Science.gov

Sample records for albedo dosimeter dvgn-01

  1. Use of a spherical albedo system for correcting the readings of albedo dosimeters in JINR phasotron neutron radiation fields

    NASA Astrophysics Data System (ADS)

    Mokrov, Yu. V.; Morozova, S. V.

    2014-03-01

    Results of calibrating a spherical albedo system in the radiation fields of a Pu-Be radionuclide neutron source are presented. It is shown that it can be used for correcting the readings of the DVGN-01 albedo dosimeter. The results of measurements with the system in JINR phasotron neutron fields for the purpose of correcting the DVGN-01 readings in these fields are given. The values of the correction factors for DVGN-01 albedo dosimeters when used in personnel neutron dosimetry (PD) on the JINR phasotron are determined.

  2. Comparative sensitivity study and reading correction of various albedo dosimeters in neutron fields on the U-400M accelerator

    NASA Astrophysics Data System (ADS)

    Mokrov, Yu. V.; Morozov, S. V.; Shchegolev, V. Yu.

    2013-03-01

    The sensitivities of three types of albedo dosimeters are experimentally studied in U-400M accelerator radiation fields in the experimental hall (one point) and behind its shielding (three points). It is shown that the ratios of the sensitivity of the albedo dosimeter (AD) and the combined personal dosimeter (CPD) used earlier at the Joint Institute for Nuclear Research (JINR) to the sensitivity of the DVGN-01 dosimeter are constant within 25%. This allows the AD and CPD sensitivities obtained earlier at the JINR facilities to be used for correcting readings of the DVGN-01 now used at JINR for personal radiation monitoring. Correction coefficients are found for DVGN-01 readings behind the U-400M shielding. This has allowed a more reliable correction coefficient to be established for the Flerov Laboratory of Nuclear Reactions (FLNR).

  3. Correction of the readings of albedo dosimeters at the MC400 LNR cyclotron with the use of the spherical albedo system and comparison with other correction methods

    NASA Astrophysics Data System (ADS)

    Mokrov, Yu. V.; Morozova, S. V.; Timoshenko, G. N.; Krylov, V. A.

    2014-11-01

    The results of correcting the readings of DVGN-01 albedo dosimeters behind the shielding of the MC400 cyclotron at the Laboratory of Nuclear Reactions (LNR) with the use of the spherical albedo system are presented. The formulas approximating the dependences of correction coefficients used to correct the readings on the hardness parameters of low-energy neutron spectra were obtained based on these results and the results of earlier studies. Neutron spectra were measured at three points behind the MC400 shielding, and the correction coefficients for DVGN-01 were calculated based on these spectra. It was demonstrated that these coefficients agree well with the coefficients obtained with the use of the spherical albedo system. This suggests that the obtained correction coefficient values are accurate. The recommended correction coefficient values to be used in the individual dosimetric control at LNR were specified based on the results of the present study and the data given in other papers.

  4. Response of TLD-albedo and nuclear track dosimeters exposed to plutonium sources

    SciTech Connect

    Brackenbush, L.W.; Baumgartner, W.V.; Fix, J.J.

    1991-12-01

    Neutron dosimetry has been extensively studied at Hanford since the mid-1940s. At the present time, Hanford contractors use thermoluminescent dosimeter (TLD)-albedo dosimeters to record the neutron dose equivalent received by workers. The energy dependence of the TLD-albedo dosimeter has been recognized and documented since introduced at Hanford in 1964 and numerous studies have helped assure the accuracy of dosimeters. With the recent change in Hanford's mission, there has been a significant decrease in the handling of plutonium tetrafluoride, and an increase in the handling of plutonium metal and plutonium oxide sources. This study was initiated to document the performance of the current Hanford TLD-albedo dosimeter under the low scatter conditions of the calibration laboratory and under the high scatter conditions in the work place under carefully controlled conditions at the Plutonium Finishing Plant (PFP). The neutron fields at the PFP facility were measured using a variety of instruments, including a multisphere spectrometer, tissue equivalent proportional counters, and specially calibrated rem meters. Various algorithms were used to evaluate the TLD-albedo dosimeters, and the results are given in this report. Using current algorithms, the dose equivalents evaluated for bare sources and sources with less than 2.5 cm (1 in.) of acrylic plastic shielding in high scatter conditions typical of glove box operations are reasonably accurate. Recently developed CR-39 track etch dosimeters (TEDs) were also exposed in the calibration laboratory and at the PFP. The results indicate that the TED dosimeters are quite accurate for both bare and moderated neutron sources. Until personnel dosimeter is available that incorporates a direct measure of the neutron dose to a person, technical uncertainties in the accuracy of the recorded data will continue.

  5. Response of TLD-albedo and nuclear track dosimeters exposed to plutonium sources

    SciTech Connect

    Brackenbush, L.W.; Baumgartner, W.V.; Fix, J.J.

    1991-12-01

    Neutron dosimetry has been extensively studied at Hanford since the mid-1940s. At the present time, Hanford contractors use thermoluminescent dosimeter (TLD)-albedo dosimeters to record the neutron dose equivalent received by workers. The energy dependence of the TLD-albedo dosimeter has been recognized and documented since introduced at Hanford in 1964 and numerous studies have helped assure the accuracy of dosimeters. With the recent change in Hanford`s mission, there has been a significant decrease in the handling of plutonium tetrafluoride, and an increase in the handling of plutonium metal and plutonium oxide sources. This study was initiated to document the performance of the current Hanford TLD-albedo dosimeter under the low scatter conditions of the calibration laboratory and under the high scatter conditions in the work place under carefully controlled conditions at the Plutonium Finishing Plant (PFP). The neutron fields at the PFP facility were measured using a variety of instruments, including a multisphere spectrometer, tissue equivalent proportional counters, and specially calibrated rem meters. Various algorithms were used to evaluate the TLD-albedo dosimeters, and the results are given in this report. Using current algorithms, the dose equivalents evaluated for bare sources and sources with less than 2.5 cm (1 in.) of acrylic plastic shielding in high scatter conditions typical of glove box operations are reasonably accurate. Recently developed CR-39 track etch dosimeters (TEDs) were also exposed in the calibration laboratory and at the PFP. The results indicate that the TED dosimeters are quite accurate for both bare and moderated neutron sources. Until personnel dosimeter is available that incorporates a direct measure of the neutron dose to a person, technical uncertainties in the accuracy of the recorded data will continue.

  6. Use of computer memory chips as the basis for a digital albedo neutron dosimeter.

    PubMed

    Davis, J L

    1985-08-01

    We have measured the sensitivity of commercially available dynamic random access memories (D-RAMs) to alpha particles. Using a beam of 14-meV neutrons and a 6LiF crystal as a converter we have measured sensitivities to neutron radiation as high as 9.25 memory errors per millirem. We estimate that an optimized converter would produce even higher sensitivities as an albedo dosimeter in realistic radiation fields. Such a device would have a number of operational advantages. PMID:4019197

  7. Radiation dosimeters

    DOEpatents

    Hoelsher, James W.; Hegland, Joel E.; Braunlich, Peter F.; Tetzlaff, Wolfgang

    1992-01-01

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  8. Wristwatch dosimeter

    DOEpatents

    Wolf, Michael A.; Waechter, David A.; Umbarger, C. John

    1986-01-01

    The disclosure is directed to a wristwatch dosimeter utilizing a CdTe detector, a microprocessor and an audio and/or visual alarm. The dosimeter is entirely housable with a conventional digital watch case having an additional aperture enabling the detector to receive radiation.

  9. Wristwatch dosimeter

    DOEpatents

    Wolf, M.A.; Waechter, D.A.; Umbarger, C.J.

    1986-08-26

    The disclosure is directed to a wristwatch dosimeter utilizing a CdTe detector, a microprocessor and an audio and/or visual alarm. The dosimeter is entirely housable with a conventional digital watch case having an additional aperture enabling the detector to receive radiation. 10 figs.

  10. The LLNL CR-39 personnel neutron dosimeter

    SciTech Connect

    Hankins, D.E.; Homann, S.; Westermark, J.

    1987-09-29

    We developed a personnel neutron dosimetry system based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This CR-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. 3 refs., 4 figs.

  11. Citizen's dosimeter

    SciTech Connect

    Klemic, Gladys; Bailey, Paul; Breheny, Cecilia

    2008-09-02

    The present invention relates to a citizen's dosimeter. More specifically, the invention relates to a small, portable, personal dosimetry device designed to be used in the wake of a event involving a Radiological Dispersal Device (RDD), Improvised Nuclear Device (IND), or other event resulting in the contamination of large area with radioactive material or where on site personal dosimetry is required. The card sized dosimeter generally comprises: a lower card layer, the lower card body having an inner and outer side; a upper card layer, the layer card having an inner and outer side; an optically stimulated luminescent material (OSLM), wherein the OSLM is sandwiched between the inner side of the lower card layer and the inner side of the upper card layer during dosimeter radiation recording, a shutter means for exposing at least one side of the OSLM for dosimeter readout; and an energy compensation filter attached to the outer sides of the lower and upper card layers.

  12. RADIATION DOSIMETER

    DOEpatents

    Balkwell, W.R. Jr.; Adams, G.D. Jr.

    1960-05-10

    An improvement was made in the determination of amounts of ionizing radiation, particularly low-energy beta particles of less than 1000 rad total dose by means of fluid-phase dosimeter employing a stabilized-- sensitized ferrous-ferric colorimetric system in a sulphuric acid medium. The improvement in the dosimeter consists of adding to the ferrous-ferric system in concentrations of 10/sub -2/ to 10/sup -4/M an organic compound having one or more carboxylic or equivalent groups, such compounds being capable of chelating or complexing the iron ions in the solution. Suitable sensitizing and stabilizing agents are benzoic, phthalic, salicylic, malonic, lactic, maleic, oxalic, citric, succinic, phenolic tartaric, acetic, and adipic acid, as well as other compounds which are added to the solution alone or in certain combinations. As in conventional fluid-phase dosimeters, the absorbed dosage is correlated with a corresponding change in optical density at particular wavelengths of the solution.

  13. PERSONNEL DOSIMETER

    DOEpatents

    Birkhoff, R.D.; Hubbell, H.H. Jr.; Johnson, R.M.

    1959-02-24

    A personnel dosimeter sensitive to both gamma and beta radiation is described. The dosimeter consists of an electrical conductive cylinder having a wall thickness of substantially 7 milligrams per square centimeter and an electrode disposed axially within the cylinder and insulated therefrom to maintain a potential impressed between the electrode and the cylinder. A cylindrical perforated shield provided with a known percentage of void area is disposed concentrically about the cylinder. The shield is formed of a material which does not contain more than 15 percent of an element higher than atomic weight 13. The dose actually received is at most the gamma dose plus the beta dose indicated by discharge of the dosimeter divided by the known percentage.

  14. Composite material dosimeters

    DOEpatents

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  15. Thermoluminescence dosimeter

    DOEpatents

    Zendle, R.

    1983-11-03

    A thermoluminescence dosimeter having a very small rate of decline of sensitivity during subsequent uses after heating is disclosed. The dosimeter includes a detector crystal and a glass enclosure in which the detector crystal is located. The glass enclosure is air tight and is filled with a super dry inert fill gas. The inert fill gas is nonreactive with the detector crystal when the detector crystal is heated to thermoluminescence. The fill gas is selected from the group consisting of air, nitrogen, and argon, suitable admixed with 5 to 25 percent helium. The detector crystal consists essentially of calcium fluoride. The fill gas is preferably contained at a subatmospheric pressure in the glass enclosure.

  16. Thermoluminescence dosimeter

    DOEpatents

    Zendle, Robert

    1985-01-01

    A thermoluminescence dosimeter having a very small rate of decline of sensitivity during subsequent uses after heating is disclosed. The dosimeter includes a detector crystal and a glass enclosure in which the detector crystal is located. The glass enclosure is air tight and is filled with a super dry inert fill gas. The inert fill gas is nonreactive with the detector crystal when the detector crystal is heated to thermoluminescence. The fill gas is selected from the group consisting of air, nitrogen, and argon, suitable admixed with 5 to 25 percent helium. The detector crystal consists essentially of calcium fluoride. The fill gas is preferably contained at a subatmospheric pressure in the glass enclosure.

  17. Operational comparison of bubble (super heated drop) dosimetry with routine albedo TLD for a selected group of Pu-238 workers at Los Alamos National Laboratory

    SciTech Connect

    Romero, L.L.; Hoffman, J.M.; Foltyn, E.M.; Buhl, T.E.

    1998-09-01

    Personnel neutron dosimetry continues to be a difficult science due to the lack of availability of robust passive dosimeters that exhibit tissue- or near-tissue- equivalent response. This paper is an operational study that compares the use of albedo thermoluminescent dosimeters with bubble dosimeters to determine whether bubble dosimeters do provide a useful daily ALARA tool that can yield measurements close to the dose-of-record. A group of workers at Los Alamos National Laboratory (LANL) working on the Radioisotopic Thermoelectric Generators (RTG) for the NASA Cassini space mission wore both bubble dosimeters and albedo dosimeters over a period from 1993 through 1996. The personal albedo dosimeter was processed on a monthly basis and used as the dose-of-record. The results of this study indicated that cumulative daily bubble dosimetry results agreed with whole-body albedo dosimetry results within about 37% on average.

  18. Applicability of the polysulphone horizontal calibration to differently inclined dosimeters.

    PubMed

    Casale, Giuseppe R; Siani, Anna Maria; Diémoz, Henri; Kimlin, Michael G; Colosimo, Alfredo

    2012-01-01

    Polysulphone (PS) dosimetry has been a widely used technique for more than 30 years to quantify the erythemally effective UV dose received by anatomic sites (personal exposure). The calibration of PS dosimeters is an important issue as their spectral response is different from the erythemal action spectrum. It is performed exposing a set of PS dosimeters on a horizontal plane and measuring the UV doses received by dosimeters using calibrated spectroradiometers or radiometers. In this study, data collected during PS field campaigns (from 2004 to 2006), using horizontal and differently inclined dosimeters, were analyzed to provide some considerations on the transfer of the horizontal calibration to differently inclined dosimeters, as anatomic sites usually are. The role of sky conditions, of the angle of incidence between the sun and the normal to the slope, and of the type of surrounding surface on the calibration were investigated. It was concluded that PS horizontal calibrations apply to differently inclined dosimeters for incidence angles up to approximately 70° and for surfaces excluding ones with high albedo. Caution should be used in the application of horizontal calibrations for cases of high-incidence angle and/or high albedo surfaces.

  19. Pocket radiation dosimeter: dosimeter charger assembly

    DOEpatents

    Manning, F.W.

    1982-03-17

    This invention is a novel pocket-type radiation dosimeter comprising an electrometric radiation dosimeter and a charging circuit therefor. The instrument is especially designed to be amenable to mass production, to have a long shelf life, and to be compact, lightweight, and usable by the layman. The dosimeter proper may be of conventional design. The charging circuit includes a shake-type electrostatic generator, a voltage doubler for integrating generator output voltages of one polarity, and a switch operated by an external permanent magnet.

  20. Pocket radiation dosimeter--dosimeter charger assembly

    DOEpatents

    Manning, Frank W.

    1984-01-01

    This invention is a novel pocket-type radiation dosimeter comprising an electrometric radiation dosimeter and a charging circuit therefor. The instrument is especially designed to be amenable to mass production, to have a long shelf life, and to be compact, lightweight, and usable by the layman. The dosimeter proper may be of conventional design. The charging circuit includes a shake-type electrostatic generator, a voltage doubler for integrating generator output voltages of one polarity, and a switch operated by an external permanent magnet.

  1. Smart Radiological Dosimeter

    SciTech Connect

    Kosslow, William J.; Bandzuch, Gregory S.

    2004-07-20

    A radiation dosimeter providing an indication of the dose of radiation to which the radiation sensor has been exposed. The dosimeter contains features enabling the monitoring and evaluating of radiological risks so that a user can concentrate on the task at hand. The dosimeter provides an audible alarm indication that a predetermined time period has elapsed, an audible alarm indication reminding the user to check the dosimeter indication periodically, an audible alarm indicating that a predetermined accumulated dose has been prematurely reached, and an audible alarm indication prior or to reaching the 3/4 scale point.

  2. Wrist-watch dosimeter

    DOEpatents

    Wolf, M.A.; Waechter, D.A.; Umbarger, C.J.

    1982-04-16

    The disclosure is directed to a wristwatch dosimeter utilizing a CdTe detector, a microprocessor and an audio and/or visual alarm. The dosimeter is entirely housable within a conventional digital watch case having an additional aperture enabling the detector to receive radiation.

  3. A proposed four-element neutron-photon-beta thermoluminescence dosimeter.

    PubMed

    Liu, J C; Sims, C S; Ahmed, A B

    1992-09-01

    It is common practice for a worker exposed to a mixed field with neutrons to wear both a photon-beta dosimeter and a neutron dosimeter. In this study, a thermoluminescence dosimeter has been designed and is proposed for use in mixed fields. The maximum applicable ranges of the mixed field can have photons with unknown energy from 20 keV to 2 MeV, betas with unknown energy from 147Pm to 90Sr-Y, and neutrons of known energy from thermal to 15 MeV. This proposed dosimeter (a combination of Harshaw beta-gamma thermoluminescence dosimeter and albedo neutron thermoluminescence dosimeter) has an advantage of using a minimum number of thermoluminescence dosimeter elements (therefore, making it less costly) to measure the dose equivalents in a mixed field of neutron, photon, and beta radiation. The basic dosimeter design consists of four thermoluminescence elements of TLD-600 and TLD-700 with different filtrations. Using the high-temperature peak methodology for TLD-600 and a filtration algorithm, the neutron, photon, and beta dose equivalents in a mixed field can be determined. The design, detection principle, and three dosimetric algorithms for three versions of the basic design of the four-element dosimeter are presented and discussed. The work that is required for the proposed dosimeter to be usable when it is made is also presented. PMID:1644568

  4. Response of the Hanford Combination Neutron Dosimeter in plutonium environments

    SciTech Connect

    Endres, A.W.; Brackenbush, L.W.; Baumgartner, W.V.

    1996-02-01

    This report documents response characteristics and the development of dose algorithms for the Hanford Combination Neutron Dosimeter (HCNO) implemented on January 1, 1995. The HCND was accredited under the U.S. Department of Energy (DOE) Laboratory Accreditation Program (DOELAP) during 1994. The HCND employs two neutron dose components consisting of (1) an albedo thermoluminescent dosimeter (TLD), and (2) a track-etch dosimeter (TED). Response characteristics of these two dosimeter components were measured under the low-scatter conditions of the Hanford 318 Building Calibration Laboratory, and under the high-scatter conditions in the workplace at the Plutonium Finishing Plant (PFP). The majority of personnel neutron dose at Hanford (currently and historically) occurs at the PFP. National Institute of Standards and Technology (NIST) traceable sources were used to characterize dosimeter response in the laboratory. At the PFP, neutron spectra and dose-measuring instruments, including a multisphere spectrometer, tissue equivalent proportional counters, and specially calibrated rem meters, were used to determine the neutron dose under several configurations from three different plutonium sources: (1) plutonium tetrafluoride, (2) plutonium metal, and (3) plutonium oxide. In addition, measurements were performed at many selected work locations. The HCNDs were included in all measurements. Comparison of dosimeter- and instrument-measured dose equivalents provided the data necessary to develop HCND dose algorithms and to assess the accuracy of estimated neutron dose under actual work conditions.

  5. ULTRASONIC NEUTRON DOSIMETER

    DOEpatents

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  6. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  7. Length of stain dosimeter

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E. (Inventor)

    1994-01-01

    Payload customers for the Space Shuttle have recently expressed concerns about the possibility of their payloads at an adjacent pad being contaminated by plume effluents from a shuttle at an active pad as they await launch on an inactive pad. As part of a study to satisfy such concerns a ring of inexpensive dosimeters was deployed around the active pad at the inter-pad distance. However, following a launch, dosimeters cannot be read for several hours after the exposure. As a consequence factors such as different substrates, solvent systems, and possible volatilization of HCl from the badges were studied. This observation led to the length of stain (LOS) dosimeters of this invention. Commercial passive LOS dosimeters are sensitive only to the extent of being capable of sensing 2 ppm to 20 ppm if the exposure is 8 hours. To map and quantitate the HCl generated by Shuttle launches, and in the atmosphere within a radius of 1.5 miles from the active pad, a sensitivity of 2 ppm HCl in the atmospheric gases on an exposure of 5 minutes is required. A passive length of stain dosimeter has been developed having a sensitivity rendering it capable of detecting a gas in a concentration as low as 2 ppm on an exposure of five minutes.

  8. Fundamentals of Polymer Gel Dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  9. Earth's Reflection: Albedo

    ERIC Educational Resources Information Center

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  10. Albedos. Final report

    SciTech Connect

    Hansen, F.V.

    1993-07-01

    The albedo of the earth's surface varies dramatically from values of about 3 to 4 percent for calm bodies of water up to about 55 percent for gypsum sands. This rather broad range of reflected incoming solar radiation presents difficulties when attempting to define an average albedo for terrain over a large region from locally determined values. The patchwork, or checkerboard, appearance of the earth's surface as viewed from above is the result of various human activities, such as agriculture, the proliferation of urban sprawl, and road building. Each of these variable appearing surfaces will have individual albedos, rendering any attempt to determine an a real albedo almost an impossibility on the mesoscale. However, a vast data base exists for microscale applications for individual acreages, for example. A compilation of these data is presented.... Albedo, Solar radiation, Crops, Urban areas, Land uses.

  11. Observations of Surfzone Albedo

    NASA Astrophysics Data System (ADS)

    Sinnett, G.; Feddersen, F.

    2014-12-01

    The surfzone environment (where waves break) contains several unique and previously unconsidered processes that affect the heat budget. Entering short-wave radiation is a dominant term in both shelf and surfzone heat budgets. In contrast to the shelf, however, depth limited wave breaking in the surfzone generates spray, whitewater and suspended sediments, elevating the surface albedo (ratio of reflected to incident short-wave radiation). Elevated albedo reduces the level of solar short-wave radiation entering the water, potentially resulting in less heating. Additionally, surfzone water quality is often impacted by fecal bacteria contamination. As bacteria mortality is related to short-wave solar radiation, elevated surfzone albedo could reduce pathogen mortality, impacting human health. Albedo in the open ocean has been frequently studied and parameterizations often consider solar zenith angle, wind speed and ocean chlorophyll concentration, producing albedo values typically near 0.06. However, surfzone albedo observations have been extremely sparse, yet show depth limited wave breaking may increase the albedo by nearly a factor of 10 up to 0.5. Here, we present findings from a field study at the Scripps Institution of Oceanography pier to observe the affect of waves on surfzone albedo. Concurrent measurements were taken with a four-way radiometer (to measure both downwelling and upwelling short-wave and long wave radiation) mounted above the surfzone. A co-located GoPro camera was used to relate visual aspects of the surfzone to measured reflectance, and wave height and period were observed with a bottom mounted pressure sensor in 5 m water depth just outside the surfzone. Wind speed and direction were observed on the pier 10 m above the water surface. Here, we will examine the surfzone albedo dependence on surfzone parameters, such as wave height.

  12. Operational comparison of bubble (super heated drop) dosimetry results with routine albedo thermoluminescent dosimetry for a selected group of Pu-238 workers at Los Alamos National Laboratory

    SciTech Connect

    Romero, L.L.; Hoffman, J.M.; Foltyn, E.M.; Buhl, T.E.

    1999-03-01

    This paper is an operational study that compares the use of albedo thermoluminescent dosimeters with bubble dosimeters to determine whether bubble dosimeters do provide a useful daily ALARA tool that can yield measurements close to the dose-of-record. A group of workers at the Los Alamos National Laboratory (LANL) working on the Radioactive Thermoelectric Generators (RTG) for the NASA Cassini space mission wore both bubble dosimeters and albedo dosimeters over a period from 1993 through 1996. The bubble dosimeters were issued and read on a daily basis and the data were used as an ALARA tool. The personnel albedo dosimeter was processed on monthly basis and used as the dose-of-record. The results of this study indicated that cumulative bubble dosimetry results agreed with whole-body albedo dosimetry results within about 37% on average. However it was observed that there is a significant variability of the results on an individual basis both month-to-month and from one individual to another.

  13. Greenland Glacier Albedo Variability

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.

  14. [Thermoluminescence Slab Dosimeter].

    PubMed

    Shinsho, Kiyomitsu; Koba, Yusuke; Tamatsu, Satoshi; Sakurai, Noboru; Wakabayashi, Genichiro; Fukuda, Kazusige

    2013-01-01

    In 1953 F. Daniels et al. used the property of thermoluminescence in dosimetry for the first time. Since then, numerous TLD have been developed. 2D TLD was investigated for the first time in 1972 by P Broadhead. However, due to excessive fading, difficulties with handling and the time required for measurements, development stalled. At the current time, the majority of TLD are used in small scale, localized dosimetry with a wide dynamic range and personal dosimeters for exposure management. Urushiyama et. al. have taken advantage of the commoditization of CCD cameras in recent years--making large area, high resolution imaging easier--to introduce and develop a 2D TLD. It is expected that these developments will give rise to a new generation of applications for 2D TL dosimetry. This paper introduces the "TL Slab Dosimeter" developed jointly by Urushiyama et. al. and our team, its measurement system and several typical usage scenarios.

  15. Dose equivalent neutron dosimeter

    DOEpatents

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  16. Dosimeter Badge Detects Hydrazines

    NASA Technical Reports Server (NTRS)

    Young, Rebecca C.; Travis, Joshua C.; Moore, Gerald; Rose-Pehrsson, Susan; Carver, Patricia; Brenner, Karen

    1993-01-01

    Disposable dosimeter badge indicates approximate cumulative exposure to hydrazine or monomethyl hydrazine in air. Indication is change in colors of both paper tapes; one coated with para-N, N-dimethylaminobenzaldehyde. Colors of exposed tapes compared with colors on two preprinted color wheels to obtain estimate of exposure. Badges help minimize risks associated with exposure of personnel to hydrazine or monomethyl hydrazine, or suspected carcinogens. Also used as stationary monitors by taping them on walls or equipment at strategic locations.

  17. Dosimeter Corporation's computer interfacing automatic dosimeter (CID) system

    SciTech Connect

    Bunker, A.S.

    1985-07-01

    This paper reports that the weakest links in most large-scale quartz-fiber direct-reading dosimeter (DRD) programs are the devices used to read the DRD's; that is, the people who are assigned the DRDs and the technicians who log results, rezero dosimeters, and test dosimeters. These reading devices cannot be programmed for consistent interpretation of DRD readings, and they are notoriously slow at performing readings. They also cannot be easily interfaced to computer-based systems. Ideally, these devices should be replaced or supplemented with machines that can offer better precision, speed, and software. Dosimeter Corporation's Computer Interfaced Automatic Dosimetry (CID) system is one such machine.

  18. Analytical modeling of thermoluminescent albedo detectors for neutron dosimetry.

    PubMed

    Glickstein, S S

    1983-02-01

    In order to gain an in-depth understanding of the neutron physics of a 6LiF TLD when used as an albedo neutron dosimeter, an analytical model was developed to simulate the response of a 6LiF chip. The analytical model was used to examine the sensitivity of the albedo TLD response to incident monoenergetic neutrons and to evaluate a multiple chip TLD neutron dosimeter. Contrary to initial experimental studies, which were hampered by statistical uncertainties, the analytical evaluation revealed that a three-energy-group detector could not reliably measure the dose equivalent to personnel exposed to multiple neutron spectra. The analysis clearly illustrates that there may be order of magnitude errors in the measured neutron dose if the dosimeter has not been calibrated for the same flux spectrum to which it is exposed. As a result of this analysis, it was concluded that, for personnel neutron monitoring, a present TLD badge must be calibrated for the neutron spectrum into which the badge is to be introduced. The analytical model used in this study can readily be adopted for evaluating other possible detectors and shield material that might be proposed in the future as suitable for use in neutron dosimetry applications. PMID:6826377

  19. Hanford personnel dosimeter supporting studies FY-1981

    SciTech Connect

    Not Available

    1982-08-01

    This report examined specific functional components of the routine external personnel dosimeter program at Hanford. Components studied included: dosimeter readout; dosimeter calibration; dosimeter field response; dose calibration algorithm; dosimeter design; and TLD chip acceptance procedures. Additional information is also presented regarding the dosimeter response to light- and medium-filtered x-rays, high energy photons and neutrons. This study was conducted to clarify certain data obtained during the FY-1980 studies.

  20. Ionization chamber dosimeter

    DOEpatents

    Renner, Tim R.; Nyman, Mark A.; Stradtner, Ronald

    1991-01-01

    A method for fabricating an ion chamber dosimeter collecting array of the type utilizing plural discrete elements formed on a uniform collecting surface which includes forming a thin insulating layer over an aperture in a frame having surfaces, forming a predetermined pattern of through holes in the layer, plating both surfaces of the layer and simultaneously tilting and rotating the frame for uniform plate-through of the holes between surfaces. Aligned masking and patterned etching of the surfaces provides interconnects between the through holes and copper leads provided to external circuitry.

  1. PERSONNEL NEUTRON DOSIMETER

    DOEpatents

    Fitzgerald, J.J.; Detwiler, C.G. Jr.

    1960-05-24

    A description is given of a personnel neutron dosimeter capable of indicating the complete spectrum of the neutron dose received as well as the dose for each neutron energy range therein. The device consists of three sets of indium foils supported in an aluminum case. The first set consists of three foils of indium, the second set consists of a similar set of indium foils sandwiched between layers of cadmium, whereas the third set is similar to the second set but is sandwiched between layers of polyethylene. By analysis of all the foils the neutron spectrum and the total dose from neutrons of all energy levels can be ascertained.

  2. Pistol-shaped dosimeter charger

    DOEpatents

    Maples, Robert A.

    1985-01-01

    A pistol-shaped charger assembly clamps a cylindrical radiation dosimeter against one edge thereof. A triggerlike lever on the handgrip of the assembly is manually pivoted to actuate a piezoelectric current generator held in the handgrip and thereby charge the dosimeter.

  3. Pistol-shaped dosimeter charger

    SciTech Connect

    Maples, R.A.

    1985-01-15

    A pistol-shaped charger assembly clamps a cylindrical radiation dosimeter against one edge thereof. A triggerlike lever on the handgrip of the assembly is manually pivoted to actuate a piezoelectric current generator held in the handgrip and thereby charge the dosimeter.

  4. Pistol-shaped dosimeter charger

    DOEpatents

    Maples, R.A.

    A pistol-shaped charger assembly clamps a cylindrical radiation dosimeter against one edge thereof. A triggerlike lever on the handgrip of the assembly is manually pivoted to actuate a piezoelectric current generator held in the handgrip and thereby charge the dosimeter.

  5. A new radiochromic dosimeter film

    NASA Astrophysics Data System (ADS)

    Sidney, L. N.; Lynch, D. C.; Willet, P. S.

    By employing acid-sensitive leuco dyes in a chlorine-containing polymer matrix, a new radiochromic dosimeter film has been developed for gamma, electron beam, and ultraviolet radiation. These dosimeter films undergo a color change from colorless to royal blue, red fuchsia, or black, depending on dye selection, and have been characterized using a visible spectrophotometer over an absorbed dose range of 1 to 100 kGy. The primary features of the film are improved color stability before and after irradiation, whether stored in the dark or under artificial lights, and improved moisture resistance. The effects of absorbed dose, dose rate, and storage conditions on dosimeter performance are discussed. The dosimeter material may be produced as a free film or coated onto a transparent substrate and optionally backed with adhesive. Potential applications for these materials include gamma sterilization indicator films for food and medical products, electron beam dosimeters, and in-line radiation monitors for electron beam and ultraviolet processing.

  6. Personnel electronic neutron dosimeter

    DOEpatents

    Falk, R.B.; Tyree, W.H.

    1982-03-03

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  7. Personnel electronic neutron dosimeter

    DOEpatents

    Falk, Roger B.; Tyree, William H.

    1984-12-18

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  8. Thermoluminescence dosimeter reader

    SciTech Connect

    Miyake, S.; Miura, N.

    1984-10-30

    A thermoluminescence dosimeter reader having a heater for heating a thermoluminescence element, a light measuring circuit for measuring circuit for measuring the intensity of the thermoluminescence emanated from the element when it is heated and a display device for displaying the reading of the dosage of radiation to which the element is exposed according to the intensity of the thermoluminescence is provided with a dosage information inputting means which outputs an electric signal having a value representing a predetermined reference dosage of radiation, a calculating means for calculating a calibration constant which is the ratio between the value of the electric signal and the output value of the light measuring circuit which is the measured value of the dosage of radiation of a reference thermoluminescence element which is exposed to the predetermined reference dosage of radiation, and a memory means for memorizing the calibration constant.

  9. Miniature spectrally selective dosimeter

    NASA Technical Reports Server (NTRS)

    Adams, R. R.; Macconochie, I. O.; Poole, B. D., Jr. (Inventor)

    1980-01-01

    A miniature spectrally selective dosimeter capable of measuring selected bandwidths of radiation exposure on small mobile areas is described. This is achieved by the combination of photovoltaic detectors, electrochemical integrators (E-cells) and filters in a small compact case which can be easily attached in close proximity to and substantially parallel to the surface being measured. In one embodiment two photovoltaic detectors, two E-cells, and three filters are packaged in a small case with attaching means consisting of a safety pin. In another embodiment, two detectors, one E-cell, three filters are packaged in a small case with attaching means consisting of a clip to clip over a side piece of an eye glass frame.

  10. Third intercomparison of DOE High-Energy Neutron Personnel Dosimeters

    SciTech Connect

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1995-12-31

    An intercomparison of the dose equivalent response of personal dosimeters in use at U.S. Department of Energy (DOE) accelerator facilities was performed at the European Laboratory for Particle Physics (CERN). This is the third such intercomparison sponsored by the DOE. The two previous intercomparisons were performed in a U.S. laboratory using a source of high-energy neutrons. This intercomparison was performed at two positions relative to the main beam line at CERN. The neutron-energy spectra present at these two locations were measured by CERN personnel using Bonner sphere spectrometer systems. In addition, the dose equivalents at these two positions were also measured by CERN personnel using a tissue equivalent proportional counter system. The DOE dosimeters were mailed to CERN and returned after irradiation for readout. The results of this intercomparison are relatively consistent with the two previous intercomparisons performed in the U.S. The relative dose equivalent responses of neutron dosimeter types, such as albedo, nuclear emulsion and track-etch plastics, were found to have variations relative to the mean value responses of up to a factor of three.

  11. Brachytherapy dosimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Moutinho, L. M.; Castro, I. F. C.; Peralta, L.; Abreu, M. C.; Veloso, J. F. C. A.

    2015-07-01

    In-vivo and in-situ measurement of the radiation dose administered during brachytherapy faces several technical challenges, requiring a very compact, tissue-equivalent, linear and highly sensitive dosimeter, particularly in low-dose rate brachytherapy procedures, which use radioactive seeds with low energy and low dose deposition rate. In this work we present a scintillating optical fiber dosimeter composed of a flexible sensitive probe and a dedicated electronic readout system based on silicon photomultiplier photodetection, capable of operating both in pulse and current modes. The performance of the scintillating fiber optic dosimeter was evaluated in low energy regimes, using an X-ray tube operating at voltages of 40-50 kV and currents below 1 mA, to assess minimum dose response of the scintillating fiber. The dosimeter shows a linear response with dose and is capable of detecting mGy dose variations like an ionization chamber. Besides fulfilling all the requirements for a dosimeter in brachytherapy, the high sensitivity of this device makes it a suitable candidate for application in low-dose rate brachytherapy. According to Peralta and Rego [1], the BCF-10 and BCF-60 scintillating optical fibers used in dosimetry exhibit high variations in their sensitivity for photon beams in the 25-100 kVp energy range. Energy linearity for energies below 50 keV needs to be further investigated, using monochromatic X-ray photons.

  12. Dose-equivalent neutron dosimeter

    DOEpatents

    Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

    1981-01-07

    A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

  13. Spectrophotometry of PRESAGETM polyurethane dosimeters

    NASA Astrophysics Data System (ADS)

    Krstajic, N.; Wai, P.; Adamovics, J.; Doran, S.

    2004-01-01

    Preliminary optical density results on irradiated PRESAGE dosimeter are outlined in this article. PRESAGE is a solid dosimeter, based on a clear polyurethane combined with the leuco-dye leuco-malachite green. The purpose of these measurements was a) to obtain spectra for optimizing the wavelength of a new light source for the equipment and b) to obtain a dose-response relation. 10 PRESAGE cuvettes were given uniform doses from 0.1 to 40 Gy and later read out by spectrophotometer. The instrument used was CAMSPEC M350 Double Beam Spectrophotometer.

  14. MISR Level 3 Albedo and Cloud Versioning

    Atmospheric Science Data Center

    2016-09-07

    ... MIL3YALN MISR_AM1_CGAL Stage 2:  CLOUD - Wind Vectors, Height Histogram Stage 1:  ALBEDO - Expansive, ... Stage 2 CLOUD - Height Histogram Stage 1 CLOUD - Wind Vectors Stage 1 ALBEDO - Expansive and Restrictive Albedos ...

  15. Miniature personal UV solar dosimeter

    NASA Technical Reports Server (NTRS)

    Adams, R. R.; Macconochie, I. O.; Poole, B. D., Jr.

    1981-01-01

    Small light-powered meter measures accumulated radiation in ultraviolet or other selected regions. Practical advantages are device's low cost, small size, accuracy, and adaptability to specific wave-band measurements. Medical applications include detection of skin cancer, vitamin D production, and jaundice. Dosimeter also measures sunlight for solar energy designs, agriculture and meteorology, and monitors stability of materials and environmental and occupational lighting.

  16. RADIATION DOSIMETER AND DOSIMETRIC METHODS

    DOEpatents

    Taplin, G.V.

    1958-10-28

    The determination of ionizing radiation by means of single fluid phase chemical dosimeters of the colorimetric type is presented. A single fluid composition is used consisting of a chlorinated hydrocarbon, an acidimetric dye, a normalizer and water. Suitable chlorinated hydrocarbons are carbon tetrachloride, chloroform, trichloroethylene, trichlorethane, ethylene dichioride and tetracbloroethylene. Suitable acidimetric indicator dyes are phenol red, bromcresol purple, and creosol red. Suitable normallzers are resorcinol, geraniol, meta cresol, alpha -tocopberol, and alpha -naphthol.

  17. Fast-neutron solid-state dosimeter

    DOEpatents

    Kecker, K.H.; Haywood, F.F.; Perdue, P.T.; Thorngate, J.H.

    1975-07-22

    This patent relates to an improved fast-neutron solid-state dosimeter that does not require separation of materials before it can be read out, that utilizes materials that do not melt or otherwise degrade at about 300$sup 0$C readout temperature, that provides a more efficient dosimeter, and that can be reused. The dosimeters are fabricated by intimately mixing a TL material, such as CaSO$sub 4$:Dy, with a powdered polyphenyl, such as p-sexiphenyl, and hot- pressing the mixture to form pellets, followed by out-gassing in a vacuum furnace at 150$sup 0$C prior to first use dosimeters. (auth)

  18. Spectral albedos of midlatitude snowpacks

    NASA Technical Reports Server (NTRS)

    Choudhury, B.

    1981-01-01

    Spectral albedos of impure-nonhomogeneous snowpacks, typical of midlatitudes, from 400 to 2200 nm were modeled through a numerical solution of the radiative transfer equation in the two-stream approximation. Discrete depth-dependent values of density, grain size and impurity concentration were used to characterize the snowpacks. The model is for diffuse incident radiation, and the numerical method is based on doubling and invariant imbedding. The effect of soot impurities on snowpack albedos is illustrated when a snowpack is several centimeters deep and soot reduces the albedos at visible wavelengths, however, when a snowpack is only a few centimeters deep, soot may increase the albedos at visible wavelengths. By adjusting soot content and snow grain size, good quantitative agreement with some observations at the Cascade Mountains (Washington) and at Point Barrow (Alaska) are obtained; however, the model grain sizes are found to be fifty to four hundred percent larger than the measured values. For satellite snowcover observations, a model for effective albedo of partially snow-covered areas was developed and compared with some NOAA-2 observations of the southeastern United States.

  19. Portable neutron spectrometer and dosimeter

    DOEpatents

    Waechter, David A.; Erkkila, Bruce H.; Vasilik, Dennis G.

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  20. Portable neutron spectrometer and dosimeter

    DOEpatents

    Waechter, D.A.; Erkkila, B.H.; Vasilik, D.G.

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  1. BETA-GAMMA PERSONNEL DOSIMETER

    DOEpatents

    Davis, D.M.; Gupton, E.D.; Hart, J.C.; Hull, A.P.

    1961-01-17

    A personnel dosimeter is offered which is sensitive to both gamma and soft beta radiations from all directions within a hemisphere. The device is in the shape of a small pill box which is worn on a worker-s wrist. The top and sides of the device are provided with 50 per cent void areas to give 50 per cent response to the beta rays and complete response to the gamma rays. The device is so constructed as to have a response which will approximate the dose received by the basal layer of the human epidermis.

  2. Dosimeter and method for using the same

    DOEpatents

    Warner, Benjamin P.; Johns, Deidre M.

    2003-06-24

    A very sensitive dosimeter that detects ionizing radiation is described. The dosimeter includes a breakable sealed container. A solution of a reducing agent is inside the container. The dosimeter has an air-tight dosimeter body with a transparent portion and an opaque portion. The transparent portion includes a transparent chamber that holds the breakable container with the reducing agent. The opaque portion includes an opaque chamber that holds an emulsion of silver salt (AgX) selected from silver chloride, silver bromide, silver iodide, and combinations of them. A passageway in the dosimeter provides fluid communication between the transparent chamber and the opaque chamber. The dosimeter may also include a chemical pH indicator in the breakable container that provides a detectable color change to the solution for a pH of about 3-10. The invention also includes a method of detecting ionizing radiation that involves producing the dosimeter, breaking the breakable container, allowing the solution to flow through the passageway and contact the emulsion, detecting any color change in the solution and using the color change to determine a radiation dosage.

  3. Comparative study of some new EPR dosimeters

    NASA Astrophysics Data System (ADS)

    Alzimami, K. S.; Maghraby, Ahmed M.; Bradley, D. A.

    2014-02-01

    Investigations have been made of four new radiation dosimetry EPR candidates from the same family of materials: sulfamic acid, sulfanillic acid, homotaurine, and taurine. Mass energy attenuation coefficients, mass stopping power values and the time dependence of the radiation induced radicals are compared. Also investigated are the microwave saturation behavior and the effect of applied modulation amplitude on both peak-to-peak line width (WPP) and peak-to-peak signal height (HPP). The dosimeters are characterized by simple spectra and stable radiation-induced radicals over reasonable durations, especially in taurine dosimeters. Sulfamic acid dosimeters possessed the highest sensitivity followed by taurine and homotaurine and sulfanillic.

  4. Fiber-type dosimeter with improved illuminator

    DOEpatents

    Fox, R.J.

    1985-12-23

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  5. Diffusion properties of a radiochromic hydrogel dosimeter

    NASA Astrophysics Data System (ADS)

    Skyt, P. S.; Kinnari, T. S.; Wahlstedt, I.; Yates, E. S.; Muren, L. P.; Petersen, J. B. B.; Balling, P.

    2013-06-01

    The aim of this study was to investigate the diffusion properties of a radiochromic hydrogel dosimeter based on leuco malachite green dye in a gelatine matrix. One half of each dosimeter was irradiated while the other half was left un-irradiated creating dose gradients over which diffusion could be investigated. Read-out of the optical response was performed with a high-resolution optical scanner. The dosimeters were found to exhibit a low diffusion rate but a high auto-oxidation level leading to a fading of the contrast in the dose response with time.

  6. Fiber-type dosimeter with improved illuminator

    DOEpatents

    Fox, Richard J.

    1987-01-01

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  7. Calibration of neutron albedo dosemeters.

    PubMed

    Schwartz, R B; Eisenhauer, C M

    2002-01-01

    It is shown that by calibrating neutron albedo dosemeters under the proper conditions, two complicating effects will essentially cancel out, allowing accurate calibrations with no need for explicit corrections. The 'proper conditions' are: a large room (> or = 8 m on a side). use of a D2O moderated 252Cf source, and a source-to-phantom calibration distance of approximately 70 cm. PMID:12212898

  8. Albedo in the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Sokolskaya, N. V.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.; Six, N. Frank (Technical Monitor)

    2002-01-01

    ATIC(Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first 16-day flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2000. The ATIC flight collected approximately 25 million events. To measure charge of primary particle in presence of radiation scattered back from the interaction and subsequent shower development in the calorimeter a charge detector must be a mosaic of small detector pads so that the pad containing the signal from the incident particle has no additional signal from albedo particles. Therefore the silicon matrix was built of 4480 individual silicon pads each 2 cm x 1.5 cm. The matrix consists of four planes of detectors and the active detector area, in these planes are partially overlapped to completely cover the aperture. The lateral and amplitude distributions of albedo signals in Si-matrix are analyzed for different primary nuclei and different energy deposits in BGO calorimeter. The greater part of albedo signals has Q near 1, where Q = square root of Amplitude(MIP). The albedo distribution exponentially decreases up to Q near 8. These high values are produced by slow protons and plans. There are also a small number of signals of Q > 8, mainly for heavy nucleus primaries. These signals are apparently generated by neutrons. The comparison of the experimental data and simulations with GEANT 3-21 code using QGSM generator for nucleus-nucleus interactions is presented.

  9. Performance criteria for dosimeter angular response

    SciTech Connect

    Roberson, P.L.; Fox, R. A.; Cummings, F. M.; McDonald, J. C.; Jones, K.L.

    1988-06-01

    This report provides criteria for evaluating the response of personnel dosimeters to radiation at nonperpendicular incidence. The US Department of Energy Laboratory Accreditation Program (DOELAP) ensures that dosimetry systems at DOE facilities meet acceptable standards for precision and accuracy. In the past, these standards were limited to tests for system variability, energy dependence, and level of detection. The proposed criteria will broaden the scope of DOELAP to include the angular response of personnel dosimeters. Because occupational exposures in the workplace are rarely due to radiation from only one direction, dosimeters must accurately assign individual dose equivalent from irradiation at any forward angle of incidence. Including an angular response criterion in DOELAP would improve the quality of personnel monitoring provided that the criterion is developed from appropriate dose quantities. This report provides guidance for assigning individual dose equivalents for radiation fields at nonperpendicular incidence to the dosimeter. 21 refs., 10 figs., 10 tabs.

  10. Polymer gel dosimeter based on itaconic acid.

    PubMed

    Mattea, Facundo; Chacón, David; Vedelago, José; Valente, Mauro; Strumia, Miriam C

    2015-11-01

    A new polymeric dosimeter based on itaconic acid and N, N'-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158cGy/min, 226cGymin and 298cGy/min with doses up to 1000Gy. The dosimeters presented a linear response in the dose range 75-1000Gy, sensitivities of 0.037 1/Gyat 298cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species.

  11. The Ultraviolet Albedo of Ganymede

    NASA Astrophysics Data System (ADS)

    McGrath, Melissa; Hendrix, A.

    2013-10-01

    A large set of ultraviolet images of Ganymede have been acquired with the Hubble Space Telescope over the last 15 years. These images have been used almost exclusively to study Ganymede’s stunning auroral emissions (Feldman et al. 2000; Eviatar et al. 2001; McGrath et al. 2004; Saur et al. 2011; McGrath et al. 2013), and even the most basic information about Ganymede’s UV albedo has yet to be gleaned from these data. We will present a first-cut analysis of both disk-averaged and spatially-resolved UV albedos of Ganymede, with focus on the spatially-resolved Lyman-alpha albedo, which has never been considered previously for this satellite. Ganymede's visibly bright regions are known to be rich in water ice, while the visibly dark regions seem to be more carbonaceous (Carlson et al., 1996). At Lyman-alpha, these two species should also have very different albedo values. References Carlson, R. and 39 co-authors, Near-infrared spectroscopy and spectral mapping of Jupiter and the Galilean satellites: Results from Galileo’s initial orbit, Science, 274, 385-388, 1996. Eviatar, A., D. F. Strobel, B. C. Wolven, P. D. Feldman, M. A. McGrath, and D. J. Williams, Excitation of the Ganymede ultraviolet aurora, Astrophys. J, 555, 1013-1019, 2001. Feldman, P. D., M. A. McGrath, D. F. Strobel, H. W. Moos, K. D. Retherford, and B. C. Wolven, HST/STIS imaging of ultraviolet aurora on Ganymede, Astrophys. J, 535, 1085-1090, 2000. McGrath M. A., Lellouch E., Strobel D. F., Feldman P. D., Johnson R. E., Satellite Atmospheres, Chapter 19 in Jupiter: The Planet, Satellites and Magnetosphere, ed. F. Bagenal, T. Dowling, W. McKinnon, Cambridge University Press, 2004. McGrath M. A., Jia, Xianzhe; Retherford, Kurt; Feldman, Paul D.; Strobel, Darrell F.; Saur, Joachim, Aurora on Ganymede, J. Geophys. Res., doi: 10.1002/jgra.50122, 2013. Saur, J., S. Duling, S., L. Roth, P. D. Feldman, D. F. Strobel, K. D. Retherford, M. A. McGrath, A. Wennmacher, American Geophysical Union, Fall Meeting

  12. The temporal scale research of MODIS albedo product authenticity verification

    NASA Astrophysics Data System (ADS)

    Cao, Yongxing; Xue, Zhihang; Cheng, Hui; Xiong, Yajv; Chen, Yunping; Tong, Ling

    2016-06-01

    This study introduces a method that normalizes the inversed ETM+ albedo to the local solar noon albedo for the temporal scale of the MODIS albedo validation. Firstly, the statistical relation model between the surface albedo and the solar elevation angle was set up, and then deducing relationship between ETM+ albedo and the solar elevation angle, so the ETM+ albedo at local solar noon could be got. Secondly, the ground measurement albedo at the local solar noon was used to assess the inversed ETM+ albedo and the normalized albedo. The experiment results show that the method can effectively improve the accuracy of product certification.

  13. PNNL Results from 2009 Silene Criticality Accident Dosimeter Intercomparison Exercise

    SciTech Connect

    Hill, Robin L.; Conrady, Matthew M.

    2010-06-30

    This document reports the results of testing of the Hanford Personnel Nuclear Accident Dosimeter (PNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on October 13, 14, and 15, 2009.

  14. Environmental dosimeter of the thermoluminescent type

    DOEpatents

    Eichner, F.N.; Kocher, L.F.

    1974-01-29

    A dosimeter for accurately monitoring normally low-energy radiation including a thermoluminescent CaF phosphor enclosed within a tantalum capsule is described. The tantalum acts as a filter to weaken the measured dose due to photons having energies below about 0.2 MeV. Tantalum end caps are maintained on the capsule body by a polyolefin sheath formed from heat-contractable tubing. After exposing the dosimeter to environmental radiation, it is placed in a shielded chamber for about 24 h and subsequently annealed at about 80 deg C to release radiation energy accumulated in low-temperature traps. The dosimeter is then disassembled and the phosphors photometrically read at temperatures about 50 deg C to determine the absorbed radiation dose. (Official Gazette)

  15. Solid state neutron dosimeter for space applications

    SciTech Connect

    Nagarkar, V.; Entine, G.; Stoppel, P.; Cirignano, L. ); Swinehart, P. )

    1992-08-01

    One of the most important contributions to the radiation exposure of astronauts engaged in space flight is the significant flux of high energy neutrons arising from both primary and secondary sources of ionizing radiation. Under NASA sponsorship, the authors are developing a solid state neutron sensor capable of being incorporated into a very compact, flight instrument to provide high quality real time measurement of this important radiation flux. The dosimeter uses a special, high neutron sensitivity, PIN diode that is insensitive t the other forms of ionizing radiation. The dosimeter will have the ability to measure and record neutron dose over a range of 50 microgray to tens of milligrays (5 millirads to several rads) over a flight of up to 30 days. the performance characteristics of the PIN diode with a detailed description of the overall dosimeter is presented. in this paper.

  16. Do saccharide doped PAGAT dosimeters increase accuracy?

    NASA Astrophysics Data System (ADS)

    Berndt, B.; Skyt, P. S.; Holloway, L.; Hill, R.; Sankar, A.; De Deene, Y.

    2015-01-01

    To improve the dosimetric accuracy of normoxic polyacrylamide gelatin (PAGAT) gel dosimeters, the addition of saccharides (glucose and sucrose) has been suggested. An increase in R2-response sensitivity upon irradiation will result in smaller uncertainties in the derived dose if all other uncertainties are conserved. However, temperature variations during the magnetic resonance scanning of polymer gels result in one of the highest contributions to dosimetric uncertainties. The purpose of this project was to study the dose sensitivity against the temperature sensitivity. The overall dose uncertainty of PAGAT gel dosimeters with different concentrations of saccharides (0, 10 and 20%) was investigated. For high concentrations of glucose or sucrose, a clear improvement of the dose sensitivity was observed. For doses up to 6 Gy, the overall dose uncertainty was reduced up to 0.3 Gy for all saccharide loaded gels compared to PAGAT gel. Higher concentrations of glucose and sucrose deteriorate the accuracy of PAGAT dosimeters for doses above 9 Gy.

  17. System for use with solid state dosimeter

    DOEpatents

    Miller, S.D.; McDonald, J.C.; Eichner, F.N.; Tomeraasen, P.L.

    1990-09-04

    The present invention constitutes a system for determining the amounts of ionizing radiation to which dosimeters using thermoluminescent materials have been exposed. In accordance with this system, the thermoluminescent materials which comprise the dosimeters are first cooled by contact with a cryogenic substance such as liquefied nitrogen. The thermoluminescent materials are then optically stimulated by exposure to ultraviolet light. Thereafter, the amounts of visible light emitted by the thermoluminescent materials are detected and counted as the materials are allowed to warm up to room temperature. The amounts of luminescence exhibited by the materials are related to radiation exposure and provide a sensitive measure of radiation dosage. It has been discovered that the above procedure is most effective when heavily doped thermoluminescent materials are used and that the procedure allows many useful plastic materials to now be employed in dosimeter constructions. 3 figs.

  18. System for use with solid state dosimeter

    DOEpatents

    Miller, Steven D.; McDonald, Joseph C.; Eichner, Fred N.; Tomeraasen, Paul L.

    1990-01-01

    The present invention constitutes a system for determining the amounts of ionizing radiation to which dosimeters using thermoluminescent materials have been exposed. In accordance with this system, the thermoluminescent materials which comprise the dosimeters are first cooled by contact with a cryogenic substance such as liquified nitrogen. The thermoluminescent materials are then optically stimulated by exposure to ultraviolet light. Thereafter, the amounts of visible light emitted by the thermoluminescent materials are detected and counted as the materials are allowed to warm up to room temperature. The amounts of luminescence exhibited by the materials are related to radiation exposure and provide a sensitive measure of radiation dosage. It has been discovered that the above procedure is most effective when heavily doped thermoluminescent materials are used and that the procedure allows many useful plastic materials to now be employed in dosimeter constructions.

  19. Chemical Dosimeter Tube With Coaxial Sensing Rod

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E.

    1993-01-01

    Improved length-of-stain (LOS) chemical dosimeter indicates total dose of chemical vapor in air. Made with rods and tubes of various diameters to obtain various sensitivities and dynamic ranges. Sensitivity larger and dose range smaller when more room for diffusion in gap between tube and rod. Offers greater resistance to changing of color of exposed dye back to color of unexposed condition, greater sensitivity, and higher degree of repeatability. Developed to measure doses of gaseous HCI, dosimeter modified by use of other dyes to indicate doses of other chemical vapors.

  20. Fiber optic dosimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Moutinho, L. M.; Castro, I. F.; Peralta, L.; Abreu, M. C.; Veloso, J. F. C. A.

    2014-08-01

    A small dimension, real-time readout dosimeter is desirable for specific applications in medical physics as for example, dose measurement in prostate brachytherapy. This particular radiotherapy procedure consists in the permanent deposition of low energy, low-dose and low-dose rate small sized radioactive seeds. We developed a scintillating fiber optic based dosimeter suitable for in-vivo, real-time low dose and low dose rate measurements. Due to the low scintillation light produced in the scintillating fiber, a high sensitive and high gain light detector is required. The Silicon Photomultipliers are an interesting option that allowed us to obtain good results in our studies.

  1. Winter Albedo Characteristics at St. Paul, Minnesota.

    NASA Astrophysics Data System (ADS)

    Baker, Donald G.; Ruschy, David L.

    1989-03-01

    Mean and median daily albedos of the November-April period are presented for a nonforested station in the North Central region of the United States where frozen soil and persistent snow cover are common winter features. Three distinct albedo periods were found, the occurrence of which can be explained by comparison with associated daily records of air temperature and snow depth. These periods are: I) Introduction to Winter, 9-22 November, a transitional period in which snowfalls begin to occur but with insufficient frequency or duration to greatly alter the mean albedo from growing season values; II) the High Albedo Season, 23 November-17 March, that is characterized by mean and median albedos of 50% or higher and by a negatively skewed distribution of albedo values in contrast to periods I and III; and III) the transition period, Introduction to Spring, 18 March-12 April, where late season snowfalls of brief duration occur, but the mean albedo is lower than in period I because of the more common occurrence of moist surfaces due to snowmelt and rains.

  2. NOTE: Cell-phone interference with pocket dosimeters

    NASA Astrophysics Data System (ADS)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M.; Ayyangar, Komanduri M.; Raman, Natarajan V.; Enke, Charles A.

    2005-05-01

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag.

  3. Compton effect thermally activated depolarization dosimeter

    DOEpatents

    Moran, Paul R.

    1978-01-01

    A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.

  4. Pen Ink as an Ultraviolet Dosimeter

    ERIC Educational Resources Information Center

    Downs, Nathan; Turner, Joanna; Parisi, Alfio; Spence, Jenny

    2008-01-01

    A technique for using highlighter ink as an ultraviolet dosimeter has been developed for use by secondary school students. The technique requires the students to measure the percentage of colour fading in ink drawn onto strips of paper that have been exposed to sunlight, which can be calibrated to measurements of the ultraviolet irradiance using…

  5. Investigating hydrogel dosimeter decomposition by chemical methods

    NASA Astrophysics Data System (ADS)

    Jordan, Kevin

    2015-01-01

    The chemical oxidative decomposition of leucocrystal violet micelle hydrogel dosimeters was investigated using the reaction of ferrous ions with hydrogen peroxide or sodium bicarbonate with hydrogen peroxide. The second reaction is more effective at dye decomposition in gelatin hydrogels. Additional chemical analysis is required to determine the decomposition products.

  6. Variability of albedo and utility of the MODIS albedo product in forested wetlands

    USGS Publications Warehouse

    Sumner, David M.; Wu, Qinglong; Pathak, Chandra S.

    2011-01-01

    Albedo was monitored over a two-year period (beginning April 2008) at three forested wetland sites in Florida, USA using up- and down-ward facing pyranometers. Water level, above and below land surface, is the primary control on the temporal variability of daily albedo. Relatively low reflectivity of water accounts for the observed reductions in albedo with increased inundation of the forest floor. Enhanced canopy shading of the forest floor was responsible for lower sensitivity of albedo to water level at the most dense forest site. At one site, the most dramatic reduction in daily albedo was observed during the inundation of a highly-reflective, calcareous periphyton-covered land surface. Satellite-based Moderate-Resolution Imaging Spectroradiometer (MODIS) estimates of albedo compare favorably with measured albedo. Use of MODIS albedo values in net radiation computations introduced a root mean squared error of less than 4.7 W/m2 and a mean, annual bias of less than 2.3 W/m2 (1.7%). These results suggest that MODIS-estimated albedo values can reliably be used to capture areal and temporal variations in albedo that are important to the surface energy balance.

  7. Arctic sea ice albedo from AVHRR

    SciTech Connect

    Lindsay, R.W.; Rothrock, D.A.

    1994-11-01

    The seasonal cycle of surface albedo of sea ice in the Arctic is estimated from measurements made with the Advanced Very High Resolution Radiometer (AVHRR) on the polar-orbiting satellites NOAA-10 and NOAA-11. The albedos of 145 200-km-square cells are analyzed. The cells are from March through September 1989 and include only those for which the sun is more than 10 deg above the horizon. Cloud masking is performed manually. Corrections are applied for instrument calibration, nonisotropic reflection, atmospheric interference, narrowband to broadband conversion, and normalization to a common solar zenith angle. The estimated albedos are relative, with the instrument gain set to give an albedo of 0.80 for ice floes in March and April. The mean values for the cloud-free portions of individual cells range from 0.18 to 0.91. Monthly averages of cells in the central Arctic range from 0.76 in April to 0.47 in August. The monthly averages of the within-cell standard deviations in the central Arctic are 0.04 in April and 0.06 in September. The surface albedo and surface temperature are correlated most strongly in March (R = -0.77) with little correlation in the summer. The monthly average lead fraction is determined from the mean potential open water, a scaled representation of the temperature or albedo between 0.0 (for ice) and 1.0 (for water); in the central Arctic it rises from an average 0.025 in the spring to 0.06 in September. Sparse data on aerosols, ozone, and water vapor in the atmospheric column contribute uncertainties to instantaneous, area-average albedos of 0.13, 0.04, and 0.08. Uncertainties in monthly average albedos are not this large. Contemporaneous estimation of these variables could reduce the uncertainty in the estimated albedo considerably.

  8. Radiation Dose from Lunar Neutron Albedo

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Bhattacharya, M.; Lin, Zi-Wei; Pendleton, G.

    2006-01-01

    The lunar neutron albedo from thermal energies to 8 MeV was measured on the Lunar Prospector Mission in 1998-1999. Using GEANT4 we have calculated the neutron albedo due to cosmic ray bombardment of the moon and found a good-agreement with the measured fast neutron spectra. We then calculated the total effective dose from neutron albedo of all energies, and made comparisons with the effective dose contributions from both galactic cosmic rays and solar particle events to be expected on the lunar surface.

  9. Arctic sea ice albedo from AVHRR

    NASA Technical Reports Server (NTRS)

    Lindsay, R. W.; Rothrock, D. A.

    1994-01-01

    The seasonal cycle of surface albedo of sea ice in the Arctic is estimated from measurements made with the Advanced Very High Resolution Radiometer (AVHRR) on the polar-orbiting satellites NOAA-10 and NOAA-11. The albedos of 145 200-km-square cells are analyzed. The cells are from March through September 1989 and include only those for which the sun is more than 10 deg above the horizon. Cloud masking is performed manually. Corrections are applied for instrument calibration, nonisotropic reflection, atmospheric interference, narrowband to broadband conversion, and normalization to a common solar zenith angle. The estimated albedos are relative, with the instrument gain set to give an albedo of 0.80 for ice floes in March and April. The mean values for the cloud-free portions of individual cells range from 0.18 to 0.91. Monthly averages of cells in the central Arctic range from 0.76 in April to 0.47 in August. The monthly averages of the within-cell standard deviations in the central Arctic are 0.04 in April and 0.06 in September. The surface albedo and surface temperature are correlated most strongly in March (R = -0.77) with little correlation in the summer. The monthly average lead fraction is determined from the mean potential open water, a scaled representation of the temperature or albedo between 0.0 (for ice) and 1.0 (for water); in the central Arctic it rises from an average 0.025 in the spring to 0.06 in September. Sparse data on aerosols, ozone, and water vapor in the atmospheric column contribute uncertainties to instantaneous, area-average albedos of 0.13, 0.04, and 0.08. Uncertainties in monthly average albedos are not this large. Contemporaneous estimation of these variables could reduce the uncertainty in the estimated albedo considerably. The poor calibration of AVHRR channels 1 and 2 is another large impediment to making accurate albedo estimates.

  10. Clinical applications of 3-D dosimeters

    NASA Astrophysics Data System (ADS)

    Wuu, Cheng-Shie

    2015-01-01

    Both 3-D gels and radiochromic plastic dosimeters, in conjunction with dose image readout systems (MRI or optical-CT), have been employed to measure 3-D dose distributions in many clinical applications. The 3-D dose maps obtained from these systems can provide a useful tool for clinical dose verification for complex treatment techniques such as IMRT, SRS/SBRT, brachytherapy, and proton beam therapy. These complex treatments present high dose gradient regions in the boundaries between the target and surrounding critical organs. Dose accuracy in these areas can be critical, and may affect treatment outcome. In this review, applications of 3-D gels and PRESAGE dosimeter are reviewed and evaluated in terms of their performance in providing information on clinical dose verification as well as commissioning of various treatment modalities. Future interests and clinical needs on studies of 3-D dosimetry are also discussed.

  11. Exploring the dose response of radiochromic dosimeters

    NASA Astrophysics Data System (ADS)

    Skyt, P. S.; Wahlstedt, I.; Yates, E. S.; Muren, L. P.; Petersen, J. B. B.; Balling, P.

    2013-06-01

    The aim of this study was to explore the dose response of a newly developed radio-chromic hydrogel dosimeter based on leuco malachite green dye in a gelatine matrix. The original dosimeter composition was first investigated in terms of dose response and dose-rate dependence. In addition, the initiating compounds producing chlorine radicals were substituted with compounds producing fluorine radicals, oxygen-centered radicals, carbon-centered radicals and bromine radicals. Also the surfactant was substituted by other compounds of different molecular size and charge. The original composition gave a dose response of 3.5·10-3 Gy-1cm-1 at 6 Gy/min with a dose rate dependence giving a 27 % increase when decreasing the dose rate to 1 Gy/min. None of the substituted initiating components contributed to an increase in dose response while only one surfactant increased the dose response slightly.

  12. Radiological properties of normoxic polymer gel dosimeters

    SciTech Connect

    Venning, A.J.; Nitschke, K.N.; Keall, P.J.; Baldock, C.

    2005-04-01

    The radiological properties of the normoxic polymer gel dosimeters MAGIC, MAGAS, and MAGAT [methacrylic and ascorbic acid in gelatin initiated by copper; methacrylic acid gelatine gel with ascorbic acid; and methacrylic acid gelatine and tetrakis (hydroxymethyl) phosphonium chloride, respectively] have been investigated. The radiological water equivalence was determined by comparing the polymer gel macroscopic photon and electron interaction cross sections over the energy range from 10 keV to 20 MeV and by Monte Carlo modeling of depth doses. Normoxic polymer gel dosimeters have a high gelatine and monomer concentration and therefore mass density (kg m{sup -3}) up to 3.8% higher than water. This results in differences between the cross-section ratios of the normoxic polymer gels and water of up to 3% for the attenuation, energy absorption, and collision stopping power coefficient ratios through the Compton dominant energy range. The mass cross-section ratios were within 2% of water except for the mass attenuation and energy absorption coefficients ratios, which showed differences with water of up to 6% for energies less than 100 keV. Monte Carlo modeling was undertaken for the polymer gel dosimeters to model the electron and photon transport resulting from a 6 MV photon beam. The absolute percentage differences between gel and water were within 1% and the relative percentage differences were within 3.5%. The results show that the MAGAT gel formulation is the most radiological water equivalent of the normoxic polymer gel dosimeters investigated due to its lower mass density measurement compared with MAGAS and MAGIC gels.

  13. Water equivalence of polymer gel dosimeters

    NASA Astrophysics Data System (ADS)

    Sellakumar, P.; James Jebaseelan Samuel, E.; Supe, Sanjay S.

    2007-07-01

    To evaluate the water equivalence and radiation transport properties of polymer gel dosimeters over the wide range of photon and electron energies 14 different types of polymer gels were considered. Their water equivalence was evaluated in terms of effective atomic number ( Zeff), electron density ( ρe), photon mass attenuation coefficient ( μ/ρ), photon mass energy absorption coefficient ( μen/ρ) and total stopping power (S/ρ)tot of electrons using the XCOM and the ESTAR database. The study showed that the effective atomic number of polymer gels were very close ( <1%) to that of water except PAGAT, MAGAT and NIPAM which had the variation of 3%, 2% and 3%, respectively. The value of μ/ρ and μen/ρ for all polymer gels were in close agreement ( <1%) with that of water beyond 80 keV. The value of (S/ρ)tot of electrons in polymer gel dosimeters were within 1% agreement with that of water. From the study we conclude that at lower energy ( <80 keV) the polymer gel dosimeters cannot be considered water equivalent and study has to be carried out before using the polymer gel for clinical application.

  14. Sea ice-albedo climate feedback mechanism

    SciTech Connect

    Schramm, J.L.; Curry, J.A.; Ebert, E.E.

    1995-02-01

    The sea ice-albedo feedback mechanism over the Arctic Ocean multiyear sea ice is investigated by conducting a series of experiments using several one-dimensional models of the coupled sea ice-atmosphere system. In its simplest form, ice-albedo feedback is thought to be associated with a decrease in the areal cover of snow and ice and a corresponding increase in the surface temperature, further decreasing the area cover of snow and ice. It is shown that the sea ice-albedo feedback can operate even in multiyear pack ice, without the disappearance of this ice, associated with internal processes occurring within the multiyear ice pack (e.g., duration of the snow cover, ice thickness, ice distribution, lead fraction, and melt pond characteristics). The strength of the ice-albedo feedback mechanism is compared for several different thermodynamic sea ice models: a new model that includes ice thickness distribution., the Ebert and Curry model, the Mayjut and Untersteiner model, and the Semtner level-3 and level-0 models. The climate forcing is chosen to be a perturbation of the surface heat flux, and cloud and water vapor feedbacks are inoperative so that the effects of the sea ice-albedo feedback mechanism can be isolated. The inclusion of melt ponds significantly strengthens the ice-albedo feedback, while the ice thickness distribution decreases the strength of the modeled sea ice-albedo feedback. It is emphasized that accurately modeling present-day sea ice thickness is not adequate for a sea ice parameterization; the correct physical processes must be included so that the sea ice parameterization yields correct sensitivities to external forcing. 22 refs., 6 figs., 1 tab.

  15. Surface Albedo and Spectral Variability of Ceres

    NASA Astrophysics Data System (ADS)

    Li, Jian-Yang; Reddy, Vishnu; Nathues, Andreas; Le Corre, Lucille; Izawa, Matthew R. M.; Cloutis, Edward A.; Sykes, Mark V.; Carsenty, Uri; Castillo-Rogez, Julie C.; Hoffmann, Martin; Jaumann, Ralf; Krohn, Katrin; Mottola, Stefano; Prettyman, Thomas H.; Schaefer, Michael; Schenk, Paul; Schröder, Stefan E.; Williams, David A.; Smith, David E.; Zuber, Maria T.; Konopliv, Alexander S.; Park, Ryan S.; Raymond, Carol A.; Russell, Christopher T.

    2016-02-01

    Previous observations suggested that Ceres has active, but possibly sporadic, water outgassing as well as possibly varying spectral characteristics over a timescale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, as well as the newly acquired images by the Dawn  Framing Camera, to search for spectral and albedo variability on Ceres, on both a global scale and in local regions, particularly the bright spots inside the Occator crater, over timescales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in the Occator crater by >15%, or the global albedo by >3% over the various timescales that we searched. Recently reported spectral slope variations can be explained by changing Sun–Ceres–Earth geometry. The active area on Ceres is less than 1 km2, too small to cause global albedo and spectral variations detectable in our data. Impact ejecta due to impacting projectiles of tens of meters in size like those known to cause observable changes to the surface albedo on Asteroid Scheila cannot cause detectable albedo change on Ceres due to its relatively large size and strong gravity. The water vapor activity on Ceres is independent of Ceres’ heliocentric distance, ruling out the possibility of the comet-like sublimation process as a possible mechanism driving the activity.

  16. Surface Albedo and Spectral Variability of Ceres

    NASA Astrophysics Data System (ADS)

    Li, Jian-Yang; Reddy, Vishnu; Nathues, Andreas; Le Corre, Lucille; Izawa, Matthew R. M.; Cloutis, Edward A.; Sykes, Mark V.; Carsenty, Uri; Castillo-Rogez, Julie C.; Hoffmann, Martin; Jaumann, Ralf; Krohn, Katrin; Mottola, Stefano; Prettyman, Thomas H.; Schaefer, Michael; Schenk, Paul; Schröder, Stefan E.; Williams, David A.; Smith, David E.; Zuber, Maria T.; Konopliv, Alexander S.; Park, Ryan S.; Raymond, Carol A.; Russell, Christopher T.

    2016-02-01

    Previous observations suggested that Ceres has active, but possibly sporadic, water outgassing as well as possibly varying spectral characteristics over a timescale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, as well as the newly acquired images by the Dawn  Framing Camera, to search for spectral and albedo variability on Ceres, on both a global scale and in local regions, particularly the bright spots inside the Occator crater, over timescales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in the Occator crater by >15%, or the global albedo by >3% over the various timescales that we searched. Recently reported spectral slope variations can be explained by changing Sun-Ceres-Earth geometry. The active area on Ceres is less than 1 km2, too small to cause global albedo and spectral variations detectable in our data. Impact ejecta due to impacting projectiles of tens of meters in size like those known to cause observable changes to the surface albedo on Asteroid Scheila cannot cause detectable albedo change on Ceres due to its relatively large size and strong gravity. The water vapor activity on Ceres is independent of Ceres’ heliocentric distance, ruling out the possibility of the comet-like sublimation process as a possible mechanism driving the activity.

  17. Post-Irradiation Study of the Alanine Dosimeter

    PubMed Central

    Desrosiers, Marc F.

    2014-01-01

    Post-irradiation stability of high-dose dosimeters has traditionally been an important measurement influence quantity. Though the exceptional stability of the alanine dosimeter response with time has rendered this factor a non-issue for routine work, the archival quality of the alanine dosimeter has not been characterized. Here the alanine pellet dosimeter response is measured up to seven years post-irradiation for a range of absorbed doses. This long-term study is accompanied by an examination of the environmental influence quantities (e.g., ambient light) on the relatively short-term (3–4 month) stability of both pellet and film commercial dosimeters. Both dosimeter types demonstrated exceptional stability in the short term and proved to be relatively insensitive to common influence quantities. The long-term data revealed a complex dose-dependent response trend. PMID:26601033

  18. Methacholine bronchial challenge using a dosimeter with controlled tidal breathing.

    PubMed Central

    Nieminen, M M; Lahdensuo, A; Kellomaeki, L; Karvonen, J; Muittari, A

    1988-01-01

    A new inhalation synchronised dosimeter triggered by low inspiratory flow rates has been assessed. The methacholine challenge test using dosimeter nebulisation with controlled tidal breathing was compared with continuous nebulisation using De Vilbiss No 40 nebulisers with deep inhalations in 11 asthmatic subjects. Within subject PD20 FEV1 values were lower with the dosimeter method than with the continuous nebulisation method (geometric means 158 and 588 micrograms). The repeatability of the dosimeter method with controlled tidal breathing was studied in 11 asthmatic subjects, and the 95% range for a single measurement was +/- 0.72 doubling doses of methacholine. The dosimeter method has greater efficacy because aerosol is delivered during the first part of an inhalation, minimising loss of aerosol outside the respiratory tract. The dosimeter technique combined with controlled tidal breathing appears to be a useful method for carrying out standardised non-specific bronchoprovocation tests. Images PMID:3065974

  19. Comparison of the fiber optic dosimeter and semiconductor dosimeter for use in diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Yoo, W. J.; Shin, S. H.; Sim, H. I.; Hong, S.; Kim, S. G.; Jang, J. S.; Kim, J. S.; Jeon, H. S.; Kwon, G. W.; Jang, K. W.; Cho, S.; Lee, B.

    2014-05-01

    A fiber-optic dosimeter (FOD) was fabricated using a plstic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure entrance surface dose (ESD) in diagnostic radiology. Under changing tube current and irradition time of the digital radiography (DR) system, we measured the scintillating light and the ESD simultaneously. As experiemtnal results, the total counts of the FOD were changed in a manner similar to the ESDs of the semiconductor dosimeter (SCD). In conclusion, we demonstrated that the proposed FOD minimally affected the diagnostic information of DR image while the SCD caused serious image artifacts.

  20. Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

  1. Passive electronic dosimeters based on direct ion storage

    SciTech Connect

    Kahilainen, J.

    1995-12-31

    Using non-volatile semiconductor memories as dosimeters in radiation protection is made possible by the application of the so-called DIS (Direct Ion Storage) method, where the charge collected from a small volume of gas is directly stored in a non-volatile memory cell. This allows the construction of small and simple electronic passive dosimeters with features not available in conventional passive Film or TLD dosimeters. The basic design principles and properties of DIS dosimeters are presented and the application potential for the measurement of various categories of ionizing radiation is discussed.

  2. GAMMA AND X-RAY DOSIMETER AND DOSIMETRIC METHOD

    DOEpatents

    Taplin, G.V.; Douglas, C.H.; Sigoloff, S.C.

    1958-08-19

    An improvement in colorimetric gamma and x-ray dosimeter systems and a self-contained. hand carried dostmeter of the afore-mentioned type ts described. A novel point of the invention ltes in the addition of specific quantities of certain normalizing agents to the two phase chlorinated hydro-carbon-aqueous dyc colortmetric dosimeter to eliminate the after reaction and thereby extend the utility of such systein. The structure of the two phase colorimetric dosimeter tubes and the carrying case for the tubes of the portable dosimeter are unique features.

  3. System albedo as sensed by satellites - Its definition and variability

    NASA Technical Reports Server (NTRS)

    Hughes, N. A.; Henderson-Sellers, A.

    1982-01-01

    System albedo, an important climatological and environmental parameter, is considered. Some of the problems and assumptions involved in evaluating albedo from satellite data are discussed. Clear-sky and cloud albedos over the United Kingdom and parts of northwest Europe are treated. Consideration is given to the spectral, temporal, and spatial variations and the effect of averaging. The implications of these results for those using and archiving albedo values and for future monitoring of system albedo are discussed. Normalization is of especial importance since this correction alters many albedo values. The pronounced difference in spectral albedo of the two visible channels reemphasizes the problem of attempting to calculate integrated albedo values from meteorological satellite data. The assumption of isotropic reflection is seen to be invalid, hindering the computation of accurate albedo values.

  4. The determination of surface albedo from meteorological satellites

    NASA Technical Reports Server (NTRS)

    Johnson, W. T.

    1977-01-01

    A surface albedo was determined from visible data collected by the NOAA-4 polar orbiting meteorological satellite. To filter out the major cause of atmospheric reflectivity, namely clouds, techniques were developed and applied to the data resulting in a map of global surface albedo. Neglecting spurious surface albedos for regions with persistent cloud cover, sun glint effects, insufficient reflected light and, at this time, some unresolved influences, the surface albedos retrieved from satellite data closely matched those of a global surface albedo map produced from surface and aircraft measurements and from characteristic albedos for land type and land use.

  5. Multiscale climatological albedo look-up maps derived from moderate resolution imaging spectroradiometer BRDF/albedo products

    NASA Astrophysics Data System (ADS)

    Gao, Feng; He, Tao; Wang, Zhuosen; Ghimire, Bardan; Shuai, Yanmin; Masek, Jeffrey; Schaaf, Crystal; Williams, Christopher

    2014-01-01

    Surface albedo determines radiative forcing and is a key parameter for driving Earth's climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth's radiation balance due to land cover change. This paper presents albedo look-up maps (LUMs) using a multiscale hierarchical approach based on moderate resolution imaging spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo products and Landsat imagery. Ten years (2001 to 2011) of MODIS BRDF/albedo products were used to generate global albedo climatology. Albedo LUMs of land cover classes defined by the International Geosphere-Biosphere Programme (IGBP) at multiple spatial resolutions were generated. The albedo LUMs included monthly statistics of white-sky (diffuse) and black-sky (direct) albedo for each IGBP class for visible, near-infrared, and shortwave broadband under both snow-free and snow-covered conditions. The albedo LUMs were assessed by using the annual MODIS IGBP land cover map and the projected land use scenarios from the Intergovernmental Panel on Climate Change land-use harmonization project. The comparisons between the reconstructed albedo and the MODIS albedo data product show good agreement. The LUMs provide high temporal and spatial resolution global albedo statistics without gaps for investigating albedo variations under different land cover scenarios and could be used for land surface modeling.

  6. Monitoring surface albedo change with Landsat

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1977-01-01

    A pronounced decrease of the surface albedo (reflectivity) has been observed in an area in the Northern Sinai, fenced-in in the summer of 1974. Analysis of the Landsat Multispectral Scanner System digital data from an April 1977 pass indicates a reduction in the albedo in the exclosure by 13%, as compared to the outside, which continues to be subjected to overgrazing and anthropogenic pressures. The reduction of reflectivity is approximately the same in all the spectral bands, and is therefore attributable to accumulation of dead plants and plant debris, and not directly to live vegetation.

  7. The ultraviolet continuum albedo of Uranus

    NASA Astrophysics Data System (ADS)

    Cochran, W. D.; Wagener, R.; Caldwell, J.; Fricke, K. H.

    1990-01-01

    A radiative transfer code explicitly treating the Raman scattering of solar protons by H2 is presently used to analyze the Uranus geometric albedo in the 2000-5000 A range. The Baines and Bergstralh (1986) baseline model used reproduces the geometric albedo peak produced by Raman scattering filling of solar absorption line cores, but is found to be excessively bright for wavelengths below 2400 A. This discrepancy is resolvable through inclusion of an absorbing stratospheric haze layer, and results are thereby obtained which are consistent with the Pollack et al. (1987) model, in which aerosols are generated stratospherically through photochemical effects on hydrocarbons.

  8. The ultraviolet continuum albedo of Uranus

    SciTech Connect

    Cochran, W.D.; Wagener, R.; Caldwell, J.; Fricke, K.H. New York State Univ., Stony Brook York Univ., Toronto Bonn Universitaet )

    1990-01-01

    A radiative transfer code explicitly treating the Raman scattering of solar protons by H{sub 2} is presently used to analyze the Uranus geometric albedo in the 2000-5000 A range. The Baines and Bergstralh (1986) baseline model used reproduces the geometric albedo peak produced by Raman scattering filling of solar absorption line cores, but is found to be excessively bright for wavelengths below 2400 A. This discrepancy is resolvable through inclusion of an absorbing stratospheric haze layer, and results are thereby obtained which are consistent with the Pollack et al. (1987) model, in which aerosols are generated stratospherically through photochemical effects on hydrocarbons. 20 refs.

  9. Angular dependence of a simple accident dosimeter

    SciTech Connect

    Devine, R. T.; Romero, L. L.; Olsher, R. H.

    2004-01-01

    A simple dosimeter made of a sulfur tablet, bare and cadmium covered indium foils and a cadmium covered copper foil has been modeled using MCNP5. Studies of the model without phantom or other confounding factors have shown that the cross sections and fluence-to-dose factors generated by the Monte Carlo method agree with those generated by analytic expressions for the high energy component. The threshold cross sections for the detectors on a phantom were calculated. The resulting doses assigned agree well with exposures made to three critical assemblies. In this study the angular dependence on a phantom is studied and compared with measurements taken on the GODIVA reactor. The dosimeter positions on the phantom are facing the source, on the back and the side. In previous papers the modeling of a simple dosimeter made of a sulfur tablet, bare and cadmium covered indium foils and a cadmium covered copper foil has been modeled using MCNP5. The conclusion made was that most of the neutron dose from criticality assemblies results from the high energy neutron fluences determined by the sulfur and indium detectors. The results using doses measured from the GODIVA, SHEBA, and bare and lead shielded SILENE reactors confirmed this. The angular dependence of an accident dosemeter is of interest in evaluating the exposure of personnel. To investigate this effect accident dosemeters were placed on a phantom and exposed to the GODIVA reactor at phantom orientations of 0{sup o}, 45{sup o}, 90{sup o}, 135{sup o}, and 180{sup o} to the assembly center line.

  10. A sensitive neutron dosimeter using superheated liquid.

    PubMed

    Das, M; Roy, B; Chatterjee, B K; Roy, S C

    2000-01-01

    The present work relates to a sensitive neutron dosimeter, a device for monitoring neutron dose in some accelerator and reactor sites. This device is capable of measuring a neutron dose as small as 0.1 microSv using superheated liquid as a sensitive liquid. The nucleation was measured by the volumetric method developed in our laboratory. The dose response of superheated drops of four liquids having boiling points of 8.92, -29.79, -40.75 and -45.6 degrees C, irradiated by a 3 Ci Am-Be neutron source has also been presented in this article.

  11. Quantitative evaluation of polymer gel dosimeters by broadband ultrasound attenuation

    NASA Astrophysics Data System (ADS)

    Khoei, S.; Trapp, J. V.; Langton, C. M.

    2013-06-01

    Ultrasound has been examined previously as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose response to ultrasound transmission measurements. In this current work we extend previous work to measure the broadband ultrasound attenuation (BUA) response of irradiated PAGAT gel dosimeters, using a novel ultrasound computed tomography system.

  12. Preliminary investigation and application of a novel deformable PRESAGE® dosimeter

    PubMed Central

    Juang, T; Newton, J; Das, S; Adamovics, J; Oldham, M

    2013-01-01

    Deformable 3D dosimeters have potential applications in validating deformable dose mapping algorithms. This study evaluates a novel deformable PRESAGE® dosimeter and its application toward validating the deformable algorithm employed by VelocityAI. The deformable PRESAGE® dosimeter exhibited a linear dose response with a sensitivity of 0.0032 ΔOD/(Gy/cm). Comparison of an experimental dosimeter irradiated with an MLC pencilbeam checkerboard pattern under lateral compression up to 27% to a non-deformed control dosimeter irradiated with the same pattern verified dose tracking under deformation. CTs of the experimental dosimeter prior to and during compression were exported into VelocityAI and used to map an Eclipse dose distribution calculated on the compressed dosimeter to its original shape. A comparison between the VelocityAI dose distribution and the distribution from the dosimeter showed field displacements up to 7.3 mm and up to a 175% difference in field dimensions. These results highlight the need for validating deformable dose mapping algorithms to ensure patient safety and quality of care. PMID:24454522

  13. Evaluation of a Colorimetric Personal Dosimeter for Nitrogen Oxide.

    ERIC Educational Resources Information Center

    Diamond, Philip

    A personal colorimetric dosimeter for nitrogen dioxide was developed. Tests were performed to determine the response of these strips to various concentrations of NO2. The dosimeter strips were satisfactory for approximate determinations of total exposure (concentration + time) of nitrogen dioxide. The total exposure was calculated in terms of time…

  14. The development of a passive dosimeter for airborne aniline vapors.

    PubMed

    Campbell, J E; Konzen, R B

    1980-03-01

    A passive diffusion dosimeter has been suggested as an economical and accurate means of sampling airborne concentrations of gases and vapors in the working environment. The dosimeter utilizes molecular diffusion through a tube of known geometry to obtain a quantitative determination of airborne concentrations of the contaminant of interest. A passive sampling dosimeter was designed to measure concentrations of aniline vapor in air. Diffusion tubes of 1.5, 3.0, and 4.5 cm lengths were tested under controlled conditions of relative humidity, air temperature, and vapor concentrations. The results indicate that the use of a passive diffusion dosimeter for determining time-weighted average concentrations of aniline is feasible. It was shown that a 1 cm diameter 3.0 cm length diffusion tube gave the most consistent results. It is suggested that further investigations be conducted in the development of passive diffusion dosimeters for other gaseous contaminants.

  15. Laser readable thermoluminescent radiation dosimeters and methods for producing thereof

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang

    1989-01-01

    Thin layer thermoluminescent radiation dosimeters for use in laser readable dosimetry systems, and methods of fabricating such thin layer dosimeters. The thin layer thermoluminescent radiation dosimeters include a thin substrate made from glass or other inorganic materials capable of withstanding high temperatures and high heating rates. A thin layer of a thermoluminescent phoshphor material is heat bonded to the substrate using an inorganic binder such as glass. The dosimeters can be mounted in frames and cases for ease in handling. Methods of the invention include mixing a suitable phosphor composition and binder, both being in particulate or granular form. The mixture is then deposited onto a substrate such as by using mask printing techniques. The dosimeters are thereafter heated to fuse and bond the binder and phosphor to the substrate.

  16. Laser readable thermoluminescent radiation dosimeters and methods for producing thereof

    DOEpatents

    Braunlich, P.F.; Tetzlaff, W.

    1989-04-25

    Thin layer thermoluminescent radiation dosimeters for use in laser readable dosimetry systems, and methods of fabricating such thin layer dosimeters are disclosed. The thin layer thermoluminescent radiation dosimeters include a thin substrate made from glass or other inorganic materials capable of withstanding high temperatures and high heating rates. A thin layer of a thermoluminescent phosphor material is heat bonded to the substrate using an inorganic binder such as glass. The dosimeters can be mounted in frames and cases for ease in handling. Methods of the invention include mixing a suitable phosphor composition and binder, both being in particulate or granular form. The mixture is then deposited onto a substrate such as by using mask printing techniques. The dosimeters are thereafter heated to fuse and bond the binder and phosphor to the substrate. 34 figs.

  17. 1987 Neutron and gamma personnel dosimeter intercomparison study using a D/sub 2/O-moderated /sup 252/Cf source

    SciTech Connect

    Swaja, R.E.; West, L.E.; Sims, C.S.; Welty, T.J.

    1989-05-01

    The thirteenth Personnel Dosimetry Intercomparison Study (i.e., PDIS 13) was conducted during April 1987 as a joint effort by Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research Group and the Southwest Radiation Calibration Center at the University of Arkansas. A total of 48 organizations (34 from the US and 14 from abroad) participated in PDIS 13. Participants submitted a total of 1,113 neutron and gamma dosimeters for this mixed field study. The dosimeters were transferred by mail and were handled by experimental personnel at ORNL and the University of Arkansas. The type of neutron dosimeter and the percentage of participants submitting that type are as follows: TLD-albedo (49%), direct interaction TLD (31%), CR-39 (17%), film (3%). The type of gamma dosimeter and the percentage of participants submitting that type are as follows: Li/sub 2/B/sub 4/O/sub 7/, alone or in combination with CaSO/sub 4/, (69%), /sup 7/LiF (28%), natural LiF (3%). Radiation exposures in PDIS 13 were limited to 0.5 and 1.5 mSv from /sup 252/Cf moderated by 15-cm of D/sub 2/O. Traditional exposures using the Health Physics Research Reactor (HPRR) were not possible due to the fact that all reactors at ORNL, including the HPRR, were shutdown by order of the Department of Energy at the time the intercomparison was performed. Planned exposures using a /sup 238/PuBe source were negated by a faulty timing mechanism. Based on accuracy and precision, direct interaction TLD dosimeters exhibited the best performance in PDIS 13 neutron measurements. They were followed, in order of best performance, by CR-39, TLD albedo, and film. The Li/sub 2/B/sub 4/O/sub 7/ type TLD dosimeters exhibited the best performance in PDIS 13 gamma measurements. They were followed by natural LiF, /sup 7/LiF, and film. 12 refs., 1 fig., 5 tabs.

  18. The albedo of fractal stratocumulus clouds

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Ridgway, William; Wiscombe, Warren J.; Bell, Thomas L.; Snider, Jack B.

    1994-01-01

    An increase in the planetary albedo of the earth-atmosphere system by only 10% can decrease the equilibrium surface temperature to that of the last ice age. Nevertheless, albedo biases of 10% or greater would be introduced into large regions of current climate models if clouds were given their observed liquid water amounts, because of the treatment of clouds as plane parallel. The focus on marine stratocumulus clouds is due to their important role in cloud radiative forcing and also that, of the wide variety of earth's cloud types, they are most nearly plane parallel, so that they have the least albedo bias. The fractal model employed here reproduces both the probability distribution and the wavenumber spectrum of the stratocumulus liquid water path, as observed during the First ISCCP Regional Experiment (FIRE). A single new fractal parameter 0 less than or equal to f less than or equal to 1, is introduced and determined empirically by the variance of the logarithm of the vertically integrated liquid water. The reduced reflectivity of fractal stratocumulus clouds is approximately given by the plane-parallel reflectivity evaluated at a reduced 'effective optical thickness,' which when f = 0.5 is tau(sub eff) approximately equal to 10. Study of the diurnal cycle of stratocumulus liquid water during FIRE leads to a key unexpected result: the plane-parallel albedo bias is largest when the cloud fraction reaches 100%, that is, when any bias associated with the cloud fraction vanishes. This is primarily due to the variability increase with cloud fraction. Thus, the within-cloud fractal structure of stratocumulus has a more significant impact on estimates of its mesoscale-average albedo than does the cloud fraction.

  19. A scintillating fiber dosimeter for radiotherapy

    NASA Astrophysics Data System (ADS)

    Bartesaghi, G.; Conti, V.; Bolognini, D.; Grigioni, S.; Mascagna, V.; Prest, M.; Scazzi, S.; Mozzanica, A.; Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A.; Giannini, G.; Vallazza, E.

    2007-10-01

    Radiotherapy, together with chemotherapy and surgery, is one of the main methods applied in the fight against cancer; in order to increase the chances of a successful radiotherapy treatment the dose delivery to the tumor and the surrounding normal tissues has to be computed with high accuracy. Traditional dosimeters are accurate but single channel (ionization chambers and diodes) or non real-time (radiographic films) devices. At present there is no device water equivalent that can perform real-time and bidimensional measurements of a dose distribution. This article describes the development of a real-time dosimeter based on scintillating fibers for photon and electron beams; the fibers are made of polystyrene, that is water equivalent and thus tissue equivalent, allowing a direct dose calculation. Three prototypes (single and multichannel) have been assembled, consisting in small scintillators coupled to white fibers that carry the light to photomultiplier tubes. In this article the prototypes and the readout electronics are described, together with the results of the measurements with electron and photon beams with energy up to 20 MeV (produced by linear accelerators Varian Clinac 1800 and 2100CD).

  20. Albedo boundaries on Mars in 1972: Results from Mariner 9

    USGS Publications Warehouse

    Batson, R.M.; Inge, J.L.

    1976-01-01

    A map of "albedo" boundaries (light and dark markings) on Mars was prepared from Mariner 9 images. After special digital processing, these pictures provide detailed locations of albedo boundaries, which is significant in interpreting recent eolian activity. Derivation of absolute albedo values from the spacecraft data was not attempted. The map correlates well with telescopic observations of Mars after the 1971 dust storm. ?? 1976.

  1. Limitations of using dosimeters in impulse noise environments.

    PubMed

    Kardous, Chucri A; Willson, Robert D

    2004-07-01

    The National Institute for Occupational Safety and Health (NIOSH) investigated the capabilities of noise dosimeters to measure personal exposure to impulse noise. The two leading types of commercially available dosimeters were evaluated in terms of their ability to measure and integrate impulses generated from gunfire during live-fire exercises at a law enforcement indoor firing range. Sound measurements were conducted throughout the firing range using dosimeters, sound level meters, and a measurement configuration that consisted of a quarter-inch microphone and a digital audiotape recorder to capture the impulse waveforms. Personal dosimetry was conducted on eight shooters, an observer, and the range master. Peak levels from gunfire reached 163 decibels (dB), exceeding the nominal input limit of the dosimeters. The dosimeters "clipped" the impulses by acting as if the gunfire had a maximum level of 146 dB. In other cases, however, peak levels (e.g., 108 dB) were below the dosimeter input limits, but the dosimeters still showed a peak level of 146 dB. Although NIOSH recommends that sound levels from 80 to 140 dB (A-weighted) be integrated in the calculation of dose and the time-weighted average, our present data suggest this criterion may be inadequate. These results showed that some instruments are incapable of providing accurate measures of impulse sounds because of their electroacoustic limitations.

  2. Light scattering in optical CT scanning of Presage dosimeters

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Adamovics, J.; Cheeseborough, J. C.; Chao, K. S.; Wuu, C. S.

    2010-11-01

    The intensity of the scattered light from the Presage dosimeters was measured using a Thorlabs PM100D optical power meter (Thorlabs Inc, Newton, NJ) with an optical sensor of 1 mm diameter sensitive area. Five Presage dosimeters were made as cylinders of 15.2 cm, 10 cm, 4 cm diameters and irradiated with 6 MV photons using a Varian Clinac 2100EX. Each dosimeter was put into the scanning tank of an OCTOPUS" optical CT scanner (MGS Research Inc, Madison, CT) filled with a refractive index matching liquid. A laser diode was positioned at one side of the water tank to generate a stationary laser beam of 0.8 mm width. On the other side of the tank, an in-house manufactured positioning system was used to move the optical sensor in the direction perpendicular to the outgoing laser beam from the dosimeters at an increment of 1 mm. The amount of scattered photons was found to be more than 1% of the primary light signal within 2 mm from the laser beam but decreases sharply with increasing off-axis distance. The intensity of the scattered light increases with increasing light attenuations and/or absorptions in the dosimeters. The scattered light at the same off-axis distance was weaker for dosimeters of larger diameters and for larger detector-to-dosimeter distances. Methods for minimizing the effect of the light scattering in different types of optical CT scanners are discussed.

  3. Radiation Measured during ISS-Expedition 13 with Different Dosimeters

    NASA Technical Reports Server (NTRS)

    Zhou, D.; Semones, E.; Gaza, R.; Johnson, S.; Zapp, N.; Lee, K.; George, T.

    2008-01-01

    Radiation in low Earth orbit (LEO) is mainly composed of Galactic Cosmic Rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). The biological impact of space radiation to astronauts depends strongly on the particles linear energy transfer (LET) and is dominated by high LET radiation. It is important to measure the LET spectrum for the space radiation field and to investigate the influence of radiation on astronauts. At present, the preferred active dosimeters sensitive to all LET are the tissue equivalent proportional counter (TEPC) and silicon detectors in various configurations; the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. The TEPC, CR-39 PNTDs, TLDs and OSLDs were used to investigate the radiation exposure for the ISS mission Expedition 13 (ISS-12S) in LEO. LET spectra and radiation quantities (fluence, absorbed dose, dose equivalent and quality factor) were measured for the space mission with different dosimeters. This paper introduces the operational principles for the dosimeters, describes the method to combine the results measured by TLDs/OSLDs and CR-39 PNTDs, and presents the LET spectra and the radiation quantities measured. Keywords: space radiation; cosmic rays; active and passive dosimeters; LET spectra

  4. SU-E-T-265: Presage Thin Sheet Dosimeter Characterization

    SciTech Connect

    Dumas, M; Rakowski, J

    2014-06-01

    Purpose: To quantify the sensitivity and stability of the Presage dosimeter in sheet form for different concentrations of chemicals and for a diverse range of clinical photon energies. Methods: Presage polymer dosimeters are formulated to investigate and optimize their sensitivity and stability. The dosimeter is composed of clear polyurethane base, leucomalachite green reporting dye, and bromoform radical initiator in 1mm thick sheets. The chemicals are well mixed together, cast in an aluminum mold, and left to cure at 60 psi for a minimum of 2 days. Dosimeter response will be characterized at multiple energies including Co-60, 6 MV, 15 MV, 50 kVp, and 250 kVp. The dosimeters are read by an Epson 10000 XL scanner at 800 dpi, 2{sup 16} bit depth. Red component images are analyzed with ImageJ. Results: Analysis of optical density verse dose for Co-60 energies indicates that the bromoform containing Presage was able to quantify dose from 0 to 300 Gy, with saturation beyond 300 Gy. Initial results show two regions of linear response, 0–100 Gy and 150–300 Gy. The 150–300 Gy region has a sensitivity of 0.0024 net OD/Gy. Further results on other energies are still in progress. Conclusions: This work shows the potential for use of thin sheets of Presage dosimeter as a dosimeter capable of being analyzed with a flatbed scanner.

  5. Estimating big bluestem albedo from directional reflectance measurements

    NASA Technical Reports Server (NTRS)

    Irons, J. R.; Ranson, K. J.; Daughtry, C. S. T.

    1988-01-01

    Multidirectional reflectance factor measurements acquired in the summer of 1986 are used to make estimates of big bluestem grass albedo, evaluating the variation of albedo with changes in solar zenith angle and phenology. On any given day, the albedo was observed to increase by at least 19 percent as solar zenith angle increased. Changes in albedo were found to correspond to changes in the green leaf area index of the grass canopy. Estimates of albedo made using reflectance data acquired within only one or two azimuthal planes and at a restricted range of view zenith angle were evaluated and compared to 'true' albedos derived from all available reflectance factor data. It was found that even a limited amount of multiple direction reflectance data was preferable to a single nadir reflectance factor for the estimation of prarie grass albedo.

  6. Earth Albedo and the orbit of LAGEOS

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.; Weiss, N. R.

    1985-01-01

    The long-period perturbations in the orbit of the Lageos satellite due to the Earth's albedo have been found using a new analytical formalism. The Earth is assumed to be a sphere whose surface diffusely reflects sunlight according to Lambert's law. Specular reflection is not considered. The formalism is based on spherical harmonics; it produces equations which hold regardless of whether the terminator is seen by the satellite or not. Specializing to the case of a realistic zonal albedo shows that Lageos' orbital semimajor axis changes periodically by only the a few millimeters and the eccentricity by one part in 100,000. The longitude of the node increases secularly. The effect considered here can explain neither the secular decay of 1.1 mm/day in the semimajor axis nor the observed along-track variations in acceleration of order 2 x 10 to the minus 12 power/sq ms.

  7. The albedo of particles in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Rush, W. F.

    1974-01-01

    The relation between the apparent angular extent of a reflection nebula and the apparent magnitude of its illuminating star was reconsidered under a less restrictive set of assumptions. A computational technique was developed which permits the use of fits to the observed m-log a values to determine the albedo of particles composing reflection nebulae, providing only that a phase function and average optical thickness are assumed. Multiple scattering, anisotropic phase functions, and illumination by the general star field are considered, and the albedo of reflection nebular particles appears to be the same as that for interstellar particles in general. The possibility of continuous fluorescence contributions to the surface brightness is also considered.

  8. p-MOSFET total dose dosimeter

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor)

    1994-01-01

    A p-MOSFET total dose dosimeter where the gate voltage is proportional to the incident radiation dose. It is configured in an n-WELL of a p-BODY substrate. It is operated in the saturation region which is ensured by connecting the gate to the drain. The n-well is connected to zero bias. Current flow from source to drain, rather than from peripheral leakage, is ensured by configuring the device as an edgeless MOSFET where the source completely surrounds the drain. The drain junction is the only junction not connected to zero bias. The MOSFET is connected as part of the feedback loop of an operational amplifier. The operational amplifier holds the drain current fixed at a level which minimizes temperature dependence and also fixes the drain voltage. The sensitivity to radiation is made maximum by operating the MOSFET in the OFF state during radiation soak.

  9. Characterization of a nuclear accident dosimeter

    SciTech Connect

    Burrows, R.A.

    1995-12-01

    The 23rd nuclear accident dosimetry intercomparison was held during the week of June 12--16, 1995 at Los Alamos National Laboratory. This report presents the results of this event, referred to as NAD 23, as related to the performance of Sandia National Laboratories (SNL) personal nuclear accident dosimeter (PNAD). Two separate critical assemblies, SHEBA and Godiva, were used to generate seven separate neutron spectra for use in dose comparisons. SNL`s PNAD measured absorbed doses that were within +16 to +26% of the reference doses. In addition, a preliminary investigation was undertaken to determine the feasibility of using the data obtained from an irradiated PNAD to correct for body orientation. This portion of the experiment was performed with a TRIGA reactor at the Nuclear Science Center at Texas A and M University.

  10. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, T.

    1987-07-14

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

  11. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, Tuan

    1987-01-01

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

  12. A new dosimeter formulation for deformable 3D dose verification

    NASA Astrophysics Data System (ADS)

    Høye, E. M.; Skyt, P. S.; Yates, E. S.; Muren, L. P.; Petersen, J. B. B.; Balling, P.

    2015-01-01

    We present the characteristics of a new silicone-based radiochromic dosimeter containing the leuco-malachite green (LMG) dye. The dose response as well as the dose-rate and photon-energy dependence of the dosimeter were characterized. To optimise the dose response, different concentrations of the chemical components were investigated. The dose response was found to decrease exponentially as a function of time after irradiation. A cylindrical dosimeter was produced and irradiated with a volumetric modulated arc therapy plan; the standard deviation between measured and calculated dose was 5% of the total dose.

  13. A miniature MOSFET radiation dosimeter probe.

    PubMed

    Gladstone, D J; Lu, X Q; Humm, J L; Bowman, H F; Chin, L M

    1994-11-01

    Prototype miniature dosimeter probes have been designed, built, and characterized employing a small, radiation sensitive metal oxide semiconductor field effect transistor (MOSFET) chip to measure, in vivo, the total accumulated dose and dose rate as a function of time after internal administration of long range beta particle radiolabeled antibodies and in external high energy photon and electron beams. The MOSFET detector is mounted on a long narrow alumina substrate to facilitate electrical connection. The MOSFET, alumina substrate, and lead wires are inserted into a 16 gauge flexineedle, which, in turn, may be inserted into tissue. The radiation dosimeter probe has overall dimensions of 1.6 mm diam and 3.5 cm length. The MOSFET probe signals are read, stored, and analyzed using an automated data collection and analysis system. Initially, we have characterized the probe's response to long range beta particle emission from 90Y sources in solution and to high energy photon and electron beams from linear accelerators. Since the prototype has a finite substrate thickness, the angular dependence has been studied using beta particle emission from a 90Sr source. Temperature dependence and signal drift have been characterized and may be corrected for. Measurements made in spherical volumes containing 90Y with diameters less than the maximum electron range, to simulate anticipated geometries in animal models, agree well with Berger point kernel and EGS4 Monte Carlo calculations. The results from the prototype probes lead to design requirements for detection of shorter range beta particles used in radioimmunotherapy and lower photon energies used in brachytherapy. PMID:7891632

  14. Charred Forests Increase Snow Albedo Decay: Watershed-Scale Implications of the Postfire Snow Albedo Effect

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Nolin, A. W.

    2014-12-01

    Recent work shows that after a high severity forest fire, approximately 60% more solar radiation reaches the snow surface due to the reduction in canopy density. Also, significant amounts of black carbon (BC) particles and larger burned woody debris (BWD) are shed from standing charred trees, which concentrate on the snowpack, darken its surface, and reduce snow albedo by 50% during ablation. The postfire forest environment drives a substantial increase in net shortwave radiation at the snowpack surface, driving earlier and more rapid melt, however hydrologic models do not explicitly incorporate forest fire disturbance effects to snowpack dynamics. In this study we characterized, parameterized, and validated the postfire snow albedo effect: how the deposition and concentration of charred forest debris decreases snow albedo, increases snow albedo decay rates, and drives an earlier date of snow disappearance. For three study sites in the Oregon High Cascade Mountains, a 2-yr old burned forest, a 10-yr burned forest, and a nearby unburned forest, we used a suite of empirical data to characterize the magnitude and duration of the postfire effect to snow albedo decay. For WY 2012, WY2013, and WY2014 we conducted spectral albedo measurements, snow surface sampling, in-situ snow and meteorological monitoring, and snow energy balance modeling. From these data we developed a new parameterization which represents the postfire effect to snow albedo decay as a function of days-since-snowfall. We validated our parameterization using a physically-based, spatially-distributed snow accumulation and melt model, in-situ snow monitoring, net snowpack radiation, and remote sensing data. We modeled snow dynamics across the extent of all burned area in the headwaters of the McKenzie River Basin and validated the watershed-scale implications of the postfire snow albedo effect using in-situ micrometeorological and remote sensing data. This research quantified the watershed scale postfire

  15. Method and apparatus for reading free falling dosimeter punchcodes

    DOEpatents

    Langsted, J.M.

    1992-12-22

    A punchcode reader is provided for reading data encoded in a punchcode hole array on a dosimeter. The dosimeter falls through a passage in the reader containing photosensor detectors disposed along the passage which provide output signals to a microprocessor. The signals are processed to determine the orientation of the dosimeter in the reader, the location and state of punchcode holes in a two row array thereby decoding the encoded data. Multiple rate of fall calculations are made, and if appropriate matching of the punchcode array is not obtained in three tries, an error signal is output to the operator. The punchcode reader also provides for storage of data from multiple dosimeters passed through the reader, and for the output of decoded data to an external display or a computer for further processing. 8 figs.

  16. Method and apparatus for reading free falling dosimeter punchcodes

    DOEpatents

    Langsted, James M.

    1992-12-22

    A punchcode reader is provided for reading data encoded in a punchcode hole array on a dosimeter. The dosimeter falls through a passage in the reader containing photosensor detectors disposed along the passage which provide output signals to a microprocessor. The signals are processed to determine the orientation of the dosimeter in the reader, the location and state of punchcode holes in a two row array thereby decoding the encoded data. Multiple rate of fall calculations are made, and if appropriate matching of the punchcode array is not obtained in three tries, an error signal is outputted to the operator. The punchcode reader also provides for storage of data from multiple dosimeters passed through the reader, and for the output of decoded data to an external display or a computer for further processing.

  17. [Fabrication of annealing equipment for optically stimulated luminescence (OSL) dosimeter].

    PubMed

    Nakagawa, Kohei; Hayashi, Hiroaki; Okino, Hiroki; Takegami, Kazuki; Okazaki, Tohru; Kobayashi, Ikuo

    2014-10-01

    The optically stimulated luminescence (OSL) dosimeter is a useful detector for measuring absorbed doses of X-rays. A small-type OSL dosimeter, "nanoDot", has recently been developed by Landauer, Inc., who also manufacture "microStar" reading equipment. However, additional annealing equipment is needed if the nanoDot OSL dosimeter is used repeatedly. The aim of this study was to fabricate suitable annealing equipment using commonly available products. Our device positions four fluorescent light tubes in a close configuration. The heat from the fluorescent light tubes is dissipated using fans. Experiments using diagnostic X-ray equipment were carried out to evaluate the capability of our annealing equipment. The results indicated that our equipment can fully anneal the nanoDot OSL dosimeter with annealing times of approximately 20 hours. PMID:25327423

  18. Fast neutron detection with Al 2O 3 thermoluminescence dosimeter

    NASA Astrophysics Data System (ADS)

    Ranogajec-Komor, Maria; Osvay, Margit; Dvornik, Igor; Biró, Tamàs

    1983-07-01

    The technique of thermoluminescent (TL) dosimeter activation can be used to detect any radiation making TL dosimeters radioactive. In the experiment discussed in this paper Al2O3:Mg, Y TL dosimeters were irradiated by cyclotron neutrons with 5±1 MeV mean energy and by accompanying gamma rays. The gamma and the fast neutron component can be separately measured by the same dosimeter. Because of low neutron sensitivity of Al2O3 the gamma dose can be determined by the first TL reading while the 27Al(n, α)24 Na reaction provides the possibility of fast neutron detection by the subsequent reading of thermoluminescence induced in the TL material by the decay of 24Na.

  19. Antioxidant effect of green tea on polymer gel dosimeter

    NASA Astrophysics Data System (ADS)

    Samuel, E. J. J.; Sathiyaraj, P.; Deena, T.; Kumar, D. S.

    2015-01-01

    Extract from Green Tea (GTE) acts as an antioxidant in acrylamide based polymer gel dosimeter. In this work, PAGAT gel was used for investigation of antioxidant effect of GTE.PAGAT was called PAGTEG (Polyacrylamide green tea extract gel dosimeter) after adding GTE. Free radicals in water cause pre polymerization of polymer gel before irradiation. Polyphenols from GTE are highly effective to absorb the free radicals in water. THPC is used as an antioxidant in polymer gel dosimeter but here we were replaced it by GTE and investigated its effect by spectrophotometer. GTE added PAGAT samples response was lower compared to THPC added sample. To increase the sensitivity of the PAGTEG, sugar was added. This study confirmed that THPC was a good antioxidant for polymer gel dosimeter. However, GTE also can be used as an antioxidant in polymer gel if use less quantity (GTE) and add sugar as sensitivity enhancer.

  20. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOEpatents

    Vo-Dinh, Tuan

    1995-01-01

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devises, in probe array devices.

  1. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOEpatents

    Vo-Dinh, T.

    1995-03-21

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devices, in probe array devices. 10 figures.

  2. Methods and means of checking thermoluminescent and radiophotoluminescent dosimeters

    SciTech Connect

    Fominykh, V.I.; Oborin, A.V.; Sebekin, A.P.; Uryaev, I.A.

    1987-06-01

    The authors discuss methods of checking thermoluminescent and radiophotoluminescent dosimeters which are used often in monitoring radiation safety in various areas including nuclear power stations. When the dosimeters are checked in the fields of standard beta-ray sources, it is recommended that the standard absorbed-dose or equivalent-dose measures for beta radiation should be sources of /sup 90/Sr + /sup 90/Y, /sup 204/Tl, and /sup 147/Pm. Various safety guidelines are discussed.

  3. Radiation measured with passive dosimeters in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Semones, E.; Gaza, R.; Weyland, M.

    begin center Radiation Measured with Passive Dosimeters in Low Earth Orbit end center begin center D Zhou 1 2 E Semones 1 R Gaza 1 2 M Weyland 1 end center begin center 1 Johnson Space Center - NASA 2101 Nasa Road 1 Houston 77058 USA end center begin center 2 Universities Space Research Association 2101 Nasa Parkway Houston 77058 USA end center begin center Abstract end center The linear energy transfer LET of particles in low Earth orbit LEO is extended from sim 0 1 to sim 1000 keV mu m water The best passive dosimeters for the radiation measurement are thermoluminescence dosimeters TLDs or optically stimulated luminescence dosimeters OSLDs for low LET and CR-39 plastic nuclear track detectors PNTDs for high LET Radiation quantities fluence absorbed dose dose equivalent and quality factor were measured with the passive dosimeters composed of TLDs OSLDs and CR-39 PNTDs for STS-114 mission This paper introduces the operation principles for TLDs OSLDs and CR-39 PNTDs describes the method to combine the results measured by TLDs OSLDs and CR-39 PNTDs and presents the results measured by different dosimeters for different LET band and that combined for all LET

  4. Mayak Film Dosimeter Response Studies, Part I: Measurements

    SciTech Connect

    Vasilenko, E. K.; Knyazev, V.; Gorelov, Mikhail; Smetanin, Mikhail; Scherpelz, Robert I.; Fix, John J.

    2007-09-01

    The Mayak Worker Dosimetry study is a joint Russian/US project to evaluate doses received by workers at the Mayak Production Association facilities from 1948-1972. A key investigation in this project is the characterization of responses of the three types of film dosimeters used to monitor workers during this time period. Experimental irradiations of the dosimeters were performed in the radiation calibration laboratories at the National Research Center for Environment and Health (GSF) in Munich, Germany. The irradiations used photon sources from X-ray beams with ten different energy distributions and with 60Co and 137Cs isotopic gamma sources. Irradiations were performed with the dosimeters on phantoms and free-in-air. The dosimeters and phantoms were also positioned at varying angles to the radiation beam. The result of the experiments was a thorough characterization of the dosimeter response as a function of photon energy and as a function of angle for energy and angular ranges that cover the conditions encountered in the Mayak workplaces. The characterization data were then available for use in developing correction factors which could be applied to worker dosimeter readings to provide a more accurate assessment of worker dose and estimates of doses to organs.

  5. Potential High Resolution Dosimeters For MRT

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.

    2010-07-01

    resolution and a dose range over several orders of magnitude. This paper will give an overview of all dosimeters tested in the past at the ESRF with their advantages and drawbacks. These detectors comprise: Ionization chambers, Alanine Dosimeters, MOSFET detectors, Gafchromic® films, Radiochromic polymers, TLDs, Polymer gels, Fluorescent Nuclear Track Detectors (Al2O3:C, Mg single crystal detectors), OSL detectors and Floating Gate-based dosimetry system. The aim of such a comparison shall help with a decision on which of these approaches is most suitable for high resolution dose measurements in MRT. The principle of these detectors will be presented including a comparison for some dosimeters exposed with the same irradiation geometry, namely a 1×1 cm5 field size with microbeam exposures at the surface, 0.1 cm and 1 cm in depth of a PMMA phantom. For these test exposures, the most relevant irradiation parameters for future clinical trials have been chosen: 50 micron FWHM and 400 micron c-t-c distance. The experimental data are compared with Monte Carlo calculations.

  6. Potential High Resolution Dosimeters For MRT

    SciTech Connect

    Braeuer-Krisch, E.; Brochard, T.; Prezado, Y.; Bravin, A.; Berkvens, P.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Kamlowski, A.; Cellere, G.

    2010-07-23

    /s, micron resolution and a dose range over several orders of magnitude. This paper will give an overview of all dosimeters tested in the past at the ESRF with their advantages and drawbacks. These detectors comprise: Ionization chambers, Alanine Dosimeters, MOSFET detectors, Gafchromic registered films, Radiochromic polymers, TLDs, Polymer gels, Fluorescent Nuclear Track Detectors (Al{sub 2}O{sub 3}:C, Mg single crystal detectors), OSL detectors and Floating Gate-based dosimetry system. The aim of such a comparison shall help with a decision on which of these approaches is most suitable for high resolution dose measurements in MRT. The principle of these detectors will be presented including a comparison for some dosimeters exposed with the same irradiation geometry, namely a 1x1 cm{sup 5} field size with microbeam exposures at the surface, 0.1 cm and 1 cm in depth of a PMMA phantom. For these test exposures, the most relevant irradiation parameters for future clinical trials have been chosen: 50 micron FWHM and 400 micron c-t-c distance. The experimental data are compared with Monte Carlo calculations.

  7. Calibrated Color and Albedo Maps of Mercury

    NASA Astrophysics Data System (ADS)

    Robinson, M. S.; Lucey, P. G.

    1996-03-01

    In order to determine the albedo and color of the mercurian surface, we are completing calibrated mosaics of Mariner 10 image data. A set of clear filter mosaics is being compiled in such a way as to maximize the signal-to-noise-ratio of the data and to allow for a quantitative measure of the precision of the data on a pixel-by-pixel basis. Three major imaging sequences of Mercury were acquired by Mariner 10: incoming first encounter (centered at 20S, 2E), outgoing first encounter (centered at 20N, 175E), and southern hemisphere second encounter (centered at 40S, 100E). For each sequence we are making separate mosaics for each camera (A and B) in order to have independent measurements. For each mosaic, regions of overlap from frame-to-frame are being averaged and the attendant standard deviations are being calculated. Due to the highly redundant nature of the data, each pixel in each mosaic will be an average calculated from 1-10 images. Each mosaic will have a corresponding standard deviation and n (number of measurements) map. A final mosaic will be created by averaging the six independent mosaics. This procedure lessens the effects of random noise and calibration residuals. From these data an albedo map will be produced using an improved photometric function for the Moon. A similar procedure is being followed for the lower resolution color sequences (ultraviolet, blue, orange, ultraviolet polarized). These data will be calibrated to absolute units through comparison of Mariner 10 images acquired of the Moon and Jupiter. Spectral interpretation of these new color and albedo maps will be presented with an emphasis on comparison with the Moon.

  8. Albedo and transmittance of inhomogeneous stratus clouds

    SciTech Connect

    Zuev, V.E.; Kasyanov, E.I.; Titov, G.A.

    1996-04-01

    A highly important topic is the study of the relationship between the statistical parameters of optical and radiative charactertistics of inhomogeneous stratus clouds. This is important because the radiation codes of general circulation models need improvement, and it is important for geophysical information. A cascade model has been developed at the Goddard Space Flight Center to treat stratocumulus clouds with the simplest geometry and horizontal fluctuations of the liquid water path (optical thickness). The model evaluates the strength with which the stochastic geometry of clouds influences the statistical characteristics of albedo and the trnasmittance of solar radiation.

  9. Global color and albedo variations on Io

    NASA Technical Reports Server (NTRS)

    Mcewen, Alfred S.

    1988-01-01

    The present Voyager imaging data multispectral mosaics of Io include global mosaics from each of the Voyager 1 and 2 data sets and a high-resolution mosaic of the region centered on the Ra Patera volcano. The constancy of the disk-integrated color and albedo of Io over recent decades despite volcanic activity may be due to the regular occurrence of large Pele-type plumes with relatively dark, red deposits. Io's intrinsic spectral variability involves continuous variation among three major spectral end members. Attention is given to the mapping of the data into five spectral units for the purposes of comparison with laboratory measurements of Io surface material candidates.

  10. Albedo maps of Pluto and Charon - Initial mutual event results

    NASA Technical Reports Server (NTRS)

    Buie, Marc W.; Tholen, David J.; Horne, Keith

    1992-01-01

    By applying the technique of maximum entropy image reconstruction to invert observed lightcurves, surface maps of single-scattering albedo are obtained for the surfaces of Pluto and Charon from 1954 to 1986. The albedo features of the surface of Pluto are similar to those of the Buie and Tholen (1989) spot model maps; a south polar cap is evident. The map of Charon is somewhat darker, with single-scattering albedos as low as 0.03.

  11. PDT Dose Dosimeter for Pleural Photodynamic Therapy

    PubMed Central

    Kim, Michele M.; Darafsheh, Arash; Ahmad, Mahmoud; Finlay, Jarod C.; Zhu, Timothy C.

    2016-01-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in the target tissue. For improved dosimetry during plural photodynamic therapy (PDT), a PDT dose dosimeter was developed to measure both the light fluence and the photosensitizer concentration simultaneously in the same treatment location. Light fluence and spectral data were rigorously compared to other methods of measurement (e.g. photodiode, multi-fiber spectroscopy contact probe) to assess the accuracy of the measurements as well as their uncertainty. Photosensitizer concentration was obtained by measuring the fluorescence of the sensitizer excited by the treatment light. Fluence rate based on the intensity of the laser spectrum was compared to the data obtained by direct measurement of fluence rate by a fiber-coupled photodiode. Phantom studies were done to obtain an optical property correction for the fluorescence signal. Measurements were performed in patients treated Photofrin for different locations in the pleural cavity. Multiple sites were measured to investigate the heterogeneity of the cavity and to provide cross-validation via relative dosimetry. This novel method will allow for accurate real-time determination of delivered PDT dose and improved PDT dosimetry. PMID:27053825

  12. PDT dose dosimeter for pleural photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Darafsheh, Arash; Ahmad, Mahmoud; Finlay, Jarod C.; Zhu, Timothy C.

    2016-03-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in the target tissue. For improved dosimetry during plural photodynamic therapy (PDT), a PDT dose dosimeter was developed to measure both the light fluence and the photosensitizer concentration simultaneously in the same treatment location. Light fluence and spectral data were rigorously compared to other methods of measurement (e.g. photodiode, multi-fiber spectroscopy contact probe) to assess the accuracy of the measurements as well as their uncertainty. Photosensitizer concentration was obtained by measuring the fluorescence of the sensitizer excited by the treatment light. Fluence rate based on the intensity of the laser spectrum was compared to the data obtained by direct measurement of fluence rate by a fiber-coupled photodiode. Phantom studies were done to obtain an optical property correction for the fluorescence signal. Measurements were performed in patients treated Photofrin for different locations in the pleural cavity. Multiple sites were measured to investigate the heterogeneity of the cavity and to provide cross-validation via relative dosimetry. This novel method will allow for accurate real-time determination of delivered PDT dose and improved PDT dosimetry.

  13. Mixed-radiation discrimination using thermoluminescent dosimeters

    NASA Astrophysics Data System (ADS)

    Skopec, Marlene

    This work has developed, analyzed, and tested methods to discriminate among different types of radiation exposures using the glow curves of thermoluminescent dosimeters (TLDs). Thermoluminescent materials, Harshaw LiF:Mg,Ti (TLD-100) and CaF2:Tm (TLD-300), were exposed to pure proton, pure photon (x-ray and gamma), and mixed fields to examine and use differences in the thermoluminescent (TL) glow curve shapes for the purpose of radiation type discrimination. The effect of radiation type exposure order on thermoluminescent glow curve shape and the principle of superposition of glow curves were evaluated. Using computerized glow curve deconvolution (CGCD), no significant differences in glow curve shape or magnitude were found. Results demonstrated that the superposition of pure field glow curves is a valid method of simulating mixed field glow curves (i.e., the principle of superposition holds). Two robust and novel techniques for radiation type discrimination were developed: vector representation (VR) and principal component analysis (PCA). In VR, vectors were constructed from glow curve points and classified based on the vector inner product with a unit vector and vector magnitude. In PCA, variations in the glow curves due to radiation type are classified according to one principal component. The two methods were tested for accuracy using leave-one-out validation (LOOV) with classification based on the Mahalanobis distance. Overall, both techniques performed equally well, with over 92% accurate three category classification using the high temperature peak of TLD-100 and nearly 100% correct classification in TLD-300.

  14. Solid state neutron dosimeter for space applications

    NASA Technical Reports Server (NTRS)

    Entine, Gerald; Nagargar, Vivek; Sharif, Daud

    1990-01-01

    Personnel engaged in space flight are exposed to significant flux of high energy neutrons arising from both primary and secondary sources of ionizing radiation. Presently, there exist no compact neutron sensor capable of being integrated in a flight instrument to provide real time measurement of this radiation flux. A proposal was made to construct such an instrument using special PIN silicon diode which has the property of being insensitive to the other forms of ionizing radiation. Studies were performed to determine the design and construction of a better reading system to allow the PIN diode to be read with high precision. The physics of the device was studied, especially with respect to those factors which affect the sensitivity and reproducibility of the neutron response. This information was then used to develop methods to achieve high sensitivity at low neutron doses. The feasibility was shown of enhancing the PIN diode sensitivity to make possible the measurement of the low doses of neutrons encountered in space flights. The new PIN diode will make possible the development of a very compact, accurate, personal neutron dosimeter.

  15. THE ALBEDO-COLOR DIVERSITY OF TRANSNEPTUNIAN OBJECTS

    SciTech Connect

    Lacerda, Pedro; Rengel, Miriam; Fornasier, Sonia; Lellouch, Emmanuel; Delsanti, Audrey; Kiss, Csaba; Vilenius, Esa; Müller, Thomas; Santos-Sanz, Pablo; Duffard, René; Guilbert-Lepoutre, Aurélie

    2014-09-20

    We analyze albedo data obtained using the Herschel Space Observatory that reveal the existence of two distinct types of surface among midsized trans-Neptunian objects. A color-albedo diagram shows two large clusters of objects, one redder and higher albedo and another darker and more neutrally colored. Crucially, all objects in our sample located in dynamically stable orbits within the classical Kuiper Belt region and beyond are confined to the bright red group, implying a compositional link. Those objects are believed to have formed further from the Sun than the dark neutral bodies. This color-albedo separation is evidence for a compositional discontinuity in the young solar system.

  16. Enhancement of the MODIS Daily Snow Albedo Product

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Schaaf, Crystal B.; Wang, Zhuosen; Riggs, George A.

    2009-01-01

    The MODIS daily snow albedo product is a data layer in the MOD10A1 snow-cover product that includes snow-covered area and fractional snow cover as well as quality information and other metadata. It was developed to augment the MODIS BRDF/Albedo algorithm (MCD43) that provides 16-day maps of albedo globally at 500-m resolution. But many modelers require daily snow albedo, especially during the snowmelt season when the snow albedo is changing rapidly. Many models have an unrealistic snow albedo feedback in both estimated albedo and change in albedo over the seasonal cycle context, Rapid changes in snow cover extent or brightness challenge the MCD43 algorithm; over a 16-day period, MCD43 determines whether the majority of clear observations was snow-covered or snow-free then only calculates albedo for the majority condition. Thus changes in snow albedo and snow cover are not portrayed accurately during times of rapid change, therefore the current MCD43 product is not ideal for snow work. The MODIS daily snow albedo from the MOD10 product provides more frequent, though less robust maps for pixels defined as "snow" by the MODIS snow-cover algorithm. Though useful, the daily snow albedo product can be improved using a daily version of the MCD43 product as described in this paper. There are important limitations to the MOD10A1 daily snow albedo product, some of which can be mitigated. Utilizing the appropriate per-pixel Bidirectional Reflectance Distribution Functions (BRDFs) can be problematic, and correction for anisotropic scattering must be included. The BRDF describes how the reflectance varies with view and illumination geometry. Also, narrow-to-broadband conversion specific for snow on different surfaces must be calculated and this can be difficult. In consideration of these limitations of MOD10A1, we are planning to improve the daily snow albedo algorithm by coupling the periodic per-pixel snow albedo from MCD43, with daily surface ref|outanoom, In this paper, we

  17. Description and evaluation of the Hanford personnel dosimeter program from 1944 through 1989. [Contain Glossary

    SciTech Connect

    Wilson, R.H.; Fix, J.J.; Baumgartner, W.V.; Nichols, L.L.

    1990-09-01

    This report describes the evolution of personnel dosimeter technology at Hanford since the inception of Hanford operations in 1944. Each of the personnel dosimeter systems used by people working or visiting Hanford is described. In addition, the procedures used to calibrate and calculate dose for each of the dosimeter systems are described. The accuracy of the recorded dose, primarily whole body deep dose, for the different dosimeter systems is evaluated. The evaluation is based on an extensive review of historical literature, as well as a 1989 intercomparison study of all film dosimeters and performance testing of the thermoluminescent dosimeter, also conducted during 1989. 73 refs., 40 figs., 41 tabs.

  18. Angular dependence of mammographic dosimeters in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Bradley, Lena R.; Carton, Ann-Katherine; Maidment, Andrew D. A.

    2010-04-01

    Digital Breast Tomosynthesis (DBT) is an emerging imaging modality that combines tomography with conventional digital mammography. In developing DBT dosimetry, a direct application of mammographic dosimetry has appeal. However, DBT introduces rotation of the x-ray tube relative to the dosimeter, thus raising questions about the angular dependence of mammographic dosimeters. To measure this dependence, two ionization chambers, two solid-stated detectors, and one photodiode were rotated relative to an incident Mo/Mo x-ray beam. In this isocentric DBT simulation, the signal of each dosimeter was studied over an angular range of 180° for tube voltages of 26 to 34 kV. One ionization chamber was then modeled numerically to study the response to various monoenergetic beams. The results show that all dosimeters underestimate dose to varying degrees; solid-state detectors show the greatest angular dependence while ionization chambers show the least. Correction factors were computed from the data for isocentric DBT images using projection angles up to +/-25° these factors ranged from 1.0014 to 1.1380. The magnitude of the angular dependence generally decreased with increasing energy, as shown with both the measured and modeled data. As a result, the error arising in measuring DBT dose with a mammographic dosimeter varies significantly; it cannot always be disregarded. The use of correction factors may be possible but is largely impractical, as they are specific to the dosimeter, x-ray beam, and DBT geometry. Instead, an angle-independent dosimeter may be more suitable for DBT.

  19. Surface Albedo Variations Across Opportunity's Traverse in Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Studer-Ellis, G. L.; Rice, M. S.; Johnson, J. R.; Bell, J. F., III

    2015-12-01

    Surface albedo measurements from the Mars Exploration Rover (MER) Opportunity mission can be used to help understand surface-atmosphere interactions at Meridiani Planum. Opportunity has acquired 117 albedo panoramas with the Pancam instrument as of sol 3870, across the first 40 km of its traverse. To date, only the first 32 panoramas have been reported upon in previous studies [1]. Here we present an analysis of the full set of PDS-released albedo observations from Opportunity and correlate our measurements with terrain type and known atmospheric events. To acquire a 360-degree albedo observation, Pancam's L1 ("clear") filter is used to take 27 broad-spectrum images, which are stitched into a mosaic. Pancam images are calibrated to reflectance factor (R*), which is taken as an approximation of the Lambertian albedo. Areas of interest are selected and average albedo calculations are applied to all of the selections. Results include the average albedo of each scene, as well as equal-area corrections where applicable, in addition to measurements of specific classes of surface features (e.g., outcrops, dusty terrain, and rover tracks). Average scene albedo measurements range from 0.11 ± 0.04 to 0.30 ± 0.04, with the highest value observed on sol 1290 (immediately after the planet-encircling dust storm of 2007). We compare these results to distance traveled, surface morphologies, local wind driven events, and dust opacity measurements. Future work will focus on correlating Pancam albedo values with orbital data from cameras such as HiRISE, CTX, MOC, THEMIS-VIS, and MARCI, and completion of the same analysis for the full Pancam albedo dataset from Spirit. References: [1] Bell, J. F., III, M. S. Rice, J. R. Johnson, and T. M. Hare (2008), Surface albedo observations at Gusev Crater and Meridiani Planum, Mars, J. Geophys. Res., 113, E06S18, doi:10.1029/2007JE002976.

  20. From Regional Cloud-Albedo to a Global Albedo Footprint - Studying Aerosol Effects on the Radiation Budget Using the Relation Between Albedo and Cloud Fraction

    NASA Astrophysics Data System (ADS)

    Bender, F.; Engström, A.; Karlsson, J.; Wood, R.; Charlson, R. J.

    2015-12-01

    Earth's albedo is the primary determinant of the amount of energy absorbed by the Earth-atmosphere system. The main factor controlling albedo is the amount of clouds present, but aerosols can affect and alter both clear-sky and cloudy-sky reflectance. How albedo depends on cloud fraction and how albedo varies at a given cloud fraction and a given cloud water content, reveals information about these aerosol effects on the radiation budget. Hence, the relation between total albedo and cloud fraction can be used for illustration and quantification of aerosol effects, and as a diagnostic tool, to test model performance. Here, we show examples of the utilisation of this relation focusing on satellite observations from CERES and MODIS on Aqua, as well as from Calipso and CloudSat, and performing comparisons with climate models on the way: In low-cloud regions in the subtropics, we find that climate models well represent a near-constant regional cloud albedo, and this representation has improved from CMIP3 to CMIP5. CMIP5 models indicate more reflective clouds in present-day climate than pre-industrial, as a result of increased aerosol burdens. On monthly mean time scale, models are found to over-estimate the regional cloud-brightening due to aerosols. On the global scale we find an increasing cloud albedo with increasing cloud fraction - a relation that is very well defined in observations, and less so in CMIP5 models. Cloud brightening from pre-industrial to present day is also seen on global scale. Further, controlling for both cloud fraction and cloud water content we can trace small variations in albedo, or perturbations of solar reflectivity, that create a near-global coherent geographical pattern that is consistent with aerosol impacts on climate, with albedo enhancement in regions dominant of known aerosol sources and suppression of albedo in regions associated with high rates of aerosol removal (deduced using CloudSat precipitation estimates). This mapping can be

  1. Dose rate dependency of micelle leucodye 3D gel dosimeters

    NASA Astrophysics Data System (ADS)

    Vandecasteele, J.; Ghysel, S.; De Deene, Y.

    2010-11-01

    Recently a novel 3D radiochromic gel dosimeter was introduced which uses micelles to dissolve a leucodye in a gelatin matrix. Experimental results show that this 3D micelle gel dosimeter was found to be dose rate dependent. A maximum difference in optical dose sensitivity of 70% was found for dose rates between 50 cGy min-1 and 400 cGy min-1. A novel composition of 3D radiochromic dosimeter is proposed composed of gelatin, sodium dodecyl sulphate, chloroform, trichloroacetic acid and leucomalachite green. The novel gel dosimeter formulation exhibits comparable radio-physical properties in respect to the composition previously proposed. Nevertheless, the novel formulation was found to be still dose rate dependent. A maximum difference of 33% was found for dose rates between 50 cGy min-1 and 400 cGy min-1. On the basis of these experimental results it is concluded that the leucodye micelle gel dosimeter is still unsatisfactory for clinical radiation therapy dose verifications. Some insights in the physico-chemical mechanisms were obtained and are discussed.

  2. PNNL Results from 2010 CALIBAN Criticality Accident Dosimeter Intercomparison Exercise

    SciTech Connect

    Hill, Robin L.; Conrady, Matthew M.

    2011-10-28

    This document reports the results of the Hanford personnel nuclear accident dosimeter (PNAD) and fixed nuclear accident dosimeter (FNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on September 20-23, 2010. Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimeter intercomparison exercise at the Commissariat a Energie Atomique (CEA) Valduc Center near Dijon, France on September 20-23, 2010. The intercomparison exercise was funded by the U.S. Department of Energy, Nuclear Criticality Safety Program, with Lawrence Livermore National Laboratory as the lead Laboratory. PNNL was one of six invited DOE Laboratory participants. The other participating Laboratories were: Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 National Security Complex at Oak Ridge, and Sandia National Laboratory (SNL). The goals of PNNL's participation in the intercomparison exercise were to test and validate the procedures and algorithm currently used for the Hanford personnel nuclear accident dosimeters (PNADs) on the metallic reactor, CALIBAN, to test exposures to PNADs from the side and from behind a phantom, and to test PNADs that were taken from a historical batch of Hanford PNADs that had varying degrees of degradation of the bare indium foil. Similar testing of the PNADs was done on the Valduc SILENE test reactor in 2009 (Hill and Conrady, 2010). The CALIBAN results are reported here.

  3. Effect of bloom strength on radiochromic gel dosimeters

    NASA Astrophysics Data System (ADS)

    Ebenezer Suman Babu, S.; Ravindran, B. Paul

    2015-01-01

    The Fricke gel dosimeter has been the widely used dosimeter among the gel dosimeters because of its dose response characteristics and easy preparation. The ferrous to ferric conversion that happens in this gel dosimeter on irradiation, corresponds to the absorbed dose of radiation. Gel dosimetry in India is not moving forward because of the import restrictions on the commercially available high bloom strength gelatin (imported 300 bloom). The feasibility of using Fricke gel dosimeter prepared with the locally available gelatin of 240 bloom and 200 bloom were compared with the 300 bloom gelatin taken as standard. The gel samples were prepared with 5% gelatin by weight and irradiated with 60Co gamma radiation for a dose range from 0-3 Gy used clinically. The optical absorption of gel samples were analyzed using spectrophotometer at 585 nm and dose response curves were generated. The results indicate that Fricke gels prepared with 240 bloom have linear dose response and comparable with those prepared with 300 bloom but the use of gels prepared with 200 bloom was found to be limited because of its poor optical transmittance.

  4. A real-time pulsed photon dosimeter

    NASA Astrophysics Data System (ADS)

    Brown, David; Olsher, Richard H.; Eisen, Yosef; Rodriguez, Joseph F.

    1996-02-01

    Radiation sources producing short pulses of photon radiation are now widespread. Such sources include electron and proton linear accelerators, betatrons, synchrotrons, and field-emission impulse generators. It is often desirable to measure leakage and skyshine radiation from such sources in real time, on a single-pulse basis as low as 8.7 nGy (1 μR) per pulse. This paper describes the design and performance of a prototype, real-time, pulsed photon dosimeter (PPD) capable of single-pulse dose measurements over the range from 3.5 nGy to 3.5 μGy (0.4 to 400 μR). The PPD may also be operated in a multiple-pulse mode that integrates the dose from a train of radiation pulses over a 3-s period. A pulse repetition rate of up to 300 Hz is accommodated. The design is eminently suitable for packaging as a lightweight, portable, survey meter. The PPD uses a CdWO 4 scintillator optically coupled to a photodiode to generate a charge at the diode output. A pulse amplifier converts the charge to a voltage pulse. A digitizer circuit generates a burst of logic pulses whose number is proportional to the peak value of the voltage pulse. The digitizer output is recorded by a pulse counter and suitably displayed. A prototype PPD was built for testing and evaluation purposes. The performance of the PPD was evaluated with a variety of pulsed photon sources. The dynamic range, energy response, and response to multiple pulses were characterized. The experimental data confirm the viability of the PPD for pulsed photon dosimetry.

  5. Anthropogenic desertification by high-albedo pollution Observations and modeling

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Rosenberg, N. W.; Rosenberg, E.

    1974-01-01

    ERTS-1 MSS albedo data of Western Negev, Sinai and the Gaza strip are presented. A sharp contrast in albedo exists across the Negev-Sinai and Negev-Gaza strip borders. Anthropogenic desertification has occurred on the Arab side due to overgrazing and Bedouin agriculture, whereas natural vegetation grows much more abundantly on the Israeli side.

  6. The albedo of snow for partially cloudy skies

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Chang, A. T. C.

    1980-01-01

    The input parameters of the model are atmospheric precipitable water, ozone content, turbidity, cloud optical thickness, size and shape of ice crystal of snow and surface pressure. The model outputs spectral and integrated solar flux snow reflectance as a function of solar elevation and fractional cloudcover. The model is illustrated using representative parameters for the Antarctic coastal regions. The albedo for a clear sky depends inversely on the solar elevation. At high elevation the albedo depends primarily upon the grain size; at low elevation this dependence is on grain size and shape. The gradient of the albedo-elevation curve increases as the grains get larger and faceted. The albedo for a dense overcast is a few percent higher than the clear sky albedo at high elevations. A simple relation between the grain size and the overcast albedo is obtained. For a set of grain size and shape, the albedo matrices (the albedo as a function of solar elevation and fractional cloudcover) are tabulated.

  7. Greenland surface albedo changes 1981-2012 from satellite observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant melt over Greenland has been observed during the last several decades associated with extreme warming events over the northern Atlantic Ocean. An analysis of surface albedo change over Greenland is presented, using a 32-year consistent satellite albedo product from the Global Land Surfac...

  8. Seasonal evolution of the albedo of multiyear Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.; Grenfell, T. C.; Light, B.; Hobbs, P. V.

    2002-10-01

    As part of ice albedo feedback studies during the Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment, we measured spectral and wavelength-integrated albedo on multiyear sea ice. Measurements were made every 2.5 m along a 200-m survey line from April through October. Initially, this line was completely snow covered, but as the melt season progressed, it became a mixture of bare ice and melt ponds. Observed changes in albedo were a combination of a gradual evolution due to seasonal transitions and abrupt shifts resulting from synoptic weather events. There were five distinct phases in the evolution of albedo: dry snow, melting snow, pond formation, pond evolution, and fall freeze-up. In April the surface albedo was high (0.8-0.9) and spatially uniform. By the end of July the average albedo along the line was 0.4, and there was significant spatial variability, with values ranging from 0.1 for deep, dark ponds to 0.65 for bare, white ice. There was good agreement between surface-based albedos and measurements made from the University of Washington's Convair-580 research aircraft. A comparison between net solar irradiance computed using observed albedos and a simplified model of seasonal evolution shows good agreement as long as the timing of the transitions is accurately determined.

  9. NEOWISE Reactivation Mission Year Two: Asteroid Diameters and Albedos

    NASA Astrophysics Data System (ADS)

    Nugent, C. R.; Mainzer, A.; Bauer, J.; Cutri, R. M.; Kramer, E. A.; Grav, T.; Masiero, J.; Sonnett, S.; Wright, E. L.

    2016-09-01

    The Near-Earth Object Wide-Field Infrared Survey Explorer (NEOWISE) mission continues to detect, track, and characterize minor planets. We present diameters and albedos calculated from observations taken during the second year since the spacecraft was reactivated in late 2013. These include 207 near-Earth asteroids (NEAs) and 8885 other asteroids. Of the NEAs, 84% NEAs did not have previously measured diameters and albedos by the NEOWISE mission. Comparison of sizes and albedos calculated from NEOWISE measurements with those measured by occultations, spacecraft, and radar-derived shapes shows accuracy consistent with previous NEOWISE publications. Diameters and albedos fall within ±˜20% and ±˜40%, 1-sigma, respectively, of those measured by these alternate techniques. NEOWISE continues to preferentially discover near-Earth objects which are large (>100 m), and have low albedos.

  10. Monitoring of environmental UV radiation by biological dosimeters.

    PubMed

    Ronto, G; Berces, A; Grof, P; Fekete, A; Kerekgyarto, T; Gaspar, S; Stick, C

    2000-01-01

    As a consequence of the stratospheric ozone layer depletion biological systems can be damaged due to increased UV-B radiation. The aim of biological dosimetry is to establish a quantitative basis for the risk assessment of the biosphere. DNA is the most important target molecule of biological systems having special sensitivity against short wavelength components of the environmental radiation. Biological dosimeters are usually simple organisms, or components of them, modeling the cellular DNA. Phage T7 and polycrystalline uracil biological dosimeters have been developed and used in our laboratory for monitoring the environmental radiation in different radiation conditions (from the polar to equatorial regions). Comparisons with Robertson-Berger (RB) meter data, as well as with model calculation data weighted by the corresponding spectral sensitivities of the dosimeters are presented. Suggestion is given how to determine the trend of the increase in the biological risk due to ozone depletion.

  11. The albedo effect on neutron transmission probability.

    PubMed

    Khanouchi, A; Sabir, A; Boulkheir, M; Ichaoui, R; Ghassoun, J; Jehouani, A

    1997-01-01

    The aim of this study is to evaluate the albedo effect on the neutron transmission probability through slab shields. For this reason we have considered an infinite homogeneous slab having a fixed thickness equal to 20 lambda (lambda is the mean free path of the neutron in the slab). This slab is characterized by the factor Ps (scattering probability) and contains a vacuum channel which is formed by two horizontal parts and an inclined one (David, M. C. (1962) Duc and Voids in shields. In Reactor Handbook, Vol. III, Part B, p. 166). The thickness of the vacuum channel is taken equal to 2 lambda. An infinite plane source of neutrons is placed on the first of the slab (left face) and detectors, having windows equal to 2 lambda, are placed on the second face of the slab (right face). Neutron histories are sampled by the Monte Carlo method (Booth, T. E. and Hendricks, J. S. (1994) Nuclear Technology 5) using exponential biasing in order to increase the Monte Carlo calculation efficiency (Levitt, L. B. (1968) Nuclear Science and Engineering 31, 500-504; Jehouani, A., Ghassoun, J. and Abouker, A. (1994) In Proceedings of the 6th International Symposium on Radiation Physics, Rabat, Morocco) and we have applied the statistical weight method which supposes that the neutron is born at the source with a unit statistical weight and after each collision this weight is corrected. For different values of the scattering probability and for different slopes of the inclined part of the channel we have calculated the neutron transmission probability for different positions of the detectors versus the albedo at the vacuum channel-medium interface. Some analytical representations are also presented for these transmission probabilities. PMID:9463883

  12. Global color and albedo variations on Io

    USGS Publications Warehouse

    McEwen, A.S.

    1988-01-01

    Three multispectral mosaics of Io have been produced from Voyager imaging data: a global mosaic from each of the Voyager 1 and Voyager 2 data sets and a high-resolution mosaic of the region surrounding the volcano Ra Patera. The mosaics are maps of normal albedo and color in accurate geometric map formats. Io's photometric behavior, mapped with a two-image technique, is spatially variable, especially in the bright white areas. The disk-integrated color and albedo of the satellite have been remarkably constant over recent decades, despite the volcanic activity and the many differences between Voyager 1 and 2 images (acquired just 4 months apart). This constancy is most likely due to the consistent occurrence of large Pele-type plumes with relatively dark, red deposits in the region from long 240 to 360??. A transient brightening southeast of Pele during the Voyager 1 encounter was probably due to real changes in surface and/or atmospheric materials, rather than to photometric behavior. The intrinsic spectral variability of Io, as seen in a series of two-dimensional histograms of the multispectral mosaics, consists of continuous variation among three major spectral end members. The data were mapped into five spectral units to compare them with laboratory measurements of candidate surface materials and to show the planimetric distributions. Unit 1 is best fit by the spectral reflectance of ordinary elemental sulfur, and it is closely associated with the Peletype plume deposits. Unit 2 is strongly confined to the polar caps above about latitude ??50??, but its composition is unknown. Unit 5 is probably SO2 with relatively minor contamination; it is concentrated in the equatorial region and near the long-lived Prometheus-type plumes. Units 3 and 4 are gradational between units 1 and 5. In addition to SO2 and elemental sulfur, other plausible components of the surface are polysulfur oxides, FeCl2, Na2S, and NaHS. ?? 1988.

  13. Fire disturbance effects on land surface albedo in Alaskan tundra

    NASA Astrophysics Data System (ADS)

    French, Nancy H. F.; Whitley, Matthew A.; Jenkins, Liza K.

    2016-03-01

    The study uses satellite Moderate Resolution Imaging Spectroradiometer albedo products (MCD43A3) to assess changes in albedo at two sites in the treeless tundra region of Alaska, both within the foothills region of the Brooks Range, the 2007 Anaktuvuk River Fire (ARF) and 2012 Kucher Creek Fire (KCF). Results are compared to each other and other studies to assess the magnitude of albedo change and the longevity of impact of fire on land surface albedo. In both sites there was a marked decrease of albedo in the year following the fire. In the ARF, albedo slowly increased until 4 years after the fire, when it returned to albedo values prior to the fire. For the year immediately after the fire, a threefold difference in the shortwave albedo decrease was found between the two sites. ARF showed a 45.3% decrease, while the KCF showed a 14.1% decrease in shortwave albedo, and albedo is more variable in the KCF site than ARF site 1 year after the fire. These differences are possibly the result of differences in burn severity of the two fires, wherein the ARF burned more completely with more contiguous patches of complete burn than KCF. The impact of fire on average growing season (April-September) surface shortwave forcing in the year following fire is estimated to be 13.24 ± 6.52 W m-2 at the ARF site, a forcing comparable to studies in other treeless ecosystems. Comparison to boreal studies and the implications to energy flux are discussed in the context of future increases in fire occurrence and severity in a warming climate.

  14. Snow-albedo feedback in future climate change

    NASA Astrophysics Data System (ADS)

    Qu, Xin

    We quantify the two factors controlling Northern Hemisphere springtime snow-albedo feedback in transient climate change based on scenario runs of 18 climate models used in the Intergovernmental Panel of Climate Change 4th Assessment. The first factor is the dependence of planetary albedo on surface albedo. We find in all simulations surface albedo anomalies are attenuated by approximately half in Northern Hemisphere land areas as they are transformed into planetary albedo anomalies. The intermodel standard deviation in this factor is surprisingly small. Moreover, when we calculate an observational estimate of this factor using the satellite-based International Satellite Cloud Climatology Project data, we find most simulations agree with ISCCP values to within about 10%. The second factor, related exclusively to surface processes, is the change in surface albedo associated with an anthropogenically-induced temperature change in Northern Hemisphere land areas. It exhibits much more intermodel variability. This large intermodel spread is attributable mostly to a correspondingly large spread in mean effective snow albedo. Models without explicit treatment of the vegetation canopy in their surface albedo calculations typically have high effective snow albedos and strong SAF, often stronger than observed. In models with explicit canopy treatment, completely snow-covered surfaces typically have lower albedos and the simulations have weaker SAF, generally weaker than observed. These large intermodel variations in feedback strength in climate change are nearly perfectly correlated with comparably large intermodel variations in feedback strength in the context of the seasonal cycle. Moreover, the feedback strength in the real seasonal cycle can be measured and compared to simulated values. These mostly fall outside the range of the observed estimate. Because of the tight correlation between simulated feedback strength in the seasonal cycle and climate change, eliminating the

  15. Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy

    NASA Astrophysics Data System (ADS)

    Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.

    2016-02-01

    For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation

  16. Angular dependence of the nanoDot OSL dosimeter

    SciTech Connect

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan; Followill, David S.; Ibbott, Geoffrey S.

    2011-07-15

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight/OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system. Methods: Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, as well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX. Results: When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found. Conclusions: A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions.

  17. Implanted Dosimeters Identify Radiation Overdoses During IMRT for Prostate Cancer

    SciTech Connect

    Den, Robert B.; Nowak, Kamila; Buzurovic, Ivan; Cao Junsheng; Harrison, Amy S.; Lawrence, Yaacov R.; Dicker, Adam P.; Showalter, Timothy N.

    2012-07-01

    Purpose: Image-guided dose-escalated radiotherapy is the standard of care for the treatment of prostate cancer. Although many published methods are available that account for prostate motion during delivery, evidence demonstrating that the planned dose is actually delivered on a daily basis is lacking. We report our initial clinical experience using implantable dosimeters to quantify and adjust the dose received during intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 20 patients undergoing IMRT with cone-beam computed tomography (CT) image guidance for prostate cancer had the dose verification system with radiopaque metal-oxide-semiconductor field effect transistor dosimeters implanted before treatment planning. All patients underwent planning with CT simulation in the supine position with custom immobilization, and the implanted dosimeters were located in the IMRT plans. The predicted dose for each dosimeter was defined and compared with the wireless readings before and after each treatment session. Investigations by physicians and medical physicists were initiated for two or more discrepancies >6% for any five consecutive fractions or for any discrepancy {>=}10%. Results: Using implanted in vivo dosimeters, dose measurements consistently >6% greater than the predicted values were observed during treatment for 3 of 20 prostate cancer patients who received IMRT with daily image guidance. A review of the daily cone-beam CT images revealed acceptable alignment of the prostate target volumes and implanted dosimeters but identified significant anatomic changes within the treated region. Repeat CT simulation and RT planning was performed, with resolution of the dose discrepancies in all 3 cases with the adoption of a new IMRT plan. Conclusions: Our report illustrates the potential effect of implanted in vivo dosimetry for prostate IMRT and emphasizes the importance of careful planning and delivery with attention to systematic shifts or anatomic

  18. Angular dependence of the nanoDot OSL dosimeter

    PubMed Central

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan; Followill, David S.; Ibbott, Geoffrey S.

    2011-01-01

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight∕OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system.Methods: Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, as well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX.Results: When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found.Conclusions: A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions. PMID:21858992

  19. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    SciTech Connect

    Liu, Y.; Wu, W.; Jensen, M. P.; Toto, T.

    2011-07-21

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surface-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction, and cloud albedo. The analytical expression is then used to deduce a new approach for inferring cloud albedo from concurrent surface-based measurements of downwelling surface shortwave radiation and cloud fraction. High-resolution decade-long data on cloud albedos are obtained by use of this surface-based approach over the US Department of Energy's Atmospheric Radiaton Measurement (ARM) Program at the Great Southern Plains (SGP) site. The surface-based cloud albedos are further compared against those derived from the coincident GOES satellite measurements. The three long-term (1997-2009) sets of hourly data on shortwave cloud radiative forcing, cloud fraction and cloud albedo collected over the SGP site are analyzed to explore the multiscale (diurnal, annual and inter-annual) variations and covariations. The analytical formulation is useful for diagnosing deficiencies of cloud-radiation parameterizations in climate models.

  20. Generating multi-scale albedo look-up maps using MODIS BRDF/Albedo products and landsat imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface albedo determines radiative forcing and is a key parameter for driving Earth’s climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth’s radiation balance due to land cover change. This paper presents a mult...

  1. Monte Carlo simulation experiments on box-type radon dosimeter

    NASA Astrophysics Data System (ADS)

    Jamil, Khalid; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid

    2014-11-01

    Epidemiological studies show that inhalation of radon gas (222Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the 222Rn concentrations (Bq/m3) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter's dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (ηint) and alpha hit efficiency (ηhit). The ηint depends upon only on the dimensions of the dosimeter and ηhit depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper explains that how radon concentration from the

  2. Strategy for finding new materials for ESR dosimeters

    PubMed

    Ikeya; Hassan; Sasaoka; Kinoshita; Takaki; Yamanaka

    2000-05-01

    The right strategy for finding a new ESR dosimetric material sensitive to radiation is to follow the orthodox procedures used in the development of thermoluminescence dosimeters (TLD) and phosphorescence studies. Modern procedures used in materials sciences, such as computer calculation of molecular orbitals (MO), should be employed to estimate the ESR and optical properties of prospective materials. Radiation effects in lithium and magnesium sulfates and metal salts of organic acids, such as lithium and magnesium lactates, have been investigated in search for tissue-equivalent dosimeter with a large G value.

  3. Measurement of a PAGAT gel dosimeter by ultrasound computed tomography

    NASA Astrophysics Data System (ADS)

    Khoei, S.; Trapp, J. V.; Langton, C. M.

    2013-06-01

    In this work we used a 3D quantitative CT ultrasound imaging system to characterise polymer gel dosimeters. The system comprised of two identical 5 MHz 128 element phased-array ultrasound transducers co-axially aligned and submerged in water as a coupling agent. Rotational and translational movement of the gel dosimeter sample between the transducers were performed using a robotic arm. Ultrasound signals were generated and received using an Olympus Omniscan unit. Dose sensitivity of attenuation and time of flight ultrasonic parameters were assessed using this system.

  4. The Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.; /UC, Santa Cruz

    2007-09-28

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makes it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.

  5. ALBEDOS OF SMALL HILDA GROUP ASTEROIDS AS REVEALED BY SPITZER

    SciTech Connect

    Ryan, Erin Lee; Woodward, Charles E. E-mail: chelsea@astro.umn.edu

    2011-06-15

    We present thermal 24 {mu}m observations from the Spitzer Space Telescope of 62 Hilda asteroid group members with diameters ranging from 3 to 12 km. Measurements of the thermal emission, when combined with reported absolute magnitudes, allow us to constrain the albedo and diameter of each object. From our Spitzer sample, we find the mean geometric albedo, p{sub V} = 0.07 {+-} 0.05, for small (D < 10 km) Hilda group asteroids. This Spitzer-derived value of p{sub V} is greater than and spans a larger range in albedo space than the mean albedo of large (D {approx}> 10 km) Hilda group asteroids which is p{sub V} = 0.04 {+-} 0.01. Though this difference may be attributed to space weathering, the small Hilda group population reportedly displays greater taxonomic range from C-, D-, and X-type whose albedo distributions are commensurate with the range of determined albedos. We discuss the derived Hilda size-frequency distribution, color-color space, and geometric albedo for our survey sample in the context of the expected migration induced 'seeding' of the Hilda asteroid group with outer solar system proto-planetesimals as outlined in the 'Nice' formalism.

  6. Arid land monitoring using Landsat albedo difference images

    USGS Publications Warehouse

    Robinove, Charles J.; Chavez, Pat S.; Gehring, Dale G.; Holmgren, Ralph

    1981-01-01

    The Landsat albedo, or percentage of incoming radiation reflected from the ground in the wavelength range of 0.5 [mu]m to 1.1 [mu]m, is calculated from an equation using the Landsat digital brightness values and solar irradiance values, and correcting for atmospheric scattering, multispectral scanner calibration, and sun angle. The albedo calculated for each pixel is used to create an albedo image, whose grey scale is proportional to the albedo. Differencing sequential registered images and mapping selected values of the difference is used to create quantitative maps of increased or decreased albedo values of the terrain. All maps and other output products are in black and white rather than color, thus making the method quite economical. Decreases of albedo in arid regions may indicate improvement of land quality; increases may indicate degradation. Tests of the albedo difference mapping method in the Desert Experimental Range in southwestern Utah (a cold desert with little long-term terrain change) for a four-year period show that mapped changes can be correlated with erosion from flash floods, increased or decreased soil moisture, and increases or decreases in the density of desert vegetation, both perennial shrubs and annual plants. All terrain changes identified in this test were related to variations in precipitation. Although further tests of this method in hot deserts showing severe "desertification" are needed, the method is nevertheless recommended for experimental use in monitoring terrain change in other arid and semiarid regions of the world.

  7. The Gamma-Ray Albedo of the Moon

    SciTech Connect

    Moskalenko, I.V.; Porter, T.A.; /UC, Santa Cruz

    2008-03-25

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makes it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.

  8. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, Daniel L.; Micklich, Bradley J.

    1986-01-01

    An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.

  9. Aerial albedos of natural vegetation in South-eastern Australia

    NASA Technical Reports Server (NTRS)

    Howard, J. A.

    1977-01-01

    Black-and-white low-level 70mm photography was used to record the track of the aircraft, which was then plotted on conventional 1:80,000 23 cm photogrammetric photographs and referenced against simultaneous measurements of the beam albedos of vegetation. Using stereoscopic pairs of the 70mm photographs, the vegetation was classified into sub-formations. Marked differences in the 'sub-formation' albedos were observed. A two-way table using stand height and crown cover of the sub-formations clearly showed a very distinctive trend of albedos. This finding may be important in other vegetal studies.

  10. Deriving surface albedo measurements from narrow band satellite data

    NASA Technical Reports Server (NTRS)

    Brest, Christopher L.; Goward, Samuel N.

    1987-01-01

    A target calibration procedure for obtaining surface albedo from satellite data is presented. The methodology addresses two key issues, the calibration of remotely-sensed, discrete wavelength, digital data and the derivation of an albedo measurement (defined over the solar short wave spectrum) from spectrally limited observations. Twenty-seven Landsat observations, calibrated with urban targets (building roof-tops and parking lots), are used to derive spatial and seasonal patterns of surface reflectance and albedo for four land cover types: city, suburb, farm and forest.

  11. Lunar Terrain and Albedo Reconstruction from Apollo Imagery

    NASA Technical Reports Server (NTRS)

    Nefian, Ara V.; Kim, Taemin; Broxton, Michael; Moratto, Zach

    2010-01-01

    Generating accurate three dimensional planetary models and albedo maps is becoming increasingly more important as NASA plans more robotics missions to the Moon in the coming years. This paper describes a novel approach for separation of topography and albedo maps from orbital Lunar images. Our method uses an optimal Bayesian correlator to refine the stereo disparity map and generate a set of accurate digital elevation models (DEM). The albedo maps are obtained using a multi-image formation model that relies on the derived DEMs and the Lunar- Lambert reflectance model. The method is demonstrated on a set of high resolution scanned images from the Apollo era missions.

  12. Neutron dosimetry with TL albedo dosemeters at high energy accelerators.

    PubMed

    Haninger, T; Fehrenbacher, G

    2007-01-01

    The GSF-Personal Monitoring Service uses the TLD albedo dosemeter as standard neutron personal dosemeter. Due to its low sensitivity for fast neutrons however, it is generally not recommended for workplaces at high-energy accelerators. Test measurements with the albedo dosemeter were performed at the accelerator laboratories of GSI in Darmstadt and DESY in Hamburg to reconsider this hypothesis. It revealed that the albedo dosemeter can also be used as personal dosemeter at these workplaces, because at all measurement locations a significant part of neutrons with lower energies could be found, which were produced by scattering at walls or the ground. PMID:17766258

  13. Earth albedo neutrons from 10 to 100 MeV.

    NASA Technical Reports Server (NTRS)

    Preszler, A. M.; Simnett, G. M.; White, R. S.

    1972-01-01

    We report the measurement of the energy and angular distributions of earth albedo neutrons from 10 to 100 MeV at 40 deg N geomagnetic latitude from a balloon at 120,000 ft, below 4.65 g/sq cm. The albedo-neutron omnidirectional energy distribution is flat to 50 MeV, then decreases with energy. The absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the source of the protons trapped in earth's inner radiation belt.

  14. Influence of preparation and calibration method of PAGAT dosimeter on TSE MR readout results

    NASA Astrophysics Data System (ADS)

    Vávrů, K.; Dvořák, P.; Tintěra, J.; Spěváček, V.

    2013-06-01

    In this study PAGAT dosimeter evaluation by TSE sequence was tested. PAGAT dosimeter preparation procedure was modified to increase the dosimeter sensitivity. Because THPC reacts with gelatin, adding THPC to monomer solution prior to dissolved gelatine helps exploit THPC as an antioxidant. Turbo spin echo sequence enables to evaluate gel dosimeter with 3D equidistant resolution in a reasonable scanning time. Glass walls of the phantom cause problems both by computing inaccuracies and MR imaging artefacts. The inner dosimeter volume is not affected by these inaccuracies and should be used for radiotherapy plan verification.

  15. Deconnable self-reading pocket dosimeter containment with self-contained light

    DOEpatents

    Stevens, Robyn L.; Arnold, Greg N.; McBride, Ryan G.

    1996-01-01

    A container for a self-reading pocket dosimeter includes a transparent tube for receiving the self-reading pocket dosimeter, a light source mounted at one end of the transparent tube, and an eyepiece mounted on an opposite end of the transparent tube for viewing a read-out of the self-reading pocket dosimeter. The container may further include an activation device for selectively supplying power to the light source. The container both protects the dosimeter from being contaminated and provides a light source for viewing the dosimeter.

  16. Deconnable self-reading pocket dosimeter containment with self-contained light

    SciTech Connect

    Stevens, R.L.; Arnold, G.N.; McBride, R.G.

    1995-12-31

    A container for a self-reading pocket dosimeter includes a transparent tube for receiving the self-reading pocket dosimeter, a light source mounted at one end of the transparent tube, and an eyepiece mounted on an opposite end of the transparent tube for viewing a read-out of the self-reading pocket dosimeter. The container may further include an activation device for selectively supplying power to the light source. The container both protects the dosimeter from being contaminated and provides a light source for viewing the dosimeter.

  17. The European Light Dosimeter Network: four years of measurements.

    PubMed

    Lebert, Michael; Schuster, Martin; Häder, Donat Peter

    2002-02-01

    The European Light Dosimeter Network (ELDONET) has now been functional for more than four years. The network is based on dosimeters which measure radiation in three biologically relevant wavelength bands (UV-B, 280-315 nm; UV-A, 315-400 nm; and Photosynthetic Active Radiation, PAR, 400-700 nm). The ELDONET network is currently based on 33 stations with 40 instruments. The distribution of the instruments all over Europe allows measurement of the latitudinal and longitudinal light climate distribution. In addition, several instruments are active in South America, New Zealand, India, Africa and Japan. With some exceptions, the measured yearly doses depend on the latitude. While the maximal daily doses are almost comparable from station to station, seasonal changes and the different maximal solar zenith angles account for the differences in total yearly doses. Ratioing between UV-B and PAR allows the detection of subtle changes in the local light climate, due, for example, to mini-ozone holes encountered in northern Europe during spring. Comparison of satellite ozone data with terrestrial ELDONET measurements revealed an overall weak correlation between these data sets. However, local weather conditions, solar zenith angle and latitude as well as reflectivity (i.e. clouds and aerosol; satellite data) show a much stronger correlation to the doses received. The close relationship between the spectral sensitivity of the UV-B sensor used in the ELDONET dosimeter and the CIE erythemal action spectrum allows determination of the erythemal dose on the basis of the dosimeter readings.

  18. Characterization of a reusable PRESAGE® 3D dosimeter

    NASA Astrophysics Data System (ADS)

    Juang, T.; Adamovics, J.; Oldham, M.

    2015-01-01

    This study investigates a reusable PRESAGE® 3D dosimeter (Presage-RU), which would improve cost-effectiveness and facilitate wider implementation of comprehensive, high resolution 3D dosimetry. Small (1x1x4.5 cm) and large (8 cm diameter, 4.5 cm length) sample dosimeters were irradiated multiple times to characterize dose response (i.e. radiation-induced change in optical density (ΔOD)), optical clearing rate, and dose distribution stability. Presage- RU exhibited an initial dose response sensitivity of 0.0119 ΔOD/(cm-Gy), a reduction in response with subsequent irradiations, and a small, permanent ΔOD (~1-6% of initial signal) following each irradiation. Dosimeters optically cleared at an exponential rate (average T1/2 = 24.8±3.6 h), and were effectively cleared after ~5-8 days. 3D gamma analysis (3%/3mm, 10% dose threshold) of a 4-field box plan applied to the large dosimeter showed good agreement following initial irradiation (96.6% passing), but a reduction in passing rate (89.1% passing) with subsequent irradiation. Further study is warranted to fully assess and quantify the performance of Presage-RU for repeat irradiations.

  19. Improvements in opti-chromic dosimeters for radiation processing

    NASA Astrophysics Data System (ADS)

    Humpherys, K. C.; Kantz, A. D.

    "Opti-Chromic" dosimeters consisting of radiachromic dye in flourinated polymer tubing have been introduced as a dosimetry system in the range from 10 1 to 5 × 10 4 Gy. Batches of "Opti-Chromic" dosimeters have been produced to evaluate performance under large scale industrial conditions. A systematic study was undertaken to determine the effect of various dosimeter parameters on radiation sensitivity, shelf life, and response characteristics at the higher absorbed doses. These parameters were (A) Type of flourinated polymer tubing; (B) Organic solvent used to activate the radiachromic dye; (C) Concentration of radiachromic dye; (D) Additives to provide proper viscosity, color stability, and high-dose response. Prototype batches were produced and experimental dosimeters exposed to a range of absorbed doses and the response measured as a function of shelf life and dose. The results of the study are presented, and an improved formulation recommended for application to Food Processing. Other formulations may be of value in specific requirements of sensitivity or temperature.

  20. Reevaluation of the employment of Fick's law for diffusion dosimeters.

    PubMed

    Cross, John H

    2003-04-15

    This paper reconsiders the means of applying Fick's first law to passive diffusion dosimeters. The performance of the organic vapor monitor (OVM), a commercially available dosimeter, is modeled in terms of gradients, which are generated by evaporating a compound from the dosimeter. The fluxes induced by the gradients are determined gravimetrically. The ratio of a flux and a gradient is reported as a Fick's law proportionality constant, the sampling rate. The sampling rate for the gradient across the OVM is calculated from a harmonic average of the sampling rates of two other gradients. The OVM sampling rates for nine compounds determined by the new methodology agree well with published values. Further analysis of the other two gradients provides a value for an apparent reduction in sampling rate in the absence of airflow across the dosimeter (a boundary-layer effect). Procedures are also described to validate measured air concentrations by determining the sampling rates before and after exposure and by correcting for the boundary-layer effect. Sampling rates were found to be stable during 2-4-day exposures in a variety of conditions. In contrast, the boundary-layer effect caused the measured air concentrations to be substantially lower than the estimated true air concentrations.

  1. Hanford Personnel Dosimeter supporting studies FY-1980. [Lead abstract

    SciTech Connect

    Endres, G.W.R.; Cummings, F.M.; Aldrich, J.M.; Thorson, M.R.; Kathren, R.L.

    1981-02-01

    Separate abstracts were prepared for the 10 sections of this report which describe fundamental characteristics of the Hanford multipurpose personnel dosimeter (HMPD). Abstracts were not prepared for Appendix A and Appendix B which deal with calculated standard deviations for 100 mrem mixed field exposures and detailed calculations of standard deviations, respectively. (KRM)

  2. Thin thermoluminescent dosimeter and method of making same

    DOEpatents

    Simons, Gale G.; DeBey, Timothy M.

    1987-01-01

    An improved thermoluminescent ionizing radiation dosimeter of solid, extremely thin construction for more accurate low energy beta dosimetry is provided, along with a method of fabricating the dosimeter. In preferred forms, the dosimeter is a composite including a backing support (which may be tissue equivalent) and a self-sustaining body of solid thermoluminescent material such as LiF having a thickness of less than about 0.25 millimeters and a volume of at least about 0.0125 mm.sup.3. In preferred fabrication procedures, an initially thick (e.g., 0.89 millimeters) TLD body is wet sanded using 600 grit or less sandpaper to a thickness of less than about 0.25 millimeters, followed by adhesively attaching the sanded body to an appropriate backing. The sanding procedure permits routine production of extremely thin (about 0.05 millimeters) TLD bodies, and moreover serves to significantly reduce non-radiation-induced thermoluminescence. The composite dosimeters are rugged in use and can be subjected to annealing temperatures for increased accuracy.

  3. An angular dependent neutron effective-dose-equivalent dosimeter

    NASA Astrophysics Data System (ADS)

    Veinot, Kenneth Guy

    The effective-dose-equivalent (EDE) is a strong function of angular orientation in a radiation field. Detection systems that attempt to measure the EDE directly would be desirable. Historically, dosimeters have been designed to respond as isotropically as possible in a radiation field. However, since the EDE is strongly dependent upon the incident angle of the radiation, past designs are no longer desirable for personal radiation dosimetry. In addition, the EDE is a function of incident neutron energy. CR-39 foils are commonly used neutron detectors. Neutrons produce tracks in CR-39 (allyl diglycol polycarbonate) detectors over a wide energy range. Through chemical or electrochemical etching, these tracks can be enlarged and counted. From this track count, the fluence of neutrons incident on the CR-39 foils may be inferred. Thermoluminescent dosimeters (TLDs) are another method of neutron detection. Both of these detectors have angular response properties. In the present work, calculations of EDE were compared to calculations and measurements of the angular responses of CR-39 and TLD neutron dosimeters. The measurements used a variety of neutron sources, each with its own characteristic energy spectrum. This research resulted in a neutron personal dosimeter prototype whose angular response properties resembled the angular response of EDE.

  4. Two methods for examining angular response of personnel dosimeters

    SciTech Connect

    Plato, P.; Leib, R.; Miklos, J.

    1988-06-01

    The American National Standard ANSI N13.11-1983 is used to test the accuracy (bias plus precision) of dosimetry processors as part of the dosimetry accreditation program of the National Voluntary Laboratory Accreditation Program (NVLAP). Section 3.8 of the ANSI N13.11-1983 standard requires that a study of the angular response of a dosimeter be carried out once, although no pass/fail criterion is given for angular response. The NVLAP accreditation program excluded Section 3.8, and thus no angular response data have been generated in an organized fashion. The objective of this project is to examine the feasibility of two alternative methods to test the angular response of personnel dosimeters. The first alternative involves static irradiations with the dosimeters at fixed angles to a radiation source. The second alternative involves dynamic irradiations with the dosimeters mounted on a rotating phantom. A Panasonic UD-802 personnel dosimetry system** was used to generate data to examine both alternatives. The results lead to two major conclusions. Firstly, Section 3.8 of the ANSI N13.11-1983 standard should be amended to require a pass/fail test for angular response. Secondly, a comparison between angular response data generated with a fixed or a rotating phantom shows that the rotating phantom is the more cost-effective method.

  5. Portable battery-free charger for radiation dosimeters

    DOEpatents

    Manning, Frank W.

    1984-01-01

    This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter.

  6. LET effects following neutron irradiation of lithium formate EPR dosimeters.

    PubMed

    Malinen, Eirik; Waldeland, Einar; Hole, Eli Olaug; Sagstuen, Einar

    2006-03-13

    Lithium formate electron paramagnetic resonance (EPR) dosimeters were irradiated using 60Co gamma-rays or fast neutrons to doses ranging from 5 to 20 Gy and investigated by EPR spectroscopy. Using a polynomial fitting procedure in order to accurately analyze peak-to-peak line widths of first derivative EPR spectra, dosimeters irradiated with neutrons had on average 4.4+/-0.9% broader EPR resonance lines than gamma-irradiated dosimeters. The increase in line width was slightly asymmetrical. Computer simulated first derivative polycrystalline EPR spectra of a *CO2- radical gave very good reconstructions of experimental spectra of irradiated dosimeters. The spectrum simulations could then be used as a tool to investigate the line broadening observed following neutron irradiation. It was shown that an increase in the simulated Lorentzian line width could explain both the observed line broadening and the asymmetrical effect. The ratio of the peak-to-peak amplitude of first derivative EPR spectra obtained at two different microwave powers (20 and 0.5 mW) was 7.8+/-1.2% higher for dosimeters irradiated with neutrons. The dependence of the spectrum amplitude on the microwave power was extensively investigated by fitting observations to an analytical non-linear model incorporating, among others, the spin-lattice (T1) and spin-spin (T2) relaxation times as fitting parameters. Neutron irradiation resulted in a reduction in T(2) in comparison with gamma-irradiation, while a smaller difference in T1 was found. The effects observed indicate increased local radical density following irradiation using high linear energy transfer (LET) neutrons as compared to low LET gamma-irradiation. A fingerprint of the LET may thus be found either by an analysis of the line width or of the dependence of the spectrum amplitude on the microwave power. Lithium formate is therefore a promising material for EPR dosimetry of high LET radiation.

  7. VALIDATION OF HANFORD PERSONNEL AND EXTREMITY DOSIMETERS IN PLUTONIUM ENVIRONMENTS

    SciTech Connect

    Scherpelz, Robert I.; Fix, John J.; Rathbone, Bruce A.

    2000-02-10

    A study was performed in the Plutonium Finishing Plant to assess the performance of Hanford personnel neutron dosimetry. The study was assessed whole body dosimetry and extremity dosimetry performance. For both parts of the study, the TEPC was used as the principle instrument for characterizing workplace neutron fields. In the whole body study, 12.7-cm-diameter TEPCs were used in ten different locations in the facility. TLD and TED personnel dosimeters were exposed on a water-filled phantom to enable a comparison of TEPC and dosimeter response. In the extremity study, 1.27-cm-diameter TEPCs were exposed inside the fingers of a gloveboxe glove. Extremity dosimeters were wrapped around the TEPCs. The glove was then exposed to six different cans of plutonium, simulating the exposure that a worker's fingers would receive in a glovebox. The comparison of TEPC-measured neutron dose equivalent to TLD-measured gamma dose equivalent provided neutron-to-gamma ratios that can be used to estimate the neutron dose equivalent received by a worker's finger based on the gamma readings of an extremity dosimeter. The study also utilized a Snoopy and detectors based on bubble technology for assessing neutron exposures, providing a comparison of the effectiveness of these instruments for workplace monitoring. The study concludes that the TLD component of the HCND performs adequately overall, with a positive bias of 30%, but exhibits excessive variability in individual results due to instabilities in the algorithm. The TED response was less variable but only 20% of the TEPC reference dose on average because of the low neutron energies involved. The neutron response of the HSD was more variable than the TLD component of the HCND and biased high by a factor of 8 overall due to its calibration to unmoderated 252Cf. The study recommends further work to correct instabilities in the HCND algorithm and to explore the potential shown by the bubble-based dosimeters.

  8. Section 9.1 new dosimeters. New dosimetry systems

    NASA Astrophysics Data System (ADS)

    McLaughlin, William L.

    During the past two years there have been significant advances in several forms of radiation measurement systems for radiation processing, covering dose ranges of 1-10 6 Gy. Calorimeters as reference standards for both ionizing photon and electron fields have become well-established. In addition to the older ceric-cerous dosimetry solution analyzed potentiometrically, new liquid-phase dosimeters include those analyzed by spectrophotometry, e.g., improved forms of acidic aqueous solutions of K-Ag dichromate and organic radiochromic dye solutions. It has recently been demonstrated that by using certain refined sugars, e.g., D-(-) ribose, optical rotation response in aqueous solutions can be enhanced for dosimetry at doses > 10 4 Gy. There has been expanded development, use, and formulation (rods, tablets, and thin films) of the amino acid, alanine, as a solid-phase dosimeter analyzed by either ESR spectrometry or by glutamine or alanine spectrophotometry of complexes with ferric ion in the presence of a sulfonphthalein dye (xylenol orange). New commercial types of radiochromic plastic dosimeters, e.g., GafChromic TM, Riso B3 TM, GAMMACHROME YR TM, Radix TM, and Gammex TM, have been introduced and applied in practice. Improvements and broader use of optical waveguide dosimeters, e.g., Opti-Chromic TM, have also been reported, especially in food irradiation applications. Several novel dyed plastic dosimeters are available in large quantities and they lose color due to irradiation. An example is a dyed cellulosic thin film (ATC type DY-42 TM) which can be measured spectrophotometrically or densitometrically up to doses as high as 10 6 Gy.

  9. a Thermally Desorbable Miniature Passive Dosimeter for Organic Vapors

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jesus Antonio

    A thermally desorbable miniature passive dosimeter (MPD) for organic vapors has been developed in conformity with theoretical and practical aspects of passive dosimeter design. The device was optimized for low sample loadings resulting from short-term and/or low concentration level exposure. This was accomplished by the use of thermal desorption rather than solvent elution, which provided the GC method with significantly higher sensitivity. Laboratory evaluation of this device for factors critical to the performance of passive dosimeters using benzene as the test vapor included: desorption efficiency (97.2%), capacity (1400 ppm-min), sensitivity (7ng/sample or 0.06 ppmv for 15 minutes sampling) accuracy and precision, concentration level, environmental conditions (i.e., air face velocity, relative humidity) and sample stability during short (15 minutes) and long periods of time (15 days). This device has demonstrated that its overall accuracy meets NIOSH and OSHA requirements for a sampling and analytical method for the exposure concentration range of 0.1 to 50 ppm (v/v) and 15 minutes exposures. It was demonstrated that the MPD operates in accordance with theoretically predicted performance and should be adequate for short-term and/or low concentration exposure monitoring of organic vapors in the workplace. In addition a dynamic vapor exposure evaluation system for passive dosimeters have been validated using benzene as the test vapor. The system is capable of generating well defined short-square wave concentration profiles suitable for the evaluation of passive dosimeters for ceiling exposure monitoring.

  10. The Albedo Distribution of Near Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Wright, Edward L.

    2016-01-01

    The cryogenic WISE mission in 2010 was extremely sensitive to asteroids and not biased against detecting dark objects. Mainzer et al (2011, ApJ, 743, 156) fit the distribution of albedos of the 428 NEAs observed by WISE with a double Gaussian function with 5 parameters.This note describes a 3 parameter function that fits as well as the double Gaussian: a sum of two Rayleigh distributions. The Rayleigh distribution is zero for negative values, and follows f(x) = x exp[-x2/(2σ2)]/σ2 for positive x. The peak value is at x=σ, so the position and width are tied together. The three parameters are the fraction of the objects in the dark population, the position of the dark peak, and the position of the normal peak. 25.1% of the NEAs observed by WISE are in a very dark population peaking at pV = 0.03, while the other 74.9% of the NEAs seen by WISE are in a moderately dark population peaking at pV = 0.167.A consequence of this bimodal distribution is that the Congressional mandate to find 90% of all NEOs larger than 140 m diameter cannot be satisfied by surveying to H=22 mag, since a 140 m diameter asteroid at the very dark peak has H=23.7 mag, and more than 10% of NEAs are darker than pV = 0.03.

  11. The Albedo Distribution of Near Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Wright, Edward L.; Mainzer, Amy; Masiero, Joseph; Grav, Tommy; Bauer, James

    2016-10-01

    The cryogenic Wide-field Infrared Survey Explorer (WISE) mission in 2010 was extremely sensitive to asteroids and not biased against detecting dark objects. The albedos of 428 near Earth asteroids (NEAs) observed by WISE during its fully cryogenic mission can be fit quite well by a three parameter function that is the sum of two Rayleigh distributions. The Rayleigh distribution is zero for negative values, and follows f(x) =x\\exp [-{x}2/(2{σ }2)]/{σ }2 for positive x. The peak value is at x = σ, so the position and width are tied together. The three parameters are the fraction of the objects in the dark population, the position of the dark peak, and the position of the brighter peak. We find that 25.3% of the NEAs observed by WISE are in a very dark population peaking at p V = 0.030, while the other 74.7% of the NEAs seen by WISE are in a moderately dark population peaking at p V = 0.168. A consequence of this bimodal distribution is that the congressional mandate to find 90% of all NEAs larger than 140 m diameter cannot be satisfied by surveying to H = 22 mag, since a 140 m diameter asteroid at the very dark peak has H = 23.7 mag, and more than 10% of NEAs are darker than p V = 0.03.

  12. Global color and albedo variations on Triton

    NASA Technical Reports Server (NTRS)

    Mcewen, Alfred S.

    1990-01-01

    Global multispectral mosaics of Triton have been produced from Voyager approach images; six spectral units are defined and mapped. The margin of the south polar cap (SPC) is scalloped and ranges in latitude from + 10 deg to -30 deg. A bright fringe is closely associated with the cap's margin; form it, diffuse bright rays extend north-northeast for hundreds of kilometers. Thus, the rays may consist of fringe materials that were redistributed by northward-going Coriolis-deflected winds. From 1977 to 1989, Triton's full-disk spectrum changed from markedly red and UV-dark to nearly neutral white and UV-bright. This spectral change can be explained by new deposition of nitrogen frost over both the northern hemisphere and parts of a formerly redder SPC. Frost deposition in the southern hemisphere during southern summer is possible over relatively high albedo areas of the cap (Stansberry et al., 1990), which helps to explain the apparent stability of the unexpectedly large SPC and the presence of the bright fringe.

  13. A preliminary global oceanic cloud climatology from satellite albedo observations

    NASA Technical Reports Server (NTRS)

    Hughes, N. A.; Henderson-Sellers, A.

    1983-01-01

    A predictive relationship is developed between over-ocean cloud system albedo and the cloud amount present, using as a data base ERB satellite microwave readings at 0.5-0.7 micron and the USAF three-dimensional nephanalysis archive. The ERB data provided global coverage at a resolution of 2.5 x 2.5 deg during the 1974-78 period. Regression analyses were performed on the amounts and albedos for several years of data for one month in order to detect seasonal variations. A logarithmic relationship was found between the cloud system albedo and cloud amount over the oceans, with negligible seasonal variance. The analysis is noted to apply only where low surface albedos are encountered, and further work to extend the study to continental vegetated areas is indicated.

  14. The Changing Albedo of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Human, J. M.; Box, J. E.

    2009-12-01

    The study evaluates Greenland ice sheet surface albedo sensitivity to surface melt intensity, air pollution, and precipitation using data from the MODIS and MOPITT sensors operating on the NASA Terra satellite 2000-2009. Precipitation rates are simulated by the Polar WRF climate model running in data assimilation mode. Statistical regression facilitates ranking the relative importance of each of the albedo forcings in space and time. Further, quantitative estimates of the albedo sensitivity to its forcing factors are made, for the first time and over the observed inter-annual range. The work investigates regional patterns in detail to quantify melt water production associated with absorbed solar radiation variability. In-situ records are used to evaluate the cloud radiative effect as another important factor of absorbed solar radiation and ice melt. Insight into Greenland ice sheet melt-precipitation-pollution-albedo feedback is gained, key in better understanding the mass balance response of the ice sheet to future climate change.

  15. Cloud condensation nucleus-sulfate mass relationship and cloud albedo

    NASA Technical Reports Server (NTRS)

    Hegg, Dean A.

    1994-01-01

    Analysis of previously published, simultaneous measurements of cloud condensation nucleus number concentration and sulfate mass concentration suggest a nonlinear relationship between the two variables. This nonlinearity reduces the sensitivity of cloud albedo to changes in the sulfur cycle.

  16. Albedo neutron dosimetry in Germany: regulations and performance.

    PubMed

    Luszik-Bhadra, M; Zimbal, A; Busch, F; Eichelberger, A; Engelhardt, J; Figel, M; Frasch, G; Günther, K; Jordan, M; Martini, E; Haninger, T; Rimpler, A; Seifert, R

    2014-12-01

    Personal neutron dosimetry has been performed in Germany using albedo dosemeters for >20 y. This paper describes the main principles, the national standards, regulations and recommendations, the quality management and the overall performance, giving some examples. PMID:24639589

  17. Albedo Pattern Recognition and Time-Series Analyses in Malaysia

    NASA Astrophysics Data System (ADS)

    Salleh, S. A.; Abd Latif, Z.; Mohd, W. M. N. Wan; Chan, A.

    2012-07-01

    Pattern recognition and time-series analyses will enable one to evaluate and generate predictions of specific phenomena. The albedo pattern and time-series analyses are very much useful especially in relation to climate condition monitoring. This study is conducted to seek for Malaysia albedo pattern changes. The pattern recognition and changes will be useful for variety of environmental and climate monitoring researches such as carbon budgeting and aerosol mapping. The 10 years (2000-2009) MODIS satellite images were used for the analyses and interpretation. These images were being processed using ERDAS Imagine remote sensing software, ArcGIS 9.3, the 6S code for atmospherical calibration and several MODIS tools (MRT, HDF2GIS, Albedo tools). There are several methods for time-series analyses were explored, this paper demonstrates trends and seasonal time-series analyses using converted HDF format MODIS MCD43A3 albedo land product. The results revealed significance changes of albedo percentages over the past 10 years and the pattern with regards to Malaysia's nebulosity index (NI) and aerosol optical depth (AOD). There is noticeable trend can be identified with regards to its maximum and minimum value of the albedo. The rise and fall of the line graph show a similar trend with regards to its daily observation. The different can be identified in term of the value or percentage of rises and falls of albedo. Thus, it can be concludes that the temporal behavior of land surface albedo in Malaysia have a uniform behaviours and effects with regards to the local monsoons. However, although the average albedo shows linear trend with nebulosity index, the pattern changes of albedo with respects to the nebulosity index indicates that there are external factors that implicates the albedo values, as the sky conditions and its diffusion plotted does not have uniform trend over the years, especially when the trend of 5 years interval is examined, 2000 shows high negative linear

  18. On the definition of albedo and application to irregular particles

    NASA Technical Reports Server (NTRS)

    Hanner, M. S.; Giese, R. H.; Weiss, K.; Zerull, R.

    1981-01-01

    The various definitions of albedo used in planetary astronomy are reviewed. In particular, the Bond albedo, which refers only to the reflected and refracted components, is not applicable to small particles or highly irregular particles, where diffraction is not restricted to a well-defined lobe at small scattering angles. Measured scattering functions for irregular particles are presented in a normalized form and are applied to the case of zodiacal light.

  19. NEOWISE Diameters and Albedos V1.0

    NASA Astrophysics Data System (ADS)

    Mainzer, A. K.; Bauer, J. M.; Cutri, R. M.; Grav, T.; Kramer, E. A.; Masiero, J. R.; Nugent, C. R.; Sonnett, S. M.; Stevenson, R. A.; Wright, E. L.

    2016-06-01

    This PDS data set represents a compilation of published diameters, optical albedos, near-infrared albedos, and beaming parameters for minor planets detected by NEOWISE during the fully cryogenic, 3-band cryo, post-cryo and NEOWISE-Reactivation Year 1 operations. It contains data covering near-Earth asteroids, Main Belt asteroids, active Main Belt objects, Hildas, Jupiter Trojans, Centaurs, and Jovian and Saturnian irregular satellites. Methodology for physical property determination is described in the referenced articles.

  20. Measurements of Black Carbon Induced Snow-Albedo Reduction

    NASA Astrophysics Data System (ADS)

    Hadley, O. L.; Kirchstetter, T. W.

    2011-12-01

    Several modeling studies have indicated that black carbon (BC) reduces the albedo of snow and ice and appreciably contributes to Northern Hemisphere warming and glacier retreat. Observations of the BC impact on snow albedo are needed to verify model predictions. Whereas field studies dating back to the early 1980s measured BC concentrations in snow and ice in the arctic, the BC effect on snow albedo and melting has been difficult to observe directly because the albedo reduction is small and often masked by other natural variables. This study evaluates both the initial impact of BC on snow albedo, as well as associated feedbacks due to snow age and BC scavenging during snow melting. The first feedback is related to the increasing grain size of snow as it ages. Larger snow grains allow sunlight to penetrate farther, where it is exposed to and may be increasingly absorbed by BC. This enhances the albedo reduction attributable to the mass of BC present in the snow and deposits energy at greater depths in the snowpack, potentially increasing the melt rate and therefore the growth rate of the snow grains. The second potential feedback, associated with BC transport through a melting snowpack, occurs if BC is scavenged from the melt water by the ice grains thus increasing the BC concentration in the remaining snow. Measurement of pristine and sooty snow made in the laboratory verifies that BC reduces snow albedo to a greater extent for larger-grained snow. Experimental observations yield an empirical model of the BC snow albedo reduction. Measurements of BC transport in both laboratory and natural snow were used to develop a model of the evolution of the vertical distribution of BC in melting snow. These measurements provide the first quantification of a BC concentration enhancement in melting snow.

  1. Surface albedo observations at Gusev Crater and Meridiani Planum, Mars

    USGS Publications Warehouse

    Bell, J.F.; Rice, M.S.; Johnson, J. R.; Hare, T.M.

    2008-01-01

    During the Mars Exploration Rover mission, the Pancam instrument has periodically acquired large-scale panoramic images with its broadband (739??338 nm) filter in order to estimate the Lambert bolometric albedo of the surface along each rover's traverse. In this work we present the full suite of such estimated albedo values measured to date by the Spirit and Opportunity rovers along their traverses in Gusev Crater and Meridiani Planum, respectively. We include estimated bolometric albedo values of individual surface features (e.g., outcrops, dusty plains, aeolian bed forms, wheel tracks, light-toned soils, and crater walls) as well as overall surface averages of the 43 total panoramic albedo data sets acquired to date. We also present comparisons to estimated Lambert albedo values taken from the Mars Global Surveyor Mars Orbiter Camera (MOC) along the rovers' traverses, and to the large-scale bolometric albedos of the sites from the Viking Orbiter Infrared Thermal Mapper (IRTM) and Mars Global Surveyor/Thermal Emission Spectrometer (TES). The ranges of Pancam-derived albedos at Gusev Crater (0.14 to 0.25) and in Meridiani Planum. (0.10 to 0.18) are in good agreement with IRTM, TES, and MOC orbital measurements. These data sets will be a useful tool and benchmark for future investigations of albodo variations with time, including measurements from orbital instruments like the Context Camera and High Resolution Imaging Science Experiment on Mars Reconnaissance Orbiter. Long-term, accurate albedo measurements could also be important for future efforts in climate modeling as well as for studies of active surface processes. Copyright 2008 by the American Geophysical Union.

  2. IAU nomenclature for albedo features on the planet Mercury

    NASA Technical Reports Server (NTRS)

    Dollfus, A.; Chapman, C. R.; Davies, M. E.; Gingerich, O.; Goldstein, R.; Guest, J.; Morrison, D.; Smith, B. A.

    1978-01-01

    The International Astronomical Union has endorsed a nomenclature for the albedo features on Mercury. Designations are based upon the mythological names related to the god Hermes; they are expressed in Latin form. The dark-hued albedo features are associated with the generic term Solitudo. The light-hued areas are designated by a single name without generic term. The 32 names adopted are allocated on the Mercury map.

  3. Albedo as a modulator of climate response to tropical deforestation

    NASA Technical Reports Server (NTRS)

    Dirmeyer, Paul A.; Shukla, J.

    1994-01-01

    An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years' duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, is strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.

  4. Albedo as a modulator of climate response to tropical deforestation

    SciTech Connect

    Dirmeyer, P.A.; Shukla, J.

    1994-10-01

    An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years` duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, is strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.

  5. Postfire influences of snag attrition on albedo and radiative forcing

    NASA Astrophysics Data System (ADS)

    O'Halloran, Thomas L.; Acker, Steven A.; Joerger, Verena M.; Kertis, Jane; Law, Beverly E.

    2014-12-01

    This paper examines albedo perturbation and radiative forcing after a high-severity fire in a mature forest in the Oregon Cascade Range. Correlations between postfire albedo and seedling, sapling, and snag (standing dead tree) density were investigated across fire severity classes and seasons for years 4-15 after fire. Albedo perturbation was 14 times larger in winter compared to summer and increased with fire severity class for the first several years. Albedo perturbation increased linearly with time over the study period. Correlations between albedo perturbations and the vegetation densities were strongest with snags, and significant in all fire classes in both summer and winter (R < -0.92, p < 0.01). The resulting annual radiative forcing at the top of the atmosphere became more negative linearly at a rate of -0.86 W m-2 yr-1, reaching -15 W m-2 in year 15 after fire. This suggests that snags can be the dominant controller of postfire albedo on decadal time scales.

  6. High-albedo materials for reducing building cooling energy use

    SciTech Connect

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  7. High-albedo materials for reducing building cooling energy use

    SciTech Connect

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building's envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  8. Standards for the validation of remotely sensed albedo products

    NASA Astrophysics Data System (ADS)

    Adams, Jennifer

    2015-04-01

    Land surface albedo is important component of the Earth's energy balance, defined as the fraction of shortwave radiation absorbed by a surface, and is one many Essential Climate Variables (ECVS) that can be retrieved from space through remote sensing. To quantify the accuracy of these products, they must be validated with respect to in-situ measurements of albedo using an albedometer. Whilst accepted standards exist for the calibration of albedometers, standards for the use of in-situ measurement schemes, and their use in validation procedures have yet to be developed. It is essential that we can assess the quality of remotely sensed albedo data, and to identify traceable sources of uncertainty during process of providing these data. As a result of the current lack of accepted standards for in-situ albedo retrieval and validation procedures, we are not yet able to identify and quantify traceable sources of uncertainty. Establishing standard protocols for in-situ retrievals for the validation of global albedo products would allow inter-product use and comparison, in addition to product standardization. Accordingly, this study aims to assess the quality of in-situ albedo retrieval schemes and identify sources of uncertainty, specifically in vegetation environments. A 3D Monte Carlo Ray Tracing Model will be used to simulate albedometer instruments in complex 3D vegetation canopies. To determine sources of uncertainty, factors that influence albedo measurement uncertainty were identified and will subsequently be examined: 1. Time of day (Solar Zenith Angle) 2. Ecosytem type 3. Placement of albedometer within the ecosystem 4. Height of albedometer above the canopy 5. Clustering within the ecosystem A variety of 3D vegetation canopies have been generated to cover the main ecosystems found globally, different seasons, and different plant distributions. Canopies generated include birchstand and pinestand forests for summer and winter, savanna, shrubland, cropland and

  9. Characterization of high-sensitivity metal oxide semiconductor field effect transistor dosimeters system and LiF:Mg,Cu,P thermoluminescence dosimeters for use in diagnostic radiology.

    PubMed

    Dong, S L; Chu, T C; Lan, G Y; Wu, T H; Lin, Y C; Lee, J S

    2002-12-01

    Monitoring radiation exposure during diagnostic radiographic procedures has recently become an area of interest. In recent years, the LiF:Mg,Cu,P thermoluminescence dosimeter (TLD-100H) and the highly sensitive metal oxide semiconductor field effect transistor (MOSFET) dosimeter were introduced as good candidates for entrance skin dose measurements in diagnostic radiology. In the present study, the TLD-100H and the MOSFET dosimeters were evaluated for sensitivity, linearity, energy, angular dependence, and post-exposure response. Our results indicate that the TLD-100H dosimeter has excellent linearity within diagnostic energy ranges and its sensitivity variations were under 3% at tube potentials from 40Vp to 125kVp. Good linearity was also observed with the MOSFET dosimeter, but in low-dose regions the values are less reliable and were found to be a function of the tube potentials. Both dosimeters also presented predictable angular dependence in this study. Our findings suggest that the TLD-100H dosimeter is more appropriate for low-dose diagnostic procedures such as chest and skull projections. The MOSFET dosimeter system is valuable for entrance skin dose measurement with lumbar spine projections and certain fluoroscopic procedures.

  10. Characterization of high-sensitivity metal oxide semiconductor field effect transistor dosimeters system and LiF:Mg,Cu,P thermoluminescence dosimeters for use in diagnostic radiology.

    PubMed

    Dong, S L; Chu, T C; Lan, G Y; Wu, T H; Lin, Y C; Lee, J S

    2002-12-01

    Monitoring radiation exposure during diagnostic radiographic procedures has recently become an area of interest. In recent years, the LiF:Mg,Cu,P thermoluminescence dosimeter (TLD-100H) and the highly sensitive metal oxide semiconductor field effect transistor (MOSFET) dosimeter were introduced as good candidates for entrance skin dose measurements in diagnostic radiology. In the present study, the TLD-100H and the MOSFET dosimeters were evaluated for sensitivity, linearity, energy, angular dependence, and post-exposure response. Our results indicate that the TLD-100H dosimeter has excellent linearity within diagnostic energy ranges and its sensitivity variations were under 3% at tube potentials from 40Vp to 125kVp. Good linearity was also observed with the MOSFET dosimeter, but in low-dose regions the values are less reliable and were found to be a function of the tube potentials. Both dosimeters also presented predictable angular dependence in this study. Our findings suggest that the TLD-100H dosimeter is more appropriate for low-dose diagnostic procedures such as chest and skull projections. The MOSFET dosimeter system is valuable for entrance skin dose measurement with lumbar spine projections and certain fluoroscopic procedures. PMID:12406633

  11. [Measurement of the Dose Rate Using Dosimeters in Interventional Radiology and Its Difficulty].

    PubMed

    Yoshida, Hidenori; Takahashi, Chiharu; Narita, Nobuhiro; Mizusawa, Yasuhiko; Sekiya, Masaru; Ohkubo, Masaki

    2016-01-01

    In equipment used for interventional radiology (IVR), automatic exposure control (AEC) is incorporated to obtain the X-ray output suitable for the treatment of targeted lesions. For the AEC, users select a region as the signal sensing region (measuring field, MF) in the flat panel detector; MFs with various sizes and shapes were pre-defined and prepared in the system. The aim of this study was to examine the change of measured dose rate with the selection of MFs, the type of dosimeters (the ionization chamber dosimeter and the semiconductor dosimeter), and the dosimeter placement relative to the direction of X-ray tube (from cathode to anode). The IVR equipment was Allura Xper FD20/10 (Philips Medical Systems), and six kinds of built-in MFs were used. It was found that dose rate measured by the ionization chamber dosimeter showed a variation of -2 mGy/min with the MFs and the ionization chamber dosimeter placement. The dose rate measured by the semiconductor dosimeter showed more variation than the ionization chamber dosimeter. The change of dose rate with the dosimeter placement would be caused by the MF overlapping the dosimeter which would affect the AEC (the X-ray output). Also, the change of dose rate with the dosimeter placement was considered to be related to the heel effect of the X-ray beam. When performing dose rate measurements, we should notice that the selection of MFs, the type of dosimeters, and the dosimeter placement would affect the measured values. PMID:26796935

  12. Strontium sulfate as an EPR dosimeter for radiation technology application

    NASA Astrophysics Data System (ADS)

    Rushdi, M. A. H.; Abdel-Fattah, A. A.; Sherif, M. M.; Soliman, Y. S.; Mansour, A.

    2015-01-01

    The dosimetric characteristics of γ-radiation induced defects in strontium sulfate rod dosimeter are investigated using electron paramagnetic resonance (EPR) technique focusing on the low dose range of 1-100 Gy. Significant EPR signals of spectroscopic splitting factor (g) 2.01075, 2.04225, 2.03166, 2.00774 and 1.9219086 are observed in the rod upon γ-irradiation. The intensity of the signals increases linearly with increasing absorbed doses up to 100 Gy. The EPR response of irradiated dosimeter exhibits good stability over three months of storage. In addition, the response during irradiation is independent on both relative humidity (from 0% to 65%) and temperature (from 10 °C to 35 °C). The prepared rods are nearly water equivalent in the range of 0.4-5 MeV and the overall uncertainty (2σ) of dose monitoring is approximately 4.26%.

  13. A genipin-gelatin gel dosimeter for radiation processing

    NASA Astrophysics Data System (ADS)

    Davies, J. B.; Bosi, S. G.; Baldock, C.

    2012-08-01

    Genipin, a fruit extract from Gardenia jasminoides Ellis, forms cross-links in solutions of gelatin, to form a blue hydrogel that bleaches quantitatively upon irradiation and the colour change can be measured with a spectrophotometer. With the addition of sulphuric acid this dosimeter is sufficiently sensitive for quality assurance of radiotherapy level dosimetry. Without sulphuric acid the gel has a reduced sensitivity and responds linearly with dose between 100 and 1000 Gy, making it potentially useful as a dosimeter for radiation processing applications such as the phytosanitary irradiation treatment of food. We investigated the dose response characteristics of this new formulation and found that the darker gels are more sensitive to dose and have a reduced uncertainty.

  14. A new electronic neutron dosimeter (END) for reliable personal dosimetry

    NASA Astrophysics Data System (ADS)

    Ing, H.; Cousins, T.; Andrews, H. R.; Machrafi, R.; Voevodskiy, A.; Kovaltchouk, V.; Clifford, E. T. H.; Robins, M.; Larsson, C.; Hugron, R.; Brown, J.

    2008-04-01

    Tests of existing electronic neutron dosimeters by military and civilian groups have revealed significant performance limitations. To meet the operational requirements of emergency response personnel to a radiological/nuclear incident as well as those in the nuclear industry, a new END has been developed. It is patterned after a unique commercial neutron spectral dosemeter known as the N-probe. It uses a pair of small special scintillators on tiny photomultiplier tubes. Special electronics were designed to minimize power consumption to allow for weeks of operation on a single charge. The size, performance, and data analysis for the END have been designed to meet/exceed international standards for electronic neutron dosimeters. Results obtained with the END prototype are presented.

  15. Laser CT evaluation on normoxic PAGAT gel dosimeter

    NASA Astrophysics Data System (ADS)

    Kumar, D. S.; Samuel, E. J. J.; Watanabe, Y.

    2013-06-01

    Optical computed tomography has been shown to be a potentially useful imaging tool for the radiation therapy physicists. In radiation therapy, researchers have used optical CT for the readout of 3D dosimeters. The purpose of this paper is to describe the initial evaluation of a newly fabricated laser CT scanner for 3D gel dosimetry which works using the first generation principle. A normoxic PAGAT (Polyacrylamide Gelatin and Tetrakis) gel is used as a dosimeter for this analysis. When a laser passes through the gel phantom, absorption and scattering of photon take place. The optical attenuation coefficient of the laser can be obtained by measuring its intensity after passing through the gel by a sensor. The scanner motion is controlled by a computer program written in Microsoft Visual C++. Reconstruction and data analysis on the irradiated gel phantom is performed by suitable algorithm using Matlab software.

  16. Preferential cooling of hot extremes from cropland albedo management

    PubMed Central

    Davin, Edouard L.; Seneviratne, Sonia I.; Ciais, Philippe; Olioso, Albert; Wang, Tao

    2014-01-01

    Changes in agricultural practices are considered a possible option to mitigate climate change. In particular, reducing or suppressing tillage (no-till) may have the potential to sequester carbon in soils, which could help slow global warming. On the other hand, such practices also have a direct effect on regional climate by altering the physical properties of the land surface. These biogeophysical effects, however, are still poorly known. Here we show that no-till management increases the surface albedo of croplands in summer and that the resulting cooling effect is amplified during hot extremes, thus attenuating peak temperatures reached during heat waves. Using a regional climate model accounting for the observed effects of no-till farming on surface albedo, as well as possible reductions in soil evaporation, we investigate the potential consequences of a full conversion to no-till agriculture in Europe. We find that the summer cooling from cropland albedo increase is strongly amplified during hot summer days, when surface albedo has more impact on the Earth’s radiative balance due to clear-sky conditions. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect is the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 °C. The identified asymmetric impact of surface albedo change on summer temperature opens new avenues for climate-engineering measures targeting high-impact events rather than mean climate properties. PMID:24958872

  17. Preferential cooling of hot extremes from cropland albedo management.

    PubMed

    Davin, Edouard L; Seneviratne, Sonia I; Ciais, Philippe; Olioso, Albert; Wang, Tao

    2014-07-01

    Changes in agricultural practices are considered a possible option to mitigate climate change. In particular, reducing or suppressing tillage (no-till) may have the potential to sequester carbon in soils, which could help slow global warming. On the other hand, such practices also have a direct effect on regional climate by altering the physical properties of the land surface. These biogeophysical effects, however, are still poorly known. Here we show that no-till management increases the surface albedo of croplands in summer and that the resulting cooling effect is amplified during hot extremes, thus attenuating peak temperatures reached during heat waves. Using a regional climate model accounting for the observed effects of no-till farming on surface albedo, as well as possible reductions in soil evaporation, we investigate the potential consequences of a full conversion to no-till agriculture in Europe. We find that the summer cooling from cropland albedo increase is strongly amplified during hot summer days, when surface albedo has more impact on the Earth's radiative balance due to clear-sky conditions. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect is the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 °C. The identified asymmetric impact of surface albedo change on summer temperature opens new avenues for climate-engineering measures targeting high-impact events rather than mean climate properties. PMID:24958872

  18. Global Cooling: Effect of Urban Albedo on Global Temperature

    SciTech Connect

    Akbari, Hashem; Menon, Surabi; Rosenfeld, Arthur

    2007-05-22

    In many urban areas, pavements and roofs constitute over 60% of urban surfaces (roof 20-25%, pavements about 40%). The roof and the pavement albedo can be increased by about 0.25 and 0.10, respectively, resulting in a net albedo increase for urban areas of about 0.1. Many studies have demonstrated building cooling-energy savings in excess of 20% upon raising roof reflectivity from an existing 10-20% to about 60%. We estimate U.S. potential savings in excess of $1 billion (B) per year in net annual energy bills. Increasing albedo of urban surfaces can reduce the summertime urban temperature and improve the urban air quality. Increasing the urban albedo has the added benefit of reflecting more of the incoming global solar radiation and countering the effect of global warming. We estimate that increasing albedo of urban areas by 0.1 results in an increase of 3 x 10{sup -4} in Earth albedo. Using a simple global model, the change in air temperature in lowest 1.8 km of the atmosphere is estimated at 0.01K. Modelers predict a warming of about 3K in the next 60 years (0.05K/year). Change of 0.1 in urban albedo will result in 0.01K global cooling, a delay of {approx}0.2 years in global warming. This 0.2 years delay in global warming is equivalent to 10 Gt reduction in CO2 emissions.

  19. A Continental United States High Resolution NLCD Land Cover – MODIS Albedo Database to Examine Albedo and Land Cover Change Relationships

    EPA Science Inventory

    Surface albedo influences climate by affecting the amount of solar radiation that is reflected at the Earth’s surface, and surface albedo is, in turn, affected by land cover. General Circulation Models typically use modeled or prescribed albedo to assess the influence of land co...

  20. The nature of albedo features on Mercury, with maps for the telescopic observer. Part II: The nature of the albedo markings

    NASA Astrophysics Data System (ADS)

    Graham, D. L.

    1995-04-01

    Part One of this paper (J. Brit. Astron. Assoc., 105(1), 1995) reviewed the classical telescopic observations of albedo markings on Mercury and reproduced the definitive albedo map to assist visual observers of the planet. In Part Two, an investigation into the relationship between albedo and physiography is conducted, and the significance of the historical observations is discussed.

  1. An optical dosimeter for monitoring heavy metal ions in water

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Regan, Fiona; Leamy, D.; Mencaglia, A. A.; Ciaccheri, L.

    2005-05-01

    This work presents an optochemical dosimeter for determining and discriminating nickel, copper, and cobalt ions in water that can be used as an early warning system for water pollution. An inexpensive fiber optic spectrophotometer monitors the sensor's spectral behavior under exposure to water solutions of heavy metal ions in the 1-10 mg/l concentration range. The Principal Component Analysis (PCA) method quantitatively determines the heavy metals and discriminates their type and combination.

  2. Low-cost commercial glass beads as dosimeters in radiotherapy

    NASA Astrophysics Data System (ADS)

    Jafari, S. M.; Bradley, D. A.; Gouldstone, C. A.; Sharpe, P. H. G.; Alalawi, A.; Jordan, T. J.; Clark, C. H.; Nisbet, A.; Spyrou, N. M.

    2014-04-01

    Recent developments in advanced radiotherapy techniques using small field photon beams, require small detectors to determine the delivered dose in steep dose gradient fields. Commercially available glass jewellery beads exhibit thermoluminescent properties and have the potential to be used as dosimeters in radiotherapy due to their small size (<5 mm), low cost, reusability and inert nature. This study investigated the dosimetric characteristics of glass beads. The beads were irradiated by 6 MV photons using a medical linear-accelerator and 60Co gamma rays over doses ranging from 1 to 2500 cGy. A thermoluminescence (TL) system and an electron paramagnetic resonance (EPR) system were employed for read out. Both the TL and EPR studies demonstrated a radiation-induced signal, the sensitivity of which varied with bead colour. White coloured beads proved to be the most sensitive for both systems. The smallest and therefore least sensitive bead sizes allowed measurement of doses of 1 cGy using the TL system while that for the EPR system was approximately 1000 cGy. The fading rate was found to be 10% 30 days after irradiation with both readout systems. The dose response is linear with measured dose over the dose range 1 to 2500 cGy, with an R2 correlation coefficient of greater than 0.999. The batch-to-batch reproducibility of a set of dosimeters after a single irradiation was found to be 3% (1 SD). The reproducibility of individual dosimeters was found to be 1.7%. No measurable angular dependence was found (results agreed within 1%). Dose rate response was found to agree within 1% for dose rates of 100 to 600 cGy/min. These results demonstrate the potential use of glass beads as TL dosimeters over the dose range commonly applied in radiotherapy.

  3. Characterization and application of two kinds of ESR dosimeters

    NASA Astrophysics Data System (ADS)

    Marchioni, Eric; Pabst, Jean-Yves; Kuntz, Florent

    2002-09-01

    Many previous papers described the use of low-concentration alanine pellets, powder or films for industrial high-dose application, but very few authors presented applications of such dosimeters to the low-dose range used for wastewater, flowers or radiotherapy treatment. The present paper describes the large-scale manufacturing process of high-concentration alanine pellets used for radiotherapy dose control in some French hospitals. The fading process due to sunlight exposure has been evaluated by means of direct UV light irradiation. The major disadvantage of alanine is its strong solubility in water (the pellets are completely dissolved when immersed for 10 min in pure water). The use of barium sulphate, not soluble in water, made it possible to carry out dosimetric measurements even when the dosimeter is completely immersed in water or stored after irradiation in high humidity levels. The paper presents manufacturing process of barium sulphate pellets, their dosimetric characteristics and one application of this dosimeter for the control of the absorbed doses during wastewater treatments.

  4. Response of ionization chamber based pocket dosimeter to beta radiation.

    PubMed

    Kumar, Munish; Gupta, Anil; Pradhan, S M; Bakshi, A K; Chougaonkar, M P; Babu, D A R

    2013-12-01

    Quantitative estimate of the response of ionization chamber based pocket dosimeters (DRDs) to various beta sources was performed. It has been established that the ionization chamber based pocket dosimeters do not respond to beta particles having energy (Emax)<1 MeV and same was verified using (147)Pm, (85)Kr and (204)Tl beta sources. However, for beta particles having energy >1 MeV, the DRDs exhibit measureable response and the values are ~8%, ~14% and ~27% per mSv for natural uranium, (90)Sr/(90)Y and (106)Ru/(106)Rh beta sources respectively. As the energy of the beta particles increases, the response also increases. The response of DRDs to beta particles having energy>1 MeV arises due to the fact that the thickness of the chamber walls is less than the maximum range of beta particles. This may also be one of the reasons for disparity between doses measured with passive/legal dosimeters (TLDs) and DRDs in those situations in which radiation workers are exposed to mixed field of gamma photons and beta particles especially at uranium processing plants, nuclear (power and research) reactors, waste management facilities and fuel reprocessing plants etc. The paper provides the reason (technical) for disparity between the doses recorded by TLDs and DRDs in mixed field of photons and beta particles.

  5. Real-time dosimeter targeted to nuclear applications

    NASA Astrophysics Data System (ADS)

    Correia, Alexandre; Rosa, Carla C.; Santos, Pedro M. P.; Falcão, António N.; Lorentz, Katharina

    2014-08-01

    An intrinsic fiber optic dosimeter (FOD) targeted to nuclear applications is presented. The proposed real-time dosimeter provides dose information based on the historic record over time of the effects of ionizing radiation on single- and multimode pure silica fibers, and also on PMMA plastic fibers. The effect of 60Co gamma irradiation on optical links based on silica and plastic fibers were assessed, considering thermal environment effects over a wide range of variation of the operating parameters. Cerenkov radiation and radiation-induced absorption effects were in focus. The corresponding distortion and spectral transmission degradation were evaluated over wide range of the operating parameters. Radiation induced attenuation (RIA) has shown a spectral band dependent behaviour up to 840 Gy dose levels. The performance of different fibers was assessed against the performance of non-irradiated fibers. From the measurements of dose rate and total dose imparted by ionizing radiation in the fibers we verified that fibers with radiation resistance issues showed wavelength-dependent radiation sensitivity increasing with dose rate. Upon evaluation of correlations between the total dose, the induced loss at various dose rates and different wavelengths, it was concluded that intrinsic fiber dosimeters can be used for dose rates in the range 4 - 28 Gy/min., typical of severe radiation environments.

  6. Response of Panasonic dosimeters to submersion exposure by 133Xe.

    PubMed

    Hoffman, J M; Catchen, G L

    1990-01-01

    The dose response to 133Xe radiation of several types of Panasonic 800 series thermoluminescent dosimeters (TLD) were evaluated. The dosimeters were exposed by submersion in 133Xe gas. The relative sensitivities of the lithium borate and the calcium sulfate phosphors were determined for several configurations. The TLDs were exposed in the holders (as the devices came from the vendor) with various shields covering the elements, and they were exposed with the TLDs removed from the holders. Some dosimeters were exposed, both in holders and out of holders (TL insert only configuration), both in plastic bags and free in air. For the in-holder configuration, the responses of the heavily shielded (greater than 170 mg cm-2) elements were used to obtain the photon dose-rate component, and the responses of the lightly shielded (less than 13 mg cm-2) element were used to obtain the beta component. Similarly, for the insert-only configurations, the observed over-response of the calcium sulfate phosphors to low-energy photons could be used to separate the beta dose rate component. By using the calculated beta doses, correction factors were determined for the apparent under-responses of the elements to beta radiation. The results of both methods are consistent. These results also suggest that the beta component could be used in environmental monitoring as a more sensitive means to determine 133Xe activities in clouds and to separate some of the effects of submersion exposure from those of distant exposure.

  7. A new 2 methylalanine-PVC ESR dosimeter.

    PubMed

    Rossi, Bruno T; Chen, Felipe; Baffa, Oswaldo

    2005-02-01

    The use of polyvinyl chloride (PVC) as a binder to 2-methylalanine (2MA) dosimeters was investigated. It was recently shown by Olsson et al. (Radiat. Res. 157 (2002) 113), that 2MA is approximately 70% more sensitive than L-alanine which makes this substance a good candidate to replace alanine in ESR dosimetry. PVC is a low yield material for free radical production by ionizing radiation and a good binding material easily processed and widely available. PVC can be prepared at room temperature and mixed up to 50% in weight with 2MA to produce a pellet stable in mass and physical dimensions, in large quantities and with low background signal. Pure PVC pellet irradiated at 50 Gy gave weaker ESR signals compared to 2MA at the region of spectral interest. Spectrometer settings such as microwave power, and modulation amplitude were optimized for the measurements. This dosimeter production scheme allows the addition of Mn2+ ions for an internal reference signal, leading to a self-calibrated dosimeter (J. Radional. Nucl. Chem. 240 (1999) 215).

  8. Method for preparing dosimeter for measuring skin dose

    DOEpatents

    Jones, Donald E.; Parker, DeRay; Boren, Paul R.

    1982-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with neutron-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  9. Dosimeter for measuring skin dose and more deeply penetrating radiation

    DOEpatents

    Jones, Donald E.; Parker, DeRay; Boren, Paul R.

    1981-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with netruon-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  10. Understanding the Factors That Control Snow Albedo Over Central Greenland

    NASA Astrophysics Data System (ADS)

    Wright, P.; Bergin, M. H.; Dibb, J. E.; Domine, F.; Carmagnola, C.; Courville, Z.; Sokolik, I. N.; Lefer, B. L.

    2011-12-01

    Snow albedo plays a critical role in the energy balance of the Greenland Ice Sheet. In particular, the snow albedo influences the extent to which absorbing aerosols over Greenland (i.e. dust and black carbon) force climate. With this in mind the spectral snow albedo, physical snow properties, and snow chemistry were measured during May, June, and July 2011 at Summit, Greenland to investigate the variability in snow spectral albedo and its impact on aerosol direct radiative forcing. Optical and chemical properties of aerosol and aerosol optical depth were also measured as part of this study. Strellis et. al. will present a preliminary assessment of aerosol radiative forcing at Summit in summer 2011, in a separate presentation at this meeting. Spectral albedo was measured from 350-2500 nm with an ASD FieldSpec Pro spectroradiometer daily at four permanent sites and a moving fifth site where snow was sampled for characterization, as well as in more intensive diurnal and spatial surveys. Snow specific surface area (SSA), the ratio of snow crystal surface area to mass, was measured with a Dual Frequency Integrating Sphere (DUFISSS) at 1310 nm and 1550 nm, as well as with dyed and cast samples collected for stereology analysis. Snow stratigraphy, crystal size, and density were also measured on a daily basis, and snow samples will be analyzed for microstructural parameters determined from micro-CT imaging. Snow chemistry measurements include specific elements, major ions, and elemental and organic carbon. The time series of daily albedo measurements ranged from 0.88 to nearly 1.0 in visible wavelengths and from 0.42 to 0.65 in the near infrared. Changes as large as 0.1 were observed between consecutive daily measurements across the spectrum. Preliminary results show a strong correlation between variation in albedo and co-located measurements of snow specific surface area, specifically in the near infrared. By conducting our measurements near solar noon every day, and

  11. Potential effects of forest management on surface albedo

    NASA Astrophysics Data System (ADS)

    Otto, J.; Bréon, F.-M.; Schelhaas, M.-J.; Pinty, B.; Luyssaert, S.

    2012-04-01

    Currently 70% of the world's forests are managed and this figure is likely to rise due to population growth and increasing demand for wood based products. Forest management has been put forward by the Kyoto-Protocol as one of the key instruments in mitigating climate change. For temperate and boreal forests, the effects of forest management on the stand-level carbon balance are reasonably well understood, but the biophysical effects, for example through changes in the albedo, remain elusive. Following a modeling approach, we aim to quantify the variability in albedo that can be attributed to forest management through changes in canopy structure and density. The modelling approach chains three separate models: (1) a forest gap model to describe stand dynamics, (2) a Monte-Carlo model to estimate the probability density function of the optical path length of photons through the canopy and (3) a physically-based canopy transfer model to estimate the interaction between photons and leaves. The forest gap model provides, on a monthly time step the position, height, diameter, crown size and leaf area index of individual trees. The Monte-Carlo model computes from this the probability density function of the distance a photon travels through crown volumes to determine the direct light reaching the forest floor. This information is needed by the canopy transfer model to calculate the effective leaf area index - a quantity that allows it to correctly represent a 3D process with a 1D model. Outgoing radiation is calculated as the result of multiple processes involving the scattering due to the canopy layer and the forest floor. Finally, surface albedo is computed as the ratio between incident solar radiation and calculated outgoing radiation. The study used two time series representing thinning from below of a beech and a Scots pine forest. The results show a strong temporal evolution in albedo during stand establishment followed by a relatively stable albedo once the canopy

  12. Occurrence of lower cloud albedo in ship tracks

    NASA Astrophysics Data System (ADS)

    Chen, Y.-C.; Christensen, M. W.; Xue, L.; Sorooshian, A.; Stephens, G. L.; Rasmussen, R. M.; Seinfeld, J. H.

    2012-05-01

    The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, cloud regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease) and magnitude of the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. In a closed cell structure (cloud cells ringed by a perimeter of clear air), nearly 30% of ship tracks exhibited a decreased albedo. Detailed cloud responses must be accounted for in global studies of the potential efficacy of sea-spray geoengineering as a means to counteract global warming.

  13. Occurrence of lower cloud albedo in ship tracks

    NASA Astrophysics Data System (ADS)

    Chen, Y.-C.; Christensen, M. W.; Xue, L.; Sorooshian, A.; Stephens, G. L.; Rasmussen, R. M.; Seinfeld, J. H.

    2012-09-01

    The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, quasi-linear cloud features prevalent in oceanic regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease) and magnitude of the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. In a closed cell structure (cloud cells ringed by a perimeter of clear air), nearly 30% of ship tracks exhibited a decreased albedo. Detailed cloud responses must be accounted for in global studies of the potential efficacy of sea-spray geoengineering as a means to counteract global warming.

  14. Spectral surface albedo derived from GOME-2/Metop measurements

    NASA Astrophysics Data System (ADS)

    Pflug, Bringfried; Loyola, Diego

    2009-09-01

    Spectral surface albedo is an important input for GOME-2 trace gas retrievals. An algorithm was developed for estimation of spectral surface albedo from top-of-atmosphere (TOA)-radiances measured by the Global Ozone Monitoring Experiment GOME-2 flying on-board MetOp-A. The climatologically version of this algorithm estimates Minimum Lambert-Equivalent Reflectivity (MLER) for a fixed time window and can use data of many years in contrast to the Near-real time version. Accuracy of surface albedo estimated by MLER-computation increases with the amount of available data. Unfortunately, most of the large GOME pixels are partly covered by clouds, which enhance the LER-data. A plot of LER-values over cloud fraction is used within this presentation to account for this influence of clouds. This "cloud fraction plot" can be applied over all surface types. Surface albedo obtained using the "cloud fraction plot" is compared with reference surface albedo spectra and with the FRESCO climatology. There is a general good agreement; however there are also large differences for some pixels.

  15. THE ALBEDOS OF KEPLER'S CLOSE-IN SUPER-EARTHS

    SciTech Connect

    Demory, Brice-Olivier

    2014-07-01

    Exoplanet research focusing on the characterization of super-Earths is currently limited to the handful of targets orbiting bright stars that are amenable to detailed study. This Letter proposes to look at alternative avenues to probe the surface and atmospheric properties of this category of planets, known to be ubiquitous in our galaxy. I conduct Markov Chain Monte Carlo light-curves analyses for 97 Kepler close-in R{sub P} ≲ 2.0 R {sub ⊕} super-Earth candidates with the aim of detecting their occultations at visible wavelengths. Brightness temperatures and geometric albedos in the Kepler bandpass are constrained for 27 super-Earth candidates. A hierarchical Bayesian modeling approach is then employed to characterize the population-level reflective properties of these close-in super-Earths. I find median geometric albedos A{sub g} in the Kepler bandpass ranging between 0.16 and 0.30, once decontaminated from thermal emission. These super-Earth geometric albedos are statistically larger than for hot Jupiters, which have medians A{sub g} ranging between 0.06 and 0.11. A subset of objects, including Kepler-10b, exhibit significantly larger albedos (A{sub g} ≳ 0.4). I argue that a better understanding of the incidence of stellar irradation on planetary surface and atmospheric processes is key to explain the diversity in albedos observed for close-in super-Earths.

  16. Spitzer Space Telescope Albedo Survey of Small Jovian Trojans

    NASA Astrophysics Data System (ADS)

    Fernandez, Yanga R.; Jewitt, D. C.; Grisetti, R.; Igyarto, C.

    2006-09-01

    We will present preliminary results from our Spitzer Space Telescope (SST) survey of small Jovian Trojan asteroids. For the first time, we have been able to make thermophysical measurements of objects at the faint end of the known Trojan magnitude distribution. Our scientific goal is to determine the mean albedo of these small Trojans. Our sample contains 35 objects with approximate absolute magnitudes (H) between 13 and 14 (diameter 10 to 15 km for 0.05 albedo). For this survey we obtained 24-micron (mid-IR) photometry with the MIPS instrument aboard SST, and visible-wavelength CCD photometry using the University of Hawaii 88-inch Telescope. This lets us constrain each Trojan's effective radius and geometric albedo. While the two datasets were not simultaneous, this is not detrimental to the achievement of our goal since we only need for the effect of the rotational context to average out. In an earlier survey, we found that the mean V-band geometric albedo for large Trojans (sample median diameter of 110 km) is 0.041±0.002 (Fernandez et al. 2003, AJ 126, 1563). If the small Trojans' mean albedo is significantly higher, this would be evidence for a significant volatile component in the Trojan population having survived since formation, and would have implications for the contribution of Trojan asteroids to the Jupiter-family comet population. This research was made possible through a SIRTF Fellowship to YRF and through a GO data analysis grant from SSC to YRF and DCJ.

  17. Optimizing the sensitivity and radiological properties of the PRESAGE® dosimeter using metal compounds

    NASA Astrophysics Data System (ADS)

    Alqathami, Mamdooh; Blencowe, Anton; Qiao, Greg; Adamovics, John; Geso, Moshi

    2012-11-01

    The aim of this study is to investigate the radiation-modifying effects of incorporating commercially available bismuth-, tin- and zinc-based compounds in the composition of the PRESAGE® dosimeter, and the feasibility of employing such compounds for radiation dose enhancement. Furthermore, we demonstrate that metal compounds can be included in the formulation to yield water-equivalent PRESAGE® dosimeters with enhanced dose response. Various concentrations of the metal compounds were added to a newly developed PRESAGE® formulation and the resulting dosimeters were irradiated with 100 kV and 6 MV photon beams. A comparison between sensitivity and radiological properties of the PRESAGE® dosimeters with and without the addition of metal compounds was carried out. Optical density changes of the dosimeters before and after irradiation were measured using a spectrophotometer. In general, when metal compounds were incorporated in the composition of the PRESAGE® dosimeter, the sensitivity of the dosimeters to radiation dose increased depending on the type and concentration of the metal compound, with the bismuth compound showing the highest dose enhancement factor. In addition, these metal compounds were also shown to improve the retention of the post-response absorption value of the PRESAGE® dosimeter over a period of 2 weeks. Thus, incorporating 1-3 mM (ca. 0.2 wt%) of any of the three investigated metal compounds in the composition of the PRESAGE® dosimeter is found to be an efficient way to enhance the sensitivity of the dosimeter to radiation dose and stabilize its post-response for longer times. Furthermore, the addition of small amounts of the metal compounds also accelerates the polymerization of the PRESAGE® dosimeter precursors, significantly reducing the fabrication time. Finally, a novel water-equivalent PRESAGE® dosimeter formula optimized with metal compounds is proposed for clinical use in both kilovoltage and megavoltage radiotherapy dosimetry.

  18. The Assessment of Effective Dose Equivalent Using Personnel Dosimeters

    NASA Astrophysics Data System (ADS)

    Xu, Xie

    From January 1994, U.S. nuclear plants must develop a technically rigorous approach for determining the effective dose equivalent for their work forces. This dissertation explains concepts associated with effective dose equivalent and describes how to assess effective dose equivalent by using conventional personnel dosimetry measurements. A Monte Carlo computer code, MCNP, was used to calculate photon transport through a model of the human body. Published mathematical phantoms of the human adult male and female were used to simulate irradiation from a variety of external radiation sources in order to calculate organ and tissue doses, as well as effective dose equivalent using weighting factors from ICRP Publication 26. The radiation sources considered were broad parallel photon beams incident on the body from 91 different angles and isotropic point sources located at 234 different locations in contact with or near the body. Monoenergetic photons of 0.08, 0.3, and 1.0 MeV were considered for both sources. Personnel dosimeters were simulated on the surface of the body and exposed to with the same sources. From these data, the influence of dosimeter position on dosimeter response was investigated. Different algorithms for assessing effective dose equivalent from personnel dosimeter responses were proposed and evaluated. The results indicate that the current single-badge approach is satisfactory for most common exposure situations encountered in nuclear plants, but additional conversion factors may be used when more accurate results become desirable. For uncommon exposures involving source situated at the back of the body or source located overhead, the current approach of using multi-badges and assigning the highest dose is overly conservative and unnecessarily expensive. For these uncommon exposures, a new algorithm, based on two dosimeters, one on the front of the body and another one on the back of the body, has been shown to yield conservative assessment of

  19. Investigation of radiological properties and water equivalency of PRESAGE dosimeters

    SciTech Connect

    Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Adamovics, John; Bosi, Stephen; Kim, Jung-Ha; Baldock, Clive

    2011-04-15

    Purpose: PRESAGE is a dosimeter made of polyurethane, which is suitable for 3D dosimetry in modern radiation treatment techniques. Since an ideal dosimeter is radiologically water equivalent, the authors investigated water equivalency and the radiological properties of three different PRESAGE formulations that differ primarily in their elemental compositions. Two of the formulations are new and have lower halogen content than the original formulation. Methods: The radiological water equivalence was assessed by comparing the densities, interaction probabilities, and radiation dosimetry properties of the three different PRESAGE formulations to the corresponding values for water. The relative depth doses were calculated using Monte Carlo methods for 50, 100, 200, and 350 kVp and 6 MV x-ray beams. Results: The mass densities of the three PRESAGE formulations varied from 5.3% higher than that of water to as much as 10% higher than that of water for the original formulation. The probability of photoelectric absorption in the three different PRESAGE formulations varied from 2.2 times greater than that of water for the new formulations to 3.5 times greater than that of water for the original formulation. The mass attenuation coefficient for the three formulations is 12%-50% higher than the value for water. These differences occur over an energy range (10-100 keV) in which the photoelectric effect is the dominant interaction. The collision mass stopping powers of the relatively lower halogen-containing PRESAGE formulations also exhibit marginally better water equivalency than the original higher halogen-containing PRESAGE formulation. Furthermore, the depth dose curves for the lower halogen-containing PRESAGE formulations are slightly closer to that of water for a 6 MV beam. In the kilovoltage energy range, the depth dose curves for the lower halogen-containing PRESAGE formulations are in better agreement with water than the original PRESAGE formulation. Conclusions: Based

  20. MORSE/STORM: A generalized albedo option for Monte Carlo calculations

    SciTech Connect

    Gomes, I.C.; Stevens, P.N. )

    1991-09-01

    The advisability of using the albedo procedure for the Monte Carlo solution of deep penetration shielding problems that have ducts and other penetrations has been investigated. The use of albedo data can dramatically improve the computational efficiency of certain Monte Carlo calculations. However, the accuracy of these results may be unacceptable because of lost information during the albedo event and serious errors in the available differential albedo data. This study was done to evaluate and appropriately modify the MORSE/BREESE package, to develop new methods for generating the required albedo data, and to extend the adjoint capability to the albedo-modified calculations. Major modifications to MORSE/BREESE include an option to save for further use information that would be lost at the albedo event, an option to displace the point of emergence during an albedo event, and an option to use spatially dependent albedo data for both forward and adjoint calculations, which includes the point of emergence as a new random variable to be selected during an albedo event. The theoretical basis for using TORT-generated forward albedo information to produce adjuncton albedos was derived. The MORSE/STORM package was developed to perform both forward and adjoint modes of analysis using spatially dependent albedo data. Results obtained with MORSE/STORM for both forward and adjoint modes were compared with benchmark solutions. Excellent agreement and improved computational efficiency were achieved, demonstrating the full utilization of the albedo option in the MORSE code. 7 refs., 17 figs., 15 tabs.

  1. Scintillation dosimeter arrays using air core light guides: simulation and experiment.

    PubMed

    Naseri, Pourandokht; Suchowerska, Natalka; McKenzie, David R

    2010-06-21

    The performance of a scintillation dosimeter that uses a silvered air core light guide is examined by Monte Carlo (MC) simulations and by experiment to determine its suitability for array dosimetry in external beam radiotherapy. The air core light guide avoids the generation of the Cerenkov background that is produced in a conventional optical fibre. MC simulations using a 6 MV photon beam showed that silver thicknesses of less than 1 microm compensated for the effects of the other material components, to give the dosimeter water equivalence within 0.5%. A second dosimeter located adjacent to the primary dosimeter in any direction affected the dose measurement by less than 1.5%, when the centre-to-centre spacing was 1.3 mm or greater. When the dosimeter array is located perpendicular to the beam central axis, with a spacing of 2.5 mm, the calculated deviation from the dose deposited in water was less than 2%. When the dosimeter array is located parallel to the beam central axis with a spacing of 10 mm, the calculated dose readings deviated from water by less than 2.5%. The simulation results were confirmed with experiment for two neighbouring dosimeters and a small densely packed array. No proximity effects were measured within the experimental error of +/-1.5%. These results confirm the dosimetric accuracy of the air core dosimeter design without the need for correction factors. The dosimeter has excellent potential for use in arrays.

  2. A new parameterization of spectral and broadband ocean surface albedo.

    PubMed

    Jin, Zhonghai; Qiao, Yanli; Wang, Yingjian; Fang, Yonghua; Yi, Weining

    2011-12-19

    A simple yet accurate parameterization of spectral and broadband ocean surface albedo has been developed. To facilitate the parameterization and its applications, the albedo is parameterized for the direct and diffuse incident radiation separately, and then each of them is further divided into two components: the contributions from surface and water, respectively. The four albedo components are independent of each other, hence, altering one will not affect the others. Such a designed parameterization scheme is flexible for any future update. Users can simply replace any of the adopted empirical formulations (e.g., the relationship between foam reflectance and wind speed) as desired without a need to change the parameterization scheme. The parameterization is validated by in situ measurements and can be easily implemented into a climate or radiative transfer model. PMID:22274228

  3. Moon: lunar albedo for soft x-rays

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon

    2016-07-01

    Albedo of the Moon for soft X-rays (0.1-2 keV photons) is determined on the basis of the X-ray luminosity of the Moon detected and measured for the first time by orbital space telescope ROSAT in 1990. It is found that the lunar albedo for the solar soft X-rays is less than the lunar visual region albedo almost thousand times. The data allow to estimate more correctly X-ray luminosity of dusty comets like Hyakutake C/1996 B2 and Hale-Bopp C/1995 O1 due to scattering of solar soft X-rays and to reveal thus the dominant mechanism for production of X-rays in dusty comets.

  4. Cosmic Ray Albedo Proton Yield Correlated with Lunar Elemental Abundances

    NASA Astrophysics Data System (ADS)

    Wilson, J. K.; Spence, H. E.; Case, A. W.; Blake, J. B.; Golightly, M. J.; Kasper, J. C.; Looper, M. D.; Mazur, J. E.; Schwadron, N. A.; Townsend, L. W.; Zeitlin, C. J.

    2012-12-01

    High energy cosmic rays constantly bombard the lunar regolith, producing secondary "albedo" or "splash" particles like protons and neutrons, some of which escape back to space. Two lunar missions, Lunar Prospector and the Lunar Reconnaissance Orbiter (LRO), have shown that the energy distribution of albedo neutrons is modulated by the elemental composition of the lunar regolith[1-4], with reduced neutron fluxes near the lunar poles being the result of collisions with hydrogen nuclei in ice deposits[5] in permanently shadowed craters. Here we investigate an analogous phenomenon with high energy (~100 MeV) lunar albedo protons. LRO has been observing the surface and environment of the Moon since June of 2009. The CRaTER instrument (Cosmic Ray Telescope for the Effects of Radiation) on LRO is designed to characterize the lunar radiation environment and its effects on simulated human tissue. CRaTER's multiple solid-state detectors can discriminate the different elements in the galactic cosmic ray (GCR) population above ~10 MeV/nucleon, and can also distinguish between primary GCR protons arriving from deep space and albedo particles propagating up from the lunar surface. We use albedo protons with energies greater than 60 MeV to construct a cosmic ray albedo proton map of the Moon. The yield of albedo protons is proportional to the rate of lunar proton detections divided by the rate of incoming GCR detections. The map accounts for time variation in the albedo particles driven by time variations in the primary GCR population, thus revealing any true spatial variation of the albedo proton yield. Our current map is a significant improvement over the proof-of-concept map of Wilson et al.[6]. In addition to including twelve more months of CRaTER data here, we use more numerous minimum ionizing GCR protons for normalization, and we make use of all six of CRaTER's detectors to reduce contamination from spurious non-proton events in the data stream. We find find that the flux

  5. Direct determination of surface albedos from satellite imagery

    NASA Technical Reports Server (NTRS)

    Mekler, Y.; Joseph, J. H.

    1983-01-01

    An empirical method to measure the spectral surface albedo of surfaces from Landsat imagery is presented and analyzed. The empiricism in the method is due only to the fact that three parameters of the solution must be determined for each spectral photograph of an image on the basis of independently known albedos at three points. The approach is otherwise based on exact solutions of the radiative transfer equation for upwelling intensity. Application of the method allows the routine construction of spectral albedo maps from satelite imagery, without requiring detailed knowledge of the atmospheric aerosol content, as long as the optical depth is less than 0.75, and of the calibration of the satellite sensor.

  6. Albedo control of seasonal South Polar cap recession on Mars

    NASA Astrophysics Data System (ADS)

    Schmidt, Frédéric; Douté, Sylvain; Schmitt, Bernard; Vincendon, Mathieu; Bibring, Jean-Pierre; Langevin, Yves; Omega Team

    2009-04-01

    Over the last few decades, General Circulation Models (GCM) have been used to simulate the current martian climate. The calibration of these GCMs with the current seasonal cycle is a crucial step in understanding the climate history of Mars. One of the main climatic signals currently used to validate GCMs is the annual atmospheric pressure cycle. It is difficult to use changes in seasonal deposits on the surface of Mars to calibrate the GCMs given the spectral ambiguities between CO 2 and H 2O ice in the visible range. With the OMEGA imaging spectrometer covering the near infra-red range, it is now possible to monitor both types of ice at a spatial resolution of about 1 km. At global scale, we determine the change with time of the Seasonal South Polar Cap (SSPC) crocus line, defining the edge of CO 2 deposits. This crocus line is not symmetric around the geographic South Pole. At local scale, we introduce the snowdrop distance, describing the local structure of the SSPC edge. Crocus line and snowdrop distance changes can now be used to calibrate GCMs. The albedo of the seasonal deposits is usually assumed to be a uniform and constant parameter of the GCMs. In this study, albedo is found to be the main parameter controlling the SSPC recession at both global and local scale. Using a defrost mass balance model (referred to as D-frost) that incorporates the effect of shadowing induced by topography, we show that the global SSPC asymmetry in the crocus line is controlled by albedo variations. At local scale, we show that the snowdrop distance is correlated with the albedo variability. Further GCM improvements should take into account these two results. We propose several possibilities for the origin of the asymmetric albedo control. The next step will be to identify and model the physical processes that create the albedo differences.

  7. Detailed spatiotemporal albedo observations at Greenland's Mittivakkat Gletscher

    NASA Astrophysics Data System (ADS)

    Mernild, Sebastian H.; Knudsen, Niels T.; Yde, Jacob C.; Malmros, Jeppe K.

    2015-04-01

    Surface albedo is defined as the reflected fraction of incoming solar shortwave radiation at the surface. On Greenland's Mittivakkat Gletscher the mean glacier-wide MODIS-estimated albedo dropped by 0.10 (2000-2013) from 0.43 to 0.33 by the end of the mass balance year (EBY). Hand-held albedo measurements as low as 0.10 were observed over debris-covered ice at the glacier margin at the EBY: these values were slightly below observed values for proglacial bedrock (~0.2). The albedo is highly variable in space - a significant variability occurred within few meters at the glacier margin area ranging from 0.10 to 0.39 due to variability in debris-cover thickness and composition, microbial activity (including algae and cyanobacteria), snow grain crystal metamorphism, bare ice exposure, and meltwater ponding. Huge dark-red-brown-colored ice algae colonies were observed. Albedo measurements on snow patches and bare glacier ice changed significant with increasing elevations (180-600 m a.s.l.) by lapse rates of 0.04 and 0.03 per 100 m, respectively, indicating values as high as 0.82 and 0.40 on the upper part of the glacier. Over a period of two weeks from early August to late August 2014 the hand-held observed mean glacier-wide albedo changed from 0.40 to 0.30 indicating that on average 10% more incoming solar shortwave radiation became available for surface ablation at the end of the melt season.

  8. Mapping global land surface albedo from NOAA AVHRR

    NASA Astrophysics Data System (ADS)

    Csiszar, I.; Gutman, G.

    1999-03-01

    A set of algorithms is combined for a simple derivation of land surface albedo from measurements of reflected visible and near-infrared radiation made by the advanced very high resolution radiometer (AVHRR) onboard the National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites. The system consists of a narrowband-to-broadband conversion and bidirectional correction at the top of the atmosphere and an atmospheric correction. We demonstrate the results with 1 month worth of data from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS) global vegetation index (GVI) weekly data set and the NOAA/NASA Pathfinder Atmosphere (PATMOS) project daily data. Error analysis of the methodology indicates that the surface albedo can be retrieved with 10-15% relative accuracy. Monthly albedo maps derived from September 1989 GVI and PATMOS data agree well except for small discrepancies attributed mainly to different preprocessing and residual atmospheric effects. A 5-year mean September map derived from the GVI multiannual time series is consistent with that derived from low-resolution Earth Radiation Budget Experiment data as well as with a September map compiled from ground observations and used in many numerical weather and climate models. Instantaneous GVI-derived albedos were found to be consistent with surface albedo measurements over various surface types. The discrepancies found can be attributed to differences in areal coverage and representativeness of the satellite and ground data. The present pilot study is a prototype for a routine real-time production of high-resolution global surface albedo maps from NOAA AVHRR Global Area Coverage (GAC) data.

  9. Bolometric albedos and diurnal temperatures of the brightest regions on Io

    NASA Technical Reports Server (NTRS)

    Simonelli, Damon P.; Veverka, Joseph

    1988-01-01

    Cylindrical maps of the locations and estimated Bond albedos of the brightest regions on the Io surface have been constructed on the basis of Voyager data; the albedos are then rescaled to correct for radiometric calibration uncertainties. The highest surface albedos are found to be only moderately higher than the Bond albedo of Io as a whole. The brightest regions include two bright patches southeast of the Maui and Amirani active vents, as well as a large equatorial field of high-albedo material and a lone bright patch at high northern latitudes. These maps indicate that Io's albedos are strongly latitude-dependent.

  10. Transformation of surface albedo to surface: Atmosphere surface and irradiance, and their spectral and temporal averages

    NASA Technical Reports Server (NTRS)

    Nack, M. L.; Curran, R. J.

    1978-01-01

    The dependence of the albedo at the top of a realistic atmosphere upon the surface albedo, solar zenith angle, and cloud optical thickness is examined for the cases of clear sky, total cloud cover, and fractional cloud cover. The radiative transfer calculations of Dave and Braslau (1975) for particular values of surface albedo and solar zenith angle, and a single value of cloud optical thickness are used as the basis of a parametric albedo model. The question of spectral and temporal averages of albedos and reflected irradiances is addressed, and unique weighting functions for the spectral and temporal albedo averages are developed.

  11. NEOWISE REACTIVATION MISSION YEAR ONE: PRELIMINARY ASTEROID DIAMETERS AND ALBEDOS

    SciTech Connect

    Nugent, C. R.; Cutri, R. M.; Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S.; Stevenson, R.; Grav, T.; Wright, E. L.

    2015-12-01

    We present preliminary diameters and albedos for 7956 asteroids detected in the first year of the NEOWISE Reactivation mission. Of those, 201 are near-Earth asteroids and 7755 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using the Near-Earth Object Wide-field Infrared Survey Explorer, or “NEOWISE” thermal measurements. Diameters are determined to an accuracy of ∼20% or better. If good-quality H magnitudes are available, albedos can be determined to within ∼40% or better.

  12. Mariner 9 high-resolution albedo mapping of Mars

    NASA Technical Reports Server (NTRS)

    Devaucouleurs, G.

    1974-01-01

    Large and small scale albedo markings obtained from Mariner 9 photographs and ground based telescope observations are shown on quadrangle charts with a scale of 1:5,000,000. Mercator and stereographic projections at the same scale are presented of the various regions of Mars along with explanatory information about their preparation. Changes in the albedo for the Solis Lacus area were observed and are compared with previous data for the same region. Large scale relief maps covering up to 1.7 million sq miles of the Martian surface are included.

  13. Greenland ice sheet albedo feedback: mass balance implications

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Tedesco, M.; Fettweis, X.; Hall, D. K.; Steffen, K.; Stroeve, J. C.

    2012-12-01

    Greenland ice sheet mass loss has accelerated responding to combined glacier discharge and surface melt water runoff increases. During summer, absorbed solar energy, modulated at the surface primarily by albedo, is the dominant factor governing surface melt variability in the ablation area. NASA MODIS data spanning 13 summers (2000 - 2012), indicate that mid-summer (July) ice sheet albedo declined by 0.064 from a value of 0.752 in the early 2000s. The ice sheet accordingly absorbed 100 EJ more solar energy for the month of July in 2012 than in the early 2000s. This additional energy flux during summer doubled melt rates in the ice sheet ablation area during the observation period. Abnormally strong anticyclonic circulation, associated with a persistent summer North Atlantic Oscillation extreme 2007-2012, enabled 3 amplifying mechanisms to maximize the albedo feedback: 1) increased warm (south) air advection along the western ice sheet increased surface sensible heating that in turn enhanced snow grain metamorphic rates, further reducing albedo; 2) increased surface downward shortwave flux, leading to more surface heating and further albedo reduction; and 3) reduced snowfall rates sustained low albedo, maximizing surface solar heating, progressively lowering albedo over multiple years. The summer net infrared and solar radiation for the high elevation accumulation area reached positive values during this period, contributing to an abrupt melt area increase in 2012. A number of factors make it reasonable to expect more melt episodes covering 100% of the ice sheet area in coming years: 1) the past 13 y of increasing surface air temperatures have eroded snowpack 'cold content', preconditioning the ice sheet for earlier melt onset. Less heat is required to bring the surface to melting; 2) Greenland temperatures, have lagged the N Hemisphere average in the 2000s, need to increase further for Greenland to be in phase with the N Hemisphere average. 3) Arctic amplification

  14. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-10-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with <1% discrepancy) for dosimetry of x-rays with energies <100 keV while the discrepancy increases (up to 5%) for the

  15. An RF dosimeter for independent SAR measurement in MRI scanners

    SciTech Connect

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.; Edelstein, William A.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on

  16. Lower limits of detection for thermal luminescent dosimeters

    SciTech Connect

    Spacher, P.J. ); Mis, F.J.; Klueber, M.R. )

    1990-08-01

    This paper reports that Groups of Panasonic UD-802 thermoluminescent dosimeters (TLDs) were irradiated to successively increasing doses of Cesium-137 gamma radiation (0.662 MeV gamma rays) and then processed using a Panasonic UD-710 automatic TLD reader. The results were subjected to statistical tests to determine the critical level, the level of detection, and the less-than level. The critical level is equivalent to 1.7 mrad, the lower limit of detection is equivalent to 5 mrad and the less-than level has a high range value of 7.5 mrad.

  17. The Reiner Gamma Albedo Marking on Earth's Moon: Old or Young?

    NASA Astrophysics Data System (ADS)

    Nicholas, J. B.; Purucker, M. E.; Sabaka, T. J.

    2007-03-01

    A minimum magnetization necessary to explain the Reiner Gamma albedo feature was determined, and estimates made of spatial distribution of magnetization, depth of source and magnetization direction. The evidence suggests that the albedo feature arises fro

  18. Albedo Study of the Depositional Fans Associated with Martian Gullies

    NASA Astrophysics Data System (ADS)

    Craig, J.; Sears, D. W. G.

    2005-03-01

    This work is a two-part investigation of the albedo of the depositional aprons or fans associated with Martian gully features. Using Adobe Systems Photoshop 5.0 software we analyzed numerous Mars Global Surveyor MOC and Mars Odyssey THEMIS images.

  19. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, D.L.; Micklich, B.J.

    1983-06-01

    This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.

  20. Albedo and color maps of the Saturnian satellites

    NASA Technical Reports Server (NTRS)

    Buratti, Bonnie J.; Mosher, Joel A.; Johnson, Torrence V.

    1990-01-01

    The paper discusses the production of maps of the albedos and colors of Mimas, Enceladus, Tethys, Dione, and Rhea over the full range of their imaged surfaces. Voyager images were used to prepare maps of the normal reflectances and color ratios (0.58/0.41 micron) of these satelites.

  1. Detection of light transformations and concomitant changes in surface albedo

    PubMed Central

    Gerhard, Holly E.; Maloney, Laurence T.

    2010-01-01

    We report two experiments demonstrating that (1) observers are sensitive to information about changes in the light field not captured by local scene statistics and that (2) they can use this information to enhance detection of changes in surface albedo. Observers viewed scenes consisting of matte surfaces at many orientations illuminated by a collimated light source. All surfaces were achromatic, all lights neutral. In the first experiment, observers attempted to discriminate small changes in direction of the collimated light source (light transformations) from matched changes in the albedos of all surfaces (non-light transformations). Light changes and non-light changes shared the same local scene statistics and edge ratios, but the latter were not consistent with any change in direction to the collimated source. We found that observers could discriminate light changes as small as 5 degrees with sensitivity d′ > 1 and accurately judge the direction of change. In a second experiment, we measured observers' ability to detect a change in the surface albedo of an isolated surface patch during either a light change or a surface change. Observers were more accurate in detecting isolated albedo changes during light changes. Measures of sensitivity d′ were more than twice as great. PMID:20884599

  2. Asteroid magnitudes, UBV colors, and IRAS albedos and diameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1989-01-01

    This paper lists absolute magnitudes and slope parameters for known asteroids numbered through 3318. The values presented are those used in reducing asteroid IR flux data obtained with the IRAS. U-B colors are given for 938 asteroids, and B-V colors are given for 945 asteroids. The IRAS albedos and diameters are tabulated for 1790 asteroids.

  3. Analysis of anomalous data produced by Harshaw Model 8801 thermoluminescent dosimeter cards

    SciTech Connect

    Sonder, E.; Ahmed, A.B.

    1993-05-01

    A large number of dosimeters that have produced abnormal data during field assignment have been stored, reirradiated, and studied. Results are summarized and comparisons are made with normal dosimeters. Summarized here are anomalous glow curve shapes, distributions of anomalies in the residual luminescent responses, and historical and repeat-irradiation behavior of abnormal dosimeters. The results indicate that by far the most frequent abnormal data involve elevated readings from Chip 3, accompanied by excess luminescence at temperatures higher than that of the normal radiation produced band. There is no sharp division between normal and abnormal dosimeters (dosimeters yielding excess luminescence at high temperature). Rather, dosimeters exhibit a continuum of behavior from very good (little high temperature luminescence) to clearly abnormal behavior. The excess luminescence emitted at high temperature in abnormal dosimeters is not proportional to absorbed dose; it has a radiation-independent average value that depends on the dosimeter but varies erratically above and below that average for consecutive anneals. At relatively high radiation exposures (>100 mR), the amount of excess high temperature luminescence becomes unimportant and abnormal data are rare.

  4. Comparative study of three types of civil defense high-range pocket dosimeters

    SciTech Connect

    Siskel, R.L.; Sims, C.S.; Swaja, R.

    1987-01-01

    Civil defense shelters are stocked with high-range (0- to 200-R) CDV-742 pocket dosimeters. These dosimeters are intended for use by people that must leave the shelter when the environmental radiation level is either high or unknown. A total of 67 CDV-742 dosimeters were obtained and studied during the summer of 1986 at Oak Ridge National Lab. Health Physics Research Reactor (HPRR). Three different types of dosimeters (27 Bendix, 20 Landsverk-Gold, and 20 Landsverk-Yellow) in various combinations were exposed to 14 separate pulse operations of the HPRR. It can be concluded that the CDV-742 type dosimeters were not suitable for use in a neutron or mixed radiation field unless the spectra is known and correction factors determined in this study are properly applied. Further study is needed to determine the accuracy of these dosimeters in a pure gamma field and to determine their precision at the extreme ends of the dosimeter range. Furthermore, because of their failure rates, shelter occupants should consider exposure data from the Bendix and Landsverk-Yellow dosimeters to be highly unreliable unless sufficient evidence exists to support the exposure readings.

  5. Longevity Tests of High-Sensitivity BD-PND Bubble Dosimeters

    SciTech Connect

    Radev, R; Carlberg, E

    2002-07-09

    Medium- and very-high-sensitivity neutron bubble dosimeters (BD-PNDs) made by Bubble Technology Industries (BTI) were used to study the life span of such dosimeters in a standard setup with a {sup 252}Cf source. Although data on the longevity of bubble dosimeters with low and medium sensitivity exist, such data for dosimeters with high and very high sensitivity are not readily available. The manufacturer guarantees optimum dosimeter performance for 3 months after receipt. However, it is important to know the change in the dosimeters' characteristics with time, especially after the first 3 months. The long-term performance of four sets of very high sensitivity and one set of medium-sensitivity bubble dosimeters was examined for periods of up to 13 months. During that time, the detectors were exposed and reset more than 20 times. Although departures from initial detection sensitivity were observed in several cases, the detectors indicated a significantly longer life span than stated in the manufacturer's warranty. In addition, the change in the number of bubbles and in evaluated neutron dose as a function of the time from the end of exposure until the dosimeters were read was investigated.

  6. Adaptation of a Pocket PC for Use as a Wearable Voice Dosimeter

    ERIC Educational Resources Information Center

    Popolo, Peter S.; Svec, Jan G.; Titze, Ingo R.

    2005-01-01

    This article deals with the adaptation of a commercially available Pocket PC for use as a voice dosimeter, a wearable device that measures the vocal dose of teachers or other individuals on the job, at home, and elsewhere during the course of an entire day. An engineering approach for designing a voice dosimeter is described, and design data are…

  7. Albedo of Permanently Shadowed Regions of the Lunar Poles

    NASA Astrophysics Data System (ADS)

    Riner, M. A.; Lucey, P. G.; Bussey, B.; Cahill, J. T.; McGovern, A.

    2012-12-01

    Due to the slight tilt in the Moon's spin axis, some topographic depressions near the lunar poles experience permanent shadow and may serve as cold traps, harboring water ice and/or other volatile compounds [1]. Permanently shadowed regions (PSRs) provide an opportunity toward understanding the amount, nature and transport of volatiles on the Moon and may also be a potential resource for human exploration. While many different data sets have suggested the presence of water ice in PSRs near the lunar poles many questions remain. For example, ice does not appear to be uniformly distributed across identified PSRs. More work is needed to understand the distribution of ice in PSRs and how delivery and retention mechanisms influence the distribution. The active illumination of the Lunar Orbiter Laser Altimeter (LOLA) provides a unique contribution toward exploration PSR exploration. While LOLA is principally a laser altimeter used for quantitative topography and related cartographic and geodetic applications [2], LOLA also measures the intensity and width of the return laser pulse (1064 nm) from the surface. Here we use a global mosaic (4 pixels per degree) of LOLA albedo data corrected for instrumental drift, irregular variations, and calibrated to normal albedo using local equatorial measurements of normal albedo obtained by the Kaguya Multiband Imager [3]. Recent work using LOLA albedo shows the floor of Shackleton crater, near the lunar south pole, is brighter than the surrounding terrain (and the interior of nearby craters) at 1064 nm [4]. This albedo difference may be due to decreased space weathering due to shadowing from the Sun or to a 1 μm thick layer with 20% water ice a the surface of the crater floor [4]. Here we use LOLA dayside reflectance measurements to examine the albedo of PSRs catalogued by [5] derived from illumination modeling of a hybrid 100 m/pixel LOLA-LROC digital terrain model (DTM) up to 83° north and south latitudes. The upper latitude

  8. Effective Albedo of Vegetated Terrain at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.

    2011-01-01

    This paper derives an explicit expression for an effective albedo of vegetated terrain from the zero- and multiple- order radiative transfer (RT) model comparison. The formulation establishes a direct physical link between the effective vegetation parameterization and the theoretical description of absorption and scattering within the canopy. The paper will present an evaluation of the derived albedo for corn canopies with data taken during an experiment at Alabama A&M Winfield A. Thomas Agricultural Research Station near Huntsville, Alabama in June, 1998. The test site consisted of two 50-m x 60-m plots - one with a bare surface and the other with grass cover - and four 30-m x 50-m plots of corn at different planting densities. One corn field was planted at a full density of 9.5 plants/sq m while the others were planted at 1/3, 1/2 and 2/3 of the full density. The fields were observed with a truck-mounted L-band radiometer at incident angle of 15 degree for the period of two weeks. Soil moisture (SM) changed daily due to irrigation and natural rainfall. Variations in gravimetric SM from 18 % to 34 % were seen during this period. Ground truth data, including careful characterization of the corn size and orientation statistics, and its dielectric, was also collected and used to simulate the effective albedo for the vegetation. The single-scattering albedo is defined as the fractional power scattered from individual vegetation constituents with respect to canopy extinction. It represents single-scattering properties of vegetation elements only, and is independent of ground properties. The values of the albedo get higher when there is dense vegetation (i.e. forest, mature corn, etc.) with scatterers, such as branches and trunks (or stalks in the case of corn), which are large with respect to the wavelength. This large albedo leads to a reduction in brightness temperature in the zero-order RT solution (known as tau-omega model). Higher-order multiple-scattering RT

  9. A quantification of errors in surface albedo due to common assumptions

    NASA Technical Reports Server (NTRS)

    Arduini, Robert F.; Suttles, J. T.

    1990-01-01

    A study comparing the performance of three approaches to estimating the spectral albedo of a typical land surface is presented. The most accurate albedo estimates under all atmospheric situations are those for which the scattering properties of the atmosphere can be used. Simply utilizing the direct-to-total ratio as a weight between direct and Lambertian albedos reduced the errors in broadband albedo to less than one percent for almost all simulated atmospheric conditions.

  10. Feasibility of Ultra-Thin Fiber-Optic Dosimeters for Radiotherapy Dosimetry.

    PubMed

    Lee, Bongsoo; Kwon, Guwon; Shin, Sang Hun; Kim, Jaeseok; Yoo, Wook Jae; Ji, Young Hoon; Jang, Kyoung Won

    2015-11-17

    In this study, prototype ultra-thin fiber-optic dosimeters were fabricated using organic scintillators, wavelength shifting fibers, and plastic optical fibers. The sensor probes of the ultra-thin fiber-optic dosimeters consisted of very thin organic scintillators with thicknesses of 100, 150 and 200 μm. These types of sensors cannot only be used to measure skin or surface doses but also provide depth dose measurements with high spatial resolution. With the ultra-thin fiber-optic dosimeters, surface doses for gamma rays generated from a Co-60 therapy machine were measured. Additionally, percentage depth doses in the build-up regions were obtained by using the ultra-thin fiber-optic dosimeters, and the results were compared with those of external beam therapy films and a conventional fiber-optic dosimeter.

  11. Dosimeter for the measurement of UV exposures related to melanoma induction.

    PubMed

    Turnbull, David J; Parisi, Alfio V

    2010-07-01

    This paper reports on the development of a dosimeter for the measurement of biologically effective UV exposures related to melanoma induction. The melanoma (UVMel) dosimeter is based on the combination of polysulfone and nalidixic acid. This research found that the combination of these photosensitive chromophores reacts to UV wavelengths from 290 to 390 nm. It was found that a large change in optical absorbance occurred at 345 nm when the dosimeter was employed to quantify the solar UV waveband. Preliminary results indicate that this UVMel dosimeter can measure exposures of more than 189 kJ m(-2) of biologically effective weighted solar UV radiation with an inter-dosimeter variability of no more than +/-5%. PMID:20551501

  12. An analysis of an implantable dosimeter system for external beam therapy

    PubMed Central

    Black, Robert D.; Scarantino, Charles W.; Mann, Gregory G.; Anscher, Mitchell S.; Ornitz, Robert D.; Nelms, Benjamin E.

    2006-01-01

    Background and purpose To review the data from an implantable radiation dosimetry system used in a clinical setting and examine correlations between dosimeter readings and potential causative error sources. Material and methods MOSFET-based, encapsulated dosimeters were evaluated in a phantom (in vitro) and in a study with 18 patients. The dosimeters were placed in the gross tumor volume or in collateral normal tissue. Predicted dose values were established by imaging the dosimeters in the planning CT’s. Results The in vitro study confirmed that bounding cumulative errors due to setup, planning, and machine output within a +/−5% level is achievable. In patients, it was found that deviations from the targeted dose often exceeded the 5% level. Conclusions The use of an implantable dosimeter system could provide an effective empirical check on the dose delivered at depth. Such a tool may have value for institutional QA as well as for therapy delivered to individual patients. PMID:16111599

  13. Feasibility of Ultra-Thin Fiber-Optic Dosimeters for Radiotherapy Dosimetry

    PubMed Central

    Lee, Bongsoo; Kwon, Guwon; Shin, Sang Hun; Kim, Jaeseok; Yoo, Wook Jae; Ji, Young Hoon; Jang, Kyoung Won

    2015-01-01

    In this study, prototype ultra-thin fiber-optic dosimeters were fabricated using organic scintillators, wavelength shifting fibers, and plastic optical fibers. The sensor probes of the ultra-thin fiber-optic dosimeters consisted of very thin organic scintillators with thicknesses of 100, 150 and 200 μm. These types of sensors cannot only be used to measure skin or surface doses but also provide depth dose measurements with high spatial resolution. With the ultra-thin fiber-optic dosimeters, surface doses for gamma rays generated from a Co-60 therapy machine were measured. Additionally, percentage depth doses in the build-up regions were obtained by using the ultra-thin fiber-optic dosimeters, and the results were compared with those of external beam therapy films and a conventional fiber-optic dosimeter. PMID:26593917

  14. Albedo Response of Native and Artificial Soils to a Wetting Event: Implications for Critical Zone Processes

    NASA Astrophysics Data System (ADS)

    Lovell, L.; Sanchez-Mejia, Z. M.; Papuga, S. A.

    2012-12-01

    The Landscape Evolution Observatory (LEO) at Biosphere 2 is composed of three experimental hill slopes filled to one meter depth of a ground basaltic tephra soil, set up to investigate critical zone processes. Our goal is to understand the energy aspects of this artificial LEO soil; surfaces with a high surface reflectance (albedo) may limit energy available for critical zone processes. The albedo of a surface can change, e.g. by vegetation growth or soil wetting, which can further influence available energy. Here, we examine the soil moisture and albedo response of LEO soil to a 10 mm rainfall event, and compare the results to those found using traditional potting and native desert soils that differ in color and texture. We hypothesized that: 1) increased soil moisture would decrease albedo for all soil types; 2) a smaller wetting front would maximize any decrease in albedo, and 3) albedo will reach a minimum within hours of a rainstorm, returning to a maximum albedo value within the day. We found that albedo was lowest under wet conditions for all soils, regardless of initial color and texture. Additionally, the LEO soil experienced the shallowest wetting front and also showed the most significant decrease in albedo following rainfall. After the rainfall event, all soils showed an initial decrease in albedo, followed by an increase in albedo as the soil dried. While the albedo and soil moisture of each soil reacted similarly, the very dark and fine LEO soil showed the strongest response to wetting.

  15. An analytical model for the prediction of a micro-dosimeter response function

    NASA Astrophysics Data System (ADS)

    Badavi, F. F.; Xapsos, M. A.; Wilson, J. W.

    2009-07-01

    A rapid analytical procedure for the prediction of a micro-dosimeter response function in low Earth orbit (LEO), correlated with the Space Transportation System (STS, shuttle) Tissue Equivalent Proportional Counter (TEPC) measurements is presented. The analytical model takes into consideration the energy loss straggling and chord length distribution of the detector, and is capable of predicting energy deposition fluctuations in a cylindrical micro-volume of arbitrary aspect ratio (height/diameter) by incoming ions through both direct and indirect (δ ray) events. At any designated (ray traced) target point within the vehicle, the model accepts the differential flux spectrum of Galactic Cosmic Rays (GCRs) and/or trapped protons at LEO as input. On a desktop PC, the response function of TEPC for each ion in the GCR/trapped field is computed at the average rate of 30 s/ion. The ionizing radiation environment at LEO is represented by O'Neill's GCR model (2004), covering charged particles in the 1 ⩽ Z ⩽ 28 range. O'Neill's free space GCR model is coupled with the Langley Research Center (LaRC) angular dependent geomagnetic cutoff model to compute the transmission coefficient in LEO. The trapped proton environment is represented by a LaRC developed time dependent procedure which couples the AP8MIN/AP8MAX, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment is represented by the extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. The charged particle transport calculations correlated with STS 51 and 114 flights are accomplished by using the most recent version (2005) of the LaRC deterministic High charge ( Z) and Energy TRaNsport (HZETRN) code. We present the correlations between the TEPC model predictions (response function) and TEPC measured differential/integral spectra in the lineal energy ( y) domain for both GCR and trapped protons, with the conclusion that the model correctly

  16. An analytical model for the prediction of a micro-dosimeter response function

    NASA Astrophysics Data System (ADS)

    Badavi, Francis; Michael, Michael; Wilson, John W.

    A rapid analytical procedure for the prediction of a micro-dosimeter response function in Low Earth Orbit (LEO), correlated with the Space Transportation System (STS, shuttle) Tissue Equivalent Proportional Counter (TEPC) measurements is presented. The analytical model takes into consideration the energy loss straggling and chord length distribution of the detector, and is capable of predicting energy deposition fluctuations in a cylindrical micro-volume of arbitrary aspect ratio (height/diameter) by incoming ions through both direct and indirect (δ rays) events. At any designated (ray traced) target point within the vehicle, the model as input accepts the differential flux spectrum of Galactic Cosmic Rays (GCR) and/or trapped protons at LEO. On a desktop PC, the response function of TEPC for each ion in the GCR/trapped field is computed at the average rate of 30 seconds/ion. The ionizing radiation environment at LEO is represented by O'Neill's GCR model (2004), covering charge particles in the 1≤Z≤28 range. O'Neill's free space GCR model is coupled with the Langley Research Center (LaRC) cutoff model with angular dependency compensation to compute the transmission coefficient at LEO. The trapped proton environment is represented by a LaRC developed time dependent procedure which couples the AP8min/AP8max, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment is represented by the extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. The charged particle transport calculations correlated with STS 56, 51, 110 and 114 flights are accomplished by using the most recent version (2005) of LaRC's deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN). Herein, we present the correlations between the TEPC model predictions (response function) and TEPC measured differential/integral spectra in the lineal energy (y) domain for both GCR and trapped protons, with

  17. An Analytical Model for the Prediction of a Micro-Dosimeter Response Function

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Xapsos, Mike

    2008-01-01

    A rapid analytical procedure for the prediction of a micro-dosimeter response function in low Earth orbit (LEO), correlated with the Space Transportation System (STS, shuttle) Tissue Equivalent Proportional Counter (TEPC) measurements is presented. The analytical model takes into consideration the energy loss straggling and chord length distribution of the detector, and is capable of predicting energy deposition fluctuations in a cylindrical micro-volume of arbitrary aspect ratio (height/diameter) by incoming ions through both direct and indirect (ray) events. At any designated (ray traced) target point within the vehicle, the model accepts the differential flux spectrum of Galactic Cosmic Rays (GCR) and/or trapped protons at LEO as input. On a desktop PC, the response function of TEPC for each ion in the GCR/trapped field is computed at the average rate of 30 seconds/ion. The ionizing radiation environment at LEO is represented by O'Neill fs GCR model (2004), covering charged particles in the 1 less than or equal to Z less than or equal to 28. O'Neill's free space GCR model is coupled with the Langley Research Center (LaRC) angular dependent geomagnetic cutoff model to compute the transmission coefficient in LEO. The trapped proton environment is represented by a LaRC developed time dependent procedure which couples the AP8MIN/AP8MAX, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment is represented by the extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. The charged particle transport calculations correlated with STS 51 and 114 flights are accomplished by using the most recent version (2005) of the LaRC deterministic High charge (Z) and Energy TRaNsport (HZETRN) code. We present the correlations between the TEPC model predictions (response function) and TEPC measured differential/integral spectra in the lineal energy (y) domain for both GCR and trapped protons, with the conclusion

  18. A modified Fricke gel dosimeter for fast electron blood dosimetry

    NASA Astrophysics Data System (ADS)

    Del Lama, L. S.; de Góes, E. G.; Sampaio, F. G. A.; Petchevist, P. C. D.; de Almeida, A.

    2014-12-01

    It has been suggested for more than forty years that blood and blood components be irradiated before allogeneic transfusions for immunosuppressed patients in order to avoid the Transfusion-Associated Graft-versus-Host Disease (TA-GVHD). Whole blood, red blood cells, platelets and granulocytes may have viable T cells and should be irradiated before transfusion for different patient clinical conditions. According to international guides, absorbed doses from 25 up to 50 Gy should be delivered to the central middle plane of each blood bag. Although gamma and X-rays from radiotherapy equipments and dedicated cell irradiators are commonly used for this purpose, electron beams from Linear Accelerators (LINACs) could be used as well. In this work, we developed a methodology able to acquire dosimetric data from blood irradiations, especially after fast electrons exposures. This was achieved using a proposed Fricke Xylenol Gel (FXGp) dosimeter, which presents closer radiological characteristics (attenuation coefficients and stopping-powers) to the whole blood, as well as complete absorbed dose range linearity. The developed methodology and the FXGp dosimeter were also able to provide isodose curves and field profiles for the irradiated samples.

  19. Long term surface albedo datasets generated with Meteosat images

    NASA Astrophysics Data System (ADS)

    Lattanzio, A.; Govaerts, Y. M.; Theodore, B.

    2009-04-01

    The Global Climate Observing System (GCOS) has recognized the importance and the key-role of the surface albedo in the study of the climate change. This and the other climate variables, called Essential Climate Variables (ECVs), must satisfy the following requirements: (i) a global coverage over long-term periods with adequate spatial and temporal resolution, (ii) reliability and accuracy as well as a (iii) quality control. The Coordination Group for Meteorological Satellites (CGMS) assigned to EUMETSAT an action (T18 (TF7)) in order to prototype and test a new algorithm able to retrieve surface albedo using geostationary satellites as described in the "Implementation plan for the global observing system for climate in support of the UNFCCC" document (WMO/TD No. 1219). In this frame EUMETSAT decided to develop a new specific algorithm, named Meteosat Surface Albedo (MSA), based on a method proposed by Pinty et al. The MSA algorithm is currently running in the operational reprocessing facility of EUMETSAT in order to generate reliable albedo data set starting from 1982. These data have been acquired by six different radiometers. As Meteosat first generation satellites have not been designed for climate monitoring, before proceeding with the interpretation of the complete archive (~ 25 years of data), a detailed temporal consistency analysis of the albedo data set generated with the MSA algorithm has been performed in order to check the compliance with points (ii) and (iii). Specific efforts have been put on the estimation of the measurement error accounting for the observation uncertainties and retrieval method assumptions. Currently 100% of the archive for the prime mission at 0 degree has been processed and the albedo data set can be requested from the EUMETSAT archive facility. This paper will present the method elaborated for the evaluation of the temporal consistency of the MSA data set and illustrate typical problems raising from the processing of old data and

  20. Is a quasi-3D dosimeter better than a 2D dosimeter for Tomotherapy delivery quality assurance?

    NASA Astrophysics Data System (ADS)

    Xing, Aitang; Deshpande, Shrikant; Arumugam, Sankar; George, Armia; Holloway, Lois; Vial, Philip; Goozee, Gary

    2015-01-01

    Delivery quality assurance (DQA) has been performed for each Tomotherapy patient either using ArcCHECK or MatriXX Evolution in our clinic since 2012. ArcCHECK is a quasi-3D dosimeter whereas MatriXX is a 2D detector. A review of DQA results was performed for all patients in the last three years, a total of 221 DQA plans. These DQA plans came from 215 patients with a variety of treatment sites including head-neck, pelvis, and chest wall. The acceptable Gamma pass rate in our clinic is over 95% using 3mm and 3% of maximum planned dose with 10% dose threshold. The mean value and standard deviation of Gamma pass rates were 98.2% ± 1.98(1SD) for MatriXX and 98.5%±1.88 (1SD) for ArcCHECK. A paired t-test was also performed for the groups of patients whose DQA was performed with both the ArcCHECK and MatriXX. No statistical dependence was found in terms of the Gamma pass rate for ArcCHECK and MatriXX. The considered 3D and 2D dosimeters have achieved similar results in performing routine patient-specific DQA for patients treated on a TomoTherapy unit.

  1. Radiative transfer in dusty nebulae. III - The effects of dust albedo

    NASA Technical Reports Server (NTRS)

    Petrosian, V.; Dana, R. A.

    1980-01-01

    The effects of an albedo of internal dust, such as ionization structure and temperature of dust grain, were studied by the quasi-diffusion method with an iterative technique for solving the radiative heat transfer equations. It was found that the generalized on-the-spot approximation solution is adequate for most astrophysical applications for a zero albedo; for a nonzero albedo, the Eddington approximation is more accurate. The albedo increases the average energy of the diffuse photons, increasing the ionization level of hydrogen and heavy elements if the Eddington approximation is applied; the dust thermal gradient is reduced so that the infrared spectrum approaches blackbody spectrum with an increasing albedo.

  2. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry

    SciTech Connect

    McCaw, Travis J. Micka, John A.; DeWerd, Larry A.

    2014-05-15

    Purpose: Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. Methods: A film stack dosimeter was developed using Gafchromic{sup ®} EBT2 films. The dosimeter consists of 22 films separated by 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. Results: The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the

  3. Effect of land cover change on snow free surface albedo across the continental United States

    NASA Astrophysics Data System (ADS)

    Wickham, J.; Nash, M. S.; Barnes, C. A.

    2016-11-01

    Land cover changes (e.g., forest to grassland) affect albedo, and changes in albedo can influence radiative forcing (warming, cooling). We empirically tested albedo response to land cover change for 130 locations across the continental United States using high resolution (30 m-×-30 m) land cover change data and moderate resolution (~ 500 m-×-500 m) albedo data. The land cover change data spanned 10 years (2001 - 2011) and the albedo data included observations every eight days for 13 years (2001 - 2013). Empirical testing was based on autoregressive time series analysis of snow free albedo for verified locations of land cover change. Approximately one-third of the autoregressive analyses for woody to herbaceous or forest to shrub change classes were not significant, indicating that albedo did not change significantly as a result of land cover change at these locations. In addition, ~ 80% of mean differences in albedo arising from land cover change were less than ± 0.02, a nominal benchmark for precision of albedo measurements that is related to significant changes in radiative forcing. Under snow free conditions, we found that land cover change does not guarantee a significant albedo response, and that the differences in mean albedo response for the majority of land cover change locations were small.

  4. Durability of high-albedo roof coatings and implications for cooling energy savings. Final report

    SciTech Connect

    Bretz, S.E.; Akbari, H.

    1994-06-01

    Twenty-six spot albedo measurements of roofs were made using a calibrated pyranometer. The roofs were surfaced with either an acrylic elastomeric coating, a polymer coating with an acrylic base, or a cementitious coating. Some of the roofs` albedos were measured before and after washing to determine whether the albedo decrease was permanent. Data indicated that most of the albedo degradation occurred within the first year, and even within the first two months. On one roof, 70% of one year`s albedo degradation occurred in the first two months. After the first year, the degradation slowed, with data indicating small losses in albedo after the second year. Measurements of seasonal cooling energy savings by Akbari et al. (1993) included the effects of over two months of albedo degradation. We estimated {approximately}20% loss in cooling-energy savings after the first year because of dirt accumulation. For most of the roofs we cleaned, the albedo was restored to within 90% of its initial value. Although washing is effective at restoring albedo, the increase in energy savings is temporary and labor costs are significant in comparison to savings. By our calculations, it is not cost-effective to hire someone to clean a high-albedo roof only to achieve energy savings. Thus, it would be useful to develop and identify dirt-resistant high-albedo coatings.

  5. Effect of canopy structure and the presence of snow on the albedo of boreal conifer forests

    NASA Astrophysics Data System (ADS)

    Ni, Wenge; Woodcock, Curtis E.

    2000-05-01

    A Geometric-Optical and Radiative Transfer (GORT) approach for modeling the radiation regime within plant canopies is capable of predicting temporal variation in the albedo of boreal conifer forests. Model predictions of daily surface albedo patterns and reflected solar radiation during the winter and summer seasons were validated using field measurements from two forest stands in the northern study area of BOReal Ecosystem-Atmosphere Study (BOREAS) in 1995. The model is able to predict the "W" shape for the daily albedo over the sparse old jack pine forest stand during the snow season and the "bowl" shape of daily albedo during clear days in the summer. Results immediately following new snow and at the end of the snowmelt season indicate the sensitivity of overall forest albedos to the albedo of snow. Incorporation of time-varying values for snow albedo may improve future efforts to estimate forest albedos in the winter. Forest albedos are a complicated function of the canopy structure, the presence or absence of snow on the ground and the angular distribution of irradiance. These effects differ for the visible, near-infrared and midinfrared portions of the solar spectrum. Forest albedos vary dramatically as a function of canopy cover when snow covers the ground, but very little when snow is not present. It is found that for tree cover over about 70%, the presence of snow has little effect on albedo.

  6. Albedo of coastal landfast sea ice in Prydz Bay, Antarctica: Observations and parameterization

    NASA Astrophysics Data System (ADS)

    Yang, Qinghua; Liu, Jiping; Leppäranta, Matti; Sun, Qizhen; Li, Rongbin; Zhang, Lin; Jung, Thomas; Lei, Ruibo; Zhang, Zhanhai; Li, Ming; Zhao, Jiechen; Cheng, Jingjing

    2016-05-01

    The snow/sea-ice albedo was measured over coastal landfast sea ice in Prydz Bay, East Antarctica (off Zhongshan Station) during the austral spring and summer of 2010 and 2011. The variation of the observed albedo was a combination of a gradual seasonal transition from spring to summer and abrupt changes resulting from synoptic events, including snowfall, blowing snow, and overcast skies. The measured albedo ranged from 0.94 over thick fresh snow to 0.36 over melting sea ice. It was found that snow thickness was the most important factor influencing the albedo variation, while synoptic events and overcast skies could increase the albedo by about 0.18 and 0.06, respectively. The in-situ measured albedo and related physical parameters (e.g., snow thickness, ice thickness, surface temperature, and air temperature) were then used to evaluate four different snow/ice albedo parameterizations used in a variety of climate models. The parameterized albedos showed substantial discrepancies compared to the observed albedo, particularly during the summer melt period, even though more complex parameterizations yielded more realistic variations than simple ones. A modified parameterization was developed, which further considered synoptic events, cloud cover, and the local landfast sea-ice surface characteristics. The resulting parameterized albedo showed very good agreement with the observed albedo.

  7. Albedo maps of Comets P/Giacobini-Zinner and P/Halley

    NASA Technical Reports Server (NTRS)

    Hammel, H. B.; Storrs, A. D.; Cruikshank, D. P.; Telesco, C. M.; Decher, R. M.; Campins, H.

    1986-01-01

    Near-simultaneous infrared and visual maps of P/Giacobini-Zinner (P/G-Z) and P/Halley are combined to create maps of the spatial variation of geometric albedo. Giacobini-Zinner shows a minimum in albedo near 0.07 with an increase of a factor of 2 over 30 arcsec. The lowest albedos are offset from the nucleus in the antisunward direction, coincident with a dust tail observed in the IR. The P/Halley albedos are higher than those for P/G-Z and range from 0.2 to 0.4, but the trend of darker albedo in the antisunward direction (along the tail) is the same. The albedo distribution is attributed to large, dark, fluffy grains confined to the orbital plane close to the nucleus. The high albedo values in P/Halley may be due to enhanced flux in the visual image because of the comet's very small phase angle.

  8. Characterization of the nanoDot OSLD dosimeter in CT

    SciTech Connect

    Scarboro, Sarah B.; Cody, Dianna; Followill, David; Court, Laurence; Stingo, Francesco C.; Kry, Stephen F.; Alvarez, Paola; Zhang, Di; McNitt-Gray, Michael

    2015-04-15

    Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due

  9. Characterization of the nanoDot OSLD dosimeter in CT

    PubMed Central

    Scarboro, Sarah B.; Cody, Dianna; Alvarez, Paola; Followill, David; Court, Laurence; Stingo, Francesco C.; Zhang, Di; Kry, Stephen F.

    2015-01-01

    Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due

  10. Reentrant albedo proton fluxes measured by the PAMELA experiment

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; Donato, C. De; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergé, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.

    2015-05-01

    We present a precise measurement of downward going albedo proton fluxes for kinetic energy above ˜70 MeV performed by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) experiment at an altitude between 350 and 610 km. On the basis of a trajectory tracing simulation, the analyzed protons were classified into quasi-trapped, concentrating in the magnetic equatorial region, and untrapped spreading over all latitudes, including both short-lived (precipitating) and long-lived (pseudotrapped) components. In addition, features of the penumbra region around the geomagnetic cutoff were investigated in detail. PAMELA results significantly improve the characterization of the high-energy albedo proton populations at low-Earth orbits.

  11. NEOWISE diameters and albedos: now available on PDS!

    NASA Astrophysics Data System (ADS)

    Masiero, Joseph R.; Mainzer, Amy K.; Bauer, James M.; Cutri, Roc M.; Grav, Tommy; Kramer, Emily A.; Nugent, Carolyn; Sonnett, Sarah M.; Stevenson, Rachel; Wright, Edward L.

    2016-10-01

    We present the recent PDS release of minor planet physical property data from the WISE/NEOWISE fully cryogenic, 3-band cryo, and post-cryo surveys as well as the first year of the NEOWISE-Reactivation survey. This release includes 165,865 diameters, visible albedos, near-infrared albedos, and/or beaming parameters for 140,493 unique minor planets. The published data include near-Earth asteroids, Main Belt asteroids, Hildas, Jupiter Trojans, Centaurs, active Main Belt objects and irregular satellites of Jupiter and Saturn. We provide an overview of the available data and discuss the key features of the PDS data set. The data are available online at: http://sbn.psi.edu/pds/resource/neowisediam.html.

  12. Exogenic and endogenic albedo and color patterns on Europa

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.

    1986-01-01

    New global and high-resolution multispectral mosaics of Europa have been produced from the Voyager imaging data. Photometric normalizations are based on multiple-image techniques that explicitly account for intrinsic albedo variations through pixel-by-pixel solutions. The exogenic color and albedo pattern on Europa is described by a second-order function of the cosine of the angular distance from the apex of orbital motion. On the basis of this second-order function and of color trends that are different on the leading and trailing hemispheres, the exogenic pattern is interpreted as being due to equilibrium between two dominant processes: (1) impact gardening and (2) magnetospheric interactions, including sulfur-ion implantation and sputtering redistribution. Removal of the model exogenic pattern in the mosaics reveals the endogenic variations, consisting of only two major units: darker (redder) and bright materials. Therefore Europa's visual spectral reflectivity is simple, having one continuous exogenic pattern and two discrete endogenic units.

  13. Land Surface Albedo from MERIS Reflectances Using MODIS Directional Factors

    NASA Technical Reports Server (NTRS)

    Schaaf, Crystal L. B.; Gao, Feng; Strahler, Alan H.

    2004-01-01

    MERIS Level 2 surface reflectance products are now available to the scientific community. This paper demonstrates the production of MERIS-derived surface albedo and Nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted reflectances by coupling the MERIS data with MODIS BRDF products. Initial efforts rely on the specification of surface anisotropy as provided by the global MODIS BRDF product for a first guess of the shape of the BRDF and then make use all of the coincidently available, partially atmospherically corrected, cloud cleared, MERIS observations to generate MERIS-derived BRDF and surface albedo quantities for each location. Comparisons between MODIS (aerosol-corrected) and MERIS (not-yet aerosol-corrected) surface values from April and May 2003 are also presented for case studies in Spain and California as well as preliminary comparisons with field data from the Devil's Rock Surfrad/BSRN site.

  14. Deriving Albedo from Coupled MERIS and MODIS Surface Products

    NASA Technical Reports Server (NTRS)

    Gao, Feng; Schaaf, Crystal; Jin, Yu-Fang; Lucht, Wolfgang; Strahler, Alan

    2004-01-01

    MERIS Level 2 surface reflectance products are now available to the scientific community. This paper demonstrates the production of MERIS-derived surface albedo and Nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted reflectances by coupling the MERIS data with MODIS BRDF products. Initial efforts rely on the specification of surface anisotropy as provided by the global MODIS BRDF product for a first guess of the shape of the BRDF and then make use all of the coincidently available, partially atmospherically corrected, cloud cleared, MERIS observations to generate MERIS-derived BRDF and surface albedo quantities for each location. Comparisons between MODIS (aerosol-corrected) and MERIS (not-yet aerosol-corrected) surface values from April and May 2003 are also presented for case studies in Spain and California as well as preliminary comparisons with field data from the Devil's Rock Surfrad/BSRN site.

  15. Monte Carlo-based energy response studies of diode dosimeters in radiotherapy photon beams.

    PubMed

    Arun, C; Palani Selvam, T; Dinkar, Verma; Munshi, Prabhat; Kalra, Manjit Singh

    2013-01-01

    This study presents Monte Carlo-calculated absolute and normalized (relative to a (60)Co beam) sensitivity values of silicon diode dosimeters for a variety of commercially available silicon diode dosimeters for radiotherapy photon beams in the energy range of (60)Co-24 MV. These values were obtained at 5 cm depth along the central axis of a water-equivalent phantom of 10 cm × 10 cm field size. The Monte Carlo calculations were based on the EGSnrc code system. The diode dosimeters considered in the calculations have different buildup materials such as aluminum, brass, copper, and stainless steel + epoxy. The calculated normalized sensitivity values of the diode dosimeters were then compared to previously published measured values for photon beams at (60)Co-20 MV. The comparison showed reasonable agreement for some diode dosimeters and deviations of 5-17 % (17 % for the 3.4 mm brass buildup case for a 10 MV beam) for some diode dosimeters. Larger deviations of the measurements reflect that these models of the diode dosimeter were too simple. The effect of wall materials on the absorbed dose to the diode was studied and the results are presented. Spencer-Attix and Bragg-Gray stopping power ratios (SPRs) of water-to-diode were calculated at 5 cm depth in water. The Bragg-Gray SPRs of water-to-diode compare well with Spencer-Attix SPRs for ∆ = 100 keV and above at all beam qualities.

  16. The responses of three kinds of passive dosimeters to secondary cosmic rays in the lower atmosphere

    SciTech Connect

    Yang, Zhen; Chen, Bo Zhuo, Weihai; Fan, Dunhuang; Zhang, Yu; Zhao, Chao

    2015-12-15

    For accurate measurements of the secondary cosmic rays by using passive dosimeters, the relative responses of the thermoluminescence dosimeter (TLD), optically stimulated luminescence (OSL) dosimeter, and radiophotoluminescent glass dosimeter (RPLGD) were studied. The cosmic-ray shower generator was used to simulate the secondary cosmic rays at the sea level. Monte Carlo simulations were performed to calculate the air kerma and absorbed doses in each kind of dosimeter. The results showed that compared with their responses to gamma rays of {sup 137}Cs, the relative responses of the TLD, OSL, and RPLGD were 0.786, 0.707, and 0.735 to the hard component of cosmic rays, respectively, and the values were 0.904, 0.838, and 0.857 to the soft component of cosmic rays, respectively. To verify the simulations results, an in situ measurement with the three kinds of dosimeters was performed at the same place. The results indicated that the secondary cosmic rays monitored with the three kinds of dosimeters were well consistent with each other provided their relative responses were taken into account.

  17. The responses of three kinds of passive dosimeters to secondary cosmic rays in the lower atmosphere.

    PubMed

    Yang, Zhen; Chen, Bo; Zhuo, Weihai; Fan, Dunhuang; Zhao, Chao; Zhang, Yu

    2015-12-01

    For accurate measurements of the secondary cosmic rays by using passive dosimeters, the relative responses of the thermoluminescence dosimeter (TLD), optically stimulated luminescence (OSL) dosimeter, and radiophotoluminescent glass dosimeter (RPLGD) were studied. The cosmic-ray shower generator was used to simulate the secondary cosmic rays at the sea level. Monte Carlo simulations were performed to calculate the air kerma and absorbed doses in each kind of dosimeter. The results showed that compared with their responses to gamma rays of (137)Cs, the relative responses of the TLD, OSL, and RPLGD were 0.786, 0.707, and 0.735 to the hard component of cosmic rays, respectively, and the values were 0.904, 0.838, and 0.857 to the soft component of cosmic rays, respectively. To verify the simulations results, an in situ measurement with the three kinds of dosimeters was performed at the same place. The results indicated that the secondary cosmic rays monitored with the three kinds of dosimeters were well consistent with each other provided their relative responses were taken into account.

  18. The responses of three kinds of passive dosimeters to secondary cosmic rays in the lower atmosphere.

    PubMed

    Yang, Zhen; Chen, Bo; Zhuo, Weihai; Fan, Dunhuang; Zhao, Chao; Zhang, Yu

    2015-12-01

    For accurate measurements of the secondary cosmic rays by using passive dosimeters, the relative responses of the thermoluminescence dosimeter (TLD), optically stimulated luminescence (OSL) dosimeter, and radiophotoluminescent glass dosimeter (RPLGD) were studied. The cosmic-ray shower generator was used to simulate the secondary cosmic rays at the sea level. Monte Carlo simulations were performed to calculate the air kerma and absorbed doses in each kind of dosimeter. The results showed that compared with their responses to gamma rays of (137)Cs, the relative responses of the TLD, OSL, and RPLGD were 0.786, 0.707, and 0.735 to the hard component of cosmic rays, respectively, and the values were 0.904, 0.838, and 0.857 to the soft component of cosmic rays, respectively. To verify the simulations results, an in situ measurement with the three kinds of dosimeters was performed at the same place. The results indicated that the secondary cosmic rays monitored with the three kinds of dosimeters were well consistent with each other provided their relative responses were taken into account. PMID:26724019

  19. Evaluation of a high exposure solar UV dosimeter for underwater use.

    PubMed

    Schouten, Peter W; Parisi, Alfio V; Turnbull, David J

    2007-01-01

    Solar ultraviolet radiation (UV) is known to have a significant effect upon the marine ecosystem. This has been documented by many previous studies using a variety of measurement methods in aquatic environments such as oceans, streams and lakes. Evidence gathered from these investigations has shown that UVB radiation (280-320 nm) can negatively affect numerous aquatic life forms, while UVA radiation (320-400 nm) can both damage and possibly even repair certain types of underwater life. Chemical dosimeters such as polysulphone have been tested to record underwater UV exposures and in turn quantify the relationship between water column depth and dissolved organic carbon levels to the distribution of biologically damaging UV underwater. However, these studies have only been able to intercept UV exposures over relatively short time intervals. This paper reports on the evaluation of a high exposure UV dosimeter for underwater use. The UV dosimeter was fabricated from poly 2,6-dimethyl-1,4-phenylene oxide (PPO) film. This paper presents the dose response, cosine response, exposure additivity and watermarking effect relating to the PPO dosimeter as measured in a controlled underwater environment and will also detail the overnight dark reaction and UVA and visible radiation response of the PPO dosimeter, which can be used for error correction to improve the reliability of the UV data measured by the PPO dosimeters. These results show that this dosimeter has the potential for long-term underwater UV exposure measurements. PMID:17645666

  20. Monte Carlo simulation of single and two-dosimeter approaches in a steam generator channel head.

    PubMed

    Kim, C H; Reece, W D

    2002-08-01

    In a steam generator channel head, it was not unusual to see radiation workers wearing as many as twelve dosimeters over the surface of the body to avoid a possible underestimation of effective dose equivalent (H(E)) or effective dose (E). This study shows that only one or two dosimeters can be used to estimate H(E) and E without a significant underestimation. MCNP and a point-kernel approach were used to model various exposure situations in a steam generator channel head. The single-dosimeter approach (on the chest) was found to underestimate H(E) and E significantly for a few exposure situations, i.e., when the major portion of radiation source is located in the backside of a radiation worker. In this case, the photons from the source pass through the body and are attenuated before reaching the dosimeter on the chest. To assure that a single dosimeter provides a good estimate of worker dose, these few exposure situations cannot dominate a worker's exposure. On the other hand, the two-dosimeter approach (on the chest and back) predicts H(E) and E very well, hardly ever underestimating these quantities by more than 4% considering all worker positions and contamination situations in a steam generator channel head. This study shows that two dosimeters are adequate for an accurate estimation of H(E) and E in a steam generator channel head. PMID:12132712

  1. a Generalized Albedo Option for Forward and Adjoint Monte Carlo Calculations

    NASA Astrophysics Data System (ADS)

    Gomes, Itacil Chiari

    1991-02-01

    The advisability of using the albedo procedure for the Monte Carlo solution of deep penetration shielding problems which have ducts and other penetrations is investigated. It is generally accepted that the use of albedo data can dramatically improve the computational efficiency of certain Monte Carlo calculations--however the accuracy of these results may be unacceptable because of lost information during the albedo event and serious errors in the available differential albedo data. This study has been done to evaluate and appropriately modify the MORSE/BREESE package, to develop new methods for generating the required albedo data, and to extend the adjoint capability to the albedo-modified calculations. The major modifications include an option to save for further use information that would be lost at the albedo event, an option to displace the emergent point during an albedo event, and an option to read spatially -dependent albedo data for both forward and adjoint calculations --which includes the emergent point as a new random variable to be selected during an albedo reflection event. The theoretical basis for using TORT-generated forward albedo information to produce adjuncton-albedos is derived. The MORSE/STORM code was developed to perform both forward and adjoint modes of analysis using spatially-dependent albedo data. The results obtained using the MORSE/STORM code package for both forward and adjoint modes were compared with benchmark solutions--excellent agreements along with improved computational efficiencies were achieved demonstrating the full utilization of the albedo option in the MORSE code.

  2. An NMR relaxometry and gravimetric study of gelatin-free aqueous polyacrylamide dosimeters

    NASA Astrophysics Data System (ADS)

    Babic, Steven; Schreiner, L. John

    2006-09-01

    In conformal radiation therapy, a high dose of radiation is given to a target volume to increase the probability of cure, and care is taken to minimize the dose to surrounding healthy tissue. The techniques used to achieve this are very complicated and the precise verification of the resulting three-dimensional (3D) dose distribution is required. Polyacrylamide gelatin (PAG) dosimeters with magnetic resonance imaging and optical computed tomography scanning provide the required 3D dosimetry with high spatial resolution. Many basic studies have characterized these chemical dosimeters that polymerize under irradiation. However, the investigation of the fundamental properties of the radiation-induced polymerization in PAG dosimeters is complicated by the presence of the background gelatin matrix. In this work, a gelatin-free model system for the study of the basic radiation-induced polymerization in PAG dosimeters has been developed. Experiments were performed on gelatin-free dosimeters, named aqueous polyacrylamide (APA) dosimeters, containing equal amounts of acrylamide and N,N'-methylene-bisacrylamide. The APA dosimeters were prepared with four different total monomer concentrations (2, 4, 6 and 8% by weight). Nuclear magnetic resonance (NMR) spin-spin and spin-lattice proton relaxation measurements at 20 MHz, and gravimetric analyses performed on all four dosimeters, show a continuous degree of polymerization over the dose range of 0-25 Gy. The developed NMR model explains the relationship observed between the relaxation data and the amount of crosslinked polymer formed at each dose. This model can be extended with gelatin relaxation data to provide a fundamental understanding of radiation-induced polymerization in the conventional PAG dosimeters.

  3. An NMR relaxometry and gravimetric study of gelatin-free aqueous polyacrylamide dosimeters.

    PubMed

    Babic, Steven; Schreiner, L John

    2006-09-01

    In conformal radiation therapy, a high dose of radiation is given to a target volume to increase the probability of cure, and care is taken to minimize the dose to surrounding healthy tissue. The techniques used to achieve this are very complicated and the precise verification of the resulting three-dimensional (3D) dose distribution is required. Polyacrylamide gelatin (PAG) dosimeters with magnetic resonance imaging and optical computed tomography scanning provide the required 3D dosimetry with high spatial resolution. Many basic studies have characterized these chemical dosimeters that polymerize under irradiation. However, the investigation of the fundamental properties of the radiation-induced polymerization in PAG dosimeters is complicated by the presence of the background gelatin matrix. In this work, a gelatin-free model system for the study of the basic radiation-induced polymerization in PAG dosimeters has been developed. Experiments were performed on gelatin-free dosimeters, named aqueous polyacrylamide (APA) dosimeters, containing equal amounts of acrylamide and N,N'-methylene-bisacrylamide. The APA dosimeters were prepared with four different total monomer concentrations (2, 4, 6 and 8% by weight). Nuclear magnetic resonance (NMR) spin-spin and spin-lattice proton relaxation measurements at 20 MHz, and gravimetric analyses performed on all four dosimeters, show a continuous degree of polymerization over the dose range of 0-25 Gy. The developed NMR model explains the relationship observed between the relaxation data and the amount of crosslinked polymer formed at each dose. This model can be extended with gelatin relaxation data to provide a fundamental understanding of radiation-induced polymerization in the conventional PAG dosimeters. PMID:16912375

  4. Gamma-ray Albedo of Small Solar System Bodies

    SciTech Connect

    Moskalenko, I.V.

    2008-03-25

    We calculate the {gamma}-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the {gamma}-ray albedo for the Main Belt and KBOs strongly depends on the small-body mass spectrum of each system and may be detectable by the forthcoming Gamma Ray Large Area Space Telescope (GLAST). If detected, it can be used to derive the mass spectrum of small bodies in the Main Belt and Kuiper Belt and to probe the spectrum of CR nuclei at close-to-interstellar conditions. The orbits of the Main Belt asteroids and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. Therefore, the {gamma}-ray emission by the Main Belt and Kuiper Belt has to be taken into account when analyzing weak {gamma}-ray sources close to the ecliptic. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center. For details of our calculations and references see [1].

  5. Albedo polarimétrico de asteroides del grupo Hungaria

    NASA Astrophysics Data System (ADS)

    Gil-Hutton, R.; Benavidez, P.

    La región del cinturón de asteroides en donde se encuentra el grupo de los Hungarias (a= 1.79 a 1.98 UA, i=15 a 40 grados) es la única zona donde es común encontrar objetos de tipo taxonómico E, caracterizados por altos albedos, colores relativamente neutros y espectros sin detalles. Este tipo de asteroides está relacionado espectralmente con ciertos meteoritos (aubritas) que indican la existencia de episodios de gran calentamiento que ocurrieron durante la formación del Sistema Solar. Como el espectro de los asteroides de tipo E es idéntico a los de tipo M y P, la única forma de clasificar un asteroide en alguno de estos tres tipos taxonómicos es mediante el albedo. En este trabajo se presentan resultados preliminares sobre la determinación polarimétrica de albedos para objetos de este grupo utilizando el polarímetro CASPROF de CASLEO.

  6. Supercritical Salt Spray for the Implementation of Cloud Albedo Modification

    NASA Astrophysics Data System (ADS)

    Neukermans, A. P.; Cooper, G.; Foster, J. D.; Galbraith, L.; Ormond, B.; Wang, Q.; Johnston, D.; Cloud Brightening Research

    2011-12-01

    Of all the geo-engineering schemes proposed so far, the Latham-Salter cloud albedo modification scheme is perhaps the most benign and "natural" method. In its full deployment, it proposes to densify and thereby modify the albedo of low-hanging marine boundary clouds by a few percent such that the overall earth albedo might be changed by 1%. The scheme would require the production of vast numbers of salt cloud condensation nuclei (CCN), in one implementation on the order of 10^17 per second from each of some 1500 autonomous sailing vessels. We have investigated a number of possible techniques to create these nuclei. We reported previously the laboratory production of suitable nuclei from saltwater using Taylor cones. This method would require about 10^8 Taylor cones per vessel to get to the required CCN production rate, and hence needs a very extensive scale-up effort. We report here on the use of saltwater sprayed at or near its critical temperature and pressure through small nozzles. Although a number of technical problems remain, results to date suggest that this method might be suitable, at least for research purposes. The mean particle size distributions of nuclei generated (40-100 nm) are acceptable, and the scale-up effort to the estimated number of nozzles required (1000-2000) seems reasonable.

  7. Signatures of volatiles in the lunar proton albedo

    NASA Astrophysics Data System (ADS)

    Schwadron, N. A.; Wilson, J. K.; Looper, M. D.; Jordan, A. P.; Spence, H. E.; Blake, J. B.; Case, A. W.; Iwata, Y.; Kasper, J. C.; Farrell, W. M.; Lawrence, D. J.; Livadiotis, G.; Mazur, J.; Petro, N.; Pieters, C.; Robinson, M. S.; Smith, S.; Townsend, L. W.; Zeitlin, C.

    2016-07-01

    We find evidence for hydrated material in the lunar regolith using "albedo protons" measured with the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO). Fluxes of these albedo protons, which are emitted from the regolith due to steady bombardment by high energy radiation (Galactic Cosmic Rays), are observed to peak near the poles, and are inconsistent with the latitude trends of heavy element enrichment (e.g., enhanced Fe abundance). The latitudinal distribution of albedo protons anti-correlates with that of epithermal or high energy neutrons. The high latitude enhancement may be due to the conversion of upward directed secondary neutrons from the lunar regolith into tertiary protons due to neutron-proton collisions in hydrated regolith that is more prevalent near the poles. The CRaTER instrument may thus provide important measurements of volatile distributions within regolith at the Moon and potentially, with similar sensors and observations, at other bodies within the Solar System.

  8. Possible Albedo Proton Signature of Hydrated Lunar Surface Layer

    NASA Astrophysics Data System (ADS)

    Schwadron, N.; Wilson, J. K.; Looper, M. D.; Jordan, A.; Spence, H. E.; Blake, J. B.; Case, A. W.; Iwata, Y.; Kasper, J. C.; Farrell, W. M.; Lawrence, D. J.; Livadiotis, G.; Mazur, J. E.; Petro, N. E.; Pieters, C. M.; Robinson, M. S.; Smith, S. S.; Townsend, L. W.; Zeitlin, C. J.

    2015-12-01

    We find evidence for a surface layer of hydrated material in the lunar regolith using "albedo protons" measured by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO). Fluxes of these albedo protons, which are emitted from the regolith due to steady bombardment by high-energy radiation (Galactic Cosmic Rays), are observed to peak near the poles, and cannot be accounted for by either heavy element enrichment (e.g., enhanced Fe abundance), or by deeply buried (> 50 cm) hydrogenous material. The latitudinal distribution of albedo protons does not correlate with that of epithermal or high-energy neutrons. The high latitude enhancement may be due to the conversion of upward directed secondary neutrons from the lunar regolith into tertiary protons due to neutron-proton collisions in a thin (~ 1-10 cm) layer of hydrated regolith near the surface that is more prevalent near the poles. The CRaTER instrument thus provides critical measurements of volatile distributions within lunar regolith and potentially, with similar sensors and observations, at other bodies within the Solar System.

  9. Dental enamel as an in vivo radiation dosimeter

    SciTech Connect

    Pass, B.; Aldrich, J.E.

    1985-05-01

    The determination of the radiation exposure history of the population has become increasingly important in the study of the effects of low-level radiation. The present work was started to try to obtain an in vivo dosimeter that could give an indication of radiation exposure. Dental enamel is the only living tissue which retains indefinitely its radiation history, and electron spin resonance measurements have shown that the radiation signal can be resolved down to about 10 cGy. Measurements on samples from the general population give radiation exposure estimates that are reasonable, and one measurement on a patient who had radiotherapy to the mouth area showed a good correlation with tumor dose.We believe that this is an important new indicator of radiation dose and taken together with exposure histories should provide important data for epidemiological studies as well as accidental exposures.

  10. [AOR characterization and zoning: a dosimeter for blue light].

    PubMed

    Dario, R; Uva, J; Di Lecce, V; Quarto, A

    2011-01-01

    The paper presents the results obtained thanks to an innovative experimental device for the assessment of artificial optical radiation (AOR) exposure in workplace. This . device was developed by 'Politecnico di Bari-DIASS'. The wearable personal dosimeter has three sensors: one is used for measuring head position/movement, therefore there is a color light sensor to determine the AOR and finally there is a video camera to localize sources. Our system is connected to a netbook via USB cable that allows one to obtain the real and extimated value of worker's exposure, also with "augmented reality". The aim of this paper is realizing work place safety zoning for the classifacation of not only specific dangerous areas through the analysis of overlapping information from the device. PMID:23393888

  11. Review of four novel dosimeters developed for use in radiotherapy

    NASA Astrophysics Data System (ADS)

    Metcalfe, P.; Quinn, A.; Loo, K.; Lerch, M.; Petasecca, M.; Wong, J.; Hardcastle, N.; Carolan, M.; McNamara, J.; Cutajar, D.; Fuduli, I.; Espinoza, A.; Porumb, C.; Rosenfeld, A.

    2013-06-01

    Centre for Medical Radiation Physics (CMRP) is a research strength at the University of Wollongong, the main research theme of this centre is to develop prototype novel radiation dosimeters. Multiple detector systems have been developed by Prof Rosenfelds' group for various radiation detector applications. This paper focuses on four current detector systems being developed and studied at CMRP. Two silicon array detectors include the magic plate and dose magnifying glass (DMG), the primary focus of these two detectors is high spatial and temporal resolution dosimetry in intensity modulated radiation therapy (IMRT) beams. The third detector discussed is the MOSkinTM which is a high spatial resolution detector based on MOSFET technology, its primary role is in vivo dosimetry. The fourth detector system discussed is BrachyView, this is a high resolution dose viewing system based on Medipix detector technology.

  12. [AOR characterization and zoning: a dosimeter for blue light].

    PubMed

    Dario, R; Uva, J; Di Lecce, V; Quarto, A

    2011-01-01

    The paper presents the results obtained thanks to an innovative experimental device for the assessment of artificial optical radiation (AOR) exposure in workplace. This . device was developed by 'Politecnico di Bari-DIASS'. The wearable personal dosimeter has three sensors: one is used for measuring head position/movement, therefore there is a color light sensor to determine the AOR and finally there is a video camera to localize sources. Our system is connected to a netbook via USB cable that allows one to obtain the real and extimated value of worker's exposure, also with "augmented reality". The aim of this paper is realizing work place safety zoning for the classifacation of not only specific dangerous areas through the analysis of overlapping information from the device.

  13. Applicability of the Sunna dosimeter for food irradiation control

    NASA Astrophysics Data System (ADS)

    Kovács, A.; Baranyai, M.; Wojnárovits, L.; Miller, S.; Murphy, M.; McLaughlin, W. L.; Slezsák, I.; Kovács, A. I.

    2002-03-01

    The quick development concerning the commercial application of food irradiation in the USA recently resulted in growing marketing of irradiated red meat as well as irradiated fresh and dried fruits. These gamma and electron irradiation technologies require specific dosimetry systems for process control. The new version of the Sunna dosimeter has been characterized in gamma, electron and bremsstrahlung radiation fields by measuring the optically stimulated luminescence (osl) at 530 nm both below and above 1 kGy, i.e. for disinfestation and for meat irradiation purposes. No humidity and no significant dose rate effect on the green osl signal was observed. The temperature coefficient was determined from 0°C up to about 40°C and to stabilize the osl signal after irradiation a heat treatment method was introduced. Based on these investigations the Sunna 'gamma' film is a suitable candidate for dose control below and above 1 kGy for food irradiation technologies.

  14. Calibration results obtained with Liulin-4 type dosimeters.

    PubMed

    Dachev, Ts; Tomov, B; Matviichuk, Yu; Dimitrov, Pl; Lemaire, J; Gregoire, Gh; Cyamukungu, M; Schmitz, H; Fujitaka, K; Uchihori, Y; Kitamura, H; Reitz, G; Beaujean, R; Petrov, V; Shurshakov, V; Benghin, V; Spurny, F

    2002-01-01

    The Mobile Radiation Exposure Control System's (Liulin-4 type) main purpose is to monitor simultaneously the doses and fluxes at 4 independent places. It can also be used for personnel dosimetry. The system consists of 4 battery-operated 256-channel dosimeters-spectrometers. We describe results obtained during the calibrations of the spectrometers at the Cyclotron facilities of the University of Louvain, Belgium and of the National Institute of Radiological Sciences-STA, Chiba, Japan with protons of energies up to 70 MeV. The angular sensitivities of the devices are studied and compared with Monte-Carlo predictions. We also present the results obtained at the HIMAC accelerator with 500 MeV/u Fe ions and at the CERN high energy radiation reference fields. Records made during airplane flights are shown and compared with the predictions of the CARI-6 model.

  15. A Radiation Dosimeter Concept for the Lunar Surface Environment

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark J.; Watts, John; Kuznetsov, Eugeny N.; Parnell, Thomas A.; Pendleton, Geoff N.

    2007-01-01

    A novel silicon detector configuration for radiation dose measurements in an environment where solar energetic particles are of most concern is described. The dosimeter would also measure the dose from galactic cosmic rays. In the lunar environment a large range in particle flux and ionization density must be measured and converted to dose equivalent. This could be accomplished with a thick (e.g. 2mm) silicon detector segmented into cubic volume elements "voxels" followed by a second, thin monolithic silicon detector. The electronics needed to implement this detector concept include analog signal processors (ASIC) and a field programmable gate array (FPGA) for data accumulation and conversion to linear energy transfer (LET) spectra and to dose-equivalent (Sievert). Currently available commercial ASIC's and FPGA's are suitable for implementing the analog and digital systems.

  16. Sugar as an emergency populace dosimeter for radiation accidents

    SciTech Connect

    Nakajima, T.

    1988-12-01

    Ordinary sugar can be used as an emergency dosimeter for any person exposed to a nuclear or radiation accident. The number of free radicals in sugar created by radiation does not decrease at room temperature for two months after irradiation and is not changed by thermal treatment for about 18 h at even 55 degrees C. A 600 mg granulated sugar sample can detect about 0.05 Gy (5 rad) as the minimum detectable absorbed dose using electron spin resonance equipment. If sugar is present at the time of a radiation or nuclear accident, the absorbed dose can be evaluated from the sugar and will be useful for both the medical treatment and health effects of the exposed persons.

  17. Preliminary dosimetry investigation of Tc-99m diagnostic radionuclide by NIPAM gel dosimeter

    NASA Astrophysics Data System (ADS)

    Huang, You-Ruei; Chang, Yuan-Jen; Hsieh, Ling-Ling; Yu, Bi-Wei; Chu, Chien-Hau; Hsieh, Bor-Tsung

    2013-06-01

    The N-isopropylacrylamide (NIPAM) gel dosimeter was investigated as a suitable material for measuring absorbed doses from radionuclide sources. In this study, NIPAM gel dosimeter was used to evaluate the dose distributions of the Tc-99m radionuclide in NIPAM gel. The accumulated radioactivity range of the Tc-99m NIPAM gel is from approximately 0 MBq to 13.6 MBq (about 0.37 mCi). The NIPAM gel dosimeter with high stability and high-dose linear and non-energy dependent properties can provide various radiopharmaceutical activity intensities in the conduct of dose assessment in nuclear medicine, thereby producing the most promising dose verification tools.

  18. Laboratory facilities and recommendations for the characterization of biological ultraviolet dosimeters.

    PubMed

    Bolsée, D; Webb, A R; Gillotay, D; Dörschel, B; Knuschke, P; Krins, A; Terenetskaya, I

    2000-06-01

    A laboratory facility for characterizing biological dosimeters for the measurement of UV radiation has been built and tested. The facility is based on a solar simulator, stabilized by photofeedback, and monitored by a spectroradiometer, with a versatile filter arrangement. This enables the following characteristics of the dosimeters to be ascertained: spectral response, linearity, and reciprocity; angular acceptance and response; calibration in simulated sunlight. The system has been tested on a variety of dosimeters and has the potential to be used with other radiometers, subject currently to the size of their active surface. PMID:18345205

  19. Measurement of a 200 MeV proton beam using a polyurethane dosimeter

    NASA Astrophysics Data System (ADS)

    Heard, Malcolm; Adamovics, John; Ibbott, Geoffrey

    2006-12-01

    PRESAGETM (Heuris Pharma LLC, Skillman, NJ) is a three-dimensional polyurethane dosimeter containing a leuco dye that generates a color change when irradiated. The dosimeter is solid and does not require a container to maintain its shape. The dosimeter is transparent before irradiation and the maximum absorbance of the leuco dye occurs at 633 nm which is compatible with the OCT-OPUSTM laser CT scanner (MGS Research, Inc., Madison, CT). The purpose of this study was to investigate the response of PRESAGETM to proton beam radiotherapy.

  20. Thermal drift reduction with multiple bias current for MOSFET dosimeters.

    PubMed

    Carvajal, M A; Martínez-Olmos, A; Morales, D P; Lopez-Villanueva, J A; Lallena, A M; Palma, A J

    2011-06-21

    New thermal compensation methods suitable for p-channel MOSFET (pMOS) dosimeters with the usual dose readout procedure based on a constant drain current are presented. Measuring the source-drain voltage shifts for two or three different drain currents and knowing the value of the zero-temperature coefficient drain current, I(ZTC), the thermal drift of source-drain or threshold voltages can be significantly reduced. Analytical expressions for the thermal compensation have been theoretically deduced on the basis of a linear dependence on temperature of the parameters involved. The proposed thermal modelling has been experimentally proven. These methods have been applied to a group of ten commercial pMOS transistors (3N163). The thermal coefficients of the source-drain voltage and the threshold voltage were reduced from -3.0 mV  °C(-1), in the worst case, down to -70 µV  °C(-1). This means a thermal drift of -2.4 mGy  °C(-1) for the dosimeter. When analysing the thermal drifts of all the studied transistors, in the temperature range from 19 to 36 °C, uncertainty was obtained in the threshold voltage due to a thermal drift of ±9 mGy (2 SD), a commonly acceptable value in most radiotherapy treatments. The procedures described herein provide thermal drift reduction comparable to that of other technological or numerical strategies, but can be used in a very simple and low-cost dosimetry sensor. PMID:21606552

  1. Thermal drift reduction with multiple bias current for MOSFET dosimeters

    NASA Astrophysics Data System (ADS)

    Carvajal, M. A.; Martínez-Olmos, A.; Morales, D. P.; Lopez-Villanueva, J. A.; Lallena, A. M.; Palma, A. J.

    2011-06-01

    New thermal compensation methods suitable for p-channel MOSFET (pMOS) dosimeters with the usual dose readout procedure based on a constant drain current are presented. Measuring the source-drain voltage shifts for two or three different drain currents and knowing the value of the zero-temperature coefficient drain current, IZTC, the thermal drift of source-drain or threshold voltages can be significantly reduced. Analytical expressions for the thermal compensation have been theoretically deduced on the basis of a linear dependence on temperature of the parameters involved. The proposed thermal modelling has been experimentally proven. These methods have been applied to a group of ten commercial pMOS transistors (3N163). The thermal coefficients of the source-drain voltage and the threshold voltage were reduced from -3.0 mV °C-1, in the worst case, down to -70 µV °C-1. This means a thermal drift of -2.4 mGy °C-1 for the dosimeter. When analysing the thermal drifts of all the studied transistors, in the temperature range from 19 to 36 °C, uncertainty was obtained in the threshold voltage due to a thermal drift of ±9mGy (2 SD), a commonly acceptable value in most radiotherapy treatments. The procedures described herein provide thermal drift reduction comparable to that of other technological or numerical strategies, but can be used in a very simple and low-cost dosimetry sensor.

  2. Calibration factors for the SNOOPY NP-100 neutron dosimeter

    NASA Astrophysics Data System (ADS)

    Moscu, D. F.; McNeill, F. E.; Chase, J.

    2007-10-01

    Within CANDU nuclear power facilities, only a small fraction of workers are exposed to neutron radiation. For these individuals, roughly 4.5% of the total radiation equivalent dose is the result of exposure to neutrons. When this figure is considered across all workers receiving external exposure of any kind, only 0.25% of the total radiation equivalent dose is the result of exposure to neutrons. At many facilities, the NP-100 neutron dosimeter, manufactured by Canberra Industries Incorporated, is employed in both direct and indirect dosimetry methods. Also known as "SNOOPY", these detectors undergo calibration, which results in a calibration factor relating the neutron count rate to the ambient dose equivalent rate, using a standard Am-Be neutron source. Using measurements presented in a technical note, readings from the dosimeter for six different neutron fields in six source-detector orientations were used, to determine a calibration factor for each of these sources. The calibration factor depends on the neutron energy spectrum and the radiation weighting factor to link neutron fluence to equivalent dose. Although the neutron energy spectra measured in the CANDU workplace are quite different than that of the Am-Be calibration source, the calibration factor remains constant - within acceptable limits - regardless of the neutron source used in the calibration; for the specified calibration orientation and current radiation weighting factors. However, changing the value of the radiation weighting factors would result in changes to the calibration factor. In the event of changes to the radiation weighting factors, it will be necessary to assess whether a change to the calibration process or resulting calibration factor is warranted.

  3. Development of a novel UV indicator and dosimeter film.

    PubMed

    Mills, Andrew; Lee, Soo-Keun; Sheridan, Martin

    2005-07-01

    A novel UV indicator is described, comprising nanocrystalline particles of titania dispersed in a film of a polymer, hydroxyl ethyl cellulose (HEC), containing: a mild reducing agent, triethanolamine (TEOA) and a redox indicator, methylene blue (MB). The UV indicator film is blue-coloured in the absence of UV light and loses colour upon exposure to UV light, attaining within a few min a steady-state degree of bleaching that can provide a measure of the irradiance of the incident light. The original blue colour of the film returns once the source of UV light is removed. The spectral characteristics of a typical UV indicator film, and its components, are discussed and the UV-absorbing action of the titania particles highlighted. From the measured %bleaching undergone by a typical UV indicator as a function of light irradiance the indicator appears fully bleached, within 7 min, by a UV irradiance of 3 mW cm(-2) or greater. The mechanism by which the UV indicator works is described. The reversible nature of the UV indicator is removed by covering a typical UV indicator with a thin, largely oxygen impermeable, polymer film, such as the regenerated cellulose found in Sellotape. The product is a UV dosimeter, the response of which is related to the intensity and duration of the incident UV light, as well as the amount of titania in the film. A typical UV dosimeter film is fully bleached by 250 mJ cm(-2) of UV light. The possible use of these novel indicators to measure UV exposure levels, irradiance and dose, is discussed.

  4. Biological UV dosimeters in simulated space irradiation conditions

    NASA Astrophysics Data System (ADS)

    Rontó, G.; Bérces, A.; Fekete, A.; Kovács, G.; Lammer, H.

    For the measurement of the harmful biological effect of solar UV radiation bacteriophage T7 and polycrystalline uracil dosimeters were used. For terrestrial dosimetric purposes bacteriophage T7 has been applied in solution, while uracil in the form of thin layers. For space irradiation dosimetry the uracil, phage T7-DNA and bacteriophage T7 thin layer samples were prepared in vacuum tightly closed sandwich forms covered either by calciumfluoride or quartz windows. The experimental conditions tested correspond to the conditions planned in the EXPOSE facility: the samples were surrounded by nitrogen atmosphere at various humidities, their vacuum stability was tested in the vacuum chamber of the Institute of Space Research,, Graz. All kinds of the thin film samples have been stored in an atmosphere containing Nitrogen and Hidrogen, in quality control no change in the structure of them has been found. To attenuate the high extraterrestrial irradiance neutral filters of 0.5 and 1.0 optical densities have been tested. Irradiation of the samples has been performed with various UV sources: solar simulator, low pressure Mercury lamp, Deuterium lamp. Dose-effect functions have been determined using for the evaluation spectrophotometry in the characteristic UV range, HPLC of photoproducts, PCR of two different primer sequences of phage T7-DNA. Photoproduct formation kinetics was followed by the saturation level of uracil thin layer. Attenuation ability of the neutral filters was controlled with low pressure Mercury lamp by the exposure necessary for saturation of uracil dosimeters. A three and tenfold increase in the exposure was found respectively, while the influence of spectral composition of the irradiation source was tested using Deuterium lamp supplied with Ca F2 and quartz filters respectively. A doubling of the irradiance was necessary for the saturation of uracil with quartz filter.

  5. Characterization of metal oxide semiconductor field effect transistor dosimeters for application in clinical mammography.

    PubMed

    Benevides, Luis A; Hintenlang, David E

    2006-02-01

    Five high-sensitivity metal oxide semiconductor field effect transistor dosimeters in the TN-502 and 1002 series (Thomson Nielsen Electronics Ltd., 25B, Northside Road, Ottawa, ON K2H8S1, Canada) were evaluated for use in the mammography x-ray energy range (22-50 kVp) as a tool to assist in the documentation of patient specific average glandular dose. The dosimeters were interfaced with the Patient Dose Verification System, model No. TN-RD 15, which consisted of a dosimeter reader and up to four dual bias power supplies. Two different dual bias power supplies were evaluated in this study, model No. TN-RD 22 in high-sensitivity mode and a very-high sensitivity prototype. Each bias supply accommodates up to five dosimeters for 20 dosimeters per system. Sensitivity of detectors, defined as the mV/C kg(-1), was measured free in air with the bubble side of the dosimeter facing the x-ray field with a constant exposure. All dosimeter models' angular response showed a marked decrease in response when oriented between 120 degrees and 150 degrees and between at 190 degrees and 220 degrees relative to the incident beam. Sensitivity was evaluated for Mo/Mo, Mo/Rh, and Rh/Rh target-filter combinations. The individual dosimeter model sensitiVity was 4.45 x 10(4) mV/C kg(-1) (11.47 mV R(-1)) for TN-502RDS(micro); 5.93 x 10(4) mV per C kg(-1) (15.31 mV R(-1)) for TN-1002RD; 6.06 x 10(4) mV/C kg(-1) (15.63 mV R(-1)) for TN-1002RDI; 9.49 x 10(4) mV per C kg(-1) (24.49 mV R(-1)) for TN-1002RDM (micro); and 11.20 x 10(4) mV/C kg(-1) (28.82 mV R(-1)) for TN-1002RDS (micro). The energy response is presented and is observed to vary with dosimeter model, generally increasing with tube potential through the mammography energy range. An intercomparison of the high-sensitivity mode of TN-RD-22 was made to the very-high sensitivity bias power supply using a Mo/Mo target-filter. The very-high sensitivity-bias power supply increased dosimeter response by 1.45 +/- 0.04 for dosimeter models TN

  6. Multidecadal analysis of forest growth and albedo in boreal Finland

    NASA Astrophysics Data System (ADS)

    Lukeš, Petr; Stenberg, Pauline; Mõttus, Matti; Manninen, Terhikki; Rautiainen, Miina

    2016-10-01

    It is well known that forests serve as carbon sinks. However, the balancing effect of afforestation and increased forest density on global warming due to carbon storage may be lost by low albedo (thus high absorption) of the forests. In the last 30 years, there has been a steady increase in the growing stock of Finnish forests by nearly a quarter while the area of the forests has remained virtually unchanged. Such increase in forest density together with the availability of detailed forest inventories provided by the Multi-Source National Forest Inventory (MS-NFI) in high spatial resolution makes Finland an ideal candidate for exploring the effects of increased forest density on satellite derived estimates of bio-geochemical products e.g. albedo (directional-hemispherical reflectance, DHR), fraction of photosynthetically active radiation absorbed by canopies (fAPAR), leaf area index (LAI) and normalized difference vegetation index (NDVI) in both current and long-term perspective. In this study, we first used MODIS-based vegetation satellite products for Finnish forests to study their seasonal patterns and interrelations. Next, the peak growing season observations are linked to the MS-NFI database to yield the generic relationships between forest density and the satellite-derived vegetation indicators. Finally, long-term GIMMS3g datasets between 1982 and 2011 (2008 for DHR) are analyzed and interpreted using forest inventory data. The vegetation peak growing season NIR DHR and VIS DHR showed weak to moderate negative correlation with fAPAR, whereas there was no correlation between NIR DHR and fAPAR. Next, we show that the spectral albedos in the near-infrared region (NIR DHR) showed weak negative correlation with forest biomass, basal area or canopy cover whereas, as expected, the spectral albedo in the visible region (VIS DHR) correlated negatively with these measures of forest density. Interestingly, the increase in forest density (biomass per ha) of Finnish

  7. Assessment of VIIRS daily BRDF/Albedo product using in situ measurement of SURFRAD sites and MODIS V006 daily BRDF/Albedo product

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, Z.; Sun, Q.; Schaaf, C.; Roman, M. O.

    2014-12-01

    Surface albedo is defined as the ratio of upwelling to downwelling radiative flux. It's important for understanding the global energy budget. Remote sensing albedo products provide global time continuous coverage to help capture global energy variability and change. The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-NPP satellite, launched on October 28, 2011, is aiming to provide continues data record with the MODerate resolution Imaging Spectroradiometer (MODIS), which has been providing Bidirectional Reflectance Distribution Function (BRDF)/Albedo product since 2000. By utilizing the same approach that was used for the most recently V006 daily MODIS BRDF/Albedo product, VIIRS has the ability to keep providing products for research and operational users. Validating albedo product of VIIRS using in situmeasured albedo can assure the quality for land surface climate and biosphere models, and comparing with MODIS product can assure time continues of BRDF/albedo product. The daily BRDF/Albedo product still uses 16-day period multispectral, cloud-cleared, atmospherically-corrected surface reflectances to fit the Ross-Thick/Li-Sparse-Reciprocal semi-empirical BRDF model. But the multiday observations are also weighted based on proximity to the production date in order to emphasis on that individual day. Surface Radiation Budget Network (SURFRAD) was established in 1993 through the support of NOAA's Office of Global Programs. In situ albedo was driven from downwelling and upwelling radiative flux measured from the towers. Fraction of diffuse sky light was calculated using the direct and diffuse solar recorded in the data. It was further used to translate VIIRS, MODIS black sky and white sky albedos into actual albedo at local solar noon. Results show that VIIRS, MODIS and in situ albedo agree well at SURFARD spatially representative sites. While the VIIRS surface reflectance, snow, and cloud algorithms are still undergoing revision, the result shows that

  8. Quantifying the Impacts of Surface Albedo on Climate Using the WRF Model

    NASA Astrophysics Data System (ADS)

    Schlosser, C. A.; Xu, L.; Xu, X.; Gregory, J.; Kirchain, R.

    2015-12-01

    Surface albedo is an important part of the energy budget in shaping local and regional climate. It could also be a potential tool to mitigate the anthropogenic effect on climate change. However, the current level of scientific understanding of surface albedo on global warming potential is medium to low. In order to investigate the anthropogenic impact of surface albedo on climate, different scenarios of urban surface albedo over continental US using the WRF model are simulated. In this study, the change in surface albedo applies to rooftops, pavements, and walls of urban land cover grid cells. The two groups of simulations (low and high albedo) were compared to determine the impacts of elevating urban surface albedo and to account for the uncertainty in the errors or noise introduced by the slightly different initial conditions. The results are represented as the differences in surface temperature and the top of the atmosphere radiation between the two scenarios when urban surface albedos are elevated from 0.15 to 0.40. The ensemble mean of all potential outcomes as a whole, instead of individual initial conditions, shows that the impact of elevating surface albedo has a cooling effect that is robust at both local and regional scales during the summer season. More refined analyses of urban areas will provide insights on surface albedo impacts in specific regions. Future analyses may address changes in CO2 equivalence.

  9. Robust estimation of albedo for illumination-invariant matching and shape recovery.

    PubMed

    Biswas, Soma; Aggarwal, Gaurav; Chellappa, Rama

    2009-05-01

    We present a nonstationary stochastic filtering framework for the task of albedo estimation from a single image. There are several approaches in the literature for albedo estimation, but few include the errors in estimates of surface normals and light source direction to improve the albedo estimate. The proposed approach effectively utilizes the error statistics of surface normals and illumination direction for robust estimation of albedo, for images illuminated by single and multiple light sources. The albedo estimate obtained is subsequently used to generate albedo-free normalized images for recovering the shape of an object. Traditional Shape-from-Shading (SFS) approaches often assume constant/piecewise constant albedo and known light source direction to recover the underlying shape. Using the estimated albedo, the general problem of estimating the shape of an object with varying albedo map and unknown illumination source is reduced to one that can be handled by traditional SFS approaches. Experimental results are provided to show the effectiveness of the approach and its application to illumination-invariant matching and shape recovery. The estimated albedo maps are compared with the ground truth. The maps are used as illumination-invariant signatures for the task of face recognition across illumination variations. The recognition results obtained compare well with the current state-of-the-art approaches. Impressive shape recovery results are obtained using images downloaded from the Web with little control over imaging conditions. The recovered shapes are also used to synthesize novel views under novel illumination conditions. PMID:19299862

  10. [Temporal and Spatial Characteristics of Lake Taihu Surface Albedo and Its Impact Factors].

    PubMed

    Cao, Chang; Li, Xu-hui; Zhang, Mi; Liu, Shou-dong; Xiao, Wei; Xiao, Qi-tao; Xu, Jia-ping

    2015-10-01

    Lake surface albedo determines energy balance of water-atmospheric interface and water physical environment. Solar elevation angle, cloudiness, wind speed, water quality and other factors can affect lake surface albedo. Using solar radiation, wind speed, and water quality data (turbidity and chlorophyll-a concentration) which were observed in four eddy covariance sites (Meiliangwan, Dapukou, Bifenggang and Xiaoleishan i. e. MLW, DPK, BFG and XLS) in Lake Taihu and clearness index (k(t)), the influence of these factors on Lake Taihu surface albedo and the reasons that led to its spatial difference were investigated. The results showed that solar elevation angle played a leading role in the diurnal and seasonal change of lake surface albedo; lake surface albedo reached two peaks in 0 < k(t) < 0.1 and 0.4 < k(t) < 0.6 respectively, when solar elevation angle was below 35 degrees. The surface albedo increased with the increasing wind speed, turbidity and chlorophyll-a concentration. However, wind could indirectly affect surface albedo through leading to the changes in sediment resuspension and chlorophyll-a distribution. The sequence of albedo in the four sites was XLS > BFG > DPK > MLW. XLS and BFG belonged to the higher albedo group, while DPK and MLW belonged to the lower albedo group. The different biological environments caused by aquatic macrophytes and algae resulting in the spatial variation of Lake Taihu surface albedo. The relationship between albedo and chlorophyll-a concentration was not a very sensitive factor for indicating the outbreak of algae. This study can provide theoretical reference for lake albedo parameterization. PMID:26841592

  11. [Temporal and Spatial Characteristics of Lake Taihu Surface Albedo and Its Impact Factors].

    PubMed

    Cao, Chang; Li, Xu-hui; Zhang, Mi; Liu, Shou-dong; Xiao, Wei; Xiao, Qi-tao; Xu, Jia-ping

    2015-10-01

    Lake surface albedo determines energy balance of water-atmospheric interface and water physical environment. Solar elevation angle, cloudiness, wind speed, water quality and other factors can affect lake surface albedo. Using solar radiation, wind speed, and water quality data (turbidity and chlorophyll-a concentration) which were observed in four eddy covariance sites (Meiliangwan, Dapukou, Bifenggang and Xiaoleishan i. e. MLW, DPK, BFG and XLS) in Lake Taihu and clearness index (k(t)), the influence of these factors on Lake Taihu surface albedo and the reasons that led to its spatial difference were investigated. The results showed that solar elevation angle played a leading role in the diurnal and seasonal change of lake surface albedo; lake surface albedo reached two peaks in 0 < k(t) < 0.1 and 0.4 < k(t) < 0.6 respectively, when solar elevation angle was below 35 degrees. The surface albedo increased with the increasing wind speed, turbidity and chlorophyll-a concentration. However, wind could indirectly affect surface albedo through leading to the changes in sediment resuspension and chlorophyll-a distribution. The sequence of albedo in the four sites was XLS > BFG > DPK > MLW. XLS and BFG belonged to the higher albedo group, while DPK and MLW belonged to the lower albedo group. The different biological environments caused by aquatic macrophytes and algae resulting in the spatial variation of Lake Taihu surface albedo. The relationship between albedo and chlorophyll-a concentration was not a very sensitive factor for indicating the outbreak of algae. This study can provide theoretical reference for lake albedo parameterization.

  12. NASA Crew Personal Active Dosimeters (CPADs): Leveraging Novel Terrestrial Personal Radiation Monitoring Capabilities for Space Exploration

    NASA Technical Reports Server (NTRS)

    Leitgab, Martin; Semones, Edward; Lee, Kerry

    2016-01-01

    The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.

  13. Measurements of entrance surface dose using a fiber-optic dosimeter in diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Yoo, Wook Jae; Seo, Jeong Ki; Shin, Sang Hun; Han, Ki-Tek; Jeon, Dayeong; Jang, Kyoung Won; Sim, Hyeok In; Lee, Bongsoo; Park, Jang-Yeon

    2013-03-01

    In this study, a fiber-optic dosimeter (FOD) was developed to measure entrance surface dose (ESD) in diagnostic radiology. We measured the scintillating lights in order to obtain ESDs, which changed with the various exposure parameters of a digital radiography (DR) system, such as tube potential, current-time product, focus-surface distance (FSD), and field size, using the fabricated FOD system. From the experimental results, the output light signals of the FOD were similar to the ESDs of the conventional semiconductor dosimeter. In conclusion, we characterized the measured ESDs as functions of exposure parameters by using two different types of dosimeters and demonstrated that the proposed FOD using a plastic scintillating fiber and a plastic optical fiber (POF) makes it possible to measure ESDs in the energy range of diagnostic radiology. From the results of this study, it is anticipated that the FOD will be a useful dosimeter in low-energy photon applications including diagnostic radiology.

  14. Novel composition of polymer gel dosimeters based on N-(Hydroxymethyl)acrylamide for radiation therapy

    NASA Astrophysics Data System (ADS)

    Basfar, Ahmed A.; Moftah, Belal; Rabaeh, Khalid A.; Almousa, Akram A.

    2015-07-01

    A new composition of polymer gel dosimeters is developed based on radiation induced polymerization of N-(Hydroxymethyl)acrylamide (NHMA) for radiotherapy treatment planning. The dosimeters were irradiated by 10 MV photon beam of a medical linear accelerator at a constant dose rate of 600 cGy/min with doses up to 20 Gy. The polymerization occurs and increases with increasing absorbed dose. The dose response of polymer gel dosimeters was studied using nuclear magnetic imaging (NMR) for relaxation rate (R2) of water proton. Dose rate, energy of radiation and the stability of the polymerization after irradiation were investigated. No appreciable effects of these parameters on the performance of the novel gel dosimeters were observed.

  15. Flexydos3D: A new deformable anthropomorphic 3D dosimeter readout with optical CT scanning

    NASA Astrophysics Data System (ADS)

    De Deene, Yves; Hill, Robin; Skyt, Peter S.; Booth, Jeremy

    2015-01-01

    A new deformable polydimethylsiloxane (PDMS) based dosimeter is proposed that can be cast in an anthropomorphic shape and that can be used for 3D radiation dosimetry of deformable targets. The new material has additional favorable characteristics as it is tissue equivalent for high-energy photons, easy to make and is non-toxic. In combination with dual wavelength optical scanning, it is a powerful dosimeter for dose verification of image gated or organ tracked radiotherapy with moving and deforming targets.

  16. Water and tissue equivalency of some gel dosimeters for photon energy absorption.

    PubMed

    Un, Adem

    2013-12-01

    The mass energy absorption coefficients,, effective atomic numbers for photon energy absorption, ZPEAeff, and effective electron numbers for photon-energy absorption, NPEAeff, is calculated for 14 polymer gel dosimeter, five gel dosimeter, soft tissue and water, in the energy range from 1 keV to 20 MeV. The ZPEAeff(Gel)/ZPEAeff(Tissue) and NPEAeff(Gel)/NPEAeff (Tissue) are used to evaluate the tissue equivalency.

  17. Impact of the Fukushima nuclear accident on background radiation doses measured by control dosimeters in Japan.

    PubMed

    Romanyukha, Alexander; King, David L; Kennemur, Lisa K

    2012-05-01

    After the 9.0 magnitude earthquake and subsequent massive tsunami on 11 March 2011 in Japan, several reactors at the Fukushima Daiichi Nuclear Power Plant suffered severe damage. There was immediate participation of U.S. Navy vessels and other United States Department of Defense (DoD) teams that were already in the area at the time of the disaster or arrived shortly thereafter. The correct determination of occupational dose equivalent requires estimation of the background dose component measured by control dosimeters, which is subsequently subtracted from the total dose equivalent measured by personal dosimeters. The purpose of the control dosimeters is to determine the amount of radiation dose equivalent that has accumulated on the dosimeter from background or other non-occupational sources while they are in transit or being stored. Given the release of radioactive material and potential exposure to radiation from the Fukushima Daiichi Nuclear Power Plant and the process by which the U.S. Navy calculates occupational exposure to ionizing radiation, analysis of pre- and post-event control dosimeters is warranted. Several hundred historical dose records from the Naval Dosimetry Center (NDC) database were analyzed and compared with the post-accident dose equivalent data of control dosimeters. As result, it was shown that the dose contribution of the radiation and released radiological materials from the Fukushima nuclear accident to background radiation doses is less than 0.375 μSv d for shallow and deep photon dose equivalent. There is no measurable effect on neutron background exposure. The latter has at least two important conclusions. First, the NDC can use doses measured by control dosimeters at issuing sites in Japan for determination of personnel dose equivalents; second, the dose data from control dosimeters prior to and after the Fukushima accident may be used to assist in dose reconstruction of non-radiological (non-badged) personnel at these locations.

  18. Performance of KCl:Eu2+ storage phosphor dosimeters for low dose measurements

    PubMed Central

    Li, H. Harold; Hansel, Rachael; Knutson, Nels; Yang, Deshan

    2013-01-01

    Recent research has demonstrated that europium doped potassium chloride (KCl:Eu2+) storage phosphor material has the potential to become the physical foundation of a novel and reusable dosimetry system using either film-like devices or devices similar to thermoluminescent dosimeter (TLD) chips. The purposes of this work are to quantify the performance of KCl:Eu2+ prototype dosimeters for low dose measurements and to demonstrate how it can be incorporated into clinical application for in vivo peripheral dose measurements. Pellet-style KCl:Eu2+ dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The dosimeters were read using a laboratory photostimulated luminescence detection system. KCl:Eu2+ prototype storage phosphor dosimeter was capable of measuring a dose-to-water as low as 0.01 cGy from a 6 MV photon beam with a signal-to-noise ratio greater than 6. A pre-readout thermal annealing procedure enabled the dosimeter to be read within an hour post irradiation. After receiving large accumulated doses (~10 kGy), the dosimeters retained linear response in the low dose region with only a 20 percent loss of sensitivity comparing to a fresh sample (zero Gy history). The energy-dependence encountered during low dose peripheral measurements could be accounted for via a single point outside-field calibration per each beam quality. With further development the KCl:Eu2+− based dosimeter could become a versatile and durable dosimetry tool with large dynamic range (sub-cGy to 100 Gy). PMID:23735856

  19. Dosimeter incorporating radiophotoluminescent detectors for thermal neutrons and γ-rays in n-γ fields

    NASA Astrophysics Data System (ADS)

    Salem, Y. O.; Nachab, A.; Roy, C.; Nourreddine, A.

    2016-10-01

    We have developed a dosimeter associating different neutron converters with two radiophotoluminescent detectors to measure thermal neutrons and γ-rays in a mixed n-γ field. Tests show that the H∗(10) and Hp(10) responses to thermal neutrons and γ-rays are linear with detection limits lower than 0.4 mSv. The angular dependence of the dosimeter response is satisfactory and the influence of a phantom on the results is examined.

  20. Climatic Benefit of Swiss Forest Cover Change: Including Albedo Change into Net Carbon Balance

    NASA Astrophysics Data System (ADS)

    Schwaab, J.; Lehning, M.; Bebi, P.

    2012-12-01

    Forests influence climate through physical, chemical and biological processes. It has been shown that warming caused by the comparatively low albedo of forests (albedo-effect), can reduce or even exceed cooling caused by carbon storage in forests (CO2-effect). Although warming caused by albedo and the amount of carbon storage depend on local characteristics, studies are lacking that investigate the combined local patterns of albedo and CO2-effect. Our study area, Switzerland, provides a variety of geographical features and thus the possibility to show how different geographical variables influence the two effects. We used the concept of radiative forcing to compare the effect of a changing albedo and a change in atmospheric CO2 concentration due to land cover change in the past. The change of forest cover was analysed over a period of 12 years based on aerial photographs. We estimate the albedo-effect by combining albedo data derived from the satellite sensor MODIS and data on snow cover derived from the satellite sensor AVHRR. Changes in carbon storage were calculated as differences in biomass and soil stocks of specific land cover classes. We found carbon storage induced cooling to be higher than albedo induced warming everywhere in Switzerland. However, especially in altitudes over 1200 m the albedo-effect reduced the benefits of carbon storage by more than 50%. In lower altitudes the albedo change was less important. The albedo-effect in altitudes above 1200 m was more relevant because of a more persistent snow-cover, a slightly higher global radiation and less additional carbon storage. The relevance of warming caused by an albedo change did not only depend on altitude, but also on the characteristics of forest cover change. While transitions from open land to open forest were accompanied by high albedo changes, the albedo change was only marginal if open forest turned into closed forest. Since snow cover has a large influence on the albedo effect, we included

  1. Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography

    PubMed Central

    Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung

    2016-01-01

    With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation. PMID:26974434

  2. Characterization of the chemical stability of irradiated N-isopropylacrylamide gel dosimeter

    NASA Astrophysics Data System (ADS)

    Huang, Y. R.; Hsieh, L. L.; Chang, Y. J.; Wang, T. H.; Hsieh, B. T.

    2013-08-01

    An investigation of the normoxic NIPAM gel dosimeter has been undertaken. The NIPAM gel dosimeter used in the current study was mainly composed of gelatin, NIPAM, N,N‧-methylenebisacrylamide (BIS), and distilled water. This study aims to measure the change in the chemical structure of the NIPAM gel dosimeter after irradiation via the 13C-NMR, 1H-NMR, and Fourier transform Raman (FT-Raman) spectra. The 13C-NMR experimental results show that the C=C bonds of NIPAM and BIS are at 126.74 and 131.62 ppm, respectively. The intensity of the C-C bond of the NIPAM gel dosimeter increases with the absorbed dose, and the dose-intensity curve of the C-C bond is determined by y=0.0506+79.9(1-e0.16x) (R2=0.9997). 1H-NMR and FT-Raman can also effectively determine the positions of the C=C bonds of NIPAM and BIS, and the intensity decreases as the absorbed radiation dose increases. Hence, 13C-NMR, 1H-NMR, and FT-Raman spectrometers can effectively detect the changes in the chemical structure of the polymer gel dosimeter after irradiation and successfully determine the D50 dosage in the NIPAM gel dosimeter.

  3. N-isopropylacrylamide gel dosimeter to evaluate clinical photon beam characteristics.

    PubMed

    Chiu, Chung-Yu; Tsang, Yuk-Wah; Hsieh, Bor-Tsung

    2014-08-01

    The introduction of beam intensity control concept in current radiotherapy techniques has increased treatment planning complexity. Thus, small-field dose measurement has become increasingly vital. Polymer gel dosimetry method is widely studied. It is the only dose measurement tool that provides 3D dose distribution. This study aims to use an N-isopropylacrylamide (NIPAM) gel dosimeter to conduct beam performance measurements of percentage depth dose (PDD), beam flatness, and symmetry for photon beams with field sizes of 3×3 and 4×4 cm(2). Computed tomography scans were used to readout the gel dosimeters. In the PDD measurement, the NIPAM gel dosimeter and Gafchromic™ EBT3 radiochromic film displayed high consistency in the region deeper than the build-up region. The gel dosimeter dose profile had 3% lower flatness and symmetry measurement at 5 cm depth for different fields compared with that of the Gafchromic™ EBT3 film. During gamma evaluation under 3%/3 mm dose difference/distance-to-agreement standard, the pass rates of the polymer gel dosimeter to the TPS and EBT3 film were both higher than 96%. Given that the gel is tissue equivalent, it did not exhibit the energy dependence problems of radiochromic films. Therefore, the practical use of NIPAM polymer gel dosimeters is enhanced in clinical dose verification. PMID:24836904

  4. Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography.

    PubMed

    Shih, Tian-Yu; Wu, Jay; Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung

    2016-01-01

    With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation. PMID:26974434

  5. Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography.

    PubMed

    Shih, Tian-Yu; Wu, Jay; Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung

    2016-01-01

    With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation.

  6. Characterization of a water-equivalent fiber-optic coupled dosimeter for use in diagnostic radiology

    SciTech Connect

    Hyer, Daniel E.; Fisher, Ryan F.; Hintenlang, David E.

    2009-05-15

    This work reports on the characterization of a new fiber-optic coupled (FOC) dosimeter for use in the diagnostic radiology energy range. The FOC dosimeter was constructed by coupling a small cylindrical plastic scintillator, 500 {mu}m in diameter and 2 mm in length, to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube (PMT). A serial port interface on the PMT permits real-time monitoring of light output from the dosimeter via a custom computer program. The FOC dosimeter offered excellent sensitivity and reproducibility, allowing doses as low as 0.16 mGy to be measured with a coefficient of variation of only 3.64%. Dose linearity was also excellent with a correlation coefficient of 1.000 over exposures ranging from 0.16 to 57.29 mGy. The FOC dosimeter exhibited little angular dependence from axial irradiation, varying by less than 5% over an entire revolution. A positive energy dependence was observed and measurements performed within a scatter medium yielded a 10% variation in sensitivity as beam quality changed due to hardening and scatter across a 16 cm depth range. The current dosimetry system features an array of five PMTs to allow multiple FOC dosimeters to be monitored simultaneously. Overall, the system allows for rapid and accurate dose measurements relevant to a range of diagnostic imaging applications.

  7. The thermoluminescence study of epoxy based LiF:Mg,Cu,P dosimeters

    NASA Astrophysics Data System (ADS)

    Rahangdale, S. R.; Wankhede, S. P.; Kadam, Sonal; Dhabekar, Bhushan. S.; Palikundwar, U. A.; Moharil, S. V.

    2016-05-01

    The LiF:Mg,Cu,P phosphor is the most investigated phosphor in radiation dosimetry. Results on thermoluminescence of the epoxy based LiF:Mg,Cu,P dosimeters irradiated with gamma radiations are presented and compared with results of LiF:Mg,Cu,P powder. The glow curve structure of both LiF powder and dosimeter are same and only difference is found in the glow curve peak temperature. The LiF dosimeters were made from the 5012A and 5012B epoxy. The dosimeters had a mass of about 18 mg, 5.0 mm diameter and 0.5 mm thickness. The sensitivity variation of the dosimeters for exposure to 60Co gamma rays at different angles of incidence of the radiation is found to be within 4%. Its minimum detectable dose is about 3020 µGy. The epoxy based dosimeters withstand different environment and it can be used with general TL reader without need of any special design due to its small size and plane surface.

  8. UV signatures of carbonaceous species on low-albedo asteroids

    NASA Astrophysics Data System (ADS)

    Hendrix, A.; Vilas, F.

    2014-07-01

    Asteroids in the low-albedo classes (C, B, G, F) are known to have spectra that are relatively feature-free in the visible/near-infrared (VNIR) spectral region, making them classically difficult to study in terms of surface mineralogy. Many of these bodies exhibit a 3-micron absorption band (e.g., [1]), which can be used to study hydration and organics. The primary other spectrally active region --- less well studied so far --- is the ultraviolet (UV). In this study, we utilize UV spectra of low-albedo asteroids (C, B, G, and F class) to study surface composition. In particular, we investigate implications for the presence of carbonaceous compounds, including tholins and Polycyclic Aromatic Hydrocarbons (PAHs), which have unique spectral features in the UV. Low-albedo asteroids are typically rather bland spectrally at VNIR wavelengths. Many of these objects exhibit an absorption band near 3 microns, indicative of some type of hydration (OH and-or H_2O). A subset of the asteroids with the 3-micron features also exhibit absorption near 0.7 microns, due to a ferrous-ferric charge-transfer transition likely resulting from aqueous alteration (the interaction of material with liquid water formed by melting of water upon a heating event). Some asteroids likely do not exhibit these features due to a history of heating experienced at some point in the asteroid's evolution. Despite having little spectral activity in the VNIR, all low-albedo asteroids absorb at wavelengths shorter than ˜500 nm. This has been generally attributed to a ferric-iron intervalence charge-transfer transition absorption. Carbon-bearing phases have long been assumed to be important on low-albedo asteroids (e.g., [2]) due to the dark, mostly-featureless VNIR spectra of these bodies. However, there are many forms of carbonaceous species and the species are expected to undergo phase modifications (e.g., due to thermal, aqueous, and radiation processes) that affect the spectra [3,7]. Tholins are residues

  9. Mars Polar Thermal Inertia and Albedo Properties Using TES Data

    NASA Astrophysics Data System (ADS)

    Scherbenski, J. M.; Paige, D. A.

    2002-12-01

    We present north and south polar thermal inertia and albedo maps derived from MGS TES observations. The maps were derived using the same robust approach developed to make polar thermal and inertia and albedo maps using IRTM observationsby Paige, Bachman, and Keegan (1994) and Paige and Keegan (1994). The data processing approach involved reading TES reduced data records in PDS format using the Vanilla software tool, and sending the data down a processing pipeline that constrains and bins the data, and compares it to the results of a diurnal and seasonal thermal model to obtain the best fit thermal inertia and apparent albedo. To facilitate comparison, the TES maps were created at the same Ls ranges as the published IRTM maps using TES spectral surface temperature results. The north polar maps used TES nadir observations obtained during a 50-day period from Ls 98.39 to Ls 121.25. The south polar maps used TES nadir observations obtained during a 30-day period from Ls 321.58 to 338.07. The creation of these maps employ a basic thermal model that does not include the effects of the atmosphere, as well as a one-dimensional radiative-convective model that does include the effects of the atmosphere. The spatial resolution of the north polar maps is 0.1 degrees of latitude and 1.0 degrees of longitude. The spatial resolution of the south polar maps is 2 degrees of latitude and 2 degrees of longitude. The TES north polar maps show the residual cap area in significantly greater detail than has been available previously. The IRTM maps showed that the north polar sand sea that surrounds the cap has unusually low thermal inertia. The TES maps confirm this conclusion, but also show that the dark renetrant features in chama boreal and elsewhere on the cap also have low thermal inertias. This strongly supports the proposal that these dark rentrants are the sources of the dune material. The TES maps also show that the darker layered deposits which are found at the periphery of the

  10. Splash and Re-entrant Albedo Fluxes Measured in the PAMELA Experiment

    NASA Astrophysics Data System (ADS)

    Mayorov, A. G.; Moiseeva, A. I.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; DeDonato, C.; DeSantis, C.; DeSimone, N.; DiFelice, V.; Formato, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Kvashnin, A. A.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorova, M. A.; Menn, W.; Merge', M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Pizzolotto, C.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Zverev, V. G.

    This work devoted to the description of the method for splash albedo protons identification in the satellite-born experiment PAMELA. In contrast to the reentrant albedo particles, which enter into the main aperture of the instrument, the direct albedo particles enter from the opposite direction, so they pass a few detectors, including calorimeter, before being register by the magnetic spectrometer. The developed method take into account the influence of these detectors on the selection of events and measurements of their characteristics. To test this method the energy spectrum of reentrant albedo protons in various regions of the near-Earth space reconstructed; it is in a good agreement with the classical measurements in the main aperture. Therefore, this method can be useful to obtain a new physical data about fluxes of splash albedo protons in the PAMELA experiment, which, unlike the reentrant albedo, can be study even at high geomagnetic latitudes.

  11. Earth's albedo variations 1998-2014 as measured from ground-based earthshine observations

    NASA Astrophysics Data System (ADS)

    Palle, E.; Goode, P. R.; Montañés-Rodríguez, P.; Shumko, A.; Gonzalez-Merino, B.; Lombilla, C. Martinez; Jimenez-Ibarra, F.; Shumko, S.; Sanroma, E.; Hulist, A.; Miles-Paez, P.; Murgas, F.; Nowak, G.; Koonin, S. E.

    2016-05-01

    The Earth's albedo is a fundamental climate parameter for understanding the radiation budget of the atmosphere. It has been traditionally measured not only from space platforms but also from the ground for 16 years from Big Bear Solar Observatory by observing the Moon. The photometric ratio of the dark (earthshine) to the bright (moonshine) sides of the Moon is used to determine nightly anomalies in the terrestrial albedo, with the aim of quantifying sustained monthly, annual, and/or decadal changes. We find two modest decadal scale cycles in the albedo, but with no significant net change over the 16 years of accumulated data. Within the evolution of the two cycles, we find periods of sustained annual increases, followed by comparable sustained decreases in albedo. The evolution of the earthshine albedo is in remarkable agreement with that from the Clouds and the Earth's Radiant Energy System instruments, although each method measures different slices of the Earth's Bond albedo.

  12. A REVISED ASTEROID POLARIZATION-ALBEDO RELATIONSHIP USING WISE/NEOWISE DATA

    SciTech Connect

    Masiero, Joseph R.; Mainzer, A. K.; Bauer, J. M.; Wright, E. L.; McMillan, R. S.; Tholen, D. J.; Blain, A. W.

    2012-04-20

    We present a reanalysis of the relationship between asteroid albedo and polarization properties using the albedos derived from the Wide-field Infrared Survey Explorer. We find that the function that best describes this relation is a three-dimensional linear fit in the space of log (albedo)-log (polarization slope)-log (minimum polarization). When projected to two dimensions, the parameters of the fit are consistent with those found in previous work. We also define p* as the quantity of maximal polarization variation when compared with the albedo and present the best-fitting albedo-p* relation. Some asteroid taxonomic types stand out in this three-dimensional space, notably the E, B, and M Tholen types, while others cluster in clumps coincident with the S- and C-complex bodies. We note that both low albedo and small (D < 30 km) asteroids are underrepresented in the polarimetric sample, and we encourage future polarimetric surveys to focus on these bodies.

  13. Albedo Drop on the Greenland Ice Sheet: Relative Impacts of Wet and Dry Snow Processes

    NASA Astrophysics Data System (ADS)

    Chen, J.; Polashenski, C.

    2014-12-01

    The energy balance of the Greenland Ice Sheet (GIS) is strongly impacted by changes in snow albedo. MODIS (Moderate Resolution Imaging Spectroradiometer) observations indicate that the GIS albedo has dropped since the early part of this century. We analyze data from the MODIS products MOD10A1 for broadband snow albedo and MOD09A1 for surface spectral reflectance since 2001 to better explain the physical mechanisms driving these changes. The MODIS products are filtered, and the data is masked using microwave-derived surface melt maps to isolate albedo changes due to dry snow processes from those driven by melt impacts. Results show that the majority of recent changes in the GIS albedo - even at high elevations - are driven by snow wetting rather than dry snow processes such as grain metamorphosis and aerosol impurity deposition. The spectral signature of the smaller changes occurring within dry snow areas suggests that grain metamorphosis dominates the albedo decline in these regions.

  14. Effect of reflectance model choice on earthshine-based terrestrial albedo determinations.

    NASA Astrophysics Data System (ADS)

    Thejll, Peter; Gleisner, Hans; Flynn, Chris

    2016-04-01

    Earthshine observations can be used to determine near-hemispheric average terrestrial albedos by careful observation of the relative strength of the earthshine-lit half of the Moon coupled with correct modelling of the reflectances of Earth and Moon, as well as lunar single-scattering albedo maps. Using our own observations of the earthshine, from Mauna Loa Observatory in 2011-12, we investigate the influence of the choice of bidirectional reflectance models for the Moon on derived terrestrial albedos. We find a considerable dependence on albedo results in this choice, and discuss ways to determine what the origin of the dependence is - e.g is it in the joint choices of lunar and terrestrial BRDFs, or is the choice of terrestrial BRDF less important than the lunar one? We report on the results of modelling lunar reflectance and albedo in 6 ways and terrestrial reflectance in two ways, assuming a uniform single-scattering albedo on Earth.

  15. Can increasing albedo of existing ship wakes reduce climate change?

    NASA Astrophysics Data System (ADS)

    Crook, Julia A.; Jackson, Lawrence S.; Forster, Piers M.

    2016-02-01

    Solar radiation management schemes could potentially alleviate the impacts of global warming. One such scheme could be to brighten the surface of the ocean by increasing the albedo and areal extent of bubbles in the wakes of existing shipping. Here we show that ship wake bubble lifetimes would need to be extended from minutes to days, requiring the addition of surfactant, for ship wake area to be increased enough to have a significant forcing. We use a global climate model to simulate brightening the wakes of existing shipping by increasing wake albedo by 0.2 and increasing wake lifetime by ×1440. This yields a global mean radiative forcing of -0.9 ± 0.6 Wm-2 (-1.8 ± 0.9 Wm-2 in the Northern Hemisphere) and a 0.5°C reduction of global mean surface temperature with greater cooling over land and in the Northern Hemisphere, partially offsetting greenhouse gas warming. Tropical precipitation shifts southward but remains within current variability. The hemispheric forcing asymmetry of this scheme is due to the asymmetry in the distribution of existing shipping. If wake lifetime could reach ~3 months, the global mean radiative forcing could potentially reach -3 Wm-2. Increasing wake area through increasing bubble lifetime could result in a greater temperature reduction, but regional precipitation would likely deviate further from current climatology as suggested by results from our uniform ocean albedo simulation. Alternatively, additional ships specifically for the purpose of geoengineering could be used to produce a larger and more hemispherically symmetrical forcing.

  16. Surface Albedo/BRDF Parameters (Terra/Aqua MODIS)

    DOE Data Explorer

    Trishchenko, Alexander

    2008-01-15

    Spatially and temporally complete surface spectral albedo/BRDF products over the ARM SGP area were generated using data from two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on Terra and Aqua satellites. A landcover-based fitting (LBF) algorithm is developed to derive the BRDF model parameters and albedo product (Luo et al., 2004a). The approach employs a landcover map and multi-day clearsky composites of directional surface reflectance. The landcover map is derived from the Landsat TM 30-meter data set (Trishchenko et al., 2004a), and the surface reflectances are from MODIS 500m-resolution 8-day composite products (MOD09/MYD09). The MOD09/MYD09 data are re-arranged into 10-day intervals for compatibility with other satellite products, such as those from the NOVA/AVHRR and SPOT/VGT sensors. The LBF method increases the success rate of the BRDF fitting process and enables more accurate monitoring of surface temporal changes during periods of rapid spring vegetation green-up and autumn leaf-fall, as well as changes due to agricultural practices and snowcover variations (Luo et al., 2004b, Trishchenko et al., 2004b). Albedo/BRDF products for MODIS on Terra and MODIS on Aqua, as well as for Terra/Aqua combined dataset, are generated at 500m spatial resolution and every 10-day since March 2000 (Terra) and July 2002 (Aqua and combined), respectively. The purpose for the latter product is to obtain a more comprehensive dataset that takes advantages of multi-sensor observations (Trishchenko et al., 2002). To fill data gaps due to cloud presence, various interpolation procedures are applied based on a multi-year observation database and referring to results from other locations with similar landcover property. Special seasonal smoothing procedure is also applied to further remove outliers and artifacts in data series.

  17. Independent pixel and Monte Carlo estimates of stratocumulus albedo

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Ridgway, William; Wiscombe, Warren J.; Gollmer, Steven; HARSHVARDHAN

    1994-01-01

    Monte Carlo radiative transfer methods are employed here to estimate the plane-parallel albedo bias for marine stratocumulus clouds. This is the bias in estimates of the mesoscale-average albedo, which arises from the assumption that cloud liquid water is uniformly distributed. The authors compare such estimates with those based on a more realistic distribution generated from a fractal model of marine stratocumulus clouds belonging to the class of 'bounded cascade' models. In this model the cloud top and base are fixed, so that all variations in cloud shape are ignored. The model generates random variations in liquid water along a single horizontal direction, forming fractal cloud streets while conserving the total liquid water in the cloud field. The model reproduces the mean, variance, and skewness of the vertically integrated cloud liquid water, as well as its observed wavenumber spectrum, which is approximately a power law. The Monte Carlo method keeps track of the three-dimensional paths solar photons take through the cloud field, using a vectorized implementation of a direct technique. The simplifications in the cloud field studied here allow the computations to be accelerated. The Monte Carlo results are compared to those of the independent pixel approximation, which neglects net horizontal photon transport. Differences between the Monte Carlo and independent pixel estimates of the mesoscale-average albedo are on the order of 1% for conservative scattering, while the plane-parallel bias itself is an order of magnitude larger. As cloud absorption increases, the independent pixel approximation agrees even more closely with the Monte Carlo estimates. This result holds for a wide range of sun angles and aspect ratios. Thus, horizontal photon transport can be safely neglected in estimates of the area-average flux for such cloud models. This result relies on the rapid falloff of the wavenumber spectrum of stratocumulus, which ensures that the smaller

  18. Albedos and densities of the inner satellites of Saturn

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1974-01-01

    Broad-band radiometry at 20 microns is presented for Rhea and Dione; the measured flux densities, together with visual photometry, indicate that both satellites have geometric albedos near 0.6 and that their radii are, respectively, 800 plus or minus 125 and 575 plus or minus 100 km. The density of Dione is 1.4 plus or minus 0.6 g per cu cm; for Tethys, Enceladus, and Mimas, whose densities have not been measured, a 'photometric density' is defined from the available data, and it is shown that their densities are probably near unity. These satellites must therefore all be composed primarily of ices.

  19. The Opposition Phase Curve in Low Albedo Media

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.; Hapke, B. W.; Smythe, W. D.; Hale, A. S.; Piatek, J. L.

    2003-04-01

    Introduction: We report the results of an investigation into the opposition surge of low albedo particulate materials of varying particle size and packing density. These very low albedo materials exhibit nearly constant circular polarization ratio with decreasing phase angle consistent with the elimination of shadows being the overwhelming contributitor to the phase curve. The Experiment: The measurements were made on the long arm goniometer at NASA's Jet Propulsion Laboratory The samples of were presented with linearly and circularly polarized light from a laser of wavelength 0.633 mm. The samples (SiC, B_4C, Fe_3O_4 and Co_2O_3) differed in reflectance from 13% to 1.6%. The reflectance of each sample measured at 5^o phase angle relative to Spectralonä was, 13%, 5%, 2.3% and 1.7% for the SiC and B_4C, Fe_3O_4 and Co_2O_3 respectively. They were presented with light that was polarized in and perpendicular to the scattering plane. A quarter wave plate was inserted into the optical train at appropriate places to permit the samples to be presented with both senses of circular polarization. The scattered beam was analyzed in both senses of linear and circular polarization. We combined the data from all of the polarization configurations and these are shown as integrated phase curves. The Results: The phase curves all exhibit an increase in reflectance as phase angle decreases. From 5 to 0^o.05 SiC exhibits a non-linear increase in circular polarization ratio (CPR) compared to the more absorbing media. The increase in CPR with decreasing phase angle can only be caused by significant multiple scattering in the medium. This is consistent with coherent backscattering. Discussion: We have previously shown that significant multiple scattering is observed in materials of high reflectance (70--90%) We found the result for SiC to be unusual given that is it so much more absorbing. However, if the reflectance of a material decreases still further (below (10%) the contribution

  20. Albedo, thermal inertia and rotation of ring particles (Invited)

    NASA Astrophysics Data System (ADS)

    Morishima, R.; Spilker, L. J.; Ohtsuki, K.; Cassini Cirs Ring Team

    2010-12-01

    Since the Saturn orbit insertion of the Cassini spacecraft in mid-2004 up to now, the Cassini composite infrared spectrometer (CIRS) has measured temperatures of Saturn's main rings at various observational geometries. We present results of parameter fits using our new thermal model (Morishima et al. 2009). Our model is based on classical radiative transfer and takes into account the heat transport due to particle motion in the azimuthal and vertical directions. The model assumes a bimodal size distribution consisting of small fast rotators and large slow rotators. Important parameters are the Bolometric bond albedo, A_V, the fraction of fast rotators in cross section, f_fast, and the thermal inertia, Γ. Two different data sets are used to estimate these parameters. The first set, which consists of four radial scans obtained at low and high solar phases both on the lit and unlit faces of rings (Spilker et al. 2006), is suitable for accurate estimations of A_V and f_fast with high radial resolution. Another one, which consists of azimuthal scans that include data in Saturn shadow (Leyrat et al. 2008), is suitable for estimations of Γ. The estimated parameters are shown in Fig.1. The albedo is 0.1-0.4, 0.5-0.7, 0.4, 0.5 for the C ring, the B ring, the Cassini division, and the A ring, respectively. The fraction of fast rotators is roughly half for all the rings. The thermal inertia is 7-21 in MKS units. For the mid B ring, values of parameters obtained from two data sets are consistent with each other if ring particles are assumed to bounce at the midplane due to mutual collisions. We also find that fits to azimuthal scans are improved if Γ for fast rotators is larger than that for slow rotators. Albedo, fraction of fast rotators in cross section, and thermal inertia estimated from parameter fits. Two different thermal data sets are used: radial scans at four different geometries (solid curves) and azimuthal scans including data in Saturn shadow (diamonds). Dashed

  1. The asteroid albedo scale. II - Laboratory polarimetry of dark carbon-bearing silicates

    NASA Technical Reports Server (NTRS)

    Zellner, B.; Lebertre, T.; Day, K.

    1977-01-01

    Laboratory reflection polarimetry is presented for eight samples of artificial, poorly crystalline magnesian silicates with varying admixtures of carbon black. The polarimetric slope-albedo law saturates for geometric albedos lower than about 0.05, and good agreement with the telescopic polarization-phase curves of C-type asteroids is found for albedos as low as 0.02. Thus the conclusion from thermal radiometry is confirmed that the C objects are very dark, darker than any known carbonaceous chondrite.

  2. DOSIMETRIC PROPERTIES OF THE NEW TLD ALBEDO NEUTRON DOSEMETER AWST-TL-GD 04.

    PubMed

    Haninger, T; Henniger, J

    2016-09-01

    A new official albedo dosemeter based on thermoluminescent detectors has been introduced in 2015 by the individual monitoring service of the Helmholtz Zentrum München for monitoring persons who are exposed occupationally against photon and neutron radiation. To enhance the sensitivity for fast neutrons, a new badge with an enlarged albedo window has been developed at TU Dresden. The properties of the new albedo dosemeter are discussed, and the results of official intercomparisons and field calibrations are shown.

  3. Detecting Low-Contrast Features in the Cosmic Ray Albedo Proton Map of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, J. K.; Schwadron, N.; Spence, H. E.; Golightly, M. J.; Case, A. W.; Smith, S.; Blake, J. B.; Kasper, J.; Looper, M. D.; Mazur, J. E.; Townsend, L. W.; Zeitlin, C.; Stubbs, T. J.

    2014-01-01

    High energy cosmic rays constantly bombard the lunar regolith, producing (via nuclear evaporation) secondary 'albedo' or 'splash' particles like protons and neutrons, some of which escape back to space. Lunar Prospector and the Lunar Reconnaissance Orbiter (LRO), have shown that the energy distribution of albedo neutrons is modulated by the elemental composition of the lunar regolith, and by ice deposits in permanently shadowed polar craters. Here we investigate an analogous phenomenon with high energy ((is) approximately 100 MeV) lunar albedo protons.

  4. DOSIMETRIC PROPERTIES OF THE NEW TLD ALBEDO NEUTRON DOSEMETER AWST-TL-GD 04.

    PubMed

    Haninger, T; Henniger, J

    2016-09-01

    A new official albedo dosemeter based on thermoluminescent detectors has been introduced in 2015 by the individual monitoring service of the Helmholtz Zentrum München for monitoring persons who are exposed occupationally against photon and neutron radiation. To enhance the sensitivity for fast neutrons, a new badge with an enlarged albedo window has been developed at TU Dresden. The properties of the new albedo dosemeter are discussed, and the results of official intercomparisons and field calibrations are shown. PMID:26405220

  5. Characterization of a new radiochromic three-dimensional dosimeter

    PubMed Central

    Guo, P. Y.; Adamovics, J. A.; Oldham, M.

    2006-01-01

    The development of intensity-modulated radiotherapy (IMRT) has created a clear need for a dosimeter that can accurately and conveniently measure dose distributions in three dimensions to assure treatment quality. PRESAGE™ is a new three dimensional (3D) dosimetry material consisting of an optically clear polyurethane matrix, containing a leuco dye that exhibits a radiochromic response when exposed to ionizing radiation. A number of potential advantages accrue over other gel dosimeters, including insensitivity to oxygen, radiation induced light absorption contrast rather than scattering contrast, and a solid texture amenable to machining to a variety of shapes and sizes without the requirement of an external container. In this paper, we introduce an efficient method to investigate the basic properties of a 3D dosimetry material that exhibits an optical dose response. The method is applied here to study the key aspects of the optical dose response of PRESAGE™: linearity, dose rate dependency, reproducibility, stability, spectral changes in absorption, and temperature effects. PRESAGE™ was prepared in 1×1×4.5 cm3 optical cuvettes for convenience and was irradiated by both photon and electron beams to different doses, dose rates, and energies. Longer PRESAGE™ columns (2 ×2×13 cm3) were formed without an external container, for measurements of photon and high energy electron depth-dose curves. A linear optical scanning technique was used to detect the depth distribution of radiation induced optical density (OD) change along the PRESAGE™ columns and cuvettes. Measured depth-OD curves were compared with percent depth dose (PDD). Results indicate that PRESAGE™ has a linear optical response to radiation dose (with a root mean square error of ∼1%), little dependency on dose rate (∼2%), high intrabatch reproducibility (<2%), and can be stable (∼2%) during 2 hours to 2 days post irradiation. Accurate PRESAGE™ dosimetry requires temperature control

  6. An investigation of a PRESAGE® in vivo dosimeter for brachytherapy

    NASA Astrophysics Data System (ADS)

    Vidovic, A. K.; Juang, T.; Meltsner, S.; Adamovics, J.; Chino, J.; Steffey, B.; Craciunescu, O.; Oldham, M.

    2014-07-01

    Determining accurate in vivo dosimetry in brachytherapy treatment with high dose gradients is challenging. Here we introduce, investigate, and characterize a novel in vivo dosimeter and readout technique with the potential to address this problem. A cylindrical (4 mm × 20 mm) tissue equivalent radiochromic dosimeter PRESAGE® in vivo (PRESAGE®-IV) is investigated. Two readout methods of the radiation induced change in optical density (OD) were investigated: (i) volume-averaged readout by spectrophotometer, and (ii) a line profile readout by 2D projection imaging utilizing a high-resolution (50 micron) telecentric optical system. Method (i) is considered the gold standard when applied to PRESAGE® in optical cuvettes. The feasibility of both methods was evaluated by comparison to standard measurements on PRESAGE® in optical cuvettes via spectrophotometer. An end-to-end feasibility study was performed by a side-by-side comparison with TLDs in an 192Ir HDR delivery. 7 and 8 Gy was delivered to PRESAGE®-IV and TLDs attached to the surface of a vaginal cylinder. Known geometry enabled direct comparison of measured dose with a commissioned treatment planning system. A high-resolution readout study under a steep dose gradient region showed 98.9% (5%/1 mm) agreement between PRESAGE®-IV and Gafchromic® EBT2 Film. Spectrometer measurements exhibited a linear dose response between 0-15 Gy with sensitivity of 0.0133 ± 0.0007 ΔOD/(Gy ṡ cm) at the 95% confidence interval. Method (ii) yielded a linear response with sensitivity of 0.0132 ± 0.0006 (ΔOD/Gy), within 2% of method (i). Method (i) has poor spatial resolution due to volume averaging. Method (ii) has higher resolution (˜1 mm) without loss of sensitivity or increased noise. Both readout methods are shown to be feasible. The end-to-end comparison revealed a 2.5% agreement between PRESAGE®-IV and treatment plan in regions of uniform high dose. PRESAGE®-IV shows promise for in vivo dose verification

  7. Validation of an "Intelligent Mouthguard" Single Event Head Impact Dosimeter.

    PubMed

    Bartsch, Adam; Samorezov, Sergey; Benzel, Edward; Miele, Vincent; Brett, Daniel

    2014-11-01

    Dating to Colonel John Paul Stapp MD in 1975, scientists have desired to measure live human head impacts with accuracy and precision. But no instrument exists to accurately and precisely quantify single head impact events. Our goal is to develop a practical single event head impact dosimeter known as "Intelligent Mouthguard" and quantify its performance on the benchtop, in vitro and in vivo. In the Intelligent Mouthguard hardware, limited gyroscope bandwidth requires an algorithm-based correction as a function of impact duration. After we apply gyroscope correction algorithm, Intelligent Mouthguard results at time of CG linear acceleration peak correlate to the Reference Hybrid III within our tested range of pulse durations and impact acceleration profiles in American football and Boxing in vitro tests: American football, IMG=1.00REF-1.1g, R2=0.99; maximum time of peak XYZ component imprecision 3.6g and 370 rad/s2; maximum time of peak azimuth and elevation imprecision 4.8° and 2.9°; maximum average XYZ component temporal imprecision 3.3g and 390 rad/s2. Boxing, IMG=1.00REF-0.9 g, R2=0.99, R2=0.98; maximum time of peak XYZ component imprecision 3.9 g and 390 rad/s2, maximum time of peak azimuth and elevation imprecision 2.9° and 2.1°; average XYZ component temporal imprecision 4.0 g and 440 rad/s2. In vivo Intelligent Mouthguard true positive head impacts from American football players and amateur boxers have temporal characteristics (first harmonic frequency from 35 Hz to 79 Hz) within our tested benchtop (first harmonic frequency<180 Hz) and in vitro (first harmonic frequency<100 Hz) ranges. Our conclusions apply only to situations where the rigid body assumption is valid, sensor-skull coupling is maintained and the ranges of tested parameters and harmonics fall within the boundaries of harmonics validated in vitro. For these situations, Intelligent Mouthguard qualifies as a single event dosimeter in American football and Boxing.

  8. Investigating the spread in surface albedo for snow-covered forests in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Wang, Libo; Cole, Jason N. S.; Bartlett, Paul; Verseghy, Diana; Derksen, Chris; Brown, Ross; Salzen, Knut

    2016-02-01

    This study investigates the role of leaf/plant area index (LAI/PAI) specification on the large spread of winter albedo simulated by climate models. To examine the sensitivity of winter albedo to LAI, we perform a sensitivity analysis using two methods commonly used to compute albedo in snow-covered forests as well as diagnostic calculations within version 4.2 of the Canadian Atmospheric Model for which PAI is systematically varied. The results show that the simulated albedo is very sensitive to negative PAI biases, especially for smaller PAI values. The LAI and surface albedo of boreal forests in the presence of snow simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) models are evaluated using satellite observations. The evaluation of CMIP5 models suggest that inaccurate tree cover fraction due to improper plant functional type specification or erroneous LAI parameterization in some models explains, in part, an observed positive bias in winter albedo over boreal forest regions of the Northern Hemisphere. This contributes to a large intermodel spread in simulated surface albedo in the presence of snow over these regions and is largely responsible for uncertainties in simulated snow-albedo feedback strength. Errors are largest (+20-40%) in models with large underestimation of LAI but are typically within ±15% when simulated LAI is within the observed range. This study underscores the importance of accurate representation of vegetation distribution and parameters in realistic simulation of surface albedo.

  9. Investigating the spread of surface albedo in snow covered forests in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Wang, Libo; Cole, Jason; Bartlett, Paul; Verseghy, Diana; Derksen, Chris; Brown, Ross; von Salzen, Knut

    2016-04-01

    This study investigates the role of leaf/plant area index (LAI/PAI) specification on the large spread of winter albedo simulated by climate models. To examine the sensitivity of winter albedo to LAI, we perform a sensitivity analysis using two methods commonly used to compute albedo in snow-covered forests as well as diagnostic calculations within version 4.2 of the Canadian Atmospheric Model for which PAI is systematically varied. The results show that the simulated albedo is very sensitive to negative PAI biases, especially for smaller PAI values. The LAI and surface albedo of boreal forests in the presence of snow simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) models are evaluated using satellite observations. The evaluation of CMIP5 models suggest that inaccurate tree cover fraction due to improper plant functional type specification or erroneous LAI parameterization in some models explains, in part, an observed positive bias in winter albedo over boreal forest regions of the Northern Hemisphere. This contributes to a large intermodel spread in simulated surface albedo in the presence of snow over these regions and is largely responsible for uncertainties in simulated snow-albedo feedback strength. Errors are largest (+20-40 %) in models with large underestimation of LAI but are typically within ±15% when simulated LAI is within the observed range. This study underscores the importance of accurate representation of vegetation distribution and parameters in realistic simulation of surface albedo.

  10. Influence of surface-albedo in subtropical regions on July circulation

    NASA Technical Reports Server (NTRS)

    Sud, Y.; Fennessy, M.

    1981-01-01

    A simulation study to examine the influence of surface-albedo on July circulation in subtropical regions is presented. The results are based on two 47-day integrations. In the first integration, called the control run, surface albedos were normally prescribed, whereas in the second integration, called the anomaly run, the surface albedo was modified in four regions: the Sahel in Africa, the Great Plains in the United States, the Thar Desert border in the Indian subcontinent, and Brazil in South America. Each run was started from observed initial conditions for June 15, 1979 based on NMC analysis. The surface albedo in each of the regions was arbitrarily made 30%.

  11. Surface features on Mars: Ground-based albedo and radar compared with Mariner 9 topography

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1973-01-01

    Earth-based albedo maps of Mars were compared with Mariner 9 television data and ground-based radar profiles to investigate the nature of the bright and dark albedo features. Little correlation was found except at the boundaries of classical albedo features, where some topographic control is indicated. Wind-blown dust models for seasonal and secular albedo variations are supported, but it is not clear whether the fines are derived from bright or dark parent rock. Mars, like the Earth and Moon, has probably generated two distinct types of crustal material.

  12. Natural versus anthropogenic factors affecting low-level cloud albedo over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Falkowski, Paul G.; Kim, Yongseung; Kolber, Zbigniew; Wilson, Cara; Wirick, Creighton; Cess, Robert

    1992-01-01

    Cloud albedo plays a key role in regulating earth's climate. Cloud albedo depends on column-integrated liquid water content and the density of cloud condensation nuclei, which consists primarily of submicrometer-sized aerosol sulfate particles. A comparison of two independent satellite data sets suggests that, although anthropogenic sulfate emissions may enhance cloud albedo immediately adjacent to the east coast of the United States, over the central North Atlantic Ocean the variability in albedo can be largely accounted for by natural marine and atmospheric processes that probably have remained relatively constant since the beginning of the industrial revolution.

  13. Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations.

    PubMed

    Loranty, Michael M; Berner, Logan T; Goetz, Scott J; Jin, Yufang; Randerson, James T

    2014-02-01

    The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered and snow-free albedo (Δα), which influences predictions of future warming in coupled climate models, despite being poorly constrained at seasonal and century time scales. Here, we compare satellite observations and coupled climate model representations of albedo and tree cover for the boreal and Arctic region. Our analyses reveal consistent declines in albedo with increasing tree cover, occurring south of latitudinal tree line, that are poorly represented in coupled climate models. Observed relationships between albedo and tree cover differ substantially between snow-covered and snow-free periods, and among plant functional type. Tree cover in models varies widely but surprisingly does not correlate well with model albedo. Furthermore, our results demonstrate a relationship between tree cover and snow-albedo feedback that may be used to accurately constrain high latitude albedo feedbacks in coupled climate models under current and future vegetation distributions.

  14. Changes on albedo after a large forest fire in Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Quintano, Carmen; Fernández-Manso, Alfonso; Fernández-García, Victor; Marcos, Elena; Calvo, Leonor

    2015-09-01

    Fires are one of the main causes of environmental alteration in Mediterranean forest ecosystems. Albedo varies and evolves seasonally based on solar illumination. It is greatly influenced by changes on vegetation: vegetation growth, cutting/planting forests or forest fires. This work analyzes albedo variations due to a large forest fire that occurred on 19- 21 September 2012 in northwestern Spain. From this area, albedo post-fire images (immediately and 1-year after fire) were generated from Landsat 7 Enhanced Thematic Mapper (ETM+) data. Specifically we considered total shortwave albedo, total-, direct-, and diffuse-visible, and near-infrared albedo. Nine to twelve weeks after fire, 111 field plots were measured (27 unburned plots, 84 burned plots). The relationship between albedo values and thematic class (burned/unburned) was evaluated by one-way analysis of variance. Our results demonstrate that albedo changes were related to burned/unburned variable with statistical significance, indicating the importance of forestry areas as regulators of land surface energy fluxes and revealing the potential of post-fire albedo for assessing burned areas. Future research, however, is needed to evaluate the persistence of albedo changes.

  15. Development of a wavelength-separated type scintillator with optical fiber (SOF) dosimeter to compensate for the Cerenkov radiation effect.

    PubMed

    Ishikawa, Masayori; Nagase, Naomi; Matsuura, Taeko; Hiratsuka, Junichi; Suzuki, Ryusuke; Miyamoto, Naoki; Sutherland, Kenneth Lee; Fujita, Katsuhisa; Shirato, Hiroki

    2015-03-01

    The scintillator with optical fiber (SOF) dosimeter consists of a miniature scintillator mounted on the tip of an optical fiber. The scintillator of the current SOF dosimeter is a 1-mm diameter hemisphere. For a scintillation dosimeter coupled with an optical fiber, measurement accuracy is influenced by signals due to Cerenkov radiation in the optical fiber. We have implemented a spectral filtering technique for compensating for the Cerenkov radiation effect specifically for our plastic scintillator-based dosimeter, using a wavelength-separated counting method. A dichroic mirror was used for separating input light signals. Individual signal counting was performed for high- and low-wavelength light signals. To confirm the accuracy, measurements with various amounts of Cerenkov radiation were performed by changing the incident direction while keeping the Ir-192 source-to-dosimeter distance constant, resulting in a fluctuation of <5%. Optical fiber bending was also addressed; no bending effect was observed for our wavelength-separated SOF dosimeter.

  16. Development of a fiber-optic dosimeter based on modified direct measurement for real-time dosimetry during radiation diagnosis

    NASA Astrophysics Data System (ADS)

    Yoo, W. J.; Shin, S. H.; Jeon, D.; Han, K.-T.; Hong, S.; Kim, S. G.; Cho, S.; Lee, B.

    2013-09-01

    For applying modified direct measurement, we developed a fiber-optic dosimeter (FOD) with two dosimeter probes to infer the entrance surface dose (ESD) at the center of an x-ray beam field without the obstruction of radiation imaging. The dosimeter probe of the FOD was fabricated by coupling a plastic scintillating fiber to a plastic optical fiber. Under varying exposure parameters, we measured the scintillating light signals using two dosimeter probes, which were placed at the center and the edge of the beam field, respectively, and compared the results with the absorbed doses obtained using a conventional semiconductor dosimeter. Various correlations between the two dosimeter probes according to the exposure parameters were obtained for measuring ESD using a new modified direct measurement approach during a medical imaging task.

  17. Development of a wavelength-separated type scintillator with optical fiber (SOF) dosimeter to compensate for the Cerenkov radiation effect

    PubMed Central

    Ishikawa, Masayori; Nagase, Naomi; Matsuura, Taeko; Hiratsuka, Junichi; Suzuki, Ryusuke; Miyamoto, Naoki; Sutherland, Kenneth Lee; Fujita, Katsuhisa; Shirato, Hiroki

    2015-01-01

    The scintillator with optical fiber (SOF) dosimeter consists of a miniature scintillator mounted on the tip of an optical fiber. The scintillator of the current SOF dosimeter is a 1-mm diameter hemisphere. For a scintillation dosimeter coupled with an optical fiber, measurement accuracy is influenced by signals due to Cerenkov radiation in the optical fiber. We have implemented a spectral filtering technique for compensating for the Cerenkov radiation effect specifically for our plastic scintillator-based dosimeter, using a wavelength-separated counting method. A dichroic mirror was used for separating input light signals. Individual signal counting was performed for high- and low-wavelength light signals. To confirm the accuracy, measurements with various amounts of Cerenkov radiation were performed by changing the incident direction while keeping the Ir-192 source-to-dosimeter distance constant, resulting in a fluctuation of <5%. Optical fiber bending was also addressed; no bending effect was observed for our wavelength-separated SOF dosimeter. PMID:25618136

  18. Investigations of interference between electromagnetic transponders and wireless MOSFET dosimeters: A phantom study

    PubMed Central

    Su, Zhong; Zhang, Lisha; Ramakrishnan, V.; Hagan, Michael; Anscher, Mitchell

    2011-01-01

    Purpose: To evaluate both the Calypso Systems’ (Calypso Medical Technologies, Inc., Seattle, WA) localization accuracy in the presence of wireless metal–oxide–semiconductor field-effect transistor (MOSFET) dosimeters of dose verification system (DVS, Sicel Technologies, Inc., Morrisville, NC) and the dosimeters’ reading accuracy in the presence of wireless electromagnetic transponders inside a phantom.Methods: A custom-made, solid-water phantom was fabricated with space for transponders and dosimeters. Two inserts were machined with positioning grooves precisely matching the dimensions of the transponders and dosimeters and were arranged in orthogonal and parallel orientations, respectively. To test the transponder localization accuracy with∕without presence of dosimeters (hypothesis 1), multivariate analyses were performed on transponder-derived localization data with and without dosimeters at each preset distance to detect statistically significant localization differences between the control and test sets. To test dosimeter dose-reading accuracy with∕without presence of transponders (hypothesis 2), an approach of alternating the transponder presence in seven identical fraction dose (100 cGy) deliveries and measurements was implemented. Two-way analysis of variance was performed to examine statistically significant dose-reading differences between the two groups and the different fractions. A relative-dose analysis method was also used to evaluate transponder impact on dose-reading accuracy after dose-fading effect was removed by a second-order polynomial fit.Results: Multivariate analysis indicated that hypothesis 1 was false; there was a statistically significant difference between the localization data from the control and test sets. However, the upper and lower bounds of the 95% confidence intervals of the localized positional differences between the control and test sets were less than 0.1 mm, which was significantly smaller than the minimum

  19. Feasibility Study of Glass Dosimeter for In Vivo Measurement: Dosimetric Characterization and Clinical Application in Proton Beams

    SciTech Connect

    Rah, Jeong-Eun; Oh, Do Hoon; Kim, Jong Won; Kim, Dae-Hyun; Suh, Tae-Suk; Ji, Young Hoon; Shin, Dongho; Lee, Se Byeong; Kim, Dae Yong; Park, Sung Yong

    2012-10-01

    Purpose: To evaluate the suitability of the GD-301 glass dosimeter for in vivo dose verification in proton therapy. Methods and Materials: The glass dosimeter was analyzed for its dosimetrics characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stairlike holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and thermoluminescent dosimeter (TLD) dose measurements using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with a varying separation between the target volume and the surface of 6 patients. Results and Discussion: Uniformity was within 1.5%. The dose-response has good linearity. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in nonmodulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the treatment planning system and that measured by the glass dosimeter was within 5%. With in vivo dosimetry, the calculated surface doses overestimated measurements by 4%-16% using glass dosimeter and TLD. Conclusion: It is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential for use with in vivo patient proton dosimetry.

  20. A small active dosimeter for applications in space

    NASA Astrophysics Data System (ADS)

    Ritter, Birgit; Maršálek, Karel; Berger, Thomas; Burmeister, Sönke; Reitz, Günther; Heber, Bernd

    2014-06-01

    The radiation field in low Earth orbits (LEO) differs significantly from the radiation environment on Earth's surface. Exposures are by far higher and pose an additional health risk for astronauts. Continuous monitoring is therefore a necessary task in the frame of radiation protection measures. A small battery-driven active dosimeter telescope based on silicon detectors meeting the requirements for LEO applications has been developed. The instrument, the Mobile Dosimetric Telescope (MDT), is designed to measure the absorbed dose rate and the linear energy transfer (LET) spectra. From the latter the mean quality factor of the radiation field can be derived and hence an estimate of the dose equivalent as a measure of the exposure. The calibration of the device is done using radioactive isotopes and heavy ions. Fragmentation products of heavy ions are used to show the ability of the MDT to reliably detect energy depositions from high energetic nuclei. Radiation measurements inside aircraft during long distance flights, serving as field tests of the instrument, prove the good performance of the instrument.

  1. Dose measurements in intraoral radiography using thermoluminescent dosimeters

    NASA Astrophysics Data System (ADS)

    Azorín, C.; Azorín, J.; Aguirre, F.; Rivera, T.

    2015-01-01

    The use of X-ray in medicine demands to expose the patient and the professional to the lowest radiation doses available in agreement with ALARA philosophy. The reference level for intraoral dental radiography is 7 mGy and, in Mexico, a number of examinations of this type are performed annually. It is considered that approximately 25% of all the X-rays examinations carried out in our country correspond to intraoral radiographies. In other hand, most of the intraoral X-ray equipment correspond to conventional radiological systems using film, which are developed as much manual as automatically. In this work the results of determining the doses received by the patients in intraoral radiological examinations made with different radiological systems using LiF:Mg,Cu,P+PTFE thermoluminescent dosimeters are presented. In some conventional radiological systems using film, when films are developed manual or automatically, incident kerma up to 10.61 ± 0.74 mGv were determined. These values exceed that reference level suggested by the IAEA and in the Mexican standards for intraoral examinations.

  2. Automated gamma spectrometry and data analysis on radiometric neutron dosimeters

    SciTech Connect

    Matsumoto, W.Y.

    1983-01-01

    An automated gamma-ray spectrometry system was designed and implemented by the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory (HEDL) to analyze radiometric neutron dosimeters. Unattended, automatic, 24 hour/day, 7 day/week operation with online data analysis and mainframe-computer compatible magnetic tape output are system features. The system was used to analyze most of the 4000-plus radiometric monitors (RM's) from extensive reactor characterization tests during startup and initial operation of th Fast Flux Test Facility (FFTF). The FFTF, operated by HEDL for the Department of Energy, incorporates a 400 MW(th) sodium-cooled fast reactor. Aumomated system hardware consists of a high purity germanium detector, a computerized multichannel analyzer data acquisition system (Nuclear Data, Inc. Model 6620) with two dual 2.5 Mbyte magnetic disk drives plus two 10.5 inch reel magnetic tape units for mass storage of programs/data and an automated Sample Changer-Positioner (ASC-P) run with a programmable controller. The ASC-P has a 200 sample capacity and 12 calibrated counting (analysis) positions ranging from 6 inches (15 cm) to more than 20 feet (6.1 m) from the detector. The system software was programmed in Fortran at HEDL, except for the Nuclear Data, Inc. Peak Search and Analysis Program and Disk Operating System (MIDAS+).

  3. Thermoluminescent dosimeters for low dose X-ray measurements.

    PubMed

    Fernández, S Del Sol; García-Salcedo, R; Sánchez-Guzmán, D; Ramírez-Rodríguez, G; Gaona, E; de León-Alfaro, M A; Rivera-Montalvo, T

    2016-01-01

    The response of TLD-100, CaSO4:Dy and LiF:Mg,Cu,P for a range of X-ray low dose was measured. For calibration, the TLDs were arranged at the center of the X-ray field. The dose output of the X-ray machine was determined using an ACCU-Gold. All dosimeters were exposed at the available air kerma values of 14.69 mGy within a field 10×10 cm(2) at 80 cm of SSD. Results of LiF:Mg,Cu,P X-ray irradiated showed 4.8 times higher sensitivity than TLD-100. Meanwhile, TL response of CaSO4:Dy exposed at the same dose was 5.6 time higher than TLD-100. Experimental results show for low dose X-ray measurements a better linearity for LiF:Mg,Cu,P compared with that of TLD-100. CaSO4:Dy showed a linearity from 0.1 to 60 mGy.

  4. Study of Fricke gel dosimeter response for different gel quality

    NASA Astrophysics Data System (ADS)

    Cavinato, C. C.; Campos, L. L.

    2010-11-01

    The Fricke xylenol gel (FXG) dosimeter has been studied for application in radiotherapy because it is capable of to measure the spatial distribution of radiation doses. The dosimetry is based on the oxidation of ferrous (Fe2+) to ferric (Fe3+) ions radiation induced, related to the radiation dose. The gel material usually employed is the 300 Bloom gelatin, which is imported and very expensive in Brazil. Aiming to analyze the viability of to use a locally produced and low cost gel material, in this work the spectrophotometric responses of FXG solutions prepared using 270 Bloom gelatin commercially available and 300 Bloom gelatin imported were compared. The absorption spectra of solutions prepared with 5% by weight 270 and 300 Bloom gelatins non-irradiated and irradiated with 60Co gamma radiation in the dose range between 0.5 and 100 Gy were analysed, the dose-response curves were evaluated and the useful dose range was established. The obtained results indicate that the FXG solution prepared with 270 Bloom gelatin presents good performance, similar to that presented by the FXG solution prepared with 300 Bloom gelatin and its use can be recommended owing to the low cost and the availability in local market.

  5. Electron Beam Quality Determination Through Fricke Xylenol Gel Dosimeter

    SciTech Connect

    Petchevist, P. C. D.; Moreira, M. V.; Almeida, A. de

    2009-03-10

    According to the IAEA TRS-398 protocol, a parallel plate ionization chamber is recommended to be used in electron dosimetry. The important dosimetric parameters such as R{sub 100} and R{sub 50}, inferred from the percentage depth dose (PDD) curve, allow to obtain the electron beam average energy at the water phantom surface (material equivalent to the soft tissue). In this work, a chemical dosimeter based on the Fe(II) to Fe(III) oxidation was used to obtain the average energies from electrons beams (from nominal energies of 5, 8 and 10 MeV) and related parameters of R{sub 100}, R{sub 50} and z{sub ref}. These energies obtained through the Fricke Xylenol Gel (FXG) were compared to those with a parallel plate ionization chamber, following the cited protocol, which showed no significant differences. From these measurements one can conclude the FXG applicability for R{sub 100}, R{sub 50} and electron beam average energy determination.

  6. Thermoluminescent dosimeters for low dose X-ray measurements.

    PubMed

    Fernández, S Del Sol; García-Salcedo, R; Sánchez-Guzmán, D; Ramírez-Rodríguez, G; Gaona, E; de León-Alfaro, M A; Rivera-Montalvo, T

    2016-01-01

    The response of TLD-100, CaSO4:Dy and LiF:Mg,Cu,P for a range of X-ray low dose was measured. For calibration, the TLDs were arranged at the center of the X-ray field. The dose output of the X-ray machine was determined using an ACCU-Gold. All dosimeters were exposed at the available air kerma values of 14.69 mGy within a field 10×10 cm(2) at 80 cm of SSD. Results of LiF:Mg,Cu,P X-ray irradiated showed 4.8 times higher sensitivity than TLD-100. Meanwhile, TL response of CaSO4:Dy exposed at the same dose was 5.6 time higher than TLD-100. Experimental results show for low dose X-ray measurements a better linearity for LiF:Mg,Cu,P compared with that of TLD-100. CaSO4:Dy showed a linearity from 0.1 to 60 mGy. PMID:26609683

  7. Tackling regional climate change by leaf albedo bio-geoengineering.

    PubMed

    Ridgwell, Andy; Singarayer, Joy S; Hetherington, Alistair M; Valdes, Paul J

    2009-01-27

    The likelihood that continuing greenhouse-gas emissions will lead to an unmanageable degree of climate change has stimulated the search for planetary-scale technological solutions for reducing global warming ("geoengineering"), typically characterized by the necessity for costly new infrastructures and industries. We suggest that the existing global infrastructure associated with arable agriculture can help, given that crop plants exert an important influence over the climatic energy budget because of differences in their albedo (solar reflectivity) compared to soils and to natural vegetation. Specifically, we propose a "bio-geoengineering" approach to mitigate surface warming, in which crop varieties having specific leaf glossiness and/or canopy morphological traits are specifically chosen to maximize solar reflectivity. We quantify this by modifying the canopy albedo of vegetation in prescribed cropland areas in a global-climate model, and thereby estimate the near-term potential for bio-geoengineering to be a summertime cooling of more than 1 degrees C throughout much of central North America and midlatitude Eurasia, equivalent to seasonally offsetting approximately one-fifth of regional warming due to doubling of atmospheric CO(2). Ultimately, genetic modification of plant leaf waxes or canopy structure could achieve greater temperature reductions, although better characterization of existing intraspecies variability is needed first.

  8. Mars - Experimental study of albedo changes caused by dust fallout

    NASA Technical Reports Server (NTRS)

    Wells, E. N.; Veverka, J.; Thomas, P.

    1984-01-01

    A laboratory apparatus was used to simulate the uniform fallout and deposition of particles 1 to 5 microns in diameter in an experimental study on how the spectral and photometric properties of representative Martian areas are affected by fallout of atmospheric dust (smaller than or equalling 60 microns) suspended during dust storms. In this study, measurements are made in the changes in reflectance at optical and near-infrared wavelengths (0.4 to 1.2 micron) caused by deposition of varying amounts of a Mars-analog dust on bright and dark substrates before and after deposition of 6 x 10 to the -5th to 1.5 x 10 to the -3rd g/sq cm of simulated fallout. It is believed that only small amounts of dust particles (approximately 3 x 10 to the -4th g/sq cm) are needed to make significant albedo changes in dark areas of Mars, and that this would rule out uniform dust deposition on the surface of the planet. Data also indicate that other high albedo features like bright crater-related wind streaks may not be areas of significant sediment deposits. Laboratory simulations have permitted estimates of how much the reflectance of an area on Mars would change given a certain amount of dust fallout (g/sq cm) or reflectance data. These simulations may also be useful in tracking the transport and deposition of the dust.

  9. Soot climate forcing via snow and ice albedos.

    PubMed

    Hansen, James; Nazarenko, Larissa

    2004-01-13

    Plausible estimates for the effect of soot on snow and ice albedos (1.5% in the Arctic and 3% in Northern Hemisphere land areas) yield a climate forcing of +0.3 W/m(2) in the Northern Hemisphere. The "efficacy" of this forcing is approximately 2, i.e., for a given forcing it is twice as effective as CO(2) in altering global surface air temperature. This indirect soot forcing may have contributed to global warming of the past century, including the trend toward early springs in the Northern Hemisphere, thinning Arctic sea ice, and melting land ice and permafrost. If, as we suggest, melting ice and sea level rise define the level of dangerous anthropogenic interference with the climate system, then reducing soot emissions, thus restoring snow albedos to pristine high values, would have the double benefit of reducing global warming and raising the global temperature level at which dangerous anthropogenic interference occurs. However, soot contributions to climate change do not alter the conclusion that anthropogenic greenhouse gases have been the main cause of recent global warming and will be the predominant climate forcing in the future.

  10. Soot climate forcing via snow and ice albedos

    PubMed Central

    Hansen, James; Nazarenko, Larissa

    2004-01-01

    Plausible estimates for the effect of soot on snow and ice albedos (1.5% in the Arctic and 3% in Northern Hemisphere land areas) yield a climate forcing of +0.3 W/m2 in the Northern Hemisphere. The “efficacy” of this forcing is ∼2, i.e., for a given forcing it is twice as effective as CO2 in altering global surface air temperature. This indirect soot forcing may have contributed to global warming of the past century, including the trend toward early springs in the Northern Hemisphere, thinning Arctic sea ice, and melting land ice and permafrost. If, as we suggest, melting ice and sea level rise define the level of dangerous anthropogenic interference with the climate system, then reducing soot emissions, thus restoring snow albedos to pristine high values, would have the double benefit of reducing global warming and raising the global temperature level at which dangerous anthropogenic interference occurs. However, soot contributions to climate change do not alter the conclusion that anthropogenic greenhouse gases have been the main cause of recent global warming and will be the predominant climate forcing in the future. PMID:14699053

  11. Soot climate forcing via snow and ice albedos

    NASA Astrophysics Data System (ADS)

    Hansen, James; Nazarenko, Larissa

    2004-01-01

    Plausible estimates for the effect of soot on snow and ice albedos (1.5% in the Arctic and 3% in Northern Hemisphere land areas) yield a climate forcing of +0.3 W/m2 in the Northern Hemisphere. The "efficacy" of this forcing is 2, i.e., for a given forcing it is twice as effective as CO2 in altering global surface air temperature. This indirect soot forcing may have contributed to global warming of the past century, including the trend toward early springs in the Northern Hemisphere, thinning Arctic sea ice, and melting land ice and permafrost. If, as we suggest, melting ice and sea level rise define the level of dangerous anthropogenic interference with the climate system, then reducing soot emissions, thus restoring snow albedos to pristine high values, would have the double benefit of reducing global warming and raising the global temperature level at which dangerous anthropogenic interference occurs. However, soot contributions to climate change do not alter the conclusion that anthropogenic greenhouse gases have been the main cause of recent global warming and will be the predominant climate forcing in the future. aerosols | air pollution | climate change | sea level

  12. Lunar Proton Albedo Anomalies: Soil, Surveyors, and Statistics

    NASA Astrophysics Data System (ADS)

    Wilson, J. K.; Schwadron, N.; Spence, H. E.; Case, A. W.; Golightly, M. J.; Jordan, A.; Looper, M. D.; Petro, N. E.; Robinson, M. S.; Stubbs, T. J.; Zeitlin, C. J.; Blake, J. B.; Kasper, J. C.; Mazur, J. E.; Smith, S. S.; Townsend, L. W.

    2014-12-01

    Since the launch of LRO in 2009, the CRaTER instrument has been mapping albedo protons (~100 MeV) from the Moon. These protons are produced by nuclear spallation, a consequence of galactic cosmic ray (GCR) bombardment of the lunar regolith. Just as spalled neutrons and gamma rays reveal elemental abundances in the lunar regolith, albedo protons may be a complimentary method for mapping compositional variations. We presently find that the lunar maria have an average proton yield 0.9% ±0.3% higher than the average yield in the highlands; this is consistent with neutron data that is sensitive to the regolith's average atomic weight. We also see cases where two or more adjacent pixels (15° × 15°) have significantly anomalous yields above or below the mean. These include two high-yielding regions in the maria, and three low-yielding regions in the far-side highlands. Some of the regions could be artifacts of Poisson noise, but for completeness we consider possible effects from compositional anomalies in the lunar regolith, including pyroclastic flows, antipodes of fresh craters, and so-called "red spots". We also consider man-made landers and crash sites that may have brought elements not normally found in the lunar regolith.

  13. A cavity radiometer for Earth albedo measurement, phase 1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Radiometric measurements of the directional albedo of the Earth requires a detector with a flat response from 0.2 to 50 microns, a response time of about 2 seconds, a sensitivity of the order of 0.02 mw/sq cm, and a measurement uncertainty of less than 5 percent. Absolute cavity radiometers easily meet the spectral response and accuracy requirements for Earth albedo measurements, but the radiometers available today lack the necessary sensitivity and response time. The specific innovations addressed were the development of a very low thermal mass cavity and printed/deposited thermocouple sensing elements which were incorporated into the radiometer design to produce a sensitive, fast response, absolute radiometer. The cavity is applicable to the measurement of the reflected and radiated fluxes from the Earth surface and lower atmosphere from low Earth orbit satellites. The effort consisted of requirements and thermal analysis; design, construction, and test of prototype elements of the black cavity and sensor elements to show proof-of-concept. The results obtained indicate that a black body cavity sensor that has inherently a flat response from 0.2 to 50 microns can be produced which has a sensitivity of at least 0.02 mw/sq cm per micro volt ouput and with a time constant of less than two seconds. Additional work is required to develop the required thermopile.

  14. Polymer gel dosimeters with reduced toxicity: a preliminary investigation of the NMR and optical dose response using different monomers

    NASA Astrophysics Data System (ADS)

    Senden, R. J.; DeJean, P.; McAuley, K. B.; Schreiner, L. J.

    2006-07-01

    In this work, three new polymer gel dosimeter recipes were investigated that may be more suitable for widespread applications than polyacrylamide gel dosimeters, since the extremely toxic acrylamide has been replaced with the less harmful monomers N-isopropylacrylamide (NIPAM), diacetone acrylamide and N-vinylformamide. The new gel dosimeters studied contained gelatin (5 wt%), monomer (3 wt%), N,N'-methylene-bis-acrylamide crosslinker (3 wt%) and tetrakis (hydroxymethyl) phosphonium chloride antioxidant (10 mM). The NMR response (R2) of the dosimeters was analysed for conditions of varying dose, dose rate, time post-irradiation, and temperature during irradiation and scanning. It was shown that the dose-response behaviour of the NIPAM/Bis gel dosimeter is comparable to that of normoxic polyacrylamide gel (PAGAT) in terms of high dose-sensitivity and low dependence on dose rate and irradiation temperature, within the ranges considered. The dose-response (R2) of NIPAM/Bis appears to be linear over a greater dose range than the PAGAT gel dosimeter. The effects of time post-irradiation (temporal instability) and temperature during NMR scanning on the R2 response were more significant for NIPAM/Bis dosimeters. Diacetone acrylamide and N-vinylformamide gel dosimeters possessed considerably lower dose-sensitivities. The optical dose-response, measured in terms of the attenuation coefficient for each polymer gel dosimeter, showed potential for the use of optical imaging techniques in future studies.

  15. Polymer gel dosimeters with reduced toxicity: a preliminary investigation of the NMR and optical dose-response using different monomers.

    PubMed

    Senden, R J; De Jean, P; McAuley, K B; Schreiner, L J

    2006-07-21

    In this work, three new polymer gel dosimeter recipes were investigated that may be more suitable for widespread applications than polyacrylamide gel dosimeters, since the extremely toxic acrylamide has been replaced with the less harmful monomers N-isopropylacrylamide (NIPAM), diacetone acrylamide and N-vinylformamide. The new gel dosimeters studied contained gelatin (5 wt%), monomer (3 wt%), N,N'-methylene-bis-acrylamide crosslinker (3 wt%) and tetrakis (hydroxymethyl) phosphonium chloride antioxidant (10 mM). The NMR response (R2) of the dosimeters was analysed for conditions of varying dose, dose rate, time post-irradiation, and temperature during irradiation and scanning. It was shown that the dose-response behaviour of the NIPAM/Bis gel dosimeter is comparable to that of normoxic polyacrylamide gel (PAGAT) in terms of high dose-sensitivity and low dependence on dose rate and irradiation temperature, within the ranges considered. The dose-response (R2) of NIPAM/Bis appears to be linear over a greater dose range than the PAGAT gel dosimeter. The effects of time post-irradiation (temporal instability) and temperature during NMR scanning on the R2 response were more significant for NIPAM/Bis dosimeters. Diacetone acrylamide and N-vinylformamide gel dosimeters possessed considerably lower dose-sensitivities. The optical dose-response, measured in terms of the attenuation coefficient for each polymer gel dosimeter, showed potential for the use of optical imaging techniques in future studies. PMID:16825731

  16. SU-E-T-368: Effect of a Strong Magnetic Field On Select Radiation Dosimeters

    SciTech Connect

    Mathis, M; Wen, Z; Tailor, R; Sawakuchi, G; Flint, D; Beddar, S; Ibbott, G

    2014-06-01

    Purpose: To determine the effect of a strong magnetic field on TLD-100, OSLD (Al{sub 2}O{sub 2}:C), and PRESAGE dosimetry devices. This study will help to determine which types of dosimeters can be used for quality assurance and in-vivo dosimetry measurements in a magnetic resonance imaginglinear accelerator (MRI-linac) system. Methods: The dosimeters were separated into two categories which were either exposed or not exposed to a strong magnetic field. In each category a set of dosimeters was irradiated with 0, 2, or 6 Gy. To expose the dosimeters to a magnetic field the samples in that category were place in a Bruker small animal magnetic resonance scanner at a field strength slightly greater than 2.5 T for at least 1 hour preirradiation and at least 1 hour post-irradiation. Irradiations were performed with a 6 MV x-ray beam from a Varian TrueBeam linac with 10×10 cm{sup 2} field at a 600 MU/min dose rate. The samples that received no radiation dose were used as control detectors. Results: The readouts of the dosimeters which were not exposed to a strong magnetic field were compared with the measurements of the dosimetry devices which were exposed to a magnetic field. No significant differences (less than 2% difference) in the performance of TLD, OSLD, or PRESAGE dosimeters due to exposure to a strong magnetic field were observed. Conclusion: Exposure to a strong magnetic field before and after irradiation does not appear to change the dosimetric properties of TLD, OSLD, or PRESAGE which indicates that these dosimeters have potential for use in quality assurance and in-vivo dosimetry in a MRI-linac. We plan to further test the effect of magnetic fields on these devices by irradiating them in the presence of a magnetic fields similar to those produced by a MRI-linac system. Elekta-MD Anderson Cancer Center Research Agreement.

  17. Early development and characterization of a DNA-based radiation dosimeter

    NASA Astrophysics Data System (ADS)

    Avarmaa, Kirsten A.

    It is the priority of first responders to minimize damage to persons and infrastructure in the case of a nuclear emergency due to an accident or deliberate terrorist attack -- if this emergency includes a radioactive hazard, first responders require a simple-to-use, accurate and complete dosimeter for radiation protection purposes in order to minimize the health risk to these individuals and the general population at large. This work consists of the early evaluation of the design and performance of a biologically relevant dosimeter which uses DNA material that can respond to the radiation of any particle type. The construct consists of fluorescently tagged strands of DNA. The signalling components of this dosimeter are also investigated for their sensitivity to radiation damage and light exposure. The dual-labelled dosimeter that is evaluated in this work gave a measurable response to gamma radiation at dose levels of 10 Gy for the given detector design and experimental setup. Further testing outside of this work confirmed this finding and indicated a working range of 100 mGy to 10 Gy using a custom-built fluorimeter as part of a larger CRTI initiative. Characterization of the chromatic components of the dosimeter showed that photobleaching is not expected to have an effect on dosimeter performance, but that radiation can damage the non-DNA signalling components at higher dose levels, although this damage is minimal at lower doses over the expected operating ranges. This work therefore describes the early steps in the quantification of the behaviour of the DNA dosimeter as a potential biologically-based device to measure radiation dose.

  18. Field calibrations of a long-term UV dosimeter for aquatic UVB exposures.

    PubMed

    Schouten, P W; Parisi, A V; Turnbull, D J

    2008-05-29

    Various methodologies using a wide range of measurement systems have been employed previously in order to determine the amount of UV that could be incident upon various aquatic organisms in a number of different aquatic locales. Broadband meters and spectroradiometers have been employed extensively to take underwater measurements. However, these measurement campaigns are limited by the fact that radiometric equipment requires a human controller, constant power supply and regular calibrations and corrections in order to function properly. Dosimetric measurements have also been made underwater using two distinct types of dosimeter. The first type based on a synthetic chemical, like polysulphone, and the second type based on a biological matter, such as a DNA sample. The studies made using biological dosimeters have displayed very good results, however the time and skill necessary to make these types of dosimeters can outweigh their usefulness. The chemical dosimeters are easier to make and have also provided useable data, but only for short periods of exposure, usually no more than a day. Previous research has shown that Poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) has excellent potential for use as a long-term underwater solar UVB dosimeter. However, there is no documented methodology on how to properly calibrate the PPO dosimeter for water-based measurements and it has yet to be trialled in an outdoors marine environment, either real or simulated. This manuscript shows that calibrations obtained in air can not be transferred to calibrations made in water, calibrations made in one type of water can be employed for another type of water, but only within a certain range of spectral transmission and calibrations made at different depths in the same water type are interchangeable. It was also discovered that changing solar zenith angle had an effect upon calibration data. This research addressed these issues by formulating and developing a calibration methodology

  19. Dual calibrated dosimeter for simultaneous measurements of erythemal and vitamin D effective solar ultraviolet radiation.

    PubMed

    Wainwright, L; Parisi, A V; Downs, N

    2016-04-01

    A miniaturized ultraviolet radiation (UV) dosimeter based on polyphenylene oxide (PPO) has been dual calibrated for both erythemal and vitamin D effective exposures (UVB 280 - 320 nm) over extended periods up to five days. Optimal human health requires a balanced amount of UVB exposure as both too much and too little have different but serious potential health consequences. Dosimetry is an established method of measuring specific UV exposures to an object or subject. PPO dosimeters have previously been used to measure the erythemally effective UV exposure. An extension of this use is to dual calibrate the miniaturized dosimeter which will also enable measurement of vitamin D effective exposures. By calibration to the erythemal and vitamin D effective action spectra, PPO dosimeters were able to record both types of biologically effective exposure as both are active within the UVB waveband. Dose response tests were conducted in each season by exposure to solar UV with the corresponding dual calibrations made for each season. The calibration provided an R(2) of 0.95-0.99 for erythemal UV and an R(2) of 0.99 for vitamin D effective UV. The successful outcome of this testing has established that PPO is suitable for use as a long term, dual calibrated dosimeter provided the film is seasonally calibrated. This enables one dosimeter to provide two sets of exposure results. The combination of dual calibration and the long term exposure potential of PPO makes the PPO dosimeter more versatile and increases the scope of UV field research on erythemal UV and vitamin D effective UV in the future. PMID:26878218

  20. Field calibrations of a long-term UV dosimeter for aquatic UVB exposures.

    PubMed

    Schouten, P W; Parisi, A V; Turnbull, D J

    2008-05-29

    Various methodologies using a wide range of measurement systems have been employed previously in order to determine the amount of UV that could be incident upon various aquatic organisms in a number of different aquatic locales. Broadband meters and spectroradiometers have been employed extensively to take underwater measurements. However, these measurement campaigns are limited by the fact that radiometric equipment requires a human controller, constant power supply and regular calibrations and corrections in order to function properly. Dosimetric measurements have also been made underwater using two distinct types of dosimeter. The first type based on a synthetic chemical, like polysulphone, and the second type based on a biological matter, such as a DNA sample. The studies made using biological dosimeters have displayed very good results, however the time and skill necessary to make these types of dosimeters can outweigh their usefulness. The chemical dosimeters are easier to make and have also provided useable data, but only for short periods of exposure, usually no more than a day. Previous research has shown that Poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) has excellent potential for use as a long-term underwater solar UVB dosimeter. However, there is no documented methodology on how to properly calibrate the PPO dosimeter for water-based measurements and it has yet to be trialled in an outdoors marine environment, either real or simulated. This manuscript shows that calibrations obtained in air can not be transferred to calibrations made in water, calibrations made in one type of water can be employed for another type of water, but only within a certain range of spectral transmission and calibrations made at different depths in the same water type are interchangeable. It was also discovered that changing solar zenith angle had an effect upon calibration data. This research addressed these issues by formulating and developing a calibration methodology

  1. Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging

    NASA Astrophysics Data System (ADS)

    Marsden, Craig Michael

    2000-12-01

    This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.

  2. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations

    PubMed Central

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  3. Spring-summer albedo variations of Antarctic sea ice from 1982 to 2009

    NASA Astrophysics Data System (ADS)

    Shao, Zhu-De; Ke, Chang-Qing

    2015-06-01

    This study examined the spring-summer (November, December, January and February) albedo averages and trends using a dataset consisting of 28 years of homogenized satellite data for the entire Antarctic sea ice region and for five longitudinal sectors around Antarctica: the Weddell Sea (WS), the Indian Ocean sector (IO), the Pacific Ocean sector (PO), the Ross Sea (RS) and the Bellingshausen-Amundsen Sea (BS). Time series data of the sea ice concentrations and sea surface temperatures were used to analyse their relations to the albedo. The results indicated that the sea ice albedo increased slightly during the study period, at a rate of 0.314% per decade, over the Antarctic sea ice region. The sea ice albedos in the PO, the IO and the WS increased at rates of 2.599% per decade (confidence level 99.86%), 0.824% per decade and 0.413% per decade, respectively, and the steepest increase occurred in the PO. However, the sea ice albedo in the BS decreased at a rate of -1.617% per decade (confidence level 95.05%) and was near zero in the RS. The spring-summer average albedo over the Antarctic sea ice region was 50.24%. The highest albedo values were mainly found on the continental coast and in the WS; in contrast, the lowest albedo values were found on the outer edge of the sea ice, the RS and the Amery Ice Shelf. The average albedo in the western Antarctic sea ice region was distinctly higher than that in the east. The albedo was significantly positively correlated with sea ice concentration (SIC) and was significantly negatively correlated with sea surface temperature (SST); these scenarios held true for all five longitudinal sectors. Spatially, the higher surface albedos follow the higher SICs and lower SST patterns. The increasing albedo means that Antarctic sea ice region reflects more solar radiation and absorbs less, leading to a decrease in temperature and much snowfall on sea ice, and further resulted in an increase in albedo. Conversely, the decreasing albedo

  4. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    PubMed

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  5. Bimodal albedo distributions in the ablation zone of the southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.

    2014-09-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates using in situ and remotely-sensed data. Observations include: (1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified surface ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 and 20-24 July 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  6. Bimodal Albedo Distributions in the Ablation Zone of the Southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J.; Koenig, L.

    2014-12-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates (m d-1) using in situ and remotely-sensed data. Observations include: 1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; 2) broadband albedo at two automatic weather stations; and 3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 July and 20-24 July, 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  7. The characterization of a commercial MOSFET dosimeter system for use in diagnostic x ray.

    PubMed

    Bower, M W; Hintenlang, D E

    1998-08-01

    A commercial patient dose verification system utilizing non-invasive metal oxide semiconductor field effect transistor (MOSFET) dosimeters originally designed for radiotherapy applications has been evaluated for use at diagnostic energy levels. The system features multiple dosimeters that may be used to monitor entrance or exit skin dose and intracavity doses in phantoms in real time. We have characterized both the standard MOSFET dosimeter designed for radiotherapy dose verification and a newly developed "high sensitivity" MOSFET dosimeter designed for lower dose measurements. The sensitivity, linearity, angular response, post-exposure response, and physical characteristics were evaluated. The average sensitivity (free in air, including backscatter) of the radiotherapy MOSFET dosimeters ranged from 3.55 x 10(4) mV per C kg(-1) (9.2 mV R(-1)) to 4.87 x 10(4) mV per C kg(-1) (12.6 mV R(-1)) depending on the energy of the x-ray field. The sensitivity of the "high sensitivity" MOSFET dosimeters ranged from 1.15 x 10(5) mV per C kg(-1) (29.7 mV R(-1)) to 1.38 x 10(5) mV per C kg(-1) (35.7 mV R(-1)) depending on the energy of the x-ray field. The high sensitivity dosimeters demonstrated excellent linearity at high energies (90 and 120 kVp) and acceptable linearity at lower energies (60 kVp). The angular response was significant for free-in-air exposures, as illustrated by the sensitivity differences between the two sides of the dosimeter, but was excellent for measurements within a tissue equivalent cylinder. The post-exposure drift response is a complicated but reproducible function of time. Real-time monitoring requires little if any corrections for the post-exposure drift response. The MOSFET dosimeter system brings some unique capabilities to diagnostic radiology dosimetry including small size, real-time capabilities, nondestructive measurement, good linearity, and a predictable angular response. PMID:9685076

  8. Impurities in Snow: Effects on Spectral Albedo of Prairie Snowpacks

    NASA Astrophysics Data System (ADS)

    Morris, J. N.; Klein, A. G.

    2007-12-01

    While extensive research on soot in snow has been done in the Polar Regions, there remains a lack of observations addressing the effect of soot on snow albedo in North American prairie snowpacks which causes uncertainty to the overall global effect that soot in snow has on climate. Measurements of snow impurities in freshly fallen prairie snowpacks in northwestern Iowa and central Texas collected from February 28 - March 5, 2007 and April 6, 2007, respectively. Two significant snowfall events occurred in northwestern Iowa during the study; the second snowfall event produced the most severe blizzard conditions in northwestern Iowa in the last thirty years. An unusual snowfall event in central Texas offered a unique sampling opportunity Several types of sites were sampled during the field campaign; this includes: frozen lakes with minimal human impact, agricultural fields impacted by agricultural dust, and human impacted sample sites. At twelve sites in northwestern Iowa samples were collected on multiple days and for both snow events to examine changes in snow impurities over time. At all site locations snow samples, temperature, density, and grain size were recorded. Snow reflectance and snow radiance was collected at a subset of the sites with an ASD VNIR Spectroradiometer (350 - 1500 nm). Snow impurities of light-absorbing particulate matter were measured by filtering the meltwater through a nuclepore 0.4 micrometer filter. Impurity concentration was determined by comparing the filters against a set of standards. A photometer will provide a more exact determination of snow impurities in the near future. Preliminary soot observations indicate prairie snow pack concentrations ranging from 1 ngC/g to 236 ngC/g with an average of 61.4 ngC/g. These measurements are within range of previously published values in the Arctic and can lower snow albedo. Differences in soot concentrations were observed between the two Iowa snowfall events. Impurity concentrations measured

  9. ALBEDO MODELS FOR SNOW AND ICE ON A FRESHWATER LAKE. (R824801)

    EPA Science Inventory

    Abstract

    Snow and ice albedo measurements were taken over a freshwater lake in Minnesota for three months during the winter of 1996¯1997 for use in a winter lake water quality model. The mean albedo of new snow was measured as 0.83±0.028, while the...

  10. Connection between the spherical albedo and the observable characteristics of a planetary atmosphere

    SciTech Connect

    Fomin, N.N.; Yanovitskii, E.G.

    1986-07-01

    Semiempirical dependences of the geometrical albedo and the reflection coefficient at the center of a planetary disk on the spherical albedo are found. The nonsteady analogs of these quantities are studied on the basis of the approximate equations obtained. These analogs can be used in the analysis of radiation transfer in forbidden molecular absorption bands.

  11. Main-belt asteroids with WISE/NEOWISE: Near-infrared albedos

    SciTech Connect

    Masiero, Joseph R.; Mainzer, A. K.; Nugent, C. R.; Bauer, J. M.; Stevenson, R.; Sonnett, S.

    2014-08-20

    We present revised near-infrared albedo fits of 2835 main-belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. Because our sample requires reflected light measurements, it undersamples small, low-albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the main belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 μm. Conversely, the 4.6 μm albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 μm albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 μm albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are important indicators of asteroid taxonomy and can identify interesting targets for spectroscopic follow-up.

  12. ANALYTIC MODELS FOR ALBEDOS, PHASE CURVES, AND POLARIZATION OF REFLECTED LIGHT FROM EXOPLANETS

    SciTech Connect

    Madhusudhan, Nikku; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2012-03-01

    New observational facilities are becoming increasingly capable of observing reflected light from transiting and directly imaged extrasolar planets. In this study, we provide an analytic framework to interpret observed phase curves, geometric albedos, and polarization of giant planet atmospheres. We compute the observables for non-conservative Rayleigh scattering in homogeneous semi-infinite atmospheres using both scalar and vector formalisms. In addition, we compute phase curves and albedos for Lambertian, isotropic, and anisotropic scattering phase functions. We provide analytic expressions for geometric albedos and spherical albedos as a function of the scattering albedo for Rayleigh scattering in semi-infinite atmospheres. Given an observed geometric albedo our prescriptions can be used to estimate the underlying scattering albedo of the atmosphere, which in turn is indicative of the scattering and absorptive properties of the atmosphere. We also study the dependence of polarization in Rayleigh scattering atmospheres on the orbital parameters of the planet-star system, particularly on the orbital inclination. We show how the orbital inclination of non-transiting exoplanets can be constrained from their observed polarization parameters. We consolidate the formalism, solution techniques, and results from analytic models available in the literature, often scattered in various sources, and present a systematic procedure to compute albedos, phase curves, and polarization of reflected light.

  13. MAIN BELT ASTEROIDS WITH WISE/NEOWISE. I. PRELIMINARY ALBEDOS AND DIAMETERS

    SciTech Connect

    Masiero, Joseph R.; Mainzer, A. K.; Bauer, J. M.; Eisenhardt, P. R. M.; DeBaun, E.; Elsbury, D.; Gautier, T. IV; Gomillion, S.; Wilkins, A.; Cutri, R. M.; Dailey, J.; McMillan, R. S.; Spahr, T. B.; Skrutskie, M. F.; Tholen, D.; Walker, R. G.; Wright, E. L.

    2011-11-10

    We present initial results from the Wide-field Infrared Survey Explorer (WISE), a four-band all-sky thermal infrared survey that produces data well suited for measuring the physical properties of asteroids, and the NEOWISE enhancement to the WISE mission allowing for detailed study of solar system objects. Using a NEATM thermal model fitting routine, we compute diameters for over 100,000 Main Belt asteroids from their IR thermal flux, with errors better than 10%. We then incorporate literature values of visible measurements (in the form of the H absolute magnitude) to determine albedos. Using these data we investigate the albedo and diameter distributions of the Main Belt. As observed previously, we find a change in the average albedo when comparing the inner, middle, and outer portions of the Main Belt. We also confirm that the albedo distribution of each region is strongly bimodal. We observe groupings of objects with similar albedos in regions of the Main Belt associated with dynamical breakup families. Asteroid families typically show a characteristic albedo for all members, but there are notable exceptions to this. This paper is the first look at the Main Belt asteroids in the WISE data, and only represents the preliminary, observed raw size, and albedo distributions for the populations considered. These distributions are subject to survey biases inherent to the NEOWISE data set and cannot yet be interpreted as describing the true populations; the debiased size and albedo distributions will be the subject of the next paper in this series.

  14. Intercomparison Between in situ and AVHRR Polar Pathfinder-Derived Surface Albedo over Greenland

    NASA Technical Reports Server (NTRS)

    Stroeve, Julienne C.; Box, Jason E.; Fowler, Charles; Haran, Terence; Key, Jeffery

    2001-01-01

    The Advanced Very High Resolution (AVHRR) Polar Pathfinder Data (APP) provides the first long time series of consistent, calibrated surface albedo and surface temperature data for the polar regions. Validations of these products have consisted of individual studies that analyzed algorithm performance for limited regions and or time periods. This paper reports on comparisons made between the APP-derived surface albedo and that measured at fourteen automatic weather stations (AWS) around the Greenland ice sheet from January 1997 to August 1998. Results show that satellite-derived surface albedo values are on average 10% less than those measured by the AWS stations. However, the station measurements tend to be biased high by about 4% and thus the differences in absolute albedo may be less (e.g. 6%). In regions of the ice sheet where the albedo variability is small, such as the dry snow facies, the APP albedo uncertainty exceeds the natural variability. Further work is needed to improve the absolute accuracy of the APP-derived surface albedo. Even so, the data provide temporally and spatially consistent estimates of the Greenland ice sheet albedo.

  15. Time-variable Earth's albedo model characteristics and applications to satellite sampling errors

    NASA Technical Reports Server (NTRS)

    Bartman, F. L.

    1981-01-01

    Characteristics of the time variable Earth albedo model are described. With the cloud cover multiplying factor adjusted to produce a global annual average albedo of 30.3, the global annual average cloud cover is 45.5 percent. Global annual average sunlit cloud cover is 48.5 percent; nighttime cloud cover is 42.7 percent. Month-to-month global average albedo is almost sinusoidal with maxima in June and December and minima in April and October. Month-to-month variation of sunlit cloud cover is similar, but not in all details. The diurnal variation of global albedo is greatest from November to March; the corresponding variation of sunlit cloud cover is greatest from May to October. Annual average zonal albedos and monthly average zonal albedos are in good agreement with satellite-measured values, with notable differences in the polar regions in some months and at 15 S. The albedo of some 10 deg by 10 deg. areas of the Earth versus zenith angle are described. Satellite albedo measurement sampling effects are described in local time and in Greenwich mean time.

  16. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors

    SciTech Connect

    Karsch, L.; Beyreuther, E.; Burris-Mog, T.; Kraft, S.; Richter, C.; Zeil, K.; Pawelke, J.

    2012-05-15

    Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10{sup 11} Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410{sup 9} Gy/s within 2% (OSL and TLD) and up to 1510{sup 9} Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

  17. Photofission Analysis for Fissile Dosimeters Dedicated to Reactor Pressure Vessel Surveillance

    NASA Astrophysics Data System (ADS)

    Bourganel, Stéphane; Faucher, Margaux; Thiollay, Nicolas

    2016-02-01

    Fissile dosimeters are commonly used in reactor pressure vessel surveillance programs. In this paper, the photofission contribution is analyzed for in-vessel 237Np and 238U fissile dosimeters in French PWR. The aim is to reassess this contribution using recent tools (the TRIPOLI-4 Monte Carlo code) and latest nuclear data (JEFF3.1.1 and ENDF/B-VII nuclear libraries). To be as exhaustive as possible, this study is carried out for different configurations of fissile dosimeters, irradiated inside different kinds of PWR: 900 MWe, 1300 MWe, and 1450 MWe. Calculation of photofission rate in dosimeters does not present a major problem using the TRIPOLI-4® Monte Carlo code and the coupled neutron-photon simulation mode. However, preliminary studies were necessary to identify the origin of photons responsible of photofissions in dosimeters in relation to the photofission threshold reaction (around 5 MeV). It appears that the main contribution of high enough energy photons generating photofissions is the neutron inelastic scattering in stainless steel reactor structures. By contrast, 137Cs activity calculation is not an easy task since photofission yield data are known with high uncertainty.

  18. FlexyDos3D: a deformable anthropomorphic 3D radiation dosimeter: radiation properties

    NASA Astrophysics Data System (ADS)

    De Deene, Y.; Skyt, P. S.; Hil, R.; Booth, J. T.

    2015-02-01

    Three dimensional radiation dosimetry has received growing interest with the implementation of highly conformal radiotherapy treatments. The radiotherapy community faces new challenges with the commissioning of image guided and image gated radiotherapy treatments (IGRT) and deformable image registration software. A new three dimensional anthropomorphically shaped flexible dosimeter, further called ‘FlexyDos3D’, has been constructed and a new fast optical scanning method has been implemented that enables scanning of irregular shaped dosimeters. The FlexyDos3D phantom can be actuated and deformed during the actual treatment. FlexyDos3D offers the additional advantage that it is easy to fabricate, is non-toxic and can be molded in an arbitrary shape with high geometrical precision. The dosimeter formulation has been optimized in terms of dose sensitivity. The influence of the casting material and oxygen concentration has also been investigated. The radiophysical properties of this new dosimeter are discussed including stability, spatial integrity, temperature dependence of the dosimeter during radiation, readout and storage, dose rate dependence and tissue equivalence. The first authors Y De Deene and P S Skyt made an equivalent contribution to the experimental work presented in this paper.

  19. Eliminating the dose-rate effect in a radiochromic silicone-based 3D dosimeter

    NASA Astrophysics Data System (ADS)

    Høye, E. M.; Balling, P.; Yates, E. S.; Muren, L. P.; Petersen, J. B. B.; Skyt, P. S.

    2015-07-01

    Comprehensive dose verification, such as 3D dosimetry, may be required for safe introduction and use of advanced treatment modalities in radiotherapy. A radiochromic silicone-based 3D dosimetry system has recently been suggested, though its clinical use has so far been limited by a considerable dose-rate dependency of the dose response. In this study we have investigated the dose-rate dependency with respect to the chemical composition of the dosimeter. We found that this dependency was reduced with increasing dye concentration, and the dose response was observed to be identical for dosimeters irradiated with 2 and 6 Gy min-1 at concentrations of 0.26% (w/w) dye and 1% (w/w) dye solvent. Furthermore, for the optimized dosimeter formulation, no dose-rate effect was observed due to the attenuation of the beam fluence with depth. However, the temporal stability of the dose response decreased with dye concentration; the response was reduced by (62  ±  1)% within approximately 20 h upon irradiation, at the optimal chemical composition and storage at room temperature. In conclusion, this study presents a chemical composition for a dose-rate independent silicone dosimeter which has considerably improved the clinical applicability of such dosimeters, but at the cost of a decreased stability.

  20. Undoped and doped poly(tetraphenylbenzidine) as sensitive material for an impedimetric nitrogen dioxide gas dosimeter

    SciTech Connect

    Marr, I.; Moos, R.; Neumann, K.; Thelakkat, M.

    2014-09-29

    This article presents a nitrogen dioxide (NO{sub 2}) detecting gas dosimeter based on poly(tetraphenylbenzidine) poly(TPD) as nitrogen oxide (NO{sub x}) sensitive layer. Gas dosimeters are suitable devices to determine reliably low levels of analytes over a long period of time. During NO{sub x} exposure, the analyte molecules are accumulated irreversibly in the sensing layer of the dosimeter enhancing the conductivity of the hole conducting poly(TPD), which can be measured by impedance spectroscopy. Due to their possibility for low cost production by simple printing techniques and very good physical, photochemical, and electrochemical properties, poly(TPD)s are suitable for application in gas dosimeters operated at room temperature. We studied the effect of doping with a Co(III)-complex in combination with a conducting salt on the dosimeter behavior. Compared to the undoped material, a strong influence of the doping can be observed: the conductivity of the sensing material increases significantly, the noise of the signal decreases and an unwanted recovery of the sensor signal can be prevented, leading to a NO{sub x} detection limit <10 ppm.

  1. Characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam

    NASA Astrophysics Data System (ADS)

    Bong, Jihye; Shin, Dongho; Kwon, Soo-Il

    2014-01-01

    The characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam were evaluated. A polymer gel dosimeter was synthesized using gelatin, methacrylic acid, hydroquinone, tetrakis(hydroxymethyl) phosphonium chloride, and highly purified distilled water. The dosimeter was manufactured by placement in a polyethylene (PE) container. Irradiated dosimeters were analyzed to determine the transverse relaxation time (T2) using a 1.5-T MRI. A calibration curve was obtained as a function of the absorbed dose. A Bragg curve made by irradiating the gel with mono-energy was compared with the results for a parallel plate ionization chamber. The spread-out Bragg peak (SOBP) range and distal dose fall-off (DDF) were comparatively analyzed by comparing the irradiated gel with a spread-out Bragg peak against with the ion chamber. Lastly, the gel's usefulness as a dosimeter for therapeutic radiation quality assurance was evaluated by obtaining its practical field size, flatness, and symmetry, through comparison of the profiles of the gel and ion chamber.

  2. Applicability of the polyphenylene oxide film dosimeter to high UV exposures in aquatic environments.

    PubMed

    Schouten, P W; Parisi, A V; Turnbull, D J

    2009-09-01

    Previous research has proven that the Poly (2,6-dimethyl-1, 4-phenylene oxide) (PPO) dosimeter is capable of receiving both in-air and underwater UV exposures that are significantly greater than those of the more commonly used polysulphone dosimeter, within a range of accuracy close to what would be expected of dosimetric measurements made in-air provided that the necessary calibrations are completed correctly by factoring in different atmospheric column ozone levels, SZA ranges, varying water turbidity and DOM levels. However, there is yet to be an investigation detailing the performance of the PPO dosimeter and its ability to measure UV in an actual field environment over an extended period of time. This research aims to bridge this gap in the knowledge by presenting a measurement campaign carried out in two real world aquatic environments and a simulated sea water environment using a batch of PPO dosimeters set at different depths and aligned to a range of different angles and geographical directions by means of attachment to a custom built dosimeter submersible float (DSF) unit over the space of a year at a sub-tropical location. Results obtained from this measurement campaign were used to compute a K(d) value for the sea water in each particular season. These K(d) values where found to be in close agreement to standalone K(d) values derived from results taken using a standard calibrated spectrometer in the same sea water. PMID:19596202

  3. Undoped and doped poly(tetraphenylbenzidine) as sensitive material for an impedimetric nitrogen dioxide gas dosimeter

    NASA Astrophysics Data System (ADS)

    Marr, I.; Neumann, K.; Thelakkat, M.; Moos, R.

    2014-09-01

    This article presents a nitrogen dioxide (NO2) detecting gas dosimeter based on poly(tetraphenylbenzidine) poly(TPD) as nitrogen oxide (NOx) sensitive layer. Gas dosimeters are suitable devices to determine reliably low levels of analytes over a long period of time. During NOx exposure, the analyte molecules are accumulated irreversibly in the sensing layer of the dosimeter enhancing the conductivity of the hole conducting poly(TPD), which can be measured by impedance spectroscopy. Due to their possibility for low cost production by simple printing techniques and very good physical, photochemical, and electrochemical properties, poly(TPD)s are suitable for application in gas dosimeters operated at room temperature. We studied the effect of doping with a Co(III)-complex in combination with a conducting salt on the dosimeter behavior. Compared to the undoped material, a strong influence of the doping can be observed: the conductivity of the sensing material increases significantly, the noise of the signal decreases and an unwanted recovery of the sensor signal can be prevented, leading to a NOx detection limit <10 ppm.

  4. Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.; Koenig, L. S.; Hom, M. G.; Shuman, C. A.

    2015-05-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface and, thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates, earlier snowmelt, and amplified melt-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation area albedo and meltwater production is still relatively unknown. In this study, we analyze albedo and ablation rates using in situ and remotely sensed data. Observations include (1) a new high-quality in situ spectral albedo data set collected with an Analytical Spectral Devices Inc. spectroradiometer measuring at 325-1075 nm along a 1.25 km transect during 3 days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August 2012 and 2013. We find that seasonal ablation area albedos in 2013 have a bimodal distribution, with snow and ice facies characterizing the two peaks. Our results show that a shift from a distribution dominated by high to low albedos corresponds to an observed melt rate increase of 51.5% (between 10-14 July and 20-24 July 2013). In contrast, melt rate variability caused by albedo changes before and after this shift was much lower and varied between ~10 and 30% in the melting season. Ablation area albedos in 2012 exhibited a more complex multimodal distribution, reflecting a transition from light to dark-dominated surface, as well as sensitivity to the so called "dark-band" region in southwest Greenland. In addition to a darkening surface from ice crystal growth, our findings demonstrate that seasonal changes in GrIS ablation area albedos are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. Thus, seasonal variability in ablation area albedos appears to be regulated primarily as a function

  5. SU-D-213-07: Initial Characterization of a Gel Patch Dosimeter for in Vivo Dosimetry

    SciTech Connect

    Matrosic, C; Culberson, W; Rosen, B; Madsen, E; Frank, G; Bednarz, B

    2015-06-15

    Purpose: In vivo dosimetry, despite being the most direct method for monitoring the dose delivered during radiation therapy and being recommended by several national and international organizations (AAPM, ICRU, NACP), is underutilized in the clinic due to issues associated with dose sensitivity, feasibility, and cost. Given the increasing complexity of radiation therapy modern treatments, there is a compelling need for a robust, affordable in vivo dosimetry option. In this work we present the initial characterization of a novel gel patch in vivo dosimeter. Methods: DEFGEL (6%T) was used to make 1-cm thick small cylindrical patch dosimeters. The optical density of each dosimeter was read before and after irradiation by an in-house laser densitometer. The dosimeters were irradiated using a Varian Clinac EX linac. Three separate batches of gel patches were used to create dose response curves and evaluate repeatability. The development time of the dosimeter was also evaluated. Results: The dose response of the dosimeter was found to be linear from a range of approximately 1-Gy to 20-Gy, which is a larger window of linearity compared to other in vivo dosimeters. At doses below 1-Gy, the cumulative uncertainties were on the order of the measured data. When compared, the three batches demonstrated repeatability from 1-Gy to approximately 13-Gy, with some variation at higher doses. For doses of >8-Gy, the dosimeter reached full optical density after 4-hours, whereas low doses developed within an hour. Conclusion: Initial results indicate that the gel patch dosimeter is a reliable and simple way to measure a large range of doses, including high doses such as those delivered during hypofractionated treatments (e.g. SBRT or MR-guided radiotherapy). The simple fabrication method for the dosimeter and the use of a laser densitometer would allow for the dosimeter to used and read in-house, cheaply and easily.

  6. A search for novel thermoluminescent radiation dosimeter media.

    PubMed

    Al-Hinai, Khalid H; Benkara Mohd, Nadjima; Rozullyah Zulkepely, Nurul; Md Nor, Roslan; Mohd Amin, Yusoff; Bradley, D A

    2013-12-01

    We describe two example pilot efforts to help define new thermoluminescent dosimeter media. The first concerns ZnS:Mn nanophosphors, prepared by chemical precipitation using zinc and sodium sulfate, doped with manganese sulfate at concentrations varying from 1 to 3mol. The second concerns chemical vapor deposited diamond, produced as a thin film or as amorphous carbon on a single-crystal silicon substrate, each deposited under the same conditions, use being made of the hot filament-chemical vapor deposition (HFCVD) technique. The gas concentrations used were 1% CH4 in 99% H2 and 25% CH4 in 75% H2. Characterization of formations used FESEM, XRD and EDX. The nanophosphors consisted of particles of sizes in the range 85-150nm, the thermoluminescence (TL)-based radiation detection medium giving rise to a single peaked glow curve of maximum yield at a temperature of 250°C at a heating rate of 5°C/s. The TL response increased linearly with radiation dose, ZnS doped to 2mol of Mn being found the most sensitive. Regarding chemical vapor deposited (CVD) carbon, inappreciable TL was found for the resultant ball-like amorphous carbon films, graphite, and the silicon substrate, whereas CVD diamond films showed a promising degree of linearity with dose. For both the ZnS and diamond samples, TL signal fading was appreciable, being some 40% per day for ZnS and>50% per day for CVD films even under storage in the dark at room temperature, making it apparent that there is need to adjust parameters such as the size of nanoparticles.

  7. ARM Climate Research Facility Spectral Surface Albedo Value-Added Product (VAP) Report

    SciTech Connect

    McFarlane, S; Gaustad, K; Long, C; Mlawer, E

    2011-07-15

    This document describes the input requirements, output data products, and methodology for the Spectral Surface Albedo (SURFSPECALB) value-added product (VAP). The SURFSPECALB VAP produces a best-estimate near-continuous high spectral resolution albedo data product using measurements from multifilter radiometers (MFRs). The VAP first identifies best estimates for the MFR downwelling and upwelling shortwave irradiance values, and then calculates narrowband spectral albedo from these best-estimate irradiance values. The methodology for finding the best-estimate values is based on a simple process of screening suspect data and backfilling screened and missing data with estimated values when possible. The resulting best-estimate MFR narrowband spectral albedos are used to determine a daily surface type (snow, 100% vegetation, partial vegetation, or 0% vegetation). For non-snow surfaces, a piecewise continuous function is used to estimate a high spectral resolution albedo at 1 min temporal and 10 cm-1 spectral resolution.

  8. A digital file of the lunar normal Albedo

    USGS Publications Warehouse

    Wildey, R.L.

    1977-01-01

    A digital file of the normal albedo of the Moon has been produced at a resolution of about 1/550 of a lunar diameter (about 6.3 km). The file was produced from five photographs taken with the 61-cm reflector of the Northern Arizona University Astrophysical Observatory. No mosaicking was necessary. Spatial control is selenodetic rather than landmark-morphologic. Photometric control is provided through a combination of electrography and regular photoelectric photometry. Pixel photometric function corrections are employed. The file was provided as data base for the Lunar Consortium. Brief discussion of the scientific implications of the frequency histogram is offered, and the negligibility of lunar limb darkening below e{open} = 77?? is affirmed. It is specifically desired not to withhold these data from publication while more significant and detailed scientific interpretation is carried on. ?? 1977 D. Reidel Publishing Company, Dordrecht-Holland.

  9. Joint AOT-Single Scattering Albedo Retrieval in Algorithm MAIAC

    NASA Astrophysics Data System (ADS)

    Lyapustin, A.

    2015-12-01

    Multi-Angle Implementation of Atmospheric Correction (MAIAC) is a new algorithm which uses time series analysis and processing of groups of pixels for advanced cloud detection and retrieval of aerosol and surface bidirectional reflectance properties. MAIAC C6+ re-processing of MODIS data record, scheduled to begin in November 2015, will create a suite of products MCD19. Due to high 1km resolution, MAIAC provides information about fine scale aerosol variability required in different applications such as urban air quality analysis. During the past year, we developed a new MAIAC capability to retrieve Single Scattering Albedo (SSA) from MODIS by adapting OMI heritage approach of O. Torres. We will describe MAIAC retrieval approach, AERONET AOT and SSA validation for different world biomass burning regions, and will compare MAIAC results with other sensors.

  10. The albedos of Pluto and Charon - Wavelength dependence

    NASA Technical Reports Server (NTRS)

    Marcialis, Robert L.; Lebofsky, Larry A.; Disanti, Michael A.; Fink, Uwe; Tedesco, Edward F.; Africano, John

    1992-01-01

    The March 3, 1987 occultation of Charon by Pluto was monitored simultaneously with three telescopes. Each site covered a distinct wavelength interval with the total range spanning 0.44-2.4 microns. Observing the same event ensures an identical sun-Pluto-earth geometry for all three sites, and minimizes the assumptions which must be made to combine results. This spectrophotometry is used to derive the individual geometric albedos of Pluto and Charon over a factor of at least 5 in wavelength. Combining the results with those of Binzel (1988) improved (B - V) color estimates (on the 'Johnson Pluto' system) are obtained for the components of the system at rotational phase 0.75: (Pluto + Charon) = 0.843 +/- 0.006; Pluto alone = 0.866 +/- 0.007; and Charon alone = 0.702 +/- 0.010.

  11. Global Monitoring of Martian Surface Albedo Changes from Orbital Observations

    NASA Astrophysics Data System (ADS)

    Geissler, P.; Enga, M.; Mukherjee, P.

    2013-12-01

    Martian surface changes were first observed from orbit during the Mariner 9 and Viking Orbiter missions. They were found to be caused by eolian processes, produced by deposition of dust during regional and global dust storms and subsequent darkening of the surface through erosion and transportation of dust and sand. The albedo changes accumulated in the 20 years between Viking and Mars Global Surveyor were sufficient to alter the global circulation of winds and the climate of Mars according to model calculations (Fenton et al., Nature 2007), but little was known about the timing or frequency of the changes. Since 1999, we have had the benefit of continuous monitoring by a series of orbiting spacecraft that continues today with Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express. Daily synoptic observations enable us to determine whether the surface albedo changes are gradual or episodic in nature and to record the seasons that the changes take place. High resolution images of surface morphology and atmospheric phenomena help identify the physical mechanisms responsible for the changes. From these data, we hope to learn the combinations of atmospheric conditions and sediment properties that produce surface changes on Mars and possibly predict when they will take place in the future. Martian surface changes are particularly conspicuous in low albedo terrain, where even a thin layer of bright dust brightens the surface drastically. Equatorial dark areas are repeatedly coated and recoated by dust, which is later shed from the surface by a variety of mechanisms. An example is Syrtis Major, suddenly buried in bright dust by the global dust storm of 2001. Persistent easterly winds blew much of the dust cover away over the course of the next Martian year, but episodic changes continue today, particularly during southern summer when regional dust storms are rife. Another such region is Solis Planum, south of the Valles Marineris, where changes take place

  12. Cassini VIMS Preliminary Exploration of Titan's Surface Hemispheric Albedo Dichotomy

    NASA Technical Reports Server (NTRS)

    Nelson, R. M.; Brown, R. H.; Hapke, B. W.; Smythe, W. D.; Kamp, L.; Boryta, M.; Baines, K. H.; Bellucci, G.; Bibring, J.-P.; Buratti, B. J.

    2005-01-01

    We present preliminary evidence that suggests a hemispheric albedo dichotomy on Titan, the largest planetary satellite in the Solar System. We have also studied the photometric properties of several dark circular features on Titan's surface to test if they might be of impact origin. The evidence is derived from photometric analysis of selected surface regions taken at different Titanian longitudes and solar phase angles using images from the Cassini Saturn Orbiter Visual and Infrared Mapping Spectrometer (VIMS). The VIMS instrument is able to image Titan's surface at spectral windows (e.g. 2.02 microns) in its atmosphere where methane, the principal atmospheric absorber is transparent. Additional information is included in the original extended abstract.

  13. The Albedo Dichotomy of Iapetus Measured at UV Wavelengths

    NASA Technical Reports Server (NTRS)

    Hendrix, Amanda R.; Hansen, Candice J.

    2007-01-01

    The dramatic hemispheric dichotomy in albedo displayed by Saturn's moon Iapetus has intrigued astronomers for centuries. Here we report on far-ultraviolet observations of Iapetus' bright and dark terrains from Cassini. We compare the reflectance spectra of Iapetus's dark terrain, Hyperion and Phoebe and find that both Phoebe and Hyperion are richer in water ice than Iapetus' dark terrain. Spectra of the lowest latitudes of the dark terrain display the diagnostic water ice absorption feature; water ice amounts increase within the dark material away from the apex (at 90 deg W longitude, the center of the dark leading hemisphere), consistent with thermal segregation of water ice. The water ice in the darkest, warmest low latitude regions is not expected to be stable and may be a sign of ongoing or recent emplacement of the dark material from an exogenic source.

  14. Two generations of Canadian active imaging systems: ALBEDOS and ELVISS

    NASA Astrophysics Data System (ADS)

    Larochelle, Vincent; Mathieu, Pierre; Simard, Jean-Robert

    1999-07-01

    Search and rescue and general surveillance mission pose a serious challenge to conventional imaging systems used by actual aircraft crews. These systems must often work in low- light and low-visibility conditions to find the identify targets. A new airborne imaging technology has been developed to overcome several deficiencies encountered with common CCD cameras, image intensified system and thermal imaging sensors. The recent developments in laser diode arrays, laser diode beam collimation and gatable micro- channel plate intensifier have made possible the construction of a compact active imagin system, called the Airborne Laser-Based Enhanced Detection and Observation Systems (ALBEDOS). This system proved particularly efficient at night and in degraded weather conditions. In addition, it was demonstrated that range gating, besides eliminating most of the light backscattered by aerosols, provided to some extent immunity to blooming effects specific to highly sensitive cameras. The system was installed on a helicopter and tested in various scenarios in October 1995 to demonstrate its potential. To enhance the surveillance capability over large areas of coverage, to optimize detection of humans and small objects and to improve the effectiveness of the search aircraft, a second-generation payload is presently developed and combines the benefits of two complementary imaging sensors. The Enhanced Low-Light level Visible and IR Surveillance System (ELVISS) consists of an improved range-gated active imager and a high-quality thermal imager, installed in two separate airborne platforms slaved together and controlled by a single user interface. It is expected that such a sensor systems will have a direct impact on improving the response time in finding those in need of assistance or simply in increasing the performance, reliability and efficiency of crews involved in general surveillance operations. This paper explains the concept of range gating, details a preliminary

  15. Water Ice Albedo Variations on the Martian Northern Polar Cap

    NASA Technical Reports Server (NTRS)

    Hale, A. S.; Bass, D. S.; Tamppari, L. K.

    2003-01-01

    The Viking Orbiters determined that the surface of Mars northern residual cap is water ice. Many researchers have related observed atmospheric water vapor abundances to seasonal exchange between reservoirs such as the polar caps, but the extent to which the exchange between the surface and the atmosphere remains uncertain. Early studies of the ice coverage and albedo of the northern residual Martian polar cap using Mariner 9 and Viking images reported that there were substantial internannual differences in ice deposition on the polar cap, a result which suggested a highly variable Martian climate. However, some of the data used in these studies were obtained at differing values of heliocentric solar longitude (L(sub s)). Reevaluation of this dataset indicated that the residual cap undergoes seasonal brightening throughout the summer, and indicated that this process repeats from year to year. In this study we continue to compare Mariner 9 and Viking Orbiter imaging observations and thermal data of the north residual polar cap to data acquired with Mars Global Surveyor s Mars Orbiter Camera (MOC) instrument. In the current study, our goal is to examine all released data from MGS MOC in the northern summer season, along with applicable TES data in order to better understand the albedo variations in the northern summer and their implications on water transport. To date, work has focused primarily on the MOC dataset. In 1999, data acquisition of the northern polar regions began at L(sub s) = 107, although there was little north polar data acquired from L(sub s)= 107 to L(sub s) = 109. We examined a total of 409 images from L(sub s) = 107 to L(sub s)=148. We have also examined data from 2000 from L(sub s)= 93 to L(sub s)= 110; additional progress is ongoing. Here we present a progress report of our observations, and continue to determine their implications for the Martian water cycle.

  16. Mars: Correcting surface albedo observations for effects of atmospheric dust loading

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Clancy, R. T.

    1992-01-01

    We have developed a radiative transfer model which allows the effects of atmospheric dust loading on surface albedo to be investigated. This model incorporates atmospheric dust opacity, the single scattering albedo and particle phase function of atmospheric dust, the bidirectional reflectance of the surface, and variable lighting and viewing geometry. The most recent dust particle properties are utilized. The spatial and temporal variability of atmospheric opacity (Tan) strongly influences the radiative transfer modelling results. We are currently using the approach described to determine Tan for IRTM mapping sequences of selected regions. This approach allows Tan to be determined at the highest spatial and temporal resolution supported by the IRTM data. Applying the radiative transfer modelling and determination of Tan described, IRTM visual brightness observations can be corrected for the effects of atmospheric dust loading a variety of locations and times. This approach allows maps of 'dust-corrected surface albedo' to be constructed for selected regions. Information on the variability of surface albedo and the amount of dust deposition/erosion related to such variability results. To date, this study indicates that atmospheric dust loading has a significant effect on observations of surface albedo, amounting to albedo corrections of as much as several tens of percent. This correction is not constant or linear, but depends upon surface albedo, viewing and lighting geometry, the dust and surface phase functions, and the atmospheric opacity. It is clear that the quantitative study of surface albedo, especially where small variations in observed albedo are important (such as photometric analyses), needs to account for the effects of the atmospheric dust loading. Maps of 'dust-corrected surface albedo' will be presented for a number of regions.

  17. Surface albedo darkening from wildfires in northern sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Ichoku, C. M.; Poudyal, R.; Román, M. O.; Wilcox, E.

    2014-05-01

    Northern sub-Saharan Africa (NSSA) has a wide variety of climate zones or biomes, where albedo dynamics are highly coupled with vegetation dynamics and fire disturbances. Quantifying surface albedo variations due to fire disturbances on time scales of several months to several years is complex and is made worse by lack of accurate and spatially consistent surface albedo data. Here, we estimate the surface albedo effect from wildfires in different land cover types in the NSSA region using Moderate Resolution Imaging Spectroradiometer (MODIS) multi-year observational data (2003-11). The average decrease in albedo after fires at the scale of 1 km MODIS footprint is -0.002 02 ± 0.000 03 for woody savanna and -0.002 22 ± 0.000 03 for savanna. These two land cover types together account for >86% of the total MODIS fire count between 2003 and 2011. We found that only a small fraction of the pixels (≦̸10%) burn in two successive years and about 47% had any fire recurrence in 9 years. The study also derived the trajectories of post-fire albedo dynamics from the percentages of pixels that recover to pre-fire albedo values each year. We found that the persistence of surface albedo darkening in most land cover types in the NSSA region is limited to about 6-7 years, after which at least 99% of the burnt pixels recover to their pre-fire albedo. Our results provide critical information for deriving necessary input to various models used in determining the effects of albedo change due to wild fires in the NSSA region.

  18. Temperature response of a number of plastic dosimeters for radiation processing

    NASA Astrophysics Data System (ADS)

    Sohrabpour, M.; Kazemi, A. A.; Mousavi, H.; Solati, K.

    1993-10-01

    Various plastic dosemeters are employed for dosimetry control of radiation processing within gamma and electron irradiation facilities. The temperature response of a dosimeter is important when the dose to such a dosimeter is accumulated under varying irradiation temperatures. Such measurements would be significant for proper assessment of the dose for better process control, as well as, performance evaluation of dosimetry systems. In this work we have developed a high current peltier junction temperature controller system for our Gammacell-220. This system has been designed to regulate the operating temperature of the irradiation chamber in the range of 0 to 80 C this system has been applied to measure the temperature response of the red perspex, a local clear PMMA, Gammex, Gammachrome, and Gafchromic dosimeters. The curves of relative performance or variation of the induced optical densities of the above dosemeters versus the irradiation temperature at fixed dose values are obtained.

  19. The effect of chemical stability on the NIPAM gel dosimeter using 1H-NMR

    NASA Astrophysics Data System (ADS)

    Huang, You-Ruei; Hsieh, Ling-Ling; Chang, Yuan-Jen; Hsieh, Bor-Tsung

    2013-06-01

    Radiation-induced chemical changes in the N-isopropylacrylamide (NIPAM) gels used in three-dimensional dosimeters were investigated using 1H-NMR in this study. The experimental results show that the signal from C=C bonds of NIPAM and N,N'-Methylenediacrylamide (BIS) are 5.5 and 6.3 ppm, respectively. The double bonds from the NIPAM and BIS disappeared with half-dose (D50) were about 10.90 Gy ± 0.76 Gy and 10.09 Gy ± 0.29 Gy, respectively. This observation demonstrates that the polymerization rate of BIS is faster than that of the NIPAM monomer. The 1H-NMR can indicate the chemical structure changes of the polymer gel dosimeter after irradiation and successfully determine the D50 in the NIPAM gel dosimeter.

  20. The study of N-isopropylacrylamide gel dosimeter doped iodinated contrast agents

    NASA Astrophysics Data System (ADS)

    Chang, Y. J.; Hsieh, L. L.; Liu, M. H.; Liu, J. S.; Hsieh, B. T.

    2013-06-01

    Low toxicity of N-isopropylacrylamide (NIPAM) dosimeter was doped with clinical iodinated contrast medium agents(Iobitridol (Xenetix® 350) and organically bound iodine (Conray® 60) as radiation sensitizers; The suitable gel dosimeter preparation formula in this research was 5 w/w% gelatin, 5 w/w% N-isopropylacrylamide, 3 w/w% N,N-methylene-bis-acrylamide, and 5 mM Tetrakis phosphonium chloride. The spiral CT was irradiator, and 120 kVp was the operating tube voltage. The maximum radiation dose was 0.6 Gy, and optical CT was the gel measurement device used. The results showed SERs with the addition of radiosensitizers were 10.70 (Xenetix® 350) and 9.67 (Conray® 60), respectively. Thus, the polymerized gel dosimeter could be used in the efficacy evaluation of low-energy and low-radiation dose.

  1. Improving the Success Rate of Delivering Annual Occupational Dosimetry Reports to Persons Issued Temporary External Dosimeters

    SciTech Connect

    Mallett, Michael Wesley

    2014-09-09

    Workers who are not routinely monitored for occupational radiation exposure at LANL may be issued temporary dosimeters in the field. Per 10CFR835 and DOE O 231.1A, the Laboratory's radiation protection program is responsible for reporting these results to the worker at the end of the year. To do so, the identity of the worker and their mailing address must be recorded by the delegated person at the time the dosimeter is issued. Historically, this data has not been consistently captured. A new online application was developed to record the issue of temporary dosimeters. The process flow of the application was structured such that: 1) the worker must be uniquely identified in the Lab's HR database, and 2) the mailing address of record is verified live time via a commercial web service, for the transaction to be completed. A COPQ savings (Type B1) of $96K/year is demonstrated for the new application.

  2. Real-time monitoring and diagnosis of scintillation dosimeters using an ultraviolet light emitting diode

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Lambert, J.; McKenzie, D. R.; Suchowerska, N.

    2008-05-01

    Plastic scintillator fibre optic dosimeters (FODs) have advantages for both brachytherapy and external beam radiotherapy applications. Convenient real-time monitoring and diagnosis of such dosimeters are desirable because of changes in the optical circuit that may arise in use. In this paper, we propose and demonstrate a real-time method using ultraviolet light emitting diodes (LED) to stimulate the scintillator and to diagnose failures of FODs. Key aspects of the LED FOD dosimetry design are investigated, enabling the design of a stable and accurate real-time monitoring dosimetry system. We demonstrate experimentally that the real-time monitoring FOD system is convenient to be used to monitor FOD dosimeters and to diagnose their failures resulted from different mechanisms.

  3. Radio-physical properties of micelle leucodye 3D integrating gel dosimeters

    NASA Astrophysics Data System (ADS)

    Vandecasteele, J.; Ghysel, S.; Baete, S. H.; De Deene, Y.

    2011-02-01

    Recently, novel radiochromic leucodye micelle hydrogel dosimeters were introduced in the literature. In these studies, gel measured electron depth dose profiles were compared with ion chamber depth dose data, from which it was concluded that leucocrystal violet-type dosimeters were independent of dose rate. Similar conclusions were drawn for leucomalachite green-type dosimeters, only after pre-irradiating the samples to a homogeneous radiation dose. However, in our extensive study of the radio-physical properties of leucocrystal violet- and leucomalachite green-type dosimeters, a significant dose rate dependence was found. For a dose rate variation between 50 and 400 cGy\\,min^{-1}, a maximum difference of 75% was found in optical dose sensitivity for the leucomalachite green-type dosimeter. Furthermore, the measured optical dose sensitivity of the leucomalachite green-type dosimeter was four times lower than the value previously reported in the literature. For the leucocrystal violet-type dosimeter, a maximum difference in optical dose sensitivity of 55% was found between 50 and 400 cGy\\,min^{-1}. A modified composition of the leucomalachite green-type dosimeter is proposed. This dosimeter is composed of gelatin, sodium dodecyl sulfate, chloroform, trichloroacetic acid and leucomalachite green. The optical dose sensitivity amounted to 4.375 \\times 10^{-5} \\,cm^{-1}\\; cGy^{-1} (dose rate 400 cGy\\,min^{-1}). No energy dependence for photon energies between 6 and 18 MV was found. No temperature dependence during readout was found notwithstanding a temperature dependence during irradiation of 1.90 cGy °C-1 increase on a total dose of 100 cGy. The novel gel dosimeter formulation exhibits an improved spatial stability (2.45 \\times 10^{-7} \\,cm^{2}\\; s^{-1} (= 0.088 mm^2 \\; h^{-1})) and good water/soft tissue equivalence. Nevertheless, the novel formulation was also found to have a significant, albeit reduced, dose rate dependence, as a maximum difference of 33

  4. Response of aqueous dichromate and nanoclay dichromate gel dosimeters to carbon ion irradiation

    NASA Astrophysics Data System (ADS)

    Maeyama, T.; Fukunishi, N.; Ishikawa, K. L.; Fukasaku, K.; Furuta, T.; Takagi, S.; Noda, S.; Himeno, R.; Fukuda, S.

    2013-06-01

    We have recently reported the significant reduction of radiation product diffusion by the incorporation of clay nanoparticles into dichromate gel (DCG) dosimeters. In this work, we investigate the influence of the nanoclay addition and gelation on the MRI R1 (1/T1) image response of the dichromate dosimeter to the therapeutic carbon ion beam (12C6+ 290 MeV/u). The MRI R1 distribution in the aqueous dichromate solution well reproduces physical dose-depth distribution with a high linear-energy-transfer (LET) efficiency. The nanoclay DCG dosimeters, on the other hand, exhibit composition-dependent LET efficiency degradation, while a sharp Bragg peak can still be detected. These results indicate that the nanocomposite gel addition may induce change in the radiation-induced reaction mechanism.

  5. Feasibility of PET/CT 3-D dosimetry for proton-activated PRESAGE® dosimeters

    NASA Astrophysics Data System (ADS)

    Carroll, M.; Ibbott, G.; Adamovics, J.

    2015-01-01

    A feasibility study is considered using PRESAGE® dosimeters as a direct dosimetry comparison tool to correlate proton activation to dose in a clinical beam. Proton activation measured by PET/CT has been studied as a future tool method for in vivo dosimetry. PRESAGE® is a 3D offline dosimeter that has a material composition giving it a longer activation decay time than similar dosimeters allowing easier measurements. In this study, the PRESAGE® positron emissions were measured by PET and directly compared to dose measurements made by optical-CT to make spatial comparisons of dose and proton activation. Profiles along the central axis of the beam found a shift in the distal-80% resulting in the proton activation profile being 1 cm shallower than the dose profile. Cross beam profiles demonstrated little discrepancy between long (3 hour) and short (30 minute) PET scan times.

  6. Thermal neutron response of the Li 2B 4O 7:Cu TL dosimeter

    NASA Astrophysics Data System (ADS)

    Gauld, I. C.; Harvey, J. W.; Kennett, T. J.; Prestwich, W. V.

    1986-10-01

    A measurement of the thermal neutron response of the Li 2B 4O 7:Cu TLD has been conducted. The results obtained using the Panasonic UD-806 dosimeter and UD-854A holder yield a free-in-air response of 3.3±0.1 R 60Co equivalent per mSv of thermal neutrons. A thermal neutron response of over 7 R 60Co equivalent per mSv was observed when the dosimeter was irradiated on water phantoms. The high sensitivity may result in a substantial overestimate of the gamma dose equivalent if the TLD is used in a mixed neutron and gamma environment of unknown ratio. Measurements of the Li 2B 4O 7:Cu glow curve, TL saturation curve and the thermal neutron response dependence of the dosimeter filtration thickness are also presented.

  7. Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration

    SciTech Connect

    Hollinger, D.; Ollinger, S. V.; Richardson, A. D.; Martin, M. E.; Meyers, T. P.; Dail, D. B.; Scott, N. A.; Arkebauer, T. J.; Baldocchi, D. D.; Clark, K. L.; Curtis, Peter; Davis, K. J.; Desai, Desai Ankur R.; Dragoni, Danilo; Goulden, M. L.; Gu, Lianhong; Katul, G. G.; Pallardy, Stephen G.; Pawu, K. T.; Schmid, H. P.; Stoy, P. C.; Suyker, A. E.; Verma, Shashi

    2009-02-01

    Vegetation albedo is a critical component of the Earth s climate system, yet efforts to evaluate and improve albedo parameterizations in climate models have lagged relative to other aspects of model development. Here, we calculated growing season albedos for deciduous and evergreen forests, crops, and grasslands based on over 40 site-years of data from the AmeriFlux network and compared them with estimates presently used in the land surface formulations of a variety of climate models. Generally, the albedo estimates used in land surface models agreed well with this data compilation. However, a variety of models using fixed seasonal estimates of albedo overestimated the growing season albedo of northerly evergreen trees. In contrast, climatemodels that rely on a common two-stream albedo submodel provided accurate predictions of boreal needle-leaf evergreen albedo but overestimated grassland albedos. Inverse analysis showed that parameters of the two-stream model were highly correlated. Consistent with recent observations based on remotely sensed albedo, the AmeriFlux dataset demonstrated a tight linear relationship between canopy albedo and foliage nitrogen concentration (for forest vegetation: albedo 50.0110.071%N, r250.91; forests, grassland, and maize: albedo50.0210.067%N, r250.80). However, this relationship saturated at the higher nitrogen concentrations displayed by soybean foliage. We developed similar relationships between a foliar parameter used in the two-stream albedo model and foliage nitrogen concentration. These nitrogen-based relationships can serve as the basis for a new approach to land surface albedo modeling that simplifies albedo estimation while providing a link to other important ecosystem processes.

  8. Optical properties of a long dynamic range chemical UV dosimeter based on solvent cast polyvinyl chloride (PVC).

    PubMed

    Amar, Abdurazaq; Parisi, Alfio V

    2013-11-01

    The dosimetric properties of the recently introduced UV dosimeter based on 16 μm PVC film have been fully characterised. Drying the thin film in air at 50 °C for at least 28 days was found to be necessary to minimise the temperature effects on the dosimeter response. This research has found that the dosimeter response, previously reported to be mainly to UVB, has no significant dependence on either exposure temperature or dose rate. The dosimeter has negligible dark reaction and responds to the UV radiation with high reproducibility. The dosimeter angular response was found to have a similar pattern as the cosine function but deviates considerably at angles larger than 70°. Dose response curves exhibit monotonically increasing shape and the dosimeter can measure more than 900 SED. This is about 3 weeks of continuous exposure during summer at subtropical sites. Exposures measured by the PVC dosimeter for some anatomical sites exposed to solar radiation for twelve consecutive days were comparable with those concurrently measured by a series of PPO dosimeters and were in line with earlier results reported in similar studies.

  9. Method for correcting for isotope burn-in effects in fission neutron dosimeters

    DOEpatents

    Gold, Raymond; McElroy, William N.

    1988-01-01

    A method is described for correcting for effect of isotope burn-in in fission neutron dosimeters. Two quantities are measured in order to quantify the "burn-in" contribution, namely P.sub.Z',A', the amount of (Z', A') isotope that is burned-in, and F.sub.Z', A', the fissions per unit volume produced in the (Z', A') isotope. To measure P.sub.Z', A', two solid state track recorder fission deposits are prepared from the very same material that comprises the fission neutron dosimeter, and the mass and mass density are measured. One of these deposits is exposed along with the fission neutron dosimeter, whereas the second deposit is subsequently used for observation of background. P.sub.Z', A' is then determined by conducting a second irradiation, wherein both the irradiated and unirradiated fission deposits are used in solid state track recorder dosimeters for observation of the absolute number of fissions per unit volume. The difference between the latter determines P.sub.Z', A' since the thermal neutron cross section is known. F.sub.Z', A' is obtained by using a fission neutron dosimeter for this specific isotope, which is exposed along with the original threshold fission neutron dosimeter to experience the same neutron flux-time history at the same location. In order to determine the fissions per unit volume produced in the isotope (Z', A') as it ingrows during the irradiation, B.sub.Z', A', from these observations, the neutron field must generally be either time independent or a separable function of time t and neutron energy E.

  10. The Neutron Energy Response of the Panasonic Model 809 Personnel Dosimeter

    SciTech Connect

    Frederick Cummings

    2010-04-01

    In 2010, the U.S. Department of Energy will adopt a new set of radiation weighting factors and quality factors to be consistent with values recommended by the International Commission on Radiological Protection. The change will affect the magnitude of occupational exposure assigned to radiation workers exposed to neutron radiation. Understanding the energy response of the dosimeter and the effect of the new quantities is critical to accurately ensuring that occupational exposure remains below the established regulatory limits. Therefore, the factors used to interpret dosimeter readings must be re-evaluated for each irradiation field over the range of neutron energies in which the dosimeter is used. This paper describes one method of determining the neutron response of the dosimeter. A Monte Carlo approach was used to model the energy response of the Panasonic Model 809 dosimeter over the range of energies from 1.0 x 10^-8 to 20 MeV. The response, normalized to the response at 2.1 MeV, ranged from approximately 0.5 at 20 MeV to approximately 26 at 1 eV. The response was then divided at each energy by the appropriate dose conversion coefficient to determine the dose response of the dosimeter. The dose responses, normalized to the response at 2.1 MeV, ranged from approximately 0.4 at 20 MeV to 765 at 1 eV. Dose conversion factors were determined for various reference neutron spectra and plotted on the dose response curve. Good agreement was observed except for the case of D2Omoderated 252Cf.

  11. The energy dependence of lithium formate and alanine EPR dosimeters for medium energy x rays

    SciTech Connect

    Waldeland, Einar; Hole, Eli Olaug; Sagstuen, Einar; Malinen, Eirik

    2010-07-15

    Purpose: To perform a systematic investigation of the energy dependence of alanine and lilthium formate EPR dosimeters for medium energy x rays. Methods: Lithium formate and alanine EPR dosimeters were exposed to eight different x-ray beam qualities, with nominal potentials ranging from 50 to 200 kV. Following ionometry based on standards of absorbed dose to water, the dosimeters were given two different doses of approximately 3 and 6 Gy for each radiation quality, with three dosimeters for each dose. A reference series was also irradiated to three different dose levels at a {sup 60}Co unit. The dose to water energy response, that is, the dosimeter reading per absorbed dose to water relative to that for {sup 60}Co {gamma}-rays, was estimated for each beam quality. In addition, the energy response was calculated by Monte Carlo simulations and compared to the experimental energy response. Results: The experimental energy response estimates ranged from 0.89 to 0.94 and from 0.68 to 0.90 for lithium formate and alanine, respectively. The uncertainties in the experimental energy response estimates were typically 3%. The relative effectiveness, that is, the ratio of the experimental energy response to that following Monte Carlo simulations was, on average, 0.96 and 0.94 for lithium formate and alanine, respectively. Conclusions: This work shows that lithium formate dosimeters are less dependent on x-ray energy than alanine. Furthermore, as the relative effectiveness for both lithium formate and alanine were systematically less than unity, the yield of radiation-induced radicals is decreased following x-irradiation compared to irradiation with {sup 60}Co {gamma}-rays.

  12. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    SciTech Connect

    Gawad, M Abdel; Elgohary, M; Hassaan, M; Emam, M; Desouky, O; Eldib, A; Ma, C

    2015-06-15

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolus was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric

  13. The Dependence of the Ice-Albedo Feedback on Atmospheric Properties

    PubMed Central

    Selsis, F.; Kitzmann, D.; Rauer, H.

    2013-01-01

    Abstract Ice-albedo feedback is a potentially important destabilizing effect for the climate of terrestrial planets. It is based on the positive feedback between decreasing surface temperatures, an increase of snow and ice cover, and an associated increase in planetary albedo, which then further decreases surface temperature. A recent study shows that for M stars, the strength of the ice-albedo feedback is reduced due to the strong spectral dependence of stellar radiation and snow/ice albedos; that is, M stars primarily emit in the near IR, where the snow and ice albedo is low, and less in the visible, where the snow/ice albedo is high. This study investigates the influence of the atmosphere (in terms of surface pressure and atmospheric composition) on this feedback, since an atmosphere was neglected in previous studies. A plane-parallel radiative transfer model was used for the calculation of planetary albedos. We varied CO2 partial pressures as well as the H2O, CH4, and O3 content in the atmosphere for planets orbiting Sun-like and M type stars. Results suggest that, for planets around M stars, the ice-albedo effect is significantly reduced, compared to planets around Sun-like stars. Including the effects of an atmosphere further suppresses the sensitivity to the ice-albedo effect. Atmospheric key properties such as surface pressure, but also the abundance of radiative trace gases, can considerably change the strength of the ice-albedo feedback. For dense CO2 atmospheres of the order of a few to tens of bar, atmospheric rather than surface properties begin to dominate the planetary radiation budget. At high CO2 pressures, the ice-albedo feedback is strongly reduced for planets around M stars. The presence of trace amounts of H2O and CH4 in the atmosphere also weakens the ice-albedo effect for both stellar types considered. For planets around Sun-like stars, O3 could also lead to a very strong decrease of the ice-albedo feedback at high CO2 pressures. Key Words

  14. The dependence of the ice-albedo feedback on atmospheric properties.

    PubMed

    von Paris, P; Selsis, F; Kitzmann, D; Rauer, H

    2013-10-01

    Ice-albedo feedback is a potentially important destabilizing effect for the climate of terrestrial planets. It is based on the positive feedback between decreasing surface temperatures, an increase of snow and ice cover, and an associated increase in planetary albedo, which then further decreases surface temperature. A recent study shows that for M stars, the strength of the ice-albedo feedback is reduced due to the strong spectral dependence of stellar radiation and snow/ice albedos; that is, M stars primarily emit in the near IR, where the snow and ice albedo is low, and less in the visible, where the snow/ice albedo is high. This study investigates the influence of the atmosphere (in terms of surface pressure and atmospheric composition) on this feedback, since an atmosphere was neglected in previous studies. A plane-parallel radiative transfer model was used for the calculation of planetary albedos. We varied CO₂ partial pressures as well as the H₂O, CH₄, and O₃ content in the atmosphere for planets orbiting Sun-like and M type stars. Results suggest that, for planets around M stars, the ice-albedo effect is significantly reduced, compared to planets around Sun-like stars. Including the effects of an atmosphere further suppresses the sensitivity to the ice-albedo effect. Atmospheric key properties such as surface pressure, but also the abundance of radiative trace gases, can considerably change the strength of the ice-albedo feedback. For dense CO₂ atmospheres of the order of a few to tens of bar, atmospheric rather than surface properties begin to dominate the planetary radiation budget. At high CO₂ pressures, the ice-albedo feedback is strongly reduced for planets around M stars. The presence of trace amounts of H₂O and CH₄ in the atmosphere also weakens the ice-albedo effect for both stellar types considered. For planets around Sun-like stars, O₃ could also lead to a very strong decrease of the ice-albedo feedback at high CO₂ pressures.

  15. Effects of forest litter and aeolian dust deposition on snow surface albedo

    NASA Astrophysics Data System (ADS)

    Perrot, D.; Pugh, E. T.; Molotch, N. P.; Small, E. E.

    2011-12-01

    Litter from bark beetle-infested trees and aeolian dust deposition are current perturbations to the snowpack surface albedo in subalpine forested environments in the Colorado River Basin. We examine the combined effects of dust and litter on snow surface albedo through field and controlled laboratory modification of snow surface dust and litter concentrations. From field experiments, applications of needles resulted in an albedo decrease of 0.0146 per percent increase in litter cover. Dust application resulted in an albedo decrease of 0.0061 per percent increase in litter cover. Needle application to a dusty snow surface resulted in 0.0043 albedo reduction per percent litter cover, and dust application to a snow surface with needles already present resulted in 0.0036 albedo reduction per percent litter cover. We tested the effects of yellow and red lodgepole needles on albedo reduction both in the field and the laboratory, and though yellow needles are slightly smaller, found that there is no significant difference between the slopes of yellow and red needles. However, there is a significant difference between the laboratory and field experiments resulting from different media (snow in the field and a whiteboard in the lab) that litter was applied to. Generally, we also find that it takes 120.7 lodgepole pine needles to affect the same increase in percent litter cover as 1 g/m2 of dust, and that it takes 53.2 needles to affect the same reduction in albedo as 1 g/m2 of dust. This suggests that per unit surface area, needles are more important than dust for albedo reduction. Experiments performed in the field and in the lab demonstrate the stronger albedo reducing effect of needles. However, dust has a greater capacity to cover more snow surface area than needles, increasing its overall importance. Because dust can cover more snow surface area than needles can, we suspect that dust deposition in forested environments will serve to significantly reduce subcanopy

  16. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains Central Facility

    SciTech Connect

    McFarlane, Sally A.; Gaustad, Krista L.; Mlawer, Eli J.; Long, Charles N.; Delamere, Jennifer

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  17. Synthetic single crystal diamond dosimeters for Intensity Modulated Radiation Therapy applications

    NASA Astrophysics Data System (ADS)

    Almaviva, S.; Ciancaglioni, I.; Consorti, R.; De Notaristefani, F.; Manfredotti, C.; Marinelli, Marco; Milani, E.; Petrucci, A.; Prestopino, G.; Verona, C.; Verona-Rinati, G.

    2009-09-01

    A synthetic single crystal diamond Schottky diode, in a p-type/intrinsic/metal structure, deposited by Chemical Vapour Deposition (CVD) and operating in photovoltaic regime, with no external bias voltage applied, was tested as a dosimeter for Intensity Modulated Radiation Therapy (IMRT) applications. The device response was compared with dose measurements from two commercial ionization chambers and a 2D diode array in an IMRT prostate cancer treatment plan. The obtained results indicate that CVD synthetic single crystal diamond-based dosimeters can successfully be used for highly conformed radiotherapy and IMRT dosimetry, due to their small size and high sensitivity per unit volume.

  18. Initial Characterization of a Gel Patch Dosimeter for In Vivo Dosimetry

    PubMed Central

    Matrosic, C; Culberson, W; Rosen, B; Madsen, E; Frank, G; Bednarz, B

    2016-01-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6%T normoxic polyacrylamide gel, was injected into 1-cm thick acrylic molds to create 1-cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose response of all three batches of gel was found to be linear within the range of 2–20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo

  19. Characterization of MOSFET dosimeters for low-dose measurements in maxillofacial anthropomorphic phantoms.

    PubMed

    Koivisto, Juha H; Wolff, Jan E; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika

    2015-07-08

    The aims of this study were to characterize reinforced metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low-dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50-90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point-dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k = 2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low-dose limit. The sensitivity was 3.09 ± 0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was -8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD-comparable low-dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However, for single in

  20. A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters

    SciTech Connect

    Chen, C. D.; Porkolab, M.; King, J. A.; Beg, F. N.; Key, M. H.; Chen, H.; Mackinnon, A. J.; MacPhee, A. G.; Patel, P. K.; Akli, K. U.; Stephens, R. B.; Freeman, R. R.; Link, A.; Van Woerkom, L. D.

    2008-10-15

    A Bremsstrahlung spectrometer using k-edge and differential filtering has been used with image plate dosimeters to measure the x-ray fluence from short-pulse laser/target interactions. An electron spectrometer in front of the Bremsstrahlung spectrometer deflects electrons from the x-ray line of sight and simultaneously measures the electron spectrum. The response functions were modeled with the Monte Carlo code INTEGRATED TIGER SERIES 3.0 and the dosimeters calibrated with radioactive sources. An electron distribution with a slope temperature of 1.3 MeV is inferred from the Bremsstrahlung spectra.

  1. A Bremsstrahlung Spectrometer using k-edge and Differential Filters with Image plate dosimeters

    SciTech Connect

    Chen, C; Mackinnon, A; Beg, F; Chen, H; Key, M; King, J A; Link, A; MacPhee, A; Patel, P; Porkolab, M; Stephens, R; VanWoerkom, L; Akli, K; Freeman, R

    2008-05-02

    A Bremsstrahlung spectrometer using k-edge and differential filtering has been used with Image Plate dosimeters to measure the x-ray fluence from short-pulse laser/target interactions. An electron spectrometer in front of the Bremsstrahlung spectrometer deflects electrons from the x-ray line of sight and simultaneously measures the electron spectrum. The response functions were modeled with the Monte Carlo code Integrated Tiger Series 3.0 and the dosimeters calibrated with radioactive sources. Electron distributions with slope temperatures in the MeV range are inferred from the Bremsstrahlung spectra.

  2. Experimental determination of the influence of oxygen on the PRESAGE® dosimeter.

    PubMed

    Alqathami, Mamdooh; Blencowe, Anton; Ibbott, Geoffrey

    2016-01-21

    It is generally accepted that the PRESAGE(®) radiochromic dosimeter is not sensitive to oxygen, however, this claim has not been supported or verified experimentally. Therefore, the aim of this study was to experimentally determine the potential influence of oxygen on dose sensitivity of the PRESAGE(®) dosimeter and its reporting system. Batches of PRESAGE(®) and its radical initiator-leuco dye reporting system were prepared in aerobic and anaerobic conditions. The anaerobic batches were deoxygenated by bubbling nitrogen through the dosimeter precursors or reporting system for 10 min. The dosimeters and reporting systems were prepared in spectrophotometric cuvettes and glass vials, respectively, and were irradiated with 6 MV photons to various radiation doses. Changes in optical density of the dosimeters and reporting system before and after irradiation were measured using a spectrophotometer. The overall results show that oxygen has some influence on the dosimetric characteristics of PRESAGE(®), although the radical initiator does appear to oxidize the leucomalachite green even in the presence of oxygen. Deoxygenation of the reporting system leads to an increase in sensitivity to radiation dose by ~30% when compared to the non-deoxygenated system. A minor increase in sensitivity (~5%) was also achieved by deoxygenating the PRESAGE(®) precursor prior to casting. In addition, dissolved oxygen measurements revealed low levels of dissolved oxygen (0.40 ± 0.04 mg l(-1)) in the polyurethane precursor used to fabricate the PRESAGE(®) dosimeters, as compared to water (8.60 ± 0.03 mg l(-1)) and the reporting system alone (1.30 ± 0.10 mg l(-1)). The results suggest that the presence of oxygen does not inhibit the radiochromic properties of the PRESAGE(®) system. However, deoxygenation of the dosimeter precursors prior to casting improves the dosimeters dose sensitivity by ~5%, which might be particularly useful for measuring low radiation doses. Nevertheless, we

  3. On the response of electronic personal dosimeters in constant potential and pulsed x- ray beams

    NASA Astrophysics Data System (ADS)

    Guimarães, M. C.; Silva, C. R. E.; Oliveira, P. M. C.; da Silva, T. A.

    2016-07-01

    Electronic personal dosimeters (EPDs) based on solid state detectors have widely been used but some deficiencies in their response in pulsed radiation beams have been reported. Nowadays, there is not an international standard for pulsed x-ray beams for calibration or type testing of dosimeters. Irradiation conditions for testing the response of EPDs in both the constant potential and pulsed x-ray beams were established in CDTN. Three different types of EPDs were tested in different conditions in similar ISO and IEC x-ray qualities. Results stressed the need of performing additional checks before using EPDs in constant potential or pulsed x-rays.

  4. Initial characterization of a gel patch dosimeter for in vivo dosimetry

    NASA Astrophysics Data System (ADS)

    Matrosic, C.; Culberson, W.; Rosen, B.; Madsen, E.; Frank, G.; Bednarz, B.

    2016-05-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6% T normoxic polyacrylamide gel, was injected into 1 cm thick acrylic molds to create 1 cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose–responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose–response of all three batches of gel was found to be linear within the range of 2–20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in

  5. Neutron dosimetry at commercial nuclear plants. Final report of Subtask B: dosimeter response

    SciTech Connect

    Cummings, F.M.; Endres, G.W.R.; Brackenbush, L.W.

    1983-03-01

    As part of a larger program to evaluate personnel neutron dosimetry at commercial nuclear power plants, this study was designed to characterize neutron dosimeter responses inside the containment structure of commercial nuclear plants. In order to characterize those responses, dosimeters were irradiated inside containment at 2 pressurized water reactors and at pipe penetrations outside the biological shield at two boiling water reactors. The reactors were operating at full power during the irradiations. Measurements were also performed with electronic instruments, the tissue equivalent proportional counter (TEPC), and portable remmeters, SNOOPY, RASCAL and PNR-4.

  6. Characterization of MOSFET dosimeters for low-dose measurements in maxillofacial anthropomorphic phantoms.

    PubMed

    Koivisto, Juha H; Wolff, Jan E; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika

    2015-01-01

    The aims of this study were to characterize reinforced metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low-dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50-90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point-dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k = 2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low-dose limit. The sensitivity was 3.09 ± 0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was -8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD-comparable low-dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However, for single in

  7. Novel Multicompartment 3-Dimensional Radiochromic Radiation Dosimeters for Nanoparticle-Enhanced Radiation Therapy Dosimetry

    SciTech Connect

    Alqathami, Mamdooh; Blencowe, Anton; Yeo, Un Jin; Doran, Simon J.; Qiao, Greg; Geso, Moshi

    2012-11-15

    Purpose: Gold nanoparticles (AuNps), because of their high atomic number (Z), have been demonstrated to absorb low-energy X-rays preferentially, compared with tissue, and may be used to achieve localized radiation dose enhancement in tumors. The purpose of this study is to introduce the first example of a novel multicompartment radiochromic radiation dosimeter and to demonstrate its applicability for 3-dimensional (3D) dosimetry of nanoparticle-enhanced radiation therapy. Methods and Materials: A novel multicompartment phantom radiochromic dosimeter was developed. It was designed and formulated to mimic a tumor loaded with AuNps (50 nm in diameter) at a concentration of 0.5 mM, surrounded by normal tissues. The novel dosimeter is referred to as the Sensitivity Modulated Advanced Radiation Therapy (SMART) dosimeter. The dosimeters were irradiated with 100-kV and 6-MV X-ray energies. Dose enhancement produced from the interaction of X-rays with AuNps was calculated using spectrophotometric and cone-beam optical computed tomography scanning by quantitatively comparing the change in optical density and 3D datasets of the dosimetric measurements between the tissue-equivalent (TE) and TE/AuNps compartments. The interbatch and intrabatch variability and the postresponse stability of the dosimeters with AuNps were also assessed. Results: Radiation dose enhancement factors of 1.77 and 1.11 were obtained using 100-kV and 6-MV X-ray energies, respectively. The results of this study are in good agreement with previous observations; however, for the first time we provide direct experimental confirmation and 3D visualization of the radiosensitization effect of AuNps. The dosimeters with AuNps showed small (<3.5%) interbatch variability and negligible (<0.5%) intrabatch variability. Conclusions: The SMART dosimeter yields experimental insights concerning the spatial distributions and elevated dose in nanoparticle-enhanced radiation therapy, which cannot be performed using any of

  8. Initial characterization of a gel patch dosimeter for in vivo dosimetry

    NASA Astrophysics Data System (ADS)

    Matrosic, C.; Culberson, W.; Rosen, B.; Madsen, E.; Frank, G.; Bednarz, B.

    2016-05-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6% T normoxic polyacrylamide gel, was injected into 1 cm thick acrylic molds to create 1 cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose-response of all three batches of gel was found to be linear within the range of 2-20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo

  9. Experimental determination of the influence of oxygen on the PRESAGE® dosimeter

    NASA Astrophysics Data System (ADS)

    Alqathami, Mamdooh; Blencowe, Anton; Ibbott, Geoffrey

    2016-01-01

    It is generally accepted that the PRESAGE® radiochromic dosimeter is not sensitive to oxygen, however, this claim has not been supported or verified experimentally. Therefore, the aim of this study was to experimentally determine the potential influence of oxygen on dose sensitivity of the PRESAGE® dosimeter and its reporting system. Batches of PRESAGE® and its radical initiator-leuco dye reporting system were prepared in aerobic and anaerobic conditions. The anaerobic batches were deoxygenated by bubbling nitrogen through the dosimeter precursors or reporting system for 10 min. The dosimeters and reporting systems were prepared in spectrophotometric cuvettes and glass vials, respectively, and were irradiated with 6 MV photons to various radiation doses. Changes in optical density of the dosimeters and reporting system before and after irradiation were measured using a spectrophotometer. The overall results show that oxygen has some influence on the dosimetric characteristics of PRESAGE®, although the radical initiator does appear to oxidize the leucomalachite green even in the presence of oxygen. Deoxygenation of the reporting system leads to an increase in sensitivity to radiation dose by ~30% when compared to the non-deoxygenated system. A minor increase in sensitivity (~5%) was also achieved by deoxygenating the PRESAGE® precursor prior to casting. In addition, dissolved oxygen measurements revealed low levels of dissolved oxygen (0.40  ±  0.04 mg l-1) in the polyurethane precursor used to fabricate the PRESAGE® dosimeters, as compared to water (8.60  ±  0.03 mg l-1) and the reporting system alone (1.30  ±  0.10 mg l-1). The results suggest that the presence of oxygen does not inhibit the radiochromic properties of the PRESAGE® system. However, deoxygenation of the dosimeter precursors prior to casting improves the dosimeters dose sensitivity by ~5%, which might be particularly useful for measuring low radiation doses

  10. Using Remote Sensing to Quantify Roof Albedo in Seven California Cities

    NASA Astrophysics Data System (ADS)

    Ban-Weiss, G. A.; Woods, J.; Millstein, D.; Levinson, R.

    2013-12-01

    Cool roofs reflect sunlight and therefore can reduce cooling energy use in buildings. Further, since roofs cover about 20-25% of cities, wide spread deployment of cool roofs could mitigate the urban heat island effect and partially counter urban temperature increases associated with global climate change. Accurately predicting the potential for increasing urban albedo using reflective roofs and its associated energy use and climate benefits requires detailed knowledge of the current stock of roofs at the city scale. Until now this knowledge has been limited due to a lack of availability of albedo data with sufficient spatial coverage, spatial resolution, and spectral information. In this work we use a novel source of multiband aerial imagery to derive the albedos of individual roofs in seven California cities: Los Angeles, Long Beach, San Diego, Bakersfield, Sacramento, San Francisco, and San Jose. The radiometrically calibrated, remotely sensed imagery has high spatial resolution (1 m) and four narrow (less than 0.1 μm wide) band reflectances: blue, green, red, and near-infrared. To derive the albedo of roofs in each city, we first locate roof pixels within GIS building outlines. Next we use laboratory measurements of the solar spectral reflectances of 190 roofing products to empirically relate solar reflectance (albedo) to reflectances in the four narrow bands; the root-mean-square of the residuals for the albedo prediction is 0.016. Albedos computed from remotely sensed reflectances are calibrated to ground measurements of roof albedo in each city. The error (both precision and accuracy) of albedo values is presented for each city. The area-weighted mean roof albedo (× standard deviation) for each city ranges from 0.17 × 0.08 (Los Angeles) to 0.29 × 0.15 (San Diego). In each city most roofs have low albedo in the range of 0.1 to 0.3. Roofs with albedo greater than 0.4 comprise less than 3% of total roofs and 7% of total roof area in each city. The California

  11. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2.

    PubMed

    Wicklein, Haley F; Ollinger, Scott V; Martin, Mary E; Hollinger, David Y; Lepine, Lucie C; Day, Michelle C; Bartlett, Megan K; Richardson, Andrew D; Norby, Richard J

    2012-08-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen–albedo relationship have not been established, and it is unknown whether factors affecting nitrogen availability will also influence albedo. To address these questions, we examined variation in foliar nitrogen in relation to leaf spectral properties, leaf mass per unit area, and leaf water content for three deciduous species subjected to either nitrogen (Harvard Forest, MA, and Oak Ridge, TN) or CO(2) fertilization (Oak Ridge, TN). At Oak Ridge, we also obtained canopy reflectance data from the airborne visible/infrared imaging spectrometer (AVIRIS) to examine whether canopy-level spectral responses were consistent with leaf-level results. At the leaf level, results showed no differences in reflectance or transmittance between CO(2) or nitrogen treatments, despite significant changes in foliar nitrogen. Contrary to our expectations, there was a significant, but negative, relationship between foliar nitrogen and leaf albedo, a relationship that held for both full spectrum leaf albedo as well as leaf albedo in the NIR region alone. In contrast, remote sensing data indicated an increase in canopy NIR reflectance with nitrogen fertilization. Collectively, these results suggest that altered nitrogen availability can affect canopy albedo, albeit by mechanisms that involve canopy-level processes rather than changes in leaf-level reflectance. PMID:22294028

  12. A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition.

    PubMed

    Leonardi, Stefano; Magnani, Federico; Nolè, Angelo; Van Noije, Twan; Borghetti, Marco

    2015-01-01

    We present a global assessment of the relationships between the short-wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep ), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle-leaf forests (ENF); evergreen broad-leaf forests (EBF); deciduous needle-leaf forests (DNF); deciduous broad-leaf forests (DBF); and mixed-forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short-wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad-leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select 'pure' pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models. PMID:25044609

  13. Albedo Properties of Small (0.5 to 20 km) Main Belt Asteroids

    NASA Astrophysics Data System (ADS)

    Ryan, Erin L.; Woodward, C. E.

    2010-01-01

    Serendipitous observations of main belt asteroids by the Spitzer Space Telescope have enabled determination of main belt asteroid albedos and diameters for targets as small as 0.5 km (eg., Ryan et al. 2009, AJ, 137, 5134). We have used multi-epoch data at 5.8, 8.0 and 24 microns from the MIPSGAL and Taurus Legacy Surveys to obtain diameters and albedos for a sample of approximately 2000 main belt asteroids. Using STM and NEATM, we have obtained diameters ranging from 0.5 to 30 km and albedos ranging from 0.02 to 0.5. Results of this program reveal an albedo distribution that is more diverse in range than the albedo distribution seen in the IRAS and MSX surveys. This diversity may reflect effects of space weathering reddening which is selectively reddening larger asteroids. This reddening effect may reinforce the findings from accretion models that indicate that asteroids in the early solar system were 100 km and larger (Morbidelli et al., 2009, Icarus, in press), by suggesting that the larger asteroids are indeed the oldest members of the main belt. We will present results on the albedo distribution as a function of semi-major axis and new analysis of the mean albedo of dynamical families within the main belt. Support for this work provided in part by a National Science Foundation grant AST-0706980 to the University of Minnesota.

  14. Evaluation of Moderate-Resolution Imaging Spectroradiometer (MODIS) Snow Albedo Product (MCD43A) over Tundra

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Schaaf, Crystal B.; Chopping, Mark J.; Strahler, Alan H.; Wang, Jindi; Roman, Miguel O.; Rocha, Adrian V.; Woodcock, Curtis E.; Shuai, Yanmin

    2012-01-01

    This study assesses the MODIS standard Bidirectional Reflectance Distribution Function (BRDF)/Albedo product, and the daily Direct Broadcast BRDF/Albedo algorithm at tundra locations under large solar zenith angles and high anisotropic diffuse illumination and multiple scattering conditions. These products generally agree with ground-based albedo measurements during the snow cover period when the Solar Zenith Angle (SZA) is less than 70deg. An integrated validation strategy, including analysis of the representativeness of the surface heterogeneity, is performed to decide whether direct comparisons between field measurements and 500- m satellite products were appropriate or if the scaling of finer spatial resolution airborne or spaceborne data was necessary. Results indicate that the Root Mean Square Errors (RMSEs) are less than 0.047 during the snow covered periods for all MCD43 albedo products at several Alaskan tundra areas. The MCD43 1- day daily albedo product is particularly well suited to capture the rapidly changing surface conditions during the spring snow melt. Results also show that a full expression of the blue sky albedo is necessary at these large SZA snow covered areas because of the effects of anisotropic diffuse illumination and multiple scattering. In tundra locations with dark residue as a result of fire, the MODIS albedo values are lower than those at the unburned site from the start of snowmelt.

  15. Albedo of Carbon Dioxide Ice in Mars' Residual South Polar Cap

    NASA Astrophysics Data System (ADS)

    James, P. B.; Wolff, M. J.; Bonev, B.

    2015-12-01

    The albedo of surface CO2 deposits in the Residual South Polar Cap (RSPC) of Mars controls their net condensation / sublimation over a martian year and is therefore a crucial parameter in determining RSPC stability. The albedo used in previous analyses is obtained by dividing I/F, determined from radiometrically calibrated imaging data, by the cosine of the incidence angle. Because of atmospheric aerosols, the albedo calculated from I/F above the atmosphere is not the surface albedo that enters into stability considerations. In order to determine the surface albedo, we interpolate optical depths determined from CRISM EPF measurements to provide estimates of the dust and ice opacities over the RSPC (Wolff et al., 2009) and use these to determine the actual surface albedos from MARCI images using the radiative transport program DISORT (Stamnes et al., 1988). Assuming that dust is the only contributor to atmospheric opacity, the retrieved surface albedos for the longer wavelength MARCI filters in MY 28 and 29 are found to be consistent despite very different dust opacities in the two years (James et al., 2014). However, this model fails to reproduce the short wavelength behavior in early summer and suggests either an additional opacity source or modification of the CRISM dust opacity or the dust phase function. The consequences of these changes will be discussed.

  16. Relations between albedos and emissivities from MODIS and ASTER data over North African Desert

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Dickinson, R. E.; Ogawa, K.; Tian, Y.; Jin, M.; Schmugge, T.; Tsvetsinskaya, E.

    2003-10-01

    This paper analyzes relations among MODIS surface albedos, ASTER broadband (3-14 μm) emissivities, and a soil taxonomy map over the arid areas of Algeria, Libya, and Tunisia in North Africa at 30 second (about 1 km) and 2 minute (about 4 km) spatial resolutions. The MODIS albedo data are from 7 spectral bands and 3 broadbands during dust-free seasons and the emissivity data are derived from a linear combination of the waveband emissivities of the ASTER five thermal infrared channels. Both albedo and emissivity data in the study region show similar considerable spatial variability, larger than assumed by most climate models, and such variability is related to the surface types (sands, rock, and soil orders). Emissivity over bare soils exhibits statistically significant correlations with albedos at both broadbands and most of spectral bands and decreases linearly with albedos. Albedo and emissivity are more strongly correlated with each other than either is to the surface types, apparently because of their higher resolution either spatially or in surface mineralogy. This paper provides guidance for the possible inclusion of such correlation to specify albedo and emissivity in climate models.

  17. Relations Between Albedos and Emissivities From MODIS and ASTER Data Over North African Desert

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Dickinson, R.; Ogawa, K.; Tian, Y.; Jin, M.; Schmugge, T.; Tsvetsinskaya, E.

    2003-12-01

    This paper analyzes relations among MODIS surface albedos, ASTER broadband (3-14 μ m) emissivities, and a soil taxonomy map over the arid areas of Algeria, Libya, and Tunisia in North Africa at 30 second (about 1 km) and 2 minute (about 4 km) spatial resolutions. The MODIS albedo data are from 7 spectral bands and 3 broadbands during dust-free seasons and the emissivity data are derived from a linear combination of the waveband emissivities of the ASTER five thermal infrared channels. Both albedo and emissivity data in the study region show similar considerable spatial variability, larger than assumed by most climate models, and such variability is related to the surface types (sands, rock, and soil orders). Emissivity over bare soils exhibits statistically significant correlations with albedos at both broadbands and most of spectral bands and decreases linearly with albedos. Albedo and emissivity are more strongly correlated with each other than either is to the surface types, apparently because of their higher resolution either spatially or in surface mineralogy. This paper provides guidance for the possible inclusion of such correlation to specify albedo and emissivity in climate models.

  18. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2.

    PubMed

    Wicklein, Haley F; Ollinger, Scott V; Martin, Mary E; Hollinger, David Y; Lepine, Lucie C; Day, Michelle C; Bartlett, Megan K; Richardson, Andrew D; Norby, Richard J

    2012-08-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen–albedo relationship have not been established, and it is unknown whether factors affecting nitrogen availability will also influence albedo. To address these questions, we examined variation in foliar nitrogen in relation to leaf spectral properties, leaf mass per unit area, and leaf water content for three deciduous species subjected to either nitrogen (Harvard Forest, MA, and Oak Ridge, TN) or CO(2) fertilization (Oak Ridge, TN). At Oak Ridge, we also obtained canopy reflectance data from the airborne visible/infrared imaging spectrometer (AVIRIS) to examine whether canopy-level spectral responses were consistent with leaf-level results. At the leaf level, results showed no differences in reflectance or transmittance between CO(2) or nitrogen treatments, despite significant changes in foliar nitrogen. Contrary to our expectations, there was a significant, but negative, relationship between foliar nitrogen and leaf albedo, a relationship that held for both full spectrum leaf albedo as well as leaf albedo in the NIR region alone. In contrast, remote sensing data indicated an increase in canopy NIR reflectance with nitrogen fertilization. Collectively, these results suggest that altered nitrogen availability can affect canopy albedo, albeit by mechanisms that involve canopy-level processes rather than changes in leaf-level reflectance.

  19. Near-ground cooling efficacies of trees and high-albedo surfaces

    SciTech Connect

    Levinson, R M

    1997-05-01

    Daytime summer urban heat islands arise when the prevalence of dark-colored surfaces and lack of vegetation make a city warmer than neighboring countryside. Two frequently-proposed summer heat island mitigation measures are to plant trees and to increase the albedo (solar reflectivity) of ground surfaces. This dissertation examines the effects of these measures on the surface temperature of an object near the ground, and on solar heating of air near the ground. Near-ground objects include people, vehicles, and buildings. The variation of the surface temperature of a near-ground object with ground albedo indicates that a rise in ground albedo will cool a near-ground object only if the object`s albedo exceeds a critical value. This critical value of object albedo depends on wind speed, object geometry, and the height of the atmospheric thermal boundary layer. It ranges from 0.15 to 0.37 for a person. If an object has typical albedo of 0.3, increasing the ground albedo by.

  20. A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition.

    PubMed

    Leonardi, Stefano; Magnani, Federico; Nolè, Angelo; Van Noije, Twan; Borghetti, Marco

    2015-01-01

    We present a global assessment of the relationships between the short-wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep ), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle-leaf forests (ENF); evergreen broad-leaf forests (EBF); deciduous needle-leaf forests (DNF); deciduous broad-leaf forests (DBF); and mixed-forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short-wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad-leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select 'pure' pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models.