health outcomes. In addition, the digital stories themselves serve as reminders of the young people's personal assets--their reasons for living--after the workshop ends. Young people in this project often showed their digital stories to those who were featured positively within as a way to strengthen these interpersonal relationships. Evaluation data from the project show that digital storytelling workshops and outputs are a promising positive youth development approach. The project and the qualitative data demonstrate the need for further studies focusing on outcomes related to suicide prevention.

  13. Alaska low-rank coal-water fuel -- Diesel demonstration Phase 2: Construction

    SciTech Connect

    Wilson, W.; Benson, C.; Wilson, R.; Krier, G.; Ruckhaus, M.; Walsh, D.; Ward, C.

    1998-07-01

    The technical feasibility of producing and utilizing a premium low-rank coal-water fuel (LRCWF) made from ultra-low sulfur Alaskan subbituminous coal following hydrothermal treatment (HT) has been demonstrated in pilot plants in Australia, Japan and the US. Preliminary process economics suggest that LRCWF produced from subbituminous coal from the Beluga coal field near Anchorage, Alaska, with measured coal reserves approaching 2 billion tons, would be competitive with heavy oil priced above about $18 per barrel in Japan. Consequently, a consortium led by Usibelli Coal Mine, Inc. (UCM), the University of Alaska Fairbanks (UAF) and Coal-Water Fuel Services (CWFS) was formed to seek funding for a commercial-scale demonstration project to be built at UAF. Arthur D. Little, Inc. (ADL), with support from the US Department of Energy (DOE), led a team that demonstrated the feasibility of using CWFs in medium speed diesel engines. They were awarded funding in DOE's fifth and final Clean Coal Technology Program solicitation to demonstrate the technology at commercial scale in a Maryland utility. Due to reduced power demands, the utility withdrew and project developers sought a new location. ADL was familiar with the potential synergism with the proposed Alaskan LRCWF project and have joined with the Alaskan team to formulate the LRCWF-Diesel Demonstration Project to be located at UAF. Coltec Industries, Fairbanks Morse Engine Division, will provide commercial CWF diesel technology.

  14. Regional Fluid Flow and Basin Modeling in Northern Alaska

    USGS Publications Warehouse

    Kelley, Karen D.

    2007-01-01

    INTRODUCTION The foothills of the Brooks Range contain an enormous accumulation of zinc (Zn) in the form of zinc sulfide and barium (Ba) in the form of barite in Carboniferous shale, chert, and mudstone. Most of the resources and reserves of Zn occur in the Red Dog deposit and others in the Red Dog district; these resources and reserves surpass those of most deposits worldwide in terms of size and grade. In addition to zinc and lead sulfides (which contain silver, Ag) and barite, correlative strata host phosphate deposits. Furthermore, prolific hydrocarbon source rocks of Carboniferous and Triassic to Early Jurassic age generated considerable amounts of petroleum that may have contributed to the world-class petroleum resources of the North Slope. Deposits of Zn-Pb-Ag or barite as large as those in the Brooks Range are very rare on a global basis and, accordingly, multiple coincident favorable factors must be invoked to explain their origins. To improve our understanding of these factors and to contribute to more effective assessments of resources in sedimentary basins of northern Alaska and throughout the world, the Mineral Resources Program and the Energy Resources Program of the U.S. Geological Survey (USGS) initiated a project that was aimed at understanding the petroleum maturation and mineralization history of parts of the Brooks Range that were previously poorly characterized. The project, titled ?Regional Fluid Flow and Basin Modeling in Northern Alaska,? was undertaken in collaboration with industry, academia, and other government agencies. This Circular contains papers that describe the results of the recently completed project. The studies that are highlighted in these papers have led to a better understanding of the following: *The complex sedimentary facies relationships and depositional settings and the geochemistry of the sedimentary rocks that host the deposits (sections 2 and 3). *The factors responsible for formation of the barite and zinc deposits

  15. Metabolic Syndrome: Prevalence among American Indian and Alaska Native People Living in the Southwestern United States and in Alaska

    PubMed Central

    Ferucci, Elizabeth D.; Lanier, Anne P.; Slattery, Martha L.; Schraer, Cynthia D.; Raymer, Terry W.; Dillard, Denise; Murtaugh, Maureen A.; Tom-Orme, Lillian

    2008-01-01

    Abstract Background Metabolic syndrome occurs commonly in the United States. The purpose of this study was to measure the prevalence of metabolic syndrome among American Indian and Alaska Native people. Methods We measured the prevalence rates of metabolic syndrome, as defined by the National Cholesterol Education Program, among four groups of American Indian and Alaska Native people aged 20 years and older. One group was from the southwestern United States (Navajo Nation), and three groups resided within Alaska. Prevalence rates were age-adjusted to the U.S. adult 2000 population and compared to rates for U.S. whites (National Health and Nutrition Examination Survey [NHANES] 1988–1994). Results Among participants from the southwestern United States, metabolic syndrome was found among 43.2% of men and 47.3% of women. Among Alaska Native people, metabolic syndrome was found among 26.5% of men and 31.2% of women. In Alaska, the prevalence rate varied by region, ranging among men from 18.9% (western Alaska) to 35.1% (southeast), and among women from 22.0% (western Alaska) to 38.4 % (southeast). Compared to U.S. whites, American Indian/Alaska Native men and women from all regions except western Alaska were more likely to have metabolic syndrome; men in western Alaska were less likely to have metabolic syndrome than U.S. whites, and the prevalence among women in western Alaska was similar to that of U.S. whites. Conclusion The prevalence rate of metabolic syndrome varies widely among different American Indian and Alaska Native populations. Differences paralleled differences in the prevalence rates of diabetes. PMID:19067530

  16. A Step Towards Conservation for Interior Alaska Tribes

    SciTech Connect

    Kimberly Carlo

    2012-07-07

    This project includes a consortium of tribes. The tribes include Hughes (representing the consortium) Birch Creek, Huslia, and Allakaket. The project proposed by Interior Regional Housing Authority (IRHA) on behalf of the villages of Hughes, Birch Creek, Huslia and Allakaket is to develop an energy conservation program relevant to each specific community, educate tribe members and provide the tools to implement the conservation plan. The program seeks to achieve both energy savings and provide optimum energy requirements to support each tribe's mission. The energy management program will be a comprehensive program that considers all avenues for achieving energy savings, from replacing obsolete equipment, to the design and construction of energy conservation measures, the implementation of energy saving operation and maintenance procedures, the utilization of a community-wide building energy management system, and a commitment to educating the tribes on how to decrease energy consumption. With the implementation of this program and the development of an Energy Management Plan, these communities can then work to reduce the high cost of living in rural Alaska.

  17. Surface melt dominates Alaska glacier mass balance

    USGS Publications Warehouse

    Larsen Chris F,; Burgess, E; Arendt, A.A.; O'Neel, Shad; Johnson, A.J.; Kienholz, C.

    2015-01-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of −75 ± 11 Gt yr−1 (1994–2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.

  18. Water Resources Data, Alaska, Water Year 2000

    USGS Publications Warehouse

    Meyer, D.F.; Hess, D.L.; Schellekens, M.F.; Smith, C.W.; Snyder, E.F.; Solin, G.L.

    2001-01-01

    Water-resources data for the 2000 water year for Alaska consists of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 106 gaging stations; stage or contents only at 4 gaging stations; water quality at 31 gaging stations; and water levels for 30 observation wells and 1 water-quality well. Also included are data for 47 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

  19. Forest Fires Produce Dense Smoke over Alaska

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On August 14, 2005, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this stunning image of forest fires raging across the width of Alaska. Smoke from scores of fires (marked in red) filled the state's broad central valley and poured out to sea. Hemmed in by mountains to the north and the south, the smoke spreads westward and spills out over the Bering and Chukchi Seas (image left). More than a hundred fires were burning across the state as of August 14. Air quality warnings have been issued for about 90 percent of the Interior, according to the August 12 report from the Alaska Department of Environmental Conservation's Division of Air Quality. Conditions have ranged from 'very unhealthy' to 'hazardous' over the weekend in many locations, including Fairbanks. A large area of high atmospheric pressure spread over much of the state, keeping temperatures high and reducing winds that would clear the air.

  20. Surface melt dominates Alaska glacier mass balance

    NASA Astrophysics Data System (ADS)

    Larsen, C. F.; Burgess, E.; Arendt, A. A.; O'Neel, S.; Johnson, A. J.; Kienholz, C.

    2015-07-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of -75 ± 11 Gt yr-1 (1994-2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.