Science.gov

Sample records for albedo leaf area

  1. Improving winter leaf area index estimation in coniferous forests and its significance in estimating the land surface albedo

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Chen, Jing M.; Pavlic, Goran; Arain, Altaf

    2016-09-01

    Winter leaf area index (LAI) of evergreen coniferous forests exerts strong control on the interception of snow, snowmelt and energy balance. Simulation of winter LAI and associated winter processes in land surface models is challenging. Retrieving winter LAI from remote sensing data is difficult due to cloud contamination, poor illumination, lower solar elevation and higher radiation reflection by snow background. Underestimated winter LAI in evergreen coniferous forests is one of the major issues limiting the application of current remote sensing LAI products. It has not been fully addressed in past studies in the literature. In this study, we used needle lifespan to correct winter LAI in a remote sensing product developed by the University of Toronto. For the validation purpose, the corrected winter LAI was then used to calculate land surface albedo at five FLUXNET coniferous forests in Canada. The RMSE and bias values for estimated albedo were 0.05 and 0.011, respectively, for all sites. The albedo map over coniferous forests across Canada produced with corrected winter LAI showed much better agreement with the GLASS (Global LAnd Surface Satellites) albedo product than the one produced with uncorrected winter LAI. The results revealed that the corrected winter LAI yielded much greater accuracy in simulating land surface albedo, making the new LAI product an improvement over the original one. Our study will help to increase the usability of remote sensing LAI products in land surface energy budget modeling.

  2. Tackling regional climate change by leaf albedo bio-geoengineering.

    PubMed

    Ridgwell, Andy; Singarayer, Joy S; Hetherington, Alistair M; Valdes, Paul J

    2009-01-27

    The likelihood that continuing greenhouse-gas emissions will lead to an unmanageable degree of climate change has stimulated the search for planetary-scale technological solutions for reducing global warming ("geoengineering"), typically characterized by the necessity for costly new infrastructures and industries. We suggest that the existing global infrastructure associated with arable agriculture can help, given that crop plants exert an important influence over the climatic energy budget because of differences in their albedo (solar reflectivity) compared to soils and to natural vegetation. Specifically, we propose a "bio-geoengineering" approach to mitigate surface warming, in which crop varieties having specific leaf glossiness and/or canopy morphological traits are specifically chosen to maximize solar reflectivity. We quantify this by modifying the canopy albedo of vegetation in prescribed cropland areas in a global-climate model, and thereby estimate the near-term potential for bio-geoengineering to be a summertime cooling of more than 1 degrees C throughout much of central North America and midlatitude Eurasia, equivalent to seasonally offsetting approximately one-fifth of regional warming due to doubling of atmospheric CO(2). Ultimately, genetic modification of plant leaf waxes or canopy structure could achieve greater temperature reductions, although better characterization of existing intraspecies variability is needed first.

  3. Leaf Area Influence on Surface Layer in a Deciduous Forest. Part 2; Detecting Leaf Area and Surface Resistance During Transition Seasons

    NASA Technical Reports Server (NTRS)

    Sakai, Ricardo K.; Fitzjarrald, David R.; Moore, Kathleen E.; Sicker, John W.; Munger, Willian J.; Goulden, Michael L.; Wofsy, Steven C.

    1996-01-01

    Temperate deciduous forest exhibit dramatic seasonal changes in surface exchange properties following on the seasonal changes in leaf area index. The canopy resistance to water vapor transport r(sub c) decreased abruptly at leaf emergence in each year but then also continued to decrease slowly during the remaining growing season due to slowly increasing LAI. Canopy resistance and PAR-albedo (albedo from photosynthetically active radiation) began to increase about one month before leaf fall with the diminishment of CO2 gradient above the canopy as well. At this time evaporation begun to be controlled as if the canopy were leafless.

  4. Leaf area dynamics of conifer forests

    SciTech Connect

    Margolis, H.; Oren, R.; Whitehead, D.; Kaufmann, M.R.

    1995-07-01

    Estimating the surface area of foliage supported by a coniferous forest canopy is critical for modeling its biological properties. Leaf area represents the surface area available for the interception of energy, the absorption of carbon dioxide, and the diffusion of water from the leaf to the atmosphere. The concept of leaf area is pertinent to the physiological and ecological dynamics of conifers at a wide range of spatial scales, from individual leaves to entire biomes. In fact, the leaf area of vegetation at a global level can be thought of as a carbon-absorbing, water-emitting membrane of variable thickness, which can have an important influence on the dynamics and chemistry of the Earth`s atmosphere over both the short and the long term. Unless otherwise specified, references to leaf area herein refer to projected leaf area, i.e., the vertical projection of needles placed on a flat plane. Total leaf surface area is generally from 2.0 to 3.14 times that of projected leaf area for conifers. It has recently been suggested that hemisurface leaf area, i.e., one-half of the total surface area of a leaf, a more useful basis for expressing leaf area than is projected area. This chapter is concerned with the dynamics of coniferous forest leaf area at different spatial and temporal scales. In the first part, we consider various hypotheses related to the control of leaf area development, ranging from simple allometric relations with tree size to more complex mechanistic models that consider the movement of water and nutrients to tree canopies. In the second part, we consider various aspects of leaf area dynamics at varying spatial and temporal scales, including responses to perturbation, seasonal dynamics, genetic variation in crown architecture, the responses to silvicultural treatments, the causes and consequences of senescence, and the direct measurement of coniferous leaf area at large spatial scales using remote sensing.

  5. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area1

    PubMed Central

    Easlon, Hsien Ming; Bloom, Arnold J.

    2014-01-01

    • Premise of the study: Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Methods and Results: Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Conclusions: Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images. PMID:25202639

  6. Evaluation of the MODIS Albedo Product over a Heterogeneous Agricultural Area

    NASA Technical Reports Server (NTRS)

    Sobrino, Jose Antonio; Franch, B.; Oltra-Carrio, R.; Vermote, E. F.; Fedele, E.

    2013-01-01

    In this article, the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF)/Albedo product (MCD43) is evaluated over a heterogeneous agricultural area in the framework of the Earth Observation: Optical Data Calibration and Information Extraction (EODIX) project campaign, which was developed in Barrax (Spain) in June 2011. In this method, two models, the RossThick-LiSparse-Reciprocal (RTLSR) (which corresponds to the MODIS BRDF algorithm) and the RossThick-Maignan-LiSparse-Reciprocal (RTLSR-HS), were tested over airborne data by processing high-resolution images acquired with the Airborne Hyperspectral Scanner (AHS) sensor. During the campaign, airborne images were retrieved with different view zenith angles along the principal and orthogonal planes. Comparing the results of applying the models to the airborne data with ground measurements, we obtained a root mean square error (RMSE) of 0.018 with both RTLSR and RTLSR-HS models. The evaluation of the MODIS BRDF/Albedo product (MCD43) was performed by comparing satellite images with AHS estimations. The results reported an RMSE of 0.04 with both models. Additionally, taking advantage of a homogeneous barley pixel, we compared in situ albedo data to satellite albedo data. In this case, the MODIS albedo estimation was (0.210 +/- 0.003), while the in situ measurement was (0.204 +/- 0.003). This result shows good agreement in regard to a homogeneous pixel.

  7. Size-dependent leaf area ratio in plant twigs: implication for leaf size optimization

    PubMed Central

    Yang, Dongmei; Niklas, Karl J.; Xiang, Shuang; Sun, Shucun

    2010-01-01

    Background and Aims Although many hypotheses have been proposed to explain variation in leaf size, the mechanism underlying the variation remains not fully understood. To help understand leaf size variation, the cost/benefit of twig size was analysed, since, according to Corner's rule, twig size is positively correlated with the size of appendages the twig bears. Methods An extensive survey of twig functional traits, including twig (current-year shoots including one stem and few leaves) and leaf size (individual leaf area and mass), was conducted for 234 species from four broadleaved forests. The scaling relationship between twig mass and leaf area was determined using standardized major axis regression and phylogenetic independent comparative analyses. Key Results Leaf area was found to scale positively and allometrically with both stem and twig mass (stem mass plus leaf mass) with slopes significantly smaller than 1·0, independent of life form and habitat type. Thus, the leaf area ratio (the ratio of total leaf area to stem or twig mass) decreases with increasing twig size. Moreover, the leaf area ratio correlated negatively with individual leaf mass. The results of phylogenetic independent comparativeanalyses were consistent with the correlations. Based on the above results, a simple model for twig size optimization was constructed, from which it is postulated that large leaf size–twig size may be favoured when leaf photosynthetic capacity is high and/or when leaf life span and/or stem longevity are long. The model's predictions are consistent with leaf size variation among habitats, in which leaf size tends to be small in poor habitats with a low primary productivity. The model also explains large variations in leaf size within habitats for which leaf longevity and stem longevity serve as important determinants. Conclusions The diminishing returns in the scaling of total leaf area with twig size can be explained in terms of a very simple model on twig size

  8. Estimating big bluestem albedo from directional reflectance measurements

    NASA Technical Reports Server (NTRS)

    Irons, J. R.; Ranson, K. J.; Daughtry, C. S. T.

    1988-01-01

    Multidirectional reflectance factor measurements acquired in the summer of 1986 are used to make estimates of big bluestem grass albedo, evaluating the variation of albedo with changes in solar zenith angle and phenology. On any given day, the albedo was observed to increase by at least 19 percent as solar zenith angle increased. Changes in albedo were found to correspond to changes in the green leaf area index of the grass canopy. Estimates of albedo made using reflectance data acquired within only one or two azimuthal planes and at a restricted range of view zenith angle were evaluated and compared to 'true' albedos derived from all available reflectance factor data. It was found that even a limited amount of multiple direction reflectance data was preferable to a single nadir reflectance factor for the estimation of prarie grass albedo.

  9. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2.

    PubMed

    Wicklein, Haley F; Ollinger, Scott V; Martin, Mary E; Hollinger, David Y; Lepine, Lucie C; Day, Michelle C; Bartlett, Megan K; Richardson, Andrew D; Norby, Richard J

    2012-08-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen–albedo relationship have not been established, and it is unknown whether factors affecting nitrogen availability will also influence albedo. To address these questions, we examined variation in foliar nitrogen in relation to leaf spectral properties, leaf mass per unit area, and leaf water content for three deciduous species subjected to either nitrogen (Harvard Forest, MA, and Oak Ridge, TN) or CO(2) fertilization (Oak Ridge, TN). At Oak Ridge, we also obtained canopy reflectance data from the airborne visible/infrared imaging spectrometer (AVIRIS) to examine whether canopy-level spectral responses were consistent with leaf-level results. At the leaf level, results showed no differences in reflectance or transmittance between CO(2) or nitrogen treatments, despite significant changes in foliar nitrogen. Contrary to our expectations, there was a significant, but negative, relationship between foliar nitrogen and leaf albedo, a relationship that held for both full spectrum leaf albedo as well as leaf albedo in the NIR region alone. In contrast, remote sensing data indicated an increase in canopy NIR reflectance with nitrogen fertilization. Collectively, these results suggest that altered nitrogen availability can affect canopy albedo, albeit by mechanisms that involve canopy-level processes rather than changes in leaf-level reflectance.

  10. Surface magnetic field mapping on high albedo marking areas of the moon

    NASA Astrophysics Data System (ADS)

    Shibuya, H.; Aikawa, K.; Tsunakawa, H.; Takahashi, F.; Shimizu, H.; Matsushima, M.

    2009-12-01

    The correlation between high albedo markings (HAM) on the surface of the moon and strong magnetic anomalies has been claimed since the early time of the lunar magnetic field study (Hood and Schubert, 1980). Hood et al. (1989) mapped the smoothed magnetic field over the Reiner Gamma region using Lunar Prospector magnetometer (LP-MAG) data, and showed that the position of them matches well. We have developed a method to recover the 3-d magnetic field from satellite field observations (EPR method which stands for Equivalent Pole Reduction; Toyoshima et al. 2008). Applying EPR to the several areas of strong magnetic anomalies, we calculated the magnetic anomaly maps of near surface regions, to see how the anomaly and the HAM correlate each other. The data used is of the Lunar Prospector magnetometer (LP-MAG). They are selected from low altitude observations performed in 1998 to 1999. The areas studied are Reiner Gamma, Airy, Descartes, Abel, and Crisium Antipode regions. The EPR determines a set of magnetic monopoles at the moon surface which produce the magnetic field of the observation. In each studied area, we put poles in 0.1° intervals of both latitude and longitude, then the magnetic field at 5km in altitude is calculated. The field distribution is superimposed with the albedo map made from Clementine data. The total force (Bf) maps indicate that the HMA occurs at the strong anomaly regions, but their shape does not quite overlie. However, taking horizontal component (Bh), not only position but the shape and size of the anomalies coincide with HMA regions. It is particularly true for the Reiner Gamma, and Descartes regions. The shape of HMA fits in a Bh contour. The HMA is argued to be formed by the reduction of solar wind particles which are shielded by the magnetic field. Since the deflection of the charged particle becomes large at large horizontal component, the Bh distribution showed here support the argument.

  11. Estimation of leaf area with an integrating sphere.

    PubMed

    Serrano, Lydia; Gamon, J. A.; Berry, J.

    1997-01-01

    Relative absorptance of intact branches measured with an integrating sphere was compared to leaf area estimated by conventional methods (volume displacement and scanning area meter) for three conifer species: Picea mariana (Mill.) BSP, Pinus banksiana (Lamb.) and Pseudotsuga menziesii (Mirb.) Franco. A consistent relationship between relative absorptance and surface area emerged for the three species. The ability to predict leaf area from absorptance was further explored by measuring branches of Pseudotsuga menziesii grown in varying light and nutrient regimes. When a single equation was used to predict leaf area under all growth conditions, errors were as large as 40% primarily because of variation in leaf absorptivity, with the largest errors associated with extremely nutrient-deficient foliage. When separate empirical equations were developed for each growth treatment, predicted leaf surface area agreed to within 5% of the area determined by the volume displacement method. Leaf surface area estimated from theoretical principles was also in good agreement with total surface area estimated independently by conventional methods. With proper accounting for needle absorptivity, which varied with growth conditions, leaf area estimates obtained by the integrating sphere method were of similar accuracy to those obtained by conventional methods, with the added advantage that the method allowed intact foliage to be sampled nondestructively in the field. Because the integrating sphere method preserves branch structure during measurement, it could provide a useful measure of needle area for photosynthetic or developmental studies requiring repeated sampling of the same branch.

  12. The scaling of leaf area and mass: the cost of light interception increases with leaf size

    PubMed Central

    Milla, Rubén; Reich, Peter B

    2007-01-01

    For leaves, the light-capturing surface area per unit dry mass investment (specific leaf area, SLA) is a key trait from physiological, ecological and biophysical perspectives. To address whether SLA declines with leaf size, as hypothesized due to increasing costs of support in larger leaves, we compiled data on intraspecific variation in leaf dry mass (LM) and leaf surface area (LA) for 6334 leaves of 157 species. We used the power function LM=α LAβ to test whether, within each species, large leaves deploy less surface area per unit dry mass than small leaves. Comparing scaling exponents (β) showed that more species had a statistically significant decrease in SLA as leaf size increased (61) than the opposite (7) and the average β was significantly greater than 1 (βmean=1.10, 95% CI 1.08–1.13). However, scaling exponents varied markedly from the few species that decreased to the many that increased SLA disproportionately fast as leaf size increased. This variation was unrelated to growth form, ecosystem of origin or climate. The average within-species tendency found here (allometric decrease of SLA with leaf size, averaging 13%) is in accord with concurrent findings on global-scale trends among species, although the substantial scatter around the central tendency suggests that the leaf size dependency does not obligately shape SLA. Nonetheless, the generally greater mass per unit leaf area of larger than smaller leaves directly translates into a greater cost to build and maintain a unit of leaf area, which, all else being equal, should constrain the maximum leaf size displayed. PMID:17591590

  13. The relationship of leaf photosynthetic traits - V cmax and J max - to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study.

    PubMed

    Walker, Anthony P; Beckerman, Andrew P; Gu, Lianhong; Kattge, Jens; Cernusak, Lucas A; Domingues, Tomas F; Scales, Joanna C; Wohlfahrt, Georg; Wullschleger, Stan D; Woodward, F Ian

    2014-08-01

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (V cmax) and the maximum rate of electron transport (J max). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between V cmax and J max and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between V cmax and J max and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of V cmax and J max with leaf N, P, and SLA. V cmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of V cmax to leaf N. J max was strongly related to V cmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm(-2)), increasing leaf P from 0.05 to 0.22 gm(-2) nearly doubled assimilation rates. Finally, we show that plants may employ a conservative strategy of J max to V cmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.

  14. The relationship of leaf photosynthetic traits V cmax and Jmax - to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study

    DOE PAGES

    Walker, Anthony P.; Beckerman, Andrew P.; Gu, Lianhong; ...

    2014-07-25

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derivedmore » from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Lastly, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.« less

  15. The relationship of leaf photosynthetic traits V cmax and Jmax - to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study

    SciTech Connect

    Walker, Anthony P.; Beckerman, Andrew P.; Gu, Lianhong; Kattge, Jens; Cernusak, Lucas A.; Domingues, Tomas F.; Scales, Joanna C.; Wohlfahrt, Georg; Wullschleger, Stan D.; Woodward, F. Ian

    2014-07-25

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Lastly, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.

  16. Allometric method to estimate leaf area index for row crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf area index (LAI) is critical for predicting plant metabolism, biomass production, evapotranspiration, and greenhouse gas sequestration, but direct LAI measurements are difficult and labor intensive. Several methods are available to measure LAI indirectly or calculate LAI using allometric method...

  17. Costs of measuring leaf area index of corn

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Hollinger, S. E.

    1984-01-01

    The magnitude of plant-to-plant variability of leaf area of corn plants selected from uniform plots was examined and four representative methods for measuring leaf area index (LAI) were evaluated. The number of plants required and the relative costs for each sampling method were calculated to detect 10, 20, and 50% differences in LAI using 0.05 and 0.01 tests of significance and a 90% probability of success (beta = 0.1). The natural variability of leaf area per corn plant was nearly 10%. Additional variability or experimental error may be introduced by the measurement technique employed and by nonuniformity within the plot. Direct measurement of leaf area with an electronic area meter had the lowest CV, required that the fewest plants be sampled, but required approximately the same amount of time as the leaf area/weight ratio method to detect comparable differences. Indirect methods based on measurements of length and width of leaves required more plants but less total time than the direct method. Unless the coefficients for converting length and width to area are verified frequently, the indirect methods may be biased. When true differences in LAI among treatments exceed 50% of mean, all four methods are equal. The method of choice depends on the resources available, the differences to be detected, and what additional information, such as leaf weight or stalk weight, is also desired.

  18. Global Albedo

    Atmospheric Science Data Center

    2013-04-19

    ... the albedo. Bright surfaces have albedo near unity, and dark surfaces have albedo near zero. The DHR refers to the amount of spectral ... Atmospheric Science Data Center's  MISR Level 3 Imagery web site . The Multi-angle Imaging SpectroRadiometer observes the daylit ...

  19. Leaf Area Adjustment As an Optimal Drought-Adaptation Strategy

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Beyer, F.; Thompson, S. E.; Vico, G.; Weih, M.

    2014-12-01

    Leaf phenology plays a major role in land-atmosphere mass and energy exchanges. Much work has focused on phenological responses to light and temperature, but less to leaf area changes during dry periods. Because the duration of droughts is expected to increase under future climates in seasonally-dry as well as mesic environments, it is crucial to (i) predict drought-related phenological changes and (ii) to develop physiologically-sound models of leaf area dynamics during dry periods. Several optimization criteria have been proposed to model leaf area adjustment as soil moisture decreases. Some theories are based on the plant carbon (C) balance, hypothesizing that leaf area will decline when instantaneous net photosynthetic rates become negative (equivalent to maximization of cumulative C gain). Other theories draw on hydraulic principles, suggesting that leaf area should adjust to either maintain a constant leaf water potential (isohydric behavior) or to avoid leaf water potentials with negative impacts on photosynthesis (i.e., minimization of water stress). Evergreen leaf phenology is considered as a control case. Merging these theories into a unified framework, we quantify the effect of phenological strategy and climate forcing on the net C gain over the entire growing season. By accounting for the C costs of leaf flushing and the gains stemming from leaf photosynthesis, this metric assesses the effectiveness of different phenological strategies, under different climatic scenarios. Evergreen species are favored only when the dry period is relatively short, as they can exploit most of the growing season, and only incur leaf maintenance costs during the short dry period. In contrast, deciduous species that lower maintenance costs by losing leaves are advantaged under drier climates. Moreover, among drought-deciduous species, isohydric behavior leads to lowest C gains. Losing leaves gradually so as to maintain a net C uptake equal to zero during the driest period in

  20. Application and Evaluation of MODIS LAI, fPAR, and Albedo Products in the WRFCMAQ System

    EPA Science Inventory

    Leaf area index (LAI), vegetation fraction (VF), and surface albedo are important parameters in the land surface model (LSM) for meteorology and air quality modeling systems such as WRF/CMAQ. LAI and VF control not only leaf to canopy level evapotranspiration flux scaling but al...

  1. Generating Vegetation Leaf Area Index Earth System Data Record from Multiple Sensors. Part 1; Theory

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram; Schull, Mitchell A.; Samanta, Arindam; Shabanov, Nikolay V.; Milesi, Cristina; Nemani, Ramakrishna R.; Knyazikhin, Yuri; Myneni, Ranga B.

    2008-01-01

    The generation of multi-decade long Earth System Data Records (ESDRs) of Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) from remote sensing measurements of multiple sensors is key to monitoring long-term changes in vegetation due to natural and anthropogenic influences. Challenges in developing such ESDRs include problems in remote sensing science (modeling of variability in global vegetation, scaling, atmospheric correction) and sensor hardware (differences in spatial resolution, spectral bands, calibration, and information content). In this paper, we develop a physically based approach for deriving LAI and FPAR products from the Advanced Very High Resolution Radiometer (AVHRR) data that are of comparable quality to the Moderate resolution Imaging Spectroradiometer (MODIS) LAI and FPAR products, thus realizing the objective of producing a long (multi-decadal) time series of these products. The approach is based on the radiative transfer theory of canopy spectral invariants which facilitates parameterization of the canopy spectral bidirectional reflectance factor (BRF). The methodology permits decoupling of the structural and radiometric components and obeys the energy conservation law. The approach is applicable to any optical sensor, however, it requires selection of sensor-specific values of configurable parameters, namely, the single scattering albedo and data uncertainty. According to the theory of spectral invariants, the single scattering albedo is a function of the spatial scale, and thus, accounts for the variation in BRF with sensor spatial resolution. Likewise, the single scattering albedo accounts for the variation in spectral BRF with sensor bandwidths. The second adjustable parameter is data uncertainty, which accounts for varying information content of the remote sensing measurements, i.e., Normalized Difference Vegetation Index (NDVI, low information content), vs. spectral BRF (higher

  2. The anatomical and compositional basis of leaf mass per area.

    PubMed

    John, Grace P; Scoffoni, Christine; Buckley, Thomas N; Villar, Rafael; Poorter, Hendrik; Sack, Lawren

    2017-04-01

    Leaf dry mass per unit leaf area (LMA) is a central trait in ecology, but its anatomical and compositional basis has been unclear. An explicit mathematical and physical framework for quantifying the cell and tissue determinants of LMA will enable tests of their influence on species, communities and ecosystems. We present an approach to explaining LMA from the numbers, dimensions and mass densities of leaf cells and tissues, which provided unprecedented explanatory power for 11 broadleaved woody angiosperm species diverse in LMA (33-262 g m(-2) ; R(2)  = 0.94; P < 0.001). Across these diverse species, and in a larger comparison of evergreen vs. deciduous angiosperms, high LMA resulted principally from larger cell sizes, greater major vein allocation, greater numbers of mesophyll cell layers and higher cell mass densities. This explicit approach enables relating leaf anatomy and composition to a wide range of processes in physiological, evolutionary, community and macroecology.

  3. An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants

    PubMed Central

    Flores, Olivier; Garnier, Eric; Wright, Ian J; Reich, Peter B; Pierce, Simon; Dìaz, Sandra; Pakeman, Robin J; Rusch, Graciela M; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P; Bekker, Renée M; Cerabolini, Bruno E L; Ceriani, Roberta M; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P; Pérez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan

    2014-01-01

    In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This “worldwide leaf economics spectrum” consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light-interception borne by plants. We conducted a broad-scale analysis of the evolutionary history of LMA across a large dataset of 5401 vascular plant species. The phylogenetic signal in LMA displayed low but significant conservatism, that is, leaf economics tended to be more similar among close relatives than expected by chance alone. Models of trait evolution indicated that LMA evolved under weak stabilizing selection. Moreover, results suggest that different optimal phenotypes evolved among large clades within which extremes tended to be selected against. Conservatism in LMA was strongly related to growth form, as were selection intensity and phenotypic evolutionary rates: woody plants showed higher conservatism in relation to stronger stabilizing selection and lower evolutionary rates compared to herbaceous taxa. The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with growth forms in response to varying selection regimes. PMID:25165520

  4. An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants.

    PubMed

    Flores, Olivier; Garnier, Eric; Wright, Ian J; Reich, Peter B; Pierce, Simon; Dìaz, Sandra; Pakeman, Robin J; Rusch, Graciela M; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P; Bekker, Renée M; Cerabolini, Bruno E L; Ceriani, Roberta M; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P; Pérez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan

    2014-07-01

    In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light-interception borne by plants. We conducted a broad-scale analysis of the evolutionary history of LMA across a large dataset of 5401 vascular plant species. The phylogenetic signal in LMA displayed low but significant conservatism, that is, leaf economics tended to be more similar among close relatives than expected by chance alone. Models of trait evolution indicated that LMA evolved under weak stabilizing selection. Moreover, results suggest that different optimal phenotypes evolved among large clades within which extremes tended to be selected against. Conservatism in LMA was strongly related to growth form, as were selection intensity and phenotypic evolutionary rates: woody plants showed higher conservatism in relation to stronger stabilizing selection and lower evolutionary rates compared to herbaceous taxa. The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with growth forms in response to varying selection regimes.

  5. Evaluating biases in simulated land surface albedo from CMIP5 global climate models

    NASA Astrophysics Data System (ADS)

    Li, Yue; Wang, Tao; Zeng, Zhenzhong; Peng, Shushi; Lian, Xu; Piao, Shilong

    2016-06-01

    Land surface albedo is a key parameter affecting energy balance and near-surface climate. In this study, we used satellite data to evaluate simulated surface albedo in 37 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). There was a systematic overestimation in the simulated seasonal cycle of albedo with the highest bias occurring during the Northern Hemisphere's winter months. The bias in surface albedo during the snow-covered season was classified into that in snow cover fraction (SCF) and albedo contrast (β1). There was a general overestimation of β1 due to the simulated snow-covered albedo being brighter than the observed value; negative biases in SCF were not always related to negative albedo biases, highlighting the need for realistic representation of snow-covered albedo in models. In addition, models with a lower leaf area index (LAI) tend to produce a higher surface albedo over the boreal forests during the winter, which emphasizes the necessity of improving LAI simulations in CMIP5 models. Insolation weighting showed that spring albedo biases were of greater importance for climate. The removal of albedo biases is expected to improve temperature simulations particularly over high-elevation regions.

  6. How Well Can We Estimate Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission in an Atlantic Coastal Area?

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Marinovici, Maria C.

    2015-10-15

    Areal-averaged albedos are particularly difficult to measure in coastal regions, because the surface is not homogenous, consisting of a sharp demarcation between land and water. With this difficulty in mind, we evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone under fully overcast conditions. To illustrate the performance of our retrieval, we find the areal-averaged albedo using measurements from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (415, 500, 615, 673, and 870 nm). These MFRSR data are collected at a coastal site in Graciosa Island, Azores supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program. The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo at four nominal wavelengths (470, 560, 670 and 860 nm). These comparisons are made during a 19-month period (June 2009 - December 2010). We also calculate composite-based spectral values of surface albedo by a weighted-average approach using estimated fractions of major surface types observed in an area surrounding this coastal site. Taken as a whole, these three methods of finding albedo show spectral and temporal similarities, and suggest that our simple, transmission-based technique holds promise, but with estimated errors of about ±0.03. Additional work is needed to reduce this uncertainty in areas with inhomogeneous surfaces.

  7. How well can we estimate areal-averaged spectral surface albedo from ground-based transmission in the Atlantic coastal area?

    NASA Astrophysics Data System (ADS)

    Kassianov, Evgueni; Barnard, James; Flynn, Connor; Riihimaki, Laura; Marinovici, Cristina

    2015-10-01

    Areal-averaged albedos are particularly difficult to measure in coastal regions, because the surface is not homogenous, consisting of a sharp demarcation between land and water. With this difficulty in mind, we evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone under fully overcast conditions. To illustrate the performance of our retrieval, we find the areal-averaged albedo using measurements from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (415, 500, 615, 673, and 870 nm). These MFRSR data are collected at a coastal site in Graciosa Island, Azores supported by the U.S. Department of Energy's (DOE's) Atmospheric Radiation Measurement (ARM) Program. The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) whitesky albedo at four nominal wavelengths (470, 560, 670 and 860 nm). These comparisons are made during a 19-month period (June 2009 - December 2010). We also calculate composite-based spectral values of surface albedo by a weighted-average approach using estimated fractions of major surface types observed in an area surrounding this coastal site. Taken as a whole, these three methods of finding albedo show spectral and temporal similarities, and suggest that our simple, transmission-based technique holds promise, but with estimated errors of about ±0.03. Additional work is needed to reduce this uncertainty in areas with inhomogeneous surfaces.

  8. Large seasonal swings in leaf area of Amazon rainforests.

    PubMed

    Myneni, Ranga B; Yang, Wenze; Nemani, Ramakrishna R; Huete, Alfredo R; Dickinson, Robert E; Knyazikhin, Yuri; Didan, Kamel; Fu, Rong; Negrón Juárez, Robinson I; Saatchi, Sasan S; Hashimoto, Hirofumi; Ichii, Kazuhito; Shabanov, Nikolay V; Tan, Bin; Ratana, Piyachat; Privette, Jeffrey L; Morisette, Jeffrey T; Vermote, Eric F; Roy, David P; Wolfe, Robert E; Friedl, Mark A; Running, Steven W; Votava, Petr; El-Saleous, Nazmi; Devadiga, Sadashiva; Su, Yin; Salomonson, Vincent V

    2007-03-20

    Despite early speculation to the contrary, all tropical forests studied to date display seasonal variations in the presence of new leaves, flowers, and fruits. Past studies were focused on the timing of phenological events and their cues but not on the accompanying changes in leaf area that regulate vegetation-atmosphere exchanges of energy, momentum, and mass. Here we report, from analysis of 5 years of recent satellite data, seasonal swings in green leaf area of approximately 25% in a majority of the Amazon rainforests. This seasonal cycle is timed to the seasonality of solar radiation in a manner that is suggestive of anticipatory and opportunistic patterns of net leaf flushing during the early to mid part of the light-rich dry season and net leaf abscission during the cloudy wet season. These seasonal swings in leaf area may be critical to initiation of the transition from dry to wet season, seasonal carbon balance between photosynthetic gains and respiratory losses, and litterfall nutrient cycling in moist tropical forests.

  9. Albedos. Final report

    SciTech Connect

    Hansen, F.V.

    1993-07-01

    The albedo of the earth's surface varies dramatically from values of about 3 to 4 percent for calm bodies of water up to about 55 percent for gypsum sands. This rather broad range of reflected incoming solar radiation presents difficulties when attempting to define an average albedo for terrain over a large region from locally determined values. The patchwork, or checkerboard, appearance of the earth's surface as viewed from above is the result of various human activities, such as agriculture, the proliferation of urban sprawl, and road building. Each of these variable appearing surfaces will have individual albedos, rendering any attempt to determine an a real albedo almost an impossibility on the mesoscale. However, a vast data base exists for microscale applications for individual acreages, for example. A compilation of these data is presented.... Albedo, Solar radiation, Crops, Urban areas, Land uses.

  10. Investigating the Impacts of Surface Temperature Anomalies due to Burned Area Albedo in Northern sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Gabbert, T.; Matsui, T.; Capehart, W. J.; Ichoku, C. M.; Gatebe, C. K.

    2015-12-01

    The northern Sub-Saharan African region (NSSA) is an area of intense focus due to periodic severe droughts that have dire consequences on the growing population, which relies mostly on rain fed agriculture for its food supply. This region's weather and hydrologic cycle are very complex and are dependent on the West African Monsoon. Different regional processes affect the West African Monsoon cycle and variability. One of the areas of current investigation is the water cycle response to the variability of land surface characteristics. Land surface characteristics are often altered in NSSA due to agricultural practices, grazing, and the fires that occur during the dry season. To better understand the effects of biomass burning on the hydrologic cycle of the sub-Saharan environment, an interdisciplinary team sponsored by NASA is analyzing potential feedback mechanisms due to the fires. As part of this research, this study focuses on the effects of land surface changes, particularly albedo and skin temperature, that are influenced by biomass burning. Surface temperature anomalies can influence the initiation of convective rainfall and surface albedo is linked to the absorption of solar radiation. To capture the effects of fire perturbations on the land surface, NASA's Unified Weather and Research Forecasting (NU-WRF) model coupled with NASA's Land Information System (LIS) is being used to simulate burned area surface albedo inducing surface temperature anomalies and other potential effects to environmental processes. Preliminary sensitivity results suggest an altered surface radiation budget, regional warming of the surface temperature, slight increase in average rainfall, and a change in precipitation locations.

  11. Leaf Mass Area, Leaf Carbon and Nitrogen Content, Barrow, Alaska, Beginning 2012

    SciTech Connect

    Alistair Rogers; Kim Ely; Shawn Serbin; Stefanie Lasota; Wil Lieberman-Cribbin

    2016-12-20

    Carbon, Nitrogen and Leaf Mass Area of leaves sampled from the Barrow Environmental Observatory, Barrow, Alaska. Species measured; Arctophila fulva, Arctagrostis latifolia, Carex aquatilis, Dupontia fisheri, Eriophorum angustifolium, Petasites frigidus, Salix pulchra, Vaccinium vitis-idaea, Salix rotundifolia, Luzula arctica, Saxifraga punctata and Potentilla hyparctica

  12. MODIS Measures Total U.S. Leaf Area

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This composite image over the continental United States was produced with data acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS) during the period March 24 - April 8, 2000. The image is a map of the density of the plant canopy covering the ground. It is the first in a series of images over the continental U.S. produced by the MODIS Land Discipline Group (refer to this site June 2 and 5 for the next two images in the series). The image is a MODIS data product called 'Leaf Area Index,' which is produced by radiometrically measuring the visible and near infrared energy reflected by vegetation. The Leaf Area Index provides information on the structure of plant canopy, showing how much surface area is covered by green foliage relative to total land surface area. In this image, dark green pixels indicate areas where more than 80 percent of the land surface is covered by green vegetation, light green pixels show where leaves cover about 10 to 50 percent of the land surface, and brown pixels show virtually no leaf coverage. The more leaf area a plant has, the more sunlight it can absorb for photosynthesis. Leaf Area Index is one of a new suite of measurements that scientists use to understand how the Earth's land surfaces are changing over time. Their goal is to use these measurements to refine computer models well enough to simulate how the land biosphere influences the natural cycles of water, carbon, and energy throughout the Earth system. This image is the first of its kind from the MODIS instrument, which launched in December 1999 aboard the Terra spacecraft. MODIS began acquiring scientific data on February 24, 2000, when it first opened its aperture door. The MODIS instrument and Terra spacecraft are both managed by NASA's Goddard Space Flight Center, Greenbelt, MD. Image courtesy Steven Running, MODIS Land Group Member, University of Montana

  13. Sensitivity of a general circulation model to global changes in leaf area index

    NASA Astrophysics Data System (ADS)

    Chase, Thomas N.; Pielke, Roger A.; Kittel, Timothy G. F.; Nemani, Ramakrishna; Running, Steven W.

    1996-03-01

    Methods have recently become available for estimating the amount of leaf area at the surface of the Earth using satellite data. Also available are modeled estimates of what global leaf area patterns would look like should the vegetation be in equilibrium with current local climatic and soil conditions. The differences between the actual vegetation distribution and the potential vegetation distribution may reflect the impact of human activity on the Earth's surface. To examine model sensitivity to changes in leaf area index (LAI), global distributions of maximum LAI were used as surface boundary conditions in the National Center for Atmospheric Research community climate model (NCAR CCM2) coupled with the biosphere atmosphere transfer scheme (BATS). Results from 10-year ensemble averages for the months of January and July indicate that the largest effects of the decreased LAI in the actual LAI simulation occur in the northern hemisphere winter at high latitudes despite the fact that direct LAI forcing is negligible in these regions at this time of year. This is possibly a result of LAI forcing in the tropics which has long-ranging effects in the winter of both hemispheres. An assessment of the Asian monsoon region for the month of July shows decreased latent heat flux from the surface, increased surface temperature, and decreased precipitation with the actual LAI distribution. While the statistical significance of the results has not been unambiguously established in these simulations, we suspect that an effect on modeled general circulation dynamics has occurred due to changes of maximum LAI suggesting that further attention needs to be paid to the accurate designation of vegetation parameters. The incorporation of concomitant changes in albedo, vegetation fractional coverage, and roughness length is suggested for further research.

  14. Joint Leaf chlorophyll and leaf area index retrieval from Landsat data using a regularized model inversion system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf area index (LAI) and leaf chlorophyll (Chl) content represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and leaf Chl content provide critical information on vegetation density, vitality and photosynt...

  15. Estimation of stand-level leaf area for boreal bryophytes.

    PubMed

    Bond-Lamberty, Ben; Gower, Stith T

    2007-04-01

    Bryophytes dominate the carbon and nitrogen cycling of many poorly drained terrestrial ecosystems and are important in the vegetation-atmosphere exchange of carbon and water, yet few studies have estimated their leaf area at the stand scale. This study quantified the bryophyte-specific leaf area (SLA) and leaf area index (LAI) in a group of different-aged boreal forest stands in well and poorly drained soils. Species-specific SLA (for three feather mosses, four Sphagnum spp. and Aulacomnium palustre mixed with Tomentypnum nitens) was assessed by determining the projected area using a flatbed scanner and cross-sectional geometry using a dissecting microscope. The hemisurface leaf area was computed as the product of SLA and live biomass and was scaled by coverage data collected at all stands. Pleurozium schreberi dominated the spatial coverage, biomass and leaf area in the well-drained stands, particularly the oldest, while S. fuscum and A. palustre were important in the poorly drained stands. Live moss biomass ranged from 47 to 230 g m(-2) in the well-drained stands dominated by feather mosses and from 102 to 228 g m(-2) in the poorly drained stands. Bryophyte SLA varied between 135 and 473 cm(2) g(-1), for A. palustre and S. capillifolium, respectively. SLA was strongly and significantly affected by bryophyte species, but did not vary between stands; in general, there was no significant difference between the SLA of non-Sphagnum mosses. Bryophyte LAI increased with stand age, peaking at 3.1 and 3.7 in the well and poorly drained stands, respectively; this represented approximately 40% of the overstory LAI in the well-drained stands and 100-1,000% in the poorly drained stands, underscoring the important role bryophytes play in the water and carbon budgets of these boreal forests.

  16. The Design and Implementation of the Leaf Area Index Sensor

    PubMed Central

    Li, Xiuhong; Liu, Qiang; Yang, Rongjin; Zhang, Haijing; Zhang, Jialin; Cai, Erli

    2015-01-01

    The quick and accurate acquisition of crop growth parameters on a large scale is important for agricultural management and food security. The combination of photographic and wireless sensor network (WSN) techniques can be used to collect agricultural information, such as leaf area index (LAI), over long distances and in real time. Such acquisition not only provides farmers with photographs of crops and suggestions for farmland management, but also the collected quantitative parameters, such as LAI, can be used to support large scale research in ecology, hydrology, remote sensing, etc. The present research developed a Leaf Area Index Sensor (LAIS) to continuously monitor the growth of crops in several sampling points, and applied 3G/WIFI communication technology to remotely collect (and remotely setup and upgrade) crop photos in real-time. Then the crop photos are automatically processed and LAI is estimated based on the improved leaf area index of Lang and Xiang (LAILX) algorithm in LAIS. The research also constructed a database of images and other information relating to crop management. The leaf length and width method (LAILLW) can accurately measure LAI through direct field harvest. The LAIS has been tested in several exemplary applications, and validation with LAI from LAILLW. The LAI acquired by LAIS had been proved reliable. PMID:25781513

  17. Preliminary validation of leaf area index sensor in Huailai

    NASA Astrophysics Data System (ADS)

    Cai, Erli; Li, Xiuhong; Liu, Qiang; Dou, Baocheng; Chang, Chongyan; Niu, Hailin; Lin, Xingwen; Zhang, Jialin

    2015-12-01

    Leaf area index (LAI) is a key variable in many land surface models that involve energy and mass exchange between vegetation and the environment. In recent years, extracting vegetation structure parameters from digital photography becomes a widely used indirect method to estimate LAI for its simplicity and ease of use. A Leaf Area Index Sensor (LAIS) system was developed to continuously monitor the growth of crops in several sampling points in Huailai, China. The system applies 3G/WIFI communication technology to remotely collect crop photos in real-time. Then the crop photos are automatically processed and LAI is estimated based on the improved leaf area index of Lang and Xiang (LAILX) algorithm in LAIS. The objective of this study is to primarily verify the LAI estimated from LAIS (Lphoto) through comparing them with the destructive green LAI (Ldest). Ldest was measured across the growing season ntil maximum canopy development while plants are still green. The preliminary verification shows that Lphoto corresponds well with the Ldest (R2=0.975). In general, LAI could be accurately estimated with LAIS and its LAI shows high consistency compared with the destructive green LAI. The continuous LAI measurement obtained from LAIS could be used for the validation of remote sensing LAI products.

  18. Representation of vegetation effects on the snow-covered albedo in the Noah land surface model with multiple physics options

    NASA Astrophysics Data System (ADS)

    Park, S.; Park, S. K.

    2015-04-01

    Snow albedo plays a critical role in calculating the energy budget, but parameterization of the snow surface albedo is still under great uncertainty. It varies with snow grain size, snow cover thickness, snow age, forest shading factor and other variables. Snow albedo of forest is typically lower than that of short vegetation; thus snow albedo is dependent on the spatial distributions of characteristic land cover and on the canopy density and structure. In the Noah land surface model with multiple physics options (Noah-MP), almost all vegetation types in East Asia during winter have the minimum values of leaf area index (LAI) and stem area index (SAI), which are too low and do not consider the vegetation types. Because LAI and SAI are represented in terms of photosynthetic activeness, the vegetation effect rarely exerts on the surface albedo in winter in East Asia with only these parameters. Thus, we investigated the vegetation effects on the snow-covered albedo from observations and evaluated the model improvement by considering such effect. We found that calculation of albedo without proper reflection of the vegetation effect is mainly responsible for the large positive bias in winter. Therefore, we developed new parameters, called leaf index (LI) and stem index (SI), which properly manage the effect of vegetation structure on the winter albedo. As a result, the Noah-MP's performance in albedo has been significantly improved - RMSE is reduced by approximately 73%.

  19. Spectral radiance estimates of leaf area and leaf phytomass of small grains and native vegetation

    NASA Technical Reports Server (NTRS)

    Aase, J. K.; Brown, B. S.; Millard, J. P.

    1986-01-01

    Similarities and/or dissimilarities in radiance characteristics were studied among barley (Hordeum vulgare L.), oats (Avena fatua L.), spring and winter wheat (Triticum aestivum L.), and short-grass prairie vegetation. The site was a Williams loam soil (fine-loamy mixed, Typic Argiborolls) near Sidney, Montana. Radiances were measured with a truck-mounted radiometer. The radiometer was equipped with four wavelength bands: 0.45 to 0.52, 0.52 to 0.60, 0.63 to 0.69, and 0.76 to 0.90 micron. Airborne scanner measurements were made at an altitude of 600 m four times during the season under clear sky conditions. The airborne scanner was equipped with the same four bands as the truck-mounted radiometer plus the following: 1.00 to 1.30, 1.55 to 1.75, 2.08 to 2.35, and 10.4 to 12.5 microns. Comparisons using individual wave bands, the near IR/red, (0.76 to 0.90 micron)/(0.63 to 0.69 micron) ratio and the normalized difference vegetation index, ND = (IR - red)/(IR + red), showed that only during limited times during the growing season were some of the small grains distinguishable from one another and from native rangeland vegetation. There was a common relation for all small grains between leaf area index and green leaf phytomass and between leaf area index or green leaf phytomass and the IR/red ratio.

  20. Potential effects of forest management on surface albedo

    NASA Astrophysics Data System (ADS)

    Otto, J.; Bréon, F.-M.; Schelhaas, M.-J.; Pinty, B.; Luyssaert, S.

    2012-04-01

    Currently 70% of the world's forests are managed and this figure is likely to rise due to population growth and increasing demand for wood based products. Forest management has been put forward by the Kyoto-Protocol as one of the key instruments in mitigating climate change. For temperate and boreal forests, the effects of forest management on the stand-level carbon balance are reasonably well understood, but the biophysical effects, for example through changes in the albedo, remain elusive. Following a modeling approach, we aim to quantify the variability in albedo that can be attributed to forest management through changes in canopy structure and density. The modelling approach chains three separate models: (1) a forest gap model to describe stand dynamics, (2) a Monte-Carlo model to estimate the probability density function of the optical path length of photons through the canopy and (3) a physically-based canopy transfer model to estimate the interaction between photons and leaves. The forest gap model provides, on a monthly time step the position, height, diameter, crown size and leaf area index of individual trees. The Monte-Carlo model computes from this the probability density function of the distance a photon travels through crown volumes to determine the direct light reaching the forest floor. This information is needed by the canopy transfer model to calculate the effective leaf area index - a quantity that allows it to correctly represent a 3D process with a 1D model. Outgoing radiation is calculated as the result of multiple processes involving the scattering due to the canopy layer and the forest floor. Finally, surface albedo is computed as the ratio between incident solar radiation and calculated outgoing radiation. The study used two time series representing thinning from below of a beech and a Scots pine forest. The results show a strong temporal evolution in albedo during stand establishment followed by a relatively stable albedo once the canopy

  1. Global Albedo

    Atmospheric Science Data Center

    2013-04-19

    ... to one in the visible region of the solar spectrum whereas deep clean ocean water has an albedo that is close to zero. Five years of ... Atmospheric Science Data Center's  MISR Level 3 Imagery  web site. The Multi-angle Imaging SpectroRadiometer observes the daylit ...

  2. Relating the microwave backscattering coefficient to leaf area index

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Allen, C. T.; Eger, G., III; Kanemasu, E.

    1984-01-01

    This paper examines the relationship between the microwave backscattering coefficient of a vegetation canopy, sigma (can, 0) and the canopy's leaf area index (LAI). The relationship is established through the development of one model for corn and sorghum and another for wheat. Both models are extensions of the cloud model of Attema and Ulaby (1978). Analysis of experimental data measured at 8.6, 13.0, 17.0, and 35.6 GHz indicates that most of the temporal variations of sigma (can, 0) can be accounted for through variations in green LAI alone, if the latter is greater than 0.5.

  3. Relating the radar backscattering coefficient to leaf-area index

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Allen, C.; Eger, G.; Kanemasu, E.

    1983-01-01

    The relationship between the radar backscattering coefficient of a vegetation canopy, sigma(0) sub can, and the canopy's leaf area index (LAI) is examined. The relationship is established through the development of a model for corn and sorghum and another for wheat. Both models are extensions of the cloud model of Attema and Ulaby (1978). Analysis of experimental data measured at 8.6, 13.0, 17.0, and 35.6 GHz indicates that most of the temporal variations of sigma(0) sub can can be accounted for through variations in green LAI alone, if the latter is greater than 0.5.

  4. Quantifying the missing link between forest albedo and productivity in the boreal zone

    NASA Astrophysics Data System (ADS)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-11-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Currently, the physical link between forest albedo and productivity is poorly understood, yet it is crucial for designing optimal forest management strategies for mitigating climate change. We investigated the relationships between boreal forest structure, albedo and FAPAR using a radiative transfer model called Forest Reflectance and Transmittance model FRT and extensive forest inventory data sets ranging from southern boreal forests to the northern tree line in Finland and Alaska (N = 1086 plots). The forests in the study areas vary widely in structure, species composition, and human interference, from intensively managed in Finland to natural growth in Alaska. We show that FAPAR of tree canopies (FAPARCAN) and albedo are tightly linked in boreal coniferous forests, but the relationship is weaker if the forest has broadleaved admixture, or if canopies have low leaf area and the composition of forest floor varies. Furthermore, the functional shape of the relationship between albedo and FAPARCAN depends on the angular distribution of incoming solar irradiance. We also show that forest floor can contribute to over 50 % of albedo or total ecosystem FAPAR. Based on our simulations, forest albedos can vary notably across the biome. Because of larger proportions of broadleaved trees, the studied plots in Alaska had higher albedo (0.141-0.184) than those in Finland (0.136-0.171) even though the albedo of pure coniferous forests was lower in Alaska. Our results reveal that variation in solar angle will need to be accounted for when evaluating climate effects of forest management in different latitudes. Furthermore, increasing the proportion of broadleaved trees in coniferous forests is the most important means of maximizing albedo without compromising productivity: based on our findings the potential of controlling forest

  5. Leaf thickness controls variation in leaf mass per area (LMA) among grazing-adapted grasses in Serengeti.

    PubMed

    Griffith, Daniel M; Quigley, Kathleen M; Anderson, T Michael

    2016-08-01

    Leaf mass per area (LMA) is a primary plant functional trait that represents the cost of constructing a leaf. Ultimately, plants modify LMA by altering leaf thickness (LT), leaf dry matter content (LDMC), or both. While LMA can be modified through both of these constituents, studies of LMA have found that there is variation in whether LT or LDMC changes are responsible for LMA-and the relationships change depending on the species or functional groups being compared. In this study, we used a phylogenetic framework to determine that evolutionary shifts in LMA are driven by LT, and not LDMC, among 45 Serengeti grass species. We considered two alternative hypotheses that could result in evolutionary correlation of LMA on LT but not LDMC: either (1) LT is more labile than LDMC-and is therefore a less costly means to change LMA or (2) LDMC is tightly coupled to a different dimension of leaf variation (e.g., leaf hydraulics), leaving LT as the source of variation in LMA. LT was not more labile than LDMC, leading us to conclude that the evolution of LMA has been shaped by LT because LDMC is responding to other demands on leaf physiology. We speculate that leaf hydraulics provide this constraint on LDMC. The decoupling of LDMC from LT may allow plants to better optimize resource allocation in ecosystems where gradients in light competition, herbivory, and aridity place competing demands on leaf economics.

  6. Thermal Inertia, Albedo, and MOLA-derived Roughness for Terrains in the Terra Meridiani Area, Mars

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Deal, K.; Hynek, B. M.; Seelos, F. P., IV; Snider, N. O.; Mellon, M. T.; Garvin, J. B.

    2002-01-01

    Surface properties of layered deposits draped on dissected, cratered terrain in the Terra Meridiani area are analyzed using remote sensing data. The etched plains are cemented and differentially eroded, and the hematite plains are loose and drifting. Additional information is contained in the original extended abstract.

  7. Joint leaf chlorophyll and leaf area index retrieval using a regularized canopy reflectance model inversion system

    NASA Astrophysics Data System (ADS)

    Houborg, R.; McCabe, M. F.; Gitelson, A. A.

    2013-12-01

    Leaf area index (LAI) and leaf chlorophyll (Chl) represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination LAI and Chl provide critical information on vegetation density and phenology, the vitality of vegetation and photosynthetic functioning, and joint satellite-based retrievals can be used to inform land surface models and reduce uncertainties of model predicted ecosystem fluxes in space and time. Simultaneous retrieval of LAI and Chl from space observations is however extremely challenging as the interference of atmospheric effects, canopy characteristics and background reflectance may confound the detection of relatively subtle differences in canopy reflectance resulting from changes in Chl. Regularization strategies are therefore required to increase robustness and accuracy of retrieved properties and more reliably separate soil, leaf and canopy variables. Here we describe recent refinements to the REGularized canopy reFLECtance model (REGFLEC) retrieval system, which includes enhanced regularization techniques for exploiting ancillary LAI and temporal information derived from multiple satellite scenes over a given growing season. REGFLEC is applied to Landsat time-series data and retrieval results evaluated against in-situ LAI and Chl collected over maize and soybean sites in central Nebraska over a 5-year period (2001-2005). While REGFLEC may provide useful information on the density and vitality of vegetation, the results reflect the challenges associated with accurately extracting the relatively small leaf-level chlorophyll signal from the total satellite signal when using a few standard broad bands available operationally (i.e. blue, green, red and near-infrared) as input to a homogeneous canopy reflectance model. A noteworthy and novel aspect of the REGFLEC approach is the fact that no site-specific data were used to calibrate the model that may be run in a completely

  8. Spectral estimation of green leaf area index of oats

    NASA Technical Reports Server (NTRS)

    Best, R. G.; Harlan, J. C.

    1985-01-01

    Green leaf area index (LAI) is a measure of vegetative growth and development and is frequently used as an input parameter in yield estimation and evapotranspiration models. Extensive destructive sampling is usually required to achieve accurate estimates of green LAI in natural situations. In this investigation, a statistical modeling approach was used to predict the green LAI of oats from bidirectional reflectance data collected with multiband radiometers. Stepwise multiple regression models based on two sets of spectral reflectance factors accounted for 73 percent and 65 percent of the variance in green LAI of oats. Exponential models of spectral data transformations of greenness, normalized difference, and near-infrared/red ratio accounted for more of the variance in green LAI than the multiple regression models.

  9. Using the conservative nature of fresh leaf surface density to measure foliar area

    NASA Astrophysics Data System (ADS)

    Castillo, Omar S.; Zaragoza, Esther M.; Alvarado, Carlos J.; Barrera, Maria G.; Dasgupta-Schubert, Nabanita

    2014-10-01

    For a herbaceous species, the inverse of the fresh leaf surface density, the Hughes constant, is nearly conserved. We apply the Hughes constant to develop an absolute method of leafarea measurement that requires no regression fits, prior calibrations or oven-drying. The Hughes constant was determined in situ using a known geometry and weights of a sub-set obtained from the fresh leaves whose areas are desired. Subsequently, the leaf-areas (at any desired stratification level), were derived by utilizing the Hughes constant and the masses of the fresh leaves. The proof of concept was established for leaf-discs of the plants Mandevilla splendens and Spathiphyllum wallisii. The conservativeness of the Hughes constant over individual leaf-zones and different leaftypes from the leaves of each species was quantitatively validated. Using the globally averaged Hughes constant for each species, the leaf-area of these and additional co-species plants, were obtained. The leaf-area-measurement-by-mass was cross-checked with standard digital image analysis. There were no statistically significant differences between the leaf-area-measurement-by-mass and the digital image analysis measured leaf-areas and the linear correlation between the two methods was very good. Leaf-areameasurement- by-mass was found to be rapid and simple with accuracies comparable to the digital image analysis method. The greatly reduced cost of leaf-area-measurement-by-mass could be beneficial for small agri-businesses in developing countries.

  10. Albedo indicating land degradation around the Badain Jaran Desert for better land resources utilization.

    PubMed

    Liu, Fengshan; Chen, Ying; Lu, Haiying; Shao, Hongbo

    2017-02-01

    Surface albedo is an easy access parameter in reflecting the status of both human disturbed soil and indirectly influenced area, whose characteristic is an important indicator in sustainable development under the background of global climate change. In this study, we employed meteorological data, MODIS 8-day BRDF/Albedo and LAI products from 2000 to 2014 to show the amelioration and mechanism around the Badain Jaran Desert. Results showed that the human-dominated afforestation activities significantly increased the leaf area index (LAI) in summer and autumn. Lower reflectance at visible band was sensed inside the desert compared with the ecozone and the lowest albedo at forested area. The contribution of soil and vegetation reflectance to surface albedo determined the linear sensitivity of albedo to LAI variation. Decreased albedo dominated the spatial-temporal pattern of the Badain Jaran Desert. This study suggested that surface albedo can be regarded as a useful index in indicating the change process and evaluating the sustainable development of biological management around the Badain Jaran Desert.

  11. Measurement and comparison of remotely derived leaf area index predictors

    NASA Astrophysics Data System (ADS)

    Jensen, Ryan Russell

    Environmental change occurs in response to both natural and anthropogenic causes. As the world's human population continues to increase, anthropogenic change will also increase. These changes affect the health and vigor of forests throughout the world, including those in north central Florida. Leaf Area Index (LAI), the amount of leaf area per unit ground area, is an important biophysical variable that is directly related to rates of atmospheric gas exchange, biomass partitioning, and productivity. While global and local models that map biophysical parameters are prevalent in the literature, landscape to regional scale models are less common. Therefore, the ability to map and monitor LAI over landscape to regional scale areas is essential for understanding medium scale biophysical properties and how these properties affect biogeochemical cycling, biomass accumulation, and primary productivity. This study develops and verifies several new models to estimate LAI using in situ field measurements throughout north central Florida, Landsat Thematic Mapper remotely sensed imagery, remotely derived vegetation indices, simple and multiple regression, and artificial neural networks (ANNs). This study concludes that while multiple band regression and regression with individual vegetation indices (Normalized Difference Vegetation Index, Soil Adjusted Vegetation Index, Simple Ratio, and Greenness Vegetation Index) can estimate LAI, the most accurate way to estimate regional scale LAI is to train an ANN using in situ LAI data and remote sensing brightness values measured from six different portions of the electromagnetic spectrum. The new ANN method of estimating LAI is then applied to two forest ecology studies. The first study analyzes LAI in longleaf pine/turkey oak sandhills as a function of time since last burn. It concludes that in the absence of fire, sandhill LAI increases, and this may be useful for identifying where prescribed burns need to be done. The second study

  12. Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant.

    PubMed

    Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo

    2015-10-01

    The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.

  13. Relationship between Maximum Leaf Photosynthesis, Nitrogen Content and Specific Leaf Area in Balearic Endemic and Non‐endemic Mediterranean Species

    PubMed Central

    GULÍAS, JAVIER; FLEXAS, JAUME; MUS, MAURICI; CIFRE, JOSEP; LEFI, ELKADRI; MEDRANO, HIPÓLITO

    2003-01-01

    Gas exchange parameters, leaf nitrogen content and specific leaf area (SLA) were measured in situ on 73 C3 and five C4 plant species in Mallorca, west Mediterranean, to test whether species endemic to the Balearic Islands differed from widespread, non‐endemic Mediterranean species and crops in their leaf traits and trait inter‐relationships. Endemic species differed significantly from widespread species and crops in several parameters; in particular, photosynthetic capacity, on an area basis (A), was 20 % less in endemics than in non‐endemics. Similar differences between endemics and non‐endemics were found in parameters such as SLA and leaf nitrogen content per area (Na). Nevertheless, most of the observed differences were found only within the herbaceous deciduous species. These could be due to the fact that most of the non‐endemic species within this group have adapted to ruderal areas, while none of the endemics occupies this kind of habitat. All the species—including the crops—showed a positive, highly significant correlation between photosynthetic capacity on a mass basis (Am), leaf nitrogen content on a mass basis (Nm) and SLA. However, endemic species had a lower Am for any given SLA and Nm. Hypotheses are presented to explain these differences, and their possible role in reducing the distribution of many endemic Balearic species is discussed. PMID:12805082

  14. [Characteristics and numerical simulation of surface albedo in temperate desert steppe in Inner Mongolia].

    PubMed

    Yang, Fu-lin; Zhou, Guang-sheng; Zhang, Feng; Wang, Feng-yu; Bao, Fang; Ping, Xiao-yan

    2009-12-01

    Based on the meteorological and biological observation data from the temperate desert steppe ecosystem research station in Sunitezuoqi of Inner Mongolia during growth season (from May 1st to October 15th, 2008), the diurnal and seasonal characteristics of surface albedo in the steppe were analyzed, with related model constructed. In the steppe, the diurnal variation of surface albedo was mainly affected by solar altitude, being higher just after sunrise and before sunset and lower in midday. During growth season, the surface albedo was from 0.20 to 0.34, with an average of 0.25, and was higher in May, decreased in June, kept relatively stable from July to September, and increased in October. This seasonal variation was related to the phenology of canopy leaf, and affected by precipitation process. Soil water content (SWC) and leaf area index (LAI) were the key factors affecting the surface albedo. A model for the surface albedo responding to SWC and LAI was developed, which showed a good performance in consistent between simulated and observed surface albedo.

  15. Leaf Area Index Retrieved from Thermal Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Neinavaz, Elnaz; Skidmore, Andrew K.; Darvishzadeh, Roshanak; Groen, Thomas A.

    2016-06-01

    Leaf area index (LAI) is an important essential biodiversity variable due to its role in many terrestrial ecosystem processes such as evapotranspiration, energy balance, and gas exchanges as well as plant growth potential. A novel approach presented here is the retrieval of LAI using thermal infrared (8-14 μm, TIR) measurements. Here, we evaluate LAI retrieval using TIR hyperspectral data. Canopy emissivity spectral measurements were recorded under controlled laboratory conditions using a MIDAC (M4401-F) illuminator Fourier Transform Infrared spectrometer for two plant species during which LAI was destructively measured. The accuracy of retrieval for LAI was then assessed using partial least square regression (PLSR) and narrow band index calculated in the form of normalized difference index from all possible combinations of wavebands. The obtained accuracy from the PLSR for LAI retrieval was relatively higher than narrow-band vegetation index (0.54 < R2 < 0.74). The results demonstrated that LAI may successfully be estimated from hyperspectral thermal data. The study highlights the potential of hyperspectral thermal data for retrieval of vegetation biophysical variables at the canopy level for the first time.

  16. Worldwide Historical Estimates of Leaf Area Index, 1932-2000

    NASA Technical Reports Server (NTRS)

    Scurlock, J. M. O.; Asner, G. P.; Gower, S. T.

    2001-01-01

    Approximately 1000 published estimates of leaf area index (LAI) from nearly 400 unique field sites, covering the period 1932-2000, have been compiled into a single data set. LA1 is a key parameter for global and regional models of biosphere/atmosphere exchange of carbon dioxide, water vapor, and other materials. It also plays an integral role in determining the energy balance of the land surface. This data set provides a benchmark of typical values and ranges of LA1 for a variety of biomes and land cover types, in support of model development and validation of satellite-derived remote sensing estimates of LA1 and other vegetation parameters. The LA1 data are linked to a bibliography of over 300 originalsource references.This report documents the development of this data set, its contents, and its availability on the Internet from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics. Caution is advised in using these data, which were collected using a wide range of methodologies and assumptions that may not allow comparisons among sites.

  17. Albedo changes occurring in stationary forest covers over France during the last decade

    NASA Astrophysics Data System (ADS)

    Planque, C.; Carrer, D.; Roujean, J. L.

    2015-12-01

    Climate warming has caused unprecedented changes in the vegetation cycle of forests. In return, forests play a substantial role on climate by directly modifying the amount of carbon dioxide in the atmosphere. Besides the shifts occurring in forest architecture and diversity, the climate pressure influences the canopy structure and the leaf physiological characteristics. A direct consequence is the modification of reflectivity properties of the whole canopy. This study examines the evolution of the direct radiative forcing due to the evolution of reflectivity properties of the canopy (canopy albedo). We restrict our analysis to the albedo trends occurring in stationary forest covers over France during the last decade (2001-2013). Satellite surface albedo, LAI (leaf area index), and FCOVER (fraction of vegetation cover) from MODIS (on Terra and Aqua satellites) and BioPar (Bio-geophysical Parameter) projects are used in order to 1/ isolate stationary forest covers, and 2/ detect local tendencies in their canopy albedo. First, the statistical tests were applied to LAI, FCOVER, and surface albedo data over the areas that are classified as forest by ESA-CCI land cover database. In case of temporal break in LAI or FCOVER data series, we assume that the forest was managed at least once during the last decade or the vegetation cover has changed. This hypothesis was verified over the Landes forest in southwestern France, where a major storm damaged 300000 hectares in 2009. This work allowed to isolate relative stationary forest covers that were not managed. Secondly, we show that the visible surface albedo has decreased due to the gradual closing and increase in greenness of some of these forest covers. Finally, we quantified the change in direct radiative forcing due to this shift of surface albedo by using ERA-Interim incoming solar radiation data. The next step will be to better characterize the physiological and structural factors that drive these albedo changes.

  18. Projections of leaf area index in earth system models

    DOE PAGES

    Mahowald, Natalie; Lo, Fiona; Zheng, Yun; ...

    2016-03-09

    The area of leaves in the plant canopy, measured as leaf area index (LAI), modulates key land–atmosphere interactions, including the exchange of energy, moisture, carbon dioxide (CO2), and other trace gases and aerosols, and is therefore an essential variable in predicting terrestrial carbon, water, and energy fluxes. Here our goal is to characterize the LAI projections from the latest generation of earth system models (ESMs) for the Representative Concentration Pathway (RCP) 8.5 and RCP4.5 scenarios. On average, the models project increases in LAI in both RCP8.5 and RCP4.5 over most of the globe, but also show decreases in some partsmore » of the tropics. Because of projected increases in variability, there are also more frequent periods of low LAI across broad regions of the tropics. Projections of LAI changes varied greatly among models: some models project very modest changes, while others project large changes, usually increases. Modeled LAI typically increases with modeled warming in the high latitudes, but often decreases with increasing local warming in the tropics. The models with the most skill in simulating current LAI in the tropics relative to satellite observations tend to project smaller increases in LAI in the tropics in the future compared to the average of all the models. Using LAI projections to identify regions that may be vulnerable to climate change presents a slightly different picture than using precipitation projections, suggesting LAI may be an additional useful tool for understanding climate change impacts. Going forward, users of LAI projections from the CMIP5 ESMs evaluated here should be aware that model outputs do not exhibit clear-cut relationships to vegetation carbon and precipitation. Lastly, our findings underscore the need for more attention to LAI projections, in terms of understanding the drivers of projected changes and improvements to model skill.« less

  19. Projections of leaf area index in earth system models

    SciTech Connect

    Mahowald, Natalie; Lo, Fiona; Zheng, Yun; Harrison, Laura; Funk, Chris; Lombardozzi, Danica; Goodale, Christine

    2016-03-09

    The area of leaves in the plant canopy, measured as leaf area index (LAI), modulates key land–atmosphere interactions, including the exchange of energy, moisture, carbon dioxide (CO2), and other trace gases and aerosols, and is therefore an essential variable in predicting terrestrial carbon, water, and energy fluxes. Here our goal is to characterize the LAI projections from the latest generation of earth system models (ESMs) for the Representative Concentration Pathway (RCP) 8.5 and RCP4.5 scenarios. On average, the models project increases in LAI in both RCP8.5 and RCP4.5 over most of the globe, but also show decreases in some parts of the tropics. Because of projected increases in variability, there are also more frequent periods of low LAI across broad regions of the tropics. Projections of LAI changes varied greatly among models: some models project very modest changes, while others project large changes, usually increases. Modeled LAI typically increases with modeled warming in the high latitudes, but often decreases with increasing local warming in the tropics. The models with the most skill in simulating current LAI in the tropics relative to satellite observations tend to project smaller increases in LAI in the tropics in the future compared to the average of all the models. Using LAI projections to identify regions that may be vulnerable to climate change presents a slightly different picture than using precipitation projections, suggesting LAI may be an additional useful tool for understanding climate change impacts. Going forward, users of LAI projections from the CMIP5 ESMs evaluated here should be aware that model outputs do not exhibit clear-cut relationships to vegetation carbon and precipitation. Lastly, our findings underscore the need for more attention to LAI projections, in terms of understanding the drivers of projected changes and improvements to model skill.

  20. TRANSPARENT LEAF AREA1 encodes a secreted proteolipid required for anther maturation, morphogenesis, and differentiation during leaf development in maize.

    PubMed

    Dresselhaus, Thomas; Amien, Suseno; Márton, Mihaela; Strecke, Anemone; Brettschneider, Reinhold; Cordts, Simone

    2005-03-01

    We report the identification and functional analysis of TRANSPARENT LEAF AREA1 (TLA1), a maize (Zea mays) gene representing a novel class of secreted, extremely hydrophobic peptides (proteolipids) with a C-terminal Caax box-like motif. ZmTLA1 encodes 27 amino acid residues and is most strongly expressed in the egg cell and microspores. Lower transcript amounts were detected during vegetative development. Transgenic maize expressing an antisense transcript displayed a variety of phenotypes. The most visible phenotypes were dwarfism and transparent leaf areas resulting from defective morphogenesis of mesophyll, bundle sheath, stomatal, and epidermal cells during leaf development. Incomplete cell walls were observed, indicating a defect of cytokinesis. The accumulation of gerontoplasts was probably a secondary effect caused by defects of leaf cell morphogenesis. A defect of anther maturation was observed in approximately 30% of the plants displaying the tla phenotype. Male sterility was mainly caused by incomplete disintegration of the tapetal cell layers and tetrad callose as 90% of the microspores developed into functional pollen. Overexpression of ZmTLA1 seemed to have a lethal effect both in maize and Arabidopsis thaliana. Development of primary roots, root hairs, primary leaves, and chloroplasts was suppressed in Arabidopsis seedlings expressing an inducible ZmTLA1-green fluorescent protein (GFP) fusion protein. GFP signals were exclusively detected in cell walls. Based on our observations, we suggest that the ZmTLA1 peptide represents a class of novel plant morphogens required for the development and maturation of leaf and reproductive tissues.

  1. Measurement of Leaf Mass and Leaf Area of Oaks In A Mediterranean-climate Region For Biogenic Emission Estimation

    NASA Astrophysics Data System (ADS)

    Karlik, J.

    Given the key role played by biogenic volatile organic compounds (BVOC) in tro- pospheric chemistry and regional air quality, it is critical to generate accurate BVOC emission inventories. Because several oak species have high BVOC emission rates, and oak trees are often of large stature with corresponding large leaf masses, oaks may be the most important genus of woody plants for BVOC emissions modeling in the natural landscapes of Mediterranean-climate regions. In California, BVOC emis- sions from oaks may mix with anthropogenic emissions from urban areas, leading to elevated levels of ozone. Data for leaf mass and leaf area for a stand of native blue oaks (Quercus douglasii) were obtained through harvest and leaf removal from 14 trees lo- cated in the Sierra Nevada foothills of central California. Trees ranged in height from 4.2 to 9.9 m, with trunk diameters at breast height of 14 to 85 cm. Mean leaf mass density was 730 g m-2 for the trees and had an overall value of 310 g m-2 for the site. Consideration of the surrounding grassland devoid of trees resulted in a value of about 150 g m-2, less than half of reported values for eastern U.S. oak woodlands, but close to a reported value for oaks found in St. Quercio, Italy. The mean value for leaf area index (LAI) for the trees at this site was 4.4 m2 m-2. LAI for the site was 1.8 m2 m-2, but this value was appropriate for the oak grove only; including the surrounding open grassland resulted in an overall LAI value of 0.9 m2 m-2 or less. A volumetric method worked well for estimating the leaf mass of the oak trees. Among allometric relationships investigated, trunk circumference, mean crown radius, and crown projec- tion were well correlated with leaf mass. Estimated emission of isoprene (mg C m-2 h-1) for the site based these leaf mass data and experimentally determined emission rate was similar to that reported for a Mediterranean oak woodland in France.

  2. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    DOE PAGES

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; ...

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growthmore » analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.« less

  3. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    SciTech Connect

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.

  4. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    PubMed Central

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness. PMID:25914696

  5. Seasonal patterns of tropical forest leaf area index and CO2 exchange

    NASA Astrophysics Data System (ADS)

    Doughty, Christopher E.; Goulden, Michael L.

    2008-03-01

    We used in situ and satellite measurements to investigate the seasonal patterns of leaf area index (LAI) and gross ecosystem CO2 exchange (GEE) by an evergreen tropical forest. The forest experienced a dry season from June through November. The rates of light-saturated CO2 uptake (GEE) were comparatively high from December through March and low from May through July. In situ measurements showed that LAI varied seasonally, with a minimum from May through September. Leaf production and leaf abscission were reduced from December through April. Leaf abscission increased in May, which reduced LAI. High rates of leaf abscission and production occurred from July through September associated with leaf turnover. Leaf abscission decreased abruptly in October, while production continued, which rapidly increased LAI. Leaf phenology was not directly correlated with changes in soil water. The seasonal cycle of in situ LAI differed markedly from the seasonal cycles of in situ normalized difference vegetation index (NDVI) and the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD15 LAI product. We hypothesize that the NDVI and MOD15 seasonality at the site is driven partly by seasonal changes in leaf age and leaf reflectance. We developed three simple models to investigate the causes of GEE seasonality. The first two models showed that the seasonal changes in LAI alone, and the effects of leaf age on leaf-level photosynthesis alone, could not account for the observed GEE seasonality. The third model showed that the combined effect of seasonal changes in LAI and seasonal changes in leaf age and leaf photosynthesis was sufficient to account for the observed GEE seasonality.

  6. Leaf-age effects on seasonal variability in photosynthetic parameters and its relationships with leaf mass per area and leaf nitrogen concentration within a Pinus densiflora crown.

    PubMed

    Han, Qingmin; Kawasaki, Tatsuro; Nakano, Takashi; Chiba, Yukihiro

    2008-04-01

    In the temperate zone of Japan, Pinus densiflora Sieb. et Zucc. bears needles of up to three age classes in the upper crown and up to five age classes in the lower crown. To elucidate the effects of leaf age on photosynthetic parameters and its relationships with leaf mass per unit area (LMA) and leaf nitrogen (N(l)) concentration on an area (N(a)) and mass (N(m)) basis, we measured seasonal variations in LMA, N(l), light-saturated photosynthetic rate (A(max)), stomatal conductance (g(s)), maximum rate of carboxylation (V(cmax)) and maximum rate of electron transport (J(max)) in leaves of all age classes in the upper and lower crown. Leaf mass per unit area increased by 27% with increasing leaf age in the lower crown, but LMA did not depend on age in the upper crown. Leaf age had a significant effect on N(m) but not on N(a) in both crown positions, indicating that decreases in N(m) resulted from dilution. Photosynthetic parameters decreased significantly with leaf age in the lower crown (39% for A(max) and 43% for V(cmax)), but the effect of leaf age was not as great in the upper crown, although these parameters exhibited seasonal variation in both crown positions. Regression analysis indicated a close relationship between LMA and N(a), regardless of age class or when each age class was pooled (r(2) = 0.57-0.86). Relationships between LMA and N(a) and among A(max), V(cmax) and J(max) were weak or not significant when all age classes were examined by regression analysis. However, compared with older leaves, relationships among LMA, N(a) and A(max) were stronger in younger leaves. These results indicate that changes in LMA and N(l) mainly reflect light acclimation during leaf development, but they are only slightly affected by irradiance in mature leaves. In conclusion, LMA and N(l) are useful parameters for estimating photosynthetic capacity, but age-related effects need to be taken into account, especially in evergreen conifers.

  7. Optimal interpolation analysis of leaf area index using MODIS data

    USGS Publications Warehouse

    Gu, Yingxin; Belair, Stephane; Mahfouf, Jean-Francois; Deblonde, Godelieve

    2006-01-01

    A simple data analysis technique for vegetation leaf area index (LAI) using Moderate Resolution Imaging Spectroradiometer (MODIS) data is presented. The objective is to generate LAI data that is appropriate for numerical weather prediction. A series of techniques and procedures which includes data quality control, time-series data smoothing, and simple data analysis is applied. The LAI analysis is an optimal combination of the MODIS observations and derived climatology, depending on their associated errors σo and σc. The “best estimate” LAI is derived from a simple three-point smoothing technique combined with a selection of maximum LAI (after data quality control) values to ensure a higher quality. The LAI climatology is a time smoothed mean value of the “best estimate” LAI during the years of 2002–2004. The observation error is obtained by comparing the MODIS observed LAI with the “best estimate” of the LAI, and the climatological error is obtained by comparing the “best estimate” of LAI with the climatological LAI value. The LAI analysis is the result of a weighting between these two errors. Demonstration of the method described in this paper is presented for the 15-km grid of Meteorological Service of Canada (MSC)'s regional version of the numerical weather prediction model. The final LAI analyses have a relatively smooth temporal evolution, which makes them more appropriate for environmental prediction than the original MODIS LAI observation data. They are also more realistic than the LAI data currently used operationally at the MSC which is based on land-cover databases.

  8. Meteorological and air quality impacts of increased urban albedo and vegetative cover in the Greater Toronto Area, Canada

    SciTech Connect

    Taha, Haider; Hammer, Hillel; Akbari, Hashem

    2002-04-30

    The study described in this report is part of a project sponsored by the Toronto Atmospheric Fund, performed at the Lawrence Berkeley National Laboratory, to assess the potential role of surface property modifications on energy, meteorology, and air quality in the Greater Toronto Area (GTA), Canada. Numerical models were used to establish the possible meteorological and ozone air-quality impacts of increased urban albedo and vegetative fraction, i.e., ''cool-city'' strategies that can mitigate the urban heat island (UHI), significantly reduce urban energy consumption, and improve thermal comfort, particularly during periods of hot weather in summer. Mitigation is even more important during critical heat wave periods with possible increased heat-related hospitalization and mortality. The evidence suggests that on an annual basis cool-city strategies are beneficial, and the implementation of such measures is currently being investigated in the U.S. and Canada. We simulated possible scenari os for urban heat-island mitigation in the GTA and investigated consequent meteorological changes, and also performed limited air-quality analysis to assess related impacts. The study was based on a combination of mesoscale meteorological modeling, Lagrangian (trajectory), and photochemical trajectory modeling to assess the potential meteorological and ozone air-quality impacts of cool-city strategies. As available air-quality and emissions data are incompatible with models currently in use at LBNL, our air-quality analysis was based on photochemical trajectory modeling. Because of questions as to the accuracy and appropriateness of this approach, in our opinion this aspect of the study can be improved in the future, and the air-quality results discussed in this report should be viewed as relatively qualitative. The MM5 meteorological model predicts a UHI in the order of 2 to 3 degrees C in locations of maxima, and about 1 degree C as a typical value over most of the urban area

  9. Vapor pressure deficit effects on leaf area expansion and transportation of soybean subjected to soil drying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of leaf-to-air vapor pressure difference (VPD) and soil water deficit on transpiration rate (TR) of plants are well understood but their effects on plant leaf area expansion (PLAE) are less defined. Both PLAE and TR are unaffected by soil drying until the fraction transpirable soil water (FT...

  10. Worldwide Historical Estimates of Leaf Area Index, 1932-2000

    SciTech Connect

    Scurlock, JMO

    2002-02-06

    Approximately 1000 published estimates of leaf area index (LAI) from nearly 400 unique field sites, covering the period 1932-2000, have been compiled into a single data set. LA1 is a key parameter for global and regional models of biosphere/atmosphere exchange of carbon dioxide, water vapor, and other materials. It also plays an integral role in determining the energy balance of the land surface. This data set provides a benchmark of typical values and ranges of LA1 for a variety of biomes and land cover types, in support of model development and validation of satellite-derived remote sensing estimates of LA1 and other vegetation parameters. The LA1 data are linked to a bibliography of over 300 original source references. These historic LA1 data are mostly from natural and seminatural (managed) ecosystems, although some agricultural estimates are also included. Although methodologies for determining LA1 have changed over the decades, it is useful to represent the inconsistencies (e.g., in maximum value reported for a particular biome) that are actually found in the scientific literature. Needleleaf (coniferous) forests are by far the most commonly measured biome/land cover types in this compilation, with 22% of the measurements from temperate evergreen needleleaf forests, and boreal evergreen needleleaf forests and crops the next most common (about 9% each). About 40% of the records in the data set were published in the past 10 years (1991-2000), with a further 20% collected between 1981 and 1990. Mean LAI ({+-} standard deviation), distributed between 15 biome/land cover classes, ranged from 1.31 {+-} 0.85 for deserts to 8.72 {+-} 4.32 for tree plantations, with evergreen forests (needleleaf and broadleaf) displaying the highest LA1 among the natural terrestrial vegetation classes. We have identified statistical outliers in this data set, both globally and according to the different biome/land cover classes, but despite some decreases in mean LA1 values reported

  11. How should leaf area, sapwood area and stomatal conductance vary with tree height to maximize growth?

    PubMed

    Buckley, Thomas N; Roberts, David W

    2006-02-01

    Conventional wisdom holds that the ratio of leaf area to sapwood area (L/S) should decline during height (H) growth to maintain hydraulic homeostasis and prevent stomatal conductance (g(s)) from declining. We contend that L/S should increase with H based on a numerical simulation, a mathematical analysis and a conceptual argument: (1) numerical simulation--a tree growth model, DESPOT (Deducing Emergent Structure and Physiology Of Trees), in which carbon (C) allocation is regulated to maximize C gain, predicts L/S should increase during most of H growth; (2) mathematical analysis--the formal criterion for optimal C allocation, applied to a simplified analytical model of whole tree carbon-water balance, predicts L/S should increase with H if leaf-level gas exchange parameters including g(s) are conserved; and (3) conceptual argument--photosynthesis is limited by several substitutable resources (chiefly nitrogen (N), water and light) and H growth increases the C cost of water transport but not necessarily of N and light capture, so if the goal is to maximize C gain or growth, allocation should shift in favor of increasing photosynthetic capacity and irradiance, rather than sustaining g(s). Although many data are consistent with the prediction that L/S should decline with H, many others are not, and we discuss possible reasons for these discrepancies.

  12. Temporal disparity in leaf chlorophyll content and leaf area index across a growing season in a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Croft, H.; Chen, J. M.; Zhang, Y.

    2014-12-01

    Spatial and temporal variations in canopy structure and leaf biochemistry have considerable influence on fluxes of CO2, water and energy and nutrient cycling in vegetation. Two vegetation indices (VI), NDVI and Macc01, were used to model the spatio-temporal variability of broadleaf chlorophyll content and leaf area index (LAI) across a growing season. Ground data including LAI, hyperspectral leaf reflectance factors (400-2500 nm) and leaf chlorophyll content were measured across the growing season and satellite-derived canopy reflectance data was acquired for 33 dates at 1200 m spatial resolution. Key phenological information was extracted using the TIMESAT software. Results showed that LAI and chlorophyll start of season (SOS) dates were at day of year (DOY) 130 and 157 respectively, and total season duration varied by 57 days. The spatial variability of chlorophyll and LAI phenology was also analyzed at the landscape scale to investigate phenological patterns over a larger spatial extent. Whilst a degree of spatial variability existed, results showed that chlorophyll SOS lagged approximately 20-35 days behind LAI SOS, and the end of season (EOS) LAI dates were predominantly between 20 and 30 days later than chlorophyll EOS. The large temporal differences between VI-derived chlorophyll content and LAI has important implications for biogeochemical models using NDVI or LAI to represent the fraction of photosynthetically active radiation absorbed by a canopy, in neglecting to account for delays in chlorophyll production and thus photosynthetic capacity.

  13. Parameterization of the snow-covered surface albedo in the Noah-MP Version 1.0 by implementing vegetation effects

    NASA Astrophysics Data System (ADS)

    Park, Sojung; Park, Seon Ki

    2016-03-01

    Snow-covered surface albedo varies depending on many factors, including snow grain size, snow cover thickness, snow age, forest shading factor, etc., and its parameterization is still under great uncertainty. For the snow-covered surface condition, albedo of forest is typically lower than that of short vegetation; thus snow albedo is dependent on the spatial distributions of characteristic land cover and on the canopy density and structure. In the Noah land surface model with multiple physics options (Noah-MP), almost all vegetation types in East Asia during winter have the minimum values of leaf area index (LAI) and stem area index (SAI), which are too low and do not consider the vegetation types. Because LAI and SAI are represented in terms of photosynthetic activeness, stem and trunk in winter are not well represented with only these parameters. We found that such inadequate representation of the vegetation effect is mainly responsible for the large positive bias in calculating the winter surface albedo in the Noah-MP. In this study, we investigated the vegetation effect on the snow-covered surface albedo from observations and improved the model performance by implementing a new parameterization scheme. We developed new parameters, called leaf index (LI) and stem index (SI), which properly manage the effect of vegetation structure on the snow-covered surface albedo. As a result, the Noah-MP's performance in the winter surface albedo has significantly improved - the root mean square error is reduced by approximately 69 %.

  14. Use of AVHRR-derived spectral reflectances to estimate surface albedo across the Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect

    Qiu, J.; Gao, W.

    1997-03-01

    Substantial variations in surface albedo across a large area cause difficulty in estimating regional net solar radiation and atmospheric absorption of shortwave radiation when only ground point measurements of surface albedo are used to represent the whole area. Information on spatial variations and site-wide averages of surface albedo, which vary with the underlying surface type and conditions and the solar zenith angle, is important for studies of clouds and atmospheric radiation over a large surface area. In this study, a bidirectional reflectance model was used to inversely retrieve surface properties such as leaf area index and then the bidirectional reflectance distribution was calculated by using the same radiation model. The albedo was calculated by converting the narrowband reflectance to broadband reflectance and then integrating over the upper hemisphere.

  15. Plant development controls leaf area expansion in alfalfa plants competing for light

    PubMed Central

    Baldissera, Tiago Celso; Frak, Ela; Carvalho, Paulo Cesar de Faccio; Louarn, Gaëtan

    2014-01-01

    Background and Aims The growth of crops in a mixture is more variable and difficult to predict than that in pure stands. Light partitioning and crop leaf area expansion play prominent roles in explaining this variability. However, in many crops commonly grown in mixtures, including the forage species alfalfa, the sensitivity and relative importance of the physiological responses involved in the light modulation of leaf area expansion are still to be established. This study was designed to assess the relative sensitivity of primary shoot development, branching and individual leaf expansion in alfalfa in response to light availability. Methods Two experiments were carried out. The first studied isolated plants to assess the potential development of different shoot types and growth periods. The second consisted of manipulating the intensity of competition for light using a range of canopies in pure and mixed stands at two densities so as to evaluate the relative effects on shoot development, leaf growth, and plant and shoot demography. Key Results Shoot development in the absence of light competition was deterministic (constant phyllochrons of 32·5 °Cd and 48·2 °Cd for primary axes and branches, branching probability of 1, constant delay of 1·75 phyllochron before axillary bud burst) and identical irrespective of shoot type and growth/regrowth periods. During light competition experiments, changes in plant development explained most of the plant leaf area variations, with average leaf size contributing to a lesser extent. Branch development and the number of shoots per plant were the leaf area components most affected by light availability. Primary axis development and plant demography were only affected in situations of severe light competition. Conclusions Plant leaf area components differed with regard to their sensitivity to light competition. The potential shoot development model presented in this study could serve as a framework to integrate light responses

  16. Areal Average Albedo (AREALAVEALB)

    DOE Data Explorer

    Riihimaki, Laura; Marinovici, Cristina; Kassianov, Evgueni

    2008-01-01

    he Areal Averaged Albedo VAP yields areal averaged surface spectral albedo estimates from MFRSR measurements collected under fully overcast conditions via a simple one-line equation (Barnard et al., 2008), which links cloud optical depth, normalized cloud transmittance, asymmetry parameter, and areal averaged surface albedo under fully overcast conditions.

  17. Comparisons among species composition, leaf area, and water relations in three shrub-steppe plant communities

    SciTech Connect

    Link, S.O.; Kirkham, R.R.; Thiede, M.E.; Downs, J.L.; Gee, G.W.

    1987-03-01

    Observations were made on plant communities dominated by Bromus tectorum (cheatgrass site), Artemisia tridentata (sagebrush site), and Grayia spinosa (hopsage site). Leaf area on a ground area basis of sagebrush was nor significantly different between the sagebrush and hopsage sites; however, the leaf area of hopsage was one-quarter that of sagebrush at the hopsage site. Pre-dawn xylem water potential of sagebrush was -2.91 MPa, while that of hopsage was -4.79 MPa. Stomatal conductance and transpiration rate of sagebrush and hopsage were nearly the same. 11 refs., 4 figs., 2 tabs.

  18. Seedlings of temperate rainforest conifer and angiosperm trees differ in leaf area display

    PubMed Central

    Lusk, Christopher H.; Pérez-Millaqueo, Manuel M.; Saldaña, Alfredo; Burns, Bruce R.; Laughlin, Daniel C.; Falster, Daniel S.

    2012-01-01

    Background and Aims The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers. Methods This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LARd) was used to indicate plant light interception potential: LARd is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle. Results Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LARd was about twice that of conifers. Although specific leaf area was the most pervasive influence on LARd, differences in self-shading also significantly influenced LARd of large seedlings. Conclusions The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition. PMID:22585929

  19. Global Albedo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Once home to the powerful Inca Empire, the spectacular vistas and canyons of the South American Andes are now a favorite to mountain bikers, climbers and other tourists looking for an adventure. This true color image of the Central Andes and surrounding landscape was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. The dark green area to the right of the brown mountains are the Gran Chaco planes, which consist mostly of alluvial fans and wetlands. To the west is the Pacific Ocean. In the upper half of this image, the Andes are formed by two distinct mountain ranges that appear as darker reddish-brown bands running northwest to southeast. Between the two ranges, shown in a lighter brown, sits the Altiplano plateau, which spans southern Peru and northern Bolivia. The plateau sits at 3660 meters (12,000 feet) and is covered in mazelike canyons, marshlands and lakes. The largest of the lakes-Lake Titticaca-can be seen as the dark blue patch in southern Peru. The two mountain ranges supporting the plateau eventually come together along the border of Argentina and Chile to form one continuous range. The Andes have been forming over the past 170 million years as the Nazca Plate lying under the Pacific Ocean has forced its way under the South American Plate and pushed up its western edge. The subduction of one plate under the other has given rise to a number of volcanoes that dot the western edge of the mountain range. Earthquakes are also very common in this region. Image by NASA GSFC, based on data from the MODIS science team.

  20. Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees.

    PubMed

    Gotsch, Sybil G; Geiger, Erika L; Franco, Augusto C; Goldstein, Guillermo; Meinzer, Frederick C; Hoffmann, William A

    2010-06-01

    Water availability is a principal factor limiting the distribution of closed-canopy forest in the seasonal tropics, suggesting that forest tree species may not be well adapted to cope with seasonal drought. We studied 11 congeneric species pairs, each containing one forest and one savanna species, to test the hypothesis that forest trees have a lower capacity to maintain seasonal homeostasis in water relations relative to savanna species. To quantify this, we measured sap flow, leaf water potential (Psi(L)), stomatal conductance (g (s)), wood density, and Huber value (sapwood area:leaf area) of the 22 study species. We found significant differences in the water relations of these two species types. Leaf area specific hydraulic conductance of the soil/root/leaf pathway (G (t)) was greater for savanna species than forest species. The lower G (t) of forest trees resulted in significantly lower Psi(L) and g (s) in the late dry season relative to savanna trees. The differences in G (t) can be explained by differences in biomass allocation of savanna and forest trees. Savanna species had higher Huber values relative to forest species, conferring greater transport capacity on a leaf area basis. Forest trees have a lower capacity to maintain homeostasis in Psi(L) due to greater allocation to leaf area relative to savanna species. Despite significant differences in water relations, relationships between traits such as wood density and minimum Psi(L) were indistinguishable for the two species groups, indicating that forest and savanna share a common axis of water-use strategies involving multiple traits.

  1. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice.

    PubMed

    Liu, Jing; Zhang, Fang; Zhou, Jinjun; Chen, Fan; Wang, Baoshan; Xie, Xianzhi

    2012-02-01

    We report that phytochrome B (phyB) mutants exhibit improved drought tolerance compared to wild type (WT) rice (Oryza sativa L. cv. Nipponbare). To understand the underlying mechanism by which phyB regulates drought tolerance, we analyzed root growth and water loss from the leaves of phyB mutants. The root system showed no significant difference between the phyB mutants and WT, suggesting that improved drought tolerance has little relation to root growth. However, phyB mutants exhibited reduced total leaf area per plant, which was probably due to a reduction in the total number of cells per leaf caused by enhanced expression of Orysa;KRP1 and Orysa;KRP4 (encoding inhibitors of cyclin-dependent kinase complex activity) in the phyB mutants. In addition, the developed leaves of phyB mutants displayed larger epidermal cells than WT leaves, resulting in reduced stomatal density. phyB deficiency promoted the expression of both putative ERECTA family genes and EXPANSIN family genes involved in cell expansion in leaves, thus causing greater epidermal cell expansion in the phyB mutants. Reduced stomatal density resulted in reduced transpiration per unit leaf area in the phyB mutants. Considering all these findings, we propose that phyB deficiency causes both reduced total leaf area and reduced transpiration per unit leaf area, which explains the reduced water loss and improved drought tolerance of phyB mutants.

  2. Correlation between relative growth rate and specific leaf area requires associations of specific leaf area with nitrogen absorption rate of roots.

    PubMed

    Osone, Yoko; Ishida, Atsushi; Tateno, Masaki

    2008-07-01

    Close correlations between specific leaf area (SLA) and relative growth rate (RGR) have been reported in many studies. However, theoretically, SLA by itself has small net positive effect on RGR because any increase in SLA inevitably causes a decrease in area-based leaf nitrogen concentration (LNCa), another RGR component. It was hypothesized that, for a correlation between SLA and RGR, SLA needs to be associated with specific nitrogen absorption rate of roots (SAR), which counteracts the negative effect of SLA on LNCa. Five trees and six herbs were grown under optimal conditions and relationships between SAR and RGR components were analyzed using a model based on balanced growth hypothesis. SLA varied 1.9-fold between species. Simulations predicted that, if SAR is not associated with SLA, this variation in SLA would cause a47% decrease in LNCa along the SLA gradient, leading to a marginal net positive effect on RGR. In reality, SAR was positively related to SLA, showing a 3.9-fold variation, which largely compensated for the negative effect of SLA on LNCa. Consequently, LNCa values were almost constant across species and a positive SLA-RGR relationship was achieved. These results highlight the importance of leaf-root interactions in understanding interspecific differences in RGR.

  3. Is whole-plant photosynthetic rate proportional to leaf area? A test of scalings and a logistic equation by leaf demography census.

    PubMed

    Koyama, Kohei; Kikuzawa, Kihachiro

    2009-05-01

    Allometric scalings and a logistic equation assume that whole-plant photosynthetic rate under resource-unlimited conditions is proportional to leaf area. We tested this proportionality for the herb Helianthus tuberosus. During growth, we repeatedly measured the percentage of leaves with high, medium, and low photosynthetic capacity to estimate the whole-plant sum of photosynthetic capacity. We found that the whole-plant sum of the light-saturated photosynthetic rate of leaves is proportional to the whole-plant leaf area, disregarding the dynamics of the leaf population. We also found that the daily photosynthesis of each leaf appeared as a linear function of the light-saturated photosynthetic rate of that leaf, as predicted by the optimization theory. Using those results, we expressed whole-plant photosynthetic rate as a product of the light-saturated whole-plant photosynthetic rate and an efficiency index that reflects resource limitation as in the logistic equation. This efficiency decreased with increasing leaf area, reflecting light limitation. Therefore, realized whole-plant photosynthetic rate is not proportional to leaf area. These "diminishing returns" are well explained by a simple saturating curve, such as the logistic equation.

  4. Plant size and leaf area influence phenological and reproductive responses to warming in semiarid Mediterranean species.

    PubMed

    Valencia, Enrique; Méndez, Marcos; Saavedra, Noelia; Maestre, Fernando T

    2016-08-01

    Changes in vegetative and reproductive phenology rank among the most obvious plant responses to climate change. These responses vary broadly among species, but it is largely unknown whether they are mediated by functional attributes, such as size or foliar traits. Using a manipulative experiment conducted over two growing seasons, we evaluated the responses in reproductive phenology and output of 14 Mediterranean semiarid species belonging to three functional groups (grasses, nitrogen-fixing legumes and forbs) to a ~3°C increase in temperature, and assessed how leaf and size traits influenced them. Overall, warming advanced flowering and fruiting phenology, extended the duration of flowering and reduced the production of flowers and fruits. The observed reduction in flower and fruit production with warming was likely related to the decrease in soil moisture promoted by this treatment. Phenological responses to warming did not vary among functional groups, albeit forbs had an earlier reproductive phenology than legumes and grasses. Larger species with high leaf area, as well as those with small specific leaf area, had an earlier flowering and a longer flowering duration. The effects of warming on plant size and leaf traits were related to those on reproductive phenology and reproductive output. Species that decreased their leaf area under warming advanced more the onset of flowering, while those that increased their vegetative height produced more flowers. Our results advance our understanding of the phenological responses to warming of Mediterranean semiarid species, and highlight the key role of traits such as plant size and leaf area as determinants of such responses.

  5. Plant size and leaf area influence phenological and reproductive responses to warming in semiarid Mediterranean species

    PubMed Central

    Valencia, Enrique; Méndez, Marcos; Saavedra, Noelia; Maestre, Fernando T.

    2016-01-01

    Changes in vegetative and reproductive phenology rank among the most obvious plant responses to climate change. These responses vary broadly among species, but it is largely unknown whether they are mediated by functional attributes, such as size or foliar traits. Using a manipulative experiment conducted over two growing seasons, we evaluated the responses in reproductive phenology and output of 14 Mediterranean semiarid species belonging to three functional groups (grasses, nitrogen-fixing legumes and forbs) to a ~3°C increase in temperature, and assessed how leaf and size traits influenced them. Overall, warming advanced flowering and fruiting phenology, extended the duration of flowering and reduced the production of flowers and fruits. The observed reduction in flower and fruit production with warming was likely related to the decrease in soil moisture promoted by this treatment. Phenological responses to warming did not vary among functional groups, albeit forbs had an earlier reproductive phenology than legumes and grasses. Larger species with high leaf area, as well as those with small specific leaf area, had an earlier flowering and a longer flowering duration. The effects of warming on plant size and leaf traits were related to those on reproductive phenology and reproductive output. Species that decreased their leaf area under warming advanced more the onset of flowering, while those that increased their vegetative height produced more flowers. Our results advance our understanding of the phenological responses to warming of Mediterranean semiarid species, and highlight the key role of traits such as plant size and leaf area as determinants of such responses. PMID:27330405

  6. Estimation of big sagebrush leaf area index with terrestrial laser scanning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A remote-sensing technique is need to bridge the gap between airborne laser scanning (ALS) and ground-based field techniques for accurately assessing leaf area index (LAI) in sparsely vegetated landscapes like sagebrush steppe. Terrestrial laser scanning (TLS) was used to measure structural variable...

  7. Estimation of big sagebrush leaf area index with terrestrial laser scanning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate monitoring and quantification of the structure and function of semiarid ecosystems is necessary to improve carbon and water flux models that help describe how these systems will respond in the future. The leaf area index (LAI, m2 m-2) is an important indicator of energy, water, and carbon e...

  8. A simple quantitative model to predict leaf area index in sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canopy architecture has a prominent role in fundamental processes of crop growth including light interception and photosynthesis. A widely used bio-physical parameter to quantify vegetative canopy architecture is leaf area index (LAI). The objective of this study was to develop a simple quantitati...

  9. LEAF AREA INDEX (LAI) CHANGE DETECTION ON LOBLOLLY PINE FOREST STANDS WITH COMPLETE UNDERSTORY REMOVAL

    EPA Science Inventory

    The confounding effect of understory vegetation contributions to satellite derived estimates of leaf area index (LAI) was investigated on two loblolly pine forest stands located in the southeastern United States. Previous studies have shown that understory can account from 0-40%...

  10. Tight coupling of leaf area index to canopy nitrogen and phosphorus across heterogeneous tallgrass prairie communities.

    PubMed

    Klodd, Anne E; Nippert, Jesse B; Ratajczak, Zak; Waring, Hazel; Phoenix, Gareth K

    2016-11-01

    Nitrogen (N) and phosphorus (P) are limiting nutrients for many plant communities worldwide. Foliar N and P along with leaf area are among the most important controls on photosynthesis and hence productivity. However, foliar N and P are typically assessed as species level traits, whereas productivity is often measured at the community scale. Here, we compared the community-level traits of leaf area index (LAI) to total foliar nitrogen (TFN) and total foliar phosphorus (TFP) across nearly three orders of magnitude LAI in grazed and ungrazed tallgrass prairie in north-eastern Kansas, USA. LAI was strongly correlated with both TFN and TFP across communities, and also within plant functional types (grass, forb, woody, and sedge) and grazing treatments (bison or cattle, and ungrazed). Across almost the entire range of LAI values and contrasting communities, TFN:TFP ratios indicated co-limitation by N and P in almost all communities; this may further indicate a community scale trend of an optimal N and P allocation per unit leaf area for growth. Previously, results from the arctic showed similar tight relationships between LAI:TFN, suggesting N is supplied to canopies to maximize photosynthesis per unit leaf area. This tight coupling between LAI, N, and P in tallgrass prairie suggests a process of optimal allocation of N and P, wherein LAI remains similarly constrained by N and P despite differences in species composition, grazing, and canopy density.

  11. Evaluation of Multispectral Based Radiative Transfer Model Inversion to Estimate Leaf Area Index in Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf area index (LAI) is a critical variable for predicting the growth and productivity of crops. Remote sensing estimates of LAI have relied upon empirical relationships between spectral vegetation indices and ground measurements that are costly to obtain. Radiative transfer model inversion based o...

  12. LEAF AREA INDEX (LAI) CHANGE DETECTION ANALYSIS ON LOBLOLLY PINE (PINUS TAEDA) FOLLOWING COMPLETE UNDERSTORY REMOVAL

    EPA Science Inventory

    The confounding effect of understory vegetation contributions to satellite-derived estimates of leaf area index (LAI) was investigated on two loblolly pine (Pinus taeda) forest stands located in Virginia and North Carolina. In order to separate NDVI contributions of the dominantc...

  13. LEAF AREA INDEX (LAI) CHANGE DETECTION ON LOBLOLLY PINE FOREST STANDS WITH COMPLETE UNDERSTORY REMOVAL

    EPA Science Inventory

    The confounding effect of understory vegetation contributions to satellite derived
    estimates of leaf area index (LAI) was investigated on two loblolly pine (Pinus taeda) forest stands located in the southeastern United States. Previous studies have shown that understory can a...

  14. Generating and Evaluation Leaf Area Index (LAI) from MODIS MultiAngle Implementation of Atmospheric Correction (MAIAC) Surface Reflectance Dataset

    NASA Astrophysics Data System (ADS)

    Chen, C.; Park, T.; Yan, K.; Lyapustin, A.; Wang, Y.; CHOI, S.; Yang, B.; Knyazikhin, Y.; Myneni, R. B.

    2015-12-01

    This study generates and evaluates prototype Leaf Area Index (LAI) product based on MODerate resolution Imaging Spectroradiometer's (MODIS) Bidirectional Reflectance Factor (BRF, commonly known as surface reflectance) which is a product of MultiAngle Implementation of Atmospheric Correction (MAIAC) package. LAI is a key parameter of vegetation in characterizing interactions of energy and mass between the Earth's surface and atmosphere. On the other hand, MAIAC BRF is retrieved from a new atmospheric correction algorithm, which has higher spatial resolution and is believed to have more reliable cloud/aerosol detection technique than standard MODIS BRF product. Two main objectives of this study are: 1). Maintaining the radiative transfer theory based LAI algorithm's look up table (LUT) unchanged, to compare LAI product retrieved from different versions of BRF products (MODIS collection 5, collection 6 and MAIAC); 2). To adjust the LUT to resolve LAI's possible systematic discrepancies resulting from atmospheric correction methods within the input BRF other than our LAI algorithm. Before the LUT adjusting, comparing to standard MODIS products shows that MAIAC LAI product will overestimate among herbaceous biome types which have low LAI values, while underestimate among woody biome types which have relatively higher values. Based on the theory of radiative transfer of canopy spectral invariants, two biome and MAIAC specific configurable parameters (Single Scattering Albedo and Uncertainty) in the LUT are adjusted to minimize the inconsistency due to input BRFs. Experiments shows that our new result: 1). has good agreement with field measured data (e.g. DIRECT); 2) is consistent with standard MODIS LAI product.

  15. Marsh canopy leaf area and orientation calculated for improved marsh structure mapping

    USGS Publications Warehouse

    Ramsey III, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.; Bannister, Terri

    2015-01-01

    An approach is presented for producing the spatiotemporal estimation of leaf area index (LAI) of a highly heterogeneous coastal marsh without reliance on user estimates of marsh leaf-stem orientation. The canopy LAI profile derivation used three years of field measured photosynthetically active radiation (PAR) vertical profiles at seven S. alterniflora marsh sites and iterative transform of those PAR attenuation profiles to best-fit light extinction coefficients (KM). KM sun zenith dependency was removed obtaining the leaf angle distribution (LAD) representing the average marsh orientation and the LAD used to calculate the LAI canopy profile. LAI and LAD reproduced measured PAR profiles with 99% accuracy and corresponded to field documented structures. LAI and LAD better reflect marsh structure and results substantiate the need to account for marsh orientation. The structure indexes are directly amenable to remote sensing spatiotemporal mapping and offer a more meaningful representation of wetland systems promoting biophysical function understanding.

  16. Comparison of the New LEAF Area INDEX (LAI 3G) with the Kazahstan-Wide LEAF Area INDEX DATA SET (GGRS-LAI) over Central ASIA

    NASA Astrophysics Data System (ADS)

    Kappas, M.; Propastin, P.; Degener, J.; Renchin, T.

    2014-12-01

    Long-term global data sets of Leaf Area Index (LAI) are important for monitoring global vegetation dynamics. LAI indicating phenological development of vegetation is an important state variable for modeling land surface processes. The comparison of long-term data sets is based on two recently available data sets both derived from AVHRR time series. The LAI 3g data set introduced by Zaichun Zhu et al. (2013) is developed from the new improved third generation Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) and best-quality MODIS LAI data. The second long-term data set is based on the 8 km spatial resolution GIMMS-AVHRR data (GGRS-data set by Propastin et al. 2012). The GGRS-LAI product uses a three-dimensional physical radiative transfer model which establishes relationship between LAI, vegetation fractional cover and given patterns of surface reflectance, view-illumination conditions and optical properties of vegetation. The model incorporates a number of site/region specific parameters, including the vegetation architecture variables such as leaf angle distribution, clumping index, and light extinction coefficient. For the application of the model to Kazakhstan, the vegetation architecture variables were computed at the local (pixel) level based on extensive field surveys of the biophysical properties of vegetation in representative grassland areas of Kazakhstan. The comparison of both long-term data sets will be used to interpret their quality for scientific research in other disciplines. References:Propastin, P., Kappas, M. (2012). Retrieval of coarse-resolution leaf area index over the Republic of Kazakhstan using NOAA AVHRR satellite data and ground measurements," Remote Sensing, vol. 4, no. 1, pp. 220-246. Zaichun Zhu, Jian Bi, Yaozhong Pan, Sangram Ganguly, Alessandro Anav, Liang Xu, Arindam Samanta, Shilong Piao, Ramakrishna R. Nemani and Ranga B. Myneni (2013). Global Data Sets of Vegetation Leaf Area

  17. Earth's Reflection: Albedo

    ERIC Educational Resources Information Center

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  18. Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change.

    PubMed

    Srinivasan, Venkatraman; Kumar, Praveen; Long, Stephen P

    2017-04-01

    Without new innovations, present rates of increase in yields of food crops globally are inadequate to meet the projected rising food demand for 2050 and beyond. A prevailing response of crops to rising [CO2 ] is an increase in leaf area. This is especially marked in soybean, the world's fourth largest food crop in terms of seed production, and the most important vegetable protein source. Is this increase in leaf area beneficial, with respect to increasing yield, or is it detrimental? It is shown from theory and experiment using open-air whole-season elevation of atmospheric [CO2 ] that it is detrimental not only under future conditions of elevated [CO2 ] but also under today's [CO2 ]. A mechanistic biophysical and biochemical model of canopy carbon exchange and microclimate (MLCan) was parameterized for a modern US Midwest soybean cultivar. Model simulations showed that soybean crops grown under current and elevated (550 [ppm]) [CO2 ] overinvest in leaves, and this is predicted to decrease productivity and seed yield 8% and 10%, respectively. This prediction was tested in replicated field trials in which a proportion of emerging leaves was removed prior to expansion, so lowering investment in leaves. The experiment was conducted under open-air conditions for current and future elevated [CO2 ] within the Soybean Free Air Concentration Enrichment facility (SoyFACE) in central Illinois. This treatment resulted in a statistically significant 8% yield increase. This is the first direct proof that a modern crop cultivar produces more leaf than is optimal for yield under today's and future [CO2 ] and that reducing leaf area would give higher yields. Breeding or bioengineering for lower leaf area could, therefore, contribute very significantly to meeting future demand for staple food crops given that an 8% yield increase across the USA alone would amount to 6.5 million metric tons annually.

  19. Regression models for estimating leaf area of seedlings and adult individuals of Neotropical rainforest tree species.

    PubMed

    Brito-Rocha, E; Schilling, A C; Dos Anjos, L; Piotto, D; Dalmolin, A C; Mielke, M S

    2016-01-01

    Individual leaf area (LA) is a key variable in studies of tree ecophysiology because it directly influences light interception, photosynthesis and evapotranspiration of adult trees and seedlings. We analyzed the leaf dimensions (length - L and width - W) of seedlings and adults of seven Neotropical rainforest tree species (Brosimum rubescens, Manilkara maxima, Pouteria caimito, Pouteria torta, Psidium cattleyanum, Symphonia globulifera and Tabebuia stenocalyx) with the objective to test the feasibility of single regression models to estimate LA of both adults and seedlings. In southern Bahia, Brazil, a first set of data was collected between March and October 2012. From the seven species analyzed, only two (P. cattleyanum and T. stenocalyx) had very similar relationships between LW and LA in both ontogenetic stages. For these two species, a second set of data was collected in August 2014, in order to validate the single models encompassing adult and seedlings. Our results show the possibility of development of models for predicting individual leaf area encompassing different ontogenetic stages for tropical tree species. The development of these models was more dependent on the species than the differences in leaf size between seedlings and adults.

  20. Georeferenced scanning system to estimate the leaf wall area in tree crops.

    PubMed

    del-Moral-Martínez, Ignacio; Arnó, Jaume; Escolà, Alexandre; Sanz, Ricardo; Masip-Vilalta, Joan; Company-Messa, Joaquim; Rosell-Polo, Joan R

    2015-04-10

    This paper presents the use of a terrestrial light detection and ranging (LiDAR) system to scan the vegetation of tree crops to estimate the so-called pixelated leaf wall area (PLWA). Scanning rows laterally and considering only the half-canopy vegetation to the line of the trunks, PLWA refers to the vertical projected area without gaps detected by LiDAR. As defined, PLWA may be different depending on the side from which the LiDAR is applied. The system is completed by a real-time kinematic global positioning system (RTK-GPS) sensor and an inertial measurement unit (IMU) sensor for positioning. At the end, a total leaf wall area (LWA) is computed and assigned to the X, Y position of each vertical scan. The final value of the area depends on the distance between two consecutive scans (or horizontal resolution), as well as the number of intercepted points within each scan, since PLWA is only computed when the laser beam detects vegetation. To verify system performance, tests were conducted related to the georeferencing task and synchronization problems between GPS time and central processing unit (CPU) time. Despite this, the overall accuracy of the system is generally acceptable. The Leaf Area Index (LAI) can then be estimated using PLWA as an explanatory variable in appropriate linear regression models.

  1. Georeferenced Scanning System to Estimate the Leaf Wall Area in Tree Crops

    PubMed Central

    del-Moral-Martínez, Ignacio; Arnó, Jaume; Escolà, Alexandre; Sanz, Ricardo; Masip-Vilalta, Joan; Company-Messa, Joaquim; Rosell-Polo, Joan R.

    2015-01-01

    This paper presents the use of a terrestrial light detection and ranging (LiDAR) system to scan the vegetation of tree crops to estimate the so-called pixelated leaf wall area (PLWA). Scanning rows laterally and considering only the half-canopy vegetation to the line of the trunks, PLWA refers to the vertical projected area without gaps detected by LiDAR. As defined, PLWA may be different depending on the side from which the LiDAR is applied. The system is completed by a real-time kinematic global positioning system (RTK-GPS) sensor and an inertial measurement unit (IMU) sensor for positioning. At the end, a total leaf wall area (LWA) is computed and assigned to the X, Y position of each vertical scan. The final value of the area depends on the distance between two consecutive scans (or horizontal resolution), as well as the number of intercepted points within each scan, since PLWA is only computed when the laser beam detects vegetation. To verify system performance, tests were conducted related to the georeferencing task and synchronization problems between GPS time and central processing unit (CPU) time. Despite this, the overall accuracy of the system is generally acceptable. The Leaf Area Index (LAI) can then be estimated using PLWA as an explanatory variable in appropriate linear regression models. PMID:25868079

  2. [The analysis of the causes of variability of the relationship between leaf dry mass and area in plants].

    PubMed

    Vasfilov, S P

    2011-01-01

    The lamina dry mass: area ratio (LMA - Leaf Mass per Area) is a quite variable trait. Leaf dry mass consists of symplast mass (a set of all leaf protoplasts) and apoplast mass (a set of all cell walls in a leaf). The ratio between symplast and apoplast masses is positively related to any functional trait of leaf calculated per unit of dry mass. The value of this ratio is defined by cells size and their number per unit of leaf area, number of mesophyll cells layers and their differentiation between palisade and spongy ones, and also by density of cells packing. The LMA value is defined by leaf thickness and density. The extent and direction of variability in both leaf traits define the extent and direction of variability in LMA. Negative correlation between leaf thickness and density reduces the level of LMA variability. As a consequence of this correlation the following pattern emerges: the thinner a leaf, the denser it is. Changes in the traits that define the LMA value take place both within a species under the influence of environmental factors and between species that differ in leaf structure and functions. Light is the most powerful environmental factor that influences the LMA, increase in illumination leading to increase in LMA. This effect occurs during leaf growth at the expense of structural changes associated with the reduction of symplast/apoplast mass ratio. Under conditions of intense illumination, LMA may increase due to accumulation of starch. With regard to the majority of leaf functions, the mass of starch may be ascribed to apoplast. Starch accumulation in leaves is observed also under conditions of elevated CO2 concentration in the air. Under high illumination, however, LMA increases also due to increased apoplast contribution to leaf dry mass. Scarce mineral nutrition leads to LMA increase due to lowering of growth zones demands for phothosyntates and, therefore, to increase in starch content of leaves. High level of mineral nutrition during

  3. Observations of Surfzone Albedo

    NASA Astrophysics Data System (ADS)

    Sinnett, G.; Feddersen, F.

    2014-12-01

    The surfzone environment (where waves break) contains several unique and previously unconsidered processes that affect the heat budget. Entering short-wave radiation is a dominant term in both shelf and surfzone heat budgets. In contrast to the shelf, however, depth limited wave breaking in the surfzone generates spray, whitewater and suspended sediments, elevating the surface albedo (ratio of reflected to incident short-wave radiation). Elevated albedo reduces the level of solar short-wave radiation entering the water, potentially resulting in less heating. Additionally, surfzone water quality is often impacted by fecal bacteria contamination. As bacteria mortality is related to short-wave solar radiation, elevated surfzone albedo could reduce pathogen mortality, impacting human health. Albedo in the open ocean has been frequently studied and parameterizations often consider solar zenith angle, wind speed and ocean chlorophyll concentration, producing albedo values typically near 0.06. However, surfzone albedo observations have been extremely sparse, yet show depth limited wave breaking may increase the albedo by nearly a factor of 10 up to 0.5. Here, we present findings from a field study at the Scripps Institution of Oceanography pier to observe the affect of waves on surfzone albedo. Concurrent measurements were taken with a four-way radiometer (to measure both downwelling and upwelling short-wave and long wave radiation) mounted above the surfzone. A co-located GoPro camera was used to relate visual aspects of the surfzone to measured reflectance, and wave height and period were observed with a bottom mounted pressure sensor in 5 m water depth just outside the surfzone. Wind speed and direction were observed on the pier 10 m above the water surface. Here, we will examine the surfzone albedo dependence on surfzone parameters, such as wave height.

  4. Comparative leaf growth strategies in response to low-water and low-light availability: variation in leaf physiology underlies variation in leaf mass per area in Populus tremuloides.

    PubMed

    Baird, Alec S; Anderegg, Leander D L; Lacey, Melissa E; HilleRisLambers, Janneke; Van Volkenburgh, Elizabeth

    2017-04-04

    Developmental phenotypic plasticity can allow plants to buffer the effects of abiotic and biotic environmental stressors. Therefore, it is vital to improve our understanding of how phenotypic plasticity in ecological functional traits is coordinated with variation in physiological performance in plants. To identify coordinated leaf responses to low-water (LW) versus low-light (LL) availability, we measured leaf mass per area (LMA), leaf anatomical characteristics and leaf gas exchange of juvenile Populus tremuloides Michx. trees. Spongy mesophyll tissue surface area (Asmes/A) was correlated with intrinsic water-use efficiency (WUEi: photosynthesis, (Aarea)/stomatal conductance (gs)). Under LW availability, these changes occurred at the cost of greater leaf tissue density and reduced expansive growth, as leaves were denser but were only 20% the final area of control leaves, resulting in elevated LMA and elevated WUEi. Low light resulted in reduced palisade mesophyll surface area (Apmes/A) while spongy mesophyll surface area was maintained (Asmes/A), with no changes to WUEi. These leaf morphological changes may be a plastic strategy to increase laminar light capture while maintaining WUEi. With reduced density and thickness, however, leaves were 50% the area of control leaves, ultimately resulting in reduced LMA. Our results illustrate that P. tremuloides saplings partially maintain physiological function in response to water and light limitation by inducing developmental plasticity in LMA with underlying anatomical changes. We discuss additional implications of these results in the context of developmental plasticity, growth trade-offs and the ecological impacts of climate change.

  5. Estimation of Tropical Forest Leaf Area Index Using Medium-Footprint Lidar

    NASA Astrophysics Data System (ADS)

    Sheldon, S. L.; Dubayah, R. O.; Clark, D. B.; Hofton, M. A.; Blair, J. B.

    2008-12-01

    As an important descriptor of forest canopy structure and productivity, leaf surface area strongly relates to respiration, photosynthesis, canopy dynamics, and other biophysical processes. Leaf Area Index (LAI), the amount of one sided leaf area per unit of ground area, has been an important parameter in a variety of ecosystem models. We explore the use of medium-footprint airborne scanning lidar to estimate the spatial distribution of LAI at a landscape scale. Direct estimates of LAI were collected on vertical transects at 71 sites stratified across a tropical wet forest landscape at La Selva Biological Station in Costa Rica. Vertical canopy structure information was collected by the Laser Vegetation Imaging Sensor (LVIS) over La Selva in March of 2005. We analyze the relationship between field-derived LAI estimates and three-dimensional lidar-derived canopy structure information, specifically waveforms and waveform-derived metrics. We also assess the potential of lidar data to scale local estimates of LAI to the landscape level.

  6. Simultaneous Spectral Albedo Measurements Near the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) Central Facility

    SciTech Connect

    Michalsky, Joseph J.; Min, Qilong; Barnard, James C.; Marchand, Roger T.; Pilewskie, Peter

    2003-04-30

    In this study, a data analysis is performed to determine the area-averaged, spectral albedo at ARM's SGP central facility site. The spectral albedo is then fed into radiation transfer models to show that the diffuse discrepancy is diminished when the spectral albedo is used (as opposed to using the broadband albedo).

  7. Multidecadal analysis of forest growth and albedo in boreal Finland

    NASA Astrophysics Data System (ADS)

    Lukeš, Petr; Stenberg, Pauline; Mõttus, Matti; Manninen, Terhikki; Rautiainen, Miina

    2016-10-01

    It is well known that forests serve as carbon sinks. However, the balancing effect of afforestation and increased forest density on global warming due to carbon storage may be lost by low albedo (thus high absorption) of the forests. In the last 30 years, there has been a steady increase in the growing stock of Finnish forests by nearly a quarter while the area of the forests has remained virtually unchanged. Such increase in forest density together with the availability of detailed forest inventories provided by the Multi-Source National Forest Inventory (MS-NFI) in high spatial resolution makes Finland an ideal candidate for exploring the effects of increased forest density on satellite derived estimates of bio-geochemical products e.g. albedo (directional-hemispherical reflectance, DHR), fraction of photosynthetically active radiation absorbed by canopies (fAPAR), leaf area index (LAI) and normalized difference vegetation index (NDVI) in both current and long-term perspective. In this study, we first used MODIS-based vegetation satellite products for Finnish forests to study their seasonal patterns and interrelations. Next, the peak growing season observations are linked to the MS-NFI database to yield the generic relationships between forest density and the satellite-derived vegetation indicators. Finally, long-term GIMMS3g datasets between 1982 and 2011 (2008 for DHR) are analyzed and interpreted using forest inventory data. The vegetation peak growing season NIR DHR and VIS DHR showed weak to moderate negative correlation with fAPAR, whereas there was no correlation between NIR DHR and fAPAR. Next, we show that the spectral albedos in the near-infrared region (NIR DHR) showed weak negative correlation with forest biomass, basal area or canopy cover whereas, as expected, the spectral albedo in the visible region (VIS DHR) correlated negatively with these measures of forest density. Interestingly, the increase in forest density (biomass per ha) of Finnish

  8. Linking canopy leaf area and light environments with tree size distributions to explain Amazon forest demography.

    PubMed

    Stark, Scott C; Enquist, Brian J; Saleska, Scott R; Leitold, Veronika; Schietti, Juliana; Longo, Marcos; Alves, Luciana F; Camargo, Plinio B; Oliveira, Raimundo C

    2015-07-01

    Forest biophysical structure - the arrangement and frequency of leaves and stems - emerges from growth, mortality and space filling dynamics, and may also influence those dynamics by structuring light environments. To investigate this interaction, we developed models that could use LiDAR remote sensing to link leaf area profiles with tree size distributions, comparing models which did not (metabolic scaling theory) and did allow light to influence this link. We found that a light environment-to-structure link was necessary to accurately simulate tree size distributions and canopy structure in two contrasting Amazon forests. Partitioning leaf area profiles into size-class components, we found that demographic rates were related to variation in light absorption, with mortality increasing relative to growth in higher light, consistent with a light environment feedback to size distributions. Combining LiDAR with models linking forest structure and demography offers a high-throughput approach to advance theory and investigate climate-relevant tropical forest change.

  9. Sensitivity analysis for leaf area index (LAI) estimation from CHRIS/PROBA data

    NASA Astrophysics Data System (ADS)

    Cao, Jianjun; Gu, Zhujun; Xu, Jianhua; Duan, Yushan; Liu, Yongmei; Liu, Yongjuan; Li, Dongliang

    2014-09-01

    Sensitivity analyses were conducted for the retrieval of vegetation leaf area index (LAI) from multiangular imageries in this study. Five spectral vegetation indices (VIs) were derived from Compact High Resolution Imaging Spectrometer onboard the Project for On Board Autonomy (CHRIS/PROBA) images, and were related to LAI, acquired from in situ measurement in Jiangxi Province, China, for five vegetation communities. The sensitivity of LAI retrieval to the variation of VIs from different observation angles was evaluated using the ratio of the slope of the best-fit linear VI-LAI model to its root mean squared error. Results show that both the sensitivity and reliability of VI-LAI models are influenced by the heterogeneity of vegetation communities, and that performance of vegetation indices in LAI estimation varies along observation angles. The VI-LAI models are more reliable for tall trees than for low growing shrub-grasses and also for forests with broad leaf trees than for coniferous forest. The greater the tree height and leaf size, the higher the sensitivity. Forests with broad-leaf trees have higher sensitivities, especially at oblique angles, while relatively simple-structured coniferous forests, shrubs, and grasses show similar sensitivities at all angles. The multi-angular soil and/or atmospheric parameter adjustments will hopefully improve the performance of VIs in LAI estimation, which will require further investigation.

  10. Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest

    PubMed Central

    Castro-Izaguirre, Nadia; Chi, Xiulian; Baruffol, Martin; Tang, Zhiyao; Ma, Keping; Schmid, Bernhard

    2016-01-01

    Research about biodiversity–productivity relationships has focused on herbaceous ecosystems, with results from tree field studies only recently beginning to emerge. Also, the latter are concentrated largely in the temperate zone. Tree species diversity generally is much higher in subtropical and tropical than in temperate or boreal forests, with reasons not fully understood. Niche overlap and thus complementarity in the use of resources that support productivity may be lower in forests than in herbaceous ecosystems, suggesting weaker productivity responses to diversity change in forests. We studied stand basal area, vertical structure, leaf area, and their relationship with tree species richness in a subtropical forest in south-east China. Permanent forest plots of 30 x 30 m were selected to span largely independent gradients in tree species richness and secondary successional age. Plots with higher tree species richness had a higher stand basal area. Also, stand basal area increases over a 4-year census interval were larger at high than at low diversity. These effects translated into increased carbon stocks in aboveground phytomass (estimated using allometric equations). A higher variability in tree height in more diverse plots suggested that these effects were facilitated by denser canopy packing due to architectural complementarity between species. In contrast, leaf area was not or even negatively affected by tree diversity, indicating a decoupling of carbon accumulation from leaf area. Alternatively, the same community leaf area might have assimilated more C per time interval in more than in less diverse plots because of differences in leaf turnover and productivity or because of differences in the display of leaves in vertical and horizontal space. Overall, our study suggests that in species-rich forests niche-based processes support a positive diversity–productivity relationship and that this translates into increased carbon storage in long-lived woody

  11. Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest.

    PubMed

    Castro-Izaguirre, Nadia; Chi, Xiulian; Baruffol, Martin; Tang, Zhiyao; Ma, Keping; Schmid, Bernhard; Niklaus, Pascal A

    2016-01-01

    Research about biodiversity-productivity relationships has focused on herbaceous ecosystems, with results from tree field studies only recently beginning to emerge. Also, the latter are concentrated largely in the temperate zone. Tree species diversity generally is much higher in subtropical and tropical than in temperate or boreal forests, with reasons not fully understood. Niche overlap and thus complementarity in the use of resources that support productivity may be lower in forests than in herbaceous ecosystems, suggesting weaker productivity responses to diversity change in forests. We studied stand basal area, vertical structure, leaf area, and their relationship with tree species richness in a subtropical forest in south-east China. Permanent forest plots of 30 x 30 m were selected to span largely independent gradients in tree species richness and secondary successional age. Plots with higher tree species richness had a higher stand basal area. Also, stand basal area increases over a 4-year census interval were larger at high than at low diversity. These effects translated into increased carbon stocks in aboveground phytomass (estimated using allometric equations). A higher variability in tree height in more diverse plots suggested that these effects were facilitated by denser canopy packing due to architectural complementarity between species. In contrast, leaf area was not or even negatively affected by tree diversity, indicating a decoupling of carbon accumulation from leaf area. Alternatively, the same community leaf area might have assimilated more C per time interval in more than in less diverse plots because of differences in leaf turnover and productivity or because of differences in the display of leaves in vertical and horizontal space. Overall, our study suggests that in species-rich forests niche-based processes support a positive diversity-productivity relationship and that this translates into increased carbon storage in long-lived woody

  12. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature.

    PubMed

    Xu, Cheng-Yuan; Salih, Anya; Ghannoum, Oula; Tissue, David T

    2012-10-01

    The rise in atmospheric [CO(2)] is associated with increasing air temperature. However, studies on plant responses to interactive effects of [CO(2)] and temperature are limited, particularly for leaf structural attributes. In this study, Eucalyptus saligna plants were grown in sun-lit glasshouses differing in [CO(2)] (290, 400, and 650 µmol mol(-1)) and temperature (26 °C and 30 °C). Leaf anatomy and chloroplast parameters were assessed with three-dimensional confocal microscopy, and the interactive effects of [CO(2)] and temperature were quantified. The relative influence of leaf structural attributes and chemical properties on the variation of leaf mass per area (LMA) and photosynthesis within these climate regimes was also determined. Leaf thickness and mesophyll size increased in higher [CO(2)] but decreased at the warmer temperature; no treatment interaction was observed. In pre-industrial [CO(2)], warming reduced chloroplast diameter without altering chloroplast number per cell, but the opposite pattern (reduced chloroplast number per cell and unchanged chloroplast diameter) was observed in both current and projected [CO(2)]. The variation of LMA was primarily explained by total non-structural carbohydrate (TNC) concentration rather than leaf thickness. Leaf photosynthetic capacity (light- and [CO(2)]-saturated rate at 28 °C) and light-saturated photosynthesis (under growth [CO(2)] and temperature) were primarily determined by leaf nitrogen contents, while secondarily affected by chloroplast gas exchange surface area and chloroplast number per cell, respectively. In conclusion, leaf structural attributes are less important than TNC and nitrogen in affecting LMA and photosynthesis responses to the studied climate regimes, indicating that leaf structural attributes have limited capacity to adjust these functional traits in a changing climate.

  13. Asteroid sizes and albedos

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1977-01-01

    The radiometric method of determining asteroid diameters is described, and a synthesis of radiometric and polarimetric measurements of the diameters and geometric albedos of a total of 187 asteroids is presented. An analysis is offered of the size distributions of different albedo classes down to 80-km diameter for the entire main asteroid belt (2.0-3.5 AU). The distribution of albedos is found to be strongly bimodal, with mean albedos for the C and S group of 0.035 and 0.15, respectively. The C asteroids outnumber the S asteroids at all sizes and all values of semimajor axis, with the proportion of C asteroids increasing from a little over half inside 2.5 AU to more than 95% beyond 3.0 AU. Other aspects of the distribution of C, S, and M asteroids are discussed, and the total mass of main-belt asteroids larger than 70 km is estimated.

  14. Spur behaviour in almond trees: relationships between previous year spur leaf area, fruit bearing and mortality.

    PubMed

    Lampinen, Bruce D; Tombesi, Sergio; Metcalf, Samuel G; DeJong, Theodore M

    2011-07-01

    In mature almond (Prunus dulcis) orchards, the majority of crop is borne on spurs (short, proleptic shoots) that can live for several years and can produce from one to five fruits. Previous research has led to the hypothesis that spur longevity is related to spur light exposure, cropping and age. However, limited quantitative data are available to substantiate these hypotheses. The objective of this study was to determine spur characteristics that were most highly correlated with spur productivity and longevity in mature, bearing almond trees. Previous year spur leaf area was strongly related to spur viability and flowering; the greater the leaf area in the previous year, the higher the probability of spur survival into the next year and the higher the probability for the spur to bear one or more flowers. Previous year bearing also appeared to influence viability and return bloom, especially in spurs with low leaf area. These results suggest that spur source-sink balance is basic to the life cycle of almond spurs. Furthermore, the results are consistent with the hypothesis that spurs are semi-autonomous organs with respect to carbohydrate balance for much of the growing season. Finally, this information provides general thresholds for maintaining spur viability and productivity that will be useful for developing and evaluating tree training systems and orchard management practices.

  15. The albedo of Titan

    NASA Technical Reports Server (NTRS)

    Lockwood, G. W.; Lutz, B. L.; Thompson, D. T.; Bus, E. S.

    1986-01-01

    Photometric observations of Titan since 1972 show a cyclical variation of about 10 percent. A minimum value of brightness and albedo apparently occurred in 1984. Spectrophotometric observations, made annualy since 1980 at 8 A resolution, 3295-8880 A, were used to derive the value p-asterisk = 0.156 + or - 0.010 for the integrated geometric albedo in 1984. Variations of the equivalent widths of spectral features were not seen.

  16. Greenland Glacier Albedo Variability

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.

  17. Albedo estimates for debris

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Henize, Karl G.; Talent, D. L.

    1989-01-01

    The albedo of upper-stage breakup debris is proposed as an accurate discriminator among the various possible causes of breakup, which encompass residual fuel explosions and hypervelocity particle impacts. The fragments from an impact are covered with a thin layer of soot deposited from the destruction of polymeric circuit boards, while pressure vessel explosion fragments can be expected to remain soot-free. Albedo also facilitates the interpretation of small-debris optical telescope measurements.

  18. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis.

    PubMed

    Poorter, Hendrik; Niinemets, Ulo; Poorter, Lourens; Wright, Ian J; Villar, Rafael

    2009-01-01

    Here, we analysed a wide range of literature data on the leaf dry mass per unit area (LMA). In nature, LMA varies more than 100-fold among species. Part of this variation (c. 35%) can be ascribed to differences between functional groups, with evergreen species having the highest LMA, but most of the variation is within groups or biomes. When grown in the same controlled environment, leaf succulents and woody evergreen, perennial or slow-growing species have inherently high LMA. Within most of the functional groups studied, high-LMA species show higher leaf tissue densities. However, differences between evergreen and deciduous species result from larger volumes per area (thickness). Response curves constructed from experiments under controlled conditions showed that LMA varied strongly with light, temperature and submergence, moderately with CO2 concentration and nutrient and water stress, and marginally under most other conditions. Functional groups differed in the plasticity of LMA to these gradients. The physiological regulation is still unclear, but the consequences of variation in LMA and the suite of traits interconnected with it are strong. This trait complex is an important factor determining the fitness of species in their environment and affects various ecosystem processes.

  19. Testing high spatial resolution WorldView-2 imagery for retrieving the leaf area index

    NASA Astrophysics Data System (ADS)

    Tarantino, Eufemia; Novelli, Antonio; Laterza, Maurizio; Gioia, Andrea

    2015-06-01

    This work analyzes the potentiality of WorldView-2 satellite data for retrieving the Leaf Area Index (LAI) area located in Apulia, the most Eastern region of Italy, overlooking the Adriatic and Ionian seas. Lacking contemporary in-situ measurements, the semi-empiric method of Clevers (1989) (CLAIR model) was chosen as a feasible image-based LAI retrieval method, which is based on an inverse exponential relationship between the LAI and the WDVI (Weighted Difference Vegetation Index) with relation to different land covers. Results were examined in homogeneous land cover classes and compared with values obtained in recent literature.

  20. Understanding Spatial Variability and Point Classification Implications on Methods for Retrieval of Leaf Orientation for Effective Leaf Area Index from Terrestrial Laser Scanning.

    NASA Astrophysics Data System (ADS)

    Richardson, J. J.; Moskal, L. M.; Zheng, G.; Kato, A.

    2015-12-01

    Tree leaf orientation, including the distribution of the inclinational and azimuthal angles in the canopy, is an important attribute of forest canopy architecture and is critical in determining the within and below canopy solar radiation regimes. We demonstrate techniques for indirectly and nondestructively retrieves foliage elements' orientation and distribution from point cloud data (PCD) obtained using a terrestrial laser scanning (TLS) approach.An equation with a single parameter for characterizing the leaf angular distribution of crowns was developed. The TLS-based algorithm captures 97.4% (RMSE =1 .094 degrees, p<0.001) variation of the leaf inclination angle compared to manual measurements for an artificial tree. When applied to a live tree seedling and a mature tree crown, the TLS-based algorithm predicts 78.51% (RMSE =1 .225 degrees, p<0.001) and 57.28% (RMSE =4 .412 degrees, p<0.001) of the angular variability, respectively. Furthermore we demonstrate our approach for retrieve of biophysical characteristics of the forest canopy including extinction coefficient, gap fraction, overlapping effect, and effective leaf area Index (ELAI). Out ELAI model captures 88.7% (rmse =0 .007, p<0.001, andn = 30) variation of the destructive-sample-based leaf area measurement results and 89.1% (rmse =0 .01; p<0.001) of the variation in results from digital hemispherical photographs. Finally we demonstrate how scanner setup which includes lateral scans can reduce effects of occlusion in terrestrial laser data collection.

  1. Albedo in the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Sokolskaya, N. V.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.; Six, N. Frank (Technical Monitor)

    2002-01-01

    ATIC(Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first 16-day flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2000. The ATIC flight collected approximately 25 million events. To measure charge of primary particle in presence of radiation scattered back from the interaction and subsequent shower development in the calorimeter a charge detector must be a mosaic of small detector pads so that the pad containing the signal from the incident particle has no additional signal from albedo particles. Therefore the silicon matrix was built of 4480 individual silicon pads each 2 cm x 1.5 cm. The matrix consists of four planes of detectors and the active detector area, in these planes are partially overlapped to completely cover the aperture. The lateral and amplitude distributions of albedo signals in Si-matrix are analyzed for different primary nuclei and different energy deposits in BGO calorimeter. The greater part of albedo signals has Q near 1, where Q = square root of Amplitude(MIP). The albedo distribution exponentially decreases up to Q near 8. These high values are produced by slow protons and plans. There are also a small number of signals of Q > 8, mainly for heavy nucleus primaries. These signals are apparently generated by neutrons. The comparison of the experimental data and simulations with GEANT 3-21 code using QGSM generator for nucleus-nucleus interactions is presented.

  2. Evaporation and wetted area of single droplets on waxy and hairy leaf surfaces.

    PubMed

    Zhu, H; Yu, Y; Ozkan, H E; Derksen, R C; Krause, C R

    2008-01-01

    Understanding the evaporation of pesticide droplets and wetting of Leaf surfaces can increase foliar application efficiency and reduce pesticide use. Evaporation time and wetted area of single pesticide droplets on hairy and waxy geranium leaf surfaces were measured under the controlled conditions for five droplet sizes and three relative humidities. The sprays used to form droplets included water, a nonionic colloidal polymer drift retardant, an alkyl polyoxyethylene surfactant, and an insecticide. Adding the surfactant into spray mixtures greatly increased droplet wetted area on the surfaces while droplet evaporation time was greatly reduced. Adding the drift retardant into spray mixture slightly increased the droplet evaporation time and the wetted area. Also, droplets had Longer evaporation times on waxy leaves than on hairy leaves for all droplet diameters and all relative humidity conditions. Increasing relative humidity could increase the droplet evaporation time greatly but did not change the the wetted area. The droplet evaporation time and wetted area increased exponentially as the droplet size increased. Therefore, droplet size, surface characteristics of the target, relative humidity, and chemical composition of the spray mixtures (water alone, pesticide, additives) should be included as important factors that affect the efficacy and efficiency of pesticide applications.

  3. Spatial heterogeneity of leaf area index across scales from simulation and remote sensing

    NASA Astrophysics Data System (ADS)

    Reichenau, Tim G.; Korres, Wolfgang; Montzka, Carsten; Schneider, Karl

    2016-04-01

    Leaf area index (LAI, single sided leaf area per ground area) influences mass and energy exchange of vegetated surfaces. Therefore LAI is an input variable for many land surface schemes of coupled large scale models, which do not simulate LAI. Since these models typically run on rather coarse resolution grids, LAI is often inferred from coarse resolution remote sensing. However, especially in agriculturally used areas, a grid cell of these products often covers more than a single land-use. In that case, the given LAI does not apply to any single land-use. Therefore, the overall spatial heterogeneity in these datasets differs from that on resolutions high enough to distinguish areas with differing land-use. Detailed process-based plant growth models simulate LAI for separate plant functional types or specific species. However, limited availability of observations causes reduced spatial heterogeneity of model input data (soil, weather, land-use). Since LAI is strongly heterogeneous in space and time and since processes depend on LAI in a nonlinear way, a correct representation of LAI spatial heterogeneity is also desirable on coarse resolutions. The current study assesses this issue by comparing the spatial heterogeneity of LAI from remote sensing (RapidEye) and process-based simulations (DANUBIA simulation system) across scales. Spatial heterogeneity is assessed by analyzing LAI frequency distributions (spatial variability) and semivariograms (spatial structure). Test case is the arable land in the fertile loess plain of the Rur catchment near the Germany-Netherlands border.

  4. Sensitivity of the Weather Research and Forecast/Community Multiscale Air Quality modeling system to MODIS LAI, FPAR, and albedo

    NASA Astrophysics Data System (ADS)

    Ran, Limei; Gilliam, Robert; Binkowski, Francis S.; Xiu, Aijun; Pleim, Jonathan; Band, Larry

    2015-08-01

    This study aims to improve land surface processes in a retrospective meteorology and air quality modeling system through the use of Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation and albedo products for more realistic vegetation and surface representation. MODIS leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FPAR), and albedo are incorporated into the Pleim-Xiu land surface model (PX LSM) used in a combined meteorology and air quality modeling system. The current PX LSM intentionally exaggerates vegetation coverage and LAI in western dry lands so that its soil moisture nudging scheme is more effective in simulating surface temperature and mixing ratio. Reduced vegetation coverage from the PX LSM with MODIS input results in hotter and dryer daytime conditions with reduced ozone dry deposition velocities in much of western North America. Evaluations of the new system indicate greater error and bias in temperature, but reduced error and bias in moisture with the MODIS vegetation input. Hotter daytime temperatures and reduced dry deposition result in greater ozone concentrations in the western arid regions even with deeper boundary layer depths. MODIS albedo has much less impact on the meteorology simulations than MODIS LAI and FPAR. The MODIS vegetation and albedo input does not have much influence in the east where differences in vegetation and albedo parameters are less extreme. Evaluation results showing increased temperature errors with more accurate representation of vegetation suggests that improvements are needed in the model surface physics, particularly the soil processes in the PX LSM.

  5. Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient.

    PubMed

    de la Riva, Enrique G; Olmo, Manuel; Poorter, Hendrik; Ubera, José Luis; Villar, Rafael

    2016-01-01

    Leaf mass per area (LMA) is a morphological trait widely used as a good indicator of plant functioning (i.e. photosynthetic and respiratory rates, chemical composition, resistance to herbivory, etc.). The LMA can be broken down into the leaf density (LD) and leaf volume to area ratio (LVA or thickness), which in turn are determined by anatomical tissues and chemical composition. The aim of this study is to understand the anatomical and chemical characteristics related to LMA variation in species growing in the field along a water availability gradient. We determined LMA and its components (LD, LVA and anatomical tissues) for 34 Mediterranean (20 evergreen and 14 deciduous) woody species. Variation in LMA was due to variation in both LD and LVA. For both deciduous and evergreen species LVA variation was strongly and positively related with mesophyll volume per area (VA or thickness), but for evergreen species positive relationships of LVA with the VA of epidermis, vascular plus sclerenchyma tissues and air spaces were found as well. The leaf carbon concentration was positively related with mesophyll VA in deciduous species, and with VA of vascular plus sclerenchymatic tissues in evergreens. Species occurring at the sites with lower water availability were generally characterised by a high LMA and LD.

  6. Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient

    PubMed Central

    de la Riva, Enrique G.; Olmo, Manuel; Poorter, Hendrik; Ubera, José Luis; Villar, Rafael

    2016-01-01

    Leaf mass per area (LMA) is a morphological trait widely used as a good indicator of plant functioning (i.e. photosynthetic and respiratory rates, chemical composition, resistance to herbivory, etc.). The LMA can be broken down into the leaf density (LD) and leaf volume to area ratio (LVA or thickness), which in turn are determined by anatomical tissues and chemical composition. The aim of this study is to understand the anatomical and chemical characteristics related to LMA variation in species growing in the field along a water availability gradient. We determined LMA and its components (LD, LVA and anatomical tissues) for 34 Mediterranean (20 evergreen and 14 deciduous) woody species. Variation in LMA was due to variation in both LD and LVA. For both deciduous and evergreen species LVA variation was strongly and positively related with mesophyll volume per area (VA or thickness), but for evergreen species positive relationships of LVA with the VA of epidermis, vascular plus sclerenchyma tissues and air spaces were found as well. The leaf carbon concentration was positively related with mesophyll VA in deciduous species, and with VA of vascular plus sclerenchymatic tissues in evergreens. Species occurring at the sites with lower water availability were generally characterised by a high LMA and LD. PMID:26867213

  7. Retrieval of effective leaf area index (LAIe) and leaf area density (LAD) profile at individual tree level using high density multi-return airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Lin, Yi; West, Geoff

    2016-08-01

    As an important canopy structure indicator, leaf area index (LAI) proved to be of considerable implications for forest ecosystem and ecological studies, and efficient techniques for accurate LAI acquisitions have long been highlighted. Airborne light detection and ranging (LiDAR), often termed as airborne laser scanning (ALS), once was extensively investigated for this task but showed limited performance due to its low sampling density. Now, ALS systems exhibit more competing capacities such as high density and multi-return sampling, and hence, people began to ask the questions like-"can ALS now work better on the task of LAI prediction?" As a re-examination, this study investigated the feasibility of LAI retrievals at the individual tree level based on high density and multi-return ALS, by directly considering the vertical distributions of laser points lying within each tree crown instead of by proposing feature variables such as quantiles involving laser point distribution modes at the plot level. The examination was operated in the case of four tree species (i.e. Picea abies, Pinus sylvestris, Populus tremula and Quercus robur) in a mixed forest, with their LAI-related reference data collected by using static terrestrial laser scanning (TLS). In light of the differences between ALS- and TLS-based LAI characterizations, the methods of voxelization of 3D scattered laser points, effective LAI (LAIe) that does not distinguish branches from canopies and unified cumulative LAI (ucLAI) that is often used to characterize the vertical profiles of crown leaf area densities (LADs) was used; then, the relationships between the ALS- and TLS-derived LAIes were determined, and so did ucLAIs. Tests indicated that the tree-level LAIes for the four tree species can be estimated based on the used airborne LiDAR (R2 = 0.07, 0.26, 0.43 and 0.21, respectively) and their ucLAIs can also be derived. Overall, this study has validated the usage of the contemporary high density multi

  8. Indirect Field Measurement of Wine-Grape Vineyard Canopy Leaf Area Index

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Pierce, Lars L.; Skiles, J. W. (Technical Monitor)

    2002-01-01

    Leaf area index (LAI) indirect measurements were made at 12 study plots in California's Napa Valley commercial wine-grape vineyards with a LI-COR LI-2000 Plant Canopy Analyzer (PCA). The plots encompassed different trellis systems, biological varieties, and planting densities. LAI ranged from 0.5 - 2.25 sq m leaf area/ sq m ground area according to direct (defoliation) measurements. Indirect LAI reported by the PCA was significantly related to direct LAI (r(exp 2) = 0.78, p less than 001). However, the PCA tended to underestimate direct LAI by about a factor of two. Narrowing the instrument's conical field of view from 148 deg to 56 deg served to increase readings by approximately 30%. The PCA offers a convenient way to discern relative differences in vineyard canopy density. Calibration by direct measurement (defoliation) is recommended in cases where absolute LAI is desired. Calibration equations provided herein may be inverted to retrieve actual vineyard LAI from PCA readings.

  9. Low-temperature leaf photosynthesis of a Miscanthus germplasm collection correlates positively to shoot growth rate and specific leaf area

    PubMed Central

    Jiao, Xiurong; Kørup, Kirsten; Andersen, Mathias Neumann; Petersen, Karen Koefoed; Prade, Thomas; Jeżowski, Stanisław; Ornatowski, Szymon; Górynowicz, Barbara; Spitz, Idan; Lærke, Poul Erik; Jørgensen, Uffe

    2016-01-01

    Background and Aims The C4 perennial grass miscanthus has been found to be less sensitive to cold than most other C4 species, but still emerges later in spring than C3 species. Genotypic differences in miscanthus were investigated to identify genotypes with a high cold tolerance at low temperatures and quick recovery upon rising temperatures to enable them to exploit the early growing season in maritime cold climates. Suitable methods for field screening of cold tolerance in miscanthus were also identified. Methods Fourteen genotypes of M. sacchariflorus, M. sinensis, M. tinctorius and M. × giganteus were selected and grown under warm (24 °C) and cold (14 °C) conditions in a controlled environment. Dark-adapted chlorophyll fluorescence, specific leaf area (SLA) and net photosynthetic rate at a photosynthetically active radiation (PAR) of 1000 μmol m–2 s–1 (A1000) were measured. Photosynthetic light and CO2 response curves were obtained from 11 of the genotypes, and shoot growth rate was measured under field conditions. Key Results A positive linear relationship was found between SLA and light-saturated photosynthesis (Asat) across genotypes, and also between shoot growth rate under cool field conditions and A1000 at 14 °C in a climate chamber. When lowering the temperature from 24 to 14 °C, one M. sacchariflorus exhibited significantly higher Asat and maximum photosynthetic rate in the CO2 response curve (Vmax) than other genotypes at 14 °C, except M. × giganteus ‘Hornum’. Several genotypes returned to their pre-chilling A1000 values when the temperature was increased to 24 °C after 24 d growth at 14 °C. Conclusions One M. sacchariflorus genotype had similar or higher photosynthetic capacity than M. × giganteus, and may be used for cultivation together with M. × giganteus or for breeding new interspecies hybrids with improved traits for temperate climates. Two easily measured variables, SLA and shoot growth rate, may be useful for

  10. Surface Albedo/BRDF Parameters (Terra/Aqua MODIS)

    DOE Data Explorer

    Trishchenko, Alexander

    2008-01-15

    Spatially and temporally complete surface spectral albedo/BRDF products over the ARM SGP area were generated using data from two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on Terra and Aqua satellites. A landcover-based fitting (LBF) algorithm is developed to derive the BRDF model parameters and albedo product (Luo et al., 2004a). The approach employs a landcover map and multi-day clearsky composites of directional surface reflectance. The landcover map is derived from the Landsat TM 30-meter data set (Trishchenko et al., 2004a), and the surface reflectances are from MODIS 500m-resolution 8-day composite products (MOD09/MYD09). The MOD09/MYD09 data are re-arranged into 10-day intervals for compatibility with other satellite products, such as those from the NOVA/AVHRR and SPOT/VGT sensors. The LBF method increases the success rate of the BRDF fitting process and enables more accurate monitoring of surface temporal changes during periods of rapid spring vegetation green-up and autumn leaf-fall, as well as changes due to agricultural practices and snowcover variations (Luo et al., 2004b, Trishchenko et al., 2004b). Albedo/BRDF products for MODIS on Terra and MODIS on Aqua, as well as for Terra/Aqua combined dataset, are generated at 500m spatial resolution and every 10-day since March 2000 (Terra) and July 2002 (Aqua and combined), respectively. The purpose for the latter product is to obtain a more comprehensive dataset that takes advantages of multi-sensor observations (Trishchenko et al., 2002). To fill data gaps due to cloud presence, various interpolation procedures are applied based on a multi-year observation database and referring to results from other locations with similar landcover property. Special seasonal smoothing procedure is also applied to further remove outliers and artifacts in data series.

  11. Recurrent selection for wider seedling leaves increases early biomass and leaf area in wheat (Triticum aestivum L.).

    PubMed

    Zhang, L; Richards, R A; Condon, A G; Liu, D C; Rebetzke, G J

    2015-03-01

    The breeding of wheat with greater early vigour has potential to increase water- and nutrient-use efficiency, as well as to improve weed competitiveness to raise crop yields profitably. Given that wheat is inherently conservative in its early growth, a sustained breeding effort was initiated to increase genetically seedling leaf area in developing novel high vigour germplasm. A recurrent selection programme was initiated by intercrossing a genetically diverse set of 28 vigorous wheat lines identified globally. These were intercrossed at random and S1:2 progeny with the largest leaf 1 and 2 widths were intermated to develop new populations for assessment of early growth. This procedure was repeated for up to 60 segregating families per cycle across six cycles over 15 years. Thirty random S1:2 progeny were retained from each cycle and seed-increased together to produce seed for early vigour assessment in multiple sowings. The most vigorous wheat seedlings were identified in later cycles, with some lines producing more than double the leaf area and biomass of elite commercial wheat varieties. Phenotypic selection for greater leaf width was associated with a realized significant (P<0.01) linear increase per seedling of 0.41 mm per cycle (+7.1%) for mean leaf width, and correlated linear increases in total leaf area and biomass of 4.48 cm(2) per cycle (+10.3%) and 10.8 mg per cycle (+5.3%), respectively. Genetic gains in widths of leaves 2 (+8.4%) and 3 (+11.5%) were significantly (P<0.01) greater than for leaf 1 (+5.3%). Selection for greater leaf width was associated with linear increases in coleoptile tiller leaf area, small curvilinear increases in leaf 1 length, and reductions in numbers of leaves and mainstem tillers. Genetic variances were large and heritabilities high for leaf width and total leaf area in each cycle, but reduced linearly in size with selection across cycles. Coupling diverse germplasm with a simple, inexpensive, and repeatable selection process

  12. Recurrent selection for wider seedling leaves increases early biomass and leaf area in wheat (Triticum aestivum L.)

    PubMed Central

    Zhang, L.; Richards, R. A.; Condon, A. G.; Liu, D. C.; Rebetzke, G. J.

    2015-01-01

    The breeding of wheat with greater early vigour has potential to increase water- and nutrient-use efficiency, as well as to improve weed competitiveness to raise crop yields profitably. Given that wheat is inherently conservative in its early growth, a sustained breeding effort was initiated to increase genetically seedling leaf area in developing novel high vigour germplasm. A recurrent selection programme was initiated by intercrossing a genetically diverse set of 28 vigorous wheat lines identified globally. These were intercrossed at random and S1:2 progeny with the largest leaf 1 and 2 widths were intermated to develop new populations for assessment of early growth. This procedure was repeated for up to 60 segregating families per cycle across six cycles over 15 years. Thirty random S1:2 progeny were retained from each cycle and seed-increased together to produce seed for early vigour assessment in multiple sowings. The most vigorous wheat seedlings were identified in later cycles, with some lines producing more than double the leaf area and biomass of elite commercial wheat varieties. Phenotypic selection for greater leaf width was associated with a realized significant (P<0.01) linear increase per seedling of 0.41mm per cycle (+7.1%) for mean leaf width, and correlated linear increases in total leaf area and biomass of 4.48cm2 per cycle (+10.3%) and 10.8mg per cycle (+5.3%), respectively. Genetic gains in widths of leaves 2 (+8.4%) and 3 (+11.5%) were significantly (P<0.01) greater than for leaf 1 (+5.3%). Selection for greater leaf width was associated with linear increases in coleoptile tiller leaf area, small curvilinear increases in leaf 1 length, and reductions in numbers of leaves and mainstem tillers. Genetic variances were large and heritabilities high for leaf width and total leaf area in each cycle, but reduced linearly in size with selection across cycles. Coupling diverse germplasm with a simple, inexpensive, and repeatable selection process has

  13. The influence of burn severity on post-fire vegetation recovery and albedo change during early succession in North American boreal forests

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Randerson, J. T.; Goetz, S. J.; Beck, P. S.; Loranty, M. M.; Goulden, M.

    2011-12-01

    Severity of burning can influence multiple aspects of forest composition, carbon cycling, and climate forcing. We quantified how burn severity affected vegetation recovery and albedo change during early succession in Canadian boreal regions by combining satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Canadian Large Fire Data Base (LFDB). We used the difference Normalized Burn Ratio (dNBR) and changes in spring albedo derived from MODIS 500m albedo product as measures of burn severity. We found that the most severe burns had the greatest reduction in summer EVI in first year after fire, indicating greater loss of vegetation cover immediately following fire. By 5-7 years after fire, summer EVI for all severity classes had recovered to within 90-110% of pre-fire levels. Burn severity had a positive effect on the increase of post-fire spring albedo during the first 7 years after fire, and a shift from low to moderate or moderate to severe fires led to amplification of the post-fire albedo increase by approximately 30%. Fire-induced increases in both spring and summer albedo became progressively larger with stand age from years 1-7, with the trend in spring albedo likely driven by continued losses of needles and branches from trees killed by the fire (and concurrent losses of black carbon coatings on remaining debris), and the summer trend associated with increases in leaf area of short-stature herbs and shrubs. Our results suggest that increases in burn severity and carbon losses observed in some areas of boreal forests (e.g., Turetsky et al., 2011) may be at least partly offset by increases in negative forcing associated with changes in surface albedo.

  14. SURFACE ALBEDO AND SPECTRAL VARIABILITY OF CERES

    SciTech Connect

    Li, Jian-Yang; Reddy, Vishnu; Corre, Lucille Le; Sykes, Mark V.; Prettyman, Thomas H.; Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael; Izawa, Matthew R. M.; Cloutis, Edward A.; Carsenty, Uri; Jaumann, Ralf; Krohn, Katrin; Mottola, Stefano; Schröder, Stefan E.; Castillo-Rogez, Julie C.; Schenk, Paul; Williams, David A.; Smith, David E.; Zuber, Maria T.; and others

    2016-02-01

    Previous observations suggested that Ceres has active, but possibly sporadic, water outgassing as well as possibly varying spectral characteristics over a timescale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, as well as the newly acquired images by the Dawn  Framing Camera, to search for spectral and albedo variability on Ceres, on both a global scale and in local regions, particularly the bright spots inside the Occator crater, over timescales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in the Occator crater by >15%, or the global albedo by >3% over the various timescales that we searched. Recently reported spectral slope variations can be explained by changing Sun–Ceres–Earth geometry. The active area on Ceres is less than 1 km{sup 2}, too small to cause global albedo and spectral variations detectable in our data. Impact ejecta due to impacting projectiles of tens of meters in size like those known to cause observable changes to the surface albedo on Asteroid Scheila cannot cause detectable albedo change on Ceres due to its relatively large size and strong gravity. The water vapor activity on Ceres is independent of Ceres’ heliocentric distance, ruling out the possibility of the comet-like sublimation process as a possible mechanism driving the activity.

  15. A simplified treatment of SiB's land surface albedo parameterization

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.

    1991-01-01

    The earlier presented surface albedo parameterization is simplified by assuming that the reflectance of direct solar radiation is a simple function of solar zenith angle. The function chosen contains three parameters that vary with vegetation type, greenness, and leaf area index. Tables of parameter values are presented. Using these tables, SiB's (Simple Biosphere model) absorbances of direct solar radiation can be reproduced with an average relative error of less than 0.5 percent. Finally, the direct reflectance function is integrated over zenith angle to produce an equation for the surface reflectance of diffuse radiation.

  16. The albedo of Earth

    NASA Astrophysics Data System (ADS)

    Stephens, Graeme L.; O'Brien, Denis; Webster, Peter J.; Pilewski, Peter; Kato, Seiji; Li, Jui-lin

    2015-03-01

    The fraction of the incoming solar energy scattered by Earth back to space is referred to as the planetary albedo. This reflected energy is a fundamental component of the Earth's energy balance, and the processes that govern its magnitude, distribution, and variability shape Earth's climate and climate change. We review our understanding of Earth's albedo as it has progressed to the current time and provide a global perspective of our understanding of the processes that define it. Joint analyses of surface solar flux data that are a complicated mix of measurements and model calculations with top-of-atmosphere (TOA) flux measurements from current orbiting satellites yield a number of surprising results including (i) the Northern and Southern Hemispheres (NH, SH) reflect the same amount of sunlight within ~ 0.2 W m-2. This symmetry is achieved by increased reflection from SH clouds offsetting precisely the greater reflection from the NH land masses. (ii) The albedo of Earth appears to be highly buffered on hemispheric and global scales as highlighted by both the hemispheric symmetry and a remarkably small interannual variability of reflected solar flux (~0.2% of the annual mean flux). We show how clouds provide the necessary degrees of freedom to modulate the Earth's albedo setting the hemispheric symmetry. We also show that current climate models lack this same degree of hemispheric symmetry and regulation by clouds. The relevance of this hemispheric symmetry to the heat transport across the equator is discussed.

  17. Variability in Albedo Associated with Fire-Mediated Controls on Stand Density in Siberian Larch Forests

    NASA Astrophysics Data System (ADS)

    Loranty, M. M.; Fullmer, J.; Nguyen, C. L.; Alexander, H. D.; Natali, S.; Bunn, A. G.; Davydov, S. P.; Goetz, S. J.; Mack, M. C.

    2015-12-01

    Fire is an integral component of boreal forests, and exerts strong control over ecosystem structure and function. The frequency and spatial extent of fire controls the age-class distribution of forests on the landscape. In addition, recent evidence from North American boreal forests has show that fire severity influences post-fire succession via impacts on seedling recruitment that manifest in mature ecosystems dominated by either deciduous or coniferous tree species. The effects of fire on ecosystem structure have important climate feedback implications; changes in forest density or leaf habit can influence surface net radiation by altering the snow-masking effects of vegetation. Although Siberian larch forests occupy a more than 2.8 million km2 of the boreal biome, and are the most prevalent forests in Russia, the influence of fire severity on succession and associated surface energy dynamics are less well understood in comparison to North American boreal forests. There is evidence suggesting that increased fire severity may lead to higher density of post-fire regrowth, but the influence of stand density on surface energy dynamics remains poorly quantified. Here, we quantify the effects of stand density on albedo across the Kolyma River basin using satellite-derived albedo and fire history in conjunction with maps and field observations of ecosystem structure. During snow-free periods albedo varies little with stand density. During periods of snow cover we find consistent negative correlations between multiple metrics of canopy cover and albedo. Albedo decreased with fire recovery over the forty-year fire record for the study area. However, the range of albedo observed within individual fire scars was similar to the magnitude of albedo recovery during the study period. This result indicates the importance of variability in post-fire regrowth within individual fire scars, potentially associated with fire severity, for understanding fire effects on surface energy

  18. Simulation Models of Leaf Area Index and Yield for Cotton Grown with Different Soil Conditioners.

    PubMed

    Su, Lijun; Wang, Quanjiu; Wang, Chunxia; Shan, Yuyang

    2015-01-01

    Simulation models of leaf area index (LAI) and yield for cotton can provide a theoretical foundation for predicting future variations in yield. This paper analyses the increase in LAI and the relationships between LAI, dry matter, and yield for cotton under three soil conditioners near Korla, Xinjiang, China. Dynamic changes in cotton LAI were evaluated using modified logistic, Gaussian, modified Gaussian, log normal, and cubic polynomial models. Universal models for simulating the relative leaf area index (RLAI) were established in which the application rate of soil conditioner was used to estimate the maximum LAI (LAIm). In addition, the relationships between LAIm and dry matter mass, yield, and the harvest index were investigated, and a simulation model for yield is proposed. A feasibility analysis of the models indicated that the cubic polynomial and Gaussian models were less accurate than the other three models for simulating increases in RLAI. Despite significant differences in LAIs under the type and amount of soil conditioner applied, LAIm could be described by aboveground dry matter using Michaelis-Menten kinetics. Moreover, the simulation model for cotton yield based on LAIm and the harvest index presented in this work provided important theoretical insights for improving water use efficiency in cotton cultivation and for identifying optimal application rates of soil conditioners.

  19. Estimation of Canopy Sunlit Fraction of Leaf Area from Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Yang, B.; Knyazikhin, Y.; Yan, K.; Chen, C.; Park, T.; CHOI, S.; Mottus, M.; Rautiainen, M.; Stenberg, P.; Myneni, R.; Yan, L.

    2015-12-01

    The sunlit fraction of leaf area (SFLA) defined as the fraction of the total hemisurface leaf area illuminated by the direct solar beam is a key structural variable in many global models of climate, hydrology, biogeochemistry and ecology. SFLAI is expected to be a standard product from the Earth Polychromatic Imaging Camera (EPIC) on board the joint NOAA, NASA and US Air Force Deep Space Climate Observatory (DSCOVR) mission, which was successfully launched from Cape Canaveral, Florida on February 11, 2015. The DSCOVR EPIC sensor orbiting the Sun-Earth Lagrange L1 point provides multispectral measurements of the radiation reflected by Earth in retro-illumination directions. This poster discusses a methodology for estimating the SFLA using LAI-2000 Canopy Analyzer, which is expected to underlie the strategy for validation of the DSCOVR EPIC land surface products. LAI-2000 data collected over 18 coniferous and broadleaf sites in Hyytiälä, Central Finland, were used to estimate the SFLA. Field data on canopy geometry were used to simulate selected sites. Their SFLAI was calculated using a Monte Carlo (MC) technique. LAI-2000 estimates of SFLA showed a very good agreement with MC results, suggesting validity of the proposed approach.

  20. Detection of chlorophyll and leaf area index dynamics from sub-weekly hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Houborg, Rasmus; McCabe, Matthew F.; Angel, Yoseline; Middleton, Elizabeth M.

    2016-10-01

    Temporally rich hyperspectral time-series can provide unique time critical information on within-field variations in vegetation health and distribution needed by farmers to effectively optimize crop production. In this study, a dense timeseries of images were acquired from the Earth Observing-1 (EO-1) Hyperion sensor over an intensive farming area in the center of Saudi Arabia. After correction for atmospheric effects, optimal links between carefully selected explanatory hyperspectral vegetation indices and target vegetation characteristics were established using a machine learning approach. A dataset of in-situ measured leaf chlorophyll (Chll) and leaf area index (LAI), collected during five intensive field campaigns over a variety of crop types, were used to train the rule-based predictive models. The ability of the narrow-band hyperspectral reflectance information to robustly assess and discriminate dynamics in foliar biochemistry and biomass through empirical relationships were investigated. This also involved evaluations of the generalization and reproducibility of the predictions beyond the conditions of the training dataset. The very high temporal resolution of the satellite retrievals constituted a specifically intriguing feature that facilitated detection of total canopy Chl and LAI dynamics down to sub-weekly intervals. The study advocates the benefits associated with the availability of optimum spectral and temporal resolution spaceborne observations for agricultural management purposes.

  1. Estimation of four land surface essential climate variables (albedo, LAI/FAPAR, and Fcover) from VIIRS data

    NASA Astrophysics Data System (ADS)

    Liang, Shunlin

    2016-07-01

    As the successor of MODIS, the Visible Infrared Imaging Radiometer Suite (VIIRS) from the Suomi National Polar-orbiting Partnership (S-NPP) and future Joint Polar Satellite System (JPSS) brings us into a new era of global daily Earth observations. VIIRS was designed to improve upon the capabilities of the operational AVHRR and provide observation continuity with MODIS. This presentation will describe the progress in estimating four Essential Climate Variables (ECV): shortwave albedo (Wang, et al., 2013; Zhou, et al., 2016), leaf area index (LAI) (Xiao et al., 2016), fraction of absorbed photosynthetically active radiation (FAPAR) (Xiao et al., 2016), and fractional vegetation coverage (Fcover) (Li, et al., 2016) from VIIRS data. The algorithms have been peer reviewed, and shortwave albedo has been operationally produced by NOAA and accessible to the scientific community. Li, Y., K. Jia, S. Liang, Z. Xiao, X. Wang, L. Yang, (2016), An operational algorithm for estimating fractional vegetation cover from VIIRS reflectance data based on general regression neural networks, Remote Sensing, revised Xiao, Z., S. Liang, T. Wang, and B. Jiang, (2016), Retrieval of Leaf Area Index and Fraction of Absorbed Photosynthetically Active Radiation from VIIRS Time Series Data, Remote Sensing, revised. Wang, D., S. Liang, T. He, and Y. Yu, (2013), Direct Estimation of Land Surface Albedo from VIIRS Data: Algorithm Improvement and Preliminary Validation, Journal of Geophysical Research, 118(22):12,577-12,586 Zhou, Y., D. Wang, S. Liang, Y. Yu, and T. He, (2016), Assessment of the Suomi NPP VIIRS Land Surface Albedo Data Using Station Measurements and High-Resolution Albedo Maps, Remote Sensing, in press.

  2. Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

  3. Sun-View-Target Geometry Effects on Spectrally-Derived Vegetative Index Estimates of Absorbed Radiation and Leaf Area

    DTIC Science & Technology

    1991-06-01

    major differences in reflection among six full cover spring wheat cultivar canopies despite similarities in green leaf area, biomass, and measured leaf...largest diurnal variation. Differences in reflectance between the different cultivars varied with both solar zenith angle and wavelength of sensed...radiation. Maximum differences among cultivars occurred near solar noon in the NIR while, in the visible waveband, cultivar differences in reflectance were

  4. Spatiotemporal NDVI, LAI, albedo, and surface temperature dynamics in the southwest of the Brazilian Amazon forest

    NASA Astrophysics Data System (ADS)

    Querino, Carlos Alexandre Santos; Beneditti, Cristina Aparecida; Machado, Nadja Gomes; da Silva, Marcelo José Gama; da Silva Querino, Juliane Kayse Albuquerque; dos Santos Neto, Luiz Alves; Biudes, Marcelo Sacardi

    2016-04-01

    During the last decades, the Amazon rainforest underwent uncontrolled exploitation that modified its environmental variables. The current paper analyzes the spatiotemporal dynamics of the normalized difference vegetation index (NDVI), leaf area index (LAI), and surface albedo, and temperature in two different vegetation covers, preserved and deforested areas. We calculated the remote-sensing products using Landsat 5 TM images obtained during the dry season 1984, 1991, 2000, and 2011 of the central region of the State of Rondônia, Brazil. The results showed a reduction of vegetation indexes NDVI (˜0.70 in 1984 to ˜0.27 in 2011) and LAI (˜1.8 in 1984 to ˜0.3 in 2011), with an increase of surface albedo (0.12 in 1984 to 0.20 in 2011) and temperature (˜24°C in 1984 to 30°C in 2011) as the effect of the rainforest converted in grassland during the study period. No changes in any variables were observed in the protected area. Forest conversion into grassland resulted in a decrease of 69% in NDVI and 110% in LAI and a rise of 59% and 24% in albedo and surface temperature, respectively.

  5. Restoration thinning and influence of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa.

    PubMed

    Simonin, K; Kolb, T E; Montes-Helu, M; Koch, G W

    2006-04-01

    Ponderosa pine (Pinus ponderosa Dougl. ex P. Laws) forest stand density has increased significantly over the last century (Covington et al. 1997). To understand the effect of increased intraspecific competition, tree size (height and diameter at breast height (DBH)) and leaf area to sapwood area ratio (A(L):A(S)) on water relations, we compared hydraulic conductance from soil to leaf (kl) and transpiration per unit leaf area (Q(L)) of ponderosa pine trees in an unthinned plot to trees in a thinned plot in the first and second years after thinning in a dense Arizona forest. We calculated kl and Q(L) based on whole- tree sap flux measured with heat dissipation sensors. Thinning increased tree predawn water potential within two weeks of treatment. Effects of thinning on kl and Q(L) depended on DBH, A(L):A(S) and drought severity. During severe drought in the first growing season after thinning, kl and Q(L) of trees with low A(L):A(S) (160-250 mm DBH; 9-11 m height) were lower in the thinned plot than the unthinned plot, suggesting a reduction in stomatal conductance (g(s)) or reduced sapwood specific conductivity (K(S)), or both, in response to thinning. In contrast kl and Q(L) were similar in the thinned plot and unthinned plot for trees with high A(L):A(S) (260-360 mm DBH; 13-16 m height). During non-drought periods, kl and Q(L) were greater in the thinned plot than in the unthinned plot for all but the largest trees. Contrary to previous studies of ponderosa pine, A(L):A(S) was positively correlated with tree height and DBH. Furthermore, kl and Q(L) showed a weak negative correlation with tree height and a strong negative correlation with A(S) and thus A(L):A(S) in both the thinned and unthinned plots, suggesting that trees with high A(L):A(S) had lower g(s). Our results highlight the important influence of stand competitive environment on tree-size-related variation in A(L):A(S) and the roles of A(L):A(S) and drought on whole-tree water relations in response to

  6. Microwave Backscatter and Attenuation Dependence of Leaf Area Index for Flooded Rice Fields

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Morrissey, Leslie A.; Livingston, Gerald P.

    1995-01-01

    Wetlands are important for their role in global climate as a source of methane and other reduced trace gases. As part of an effort to determine whether radar is suitable for wetland vegetation monitoring, we have studied the dependence of microwave backscatter and attenuation on leaf area index (LAI) for flooded rice fields. We find that the radar return from a flooded rice field does show dependence on LAI. In particular, the C-band VV cross section per unit area decreases with increasing LAI. A simple model for scattering from rice fields is derived and fit to the observed HH and VV data. The model fit provides insight into the relation of backscatter to LAI and is also used to calculate the canopy path attenuation as a function of LAI.

  7. Selecting a spatial resolution for estimation of per-field green leaf area index

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Williamson, H. Dawn

    1988-01-01

    For any application of multispectral scanner (MSS) data, a user is faced with a number of choices concerning the characteristics of the data; one of these is their spatial resolution. A pilot study was undertaken to determine the spatial resolution that would be optimal for the per-field estimation of green leaf area index (GLAI) in grassland. By reference to empirically-derived data from three areas of grassland, the suitable spatial resolution was hypothesized to lie in the lower portion of a 2-18 m range. To estimate per-field GLAI, airborne MSS data were collected at spatial resolutions of 2 m, 5 m and 10 m. The highest accuracies of per-field GLAI estimation were achieved using MSS data with spatial resolutions of 2 m and 5 m.

  8. Simultaneous improvement in productivity, water use, and albedo through crop structural modification.

    PubMed

    Drewry, Darren T; Kumar, Praveen; Long, Stephen P

    2014-06-01

    Spanning 15% of the global ice-free terrestrial surface, agricultural lands provide an immense and near-term opportunity to address climate change, food, and water security challenges. Through the computationally informed breeding of canopy structural traits away from those of modern cultivars, we show that solutions exist that increase productivity and water use efficiency, while increasing land-surface reflectivity to offset greenhouse gas warming. Plants have evolved to maximize capture of radiation in the upper leaves, thus shading competitors. While important for survival in the wild, this is suboptimal in monoculture crop fields for maximizing productivity and other biogeophysical services. Crop progenitors evolved over the last 25 million years in an atmosphere with less than half the [CO2] projected for 2050. By altering leaf photosynthetic rates, rising [CO2] and temperature may also alter the optimal canopy form. Here using soybean, the world's most important protein crop, as an example we show by applying optimization routines to a micrometeorological leaf canopy model linked to a steady-state model of photosynthesis, that significant gains in production, water use, and reflectivity are possible with no additional demand on resources. By modifying total canopy leaf area, its vertical profile and angular distribution, and shortwave radiation reflectivity, all traits available in most major crop germplasm collections, increases in productivity (7%) are possible with no change in water use or albedo. Alternatively, improvements in water use (13%) or albedo (34%) can likewise be made with no loss of productivity, under Corn Belt climate conditions.

  9. Branch Development Controls Leaf Area Dynamics in Grapevine (Vitis vinifera) Growing in Drying Soil

    PubMed Central

    LEBON, ERIC; PELLEGRINO, ANNE; LOUARN, GAËTAN; LECOEUR, JEREMIE

    2006-01-01

    • Background and Aims Soil water deficit is a major abiotic stress with severe consequences for the development, productivity and quality of crops. However, it is considered a positive factor in grapevine management (Vitis vinifera), as it has been shown to increase grape quality. The effects of soil water deficit on organogenesis, morphogenesis and gas exchange in the shoot were investigated. • Methods Shoot organogenesis was analysed by distinguishing between the various steps in the development of the main axis and branches. Several experiments were carried out in pots, placed in a greenhouse or outside, in southern France. Soil water deficits of various intensities were imposed during vegetative development of the shoots of two cultivars (‘Syrah’ and ‘Grenache N’). • Key Results All developmental processes were inhibited by soil water deficit, in an intensity-dependent manner, and sensitivity to water stress was process-dependent. Quantitative relationships with soil water were established for all processes. No difference was observed between the two cultivars for any criterion. The number of leaves on branches was particularly sensitive to soil water deficit, which rapidly and strongly reduced the rate of leaf appearance on developing branches. This response was not related to carbon availability, photosynthetic activity or the soluble sugar content of young expanding leaves. The potential number of branches was not a limiting factor for shoot development. • Conclusions The particularly high sensitivity to soil water deficit of leaf appearance on branches indicates that this process is a major determinant of the adaptation of plant leaf area to soil water deficit. The origin of this particular developmental response to soil water deficit is unclear, but it seems to be related to constitutive characteristics of branches rather than to competition for assimilates between axes differing in sink strength. PMID:16679414

  10. Specific leaf area responses to environmental gradients through space and time.

    PubMed

    Dwyer, John M; Hobbs, Richard J; Mayfield, Margaret M

    2014-02-01

    Plant communities can respond to environmental changes by altering their species composition and by individuals (within species) adjusting their physiology. These responses can be captured by measuring key functional traits among and within species along important environmental gradients. Some anthropogenic changes (such as fertilizer runoff) are known to induce distinct community responses, but rarely have responses across natural and anthropogenic gradients been compared in the same system. In this study, we used comprehensive specific leaf area (SLA) data from a diverse Australian annual plant system to examine how individual species and whole communities respond to natural and anthropogenic gradients, and to climatically different growing seasons. We also investigated the influence of different leaf-sampling strategies on community-level results. Many species had similar mean SLA values but differed in SLA responses to spatial and temporal environmental variation. At the community scale, we identified distinct SLA responses to natural and anthropogenic gradients. Along anthropogenic gradients, increased mean SLA, coupled with SLA convergence, revealed evidence of competitive exclusion. This was further supported by the dominance of species turnover (vs. intraspecific variation) along these gradients. We also revealed strong temporal changes in SLA distributions in response to increasing growing-season precipitation. These climate-driven changes highlight differences among co-occurring species in their adaptive capacity to exploit abundant water resources during favorable seasons, differences that are likely to be important for species coexistence in this system. In relation to leaf-sampling strategies, we found that using leaves from a climatically different growing season can lead to misleading conclusions at the community scale.

  11. A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition.

    PubMed

    Leonardi, Stefano; Magnani, Federico; Nolè, Angelo; Van Noije, Twan; Borghetti, Marco

    2015-01-01

    We present a global assessment of the relationships between the short-wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep ), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle-leaf forests (ENF); evergreen broad-leaf forests (EBF); deciduous needle-leaf forests (DNF); deciduous broad-leaf forests (DBF); and mixed-forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short-wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad-leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select 'pure' pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models.

  12. Importance of crown architecture for leaf area index of different Populus genotypes in a high-density plantation.

    PubMed

    Broeckx, L S; Verlinden, M S; Vangronsveld, J; Ceulemans, R

    2012-10-01

    Crown architecture is an important determinant of biomass production and yield of any bio-energy plantation since it determines leaf area display and hence light interception. Four Populus genotypes-of different species and hybrids and with contrasting productivity and leaf area-were examined in terms of their branch characteristics in relation to crown architecture during the first and second growing seasons after plantation establishment. The trees were planted at high density (8000 ha(-1)) on two different former land use types, cropland and pasture. We documented significant differences in branch architecture among the genotypes and for the first year among the former land use types. Land use effects only affected factors not related to canopy closure and wood production, and decreased after the first growing season. This suggested that both former land use types were equally suited for the establishment success of a poplar bio-energy plantation. Tree height and branch dimensions-branch diameter and branch length-were the most important determinants of wood production and maximum leaf area index. Despite the secondary importance of the number of sylleptic branches, these branches contributed significantly to the total leaf area in three out of the four studied genotypes. This indicated that enhanced syllepsis accelerates leaf area development and hence carbon assimilation, especially in the early stages of a high-density plantation with poplar.

  13. High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis

    PubMed Central

    Koffler, Barbara E.; Bloem, Elke; Zellnig, Günther; Zechmann, Bernd

    2013-01-01

    Glutathione is an important antioxidant and redox buffer in plants. It fulfills many important roles during plant development, defense and is essential for plant metabolism. Even though the compartment specific roles of glutathione during abiotic and biotic stress situations have been studied in detail there is still great lack of knowledge about subcellular glutathione concentrations within the different leaf areas at different stages of development. In this study a method is described that allows the calculation of compartment specific glutathione concentrations in all cell compartments simultaneously in one experiment by using quantitative immunogold electron microscopy combined with biochemical methods in different leaf areas of Arabidopsis thaliana Col-0 (center of the leaf, leaf apex, leaf base and leaf edge). The volume of subcellular compartments in the mesophyll of Arabidopsis was found to be similar to other plants. Vacuoles covered the largest volume within a mesophyll cell and increased with leaf age (up to 80% in the leaf apex of older leaves). Behind vacuoles, chloroplasts covered the second largest volume (up to 20% in the leaf edge of the younger leaves) followed by nuclei (up to 2.3% in the leaf edge of the younger leaves), mitochondria (up to 1.6% in the leaf apex of the younger leaves), and peroxisomes (up to 0.3% in the leaf apex of the younger leaves). These values together with volumes of the mesophyll determined by stereological methods from light and electron micrographs and global glutathione contents measured with biochemical methods enabled the determination of subcellular glutathione contents in mM. Even though biochemical investigations did not reveal differences in global glutathione contents, compartment specific differences could be observed in some cell compartments within the different leaf areas. Highest concentrations of glutathione were always found in mitochondria, where values in a range between 8.7 mM (in the apex of younger

  14. Morphological and moisture availability controls of the leaf area-to-sapwood area ratio: analysis of measurements on Australian trees.

    PubMed

    Togashi, Henrique Furstenau; Prentice, Iain Colin; Evans, Bradley John; Forrester, David Ian; Drake, Paul; Feikema, Paul; Brooksbank, Kim; Eamus, Derek; Taylor, Daniel

    2015-03-01

    The leaf area-to-sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. The pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease toward drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. Despite considerable scatter in LA:SA among species, quantile regression showed strong (0.2 < R1 < 0.65) positive relationships between two climatic moisture indices and the lowermost (5%) and uppermost (5-15%) quantiles of log LA:SA, suggesting that moisture availability constrains the envelope of minimum and maximum values of LA:SA typical for any given climate. Interspecific differences in plant hydraulic conductivity are probably responsible for the large scatter of values in the mid-quantile range and may be an important determinant of tree morphology.

  15. Moisture availability constraints on the leaf area to sapwood area ratio: analysis of measurements on Australian evergreen angiosperm trees

    NASA Astrophysics Data System (ADS)

    Togashi, Henrique; Prentice, Colin; Evans, Bradley; Forrester, David; Drake, Paul; Feikema, Paul; Brooksbank, Kim; Eamus, Derek; Taylor, Daniel

    2014-05-01

    The leaf area to sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. Pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease towards drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. We found considerable scatter in LA:SA among species. However quantile regression showed strong (0.2

  16. Morphological and moisture availability controls of the leaf area-to-sapwood area ratio: analysis of measurements on Australian trees

    PubMed Central

    Togashi, Henrique Furstenau; Prentice, Iain Colin; Evans, Bradley John; Forrester, David Ian; Drake, Paul; Feikema, Paul; Brooksbank, Kim; Eamus, Derek; Taylor, Daniel

    2015-01-01

    The leaf area-to-sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. The pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease toward drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. Despite considerable scatter in LA:SA among species, quantile regression showed strong (0.2 < R1 < 0.65) positive relationships between two climatic moisture indices and the lowermost (5%) and uppermost (5–15%) quantiles of log LA:SA, suggesting that moisture availability constrains the envelope of minimum and maximum values of LA:SA typical for any given climate. Interspecific differences in plant hydraulic conductivity are probably responsible for the large scatter of values in the mid-quantile range and may be an important determinant of tree morphology. PMID:25859331

  17. Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests.

    PubMed

    Asner, Gregory P; Martin, Roberta E; Tupayachi, Raul; Emerson, Ruth; Martinez, Paola; Sinca, Felipe; Powell, George V N; Wright, S Joseph; Lugo, Ariel E

    2011-01-01

    Leaf mass per area (LMA) is a trait of central importance to plant physiology and ecosystem function, but LMA patterns in the upper canopies of humid tropical forests have proved elusive due to tall species and high diversity. We collected top-of-canopy leaf samples from 2873 individuals in 57 sites spread across the Neotropics, Australasia, and Caribbean and Pacific Islands to quantify environmental and taxonomic drivers of LMA variation, and to advance remote-sensing measures of LMA. We uncovered strong taxonomic organization of LMA, with species accounting for 70% of the global variance and up to 62% of the variation within a forest stand. Climate, growth habit, and site conditions are secondary contributors (1-23%) to the observed LMA patterns. Intraspecific variation in LMA averages 16%, which is a fraction of the variation observed between species. We then used spectroscopic remote sensing (400-2500 nm) to estimate LMA with an absolute uncertainty of 14-15 g/m2 (r2 = 0.85), or approximately 10% of the global mean. With radiative transfer modeling, we demonstrated the scalability of spectroscopic remote sensing of LMA to the canopy level. Our study indicates that remotely sensed patterns of LMA will be driven by taxonomic variation against a backdrop of environmental controls expressed at site and regional levels.

  18. Large ontogenetic declines in intra-crown leaf area index in two temperate deciduous tree species.

    PubMed

    Nock, C A; Caspersen, J P; Thomas, S C

    2008-03-01

    The widespread occurrence of age-related changes in leaf morphology and allocation suggests that the leaf area index of individual trees (intra-crown LAI) may decline late in ontogeny. We used direct, within-canopy measurements to quantify the LAI of canopy trees with exposed crowns of two temperate deciduous species. Intra-crown LAI declined from approximately 7 to 4 in Acer saccharum, and from approximately 9.5 to 6.5 in Betula alleghaniensis, as tree size increased (from 15 to 72 cm diameter at breast height [dbh]). For A. saccharum, age (which varied from 30 to 160 years) was a significantly better predictor of LAI decline than dbh. We also modeled the effect of ontogenetic declines in LAI on understory light availability and found that light transmission increases significantly as canopy trees grow and mature. Our results thus suggest that gradual declines in LAI with tree age may play an important and overlooked role in contributing to the heterogeneity of sub-canopy light regimes in mature forests.

  19. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors

    PubMed Central

    Zheng, Guang; Moskal, L. Monika

    2009-01-01

    The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels. PMID:22574042

  20. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors.

    PubMed

    Zheng, Guang; Moskal, L Monika

    2009-01-01

    The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels.

  1. Monitoring and mapping leaf area index of rubber and oil palm in small watershed area

    NASA Astrophysics Data System (ADS)

    Rusli, N.; Majid, M. R.

    2014-02-01

    Existing conventional methods to determine LAI are tedious and time consuming for implementation in small or large areas. Thus, raster LAI data which are available free were downloaded for 4697.60 km2 of Sungai Muar watershed area in Johor. The aim of this study is to monitor and map LAI changes of rubber and oil palm throughout the years from 2002 to 2008. Raster datasets of LAI value were obtained from the National Aeronautics and Space Administration (NASA) website of available years from 2002 to year 2008. These data, were mosaicked and subset utilizing ERDAS Imagine 9.2. Next, the LAI raster dataset was multiplied by a scale factor of 0.1 to derive the final LAI value. Afterwards, to determine LAI values of rubber and oil palms, the boundaries of each crop from land cover data of the years 2002, 2006 and 2008 were exploited to overlay with LAI raster dataset. A total of 5000 sample points were generated utilizing the Hawths Tool (extension in ARcGIS 9.2) within these boundaries area and utilized for extracting LAI value of oil palm and rubber. In integration, a wide range of literature review was conducted as a guideline to derive LAI value of oil palm and rubber which range from 0 to 6. The results show, an overall mean LAI value from year 2002 to 2008 as decremented from 4.12 to 2.5 due to land cover transition within these years. In 2002, the mean LAI value of rubber and oil palm is 2.65 and 2.53 respectively. Meanwhile in 2006, the mean LAI value for rubber and oil palm is 2.54 and 2.82 respectively. In 2008, the mean LAI value for both crops is 0.85 for rubber and 1.04 for oil palm. In conclusion, apart from the original function of LAI which is related to the growth and metabolism of vegetation, the changes of LAI values from year 2002 to 2008 also capable to explain the process of land cover changes in a watershed area.

  2. Influence of Leaf Area Index Prescriptions on Simulations of Heat, Moisture, and Carbon Fluxes

    NASA Technical Reports Server (NTRS)

    Kala, Jatin; Decker, Mark; Exbrayat, Jean-Francois; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Abramowitz, Gab; Mocko, David

    2013-01-01

    Leaf-area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. We investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI data-set is generated using the MODIS LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980-2008) are carried out at 25 km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly-varying LAI data-sets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from -90 to 60 %. PFTs with high absolute LAI and low inter-annual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, whilst those with lower absolute LAI and higher inter-annual variability, such as croplands, were more sensitive. We show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of the terrestrial carbon fluxes, especially for PFTs with high inter-annual variability. Our study highlights that the accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence this will become critical in quantifying the uncertainty in future changes in primary production.

  3. Leaf area index of a tropical semi-deciduous forest of the southern Amazon Basin

    NASA Astrophysics Data System (ADS)

    Pinto-Júnior, Osvaldo Borges; Sanches, Luciana; de Almeida Lobo, Francisco; Brandão, Adilson Amorim; de Souza Nogueira, José

    2011-03-01

    Leaf area index (LAI) is an important ecophysiological variable because leaves are the organs responsible for gas exchange between plants and the atmosphere. This variable can be calculated from primary values of leaf area assessed by destructive or non-destructive methods, which is relatively easy when crop species are investigated, but is not the case when the focus is on natural wood plants communities. In this paper, we analyze the seasonality of LAI estimated by three different methods in the Amazonia-savannah transitional forest, located 50 km north-east of Sinop city, Mato Grosso, Brazil. In the first method, we combine Monsi and Saekis' original method [Monsi M, Saeki T (1953) Jpn J Bot 14:22-52], which measures LAI using the Beer-Lambert extinction law, and the proposition of Goudriaan [Goudriaan J (1988) Agric For Meteorol 43:155-169] to estimate the extinction coefficient from solar height. The second method differed from the first only in the way in which the daily fraction of intercepted photosynthetic active radiation (FPAR) was calculated, as proposed by Charles-Edwards and Lawn (Charles-Edwards DA, Lawn RJ (1984) Plant Cell Environ 7:247-251]. In the third method, we used a remote sensing technique [MOD15_BU-collection 4, produced and distributed by EROS Data Center Distributed Active Archive Center (EDC DAAC)]. We found that the first and the second methods revealed the expected LAI dynamics, which increased during the dry-wet transition and wet season, and decreased during the wet-dry transition and dry season. From 20 randomly distributed sets in a 1.0 ha area, only 3 showed significant differences in LAI estimated from the first two methods; conversely, LAI was overestimated by the third method.

  4. Leaf area index of a tropical semi-deciduous forest of the southern Amazon Basin.

    PubMed

    Pinto-Júnior, Osvaldo Borges; Sanches, Luciana; de Almeida Lobo, Francisco; Brandão, Adilson Amorim; de Souza Nogueira, José

    2011-03-01

    Leaf area index (LAI) is an important ecophysiological variable because leaves are the organs responsible for gas exchange between plants and the atmosphere. This variable can be calculated from primary values of leaf area assessed by destructive or non-destructive methods, which is relatively easy when crop species are investigated, but is not the case when the focus is on natural wood plants communities. In this paper, we analyze the seasonality of LAI estimated by three different methods in the Amazonia-savannah transitional forest, located 50 km north-east of Sinop city, Mato Grosso, Brazil. In the first method, we combine Monsi and Saekis' original method [Monsi M, Saeki T (1953) Jpn J Bot 14:22-52], which measures LAI using the Beer-Lambert extinction law, and the proposition of Goudriaan [Goudriaan J (1988) Agric For Meteorol 43:155-169] to estimate the extinction coefficient from solar height. The second method differed from the first only in the way in which the daily fraction of intercepted photosynthetic active radiation (FPAR) was calculated, as proposed by Charles-Edwards and Lawn (Charles-Edwards DA, Lawn RJ (1984) Plant Cell Environ 7:247-251]. In the third method, we used a remote sensing technique [MOD15_BU-collection 4, produced and distributed by EROS Data Center Distributed Active Archive Center (EDC DAAC)]. We found that the first and the second methods revealed the expected LAI dynamics, which increased during the dry-wet transition and wet season, and decreased during the wet-dry transition and dry season. From 20 randomly distributed sets in a 1.0 ha area, only 3 showed significant differences in LAI estimated from the first two methods; conversely, LAI was overestimated by the third method.

  5. Losses of leaf area owing to herbivory and early senescence in three tree species along a winter temperature gradient

    NASA Astrophysics Data System (ADS)

    González-Zurdo, P.; Escudero, A.; Nuñez, R.; Mediavilla, S.

    2016-11-01

    In temperate climates, evergreen leaves have to survive throughout low temperature winter periods. Freezing and chilling injuries can lead to accelerated senescence of part of the leaf surface, which contributes to a reduction of the lifespan of the photosynthetic machinery and of leaf lifetime carbon gain. Low temperatures are also associated with changes in foliar chemistry and morphology that affect consumption by herbivores. Therefore, the severity of foliar area losses caused by accelerated senescence and herbivory can change along winter temperature gradients. The aim of this study is to analyse such responses in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) along a climatic gradient. The leaves of all three species presented increased leaf mass per area (LMA) and higher concentrations of structural carbohydrates in cooler areas. Only the two oak species showed visible symptoms of damage caused by herbivory, this being less intense at the coldest sites. The leaves of all three species presented chlorotic and necrotic spots that increased in size with leaf age. The foliar surface affected by chlorosis and necrosis was larger at the sites with the coldest winters. Therefore, the effects of the winter cold on the lifespan of the photosynthetic machinery were contradictory: losses of leaf area due to accelerated senescence increased, but there was a decrease in losses caused by herbivory. The final consequences for carbon assimilation strongly depend on the exact timing of the appearance of the damage resulting from low temperature and grazing by herbivores.

  6. Estimation of vegetation parameters such as Leaf Area Index from polarimetric SAR data

    NASA Astrophysics Data System (ADS)

    Hetz, Marina; Blumberg, Dan G.; Rotman, Stanley R.

    2010-05-01

    This work presents the analysis of the capability to use the radar backscatter coefficient in semi-arid zones to estimate the vegetation crown in terms of Leaf Area Index (LAI). The research area is characterized by the presence of a pine forest with shrubs as an underlying vegetation layer (understory), olive trees, natural grove areas and eucalyptus trees. The research area was imaged by an airborne RADAR system in L-band during February 2009. The imagery includes multi-look radar images. All the images were fully polarized i.e., HH, VV, HV polarizations. For this research we used the central azimuth angle (113° ). We measured LAI using the ?T Sun Scan Canopy Analysis System. Verification was done by analytic calculations and digital methods for the leaf's and needle's surface area. In addition, we estimated the radar extinction coefficient of the vegetation volume by comparing point calibration targets (trihedral corner reflectors with 150cm side length) within and without the canopy. The radar extinction in co- polarized images was ~26dB and ~24dB for pines and olives respectively, compared to the same calibration target outside the vegetation. We used smaller trihedral corner reflectors (41cm side length) and covered them with vegetation to measure the correlation between vegetation density, LAI and radar backscatter coefficient for pines and olives under known conditions. An inverse correlation between the radar backscatter coefficient of the trihedral corner reflectors covered by olive branches and the LAI of those branches was observed. The correlation between LAI and the optical transmittance was derived using the Beer-Lambert law. In addition, comparing this law's principle to the principle of the radar backscatter coefficient production, we derived the equation that connects between the radar backscatter coefficient and LAI. After extracting the radar backscatter coefficient of forested areas, all the vegetation parameters were used as inputs for the

  7. Leaf-area estimates from spectral measurements over various planting dates of wheat

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Kanemasu, E. T.; Asrar, G.; Jackson, R. D.; Pinter, P. J., Jr.; Reginato, R. J.; Idso, S. B.

    1985-01-01

    Several vegetative indices were analyzed for their sensitivity and stability to green-leaf-area index (LAI) changes over various planting dates and irrigation frequencies of wheat grown at Phoenix, AZ, from 1978 to 1980. Seasonal patterns of greenness showed that values saturated at LAI values above 4.0 did not return to the pre-emergence bare-soil value at senescence, and were not uniquely related to LAI over the various planting dates. Regressions of individual MSS band reflectances against LAI also showed that there was not a unique relation between any of the bands and LAI. However, the near-infrared/red reflectance ratio was stable over all planting dates and could be used successfully over a number of years and locations.

  8. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index

    NASA Astrophysics Data System (ADS)

    Chen, Jing M.; Cihlar, Josef

    1995-09-01

    Optical instruments currently available for measuring the leaf-area index (LAI) of a plant canopy all utilize only the canopy gap-fraction information. These instruments include the Li-Cor LAI-2000 Plant Canopy Analyzer, Decagon, and Demon. The advantages of utilizing both the canopy gap-fraction and gap-size information are shown. For the purpose of measuring the canopy gap size, a prototype sunfleck-LAI instrument named Tracing Radiation and Architecture of Canopies (TRAC), has been developed and tested in two pure conifer plantations, red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb). A new gap-size-analysis theory is presented to quantify the effect of canopy architecture on optical measurements of LAI based on the gap-fraction principle. The theory is an improvement on that of Lang and Xiang [Agric. For. Meteorol. 37, 229 (1986)]. In principle, this theory can be used for any heterogeneous canopies.

  9. Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment

    SciTech Connect

    L.T. Rader

    2001-10-01

    Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment. Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.

  10. Assessing Leaf Area Index from High Resolution Satellite Datasets for Maize in Trans Nzoia County, Kenya

    NASA Astrophysics Data System (ADS)

    Bartolomew Thiongo, Kuria; Menz, Gunter; Thonfeld, Frank

    2016-08-01

    The Normalized Differenced Vegetation Index (NDVI) and the two band Enhanced vegetation Index (EVI2) derived from RapidEye and Landsat 8 satellite images were evaluated against the empirically derived terrestrial Leaf Area Index (LAI) acquired during the maize growth season April to November, 2015 and covering the phenological growth stages prescribed in the BBCH code. The results indicate a high correlation of the vegetation indices plotted over the entire maize season with R2 values of 88% and 83% for NDVI and EVI2 respectively. The maximum values were found to occur during the maize vegetative phase in the months of July and August. The correlation between the vegetation indices and the LAI had R2 values of 50% and 49% for NDVI and EVI2 respectively. Alternative methods of estimating and calculating the LAI values may improve the achieved results.

  11. Evaluation of a canopy reflectance model for LAI estimation through its inversion. [leaf area index

    NASA Technical Reports Server (NTRS)

    Goel, N. S.; Deering, D. W.

    1985-01-01

    A technique for estimating leaf area indices (LAIs) based on bidirectional canopy reflectance (CR) data is applied to three plant canopies: a naturally growing healthy soybean canopy; and a clumped and tufted orchardgrass canopy, respectively. The CR data were collected using a PARABOLA instrument which is capable of acquiring complete sky-and-ground looking hemispheres in 11 seconds. The model fit and LAI estimates were good for the soybean and clumped orchardgrass canopies, but poor for the tufted orchardgrass canopy when the maximum zenith angle was less than 50 percent. It is shown that the biophysical parameter estimation based on CR measurements applied well to homogeneous herbaceous vegetation types, while better CR models are needed to adequately represent discontinuous plant canopies.

  12. The seasonality of AVHRR data of temperate coniferous forests - Relationship with leaf area index

    NASA Technical Reports Server (NTRS)

    Spanner, Michael A.; Pierce, Lars L.; Running, Steven W.; Peterson, David L.

    1990-01-01

    The relationship between the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) and coniferous forest leaf area index (LAI) over the western United States is examined. AVHRR data from the NOAA-9 satellite were acquired of the western U.S. from March 1986 to November 1987 and monthly maximum value composites of AVHRR NDVI were calculated for 19 coniferous forest stands in Oregon, Washington, Montana, and California. It is concluded that the relationships under investigation vary according to seasonal changes in surface reflectance based on key biotic and abiotic controls including phenological changes in LAI caused by seasonal temperature and precipitation variations, the proportions of surface cover types contributing to the overall reflectance, and effects resulting from large variations in the solar zenith angle.

  13. Retrieval of leaf area index in different plant species using thermal hyperspectral data

    NASA Astrophysics Data System (ADS)

    Neinavaz, Elnaz; Skidmore, Andrew K.; Darvishzadeh, Roshanak; Groen, Thomas A.

    2016-09-01

    Leaf area index (LAI) is an important variable of terrestrial ecosystems because it is strongly correlated with many ecosystem processes (e.g., water balance and evapotranspiration) and directly related to the plant energy balance and gas exchanges. Although LAI has been accurately predicted using visible and short-wave infrared hyperspectral data (0.3-2.5 μm), LAI estimation using thermal infrared (TIR, 8-14 μm) measurements has not yet been addressed. The novel approach of this study is to evaluate the retrieval of LAI using TIR hyperspectral data. The leaf area indices were destructively acquired for four plant species: Azalea japonica, Buxussempervirens, Euonymus japonicus, and Ficus benjamina. Canopy emissivity spectral measurements were obtained under controlled laboratory conditions using a MIDAC (M4401-F) spectrometer. The LAI retrieval was assessed using a partial least squares regression (PLSR), artificial neural networks (ANNs), and narrow band indices calculated from all possible combinations of waveband pairs for three vegetation indices including simple difference, simple ratio, and normalized difference. ANNs retrieved LAI more accurately than PLSR and vegetation indices (0.67 < R2 < 0.95 versus 11.54% < RMSEcv < 31.23%). The accuracy of LAI retrieval did not differ significantly between the vegetation indices. The results revealed that wavebands from the 8-12 μm region contain relevant information for LAI estimation, irrespective of the chosen vegetation index. Moreover, they demonstrated that LAI may be successfully predicted from TIR hyperspectral data, even for higher values of LAI (LAI ⩾ 5.5). The study showed the significance of using PLSR and ANNs as multivariate methods compared to the univariate technique (e.g., narrow band vegetation indices) when hyperspectral thermal data is utilized. We thus demonstrated for the first time the potential of hyperspectral thermal data to accurately retrieve LAI.

  14. Estimating Leaf Area Index in Southeast Alaska: A Comparison of Two Techniques

    PubMed Central

    Eckrich, Carolyn A.; Flaherty, Elizabeth A.; Ben-David, Merav

    2013-01-01

    The relationship between canopy structure and light transmission to the forest floor is of particular interest for studying the effects of succession, timber harvest, and silviculture prescriptions on understory plants and trees. Indirect measurements of leaf area index (LAI) estimated using gap fraction analysis with linear and hemispheric sensors have been commonly used to assess radiation interception by the canopy, although the two methods often yield inconsistent results. We compared simultaneously obtained measurements of LAI from a linear ceptometer and digital hemispheric photography in 21 forest stands on Prince of Wales Island, Alaska. We assessed the relationship between these estimates and allometric LAI based on tree diameter at breast height (LAIDBH). LAI values measured at 79 stations in thinned, un-thinned controls, old-growth and clearcut stands were highly correlated between the linear sensor (AccuPAR) and hemispheric photography, but the latter was more negatively biased compared to LAIDBH. In contrast, AccuPAR values were more similar to LAIDBH in all stands with basal area less than 30 m2ha−1. Values produced by integrating hemispheric photographs over the zenith angles 0–75° (Ring 5) were highly correlated with those integrated over the zenith angles 0–60° (Ring 4), although the discrepancies between the two measures were significant. On average, the AccuPAR estimates were 53% higher than those derived from Ring 5, with most of the differences in closed canopy stands (unthinned controls and old-growth) and less so in clearcuts. Following typical patterns of canopy closure, AccuPAR LAI values were higher in dense control stands than in old-growth, whereas the opposite was derived from Ring 5 analyses. Based on our results we advocate the preferential use of linear sensors where canopy openness is low, canopies are tall, and leaf distributions are clumped and angles are variable, as is common in the conifer forests of coastal Alaska

  15. Prognostic land surface albedo from a dynamic global vegetation model clumped canopy radiative transfer scheme and satellite-derived geographic forest heights

    NASA Astrophysics Data System (ADS)

    Kiang, N. Y.; Yang, W.; Ni-Meister, W.; Aleinov, I. D.; Jonas, J.

    2014-12-01

    Vegetation cover was introduced into general circulations models (GCMs) in the 1980's to account for the effect of land surface albedo and water vapor conductance on the Earth's climate. Schemes assigning canopy albedoes by broad biome type have been superceded in 1990's by canopy radiative transfer schemes for homogeneous canopies obeying Beer's Law extinction as a function of leaf area index (LAI). Leaf albedo and often canopy height are prescribed by plant functional type (PFT). It is recognized that this approach does not effectively describe geographic variation in the radiative transfer of vegetated cover, particularly for mixed and sparse canopies. GCM-coupled dynamic global vegetation models (DGVMs) have retained these simple canopy representations, with little further evaluation of their albedos. With the emergence lidar-derived canopy vertical structure data, DGVM modelers are now revisiting albedo simulation. We present preliminary prognostic global land surface albedo produced by the Ent Terrestrial Biosphere Model (TBM), a DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM. The Ent TBM is a next generation DGVM designed to incorporate variation in canopy heights, and mixed and sparse canopies. For such dynamically varying canopy structure, it uses the Analytical Clumped Two-Stream (ACTS) canopy radiative transfer model, which is derived from gap probability theory for canopies of tree cohorts with ellipsoidal crowns, and accounts for soil, snow, and bare stems. We have developed a first-order global vegetation structure data set (GVSD), which gives a year of satellite-derived geographic variation in canopy height, maximum canopy leaf area, and seasonal LAI. Combined with Ent allometric relations, this data set provides population density and foliage clumping within crowns. We compare the Ent prognostic albedoes to those of the previous GISS GCM scheme, and to satellite estimates. The impact of albedo differences on surface

  16. Surface Albedo Variations Across Opportunity's Traverse in Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Studer-Ellis, G. L.; Rice, M. S.; Johnson, J. R.; Bell, J. F., III

    2015-12-01

    Surface albedo measurements from the Mars Exploration Rover (MER) Opportunity mission can be used to help understand surface-atmosphere interactions at Meridiani Planum. Opportunity has acquired 117 albedo panoramas with the Pancam instrument as of sol 3870, across the first 40 km of its traverse. To date, only the first 32 panoramas have been reported upon in previous studies [1]. Here we present an analysis of the full set of PDS-released albedo observations from Opportunity and correlate our measurements with terrain type and known atmospheric events. To acquire a 360-degree albedo observation, Pancam's L1 ("clear") filter is used to take 27 broad-spectrum images, which are stitched into a mosaic. Pancam images are calibrated to reflectance factor (R*), which is taken as an approximation of the Lambertian albedo. Areas of interest are selected and average albedo calculations are applied to all of the selections. Results include the average albedo of each scene, as well as equal-area corrections where applicable, in addition to measurements of specific classes of surface features (e.g., outcrops, dusty terrain, and rover tracks). Average scene albedo measurements range from 0.11 ± 0.04 to 0.30 ± 0.04, with the highest value observed on sol 1290 (immediately after the planet-encircling dust storm of 2007). We compare these results to distance traveled, surface morphologies, local wind driven events, and dust opacity measurements. Future work will focus on correlating Pancam albedo values with orbital data from cameras such as HiRISE, CTX, MOC, THEMIS-VIS, and MARCI, and completion of the same analysis for the full Pancam albedo dataset from Spirit. References: [1] Bell, J. F., III, M. S. Rice, J. R. Johnson, and T. M. Hare (2008), Surface albedo observations at Gusev Crater and Meridiani Planum, Mars, J. Geophys. Res., 113, E06S18, doi:10.1029/2007JE002976.

  17. Enhancement of the MODIS Daily Snow Albedo Product

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Schaaf, Crystal B.; Wang, Zhuosen; Riggs, George A.

    2009-01-01

    The MODIS daily snow albedo product is a data layer in the MOD10A1 snow-cover product that includes snow-covered area and fractional snow cover as well as quality information and other metadata. It was developed to augment the MODIS BRDF/Albedo algorithm (MCD43) that provides 16-day maps of albedo globally at 500-m resolution. But many modelers require daily snow albedo, especially during the snowmelt season when the snow albedo is changing rapidly. Many models have an unrealistic snow albedo feedback in both estimated albedo and change in albedo over the seasonal cycle context, Rapid changes in snow cover extent or brightness challenge the MCD43 algorithm; over a 16-day period, MCD43 determines whether the majority of clear observations was snow-covered or snow-free then only calculates albedo for the majority condition. Thus changes in snow albedo and snow cover are not portrayed accurately during times of rapid change, therefore the current MCD43 product is not ideal for snow work. The MODIS daily snow albedo from the MOD10 product provides more frequent, though less robust maps for pixels defined as "snow" by the MODIS snow-cover algorithm. Though useful, the daily snow albedo product can be improved using a daily version of the MCD43 product as described in this paper. There are important limitations to the MOD10A1 daily snow albedo product, some of which can be mitigated. Utilizing the appropriate per-pixel Bidirectional Reflectance Distribution Functions (BRDFs) can be problematic, and correction for anisotropic scattering must be included. The BRDF describes how the reflectance varies with view and illumination geometry. Also, narrow-to-broadband conversion specific for snow on different surfaces must be calculated and this can be difficult. In consideration of these limitations of MOD10A1, we are planning to improve the daily snow albedo algorithm by coupling the periodic per-pixel snow albedo from MCD43, with daily surface ref|outanoom, In this paper, we

  18. Study of land cover classes and retrieval of leaf area index using Landsat 8 OLI data

    NASA Astrophysics Data System (ADS)

    Verma, Amit K.; Garg, P. K.; Hari Prasad, K. S.; Dadhwal, V. K.

    2016-04-01

    Timely and accurate information about land cover is an important and extensively used application of remote sensing data. After successful launch of Landsat 8 is providing a new data source for monitoring land cover, which has the potential to improve the earth surface features characterization. Mapping of Leaf area Index (LAI) in larger area may be impossible when we rely on field measurements. Remote sensing data have been continuing efforts to develop different methods to estimate LAI. In this present study, an attempt has been made to discriminate various land cover features and empirical equation is used for retrieve biophysical parameter (LAI) for satellite NDVI data. Support vector machine classification was performed for Muzaffarnagar district using LANDSAT 8 operational land imager data to separate out major land cover classes (water, fallow, built up, sugarcane, orchard, dense vegetation and other crops). Ground truth data was collected using JUNO GPS which was used in developing the spectral signatures for each classes. The LAI-NDVI existing empirical equation is used to prepare LAI map. It is found that the LAI values in village foloda region maximum LAI pixels in the range 3.10 and above and minimum in the range 1.0 to 1.20. It is also concluded that the LAI values between 1.70 and 3.10 is having most of the sugarcane crop pixels at maximum vegetative growth stage. It shows that the sugarcane crop condition in the study area was very good.

  19. Hierarchical porous carbon with ultrahigh surface area from corn leaf for high-performance supercapacitors application

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqing; Li, Chengfei; Chen, Yue

    2017-02-01

    A new class of hierarchical porous carbon (HPC) with ultrahigh surface area is successfully fabricated by carefully selecting biomass carbon precursors and activation reagent, through which corn leaf (CL) with natural well-defined macropore channels is used as the carbon precursor, and H3PO4 is used as the active agent by virtue of its pore-widening effect. The as-prepared CL-based HPC (CLHPC) with a H3PO4/semi-carbonized CL mass ratio of 2 (CLHPC-2) demonstrates the highest specific surface area of 2507 m2 g-1 donated by 28.3% of micropore and 71.6% of mesopore, while maintaining the channel-like macroporous structure derived from the well-defined natural structure in CL. The combination of the hierarchical porous structure and ultrahigh surface area enables rapid electrolyte diffusion and sufficient active sites for charge accumulation. As a result, CLHPC-2 exhibits excellent electrochemical performance, such as high specific capacitance of 230 F g-1 at the current density of 0.1 A g-1, excellent high-rate capability (retention of 91% from 0.1 to 5 A g-1), and good cycling stability (99% capacitance retention after 10 000 cycles).

  20. Global meta-analysis shows that relationships of leaf mass per area with species shade tolerance depend on leaf habit and ontogeny.

    PubMed

    Lusk, Christopher H; Warton, David I

    2007-01-01

    It was predicted that relationships of leaf mass per area (LMA) with juvenile shade tolerance will depend on leaf habit, and on whether species are compared at a common age as young seedlings, or at a common size as saplings. A meta-analysis of 47 comparative studies (372 species) was used to test predictions, and the effect of light environment on this relationship. The LMA of evergreens was positively correlated with shade tolerance, irrespective of ontogeny or light environment. The LMA of young seedlings (leaf lifespan.

  1. Impact of successive drought and re-watering cycles on growth and specific leaf area of two Populus x canadensis (Moench) clones, 'Dorskamp' and 'Luisa_Avanzo'.

    PubMed

    Marron, Nicolas; Dreyer, Erwin; Boudouresque, Eric; Delay, Didier; Petit, Jean-Michel; Delmotte, Francis M; Brignolas, Franck

    2003-12-01

    Responses to successive drought and re-watering cycles (1-3 cycles) were compared in greenhouse-grown cuttings of Populus x canadensis (Moench) clones, 'Luisa_ Avanzo' and 'Dorskamp.' Total leaf number increment rate, duration of leaf expansion, total and individual leaf area expansion rates and stomatal conductance were recorded periodically during the experiment. Soil water content (SWC) and predawn leaf water potential (Psi(WP)) were measured four times during each drought cycle. In parallel, relative leaf water content (RWC) and specific leaf area (SLA) were estimated on leaves collected from the top to bottom of each cutting. Under well-watered conditions, 'Luisa_Avanzo' and 'Dorskamp' differed in their patterns of leaf area expansion. Although duration of leaf expansion was similar between clones, 'Luisa_ Avanzo' exhibited higher total leaf number increment rates and individual leaf area increases than 'Dorskamp.' As a result, 'Luisa_Avanzo' cuttings reached larger individual and total leaf areas than 'Dorskamp.' 'Dorskamp' leaves had lower SLA than 'Luisa_Avanzo' leaves. In response to successive drought cycles, both clones underwent decreases in total leaf number increment rates and in total leaf area expansion rates, but both whole-plant and individual leaf areas were drastically reduced only in 'Luisa_Avanzo.' 'Dorskamp' maintained a constant leaf area as a result of an increase in the duration of leaf expansion during drought and a significant stimulation of individual leaf area expansion rate and total leaf number increment rate in response to re-watering. Drought caused a greater decrease in SLA in 'Luisa_Avanzo' than in 'Dorskamp.' Expanded leaves of 'Dorskamp' were constitutively dense or thick, or both, whereas leaves of 'Luisa_Avanzo' became dense or thick, or both, only in response to drought. In both clones, re-watering caused partial recovery of SLA to control values. Our data confirm previous field and greenhouse observations that 'Dorskamp' is

  2. Functional ratios among leaf, xylem and phloem areas in branches change with shade tolerance, but not with local light conditions, across temperate tree species.

    PubMed

    Zhang, Lan; Copini, Paul; Weemstra, Monique; Sterck, Frank

    2016-03-01

    Leaf, xylem and phloem areas drive the water and carbon fluxes within branches and trees, but their mutual coordination is poorly understood. We test the hypothesis that xylem and phloem areas increase relative to leaf area when species are selected for, or branches are exposed to, higher levels of light intensity. Trees of 10 temperate, broadleaved and deciduous, tree species were selected. Fifty-centimetre-long branches were collected from shaded and exposed conditions at a height of 3-4 m. We measured the total leaf area, xylem area, phloem area and leaf traits, as well as the area of the constituent cell types, for a stem section at the branch base. Xylem area : leaf area and phloem area : leaf area ratios did not differ consistently between sun and shade branches, but, as expected, they decreased with species' shade tolerance. Similar trends were observed for conductive cell areas in xylem and phloem. Trees of light-demanding species maintain higher water loss and carbon gain rates per leaf area by producing more xylem area and phloem area than shade-tolerant species. We call for more comparative branch studies as they provide an integrated biological perspective on functional traits and their role in the ecology of tree species.

  3. Surface albedo of cometary nucleus

    NASA Astrophysics Data System (ADS)

    Mukai, T.; Mukai, S.

    A variation of the albedo on the illuminated disk of a comet nucleus is estimated, taking into account the multiple reflection of incident light due to small scale roughness. The dependences of the average albedo over the illuminated disk on the degree of roughness and on the complex refractive index of the surface materials are examined. The variation estimates are compared with measurements of the nucleus albedo of Comet Halley (Reitsema et al., 1987).

  4. Leaf Area Index and Fraction of Absorbed PAR Products from Terra and Aqua MODIS Sensors: Analysis, Validation, and Refinement

    NASA Astrophysics Data System (ADS)

    Myneni, Ranga; Knyazikhin, Yuri; Shabanov, Nicolay

    The MODerate resolution Imaging Spectroradiometer (MODIS) onboard NASA's Terra and Aqua platforms is designed to monitor the Earth's atmosphere, oceans, and land surface (Justice et al. 2002). The MODIS Land team (MODLAND) is responsible for the development of algorithms for operationally producing 16 geophysical land data products. In this chapter, we discuss the development of vegetation green leaf area index (LAI) and the fraction of photosynthetically active radiation (400-700 nm) absorbed by vegetation (FPAR) products. LAI is defined as the one-sided green leaf area per unit ground area in broadleaf canopies, and as half the total needle surface area per unit ground area in coniferous canopies. These products are essential for studies of the exchange of fluxes of energy, mass (e.g., water and CO2), and momentum between the surface and atmosphere (Bonan et al. 2003; Dickinson et al. 1986; Potter et al. 1993; Tian et al. 2003).

  5. Light interception and leaf area estimates from measurements of grass canopy reflectance

    NASA Technical Reports Server (NTRS)

    Asrar, G.; Kanemasu, E. T.; Miller, G. P.; Weiser, R. L.

    1986-01-01

    Grassland is a major component of the earth's available land. The vast area and remoteness of this ecosystem makes it difficult to assess its condition and monitor productivity by traditional methods. Remote sensing potentially offers a rapid nondestructive approach for monitoring such ecosystems. A study was carried out in a tallgrass prairie site near Manhattan, Kansas, during the 1983 and 1984 seasons to investigate the feasibility of estimating light interception and green leaf area index (LAI) from measurements of canopy multispectral reflectance. Greenness (Gn) index was found to be strongly correlated with intercepted photosynthetically active radiation (PAR). Two methods, a direct regression (RGR) and an indirect approach (IND), were used to estimate LAI from Gn index. The LAI values estimated by RGR method were consistently lower than the measured ones; however, good agreement was obtained between the LAI values estimated by IND method and the measured LAI. This suggests that Gn transformation of canopy spectral reflectance is more closely related to the fraction of intercepted PAR by green foliage than the quantity of green LAI.

  6. Measuring Leaf Area in Soy Plants by HSI Color Model Filtering and Mathematical Morphology

    NASA Astrophysics Data System (ADS)

    Benalcázar, M.; Padín, J.; Brun, M.; Pastore, J.; Ballarin, V.; Peirone, L.; Pereyra, G.

    2011-12-01

    There has been lately a significant progress in automating tasks for the agricultural sector. One of the advances is the development of robots, based on computer vision, applied to care and management of soy crops. In this task, digital image processing plays an important role, but must solve some important problems, like the ones associated to the variations in lighting conditions during image acquisition. Such variations influence directly on the brightness level of the images to be processed. In this paper we propose an algorithm to segment and measure automatically the leaf area of soy plants. This information is used by the specialists to evaluate and compare the growth of different soy genotypes. This algorithm, based on color filtering using the HSI model, detects green objects from the image background. The segmentation of leaves (foliage) was made applying Mathematical Morphology. The foliage area was estimated counting the pixels that belong to the segmented leaves. From several experiments, consisting in applying the algorithm to measure the foliage of about fifty plants of various genotypes of soy, at different growth stages, we obtained successful results, despite the high brightness variations and shadows in the processed images.

  7. Comparison of vertical resolved leaf area index measurements in an open canopy savannah-type forest

    NASA Astrophysics Data System (ADS)

    Piayda, Arndt; Cuntz, Matthias; Dubbert, Maren; Werner, Christiane; Pereira, Joao S.

    2013-04-01

    Leaf area index (LAI) is a very important vegetation parameter in soil-vegetation-atmosphere exchange modeling. To represent the structure of ecosystems in vertically distributed modeling, vertical resolved LAI distributions as well as vertically and angular gap fraction (Pgap) distributions are needed, but rarely available. Additionally, former studies neglect woody plant components when using light interception or digital photography based methods for LAI or Pgap observations. This can lead to significantly biased results, particularly in semi-arid savannah-type ecosystems with low LAI values. The objective of this study is to compare three non-destructive LAI measurement techniques in a sparse savannah-type cork oak canopy in central Portugal in order to derive vertically resolved LAI as well as vertically and angular resolved Pgap. Since established canopy analyzers, such as the LAI-2000, rely on diffuse light conditions, which are rarely realized in semi-arid regions, we also employed fast, digital cover photography (DCP) working independently from diffuse light conditions. We used vertical and angular distributed DCP and applied object-based image analysis techniques to exclude woody plant components from Pgap estimation and LAI determination. We compared the results with vertically distributed LAI-2000 measurements, and additionally with vertical estimates based on easily measurable forest canopy parameters. We employed bootstrap resampling methods to determine the accuracy of all measurements depending on sample size. Leaf inclination measurements indicate planophile leaf orientation. Thus LAI was calculated with Pgap and the leaf inclination information. This led to a spatial averaged LAI of 0.52 +- 0.06 for DCP while LAI-2000 measurements resulted in 0.67 +- 0.07. Uncertainty bounds of LAI converge much faster with increasing sample size for the DCP than for the LAI-2000. This allows a more efficient sampling design, which is of great importance in

  8. Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We develop a robust understanding of the effects of assimilating remote sensing observations of leaf area index and soil moisture (in the top 5 cm) on DSSAT-CSM CropSim-Ceres wheat yield estimates. Synthetic observing system simulation experiments compare the abilities of the Ensemble Kalman Filter...

  9. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The scale mismatch between remotely sensed observations and crop growth models simulated state variables decreases the reliability of crop yield estimates. To overcome this problem, we used a two-step data assimilation phases: first we generated a complete leaf area index (LAI) time series by combin...

  10. How universal is the relationship between remotely sensed vegetation indices and crop leaf area index? A global assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aims to assess the relationship between Leaf Area Index (LAI) and remotely sensed Vegetation Indices (VIs) for major crops, based on a globally explicit dataset of in situ LAI measurements over a significant set of locations. We used a total of 1394 LAI measurements from 29 sites spannin...

  11. Observed and modelled leaf area index in Eucalyptus globulus plantations: tests of optimality and equilibrium hypotheses.

    PubMed

    White, Donald A; Battaglia, Micheal; Mendham, Daniel S; Crombie, D Stuart; Kinal, Joe; McGrath, John F

    2010-07-01

    This paper reports on variation in leaf area index (L) in five Eucalyptus globulus Labill. plantations in response to application of nitrogen, thinning at age 2 years and variation in climate wetness index (the ratio of rainfall to potential evaporation). Observed L is compared with: (i) L predicted to optimize net primary productivity for a given average annual temperature, annual water use and potential evaporation (L(opt)) and (ii) L calculated as a linear function of climate wetness index (L(eq)). L peaked in fertilized plots at between 4 and 5 years of age or immediately after canopy closure. The value of L from canopy closure to age 8 years was not strongly related to annual rainfall or climate wetness index. At two sites with total soil nitrogen <1.2 mg g(-)(1), L in fertilized plots was about two units greater than in unfertilized plots. This difference persisted until measurements ended in 2004 when the trees were 8 years old. The L of plots thinned to 300 and 600 stems ha(-)(1) at age 2 years recovered quickly and was not significantly different from L in unthinned plots when the trees were 8 years old. L(opt) was a good predictor of the leaf area index of 8-year-old plots of E. globulus when nitrogen and phosphorus were non-limiting (model efficiency (EF) was 0.5). For the same plots, L(eq) underestimated observed L by an average of two units, and the model efficiency was low (-3.25). Data from two nitrogen-limited sites demonstrated that for fertilized plots L(opt) (EF = 0.6) was a much better predictor of L than L(eq) (EF = -3.36). At the same sites, L(eq) (EF = 0.42) was a better model for predicting L of unfertilized plots than L(opt) (-3.59). These results provide evidence that comparing observed L with L(opt) can identify stands limited by factors other than growing climate.

  12. Investigating the Relationship Between Liquid Water and Leaf Area in Clonal Populus

    NASA Technical Reports Server (NTRS)

    Roberts, Dar; Brown, K.; Green, R.; Ustin, S.; Hinckley, T.

    1998-01-01

    Leaf Area Index (LAI) is one of the most commonly employed biophysical parameters used to characterize vegetation canopies and scale leaf physiological processes to larger scales. For example, LAI is a critical parameter used in regional scale estimates of evapotranspiration, photosynthesis, primary productivity, and carbon cycling (Running et al., 1989; Dorman and Sellers, 1989; Potter et al., 1993). LAI is typically estimated using ratio-based techniques, such as the Normalized Difference Vegetation Index (NDVI: e.g. Tucker 1979; Asrar et al., 1989; Sellers 1985, 1987). The physical basis behind this relationship depends on the high spectral contrast between scattered near-infrared (NIR) and absorbed red radiation in canopies. As the number of leaves present in a canopy increases over a unit area, NIR reflectance increases, while red reflectance decreases, resulting in an increase in the ratio. Through time series and image compositing, NDVI provides an additional temporal measure of how these parameters change, providing a means to monitor fluxes and productivity (Tucker et al., 1983). NDVI, while highly successful for agriculture and grassland ecosystems has been found to be less successful in evergreen chaparral and forested ecosystems (Badhwar et al., 1986; Gamon et al., 1993; Hall et al., 1995). Typically, the relationship between NDVI and LAI becomes progressively more asymptotic at LAI values above three (Sellers, 1985), although linear relationships have been observed in conifers at LAis as high as 13 (Spanner et al., 1990). In this paper, we explore an alternative approach for estimating LAI for remotely sensed data from AVIRIS based on estimates of canopy liquid water. Our primary objective is to test the hypothesis that the depth of the liquid water bands expressed in canopy reflectance spectra at 960, 1200, 1400 and 1900 nm increases with increasing LAI in canopies. This study builds from work by Roberts et al. (1997), in which liquid water was shown

  13. Estimation of Leaf Area Index and Plant Area Index of a Submerged Macrophyte Canopy Using Digital Photography

    PubMed Central

    Zhao, Dehua; Xie, Dong; Zhou, Hengjie; Jiang, Hao; An, Shuqing

    2012-01-01

    Non-destructive estimation using digital cameras is a common approach for estimating leaf area index (LAI) of terrestrial vegetation. However, no attempt has been made so far to develop non-destructive approaches to LAI estimation for aquatic vegetation. Using the submerged plant species Potamogeton malainus, the objective of this study was to determine whether the gap fraction derived from vertical photographs could be used to estimate LAI of aquatic vegetation. Our results suggested that upward-oriented photographs taken from beneath the water surface were more suitable for distinguishing vegetation from other objects than were downward-oriented photographs taken from above the water surface. Exposure settings had a substantial influence on the identification of vegetation in upward-oriented photographs. Automatic exposure performed nearly as well as the optimal trial exposure, making it a good choice for operational convenience. Similar to terrestrial vegetation, our results suggested that photographs taken for the purpose of distinguishing gap fraction in aquatic vegetation should be taken under diffuse light conditions. Significant logarithmic relationships were observed between the vertical gap fraction derived from upward-oriented photographs and plant area index (PAI) and LAI derived from destructive harvesting. The model we developed to depict the relationship between PAI and gap fraction was similar to the modified theoretical Poisson model, with coefficients of 1.82 and 1.90 for our model and the theoretical model, respectively. This suggests that vertical upward-oriented photographs taken from below the water surface are a feasible alternative to destructive harvesting for estimating PAI and LAI for the submerged aquatic plant Potamogeton malainus. PMID:23226557

  14. [Ecological adaptability of leaf epidermis of erosion-resistant plants in hilly-gully area of Loess Plateau, Northwest China].

    PubMed

    Miao, Fang; Du, Hua-Dong; Qin, Cui-Ping; Jiao, Ju-Ying

    2012-10-01

    By the temporary slide method of leaf epidermis, an observation was made on the morphological characteristics of the leaf epidermis of six erosion-resistant plant species in different soil erosion environments (gully, inter-gully, and inter-gully artificial Robinia pseudoacacia forest land) in hilly-gully area of Loess Plateau. Compared with those in the gully, the stomata aperture, stomata density, stomata index, stomata apparatus length/width plasticity, stomata apparatus area plasticity, epidermal hair density, and epidermal cell density of the leaf upper and lower epidermis of the plants in the inter-gully were 93.8% and 90.4%, 66.8% and 76.6%, 17.9% and 9.8%, 36.4% and 47.1%, 42.3% and 43.9%, 199.4% and 98.2%, and 46.5% and 50.1% higher, respectively; while in the inter-gully artificial R. pseudoacacia forest land, the same morphological indices of the leaf upper and lower epidermis of the plants were 66.7% and 106.7%, 20.5% and 45.8%, 11.9% and 11.9%, 37.9% and 41.3%, 19.8% and 21.2%, 113.1% and 52.2%, and 10.8% and 28.1% higher than those in the gully, respectively. The epidermal hair length and epidermal cell area of the leaf upper and lower epidermis of the plants in the inter-gully were 58.8% and 29.7%, and 40.3% and 37.0% lower than those in the gully, and the same morphological indices of the leaf upper and lower epidermis of the plants in the intergully artificial R. pseudoacacia forest land were respectively 25.0% and 23.6%, and 22.2% and 19.2% lower than those in the gully, respectively. The results suggested that the erosion-resistant plants in the study area were able to adapt to various soil erosion environments by increasing their leaf stomata aperture, stomata density, stomata index, stomata apparatus length/width plasticity, stomata apparatus area plasticity, epidermal hair density, and epidermal cell density, and by reducing their epidermal hair length and epidermal cell area.

  15. Leaf Activities.

    ERIC Educational Resources Information Center

    Mingie, Walter

    Leaf activities can provide a means of using basic concepts of outdoor education to learn in elementary level subject areas. Equipment needed includes leaves, a clipboard with paper, and a pencil. A bag of leaves may be brought into the classroom if weather conditions or time do not permit going outdoors. Each student should pick a leaf, examine…

  16. Grapevine Yield and Leaf Area Estimation Using Supervised Classification Methodology on RGB Images Taken under Field Conditions

    PubMed Central

    Diago, Maria-Paz; Correa, Christian; Millán, Borja; Barreiro, Pilar; Valero, Constantino; Tardaguila, Javier

    2012-01-01

    The aim of this research was to implement a methodology through the generation of a supervised classifier based on the Mahalanobis distance to characterize the grapevine canopy and assess leaf area and yield using RGB images. The method automatically processes sets of images, and calculates the areas (number of pixels) corresponding to seven different classes (Grapes, Wood, Background, and four classes of Leaf, of increasing leaf age). Each one is initialized by the user, who selects a set of representative pixels for every class in order to induce the clustering around them. The proposed methodology was evaluated with 70 grapevine (V. vinifera L. cv. Tempranillo) images, acquired in a commercial vineyard located in La Rioja (Spain), after several defoliation and de-fruiting events on 10 vines, with a conventional RGB camera and no artificial illumination. The segmentation results showed a performance of 92% for leaves and 98% for clusters, and allowed to assess the grapevine’s leaf area and yield with R2 values of 0.81 (p < 0.001) and 0.73 (p = 0.002), respectively. This methodology, which operates with a simple image acquisition setup and guarantees the right number and kind of pixel classes, has shown to be suitable and robust enough to provide valuable information for vineyard management. PMID:23235443

  17. The Influence of Branch Order on Optimal Leaf Vein Geometries: Murray’s Law and Area Preserving Branching

    PubMed Central

    Price, Charles A.; Knox, Sarah-Jane C.; Brodribb, Tim J.

    2013-01-01

    Models that predict the form of hierarchical branching networks typically invoke optimization based on biomechanical similitude, the minimization of impedance to fluid flow, or construction costs. Unfortunately, due to the small size and high number of vein segments found in real biological networks, complete descriptions of networks needed to evaluate such models are rare. To help address this we report results from the analysis of the branching geometry of 349 leaf vein networks comprising over 1.5 million individual vein segments. In addition to measuring the diameters of individual veins before and after vein bifurcations, we also assign vein orders using the Horton-Strahler ordering algorithm adopted from the study of river networks. Our results demonstrate that across all leaves, both radius tapering and the ratio of daughter to parent branch areas for leaf veins are in strong agreement with the expectation from Murray’s law. However, as veins become larger, area ratios shift systematically toward values expected under area-preserving branching. Our work supports the idea that leaf vein networks differentiate roles of leaf support and hydraulic supply between hierarchical orders. PMID:24392008

  18. Leaf vein length per unit area is not intrinsically dependent on image magnification: avoiding measurement artifacts for accuracy and precision.

    PubMed

    Sack, Lawren; Caringella, Marissa; Scoffoni, Christine; Mason, Chase; Rawls, Michael; Markesteijn, Lars; Poorter, Lourens

    2014-10-01

    Leaf vein length per unit leaf area (VLA; also known as vein density) is an important determinant of water and sugar transport, photosynthetic function, and biomechanical support. A range of software methods are in use to visualize and measure vein systems in cleared leaf images; typically, users locate veins by digital tracing, but recent articles introduced software by which users can locate veins using thresholding (i.e. based on the contrasting of veins in the image). Based on the use of this method, a recent study argued against the existence of a fixed VLA value for a given leaf, proposing instead that VLA increases with the magnification of the image due to intrinsic properties of the vein system, and recommended that future measurements use a common, low image magnification for measurements. We tested these claims with new measurements using the software LEAFGUI in comparison with digital tracing using ImageJ software. We found that the apparent increase of VLA with magnification was an artifact of (1) using low-quality and low-magnification images and (2) errors in the algorithms of LEAFGUI. Given the use of images of sufficient magnification and quality, and analysis with error-free software, the VLA can be measured precisely and accurately. These findings point to important principles for improving the quantity and quality of important information gathered from leaf vein systems.

  19. ESTIMATION OF LEAF AREA INDEX IN OPEN-CANOPY PONDEROSA PINE FORESTS AT DIFFERENT SUCCESSIONAL STAGES AND MANAGEMENT REGIMES IN OREGON. (R828309)

    EPA Science Inventory

    Abstract

    Leaf area and its spatial distribution are key parameters in describing canopy characteristics. They determine radiation regimes and influence mass and energy exchange with the atmosphere. The evaluation of leaf area in conifer stands is particularly challengi...

  20. Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient.

    PubMed

    Oikawa, Shimpei; Ainsworth, Elizabeth A

    2016-08-01

    Influences of ozone (O3) on light-saturated rates of photosynthesis in crop leaves have been well documented. To increase our understanding of O3 effects on individual- or stand level productivity, a mechanistic understanding of factors determining canopy photosynthesis is necessary. We used a canopy model to scale photosynthesis from leaf to canopy, and analyzed the importance of canopy structural and leaf ecophysiological characteristics in determining canopy photosynthesis in soybean stands exposed to 9 concentrations of [O3] (37-116 ppb; 9-h mean). Light intensity and N content peaked in upper canopy layers, and sharply decreased through the lower canopy. Plant leaf area decreased with increasing [O3] allowing for greater light intensity to reach lower canopy levels. At the leaf level, light-saturated photosynthesis decreased and dark respiration increased with increasing [O3]. These data were used to calculate daily net canopy photosynthesis (Pc). Pc decreased with increasing [O3] with an average decrease of 10% for an increase in [O3] of 10 ppb, and which was similar to changes in above-ground dry mass production of the stands. Absolute daily net photosynthesis of lower layers was very low and thus the decrease in photosynthesis in the lower canopy caused by elevated [O3] had only minor significance for total canopy photosynthesis. Sensitivity analyses revealed that the decrease in Pc was associated with changes in leaf ecophysiology but not with decrease in leaf area. The soybean stands were very crowded, the leaves were highly mutually shaded, and sufficient light for positive carbon balance did not penetrate to lower canopy leaves, even under elevated [O3].

  1. Innovative LIDAR 3D Dynamic Measurement System to estimate fruit-tree leaf area.

    PubMed

    Sanz-Cortiella, Ricardo; Llorens-Calveras, Jordi; Escolà, Alexandre; Arnó-Satorra, Jaume; Ribes-Dasi, Manel; Masip-Vilalta, Joan; Camp, Ferran; Gràcia-Aguilá, Felip; Solanelles-Batlle, Francesc; Planas-DeMartí, Santiago; Pallejà-Cabré, Tomàs; Palacin-Roca, Jordi; Gregorio-Lopez, Eduard; Del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R

    2011-01-01

    In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.

  2. Ecological strategies in california chaparral: Interacting effects of soils, climate, and fire on specific leaf area

    USGS Publications Warehouse

    Anacker, Brian; Rajakaruna, Nishanta; Ackerly, David; Harrison, Susan; Keeley, Jon E.; Vasey, Michael

    2011-01-01

    Background: High values of specific leaf area (SLA) are generally associated with high maximal growth rates in resource-rich conditions, such as mesic climates and fertile soils. However, fire may complicate this relationship since its frequency varies with both climate and soil fertility, and fire frequency selects for regeneration strategies (resprouting versus seeding) that are not independent of resource-acquisition strategies. Shared ancestry is also expected to affect the distribution of resource-use and regeneration traits.Aims: We examined climate, soil, and fire as drivers of community-level variation in a key functional trait, SLA, in chaparral in California.Methods: We quantified the phylogenetic, functional, and environmental non-independence of key traits for 87 species in 115 plots.Results: Among species, SLA was higher in resprouters than seeders, although not after phylogeny correction. Among communities, mean SLA was lower in harsh interior climates, but in these climates it was higher on more fertile soils and on more recently burned sites; in mesic coastal climates, mean SLA was uniformly high despite variation in soil fertility and fire history.Conclusions: We conclude that because important correlations exist among both species traits and environmental filters, interpreting the functional and phylogenetic structure of communities may require an understanding of complex interactive effects.

  3. Measurements and simulation of forest leaf area index and net primary productivity in Northern China.

    PubMed

    Wang, P; Sun, R; Hu, J; Zhu, Q; Zhou, Y; Li, L; Chen, J M

    2007-11-01

    Large scale process-based modeling is a useful approach to estimate distributions of global net primary productivity (NPP). In this paper, in order to validate an existing NPP model with observed data at site level, field experiments were conducted at three sites in northern China. One site is located in Qilian Mountain in Gansu Province, and the other two sites are in Changbaishan Natural Reserve and Dunhua County in Jilin Province. Detailed field experiments are discussed and field data are used to validate the simulated NPP. Remotely sensed images including Landsat Enhanced Thematic Mapper plus (ETM+, 30 m spatial resolution in visible and near infrared bands) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, 15m spatial resolution in visible and near infrared bands) are used to derive maps of land cover, leaf area index, and biomass. Based on these maps, field measured data, soil texture and daily meteorological data, NPP of these sites are simulated for year 2001 with the boreal ecosystem productivity simulator (BEPS). The NPP in these sites ranges from 80 to 800 gCm(-2)a(-1). The observed NPP agrees well with the modeled NPP. This study suggests that BEPS can be used to estimate NPP in northern China if remotely sensed images of high spatial resolution are available.

  4. Conventional digital cameras as a tool for assessing leaf area index and biomass for cereal breeding.

    PubMed

    Casadesús, Jaume; Villegas, Dolors

    2014-01-01

    Affordable and easy-to-use methods for assessing biomass and leaf area index (LAI) would be of interest in most breeding programs. Here, we describe the evaluation of a protocol for photographic sampling and image analysis aimed at providing low-labor yet robust indicators of biomass and LAI. In this trial, two genotypes of triticale, two of bread wheat, and four of tritordeum were studied. At six dates during the growing cycle, biomass and LAI were measured destructively, and digital photography was taken on the same dates. Several vegetation indices were calculated from each image. The results showed that repeatable and consistent values of the indices were obtained in consecutive photographic samplings on the same plots. The photographic indices were highly correlated with the destructive measurements, though the magnitude of the correlation was lower after anthesis. This work shows that photographic assessment of biomass and LAI can be fast, affordable, have good repeatability, and can be used under bright and overcast skies. A practical vegetation index derived from pictures is the fraction of green pixels over the total pixels of the image, and as it shows good correlations with all biomass variables, is the most robust to lighting conditions and has easy interpretation.

  5. Relationships between NDVI and Leaf Area Index for spring and winter camelina in Northeastern Montana

    NASA Astrophysics Data System (ADS)

    Jabro, Jay; Allen, Brett; long, Dan; Isbell, Terry; Gesch, Russ; Brown, Jack; Hatfield, Jerry; Archer, David; Oblath, Emily; Vigil, Merle; Kiniry, Jim

    2016-04-01

    To our knowledge no research has been reported on the relationship between the normalized difference vegetation index (NDVI) and leaf area index (LAI) in spring and winter camelina. Relationships between NDVI and LAI for winter camelina (Camelina sativa) "Joelle" and spring camelina "CO46" were determined and evaluated in a 3-yr field study conducted in Sidney Montana under dryland conditions. The NDVI and LAI were measured weekly throughout the growing season. The NDVI was continually measured at one sample per second across the whole plot using a Crop Circle ACS-470 active crop canopy sensor. The LAI was measured at two locations at 12 samples per plot using an AccuPar model LP-80 Ceptometer. Treatments were replicated four times in a randomized complete block design in plots of 3 m×9 m. Temporal dynamics of NDVI and LAI in various growth stages of both spring and winter camelina were evaluated throughout 2013, 2014 and 2015 growing seasons. Significant linear relationships between NDVI and LAI were obtained for both spring and winter camelina when all the measurements were pooled across three growing seasons. Coefficients of determination (R2) of linearity were 0.77 and 0.79 for spring and winter camelina, respectively.

  6. Variational assimilation to retrieve leaf area index from MODIS time series data

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiqiang

    2009-10-01

    Currently, how to effectively utilize assimilation technique to retrieve biophysical parameters from time series remote sensing dada has attracted special concern. The assimilation technique is based on a reasonable consideration of the dynamical change rules of biophysical parameters and the time series observational quantities, thereby improving the quality of the retrieved profiles. In this paper, a variational assimilation procedure for retrieving leaf area index from time seires remote sensing data is investigated. The procedure is based on the formulation of an objective function, and SCE-UA optimization method is used to estimate LAI from the MODIS reflectance data with a higher quality in a given time window. A preliminary analysis using MODIS surface reflectance data at some sites was performed to validate this method. And the results show that the algorithm is able to produce temporally continuous LAI product efficiently, and the accuracy of the retrieved LAI has been significantly improved over the MODIS LAI product compared to the field measured LAI data.

  7. Assessment of the Broadleaf Crops Leaf Area Index Product from the Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Hu, Jiannan; Huang, Dong; Yang, Wenze; Zhang, Ping; Shabanov, Nikolay V.; Knyazikhin, Yuri; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2005-01-01

    The first significant processing of Terra MODIS data, called Collection 3, covered the period from November 2000 to December 2002. The Collection 3 leaf area index (LAI) and fraction vegetation absorbed photosynthetically active radiation (FPAR) products for broadleaf crops exhibited three anomalies (a) high LAI values during the peak growing season, (b) differences in LAI seasonality between the radiative transfer-based main algorithm and the vegetation index based back-up algorithm, and (c) too few retrievals from the main algorithm during the summer period when the crops are at full flush. The cause of these anomalies is a mismatch between reflectances modeled by the algorithm and MODIS measurements. Therefore, the Look-Up-Tables accompanying the algorithm were revised and implemented in Collection 4 processing. The main algorithm with the revised Look-Up-Tables generated retrievals for over 80% of the pixels with valid data. Retrievals from the back-up algorithm, although few, should be used with caution as they are generated from surface reflectances with high uncertainties.

  8. Automated in-situ laser scanner for monitoring forest Leaf Area Index.

    PubMed

    Culvenor, Darius S; Newnham, Glenn J; Mellor, Andrew; Sims, Neil C; Haywood, Andrew

    2014-08-14

    An automated laser rangefinding instrument was developed to characterize overstorey and understorey vegetation dynamics over time. Design criteria were based on information needs within the statewide forest monitoring program in Victoria, Australia. The ground-based monitoring instrument captures the key vegetation structural information needed to overcome ambiguity in the estimation of forest Leaf Area Index (LAI) from satellite sensors. The scanning lidar instrument was developed primarily from low cost, commercially accessible components. While the 635 nm wavelength lidar is not ideally suited to vegetation studies, there was an acceptable trade-off between cost and performance. Tests demonstrated reliable range estimates to live foliage up to a distance of 60 m during night-time operation. Given the instrument's scan angle of 57.5 degrees zenith, the instrument is an effective tool for monitoring LAI in forest canopies up to a height of 30 m. An 18 month field trial of three co-located instruments showed consistent seasonal trends and mean LAI of between 1.32 to 1.56 and a temporal LAI variation of 8 to 17% relative to the mean.

  9. [Progress in leaf area index retrieval based on hyperspectral remote sensing and retrieval models].

    PubMed

    Zhang, Jia-Hua; Du, Yu-Zhang; Liu, Xu-Feng; He, Zhen-Ming; Yang, Li-Min

    2012-12-01

    The leaf area index (LAI) is a very important parameter affecting land-atmosphere exchanges in land-surface processes; LAI is one of the basic feature parameters of canopy structure, and one of the most important biophysical parameters for modeling ecosystem processes such as carbon and water fluxes. Remote sensing provides the only feasible option for mapping LAI continuously over landscapes, but existing methodologies have significant limitations. To detect LAI accurately and quickly is one of tasks in the ecological and agricultural crop yield estimation study, etc. Emerging hyperspectral remote sensing sensor and techniques can complement existing ground-based measurement of LAI. Spatially explicit measurements of LAI extracted from hyperspectral remotely sensed data are component necessary for simulation of ecological variables and processes. This paper firstly summarized LAI retrieval method based on different level hyperspectral remote sensing platform (i. e., airborne, satelliteborne and ground-based); and secondly different kinds of retrieval model were summed up both at home and abroad in recent years by using hyperspectral remote sensing data; and finally the direction of future development of LAI remote sensing inversion was analyzed.

  10. Leaf area index measurements at the middle reaches of Heihe River forest sites

    NASA Astrophysics Data System (ADS)

    Zou, Jie; Yan, Guang-jian; Zhang, Wu-ming; Zhu, Ling; Chen, Ling

    2008-12-01

    Leaf area index (LAI) is one of the most important parameters of canopy structure as it related to many biophysical and physiological processes, including photosynthesis, respiration, transpiration, carbon cycling, rain intercepting, net primary productivity, energy exchanging etc. Rapid, accurate and reliable estimations of LAI are required in these studies above. There are two main categories of procedures to estimate LAI: direct and indirect methods. The objective of this study is to evaluate LAI estimations obtained by different methods in HeiHe River forest sites. These methods include the LAI-2000 plant canopy analyzer, HemiView, fifty-seven degree photography method, fisheye photography method, the tracing radiation and architecture of canopies (TRAC), and Multi-Purpose Canopy Observation System (MCOS). HemiView shows a large variation on gap fraction measurements compared to LAI-2000, fifty-seven degree photography method is the superior choice to provide initial LAI values compared to other methods. To determine the non-photosynthesis elements and foliage clumping effects for optical methods, a new device named MCOS (Multi- Purpose Canopy Observation System) and TRAC were used. Finally, the results show that with the combination of MCOS or TRAC and LAI-2000 or hemispherical photography can provide accurate and efficient LAI values.

  11. Estimating Leaf Area Index (LAI) in Vineyards Using the PocketLAI Smart-App.

    PubMed

    Orlando, Francesca; Movedi, Ermes; Coduto, Davide; Parisi, Simone; Brancadoro, Lucio; Pagani, Valentina; Guarneri, Tommaso; Confalonieri, Roberto

    2016-11-26

    Estimating leaf area index (LAI) of Vitis vinifera using indirect methods involves some critical issues, related to its discontinuous and non-homogeneous canopy. This study evaluates the smart app PocketLAI and hemispherical photography in vineyards against destructive LAI measurements. Data were collected during six surveys in an experimental site characterized by a high level of heterogeneity among plants, allowing us to explore a wide range of LAI values. During the last survey, the possibility to combine remote sensing data and in-situ PocketLAI estimates (smart scouting) was evaluated. Results showed a good agreement between PocketLAI data and direct measurements, especially for LAI ranging from 0.13 to 1.41 (R² = 0.94, RRMSE = 17.27%), whereas the accuracy decreased when an outlying value (vineyard LAI = 2.84) was included (R² = 0.77, RRMSE = 43.00%), due to the saturation effect in case of very dense canopies arising from lack of green pruning. The hemispherical photography showed very high values of R², even in presence of the outlying value (R² = 0.94), although it showed a marked and quite constant overestimation error (RRMSE = 99.46%), suggesting the need to introduce a correction factor specific for vineyards. During the smart scouting, PocketLAI showed its reliability to monitor the spatial-temporal variability of vine vigor in cordon-trained systems, and showed a potential for a wide range of applications, also in combination with remote sensing.

  12. Automated In-Situ Laser Scanner for Monitoring Forest Leaf Area Index

    PubMed Central

    Culvenor, Darius S.; Newnham, Glenn J.; Mellor, Andrew; Sims, Neil C.; Haywood, Andrew

    2014-01-01

    An automated laser rangefinding instrument was developed to characterize overstorey and understorey vegetation dynamics over time. Design criteria were based on information needs within the statewide forest monitoring program in Victoria, Australia. The ground-based monitoring instrument captures the key vegetation structural information needed to overcome ambiguity in the estimation of forest Leaf Area Index (LAI) from satellite sensors. The scanning lidar instrument was developed primarily from low cost, commercially accessible components. While the 635 nm wavelength lidar is not ideally suited to vegetation studies, there was an acceptable trade-off between cost and performance. Tests demonstrated reliable range estimates to live foliage up to a distance of 60 m during night-time operation. Given the instrument's scan angle of 57.5 degrees zenith, the instrument is an effective tool for monitoring LAI in forest canopies up to a height of 30 m. An 18 month field trial of three co-located instruments showed consistent seasonal trends and mean LAI of between 1.32 to 1.56 and a temporal LAI variation of 8 to 17% relative to the mean. PMID:25196006

  13. Measuring the response of canopy emissivity spectra to leaf area index variation using thermal hyperspectral data

    NASA Astrophysics Data System (ADS)

    Neinavaz, Elnaz; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Groen, Thomas A.

    2016-12-01

    One of the plant biophysical factors affecting the canopy spectral reflectance of plants in the optical domain to receive research attention in recent decades is leaf area index (LAI). Although it is expected that the value of LAI affects the emission of radiation, it not known how. To our knowledge, the effect of LAI on plant canopy emissivity spectra has not yet been investigated in the thermal infrared region (TIR 8-14 μm). The overall aim of this study was to demonstrate the effect of LAI on canopy emissivity spectra of different species at the nadir position. The 279 spectral wavebands in the TIR domain were measured under controlled laboratory condition using a MIDAC spectrometer for four plant species. The corresponding LAI of each measurement was destructively calculated. We found a positive correlation between canopy emissivity spectra at various LAI values, indicating that emissivity increases concomitantly with LAI value. The canopy emissivity spectra of the four species were found to be statistically different at various wavebands even when the LAI values of the species were similar. It seems that other biophysical or biochemical factors also contribute to canopy emissivity spectra: this merits further investigation. We not only quantify the role of LAI on canopy emissivity spectra for the first time, but also demonstrate the potential of using hyperspectral thermal data to estimate LAI of plant species.

  14. Spatial and Temporal Dynamics of the Leaf Area Index of the Caatinga Biome

    NASA Astrophysics Data System (ADS)

    Alves Rodrigues Pinheiro, Everton; de Jong van Lier, Quirijn; Metselaar, Klaas

    2015-04-01

    Leaf Area Index (LAI) is an important characteristic of ecosystems with a prominent role in processes such as transpiration, photosynthesis and interception. The Caatinga biome is a unique semiarid ecosystem ocurring in a specific region of Brazil. An important main feature of this biome is the leaf shedding and regenerative capacity of its species. The aim of this study was to quantify both spatial and temporal dynamics of the LAI of the Caatinga biome in the Aiuaba Experimental Basin, an integrally-preserved Caatinga reserve, coordinates 6°42'S; 40°17'W. The research site (12 km2) was divided into three main Soil and Vegatation Associations (SVA). For each SVA the soil type and root depth are respectively, Acrisol -0.8 m, Luvisol - 0.6 m and Regosol - 0.4 m. The LAI was estimated by SEBAL algorithm applied to eleven satellite images from Landsat 5. The values of LAI estimated by SEBAL were correlated to the mean soil water content of the 15 days previous to the satellite image date. Eight images were used to generate a simple regression model, yielding a range of coefficient of determination from 0.89 to 0.92. Three other images were used to validate the equations. The Nash-Sutcliffe efficiency coefficient ranged from 0.76 to 0.94. Using the validated correlations, the LAI was calculated over the time for each of the three SVA, from 2004 to 2012. For SVA1, SVA2 and SVA3, the avarage values of LAI during the rainy season were 0.97, 1.12 and 1.07, respectively. During the dry season, the mean values were 0.15 for SVA1 and 0.11 for SVA2 and SVA3. The vegetation showed abrupt LAI changes, and the average previous 15 days soil water content was a good indicator for this. The study has shown that the maximum LAI was relatively stable over the years, occurring between March and April. The spatial behavior of LAI appeared to be similar, independently of the soil type and root depth.

  15. Steady state estimation of soil organic carbon using satellite-derived canopy leaf area index

    DOE PAGES

    Fang, Yilin; Liu, Chongxuan; Huang, Maoyi; ...

    2014-12-02

    Soil organic carbon (SOC) plays a key role in the global carbon cycle that is important for decadal-to-century climate prediction. Estimation of soil organic carbon stock using model-based methods typically requires spin-up (time marching transient simulation) of the carbon-nitrogen (CN) models by performing hundreds to thousands years long simulations until the carbon-nitrogen pools reach dynamic steady-state. This has become a bottleneck for global modeling and analysis, especially when testing new physical and/or chemical mechanisms and evaluating parameter sensitivity. Here we report a new numerical approach to estimate global soil carbon stock that can avoid the long term spin-up of themore » CN model. The approach uses canopy leaf area index (LAI) from satellite data and takes advantage of a reaction-based biogeochemical module NGBGC (Next Generation BioGeoChemical Module) that was recently developed and incorporated in version 4 of the Community Land Model (CLM4). Although NGBGC uses the same CN mechanisms as used in CLM4CN, it can be easily configured to run prognostic or steady state simulations. In this approach, monthly LAI from the multi-year Moderate Resolution Imaging Spectroradiometer (MODIS) data was used to calculate potential annual average gross primary production (GPP) and leaf carbon for the period of the atmospheric forcing. The calculated potential annual average GPP and leaf C are then used by NGBGC to calculate the steady-state distributions of carbon and nitrogen in different vegetation and soil pools by solving the steady-state reaction-network in NGBGC using the Newton-Raphson method. The new approach was applied at point and global scales and compared with SOC derived from long spin-up by running NGBGC in prognostic mode, and SOC from the empirical data of the Harmonized World Soil Database (HWSD). The steady-state solution is comparable to the spin-up value when the MODIS LAI is close to the LAI from the spin-up solution, and largely

  16. Steady state estimation of soil organic carbon using satellite-derived canopy leaf area index

    SciTech Connect

    Fang, Yilin; Liu, Chongxuan; Huang, Maoyi; Li, Hongyi; Leung, Lai-Yung R.

    2014-12-02

    Soil organic carbon (SOC) plays a key role in the global carbon cycle that is important for decadal-to-century climate prediction. Estimation of soil organic carbon stock using model-based methods typically requires spin-up (time marching transient simulation) of the carbon-nitrogen (CN) models by performing hundreds to thousands years long simulations until the carbon-nitrogen pools reach dynamic steady-state. This has become a bottleneck for global modeling and analysis, especially when testing new physical and/or chemical mechanisms and evaluating parameter sensitivity. Here we report a new numerical approach to estimate global soil carbon stock that can avoid the long term spin-up of the CN model. The approach uses canopy leaf area index (LAI) from satellite data and takes advantage of a reaction-based biogeochemical module NGBGC (Next Generation BioGeoChemical Module) that was recently developed and incorporated in version 4 of the Community Land Model (CLM4). Although NGBGC uses the same CN mechanisms as used in CLM4CN, it can be easily configured to run prognostic or steady state simulations. In this approach, monthly LAI from the multi-year Moderate Resolution Imaging Spectroradiometer (MODIS) data was used to calculate potential annual average gross primary production (GPP) and leaf carbon for the period of the atmospheric forcing. The calculated potential annual average GPP and leaf C are then used by NGBGC to calculate the steady-state distributions of carbon and nitrogen in different vegetation and soil pools by solving the steady-state reaction-network in NGBGC using the Newton-Raphson method. The new approach was applied at point and global scales and compared with SOC derived from long spin-up by running NGBGC in prognostic mode, and SOC from the empirical data of the Harmonized World Soil Database (HWSD). The steady-state solution is comparable to the spin-up value when the MODIS LAI is close to the LAI from the spin-up solution, and largely

  17. Mapping canopy gap fraction and leaf area index at continent-scale from satellite lidar

    NASA Astrophysics Data System (ADS)

    Mahoney, C.; Hopkinson, C.; Held, A. A.

    2015-12-01

    Information on canopy cover is essential for understanding spatial and temporal variability in vegetation biomass, local meteorological processes and hydrological transfers within vegetated environments. Gap fraction (GF), an index of canopy cover, is often derived over large areas (100's km2) via airborne laser scanning (ALS), estimates of which are reasonably well understood. However, obtaining country-wide estimates is challenging due to the lack of spatially distributed point cloud data. The Geoscience Laser Altimeter System (GLAS) removes spatial limitations, however, its large footprint nature and continuous waveform data measurements make derivations of GF challenging. ALS data from 3 Australian sites are used as a basis to scale-up GF estimates to GLAS footprint data by the use of a physically-based Weibull function. Spaceborne estimates of GF are employed in conjunction with supplementary predictor variables in the predictive Random Forest algorithm to yield country-wide estimates at a 250 m spatial resolution; country-wide estimates are accompanied with uncertainties at the pixel level. Preliminary estimates of effective Leaf Area Index (eLAI) are also presented by converting GF via the Beer-Lambert law, where an extinction coefficient of 0.5 is employed; deemed acceptable at such spatial scales. The need for such wide-scale quantification of GF and eLAI are key in the assessment and modification of current forest management strategies across Australia. Such work also assists Australia's Terrestrial Ecosystem Research Network (TERN), a key asset to policy makers with regards to the management of the national ecosystem, in fulfilling their government issued mandates.

  18. Characterizing leaf area index (LAI) and vertical foliage profile (VFP) over the United States

    NASA Astrophysics Data System (ADS)

    Tang, H.; Ganguly, S.; Zhang, G.; Hofton, M. A.; Nelson, R. F.; Dubayah, R.

    2016-01-01

    Leaf area index (LAI) and vertical foliage profile (VFP) are among the important canopy structural variables. Recent advances in lidar remote sensing technology have demonstrated the capability of accurately mapping LAI and VFP over large areas. The primary objective of this study was to derive and validate a LAI and VFP product over the contiguous United States (CONUS) using spaceborne waveform lidar data. This product was derived at the footprint level from the Geoscience Laser Altimeter System (GLAS) using a biophysical model. We validated GLAS-derived LAI and VFP across major forest biomes using airborne waveform lidar. The comparison results showed that GLAS retrievals of total LAI were generally accurate with little bias (r2 = 0.67, bias = -0.13, RMSE = 0.75). The derivations of GLAS retrievals of VFP within layers were not as accurate overall (r2 = 0.36, bias = -0.04, RMSE = 0.26), and these varied as a function of height, increasing from understory to overstory - 0 to 5 m layer: r2 = 0.04, bias = 0.09, RMSE = 0.31; 10 to 15 m layer: r2 = 0.53, bias = -0.08, RMSE = 0.22; and 15 to 20 m layer: r2 = 0.66, bias = -0.05, RMSE = 0.20. Significant relationships were also found between GLAS LAI products and different environmental factors, in particular elevation and annual precipitation. In summary, our results provide a unique insight into vertical canopy structure distribution across North American ecosystems. This data set is a first step towards a baseline of canopy structure needed for evaluating climate and land use induced forest changes at the continental scale in the future, and should help deepen our understanding of the role of vertical canopy structure in terrestrial ecosystem processes across varying scales.

  19. The Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.; /UC, Santa Cruz

    2007-09-28

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makes it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.

  20. The Gamma-Ray Albedo of the Moon

    SciTech Connect

    Moskalenko, I.V.; Porter, T.A.; /UC, Santa Cruz

    2008-03-25

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makes it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.

  1. Charred Forests Increase Snow Albedo Decay: Watershed-Scale Implications of the Postfire Snow Albedo Effect

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Nolin, A. W.

    2014-12-01

    Recent work shows that after a high severity forest fire, approximately 60% more solar radiation reaches the snow surface due to the reduction in canopy density. Also, significant amounts of black carbon (BC) particles and larger burned woody debris (BWD) are shed from standing charred trees, which concentrate on the snowpack, darken its surface, and reduce snow albedo by 50% during ablation. The postfire forest environment drives a substantial increase in net shortwave radiation at the snowpack surface, driving earlier and more rapid melt, however hydrologic models do not explicitly incorporate forest fire disturbance effects to snowpack dynamics. In this study we characterized, parameterized, and validated the postfire snow albedo effect: how the deposition and concentration of charred forest debris decreases snow albedo, increases snow albedo decay rates, and drives an earlier date of snow disappearance. For three study sites in the Oregon High Cascade Mountains, a 2-yr old burned forest, a 10-yr burned forest, and a nearby unburned forest, we used a suite of empirical data to characterize the magnitude and duration of the postfire effect to snow albedo decay. For WY 2012, WY2013, and WY2014 we conducted spectral albedo measurements, snow surface sampling, in-situ snow and meteorological monitoring, and snow energy balance modeling. From these data we developed a new parameterization which represents the postfire effect to snow albedo decay as a function of days-since-snowfall. We validated our parameterization using a physically-based, spatially-distributed snow accumulation and melt model, in-situ snow monitoring, net snowpack radiation, and remote sensing data. We modeled snow dynamics across the extent of all burned area in the headwaters of the McKenzie River Basin and validated the watershed-scale implications of the postfire snow albedo effect using in-situ micrometeorological and remote sensing data. This research quantified the watershed scale postfire

  2. From Regional Cloud-Albedo to a Global Albedo Footprint - Studying Aerosol Effects on the Radiation Budget Using the Relation Between Albedo and Cloud Fraction

    NASA Astrophysics Data System (ADS)

    Bender, F.; Engström, A.; Karlsson, J.; Wood, R.; Charlson, R. J.

    2015-12-01

    done with CERES and MODIS over the ocean. Using the integrated attenuated backscatter from the Calipso lidar as a proxy for the atmospheric contribution to albedo, it can be extended to include land-covered areas, yielding a global picture of the albedo perturbation footprint.

  3. Integrating remotely sensed leaf area index and leaf nitrogen accumulation with RiceGrow model based on particle swarm optimization algorithm for rice grain yield assessment

    NASA Astrophysics Data System (ADS)

    Wang, Hang; Zhu, Yan; Li, Wenlong; Cao, Weixing; Tian, Yongchao

    2014-01-01

    A regional rice (Oryza sativa) grain yield prediction technique was proposed by integration of ground-based and spaceborne remote sensing (RS) data with the rice growth model (RiceGrow) through a new particle swarm optimization (PSO) algorithm. Based on an initialization/parameterization strategy (calibration), two agronomic indicators, leaf area index (LAI) and leaf nitrogen accumulation (LNA) remotely sensed by field spectra and satellite images, were combined to serve as an external assimilation parameter and integrated with the RiceGrow model for inversion of three model management parameters, including sowing date, sowing rate, and nitrogen rate. Rice grain yield was then predicted by inputting these optimized parameters into the reinitialized model. PSO was used for the parameterization and regionalization of the integrated model and compared with the shuffled complex evolution-University of Arizona (SCE-UA) optimization algorithm. The test results showed that LAI together with LNA as the integrated parameter performed better than each alone for crop model parameter initialization. PSO also performed better than SCE-UA in terms of running efficiency and assimilation results, indicating that PSO is a reliable optimization method for assimilating RS information and the crop growth model. The integrated model also had improved precision for predicting rice grain yield.

  4. Comparing modelled and remotely sensed leaf area dynamics in an Aleppo pine semiarid forest

    NASA Astrophysics Data System (ADS)

    Pasquato, Marta; Medici, Chiara; Friend, Andrew D.; Francés, Félix

    2013-04-01

    Much of the Earth's terrestrial surface is subject to arid climatic water stress. In these regions, plant ecosystems are controlled by water availability, inducing a tight interconnection between the hydrological cycle and the vegetation dynamics. For this reason, and to fully reproduce water-controlled ecosystems' behaviour, it is essential to jointly model vegetation and the hydrological cycle. In this work, the performance of a parsimonious dynamic vegetation model, suitable for the inclusion in a conceptual ecohydrological model, is tested in a semi-arid Aleppo Pine forest area in the south-east of Spain. The model simulates gross primary production (GPP) as a function of absorbed photosynthetically active radiation (APAR) and the light use efficiency (LUE). Net primary production (NPP) is then calculated taking into account maintenance respiration. The modelling is focused particularly on simulating foliar biomass, which is obtained from NPP through an allocation equation based on the maximum LAI sustainable by the system, and considering turnover. An analysis of the information offered by MODIS EVI, NDVI, and LAI products was performed in order to investigate vegetation dynamics in the study site and to select the best indices to be used to evaluate the ecohydrological model's performance. EVI is reported in literature (Huete et al., 2002) to be sensitive to canopy structure, particularly to leaf area index (LAI). In accordance with the phenological cycle timing described for the Aleppo pine in similar climates (Muñoz et al., 2003), the EVI showed maximum values in spring and minimum values in winter. Similar results were found applying the aforementioned vegetation model to the study area. Contrasting simulated LAI with the EVI series, a correlation coefficient r = 0.57 was found. Concerning NDVI, its own definition links this index to the "greenness" of the target, so that it appears highly linked to chlorophyll content and vegetation condition, but only

  5. Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration

    SciTech Connect

    Hollinger, D.; Ollinger, S. V.; Richardson, A. D.; Martin, M. E.; Meyers, T. P.; Dail, D. B.; Scott, N. A.; Arkebauer, T. J.; Baldocchi, D. D.; Clark, K. L.; Curtis, Peter; Davis, K. J.; Desai, Desai Ankur R.; Dragoni, Danilo; Goulden, M. L.; Gu, Lianhong; Katul, G. G.; Pallardy, Stephen G.; Pawu, K. T.; Schmid, H. P.; Stoy, P. C.; Suyker, A. E.; Verma, Shashi

    2009-02-01

    Vegetation albedo is a critical component of the Earth s climate system, yet efforts to evaluate and improve albedo parameterizations in climate models have lagged relative to other aspects of model development. Here, we calculated growing season albedos for deciduous and evergreen forests, crops, and grasslands based on over 40 site-years of data from the AmeriFlux network and compared them with estimates presently used in the land surface formulations of a variety of climate models. Generally, the albedo estimates used in land surface models agreed well with this data compilation. However, a variety of models using fixed seasonal estimates of albedo overestimated the growing season albedo of northerly evergreen trees. In contrast, climatemodels that rely on a common two-stream albedo submodel provided accurate predictions of boreal needle-leaf evergreen albedo but overestimated grassland albedos. Inverse analysis showed that parameters of the two-stream model were highly correlated. Consistent with recent observations based on remotely sensed albedo, the AmeriFlux dataset demonstrated a tight linear relationship between canopy albedo and foliage nitrogen concentration (for forest vegetation: albedo 50.0110.071%N, r250.91; forests, grassland, and maize: albedo50.0210.067%N, r250.80). However, this relationship saturated at the higher nitrogen concentrations displayed by soybean foliage. We developed similar relationships between a foliar parameter used in the two-stream albedo model and foliage nitrogen concentration. These nitrogen-based relationships can serve as the basis for a new approach to land surface albedo modeling that simplifies albedo estimation while providing a link to other important ecosystem processes.

  6. Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Atzberger, Clement; Darvishzadeh, Roshanak; Immitzer, Markus; Schlerf, Martin; Skidmore, Andrew; le Maire, Guerric

    2015-12-01

    Fine scale maps of vegetation biophysical variables are useful status indicators for monitoring and managing national parks and endangered habitats. Here, we assess in a comparative way four different retrieval methods for estimating leaf area index (LAI) in grassland: two radiative transfer model (RTM) inversion methods (one based on look-up-tables (LUT) and one based on predictive equations) and two statistical modelling methods (one partly, the other entirely based on in situ data). For prediction, spectral data were used that had been acquired over Majella National Park in Italy by the airborne hyperspectral HyMap instrument. To assess the performance of the four investigated models, the normalized root mean squared error (nRMSE) and coefficient of determination (R2) between estimates and in situ LAI measurements are reported (n = 41). Using a jackknife approach, we also quantified the accuracy and robustness of empirical models as a function of the size of the available calibration data set. The results of the study demonstrate that the LUT-based RTM inversion yields higher accuracies for LAI estimation (R2 = 0.91, nRMSE = 0.18) as compared to RTM inversions based on predictive equations (R2 = 0.79, nRMSE = 0.38). The two statistical methods yield accuracies similar to the LUT method. However, as expected, the accuracy and robustness of the statistical models decrease when the size of the calibration database is reduced to fewer samples. The results of this study are of interest for the remote sensing community developing improved inversion schemes for spaceborne hyperspectral sensors applicable to different vegetation types. The examples provided in this paper may also serve as illustrations for the drawbacks and advantages of physical and empirical models.

  7. Generating Global Leaf Area Index from Landsat: Algorithm Formulation and Demonstration

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram; Nemani, Ramakrishna R.; Zhang, Gong; Hashimoto, Hirofumi; Milesi, Cristina; Michaelis, Andrew; Wang, Weile; Votava, Petr; Samanta, Arindam; Melton, Forrest; Dungan, Jennifer L.; Vermote, Eric; Gao, Feng; Knyazaikhin, Yuri; Myneni, Ranga B.

    2012-01-01

    This paper summarizes the implementation of a physically based algorithm for the retrieval of vegetation green Leaf Area Index (LAI) from Landsat surface reflectance data. The algorithm is based on the canopy spectral invariants theory and provides a computationally efficient way of parameterizing the Bidirectional Reflectance Factor (BRF) as a function of spatial resolution and wavelength. LAI retrievals from the application of this algorithm to aggregated Landsat surface reflectances are consistent with those of MODIS for homogeneous sites represented by different herbaceous and forest cover types. Example results illustrating the physics and performance of the algorithm suggest three key factors that influence the LAI retrieval process: 1) the atmospheric correction procedures to estimate surface reflectances; 2) the proximity of Landsatobserved surface reflectance and corresponding reflectances as characterized by the model simulation; and 3) the quality of the input land cover type in accurately delineating pure vegetated components as opposed to mixed pixels. Accounting for these factors, a pilot implementation of the LAI retrieval algorithm was demonstrated for the state of California utilizing the Global Land Survey (GLS) 2005 Landsat data archive. In a separate exercise, the performance of the LAI algorithm over California was evaluated by using the short-wave infrared band in addition to the red and near-infrared bands. Results show that the algorithm, while ingesting the short-wave infrared band, has the ability to delineate open canopies with understory effects and may provide useful information compared to a more traditional two-band retrieval. Future research will involve implementation of this algorithm at continental scales and a validation exercise will be performed in evaluating the accuracy of the 30-m LAI products at several field sites. ©

  8. Sensitivity of Leaf Area Index to Temperature Simulation in the FSUNRSM

    NASA Astrophysics Data System (ADS)

    Goto, Y.; Shin, D.; O'Brien, J. J.

    2006-05-01

    In this research, sensitivity of LAI (Leaf Area Index) to modeled temperatures is investigated replacing prescribed monthly LAI in CLM2 (Community Land Model 2.0) with an LAI dataset derived from observation by MODIS (Moderate Resolution Imaging Spectroradiometer). The prescribed monthly LAI in CLM2 is based on NDVI data from AVHRR (Advanced Very High Resolution Radiometer) during the period of 1981 to 1991, while the LAI by MODIS started in 2000 is directly derived from the observation and also it represents more recent vegetation. For the atmospheric simulation, the current version of FSUGSM (Florida State University Global Spectral Model) and FSUNRSM (Florida State University Nested Regional Spectral Model) coupled with CLM2 are used and the Southeast U.S. is selected as the domain. According to previous researches, FSUNRSM results in Southeast U.S. tend to have a cold bias in the South Florida. The prescribed LAI of the South Florida in CLM2 is significantly lower than the observed LAI by MODIS. In general, low LAI represents low vegetation which implies that less absorption of solar energy in the region. Thus, the more accurate LAI is expected to improve the FSUNRSM, because the low temperature in the region may be due to the LAI representing low vegetation. For the first experiment, the prescribed monthly LAI is adjusted to the LAI based on the MODIS observation in summer to simulate temperatures in the Southeast US. The result shows that calculated temperatures in the South Florida tend to be higher than the original simulations. For the second experiment to calculate summer, the prescribed LAI is replaced with a climatological monthly LAI dataset based on the MODIS observation.

  9. Monitoring boreal forest leaf area index across a Siberian burn chronosequence: a MODIS validation study

    USGS Publications Warehouse

    Cheng, X.; Vierling, Lee; Deering, D.; Conley, A.

    2005-01-01

    Landscapes containing differing amounts of ecological disturbance provide an excellent opportunity to validate and better understand the emerging Moderate Resolution Imaging Spectrometer (MODIS) vegetation products. Four sites, including 1‐year post‐fire coniferous, 13‐year post‐fire deciduous, 24‐year post‐fire deciduous, and >100 year old post‐fire coniferous forests, were selected to serve as a post‐fire chronosequence in the central Siberian region of Krasnoyarsk (57.3°N, 91.6°E) with which to study the MODIS leaf area index (LAI) and vegetation index (VI) products. The collection 4 MODIS LAI product correctly represented the summer site phenologies, but significantly underestimated the LAI value of the >100 year old coniferous forest during the November to April time period. Landsat 7‐derived enhanced vegetation index (EVI) performed better than normalized difference vegetation index (NDVI) to separate the deciduous and conifer forests, and both indices contained significant correlation with field‐derived LAI values at coniferous forest sites (r 2 = 0.61 and r 2 = 0.69, respectively). The reduced simple ratio (RSR) markedly improved LAI prediction from satellite measurements (r 2 = 0.89) relative to NDVI and EVI. LAI estimates derived from ETM+ images were scaled up to evaluate the 1 km resolution MODIS LAI product; from this analysis MODIS LAI overestimated values in the low LAI deciduous forests (where LAI<5) and underestimated values in the high LAI conifer forests (where LAI>6). Our results indicate that further research on the MODIS LAI product is warranted to better understand and improve remote LAI quantification in disturbed forest landscapes over the course of the year.

  10. Estimating catchment evaporation and runoff using MODIS leaf area index and the Penman-Monteith equation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Q.; Chiew, F. H. S.; Zhang, L.; Leuning, R.; Cleugh, H. A.

    2008-10-01

    This paper shows the feasibility of using steady state water balances of gauged catchments to calibrate a spatially explicit evaporation model and then applying this to estimate mean annual runoff for 120 gauged catchments in the Murray-Darling Basin (MDB) of Australia from 2001 to 2005. We used remotely sensed leaf area indices from the Moderate Resolution Imaging Spectrometer (MODIS) mounted on the polar-orbiting Terra satellite with the Penman-Monteith equation, gridded meteorology, and a two-parameter biophysical model for surface conductance (Gs) to estimate 8-day average evaporation at 1-km resolution. Parameters for the Gs model were optimized using steady state water balance estimates (precipitation minus runoff) in the gauged catchments in three precipitation zones of the MDB, and the calibrated evaporation model was then used to estimate evaporation (ERS) and runoff from gauged and ungauged catchments in the MDB. Mean annual calibrated estimates of ERS compared well with water balance estimates, indicated by a root-mean-square error (RMSE) of 78.6 mm/a and the Nash-Sutcliffe coefficient of efficiency (CE) of 0.68. Reasonable agreement was obtained between the estimated mean annual runoff (RRS) (rainfall minus ERS), and the measured runoff (RMSE = 71.0 mm/a and CE = 0.75). Cross validation showed that estimated ERS and RRS were almost as good as the calibrated ones. Furthermore, RRS has an accuracy similar to that of a seven-parameter conceptual rainfall-runoff model in the gauged catchments. The results show that the evaporation model can be easily applied to estimate steady state evaporation and runoff and that ERS can be used with rainfall-runoff models to improve accuracy of estimated runoff in ungauged catchments.

  11. Analysis of a multiyear global vegetation leaf area index data set

    NASA Astrophysics Data System (ADS)

    Buermann, Wolfgang; Wang, Yujie; Dong, Jiarui; Zhou, Liming; Zeng, Xubin; Dickinson, Robert E.; Potter, Christopher S.; Myneni, Ranga B.

    2002-11-01

    The analysis of a global data set of monthly leaf area index (LAI), derived from satellite observations of normalized difference vegetation index (NDVI) for the period July 1981 to September 1994, is discussed in this paper. Validation of this retroactive, coarse resolution (8 km) global multiyear data set is a challenging task because repetitive ground measurements from all representative vegetation types are not available. Therefore the magnitudes and interannual variations in the derived LAI fields were assessed as follows. First, the use of a NDVI-based algorithm, as opposed to a more physically based approach, is estimated to result in relative errors in LAI of about 10-20%, which is comparable to the mean uncertainty of AVHRR NDVI data. Second, the satellite LAI values compared reasonably well to ground measurements from three field campaigns. Third, comparison with an existing multiyear LAI data set showed qualitative agreement with regards to interannual variability, although the LAI values of the earlier data were consistently larger than those derived here. Fourth, interannual variations in LAI were evaluated through correlations with climate data sets, e.g., sea surface temperatures and precipitation in tropical semiarid regions known for ENSO impacts, temperature dependence of vegetation growth, and therefore LAI, in the northern latitudes. The general consistency between these independent data sets imbues confidence in the LAI data set, at least for use in large-scale modeling studies. Finally, improvements in near-surface climate simulation are documented in a companion article when satellite LAI values were used in a global climate model. The data set is available to the community via our Web server (http://cybele.bu.edu).

  12. Estimating Leaf Area Index (LAI) in Vineyards Using the PocketLAI Smart-App

    PubMed Central

    Orlando, Francesca; Movedi, Ermes; Coduto, Davide; Parisi, Simone; Brancadoro, Lucio; Pagani, Valentina; Guarneri, Tommaso; Confalonieri, Roberto

    2016-01-01

    Estimating leaf area index (LAI) of Vitis vinifera using indirect methods involves some critical issues, related to its discontinuous and non-homogeneous canopy. This study evaluates the smart app PocketLAI and hemispherical photography in vineyards against destructive LAI measurements. Data were collected during six surveys in an experimental site characterized by a high level of heterogeneity among plants, allowing us to explore a wide range of LAI values. During the last survey, the possibility to combine remote sensing data and in-situ PocketLAI estimates (smart scouting) was evaluated. Results showed a good agreement between PocketLAI data and direct measurements, especially for LAI ranging from 0.13 to 1.41 (R2 = 0.94, RRMSE = 17.27%), whereas the accuracy decreased when an outlying value (vineyard LAI = 2.84) was included (R2 = 0.77, RRMSE = 43.00%), due to the saturation effect in case of very dense canopies arising from lack of green pruning. The hemispherical photography showed very high values of R2, even in presence of the outlying value (R2 = 0.94), although it showed a marked and quite constant overestimation error (RRMSE = 99.46%), suggesting the need to introduce a correction factor specific for vineyards. During the smart scouting, PocketLAI showed its reliability to monitor the spatial-temporal variability of vine vigor in cordon-trained systems, and showed a potential for a wide range of applications, also in combination with remote sensing. PMID:27898028

  13. Satellite-derived leaf-area-index and vegetation maps as input to global carbon cycle models - A hierarchical approach

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Macdonald, R. B.; Mehta, N. C.

    1986-01-01

    A hierarchical procedure for developing a leaf area index (LAI) map of deciduous boreal forests is studied. The collection of spectral reflectance data from the Boundary Waters Canoe area in Minnesota using helicopter-, high-altitude aircraft-, and Landsat-mounted spectral sensors is described. The relationship between LAI and biomass and the reflectance ratio is analyzed. The sensitivity of canopy reflectance in the visible and infrared to the LAI of the canopy for various boreal forest species is evaluated. The data reveal that Landsat data are useful for producing LAI maps of deciduous forest areas and the maps provide data which clarifies the function of vegetation in the global carbon cycle models.

  14. Mapping Vineyard Leaf Area Using Mobile Terrestrial Laser Scanners: Should Rows be Scanned On-the-Go or Discontinuously Sampled?

    PubMed

    del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R; Company, Joaquim; Sanz, Ricardo; Escolà, Alexandre; Masip, Joan; Martínez-Casasnovas, José A; Arnó, Jaume

    2016-01-19

    The leaf area index (LAI) is defined as the one-side leaf area per unit ground area, and is probably the most widely used index to characterize grapevine vigor. However, LAI varies spatially within vineyard plots. Mapping and quantifying this variability is very important for improving management decisions and agricultural practices. In this study, a mobile terrestrial laser scanner (MTLS) was used to map the LAI of a vineyard, and then to examine how different scanning methods (on-the-go or discontinuous systematic sampling) may affect the reliability of the resulting raster maps. The use of the MTLS allows calculating the enveloping vegetative area of the canopy, which is the sum of the leaf wall areas for both sides of the row (excluding gaps) and the projected upper area. Obtaining the enveloping areas requires scanning from both sides one meter length section along the row at each systematic sampling point. By converting the enveloping areas into LAI values, a raster map of the latter can be obtained by spatial interpolation (kriging). However, the user can opt for scanning on-the-go in a continuous way and compute 1-m LAI values along the rows, or instead, perform the scanning at discontinuous systematic sampling within the plot. An analysis of correlation between maps indicated that MTLS can be used discontinuously in specific sampling sections separated by up to 15 m along the rows. This capability significantly reduces the amount of data to be acquired at field level, the data storage capacity and the processing power of computers.

  15. Mapping Vineyard Leaf Area Using Mobile Terrestrial Laser Scanners: Should Rows be Scanned On-the-Go or Discontinuously Sampled?

    PubMed Central

    del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R.; Company, Joaquim; Sanz, Ricardo; Escolà, Alexandre; Masip, Joan; Martínez-Casasnovas, José A.; Arnó, Jaume

    2016-01-01

    The leaf area index (LAI) is defined as the one-side leaf area per unit ground area, and is probably the most widely used index to characterize grapevine vigor. However, LAI varies spatially within vineyard plots. Mapping and quantifying this variability is very important for improving management decisions and agricultural practices. In this study, a mobile terrestrial laser scanner (MTLS) was used to map the LAI of a vineyard, and then to examine how different scanning methods (on-the-go or discontinuous systematic sampling) may affect the reliability of the resulting raster maps. The use of the MTLS allows calculating the enveloping vegetative area of the canopy, which is the sum of the leaf wall areas for both sides of the row (excluding gaps) and the projected upper area. Obtaining the enveloping areas requires scanning from both sides one meter length section along the row at each systematic sampling point. By converting the enveloping areas into LAI values, a raster map of the latter can be obtained by spatial interpolation (kriging). However, the user can opt for scanning on-the-go in a continuous way and compute 1-m LAI values along the rows, or instead, perform the scanning at discontinuous systematic sampling within the plot. An analysis of correlation between maps indicated that MTLS can be used discontinuously in specific sampling sections separated by up to 15 m along the rows. This capability significantly reduces the amount of data to be acquired at field level, the data storage capacity and the processing power of computers. PMID:26797618

  16. IAU nomenclature for albedo features on the planet Mercury

    NASA Technical Reports Server (NTRS)

    Dollfus, A.; Chapman, C. R.; Davies, M. E.; Gingerich, O.; Goldstein, R.; Guest, J.; Morrison, D.; Smith, B. A.

    1978-01-01

    The International Astronomical Union has endorsed a nomenclature for the albedo features on Mercury. Designations are based upon the mythological names related to the god Hermes; they are expressed in Latin form. The dark-hued albedo features are associated with the generic term Solitudo. The light-hued areas are designated by a single name without generic term. The 32 names adopted are allocated on the Mercury map.

  17. Digital cover photography for estimating leaf area index (LAI) in apple trees using a variable light extinction coefficient.

    PubMed

    Poblete-Echeverría, Carlos; Fuentes, Sigfredo; Ortega-Farias, Samuel; Gonzalez-Talice, Jaime; Yuri, Jose Antonio

    2015-01-28

    Leaf area index (LAI) is one of the key biophysical variables required for crop modeling. Direct LAI measurements are time consuming and difficult to obtain for experimental and commercial fruit orchards. Devices used to estimate LAI have shown considerable errors when compared to ground-truth or destructive measurements, requiring tedious site-specific calibrations. The objective of this study was to test the performance of a modified digital cover photography method to estimate LAI in apple trees using conventional digital photography and instantaneous measurements of incident radiation (Io) and transmitted radiation (I) through the canopy. Leaf area of 40 single apple trees were measured destructively to obtain real leaf area index (LAI(D)), which was compared with LAI estimated by the proposed digital photography method (LAI(M)). Results showed that the LAI(M) was able to estimate LAI(D) with an error of 25% using a constant light extinction coefficient (k = 0.68). However, when k was estimated using an exponential function based on the fraction of foliage cover (f(f)) derived from images, the error was reduced to 18%. Furthermore, when measurements of light intercepted by the canopy (Ic) were used as a proxy value for k, the method presented an error of only 9%. These results have shown that by using a proxy k value, estimated by Ic, helped to increase accuracy of LAI estimates using digital cover images for apple trees with different canopy sizes and under field conditions.

  18. Digital Cover Photography for Estimating Leaf Area Index (LAI) in Apple Trees Using a Variable Light Extinction Coefficient

    PubMed Central

    Poblete-Echeverría, Carlos; Fuentes, Sigfredo; Ortega-Farias, Samuel; Gonzalez-Talice, Jaime; Yuri, Jose Antonio

    2015-01-01

    Leaf area index (LAI) is one of the key biophysical variables required for crop modeling. Direct LAI measurements are time consuming and difficult to obtain for experimental and commercial fruit orchards. Devices used to estimate LAI have shown considerable errors when compared to ground-truth or destructive measurements, requiring tedious site-specific calibrations. The objective of this study was to test the performance of a modified digital cover photography method to estimate LAI in apple trees using conventional digital photography and instantaneous measurements of incident radiation (Io) and transmitted radiation (I) through the canopy. Leaf area of 40 single apple trees were measured destructively to obtain real leaf area index (LAID), which was compared with LAI estimated by the proposed digital photography method (LAIM). Results showed that the LAIM was able to estimate LAID with an error of 25% using a constant light extinction coefficient (k = 0.68). However, when k was estimated using an exponential function based on the fraction of foliage cover (ff) derived from images, the error was reduced to 18%. Furthermore, when measurements of light intercepted by the canopy (Ic) were used as a proxy value for k, the method presented an error of only 9%. These results have shown that by using a proxy k value, estimated by Ic, helped to increase accuracy of LAI estimates using digital cover images for apple trees with different canopy sizes and under field conditions. PMID:25635411

  19. Estimation of green leaf area index of crops: Sensitivity of vegetation indices

    NASA Astrophysics Data System (ADS)

    Nguy-Robertson, A. L.; Gitelson, A. A.; Peng, Y.; Vina, A.; Arkebauer, T. J.; Rundquist, D.

    2011-12-01

    Green leaf area index (gLAI) is an important biophysical characteristic used in climate, ecological, and crop yield models. There is a need for a rapid and accurate estimation of gLAI on a global scale. Traditionally used vegetation indices (VIs) have shown to saturate at moderate-to-high gLAI (e.g. NDVI) or are less sensitive to gLAI at low-to-moderate values of gLAI. The goal of this study was to determine the best suitable VIs for use in a combined vegetation index for estimating gLAI in crops in the entire wide dynamic range of gLAI. The study area consisted of three fields in eastern Nebraska, USA under different management conditions for the years 2001-2008 for a total of 24 field-years. The dynamic range of maize was 0-6.5 m2/m2 and soybean was 0-5.5 m2/m2. NDVI-like indices were the most sensitive to gLAI below 3 m2/m2 while Simple Ratio (SR) and the Chlorophyll Indices (CI) were more sensitive to gLAI above 3 m2/m2. MTCI was the only VI that was equally sensitive to gLAI in the entire dynamic range; however, it was species-specific. Only Red Edge NDVI and CIred edge were not species-specific. In order to benefit from different sensitivities of the indices to low-to-moderate and moderate-to-high gLAI, this study suggests building relationships using VIs in specific dynamic ranges of maximal sensitivity to gLAI. We suggest using NDVI and Simple Ratio (maize: RMSE = 0.71 m2/m2; soybean: RMSE = 0.53 m2/m2) for MODIS data. We suggest the using non-species-specific VIs, Red Edge NDVI and CIred edge (RMSE = 0.63 m2/m2) for MERIS data. For users which prefer to use a single index, we suggest a scaled combined vegetation index using Red Edge NDVI and CIred edge (RMSE = 0.56 m2/m2); however, this approach reduces the sensitivity of the specific indices in the dynamic range of which they are most sensitive.

  20. The Ultraviolet Albedo of Ganymede

    NASA Technical Reports Server (NTRS)

    McGrath, Melissa; Hendrix, Amanda

    2013-01-01

    A large set of ultraviolet images of Ganymede have been acquired with the Hubble Space Telescope over the last 15 years. These images have been used almost exclusively to study Ganymede's stunning auroral emissions (Feldman et al. 2000; Eviatar et al. 2001; McGrath et al. 2004; Saur et al. 2011; McGrath et al. 2013), and even the most basic information about Ganymede's UV albedo has yet to be gleaned from these data. We will present a first-cut analysis of both disk-averaged and spatially-resolved UV albedos of Ganymede, with focus on the spatially-resolved Lyman-alpha albedo, which has never been considered previously for this satellite. Ganymede's visibly bright regions are known to be rich in water ice, while the visibly dark regions seem to be more carbonaceous (Carlson et al., 1996). At Lyman-alpha, these two species should also have very different albedo values.

  1. Accurate albedos of the brightest regions on Io

    NASA Astrophysics Data System (ADS)

    Simonelli, D. P.; Veverka, J.

    1985-04-01

    The brightest, coldest areas on Io, the white regions, may act as cold traps for SO2 gas, and thus have an important role in governing the pressure, diurnal variation, and flow of the satellite's tenuous SO2 atmosphere. Therefore, it is essential to derive accurate albedos for the brightest regions, where the necessary albedos are those in the energy balance equation of the surface used to compute temperatures. Forty-one of the brightest of the white areas, each 60 to 120 km on a side were studied. The simplest way to estimate the required energy balance albedo for each region is to determine the Bond slbedo of a planet covered with that type of material. This process is outlined and resulting albedos are given. with the exception of several darker regions on the poorly-resolved post eclipse face of Io, typical albedos are 0.6 to 0.7. The brightest areas studied are located in the cluster of white regions east of Prometheus (longitudes 90 to 40 deg W). It is possible using Voyager data and fits to Hapke's equation to derive albedos for the bright regions without making any assumptions about the phase integrals.

  2. Snowmelt Increase Through Albedo Reduction

    DTIC Science & Technology

    1988-12-01

    Studies of Snow and Ice in Hyvarinen, T. and J. Lammasnieme (1987) Mountain Regions, International Association of Infrared measurement of free-water...snow-climate feedback, and the reduction in albedo by darkening agents has been studied and practiced extensively. Although much is known about albedo...sometimes CHARACTERISTICS gets in the way of man’s activities and must be removed as quickly as possible. When snow is Many studies of crystal growth in snow

  3. Leaf mass per area is independent of vein length per area: avoiding pitfalls when modelling phenotypic integration (reply to Blonder et al. 2014)

    PubMed Central

    Sack, Lawren; Scoffoni, Christine; John, Grace P.; Poorter, Hendrik; Mason, Chase M.; Mendez-Alonzo, Rodrigo; Donovan, Lisa A.

    2014-01-01

    It has been recently proposed that leaf vein length per area (VLA) is the major determinant of leaf mass per area (LMA), and would thereby determine other traits of the leaf economic spectrum (LES), such as photosynthetic rate per mass (A mass), nitrogen concentration per mass (N mass) and leaf lifespan (LL). In a previous paper we argued that this ‘vein origin’ hypothesis was supported only by a mathematical model with predestined outcomes, and that we found no support for the ‘vein origin’ hypothesis in our analyses of compiled data. In contrast to the ‘vein origin’ hypothesis, empirical evidence indicated that VLA and LMA are independent mechanistically, and VLA (among other vein traits) contributes to a higher photosynthetic rate per area (A area), which scales up to driving a higher A mass, all independently of LMA, N mass and LL. In their reply to our paper, Blonder et al. (2014) raised questions about our analysis of their model, but did not address our main point, that the data did not support their hypothesis. In this paper we provide further analysis of an extended data set, which again robustly demonstrates the mechanistic independence of LMA from VLA, and thus does not support the ‘vein origin’ hypothesis. We also address the four specific points raised by Blonder et al. (2014) regarding our analyses. We additionally show how this debate provides critical guidance for improved modelling of LES traits and other networks of phenotypic traits that determine plant performance under contrasting environments. PMID:25118296

  4. MISR Level 3 Albedo and Cloud Versioning

    Atmospheric Science Data Center

    2016-11-04

      MISR Level 3 Albedo and Cloud Versioning Component Global Albedo Product (CGAL) and Component Global Cloud Product (CGCL) - Daily, ...  CLOUD - Wind Vectors, Height Histogram Stage 1:  ALBEDO - Expansive, Restrictive and Local Albedo (except over snow and ice) ...

  5. Global trends in vegetation phenology from 32-year GEOV1 leaf area index time series

    NASA Astrophysics Data System (ADS)

    Verger, Aleixandre; Baret, Frédéric; Weiss, Marie; Filella, Iolanda; Peñuelas, Josep

    2013-04-01

    Phenology is a critical component in understanding ecosystem response to climate variability. Long term data records from global mapping satellite platforms are valuable tools for monitoring vegetation responses to climate change at the global scale. Phenology satellite products and trend detection from satellite time series are expected to contribute to improve our understanding of climate forcing on vegetation dynamics. The capacity of monitoring ecosystem responses to global climate change was evaluated in this study from the 32-year time series of global Leaf Area Index (LAI) which have been recently produced within the geoland2 project. The long term GEOV1 LAI products were derived from NOAA/AVHRR (1981 to 2000) and SPOT/VGT (1999 to the present) with specific emphasis on consistency and continuity. Since mid-November, GEOV1 LAI products are freely available to the scientific community at geoland2 portal (www.geoland2.eu/core-mapping-services/biopar.html). These products are distributed at a dekadal time step for the period 1981-2000 and 2000-2012 at 0.05° and 1/112°, respectively. The use of GEOV1 data covering a long time period and providing information at dense time steps are expected to increase the reliability of trend detection. In this study, GEOV1 LAI time series aggregated at 0.5° spatial resolution are used. The CACAO (Consistent Adjustment of the Climatology to Actual Observations) method (Verger et al, 2013) was applied to characterize seasonal anomalies as well as identify trends. For a given pixel, CACAO computes, for each season, the time shift and the amplitude difference between the current temporal profile and the climatology computed over the 32 years. These CACAO parameters allow quantifying shifts in the timing of seasonal phenology and inter-annual variations in magnitude as compared to the average climatology. Interannual variations in the timing of the Start of Season and End of Season, Season Length and LAI level in the peak of the

  6. Continual observation on crop leaf area index using wireless sensors network

    NASA Astrophysics Data System (ADS)

    Jiao, Sihong

    2014-03-01

    Crop structural parameter, i.e. leaf area index(LAI), is the main factor that can effect the solar energy re-assignment in the canopy. An automatic measuring system which is designed on the basis of wireless sensors network(WSN) is present in this paper. The system is comprised of two types of node. One is the measurement nodes which measured solar irradiance and were deployed beneath and above the canopy respectively, and another is a sink node which was used to collect data from the other measurement nodes. The measurement nodes also have ability to repeater data from one node to another and finally transfer signal to the sink node. Then the collected data of sink node are transferred to the data center through GPRS network. Using the field data collected by WSN, canopy structural parameters can be calculated using the direct transmittance which is the ratio of sun radiation captured by the measurement node beneath and above the canopy on different sun altitude angles. The proposed WSN measurement systems which is consisted of about 45 measurement node was deployed in the Heihe watershed to continually observe the crop canopy structural parameters from 25 June to 24 August 2012. To validate the performance of the WSN measured crop structural parameters, the LAI values were also measured by LAI2000. The field preliminary validation results show that the designed system can capture the varies of solar direct canopy transmittance on different time in a day, which is the basis to calculate the target canopy structural parameters. The validation results reveal that the measured LAI values derived from our propose measurement system have acceptable correlation coefficient(R2 from 0.27 to 0.96 and averaged value 0.42) with those derived from LAI2000. So it is a promising way in the agriculture application to utilize the proposed system and thus will be an efficient way to measure the crop structural parameters in the large spatial region and on the long time series.

  7. Leaf Area Influence on Surface Layer in a Deciduous Forest. Part I; Site Description

    NASA Technical Reports Server (NTRS)

    Sakai, Ricardo K.; Fitzjarrald, David R.; Moore, Kathleen E.; Sicker, John W.; Munger, William; Goulden, Michael L.; Wofsy, Steven C.

    1996-01-01

    A study over a deciduous forest located in middle Massachusetts (USA) has been performed to examine the role of leaves in the forest-atmosphere interaction. Due to the seasonal presence of leaves, a deciduous forest is a 'good laboratory' to study this interaction. In this first part, a description of a 30 m micrometeorological tower as well a qualitative description of some meteorological parameters are presented. The presence of leaves affects the forest in several ways. There is a decrease of upward PAR (Photosynthetically Active Radiation) due to absorption of visible light in the canopy. Water vapor concentration increases, and the CO2 concentration decreases in the surface layer as the canopy starts to be foliated. The physical presence of the leaves is felt in other quantities such as the global albedo and the subcanopy environment.

  8. Application of vegetation isoline equations for simultaneous retrieval of leaf area index and leaf chlorophyll content using reflectance of red edge band

    NASA Astrophysics Data System (ADS)

    Okuda, Kakuya; Taniguchi, Kenta; Miura, Munenori; Obata, Kenta; Yoshioka, Hiroki

    2016-09-01

    The remotely sensed reflectance spectra of vegetated surfaces contain information relating to the leaf area index (LAI) and the chlorophyll-a and -b concentrations (Cab) in a leaf. Difficulties associated with the retrieval of these two biophysical parameters from a single reflectance spectrum arise mainly from the choice of a suitable set of observation wavelengths and the development of a retrieval algorithm. Efforts have been applied toward the development of new algorithms, such as the numerical inversion of radiative transfer models, in addition to the development of simple approaches based on the spectral vegetation indices. This study explored a different approach: An equation describing band-to-band relationships (vegetation isoline equation) was used to retrieve the LAI and Cab simultaneously from a reflectance spectrum. The algorithm used three bands, including the red edge region, and an optimization cost function was constructed from two vegetation isoline equations in the red-NIR and red edge-NIR reflectance subspaces. A series of numerical experiments was conducted using the PROSPECT model to explore the numerical challenges associated with the use of the vegetation isoline equation during the parameter retrieval of the LAI and Cab. Overall, our results indicated the existence of a global minimum (and no local minima) over a wide swath of the LAI-Cab parameter subspace in most simulation cases. These results suggested that the use of the vegetation isoline equation in the simultaneous retrieval of the LAI and the Cab provides a viable alternative to the spectral vegetation index algorithms and the direct inversion of the canopy radiative transfer models.

  9. On the causes of rising gross ecosystem productivity in a regenerating clearcut environment: leaf area vs. species composition.

    PubMed

    Khomik, Myroslava; Williams, Christopher A; Vanderhoof, Melanie K; MacLean, Richard G; Dillen, Sophie Y

    2014-07-01

    Clearcutting a forest ecosystem can result in a drastic reduction of stand productivity. Despite the severity of this disturbance type, past studies have found that the productivity of young regenerating stands can quickly rebound, approaching that of mature undisturbed stands within a few years. One of the obvious reasons is increased leaf area (LA) with each year of recovery. However, a less obvious reason may be the variability in species composition and distribution during the natural regeneration process. The purpose of this study was to investigate to what extent the increase in gross ecosystem productivity (GEP), observed during the first 4 years of recovery in a naturally regenerating clearcut stand, was due to (i) an overall expansion of leaf area and (ii) an increase in the canopy's photosynthetic capacity stemming from either species compositional shifts or drift in physiological traits within species. We found that the multi-year rise in GEP following harvest was clearly attributed to the expansion of LA rather than a change in vegetation composition. Sizeable changes in the relative abundance of species were masked by remarkably similar leaf physiological attributes for a range of vegetation types present in this early-successional environment. Comparison of upscaled leaf-chamber estimates with eddy-covariance-based estimates of light-response curves revealed a broad consistency in both maximum photosynthetic capacity and quantum yield efficiency. The approaches presented here illustrate how chamber- and ecosystem-scale measurements of gas exchange can be blended with species-level LA data to draw conclusive inferences about changes in ecosystem processes over time in a highly dynamic environment.

  10. MISR Level 2 TOA/Cloud Albedo parameters (MIL2TCAL_V2)

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    The TOA/Cloud Albedo data contain albedo values, including finely-sampled or local (2.2 km) TOA albedos registered to the RLRA, and two coarsely-sampled (35.2 km resolution) TOA albedos projected to 30-km altitude. The local (2.2 km) albedos do not take the obscuration of cloud features into account, so they should only be treated as traditional albedos when the number of obscured pixels is low. The restrictive and expansive albedos are both available at 35.2 km resolution: the restrictive albedos are only calculated using the radiation upwelling from the pixel under consideration, whereas the expansive albedos use all the radiation emanating from the surrounding area. Therefore, the expansive albedo is closer to the traditional definition of top-of-atmosphere albedos. [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1.1 km; Longitude_Resolution=1.1 km; Temporal_Resolution=about 15 orbits/day].

  11. High Resolution Mapping of Pluto's Albedo Distribution

    NASA Astrophysics Data System (ADS)

    Stern, S.

    1994-01-01

    This proposal requests time to map Pluto's albedo distribution, using the highest possible resolution of the CYCLE 4 HST. Maps will be made in several key UV and visible bandpasses. Our scientific objectives are to (a) study the distribution of light and dark areas, (b) make the first disk-resolved estimates of Pluto's limb darkening, and (c) compositional discriminate pure from contaminated frost regions. These objectives have not been previously achievable, but are essential to understanding the surface morphology, volatile transport, and the root cause of Pluto's secular lightcurve variations. It may also be possible to detect evidence of the reported limb haze layer(s) in Pluto's atmosphere. These maps will also provide the first direct check on Pluto maps made through indirect techniques. Owing to Pluto's elliptic orbit, we expect the distribution of albedo to change (on a years-to-decade timescale) as Pluto draws away from perihelion and volatile transport proceeds. The proposed observations will document the albedo state at three rotational epochs near the time of perihelion. These maps will be obtained in two colors, by the FOC. No other astronomical instrument has sufficient resolution to accomplish these important scientific objectives.

  12. IN SITU AND MODIS MOD15A2 LEAF AREA INDEX MEASUREMENTS OF A MID-ATLANTIC DECIDOUS FOREST SITE: PERSPECTIVES FROM FOUR-YEARS OF FIELD STUDIES

    EPA Science Inventory

    The U.S. Environmental Protection Agency is interested in leaf area index as it pertains to biogenic emissions, atmospheric pollutant deposition, ecological indicators, vegetation phenology, and land cover mapping.

  13. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress.

    PubMed

    Saruhan, Neslihan; Terzi, Rabiye; Saglam, Aykut; Kadioglu, Asim

    2009-01-01

    The ascorbate-glutathione (ASC-GSH) cycle has an important role in defensive processes against oxidative damage generated by drought stress. In this study, the changes that take place in apoplastic and symplastic ASC-GSH cycle enzymes of the leaf and petiole were investigated under drought stress causing leaf rolling in Ctenanthe setosa (Rose.) Eichler (Marantaceae). Apoplastic and symplastic extractions of leaf and petiole were performed at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others are intermediate forms). Glutathione reductase (GR), a key enzyme in the GSH regeneration cycle, and ascorbate (ASC) were present in apoplastic spaces of the leaf and petiole, whereas dehydroascorbate reductase (DHAR), which uses glutathione as reductant, monodehydroascorbate reductase (MDHAR), which uses NAD(P)H as reductant, and glutathione were absent. GR, DHAR and MDHAR activities increased in the symplastic and apoplastic areas of the leaf. Apoplastic and symplastic ASC and dehydroascorbate (DHA), the oxidized form of ascorbate, rose at all scores except score 4 of symplastic ASC in the leaf. On the other hand, while reduced glutathione (GSH) content was enhanced, oxidized glutathione (GSSG) content decreased in the leaf during rolling. As for the petiole, GR activity increased in the apoplastic area but decreased in the symplastic area. DHAR and MDHAR activities increased throughout all scores, but decreased to the score 1 level at score 4. The ASC content of the apoplast increased during leaf rolling. Conversely, symplastic ASC content increased at score 2, however decreased at the later scores. While the apoplastic DHA content declined, symplastic DHA rose at score 2, but later was down to the level of score 1. While GSH content enhanced during leaf rolling, GSSG content did not change except at score 2. As well, there were good correlations between leaf rolling and ASC-GSH cycle enzyme activities in the leaf (GR and DHAR

  14. Comparison of Linear and Non-Linear Regression Models to Estimate Leaf Area Index of Dryland Shrubs.

    NASA Astrophysics Data System (ADS)

    Dashti, H.; Glenn, N. F.; Ilangakoon, N. T.; Mitchell, J.; Dhakal, S.; Spaete, L.

    2015-12-01

    Leaf area index (LAI) is a key parameter in global ecosystem studies. LAI is considered a forcing variable in land surface processing models since ecosystem dynamics are highly correlated to LAI. In response to environmental limitations, plants in semiarid ecosystems have smaller leaf area, making accurate estimation of LAI by remote sensing a challenging issue. Optical remote sensing (400-2500 nm) techniques to estimate LAI are based either on radiative transfer models (RTMs) or statistical approaches. Considering the complex radiation field of dry ecosystems, simple 1-D RTMs lead to poor results, and on the other hand, inversion of more complex 3-D RTMs is a demanding task which requires the specification of many variables. A good alternative to physical approaches is using methods based on statistics. Similar to many natural phenomena, there is a non-linear relationship between LAI and top of canopy electromagnetic waves reflected to optical sensors. Non-linear regression models can better capture this relationship. However, considering the problem of a few numbers of observations in comparison to the feature space (narea is located in southwestern Idaho, Great Basin. Sagebrush (Artemisia tridentata spp) serves a critical role in maintaining the structure of this ecosystem. Using a leaf area meter (Accupar LP-80), LAI values were measured in the field. Linear Partial Least Square regression and non-linear, tree based Random Forest regression have been implemented to estimate the LAI of sagebrush from hyperspectral data (AVIRIS-ng) collected in late summer 2014. Cross validation of results indicate that PLS can provide comparable results to Random Forest.

  15. Leaf-cutting ant nests near roads increase fitness of exotic plant species in natural protected areas

    PubMed Central

    Farji-Brener, Alejandro G; Ghermandi, Luciana

    2008-01-01

    Understanding the mechanisms that promote the invasion of natural protected areas by exotic plants is a central concern for ecology. We demonstrated that nests of the leaf-cutting ant, Acromyrmex lobicornis, near roadsides promote the abundance, growth and reproduction of two exotic plant species, Carduus nutans and Onopordum acanthium, in a national park in northern Patagonia, Argentina and determine the mechanisms that produce these effects. Refuse dumps (RDs) from ant nests have a higher nutrient content than nearby non-nest soils (NNSs); foliar nutrient content and their 15N isotopic signature strongly suggest that plants reach and use these nutrients. Both species of exotic plants in RDs were 50–600% more abundant; seedlings had 100–1000% more foliar area and root and leaf biomass; and adult plants produced 100–300% more seeds than nearby NNS plants. Plants can thus gain access to and benefit from the nutrient content of ant RD, supporting the hypotheses that enhanced resource availability promotes exotic plant performance that could increase the likelihood of biological invasions. The two exotics produce an estimated of 8 385 000 more seeds ha−1 in areas with ant nests compared with areas without; this exceptional increase in seed production represents a potential threat to nearby non-invaded communities. We propose several management strategies to mitigate this threat. Removal efforts of exotics should be focused on ant RDs, where plants are denser and represent a higher source of propagules. PMID:18364316

  16. The Application of Modified Normalized Difference Water Index (MNDWI) by Leaf Area Index in the Retrieval of Regional Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, H.-w.; Chen, H.-l.

    2015-04-01

    The vegetation coverage is one of the important factors that restrict the accuracy of remote sensing retrieval of soil moisture. In order to effectively improve the accuracy of the remote sensing retrieval of soil moisture and to reduce the impact of vegetation coverage variation on the retrieval accuracy, the Leaf Area Index (LAI) is introduced to the Normalized Difference Water Index (NDWI) to greatly improve the accuracy of the soil moisture retrieval. In its application on the regional drought monitoring, the paper uses the relative LAI from two places which locate in the north and south of Henan Province respectively (Xin Xiang and Zhu Ma Dian) as indicators. It uses the days after turned-green stage to conduct difference value correction on the Relative Leaf Area Index (RLAL) of the entire province, so as to acquire the distribution of RLAI of the province's wheat producing area. After this, the local remote sensing NDWI will be Modified (MNDWI = NDWI xRLAI ) to acquire the soil moisture distribution status of the entire province's wheat producing area. The result shows that, the Modified Normalized Difference Water Index of LAI which based on the days after turned-green stage can improve the real time retrieval accuracy of soil moisture under different vegetation coverage.

  17. Albedo as a modulator of climate response to tropical deforestation

    SciTech Connect

    Dirmeyer, P.A.; Shukla, J.

    1994-10-01

    An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years` duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, is strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.

  18. Albedo as a modulator of climate response to tropical deforestation

    NASA Technical Reports Server (NTRS)

    Dirmeyer, Paul A.; Shukla, J.

    1994-01-01

    An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years' duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, is strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.

  19. A comparative study of the effects of albedo change on drought in semi-arid regions

    NASA Technical Reports Server (NTRS)

    Charney, J.; Quirk, W. J.; Chow, S.-H.; Kornfield, J.

    1977-01-01

    Numerical simulation studies of the effects of changes in albedo on rainfall involve comparisons of semiarid areas, lying at the boundary between a major desert and an adjacent monsoonal region, with areas of the same size located within the monsoonal region itself. The sensitivity of the rainfall to the ground hydrology was determined by performing the albedo simulations with two different evapotranspiration parameterizations, one giving too high evaporation over land and the other giving negligible evaporation over land. The evaporation rate is, in general, found to have as important an effect as changes in albedo. The mechanism by which an increase of albedo reduces the rainfall during conditions of high evaporation is considered.

  20. Effective Interpolation of Incomplete Satellite-Derived Leaf-Area Index Time Series for the Continental United States

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Borak, Jordan S.

    2008-01-01

    Many earth science modeling applications employ continuous input data fields derived from satellite data. Environmental factors, sensor limitations and algorithmic constraints lead to data products of inherently variable quality. This necessitates interpolation of one form or another in order to produce high quality input fields free of missing data. The present research tests several interpolation techniques as applied to satellite-derived leaf area index, an important quantity in many global climate and ecological models. The study evaluates and applies a variety of interpolation techniques for the Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf-Area Index Product over the time period 2001-2006 for a region containing the conterminous United States. Results indicate that the accuracy of an individual interpolation technique depends upon the underlying land cover. Spatial interpolation provides better results in forested areas, while temporal interpolation performs more effectively over non-forest cover types. Combination of spatial and temporal approaches offers superior interpolative capabilities to any single method, and in fact, generation of continuous data fields requires a hybrid approach such as this.

  1. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany.

    PubMed

    Köstner, B; Falge, E; Tenhunen, J D

    2002-06-01

    Stand age is an important structural determinant of canopy transpiration (E(c)) and carbon gain. Another more functional parameter of forest structure is the leaf area/sapwood area relationship, A(L)/A(S), which changes with site conditions and has been used to estimate leaf area index of forest canopies. The interpretation of age-related changes in A(L)/A(S) and the question of how A(L)/A(S) is related to forest functions are of current interest because they may help to explain forest canopy fluxes and growth. We conducted studies in mature stands of Picea abies (L.) Karst. varying in age from 40 to 140 years, in tree density from 1680 to 320 trees ha(-1), and in tree height from 15 to 30 m. Structural parameters were measured by biomass harvests of individual trees and stand biometry. We estimated E(c) from scaled-up xylem sap flux of trees, and canopy-level fluxes were predicted by a three-dimensional microclimate and gas exchange model (STANDFLUX). In contrast to pine species, A(L)/A(S) of P. abies increased with stand age from 0.26 to 0.48 m(2) cm(-2). Agreement between E(c) derived from scaled-up sap flux and modeled canopy transpiration was obtained with the same parameterization of needle physiology independent of stand age. Reduced light interception per leaf area and, as a consequence, reductions in net canopy photosynthesis (A(c)), canopy conductance (g(c)) and E(c) were predicted by the model in the older stands. Seasonal water-use efficiency (WUE = A(c)/E(c)), derived from scaled-up sap flux and stem growth as well as from model simulation, declined with increasing A(L)/A(S) and stand age. Based on the different behavior of age-related A(L)/A(S) in Norway spruce stands compared with other tree species, we conclude that WUE rather than A(L)/A(S) could represent a common age-related property of all species. We also conclude that, in addition to hydraulic limitations reducing carbon gain in old stands, a functional change in A(L)/A(S) that is related to

  2. Global Cooling: Effect of Urban Albedo on Global Temperature

    SciTech Connect

    Akbari, Hashem; Menon, Surabi; Rosenfeld, Arthur

    2007-05-22

    In many urban areas, pavements and roofs constitute over 60% of urban surfaces (roof 20-25%, pavements about 40%). The roof and the pavement albedo can be increased by about 0.25 and 0.10, respectively, resulting in a net albedo increase for urban areas of about 0.1. Many studies have demonstrated building cooling-energy savings in excess of 20% upon raising roof reflectivity from an existing 10-20% to about 60%. We estimate U.S. potential savings in excess of $1 billion (B) per year in net annual energy bills. Increasing albedo of urban surfaces can reduce the summertime urban temperature and improve the urban air quality. Increasing the urban albedo has the added benefit of reflecting more of the incoming global solar radiation and countering the effect of global warming. We estimate that increasing albedo of urban areas by 0.1 results in an increase of 3 x 10{sup -4} in Earth albedo. Using a simple global model, the change in air temperature in lowest 1.8 km of the atmosphere is estimated at 0.01K. Modelers predict a warming of about 3K in the next 60 years (0.05K/year). Change of 0.1 in urban albedo will result in 0.01K global cooling, a delay of {approx}0.2 years in global warming. This 0.2 years delay in global warming is equivalent to 10 Gt reduction in CO2 emissions.

  3. Quantifying the Impacts of Surface Albedo on Climate Using the WRF Model

    NASA Astrophysics Data System (ADS)

    Schlosser, C. A.; Xu, L.; Xu, X.; Gregory, J.; Kirchain, R.

    2015-12-01

    Surface albedo is an important part of the energy budget in shaping local and regional climate. It could also be a potential tool to mitigate the anthropogenic effect on climate change. However, the current level of scientific understanding of surface albedo on global warming potential is medium to low. In order to investigate the anthropogenic impact of surface albedo on climate, different scenarios of urban surface albedo over continental US using the WRF model are simulated. In this study, the change in surface albedo applies to rooftops, pavements, and walls of urban land cover grid cells. The two groups of simulations (low and high albedo) were compared to determine the impacts of elevating urban surface albedo and to account for the uncertainty in the errors or noise introduced by the slightly different initial conditions. The results are represented as the differences in surface temperature and the top of the atmosphere radiation between the two scenarios when urban surface albedos are elevated from 0.15 to 0.40. The ensemble mean of all potential outcomes as a whole, instead of individual initial conditions, shows that the impact of elevating surface albedo has a cooling effect that is robust at both local and regional scales during the summer season. More refined analyses of urban areas will provide insights on surface albedo impacts in specific regions. Future analyses may address changes in CO2 equivalence.

  4. Changes on albedo after a large forest fire in Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Quintano, Carmen; Fernández-Manso, Alfonso; Fernández-García, Victor; Marcos, Elena; Calvo, Leonor

    2015-09-01

    Fires are one of the main causes of environmental alteration in Mediterranean forest ecosystems. Albedo varies and evolves seasonally based on solar illumination. It is greatly influenced by changes on vegetation: vegetation growth, cutting/planting forests or forest fires. This work analyzes albedo variations due to a large forest fire that occurred on 19- 21 September 2012 in northwestern Spain. From this area, albedo post-fire images (immediately and 1-year after fire) were generated from Landsat 7 Enhanced Thematic Mapper (ETM+) data. Specifically we considered total shortwave albedo, total-, direct-, and diffuse-visible, and near-infrared albedo. Nine to twelve weeks after fire, 111 field plots were measured (27 unburned plots, 84 burned plots). The relationship between albedo values and thematic class (burned/unburned) was evaluated by one-way analysis of variance. Our results demonstrate that albedo changes were related to burned/unburned variable with statistical significance, indicating the importance of forestry areas as regulators of land surface energy fluxes and revealing the potential of post-fire albedo for assessing burned areas. Future research, however, is needed to evaluate the persistence of albedo changes.

  5. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area.

    PubMed

    Greenwood, Sarah; Ruiz-Benito, Paloma; Martínez-Vilalta, Jordi; Lloret, Francisco; Kitzberger, Thomas; Allen, Craig D; Fensham, Rod; Laughlin, Daniel C; Kattge, Jens; Bönisch, Gerhard; Kraft, Nathan J B; Jump, Alistair S

    2017-04-01

    Drought events are increasing globally, and reports of consequent forest mortality are widespread. However, due to a lack of a quantitative global synthesis, it is still not clear whether drought-induced mortality rates differ among global biomes and whether functional traits influence the risk of drought-induced mortality. To address these uncertainties, we performed a global meta-analysis of 58 studies of drought-induced forest mortality. Mortality rates were modelled as a function of drought, temperature, biomes, phylogenetic and functional groups and functional traits. We identified a consistent global-scale response, where mortality increased with drought severity [log mortality (trees trees(-1)  year(-1) ) increased 0.46 (95% CI = 0.2-0.7) with one SPEI unit drought intensity]. We found no significant differences in the magnitude of the response depending on forest biomes or between angiosperms and gymnosperms or evergreen and deciduous tree species. Functional traits explained some of the variation in drought responses between species (i.e. increased from 30 to 37% when wood density and specific leaf area were included). Tree species with denser wood and lower specific leaf area showed lower mortality responses. Our results illustrate the value of functional traits for understanding patterns of drought-induced tree mortality and suggest that mortality could become increasingly widespread in the future.

  6. Leaf Area Index (LAI) in different type of agroforestry systems based on hemispherical photographs in Cidanau Watershed

    NASA Astrophysics Data System (ADS)

    Nur Khairiah, Rahmi; Setiawan, Yudi; Budi Prasetyo, Lilik; Ayu Permatasari, Prita

    2017-01-01

    Ecological functions of agroforestry systems have perceived benefit to people around Cidanau Watershed, especially in the protection of water quality. The main causes of the problems encountered in the Cidanau Watershed are associated with the human factors, especially encroachment and conversion of forest into farmland. The encroachment has made most forest in Cidanau Watershed become bare land. To preserve the ecological function of agroforestry systems in Cidanau Watershed, monitoring of the condition of the vegetation canopy in agroforestry systems is really needed. High intensity thinning of crown density due to deforestation can change stand leaf area index dramatically. By knowing LAI, we can assess the condition of the vegetation canopy in agroforestry systems. LAI in this research was obtained from Hemispherical Photographs analysis using the threshold method in HemiView Canopy Analysis Software. Our research results indicate that there are six types of agroforestry in Cidanau Watershed i.e. Sengon Agroforestry, Clove Agroforestry, Melinjo Agroforestry, Chocolate Agroforestry, Coffee Agroforestry, and Complex Agroforestry. Several factors potentially contribute to variations in the value of LAI in different types of agroforestry. The simple assumptions about differences ranges of LAI values on six types of agroforestry is closely related to leaf area and plant population density.

  7. Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness.

    PubMed

    Coble, Adam P; Cavaleri, Molly A

    2017-03-03

    A key trait used in canopy and ecosystem function modeling, leaf mass per area (LMA), is influenced by changes in both leaf thickness and leaf density (LMA = Thickness × Density). In tall trees, LMA is understood to increase with height through two primary mechanisms: (i) increasing palisade layer thickness (and thus leaf thickness) in response to light and/or (ii) reduced cell expansion and intercellular air space in response to hydrostatic constraints, leading to increased leaf density. Our objective was to investigate within-canopy gradients in leaf anatomical traits in order to understand environmental factors that influence leaf morphology in a sugar maple (Acer saccharum Marshall) forest canopy. We teased apart the effects of light and height on anatomical traits by sampling at exposed and closed canopies that had different light conditions at similar heights. As expected, palisade layer thickness responded strongly to cumulative light exposure. Mesophyll porosity, however, was weakly and negatively correlated with light and height (i.e., hydrostatic gradients). Reduced mesophyll porosity was not likely caused by limitations on cell expansion; in fact, epidermal cell width increased with height. Palisade layer thickness was better related to LMA, leaf density and leaf thickness than was mesophyll porosity. Vein diameter and fraction of vascular tissue also increased with height and LMA, density and thickness, revealing that greater investment in vascular and support tissue may be a third mechanism for increased LMA with height. Overall, decreasing mesophyll porosity with height was likely due to palisade cells expanding into the available air space and also greater investments in vascular and support tissue, rather than a reduction of cell expansion due to hydrostatic constraints. Our results provide evidence that light influences both palisade layer thickness and mesophyll porosity and indicate that hydrostatic gradients influence leaf vascular and support

  8. Standards for the validation of remotely sensed albedo products

    NASA Astrophysics Data System (ADS)

    Adams, Jennifer

    2015-04-01

    citrus orchard. All canopies were simulated for a 100x100m area to best represent in-situ measurement conditions. Preliminary tests have been conducted, firstly, identifying the spectral range required to estimate broadband albedo (BBA) and secondly, determining the hyper-spectral intervals required to calculate BBA from spectral albedo. Final results are expected to be able to identify for the factors aforementioned, given a specified confidence level and within 3% accuracy, when does uncertainty of in-situ measurement fall within these critera, and outside these criteria. As the uncertainty of in-situ measurements should be made on an individual basis accounting for relevant factors, this study aims to document for a specific scenario traceable uncertainty sources in in-situ albedo retrieval.

  9. Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated atmospheric [CO2] but tracks water availability.

    PubMed

    Duursma, Remko A; Gimeno, Teresa E; Boer, Matthias M; Crous, Kristine Y; Tjoelker, Mark G; Ellsworth, David S

    2016-04-01

    Canopy leaf area, quantified by the leaf area index (L), is a crucial driver of forest productivity, water use and energy balance. Because L responds to environmental drivers, it can represent an important feedback to climate change, but its responses to rising atmospheric [CO2] and water availability of forests have been poorly quantified. We studied canopy leaf area dynamics for 28 months in a native evergreen Eucalyptus woodland exposed to free-air CO2 enrichment (the EucFACE experiment), in a subtropical climate where water limitation is common. We hypothesized that, because of expected stimulation of productivity and water-use efficiency, L should increase with elevated [CO2]. We estimated L from diffuse canopy transmittance, and measured monthly leaf litter production. Contrary to expectation, L did not respond to elevated [CO2]. We found that L varied between 1.10 and 2.20 across the study period. The dynamics of L showed a quick increase after heavy rainfall and a steady decrease during periods of low rainfall. Leaf litter production was correlated to changes in L, both during periods of decreasing L (when no leaf growth occurred) and during periods of increasing L (active shedding of old foliage when new leaf growth occurred). Leaf lifespan, estimated from mean L and total annual litter production, was up to 2 months longer under elevated [CO2] (1.18 vs. 1.01 years; P = 0.05). Our main finding that L was not responsive to elevated CO2 is consistent with other forest FACE studies, but contrasts with the positive response of L commonly predicted by many ecosystem models.

  10. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate.

    PubMed

    Hardwick, Stephen R; Toumi, Ralf; Pfeifer, Marion; Turner, Edgar C; Nilus, Reuben; Ewers, Robert M

    2015-02-15

    Land use change is a major threat to biodiversity. One mechanism by which land use change influences biodiversity and ecological processes is through changes in the local climate. Here, the relationships between leaf area index and five climate variables - air temperature, relative humidity, vapour pressure deficit, specific humidity and soil temperature - are investigated across a range of land use types in Borneo, including primary tropical forest, logged forest and oil palm plantation. Strong correlations with the leaf area index are found for the mean daily maximum air and soil temperatures, the mean daily maximum vapour pressure deficit and the mean daily minimum relative humidity. Air beneath canopies with high leaf area index is cooler and has higher relative humidity during the day. Forest microclimate is also found to be less variable for sites with higher leaf area indices. Primary forest is found to be up to 2.5 °C cooler than logged forest and up to 6.5 °C cooler than oil palm plantations. Our results indicate that leaf area index is a useful parameter for predicting the effects of vegetation upon microclimate, which could be used to make small scale climate predictions based on remotely sensed data.

  11. Predictability of leaf area index using vegetation indices from multiangular CHRIS/PROBA data over eastern China

    NASA Astrophysics Data System (ADS)

    Gu, Zhujun; Sanchez-Azofeifa, G. Arturo; Feng, Jilu; Cao, Sen

    2015-01-01

    This study analyzed the predictability of leaf area index (LAI) to the variation of vegetation type, observation angle, and vegetation index (VI). The analysis was conducted by using the R2 of the LAI-VI models between in situ measured LAIs and VIs derived from CHRIS/PROBA data. The results show that the discrepancy of vegetation type mostly influences the LAI-VI models. The predictability of LAI to the variation of both vegetation type and index demonstrates the differences of oblique/vertical and backward/forward observations, and backward series are greater than the forward. The predictabilities of LAI to the variation of observation angle are greatest for the soil-adjusted VIs and least for the traditional ratio-based indices. Multivariable linear modeling with all VIs from all five angles yields acceptable accuracy except for the sparse shrub. The backward less-oblique observation (-36 deg) is the only angle chosen in the modeling for grass, shrub, and broad leaf forest, while the nadir view performs best for forests with coniferous trees. These results provide a reference to multiangular LAI estimation for different vegetation communities. VIs accounting for angular soil effects require further investigation in the future.

  12. Assimilating Remote Sensing Observations of Leaf Area Index and Soil Moisture for Wheat Yield Estimates: An Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.

    2012-01-01

    Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.

  13. On the importance of interpolation schemes for albedo data from local to global grid

    NASA Astrophysics Data System (ADS)

    Preuschmann, Swantje; Jacob, Daniela; Löw, Alexander

    2013-04-01

    Surface albedo has a key role in Earth's radiation balance. As vegetation cover is influencing the albedo of solid surfaces, it is clear that land cover changes are leading to changes in the radiation balance and further are influencing the whole Earth's energy budget. It is obvious, that a forested area reflects sunlight differently compared to a sparsely vegetated area of shrubs. Different studies have shown, that certain land cover types (even compounds) have a characteristic annual cycle of the albedo (Moody et al. 2005 and Preuschmann, 2012). An annual cycle for one land cover type might vary in a year about 2%. The difference of the surface albedo of a forested area in summer to an agricultural area at the same time is only about 0.5%. A major question in climate modelling under future conditions is to analyse the impact of land cover changes onto climate. Nevertheless for different reasons it is not easy to describe surface albedo changes due to land cover changes within a climate model. One reason is that differences in the albedo of different surfaces are comparatively small. Another reason is based in the spatial resolution of a climate model. Climate models are operating on grids with horizontal resolutions of 10x10 km² for regional models up to about 200x200 km² for global models with a spectral resolution of T63. This means, that spatial (and also temporal) mean values of surface albedo are taken into account. Therefore one grid box of a climate model is representing a composition of different surface albedos. For model validation, it is of interest to compare the modelled albedo data with observed albedo data, but a comparison is not as trivial as it looks in the first sight. One problematic is the necessity of comparing different data types in the same horizontal and temporal resolution. Commonly used satellite based albedo data are available in 0.05° horizontal resolution, which is about 5 km at the equator, for several-day means and monthly

  14. EPIC-Simulated and MODIS-Derived Leaf Area Index (LAI) Comparisons Across mMltiple Spatial Scales RSAD Oral Poster based session

    EPA Science Inventory

    Leaf Area Index (LAI) is an important parameter in assessing vegetation structure for characterizing forest canopies over large areas at broad spatial scales using satellite remote sensing data. However, satellite-derived LAI products can be limited by obstructed atmospheric cond...

  15. Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama, Japan.

    PubMed

    Muraoka, Hiroyuki; Saigusa, Nobuko; Nasahara, Kenlo N; Noda, Hibiki; Yoshino, Jun; Saitoh, Taku M; Nagai, Shin; Murayama, Shohei; Koizumi, Hiroshi

    2010-07-01

    Revealing the seasonal and interannual variations in forest canopy photosynthesis is a critical issue in understanding the ecological mechanisms underlying the dynamics of carbon dioxide exchange between the atmosphere and deciduous forests. This study examined the effects of temporal variations of canopy leaf area index (LAI) and leaf photosynthetic capacity [the maximum velocity of carboxylation (V (cmax))] on gross primary production (GPP) of a cool-temperate deciduous broadleaf forest for 5 years in Takayama AsiaFlux site, central Japan. We made two estimations to examine the effects of canopy properties on GPP; one is to incorporate the in situ observation of V (cmax) and LAI throughout the growing season, and another considers seasonality of LAI but constantly high V (cmax). The simulations indicated that variation in V (cmax) and LAI, especially in the leaf expansion period, had remarkable effects on GPP, and if V (cmax) was assumed constant GPP will be overestimated by 15%. Monthly examination of air temperature, radiation, LAI and GPP suggested that spring temperature could affect canopy phenology, and also that GPP in summer was determined mainly by incoming radiation. However, the consequences among these factors responsible for interannual changes of GPP are not straightforward since leaf expansion and senescence patterns and summer meteorological conditions influence GPP independently. This simulation based on in situ ecophysiological research suggests the importance of intensive consideration and understanding of the phenology of leaf photosynthetic capacity and LAI to analyze and predict carbon fixation in forest ecosystems.

  16. Albedo over rough snow and ice surfaces

    NASA Astrophysics Data System (ADS)

    Lhermitte, Stef; Abermann, Jakob; Kinnard, Christophe

    2014-05-01

    Surface albedo determines the shortwave radiation balance, arguably the largest energy balance component of snow and ice surfaces. Consequently, incorporation of the spatio-temporal variability of albedo is essential when assessing the surface energy balance of snow and ice surfaces. This can be done by using ground-based measurements or albedo data derived from remote sensing, or by modelling albedo based on radiative transfer models or empirically based parameterizations. One decisive factor when incorporating albedo data is the representativeness of surface albedo, certainly over rough surfaces where albedo measurements at a specific location (i.e., apparent albedo) can differ strongly from the material albedo or the true albedo (i.e., effective albedo) depending on the position of the sun/sensor and the surface roughness. This stresses the need for a comprehensive understanding of the effect of surface roughness on albedo and its impact when using albedo data for validation of remote sensing imagery, interpretation of automated weather station (AWS) radiation data or incorporation in energy balance models. To assess the effect of surface roughness on albedo an intra-surface radiative transfer (ISRT) model was combined with albedo measurements on a penitente field on Glaciar Tapado in the semi-arid Andes of Northern Chile. The ISRT model shows albedo reductions between 0.06 and 0.35 relative to flat surfaces with a uniform material albedo. The magnitude of these reductions primarily depends on the penitente geometry, but the shape and spatial variability of the material albedo also play a major role. Secondly, the ISRT model was used to reveal the effect of using apparent albedo to infer the effective albedo over a rough surface. This effect is especially strong for narrow penitentes, resulting in sampling biases up to ±0.05. The sampling biases are more pronounced when the sensor is low above the surface, but remain relatively constant throughout the day

  17. Variation in forest canopy nitrogen and albedo in response to N fertilization and elevated CO2

    NASA Astrophysics Data System (ADS)

    Wicklein, H. F.; Ollinger, S. V.; Martin, M.; Hollinger, D. Y.; Collatz, G. J.

    2009-12-01

    It is important to understand how high levels of nitrogen (N) deposition, through changes in N status, could influence a forest’s albedo and photosynthetic rates, and therefore the forest’s overall feedback (positive or negative) to global warming. Foliar N and albedo have recently been shown to covary at the canopy level across temperate and boreal forests. The purpose of this study is to examine the nature of this relationship from leaf to canopy scales and how it might change in response N and CO2 fertilization. Research was conducted at two long-term forest experimental sites. The chronic N amendment site at Harvard Forest in Petersham, MA includes three treatments: high N (fertilized with 150 kg N ha-1 yr-1), low N (50 kg N ha-1 yr-1), and ambient deposition (around 8 kg N ha-1 yr-1). The Oak Ridge National Environmental Research Park in Oak Ridge, TN includes a Free Air CO2 Enrichment (FACE) site where plots receive either ambient and elevated CO2 (540 ppm), and an N amendment site where plots are either fertilized with N (200 kg N ha-1 yr-1) or receive ambient deposition (10-15 kg N ha-1 yr-1). At Harvard Forest we measured seven black oak (Quercus velutina) and five red maple (Acer rubrum) trees in each treatment plot. At Oak Ridge we measured five sweetgum (Liquidambar styraciflua) trees in each FACE treatment plot, and four sweetgum trees in each N amendment treatment plot. Leaves were collected from two to three canopy heights from trees in each treatment plot. For each tree height we measured reflectance and transmittance spectra for stacks of 1, 2, 4, and 8 leaves, both abaxial and adaxial sides. We also measured N concentration, water content, and leaf mass per unit area (LMA) of the leaves. Canopy-level reflectance was modeled using the Scattering by Arbitrarily Inclined Leaves (SAIL-2) radiative transfer model. Preliminary results show significant differences in average leaf-level reflectance in the N fertilized treatments, with higher NIR

  18. Diurnal and seasonal variations of surface albedo in a spring wheat field of arid lands of Northwestern China.

    PubMed

    Zhang, Ya-feng; Wang, Xin-ping; Pan, Yan-xia; Hu, Rui

    2013-01-01

    Surface albedo greatly affects the radiation energy balance of croplands and is a significant factor in crop growth monitoring and yield estimation. Precise determination of surface albedo is thus important. This study aimed to examine the influence of growth stages (tillering, jointing, heading, filling and maturity) on albedo and its diurnal asymmetry by measuring diurnal albedo variations. Results indicated that the daily mean surface albedo generally exhibited an increased tendency during tillering to heading but decreased after heading. Surface albedos were much higher in the morning than the corresponding values of the same solar elevation angles in the afternoon when the solar elevation angle was less than 40°, indicating a diurnal asymmetry in surface albedo. However, less difference was found in surface albedos between forenoon and afternoon when the solar elevation angle was greater than 40°. Dew droplets on the leaf surface in the morning were assumed to be the main factor resulting in the diurnal asymmetry in albedo of spring wheat.

  19. Modelling Wheat Growth and Yield Losses from Late Epidemics of Foliar Diseases using Loss of Green Leaf Area per Layer and Pre-anthesis Reserves

    PubMed Central

    Bancal, Marie-Odile; Robert, Corinne; Ney, Bertrand

    2007-01-01

    Background and Aims Crop protection strategies, based on preventing quantitative crop losses rather than pest outbreaks, are being developed as a promising way to reduce fungicide use. The Bastiaans' model was applied to winter wheat crops (Triticum aestivum) affected by leaf rust (Puccinia triticina) and Septoria tritici blotch (STB; Mycosphaerella graminicola) under a range of crop management conditions. This study examined (a) whether green leaf area per layer accurately accounts for growth loss; and (b) whether from growth loss it is possible to derive yield loss accurately and simply. Methods Over 5 years of field experiments, numerous green leaf area dynamics were analysed during the post-anthesis period on wheat crops using natural aerial epidemics of leaf rust and STB. Key Results When radiation use efficiency (RUE) was derived from bulk green leaf area index (GLAI), RUEbulk was hardly accurate and exhibited large variations among diseased wheat crops, thus extending outside the biological range. In contrast, when RUE was derived from GLAI loss per layer, RUElayer was a more accurate calculation and fell within the biological range. In one situation out of 13, no significant shift in the RUElayer of diseased crops vs. healthy crops was observed. A single linear relationship linked yield to post-anthesis accumulated growth for all treatments. Its slope, not different from 1, suggests that the allocation of post-anthesis photosynthates to grains was not affected by the late occurring diseases under study. The mobilization of pre-anthesis reserves completely accounted for the intercept value. Conclusions The results strongly suggest that a simple model based on green leaf area per layer and pre-anthesis reserves can predict both growth and yield of wheat suffering from late epidemics of foliar diseases over a range of crop practices. It could help in better understanding how crop structure and reserve management contribute to tolerance of wheat genotypes to

  20. Climate change due to anthropogenic surface albedo modification

    SciTech Connect

    Potter, G.L.; Ellsaesser, H.W.; MacCracken, M.C.; Ellis, J.S.; Luther, F.M.

    1980-02-01

    Using a statistical dynamic climate model with more realistic surface albedo changes than used in previous experiments, we have conducted a numerical experiment combining desertification of the Sahara and deforestation of the tropical rain forest. Over an area of 9 x 10/sup 6/ km/sup 2/ at 20/sup 0/N the desert albedo was increased from 0.16 to 0.35 and over 7 x 10/sup 6/ km/sup 2/ at the equator and 10/sup 0/S the rain forest albedo was increased from 0.07 to 0.16. While the most significant direct climatic responses were observed in the modified zones, high northern latitudes exhibited the greatest cooling through activation of the ice-albedo feedback process. In contrast to Sagan et al., this experiment suggests that anthropogenic modification of surface albedo over the past few thousand years has had an impact on global climate which is likely quite small and probably undetectable.

  1. Linking Carbon Fluxes with Remotely-Sensed Vegetation Indices for Leaf Area and Aboveground Biomass Through Footprint Climatology

    NASA Astrophysics Data System (ADS)

    Wayson, C.; Clark, K.; Hollinger, D. Y.; Skowronski, N.; Schmid, H. E.

    2010-12-01

    A major challenge of bottom-up scaling is that in-situ flux observations are spatially limited. Thus, to achieve valid regional exchange rates, models are used to interpolate and extrapolate to the vegetational/spatial domain covered by these observations. To parameterize these models from flux data, efforts must be made to select data that best represents the region being modeled as well as linking the fluxes to remotely-sensed data products that can be produced from site to regional scales. Because most long-term flux stations are not in spatially extensive, homogeneous locations, this requirement is often a challenge. However, this requirement can be met by selecting observation periods whose flux footprints are statistically representative of the type of ecosystem identified in the model. The flux footprint function indicates the time-varying surface “field-of-view” (or spatial sampling window) of an eddy-flux sensor, oriented mostly in upwind direction. For each observation period, the modeled flux footprint window is overlain with a high-resolution vegetation index map to determine a footprint-weighted vegetation index for which the observation is representative. Using flux-footprint analysis to link fluxes to models using just an enhanced vegetation index (EVI) map shows a positive trend between EVI and eddy covariance measured fluxes, but the link is not strong. Leaf area is linked with carbon (C) uptake, but forests tend to maximize leaf area, as determined through remote sensing, early on with forests having similar leaf areas across a wide range of ages. Adding another remotely-sensed dataset, aboveground biomass map (AGB), helps capture the processes of lower productivity rates (as biomass increases per unit of leaf area there is a decline, due to the forest ageing) and the C losses due to respiration, both heterotrophic and autotrophic (linked to live and detrital biomass pools). Adding biomass from LIDAR and a combined EVI-biomass layer to examine

  2. Efficient retrieval of vegetation leaf area index and canopy clumping factor from satellite data to support pollutant deposition assessments.

    PubMed

    Nikolov, Ned; Zeller, Karl

    2006-06-01

    Canopy leaf area index (LAI) is an important structural parameter of the vegetation controlling pollutant uptake by terrestrial ecosystems. This paper presents a computationally efficient algorithm for retrieval of vegetation LAI and canopy clumping factor from satellite data using observed Simple Ratios (SR) of near-infrared to red reflectance. The method employs numerical inversion of a physics-based analytical canopy radiative transfer model that simulates the bi-directional reflectance distribution function (BRDF). The algorithm is independent of ecosystem type. The method is applied to 1-km resolution AVHRR satellite images to retrieve a geo-referenced data set of monthly LAI values for the conterminous USA. Satellite-based LAI estimates are compared against independent ground LAI measurements over a range of ecosystem types. Verification results suggest that the new algorithm represents a viable approach to LAI retrieval at continental scale, and can facilitate spatially explicit studies of regional pollutant deposition and trace gas exchange.

  3. Estimates of leaf area index from spectral reflectance of wheat under different cultural practices and solar angle

    NASA Technical Reports Server (NTRS)

    Asrar, G.; Kanemasu, E. T.; Yoshida, M.

    1985-01-01

    The influence of management practices and solar illumination angle on the leaf area index (LAI) was estimated from measurements of wheat canopy reflectance evaluated by two methods, a regression formula and an indirect technique. The date of planting and the time of irrigation in relation to the stage of plant growth were found to have significant effects on the development of leaves in spring wheat. A reduction in soil moisture adversely affected both the duration and magnitude of the maximum LAI for late planting dates. In general, water stress during vegetative stages resulted in a reduction in maximum LAI, while water stress during the reproductive period shortened the duration of green LAI in spring wheat. Canopy geometry and solar angle also affected the spectral properties of the canopies, and hence the estimated LAI. Increase in solar zenith angles resulted in a general increase in estimated LAI obtained from both methods.

  4. [Effects of phosphorus fertilization on leaf area index, biomass accumulation and allocation, and phosphorus use efficiency of intercropped maize].

    PubMed

    Chen, Yuan-Xue; Li, Han-Han; Zhou, Tao; Chen, Xin-Ping; Huang, Wei; Liu, Jing; Zhang, Chao-Chun; Xu, Kai-Wei

    2013-10-01

    A 2-year field experiment was conducted in 2011 and 2012 to investigate the effects of phosphorus (P) fertilization on the leaf area index (LAI), dry matter accumulation (DMA), and P use efficiency (PUE) of maize in wheat/maize/soybean intercropping system. Five P fertilization rates were installed, i.e., 0, 45, 90, 135, and 180 kg P2O5 x hm(-2) for wheat, marked as WP0, WP1, WP2, WP3, and WP4, respectively, and 0, 37.5, 75, 112.5, and 150 kg P2O5 x hm(-2) for maize, marked as MP0, MP1, MP2, MP3, and MP4, respectively. During the coexisted growth periods of wheat and maize, P fertilization increased the LAI, leaf area duration (LAD), and stem and leaf DMA of maize significantly. After the jointing stage of maize, the maize LAI, LAD, DMA, and crop growth rate (CGR) all decreased after an initial increase with the increasing P rate, with the maximum growth in treatment MP2 or MP3. During the reproductive stage of maize, the maize dry mass translocation from vegetative to reproductive organ increased with increasing P fertilization rate, and the grain yield of both maize and whole cropping system increased firstly and decreased then, with the maximum grain yield of maize and whole cropping system being 6588 and 11955 kg x hm(-2) in treatment P3, respectively. The P apparent recovery efficiency of maize was the highest (26.3%) in treatment MP2, being 82.6%, 38.4%, and 152.9% higher than that in MP1 (14.4%), MP3 (19.0%), and MP4 (10.4%), respectively. In sum, for the wheat/maize/soybean intercropping system, applying appropriate amount of P fertilizer could promote maize growth, alleviate the impact of wheat on maize, and consequently, increase the P apparent recovery efficiency of maize. In this study, the appropriate P fertilization rate was 75-112.5 kg P2O5 x hm(-2).

  5. Influence of Initial Organic N Reserves and Residual Leaf Area on Growth, N Uptake, N Partitioning and N Storage in Alfalfa (Medicago sativa) during Post-cutting Regrowth

    PubMed Central

    MEURIOT, F.; AVICE, J.-C.; SIMON, J.-C.; LAINE, P.; DECAU, M.-L.; OURRY, A.

    2004-01-01

    • Background and Aims The influence of initial residual leaf area and initial N reserves on N uptake, final N distribution, and yield in alfalfa regrowing after cutting, were studied. • Methods The effects of two levels of initial residual leaf area (plants cut to 15 cm, with (L+) or without (L−) their leaves) and two initial levels of N status [high N (HN) or low N (LN)] on growth, N uptake and N partitioning, allocation and storage after 29 d of post-cutting regrowth were analysed. • Key Results During most of the regrowth period (8–29 d after the initial harvest), HN and L+ plants had higher net N uptake rates than LN and L− plants, respectively, resulting in a greater final mineral N uptake for these treatments. However, the final partitioning of exogenous N to the regrowing shoots was the same for all treatments (67 % of total exogenous N on average). Final shoot growth, total plant N content, and N allocation to the different taproot N pools were significantly lower in plants with reduced initial leaf area and initial N reserve status. • Conclusions Although both initial residual leaf area and initial N reserves influenced alfalfa regrowth, the residual leaf area had a greater effect on final forage production and N composition in the taproot, whereas the N uptake rate and final total N content in plant were more affected by the initial N reserve status than by the residual leaf area. Moreover, N storage as proteins (especially as vegetative storage proteins, rather than nitrate or amino acids) in the taproot allowed nitrate uptake to occur at significant rates. This suggests that protein storage is not only a means of sequestering N in a tissue for further mobilization, utilization for growth or tissue maintenance, but may also indirectly influence both N acquisition and reduction capacities. PMID:15271775

  6. Application of a new leaf area index algorithm to China's landmass using MODIS data for carbon cycle research.

    PubMed

    Liu, R; Chen, J M; Liu, J; Deng, F; Sun, R

    2007-11-01

    An operational system was developed for mapping the leaf area index (LAI) for carbon cycle models from the moderate resolution imaging spectroradiometer (MODIS) data. The LAI retrieval algorithm is based on Deng et al. [2006. Algorithm for global leaf area index retrieval using satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 44, 2219-2229], which uses the 4-scale radiative transfer model [Chen, J.M., Leblancs, 1997. A 4-scale bidirectional reflection model based on canopy architecture. IEEE Transactions on Geoscience and Remote Sensing, 35, 1316-1337] to simulate the relationship of LAI with vegetated surface reflectance measured from space for various spectral bands and solar and view angles. This algorithm has been integrated to the MODISoft platform, a software system designed for processing MODIS data, to generate 250 m, 500 m and 1 km resolution LAI products covering all of China from MODIS MOD02 or MOD09 products. The multi-temporal interpolation method was implemented to remove the residual cloud and other noise in the final LAI product so that it can be directly used in carbon models without further processing. The retrieval uncertainties from land cover data were evaluated using five different data sets available in China. The results showed that mean LAI discrepancies can reach 27%. The current product was also compared with the NASA MODIS MOD15 LAI product to determine the agreement and disagreement of two different product series. LAI values in the MODIS product were found to be 21% larger than those in the new product. These LAI products were compared against ground TRAC measurements in forests in Qilian Mountain and Changbaishan. On average, the new LAI product agrees with the field measurement in Changbaishan within 2%, but the MODIS product is positively biased by about 20%. In Qilian Mountain, where forests are sparse, the new product is lower than field measurements by about 38%, while the MODIS product is larger by about 65%.

  7. Spectral characterization of biophysical characteristics in a boreal forest: Relationship between Thematic Mapper band reflectance and leaf area index for Aspen

    NASA Technical Reports Server (NTRS)

    Badhwar, G.; Macdonald, R. B.; Hall, F. G.; Carnes, J. G.

    1984-01-01

    Results from analysis of a data set of simultaneous measurements of Thematic Mapper band reflectance and leaf area index are presented. The measurements were made over pure stands of Aspen in the Superior National Forest of northern Minnesota. The analysis indicates that the reflectance may be sensitive to the leaf area index of the Aspen early in the season. The sensitivity disappears as the season progresses. Based on the results of model calculations, an explanation for the observed relationship is developed. The model calculations indicate that the sensitivity of the reflectance to the Aspen overstory depends on the amount of understory present.

  8. Spectral characterization of biophysical characteristics in a boreal forest - Relationship between Thematic Mapper band reflectance and leaf area index for Aspen

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Macdonald, R. B.; Hall, F. G.; Carnes, J. G.

    1986-01-01

    Results from analysis of a data set of simultaneous measurements of Thematic Mapper band reflectance and leaf area index are presented. The measurements were made over pure stands of Aspen in the Superior National Forest of northern Minnesota. The analysis indicates that the reflectance may be sensitive to the leaf area index of the Aspen early in the season. The sensitivity disappears as the season progresses. Based on the results of model calculations, an explanation for the observed relationship is developed. The model calculations indicate that the sensitivity of the reflectance to the Aspen overstory depends on the amount of understory present.

  9. Relating black carbon content to reduction of snow albedo

    NASA Astrophysics Data System (ADS)

    Brandt, R. E.; Warren, S. G.; Clarke, A. D.

    2011-12-01

    may be absorbed by the walls of the container. (3) In a laboratory experiment only a narrow field of view can be measured, rather than a hemispheric field of view, so a laboratory experiment measures the bidirectional reflectance for particular angles rather than albedo. The disadvantage of an outdoor experiment is that one must wait for appropriate weather: low temperature (-20 to -40 C), calm winds, diffuse incident radiation, and no precipitation during the experiment. Using a small snowmaking machine, a snowpack of area 75 square meters and depth 15 cm is made in a period of 4 hours, deposited over a natural snowpack. A soot suspension is maintained in a sonicated bath, which can be entrained into the water stream. Two snowpacks are made side-by-side, with and without added soot. For a soot content of 1 ppm, 3 g soot were dispersed into 3 tons of snow. The spectral albedos of the two snowpacks are in agreement for near-infrared wavelengths beyond 1 micrometer, but diverge at shorter wavelengths, as expected. The soot particles in the artificial snowpack are probably located mostly inside ice grains, but the measured albedo reduction implies a mass-absorption cross-section of about 6 square meters per gram, close to that expected for an external mixture.

  10. Nonlinear variations of forest leaf area index over China during 1982-2010 based on EEMD method

    NASA Astrophysics Data System (ADS)

    Yin, Yunhe; Ma, Danyang; Wu, Shaohong; Dai, Erfu; Zhu, Zaichun; Myneni, Ranga B.

    2016-11-01

    Variations in leaf area index (LAI) are critical to research on forest ecosystem structure and function, especially carbon and water cycle, and their responses to climate change. Using the ensemble empirical mode decomposition (EEMD) method and global inventory modeling and mapping studies (GIMMS) LAI3g dataset from 1982 to 2010, we analyzed the nonlinear feature and spatial difference of forest LAI variability over China for the past 29 years in this paper. Results indicated that the national-averaged forest LAI was characterized by quasi-3- and quasi-7-year oscillations, which generally exhibited a rising trend with an increasing rate. When compared with 1982, forest LAI change by 2010 was more evident than that by 1990 and 2000. The largest increment of forest LAI occurred in Central and South China, while along the southeastern coastal areas LAI increased at the fastest pace. During the study period, forest LAI experienced from decrease to increase or vice versa across much of China and varied monotonically for only a few areas. Focusing on regional-averaged trend processes, almost all eco-geographical regions showed continuously increasing trends in forest LAI with different magnitudes and speeds, other than tropical humid region and temperate humid/subhumid region, where LAI decreased initially and increased afterwards.

  11. Analysis of forest leaf area index variations over China during 1982-2010 based on EEMD method

    NASA Astrophysics Data System (ADS)

    Ma, D.; Yin, Y.; Wu, S.; Dai, E.; Zhu, Z.; Myneni, R.

    2015-12-01

    Variations in leaf area index (LAI) are critical to research on forest ecosystem structure and function, especially carbon and water cycle, and their responses to climate change. Using the ensemble empirical mode decomposition (EEMD) method and global inventory modeling and mapping studies (GIMMS) LAI3g dataset from 1982 to 2010, we analyzed the nonlinear feature and spatial difference of forest LAI variability over China for the past 29 years in this paper. Results indicated that the national averaged forest LAI was characterized by quasi-3-year, quasi-7-year, and quasi 14-15 year oscillations, which generally exhibited a rising trend with an increasing rate. When compared with 1982, forest LAI change by 2010 was more evident than that by 1990 and 2000. The largest increment of forest LAI occurred in Central and South China, while along the southeastern coastal areas LAI increased at the fastest pace. During the study period, forest LAI experienced from decrease to increase or vice versa across much of China, and varied monotonically for only a few areas. Focusing on regional averaged trend processes, almost all eco-geographical regions showed continuously increasing trends in forest LAI with different magnitudes and speeds, other than tropical humid region and temperate humid/sub-humid region, where LAI decreased initially and increased afterwards.

  12. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops

    NASA Astrophysics Data System (ADS)

    Kross, Angela; McNairn, Heather; Lapen, David; Sunohara, Mark; Champagne, Catherine

    2015-02-01

    Leaf area index (LAI) and biomass are important indicators of crop development and the availability of this information during the growing season can support farmer decision making processes. This study demonstrates the applicability of RapidEye multi-spectral data for estimation of LAI and biomass of two crop types (corn and soybean) with different canopy structure, leaf structure and photosynthetic pathways. The advantages of Rapid Eye in terms of increased temporal resolution (∼daily), high spatial resolution (∼5 m) and enhanced spectral information (includes red-edge band) are explored as an individual sensor and as part of a multi-sensor constellation. Seven vegetation indices based on combinations of reflectance in green, red, red-edge and near infrared bands were derived from RapidEye imagery between 2011 and 2013. LAI and biomass data were collected during the same period for calibration and validation of the relationships between vegetation indices and LAI and dry above-ground biomass. Most indices showed sensitivity to LAI from emergence to 8 m2/m2. The normalized difference vegetation index (NDVI), the red-edge NDVI and the green NDVI were insensitive to crop type and had coefficients of variations (CV) ranging between 19 and 27%; and coefficients of determination ranging between 86 and 88%. The NDVI performed best for the estimation of dry leaf biomass (CV = 27% and r2 = 090) and was also insensitive to crop type. The red-edge indices did not show any significant improvement in LAI and biomass estimation over traditional multispectral indices. Cumulative vegetation indices showed strong performance for estimation of total dry above-ground biomass, especially for corn (CV ≤ 20%). This study demonstrated that continuous crop LAI monitoring over time and space at the field level can be achieved using a combination of RapidEye, Landsat and SPOT data and sensor-dependant best-fit functions. This approach eliminates/reduces the need for reflectance

  13. Detailed spatiotemporal albedo observations at Greenland's Mittivakkat Gletscher

    NASA Astrophysics Data System (ADS)

    Mernild, Sebastian H.; Knudsen, Niels T.; Yde, Jacob C.; Malmros, Jeppe K.

    2015-04-01

    Surface albedo is defined as the reflected fraction of incoming solar shortwave radiation at the surface. On Greenland's Mittivakkat Gletscher the mean glacier-wide MODIS-estimated albedo dropped by 0.10 (2000-2013) from 0.43 to 0.33 by the end of the mass balance year (EBY). Hand-held albedo measurements as low as 0.10 were observed over debris-covered ice at the glacier margin at the EBY: these values were slightly below observed values for proglacial bedrock (~0.2). The albedo is highly variable in space - a significant variability occurred within few meters at the glacier margin area ranging from 0.10 to 0.39 due to variability in debris-cover thickness and composition, microbial activity (including algae and cyanobacteria), snow grain crystal metamorphism, bare ice exposure, and meltwater ponding. Huge dark-red-brown-colored ice algae colonies were observed. Albedo measurements on snow patches and bare glacier ice changed significant with increasing elevations (180-600 m a.s.l.) by lapse rates of 0.04 and 0.03 per 100 m, respectively, indicating values as high as 0.82 and 0.40 on the upper part of the glacier. Over a period of two weeks from early August to late August 2014 the hand-held observed mean glacier-wide albedo changed from 0.40 to 0.30 indicating that on average 10% more incoming solar shortwave radiation became available for surface ablation at the end of the melt season.

  14. Mapping Urban Forest Leaf Area Index Using Lidar: A Comparison of Gap Fraction Inversion and Allometric Methods

    NASA Astrophysics Data System (ADS)

    Alonzo, M.; Bookhagen, B.; McFadden, J. P.; Sun, A.; Roberts, D. A.

    2014-12-01

    In urban areas leaf area index (LAI) is a key ecosystem structural attribute with implications for energy and water balance, gas exchange, and anthropogenic energy use. Typically, citywide LAI estimates are extrapolated from those made on forest inventory sample plots through intensive crown measurement and allometric scaling. This is a time- and labor-intensive process yielding coarse spatial resolution results. In this study we generate spatially explicit estimates of LAI using high-point density airborne lidar throughout our study area in downtown Santa Barbara, CA. We implement two theoretically distinct modeling approaches. First, based on hemispherical photography at our 71 field plots, we estimate effective LAI using scan-angle corrected lidar laser penetration metrics (LPM). For our second approach, we adapt existing allometric equations for use with a suite of crown structural metrics (e.g., tree height, crown base height) measured with lidar. This approach allows for estimates of LAI to be made at the individual tree crown scale (ITC). This is important for evaluating fine-scale interactions between canopy and urban surfaces. The LPM method resulted in good agreement with field estimates (r2 = 0.80) and a slope of near unity (β = 0.998) using a model that assumed a spherical leaf angle distribution. Within ITC segments that were automatically delineated using watershed segmentation, lidar estimates of crown structure closely paralleled field measurements (r2=0.87 for crown length). LAI estimates based on the lidar structural variables corresponded well with estimates from field measurements (r2 = 0.84). Agreement between the LPM and allometric lidar methods was also strong across the 71 validation plots (r2 = 0.88) and among 450 sample points (r2 = 0.72) randomly distributed throughout the citywide maps. This is notably higher than the agreement between the hemiphoto and allometric ground-based estimates (r2 = 0.56). The allometric approach generally

  15. The Ultraviolet Albedo of Ganymede

    NASA Astrophysics Data System (ADS)

    McGrath, Melissa; Hendrix, A.

    2013-10-01

    A large set of ultraviolet images of Ganymede have been acquired with the Hubble Space Telescope over the last 15 years. These images have been used almost exclusively to study Ganymede’s stunning auroral emissions (Feldman et al. 2000; Eviatar et al. 2001; McGrath et al. 2004; Saur et al. 2011; McGrath et al. 2013), and even the most basic information about Ganymede’s UV albedo has yet to be gleaned from these data. We will present a first-cut analysis of both disk-averaged and spatially-resolved UV albedos of Ganymede, with focus on the spatially-resolved Lyman-alpha albedo, which has never been considered previously for this satellite. Ganymede's visibly bright regions are known to be rich in water ice, while the visibly dark regions seem to be more carbonaceous (Carlson et al., 1996). At Lyman-alpha, these two species should also have very different albedo values. References Carlson, R. and 39 co-authors, Near-infrared spectroscopy and spectral mapping of Jupiter and the Galilean satellites: Results from Galileo’s initial orbit, Science, 274, 385-388, 1996. Eviatar, A., D. F. Strobel, B. C. Wolven, P. D. Feldman, M. A. McGrath, and D. J. Williams, Excitation of the Ganymede ultraviolet aurora, Astrophys. J, 555, 1013-1019, 2001. Feldman, P. D., M. A. McGrath, D. F. Strobel, H. W. Moos, K. D. Retherford, and B. C. Wolven, HST/STIS imaging of ultraviolet aurora on Ganymede, Astrophys. J, 535, 1085-1090, 2000. McGrath M. A., Lellouch E., Strobel D. F., Feldman P. D., Johnson R. E., Satellite Atmospheres, Chapter 19 in Jupiter: The Planet, Satellites and Magnetosphere, ed. F. Bagenal, T. Dowling, W. McKinnon, Cambridge University Press, 2004. McGrath M. A., Jia, Xianzhe; Retherford, Kurt; Feldman, Paul D.; Strobel, Darrell F.; Saur, Joachim, Aurora on Ganymede, J. Geophys. Res., doi: 10.1002/jgra.50122, 2013. Saur, J., S. Duling, S., L. Roth, P. D. Feldman, D. F. Strobel, K. D. Retherford, M. A. McGrath, A. Wennmacher, American Geophysical Union, Fall Meeting

  16. Leaf Area Index and Biomass Assessment over Tropical Peatland Forest Ecosystem Using ALOS PalSAR and Envisat ASAR Data

    NASA Astrophysics Data System (ADS)

    Wijaya, Arief; Susanti, Ari; Liesenberg, Veraldo; Wardhana, Wahyu; Yanto, Edi; Soeprijadi, Djoko; McFarlane, Craig; Qomar, Nurul

    2011-03-01

    Provision of accurate forest parameter properties is important as a basis for forest resources monitoring and carbon cycle assessment. The present study aims to model leaf area index (LAI), above ground biomass and carbon stocks over tropical peatland forests using single polarization SAR, full polarimetry SAR (PolSAR) data. Single band ALOS Palsar data (HH band, acquired on November 17, 2008) and polarimetric data (HH, VV, HV and VH, collected on April 4 and May 5, 2007) are used for the study. A series of ENVISAT ASAR data (5 datasets) collected in 2004 - 2005 are also used to model the forest properties. Landsat ETM data collected on January 22, 2009 is also used as a reference. The relationship between forest parameters and normalized radar backscattering is estimated using empirical models, and preliminary results show that Polarimetric SAR data has better correlations with the LAI and biomass than single polarimetry SAR data. The field data were collected during field work in March - April 2009 and the reliability of identified forest classes was also assessed from available Landsat ETM data. Analysis will be conducted on the basis of statistical correlations between radar data and modeled forest properties, such as LAI, biomass and tree age. This study focuses on a unique tropical peatland ecosystem in Kampar Peninsula, Sumatera, Indonesia, which has great potentials as carbon sinks and/or sources. Only few studies have been conducted in the study area due to limited satellite and field observation data.

  17. Scaling Properties of the Spatial Heterogeneity of Leaf Area Index on Arable Land Derived fro Remote Sensing and Simulation

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Montzka, C.; Schneider, K.

    2015-12-01

    The leaf area index (LAI) strongly influences mass and energy exchange processes of vegetated surfaces. Therefore, LAI is a crucial input variable in many large scale land surface schemes. Nonlinear dependencies of processes upon LAI require to account for its spatial heterogeneity. LAI data derived from remote sensing (RapidEye, resolution 5 m) and simulated with the ecohydrological simulation system DANUBIA (resolution 150 m) were analyzed for the fertile loess plain (1100 km2) of the Rur catchment in Germany for the year 2011. Spatial heterogeneity is described by relative frequency distributions (spatial variability) and ranges of semivariograms (spatial structure). Despite the different resolutions, model results of LAI are generally very similar to remote sensing data. Relative frequency distributions (RFD) of LAI can be explained by the superimposition of RFDs of the main crops' LAI. While upscaling (by averaging) does not change the spatial mean LAI, it reduces the standard deviation. At spatial resolutions less than 300 m, the RFDs of LAI change from asymmetric multi-peak to symmetric single-peak shapes. Spatial structure in terms of theoretical semivariogram ranges shows two characteristic lengths of 100 to 300 m and 2 to 20 km corresponding to the dimensions of agricultural fields and soil properties. Information on the shorter lengths is conserved during upscaling down to resolutions of about 500 m. Results show that for the test area, information required to comprehensively describe spatial heterogeneity (spatial variability and structure) of LAI is not conserved at spatial resolutions less than 300 m.

  18. [Leaf litter decomposition and nutrient release of different stand types in a shelter belt in Xinjiang arid area].

    PubMed

    Yang, Yu-Hai; Zheng, Lu; Duan, Yong-Zhao

    2011-06-01

    From October 2007 to November 2008, an in situ mesh bag experiment was conducted to study the leaf litter decomposition and nutrient release of forest stands Populus alba var. pyramidalis, Amorpha fruticosa, and P. alba var. pyramidalis + A. fruticosa in a shelter belt in Karamay, Xinjiang. It was observed that the mass loss rate of leaf litter differed with tree species, and was significantly affected by leaf litter composition. The leaf litter of P. alba var. pyramidalis + A. fruticosa was more easily decomposed than that of the other two mono-dominance forest trees. The analysis with improved Olson' s exponential model indicated that P. alba var. pyramidalis leaf litter had the lowest decomposition coefficient (k = 0.167), while P. alba var. pyramidalis + A. fruticosa leaf litter had the highest one (k = 0.275). According to the model, it would cost for about 2.41-4.19 years and 10.79-17.98 years to have 50% and 95% decomposition of the three kind leaf litters, respectively. The residual rates of nitrogen, phosphorus, and potassium in the three kind leaf litters differed with decomposition period. After one year decomposition, potassium was wholly released, while nitrogen and phosphorus were immobilized or enriched via the absorption from surrounding environment. Except that the A. fruticosa leaf litter had a decreased organic carbon decomposition rate in the mid period of decomposition, the leaf litters of P. alba var. pyramidalis and P. alba var. pyramidalis + A. fruticosa all had an increasing organic carbon decomposition rate with the decomposition, which was about 35.5%-44.2% after one year decomposition. The C/N value of the leaf litters had a decreasing trend, and the decrement was smaller in the early and mid periods but larger in the late period of decomposition.

  19. Uncertainty Analysis in the Creation of a Fine-Resolution Leaf Area Index (LAI) Reference Map for Validation of Moderate Resolution LAI Products

    EPA Science Inventory

    The validation process for a moderate resolution leaf area index (LAI) product (i.e., MODIS) involves the creation of a high spatial resolution LAI reference map (Lai-RM), which when scaled to the moderate LAI resolution (i.e., >1 km) allows for comparison and analysis with this ...

  20. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To predict regional-scale winter wheat yield, a framework was developed to assimilate leaf area index (LAI) values derived from MODIS (Moderate-Resolution Imaging Spectroradiometer) LAI remote sensing products into the WOFOST crop growth model. LAIs were measured in field during seven main phenologi...

  1. Framework for automated spatio-temporal enhancement of coarse resolution leaf area index (FASE-LAI) – Application to MODIS LAI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-scale satellite-based Framework for Automated Spatio-temporal Enhancement of coarse-resolution leaf area index (LAI) products (FASE-LAI) has ben established to generate 4-day time-series of Landsat-scale LAI, thereby meeting the critical demands of applications needing frequent and high spat...

  2. Monte Carlo simulations of spectral albedo for artificial snowpacks composed of spherical and nonspherical particles.

    PubMed

    Tanikawa, Tomonori; Aoki, Teruo; Hori, Masahiro; Hachikubo, Akihiro; Abe, Osamu; Aniya, Masamu

    2006-07-20

    The optical properties of snowpacks composed of spherical and nonspherical particles artificially prepared in a cold laboratory are investigated by measuring spectral albedos. The measured spectral albedo in the spectral region lambda=0.35-2.5 microm is compared with the theoretically calculated albedo, for which a Monte Carlo radiative transfer model is employed for multiple scattering combined with the Mie theory and the ray-tracing technique for single scattering by snow particles. Since the spherical particles are a little aggregate, the effects of a cluster of the spheres on snow albedo are examined using a generalized multiparticle Mie-solution model [Appl. Opt. 34, 4573 (1995); J. Quant. Spectrosc. Radiat. Transf. 79-80, 1121 (2003)]. The snow albedo of a cluster of the spheres can be represented with that of the singe sphere slightly larger than its component of the cluster in case of small grains. The observed albedos for the spherical snow particles agree with the theoretically calculated ones for the snow grain size measured in the snow pit work. The snow albedos for the nonspherical particles, which were dendrites, are influenced by the branch width and the branch length, based on a comparison of the theoretically calculated albedo by using circular cylindrical snow particles and the observed albedo. The snow albedo in the near-infrared region depends on the branch width only when the branch length is sufficiently greater than the branch width. The comparison between the spherical and nonspherical snow particles indicates that the spectral albedo of the nonspherical particles can be represented by using an equal volume-area ratio sphere.

  3. Changes in Earth's albedo measured by satellite.

    PubMed

    Wielicki, Bruce A; Wong, Takmeng; Loeb, Norman; Minnis, Patrick; Priestley, Kory; Kandel, Robert

    2005-05-06

    NASA global satellite data provide observations of Earth's albedo, i.e., the fraction of incident solar radiation that is reflected back to space. The satellite data show that the last four years are within natural variability and fail to confirm the 6% relative increase in albedo inferred from observations of earthshine from the moon. Longer global satellite records will be required to discern climate trends in Earth's albedo.

  4. Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan; Xiang, Wenhua; Pan, Qiong; Zeng, Yelin; Ouyang, Shuai; Lei, Pifeng; Deng, Xiangwen; Fang, Xi; Peng, Changhui

    2016-07-01

    Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber-C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.

  5. Solar Radiation Management, Cloud Albedo Enhancement

    NASA Astrophysics Data System (ADS)

    Salter, Stephen H.

    Cloud albedo enhancement is one of several possible methods of solar radiation management by which the rate of increase in world temperatures could be reduced or even reversed. It depends on a well-known phenomenon in atmospheric physics known as the Twomey effect. Twomey argued that the reflectivity of clouds is a function of the size distribution of the drops in the cloud top. In clean mid-ocean air masses, there is a shortage of the condensation nuclei necessary for initial drop formation in addition to high relative humidity. This means that the liquid water in a cloud has to be in relatively large drops. If extra nuclei could be artificially introduced, the same amount of liquid water would be shared among a larger number of smaller drops which would have a larger surface area to reflect a larger fraction of the incoming solar energy back out to space.

  6. Calculation of albedos for neutrons and photons

    NASA Astrophysics Data System (ADS)

    Brockhoff, Ronald Carl

    2003-07-01

    The albedo concept is used to describe radiation that appears to be reflected from a surface, although in reality this reflected radiation is comprised of radiation that has entered the medium, and is subsequently scattered back through the surface. The albedo often offers a computationally simple alternative to estimate doses from radiation reflected from surfaces surrounding a streaming region. However, albedo data available prior to this study, are limited to relatively few source energies and reflecting media, and are based on obsolete and incomplete cross sections and response functions. The Monte Carlo code MCNP is applied in this study to calculate the differential photon and neutron dose albedos, along with the differential secondary-photon dose albedo, based on modern response functions and cross section data. Differential photon dose albedo data were calculated for source energies ranging from 0.1 to 10 MeV incident on slabs of concrete, iron, lead, and water. Differential neutron dose albedo data, and the associated differential secondary-photon dose albedo data, were calculated for source energy bands ranging from 0.1 to 10 MeV, and for thermal, Californium, and 14 MeV source spectra, incident on the same four reflecting media. The results indicate that (1) the approximation of the differential photon dose albedo proposed by Chilton and Huddleston usually deviates from the raw albedo data by less than 10% for source energies between 0.1 and 10.0 MeV, (2) the new 24-parameter approximation of the differential neutron dose albedo deviates from the raw albedo data by less than 10% for source energy bands between 0.1 and 10 MeV, and (3) the five-parameter approximation of the secondary-photon dose albedo deviates from the raw albedo data by less than 25% for source energies between 0.1 and 10 MeV. The differential dose albedo approximations obtained in this study are used to solve several example radiation transport problems, where the dose from reflected

  7. Time-variable Earth's albedo model characteristics and applications to satellite sampling errors

    NASA Technical Reports Server (NTRS)

    Bartman, F. L.

    1981-01-01

    Characteristics of the time variable Earth albedo model are described. With the cloud cover multiplying factor adjusted to produce a global annual average albedo of 30.3, the global annual average cloud cover is 45.5 percent. Global annual average sunlit cloud cover is 48.5 percent; nighttime cloud cover is 42.7 percent. Month-to-month global average albedo is almost sinusoidal with maxima in June and December and minima in April and October. Month-to-month variation of sunlit cloud cover is similar, but not in all details. The diurnal variation of global albedo is greatest from November to March; the corresponding variation of sunlit cloud cover is greatest from May to October. Annual average zonal albedos and monthly average zonal albedos are in good agreement with satellite-measured values, with notable differences in the polar regions in some months and at 15 S. The albedo of some 10 deg by 10 deg. areas of the Earth versus zenith angle are described. Satellite albedo measurement sampling effects are described in local time and in Greenwich mean time.

  8. The temporal scale research of MODIS albedo product authenticity verification

    NASA Astrophysics Data System (ADS)

    Cao, Yongxing; Xue, Zhihang; Cheng, Hui; Xiong, Yajv; Chen, Yunping; Tong, Ling

    2016-06-01

    This study introduces a method that normalizes the inversed ETM+ albedo to the local solar noon albedo for the temporal scale of the MODIS albedo validation. Firstly, the statistical relation model between the surface albedo and the solar elevation angle was set up, and then deducing relationship between ETM+ albedo and the solar elevation angle, so the ETM+ albedo at local solar noon could be got. Secondly, the ground measurement albedo at the local solar noon was used to assess the inversed ETM+ albedo and the normalized albedo. The experiment results show that the method can effectively improve the accuracy of product certification.

  9. Surface Albedo Darkening from wildfires in Northern Sub-Saharan Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Ichoku, C. M.; Poudal, R.; Roman, M. O.; Wilcox, E.

    2014-01-01

    Wildfires are recognized as a key physical disturbance of terrestrial ecosystems and a major source of atmospheric trace gases and aerosols. They are known to produce changes in landscape patterns and lead to changes in surface albedo that can persist for long periods. Here, we estimate the darkening of surface albedo due to wildfires in different land cover ecosystems in the Northern Sub-Saharan Africa using data from the Moderate Resolution Imaging Spectroradiometer (MODIS). We determined a decrease in albedo after fires over most land cover types (e.g. woody savannas: (-0.00352 0.00003) and savannas: (- 0.003910.00003), which together accounted for >86% of the total MODIS fire count between 2003 and 2011). Grasslands had a higher value (-0.00454 0.00003) than the savannas, but accounted for only about 5% of the total fire count. A few other land cover types (e.g. Deciduous broad leaf: (0.00062 0.00015), and barren: 0.00027 0.00019), showed an increase in albedo after fires, but accounted for less than 1% of the total fires. Albedo change due to wildfires is more important during the fire season (October-February). The albedo recovery progresses rapidly during the first year after fires, where savannas show the greatest recovery (>77%) within one year, while deciduous broadleaf, permanent wetlands and barren lands show the least one-year recovery (56%). The persistence of surface albedo darkening in most land cover types is limited to about six to seven years, after which at least 98% of the burnt pixels recover to their pre-fire albedo.

  10. Deriving Leaf Area Index (LAI) from multiple lidar remote sensing systems

    NASA Astrophysics Data System (ADS)

    Tang, H.; Dubayah, R.; Zhao, F.

    2012-12-01

    LAI is an important biophysical variable linking biogeochemical cycles of earth systems. Observations with passive optical remote sensing are plagued by saturation and results from different passive and active sensors are often inconsistent. Recently lidar remote sensing has been applied to derive vertical canopy structure including LAI and its vertical profile. In this research we compare LAI retrievals from three different types of lidar sensors. The study areas include the La Selva Biological Station in Costa Rica and Sierra Nevada Forest in California. We first obtain independent LAI estimates from different lidar systems including airborne lidar (LVIS), spaceborne lidar (GLAS) and ground lidar (Echidna). LAI retrievals are then evaluated between sensors as a function of scale, land cover type and sensor characteristics. We also assess the accuracy of these LAI products against ground measurements. By providing a link between ground observations, ground lidar, aircraft and space-based lidar we hope to demonstrate a path for deriving more accurate estimates of LAI on a global basis, and to provide a more robust means of validating passive optical estimates of this important variable.

  11. Performance Evaluation of Machine Learning Methods for Leaf Area Index Retrieval from Time-Series MODIS Reflectance Data

    PubMed Central

    Wang, Tongtong; Xiao, Zhiqiang; Liu, Zhigang

    2017-01-01

    Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Because of the impacts of clouds and aerosols, the LAI products generated by these methods are spatially incomplete and temporally discontinuous, and thus they cannot meet the needs of practical applications. To generate high-quality LAI products, four machine learning algorithms, including back-propagation neutral network (BPNN), radial basis function networks (RBFNs), general regression neutral networks (GRNNs), and multi-output support vector regression (MSVR) are proposed to retrieve LAI from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data in this study and performance of these machine learning algorithms is evaluated. The results demonstrated that GRNNs, RBFNs, and MSVR exhibited low sensitivity to training sample size, whereas BPNN had high sensitivity. The four algorithms performed slightly better with red, near infrared (NIR), and short wave infrared (SWIR) bands than red and NIR bands, and the results were significantly better than those obtained using single band reflectance data (red or NIR). Regardless of band composition, GRNNs performed better than the other three methods. Among the four algorithms, BPNN required the least training time, whereas MSVR needed the most for any sample size. PMID:28045443

  12. Evaluation and Intercomparison of MODIS and GEOV1 Global Leaf Area Index Products over Four Sites in North China

    PubMed Central

    Li, Zhenwang; Tang, Huan; Zhang, Baohui; Yang, Guixia; Xin, Xiaoping

    2015-01-01

    This study investigated the performances of the Moderate Resolution Imaging Spectroradiometer (MODIS) and GEOLAND2 Version 1 (GEOV1) Leaf Area Index (LAI) products using ground measurements and LAI reference maps over four sites in North China for 2011–2013. The Terra + Aqua MODIS and Terra MODIS LAI retrieved by the main algorithm and GEOV1 LAI within the valid range were evaluated and intercompared using LAI reference maps to assess their uncertainty and seasonal variability The results showed that GEOV1 LAI is the most similar product with the LAI reference maps (R2 = 0.78 and RMSE = 0.59). The MODIS products performed well for biomes with low LAI values, but considerable uncertainty arose when the LAI was larger than 3. Terra + Aqua MODIS (R2 = 0.72 and RMSE = 0.68) was slightly more accurate than Terra MODIS (R2 = 0.57 and RMSE = 0.90) for producing slightly more successful observations. Both MODIS and GEOV1 products effectively followed the seasonal trajectory of the reference maps, and GEOV1 exhibited a smoother seasonal trajectory than MODIS. MODIS anomalies mainly occurred during summer and likely occurred because of surface reflectance uncertainty, shorter temporal resolutions and inconsistency between simulated and MODIS surface reflectances. This study suggests that further improvements of the MODIS LAI products should focus on finer algorithm inputs and improved seasonal variation modeling of MODIS observations. Future field work considering finer biome maps and better generation of LAI reference maps is still needed. PMID:25781509

  13. Tracking Crop Leaf Area Index and Chlorophyll Content Using RapidEye Data in Northern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Shang, J.; Liu, J.; Ma, B.; Zhao, T.; Kovacs, J. M.; Jiao, X.; Dong, T.; Huffman, T.; Geng, X.; Walters, D.

    2014-12-01

    Information on crop phenological state such as flowering, maturing, drying, senescence, and harvesting is essential for crop production surveillance and yield prediction. Earth Observation data provide an important information source for monitoring crop development at various temporal and spatial scales. In particular, the availability of many high-spatial-resolution space sensors offers a powerful tool for precision farming. This study reports the results of a two-year (2012, 2013) study over spring wheat and canola fields using six different vegetation indices derived from the high-resolution (6.5m) RapidEye optical satellite data in northern Ontario, Canada. The study revealed that for both wheat and canola, significant relationships were observed between the ground-derived leaf area index (LAI) and all 6 vegetation indices tested. For spring wheat, the strongest relationship was found between LAI and the Modified Triangular Vegetation Index 2 (MTVI2), with a coefficient of determination (R2) of 0.95. For canola, a R2 of 0.92 was achieved. Strong relationships were also found between all six vegetation indices and the chlorophyll concentration index (CCI) measured in the fields using a CCM-200 device. The strongest correlation exists between CCI and the ratio of Modified the Chlorophyll Absorption Reflected Index (MCARI) and the Optimized Soil Adjusted Vegetation Index (OSAVI), with an R2 of 0.86. It suggests that RapidEye data can be used to track field-scale crop LAI and monitor crop chlorophyll content.

  14. How to reduce day-to-day variation of leaf area index derived from digital cover photography?

    NASA Astrophysics Data System (ADS)

    Hwang, Y. R.; Ryu, Y.; Kimm, H.; Macfarlane, C.; Lang, M.; Sonnentag, O.

    2014-12-01

    Leaf area index (LAI) is essential for computing canopy level carbon and water fluxes. Nowadays, it is possible to automatically monitor daily LAI using low-cost sensors, such as digital cameras and LED-sensors. Recent studies have shown that RAW camera format images can improve the estimation of gap fractions and LAI compared to JPEG format. However, whether RAW-based methods can effectively reduce day-to-day variation of LAI time series has not been investigated. In this study, we used two methods to compute gap fraction. The first method separates sky and vegetation pixels using a single threshold in the blue band histogram. The second method interpolates the background sky image from pure sky pixels, and computes the transmittance from original and reconstructed images. In order to investigate which method is more accurate in reducing day-to-day variation of LAI, we first conducted a controlled experiment with punched panels which included different hole size and gap fractions on the rooftop. Then, we applied both methods to photos collected daily over a year at deciduous forest and evergreen forest in South Korea.

  15. Performance Evaluation of Machine Learning Methods for Leaf Area Index Retrieval from Time-Series MODIS Reflectance Data.

    PubMed

    Wang, Tongtong; Xiao, Zhiqiang; Liu, Zhigang

    2017-01-01

    Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Because of the impacts of clouds and aerosols, the LAI products generated by these methods are spatially incomplete and temporally discontinuous, and thus they cannot meet the needs of practical applications. To generate high-quality LAI products, four machine learning algorithms, including back-propagation neutral network (BPNN), radial basis function networks (RBFNs), general regression neutral networks (GRNNs), and multi-output support vector regression (MSVR) are proposed to retrieve LAI from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data in this study and performance of these machine learning algorithms is evaluated. The results demonstrated that GRNNs, RBFNs, and MSVR exhibited low sensitivity to training sample size, whereas BPNN had high sensitivity. The four algorithms performed slightly better with red, near infrared (NIR), and short wave infrared (SWIR) bands than red and NIR bands, and the results were significantly better than those obtained using single band reflectance data (red or NIR). Regardless of band composition, GRNNs performed better than the other three methods. Among the four algorithms, BPNN required the least training time, whereas MSVR needed the most for any sample size.

  16. [Research on universality of least squares support vector machine method for estimating leaf area index of winter wheat].

    PubMed

    Xie, Qiao-Yun; Huang, Wen-Jiang; Liang, Dong; Peng, Dai-Liang; Huang, Lin-Sheng; Song, Xiao-Yu; Zhang, Dong-Yan; Yang, Gui-Jun

    2014-02-01

    Leaf area index (LAI) is one of the most important parameters for evaluating winter wheat growth status and forecasting its yield. Hyperspectral remote sensing is a new technical approach that can be used to acquire the instant information of vegetation LAI at large scale. This study aims to explore the capability of least squares support vector machines (LS-SVM) method to winter wheat LAI estimation with hyperspectral data. After the compression of PHI airborne data with principal component analysis (PCA), the sample set based on the measured LAI data and hyperspectral reflectance data was established. Then the method of LS-SVM was developed respectively to estimate winter wheat LAI under four different conditions, to be specific, different plant type cultivars, different periods, different nitrogenous fertilizer and water conditions. Compared with traditional NDVI model estimation results, each experiment of LS-SVM model yielded higher determination coefficient as well as lower RMSE value, which meant that the LS-SVM method performed better than the NDVI method. In addition, NDVI model was unstable for winter wheat under the condition of different plant type cultivars, different nitrogenous fertilizer and different water, while the LS-SVM model showed good stability. Therefore, LS-SVM has high accuracy for learning and considerable universality for estimation of LAI of winter wheat under different conditions using hyperspectral data.

  17. Estimating Pan Arctic Net Ecosystem Exchange using Functional Relationships with Air temperature, Leaf Area Index and Photosynthetic Active Radiation

    NASA Astrophysics Data System (ADS)

    Mbufong, H.; Kusbach, A.; Lund, M.; Persson, A.; Christensen, T. R.; Tamstorf, M. P.; Connolly, J.

    2015-12-01

    The high variability in Arctic tundra net ecosystem exchange (NEE) of carbon (C) is often attributed to the high spatial heterogeneity of Arctic tundra. Current models of carbon exchange thus handle the Arctic as either a single or few ecosystems, responding to environmental change in the same manner. In this study, we developed and tested a simple NEE model using the Misterlich light response curve (LRC) function with photosynthetic photon flux density (PPFD) as the main driving variable. Model calibration was carried out with eddy covariance carbon dioxide data from 12 Arctic tundra sites. The model input parameters (fcsat, Rd and α) were estimated as a function of air temperature and leaf area index (LAI) and represent specific characteristics of the NEE-PPFD relationship. They describe the saturation flux, dark respiration and initial light use efficiency, respectively. While remotely sensed LAI is readily available as a MODIS Terra product (MCD15A3), air temperature was estimated from a direct relationship with MODIS land surface temperature (MOD11A2, LST). Therefore, no specific knowledge of the vegetation type is required. Preliminary results show the model captures the spatial heterogeneity of the Arctic tundra but so far, overestimates NEE on all 17 test sites which include heaths, bogs, fens, and tussock tundra vegetation. The final updated results and error assessment will be presented at the conference in December.

  18. Leaf Area Index Estimation in Vineyards from Uav Hyperspectral Data, 2d Image Mosaics and 3d Canopy Surface Models

    NASA Astrophysics Data System (ADS)

    Kalisperakis, I.; Stentoumis, Ch.; Grammatikopoulos, L.; Karantzalos, K.

    2015-08-01

    The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications. To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular, canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The computed canopy levels have been used to establish relationships with the measured LAI (ground truth) from several vines in Nemea, Greece. The overall evaluation indicated that the estimated canopy levels were correlated (r2 > 73%) with the in-situ, ground truth LAI measurements. As expected the lowest correlations were derived from the calculated greenness levels from the 2D RGB orthomosaics. The highest correlation rates were established with the hyperspectral canopy greenness and the 3D canopy surface models. For the later the accurate detection of canopy, soil and other materials in between the vine rows is required. All approaches tend to overestimate LAI in cases with sparse, weak, unhealthy plants and canopy.

  19. Global color and albedo variations on Io

    USGS Publications Warehouse

    McEwen, A.S.

    1988-01-01

    Three multispectral mosaics of Io have been produced from Voyager imaging data: a global mosaic from each of the Voyager 1 and Voyager 2 data sets and a high-resolution mosaic of the region surrounding the volcano Ra Patera. The mosaics are maps of normal albedo and color in accurate geometric map formats. Io's photometric behavior, mapped with a two-image technique, is spatially variable, especially in the bright white areas. The disk-integrated color and albedo of the satellite have been remarkably constant over recent decades, despite the volcanic activity and the many differences between Voyager 1 and 2 images (acquired just 4 months apart). This constancy is most likely due to the consistent occurrence of large Pele-type plumes with relatively dark, red deposits in the region from long 240 to 360??. A transient brightening southeast of Pele during the Voyager 1 encounter was probably due to real changes in surface and/or atmospheric materials, rather than to photometric behavior. The intrinsic spectral variability of Io, as seen in a series of two-dimensional histograms of the multispectral mosaics, consists of continuous variation among three major spectral end members. The data were mapped into five spectral units to compare them with laboratory measurements of candidate surface materials and to show the planimetric distributions. Unit 1 is best fit by the spectral reflectance of ordinary elemental sulfur, and it is closely associated with the Peletype plume deposits. Unit 2 is strongly confined to the polar caps above about latitude ??50??, but its composition is unknown. Unit 5 is probably SO2 with relatively minor contamination; it is concentrated in the equatorial region and near the long-lived Prometheus-type plumes. Units 3 and 4 are gradational between units 1 and 5. In addition to SO2 and elemental sulfur, other plausible components of the surface are polysulfur oxides, FeCl2, Na2S, and NaHS. ?? 1988.

  20. Generating Vegetation Leaf Area Index Earth System Data Record from Multiple Sensors. Part 2; Implementation, Analysis and Validation

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram; Samanta, Arindam; Schull, Mitchell A.; Shabanov, Nikolay V.; Milesi, Cristina; Nemani, Ramajrushna R,; Knyazikhin, Yuri; Myneni, Ranga B.

    2008-01-01

    The evaluation of a new global monthly leaf area index (LAI) data set for the period July 1981 to December 2006 derived from AVHRR Normalized Difference Vegetation Index (NDVI) data is described. The physically based algorithm is detailed in the first of the two part series. Here, the implementation, production and evaluation of the data set are described. The data set is evaluated both by direct comparisons to ground data and indirectly through inter-comparisons with similar data sets. This indirect validation showed satisfactory agreement with existing LAI products, importantly MODIS, at a range of spatial scales, and significant correlations with key climate variables in areas where temperature and precipitation limit plant growth. The data set successfully reproduced well-documented spatio-temporal trends and inter-annual variations in vegetation activity in the northern latitudes and semi-arid tropics. Comparison with plot scale field measurements over homogeneous vegetation patches indicated a 7% underestimation when all major vegetation types are taken into account. The error in mean values obtained from distributions of AVHRR LAI and high-resolution field LAI maps for different biomes is within 0.5 LAI for six out of the ten selected sites. These validation exercises though limited by the amount of field data, and thus less than comprehensive, indicated satisfactory agreement between the LAI product and field measurements. Overall, the intercomparison with short-term LAI data sets, evaluation of long term trends with known variations in climate variables, and validation with field measurements together build confidence in the utility of this new 26 year LAI record for long term vegetation monitoring and modeling studies.

  1. The influence of inter-annually varying albedo on regional climate and drought

    NASA Astrophysics Data System (ADS)

    Meng, X. H.; Evans, J. P.; McCabe, M. F.

    2014-02-01

    Albedo plays an important role in land-atmosphere interactions and local climate. This study presents the impact on simulating regional climate, and the evolution of a drought, when using the default climatological albedo as is usually done in regional climate modelling, or using the actual observed albedo which is rarely done. Here, time-varying satellite derived albedo data is used to update the lower boundary condition of the Weather Research and Forecasting regional climate model in order to investigate the influence of observed albedo on regional climate simulations and also potential changes to land-atmosphere feedback over south-east Australia. During the study period from 2000 to 2008, observations show that albedo increased with an increasingly negative precipitation anomaly, though it lagged precipitation by several months. Compared to in-situ observations, using satellite observed albedo instead of the default climatological albedo provided an improvement in the simulated seasonal mean air temperature. In terms of precipitation, both simulations reproduced the drought that occurred from 2002 through 2006. Using the observed albedo produced a drier simulation overall. During the onset of the 2002 drought, albedo changes enhanced the precipitation reduction by 20 % on average, over locations where it was active. The area experiencing drought increased 6.3 % due to the albedo changes. Two mechanisms for albedo changes to impact land-atmosphere drought feedback are investigated. One accounts for the increased albedo, leading to reduced turbulent heat flux and an associated decrease of moist static energy density in the planetary boundary layer; the other considers that enhanced local radiative heating, due to the drought, favours a deeper planetary boundary layer, subsequently decreasing the moist static energy density through entrainment of the free atmosphere. Analysis shows that drought related large-scale changes in the regional climate favour a

  2. The influence of inter-annually varying albedo on regional climate and drought

    NASA Astrophysics Data System (ADS)

    Meng, X. H.; Evans, J. P.; McCabe, M. F.

    2013-05-01

    Albedo plays an important role in land-atmosphere interactions and local climate. This study presents the impact on simulating regional climate, and the evolution of a drought, when using the default climatological albedo as is usually done in regional climate modelling, or using the actual observed albedo which is rarely done. Here, time-varying satellite derived albedo data is used to update the lower boundary condition of the Weather Research and Forecasting regional climate model in order to investigate the influence of observed albedo on regional climate simulations and also potential changes to land-atmosphere feedback over south-east Australia. During the study period from 2000 to 2008, observations show that albedo increased with an increasingly negative precipitation anomaly, though it lagged precipitation by several months. Compared to in-situ observations, using satellite observed albedo instead of the default climatological albedo provided an improvement in the simulated seasonal mean air temperature. In terms of precipitation, both simulations reproduced the drought that occurred from 2002 through 2006. Using the observed albedo produced a drier simulation overall. During the onset of the 2002 drought, albedo changes enhanced the precipitation reduction by 20 % on average, over locations where it was active. The area experiencing drought increased 6.3 % due to the albedo changes. Two mechanisms for albedo changes to impact land-atmosphere drought feedback are investigated. One accounts for the increased albedo, leading to reduced turbulent heat flux and an associated decrease of moist static energy density in the planetary boundary layer; the other considers that enhanced local radiative heating, due to the drought, favours a deeper planetary boundary layer, subsequently decreasing the moist static energy density through entrainment of the free atmosphere. Analysis shows that drought related large-scale changes in the regional climate favour a

  3. Model estimates of leaf area and reference canopy stomatal conductance suggest correlation between phenology and physiology in both trembling aspen and red pine

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Ewers, B. E.; Kruger, E. L.

    2006-12-01

    Phenological variations impact water and carbon fluxes, as evidenced by the large interannual variability of net ecosystem exchange of carbon dioxide and evapotranspiration (ET). In northern Wisconsin we observed daily variations of canopy transpiration from hardwoods from 1.0 to 1.7 mm/day during the leaf unfolding period and 1.7 to 2.6 mm/day with leaves fully out. Correlations between such flux rates and phenology have not been extensively tested and mechanistic connections are in their infancy. Some data suggest that stomatal conductance and photosynthesis increases up to full expansion. Moreover, in conifers, the interaction of phenology and physiology is more complicated than in deciduous trees because needles are retained for several years. Using inverse modeling with a coupled photosynthesis-transpiration model we estimated reference canopy stomatal conductance, Gsref, for red pine (Pinus resinosa), and Gsref and leaf area index, L, for trembling aspen (Populus tremuloides), using 30-min continuous sap flux data spanning a period from just prior to the start of leaf expansion to just after leaf senescence. The red pine showed Gsref ramp up from 105 to 179 mmol m-2 leaf s-1, which represented a 37 to 50 percent increase in Gsref after accounting for maximum possible changes in L. After full leaf out, the trembling aspen were almost immediately defoliated, and then reflushed after three weeks. Model estimates of L reflected this pattern and were consistent with measurements. However, Gsref never exceeded 45 mmol m-2 s-1 prior to defoliation, but peaked at 112 mmol m-2 s-1 after reflushing. These results support the need for further work that aims to separate phenology and physiology.

  4. The surface abundance and stratigraphy of lunar rocks from data about their albedo

    NASA Technical Reports Server (NTRS)

    Shevchenko, V. V.

    1977-01-01

    The data pf ground-based studies and surveys of the lunar surface by the Zond and Apollo spacecraft have been used to construct an albedo map covering 80 percent of the lunar sphere. Statistical analysis of the distribution of areas with various albedos shows several types of lunar surface. Comparison of albedo data for maria and continental areas with the results of geochemical orbital surveys allows the identification of the types of surface with known types of lunar rock. The aluminum/silcon and magnesium/silicon ratios as measured by the geochemical experiments on the Apollo 15 and Apollo 16 spacecraft were used as an indication of the chemical composition of the rock. The relationship of the relative aluminum content to the age of crystalline rocks allows a direct dependence to be constructed between the mean albedo of areas and the age of the rocks of which they are composed.

  5. Evaluation of Moderate-Resolution Imaging Spectroradiometer (MODIS) Snow Albedo Product (MCD43A) over Tundra

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Schaaf, Crystal B.; Chopping, Mark J.; Strahler, Alan H.; Wang, Jindi; Roman, Miguel O.; Rocha, Adrian V.; Woodcock, Curtis E.; Shuai, Yanmin

    2012-01-01

    This study assesses the MODIS standard Bidirectional Reflectance Distribution Function (BRDF)/Albedo product, and the daily Direct Broadcast BRDF/Albedo algorithm at tundra locations under large solar zenith angles and high anisotropic diffuse illumination and multiple scattering conditions. These products generally agree with ground-based albedo measurements during the snow cover period when the Solar Zenith Angle (SZA) is less than 70deg. An integrated validation strategy, including analysis of the representativeness of the surface heterogeneity, is performed to decide whether direct comparisons between field measurements and 500- m satellite products were appropriate or if the scaling of finer spatial resolution airborne or spaceborne data was necessary. Results indicate that the Root Mean Square Errors (RMSEs) are less than 0.047 during the snow covered periods for all MCD43 albedo products at several Alaskan tundra areas. The MCD43 1- day daily albedo product is particularly well suited to capture the rapidly changing surface conditions during the spring snow melt. Results also show that a full expression of the blue sky albedo is necessary at these large SZA snow covered areas because of the effects of anisotropic diffuse illumination and multiple scattering. In tundra locations with dark residue as a result of fire, the MODIS albedo values are lower than those at the unburned site from the start of snowmelt.

  6. Satellite derived albedoes during spring melt for selected locations in the Arctic

    NASA Astrophysics Data System (ADS)

    Busse, J.; Anderson, M.

    2005-12-01

    Snow and ice surfaces have a high level of reflectance, therefore, a high albedo, compared to open water and soil which have lower albedo values and absorb more sunlight. As the high albedo snow and ice begins to melt, the albedo values drop. This contributes to a positive feedback mechanism. The dropping albedo values indicate that more radiation is being absorbed by the surface. As more radiation is absorbed by the surface, more melt occurs, which then leads to lower albedoes and more absorption. This positive feedback continues until the fall when new snow covers the surface and the albedo begins to increase, disrupting the cycle. In the Arctic, the amount of sea ice surviving the summer melt season continues to decrease, indicating a change in the surface conditions during this important melt season. However, very little is known about the albedoes during the melt period. This study documents the albedo changes that occur during the melt season and compares these changes to melt onset dates derived from passive microwave data in order to obtain a multi-frequency response to the energy conditions. Time series of albedo data from the AVHRR Polar Pathfinder Twice-Daily 25-km EASE-Grid Composites are obtained to show the transition from winter to summer conditions from 13 different points within the Arctic. Areas experiencing melt are explored and melt onset dates are determined. Snow and ice melt can also be detected using SMMR and SSM/I passive microwave data. Microwave data are useful to pinpoint when melt occurs, because microwaves can also detect changes in surface conditions. The albedo data are compared with melt onset dates obtained from microwave sensors to determine relationships between microwave-derived melt and albedo responses. Data from areas experiencing early melt onset and late melt onset are explored. Studying the time series from the 13 different points in the Arctic show the relationship between surface melt and albedo variations during the

  7. Estimation of leaf area index using an angular vegetation index based on in situ measurements and CHRIS/PROBA data

    NASA Astrophysics Data System (ADS)

    Wang, Lijuan; Zhang, Guimin; Lin, Hui; Liang, Liang; Niu, Zheng

    2016-06-01

    The Normalized Difference Vegetation Index (NDVI) is widely used for Leaf Area Index (LAI) estimation. It is well documented that the NDVI is extremely subject to the saturation problem when LAI reaches a high value. A new multi-angular vegetation index, the Hotspot-darkspot Difference Vegetation Index (HDVI) is proposed to estimate the high density LAI. The HDVI, defined as the difference between the hot and dark spot NDVI, relative to the dark spot NDVI, was proposed based on the Analytical two-layer Canopy Reflectance Model (ACRM) model outputs. This index is validated using both in situ experimental data in wheat and data from the multi-angular optical Compact High-Resolution Imaging Spectrometer (CHRIS) satellite. Both indices, the Hotspot-Darkspot Index (HDS) and the NDVI were also selected to analyze the relationship with LAI, and were compared with new index HDVI. The results show that HDVI is an appropriate proxy of LAI with higher determination coefficients (R2) for both the data from the in situ experiment (R2=0.7342, RMSE=0.0205) and the CHRIS data (R2=0.7749, RMSE=0.1013). Our results demonstrate that HDVI can make better the occurrence of saturation limits with the information of multi-angular observation, and is more appropriate for estimating LAI than either HDS or NDVI at high LAI values. Although the new index needs further evaluation, it also has the potential under the condition of dense canopies. It provides the effective improvement to the NDVI and other vegetation indices that are based on the red and NIR spectral bands.

  8. Evaluating the drought response of CMIP5 models using global gross primary productivity, leaf area, precipitation, and soil moisture data

    NASA Astrophysics Data System (ADS)

    Huang, Yuanyuan; Gerber, Stefan; Huang, Tongyi; Lichstein, Jeremy W.

    2016-12-01

    Realistic representation of vegetation's response to drought is important for understanding terrestrial carbon cycling. We evaluated nine Earth system models from the historical experiment of the Coupled Model Intercomparison Project Phase 5 for the response of gross primary productivity (GPP) and leaf area index (LAI) to hydrological anomalies. Hydrological anomalies were characterized by the standardized precipitation index (SPI) and surface soil moisture anomalies (SMA). GPP and LAI in models were on average more responsive to SPI than in observations revealed through several indicators. First, we find higher mean correlations between global annual anomalies of GPP and SPI in models than observations. Second, the maximum correlation between GPP and SPI across 1-24 month time scales is higher in models than observations. And finally, we found stronger excursions of GPP to extreme dry or wet events. Similar to GPP, LAI responded more to SPI in models than observations. The over-response of models is smaller if evaluated based on SMA instead of SPI. LAI responses to SMA are inconsistent among models, showing both higher and lower LAI when soil moisture is reduced. The time scale of maximum correlation is shorter in models than the observation for GPP, and the markedly different response time scales among models for LAI indicate gaps in understanding how variability of water availability affects foliar cover. The discrepancy of responses derived from SPI and SMA among models, and between models and observations, calls for improvement in understanding the dynamics of plant-available water in addition to how vegetation responds to these anomalies.

  9. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data

    NASA Astrophysics Data System (ADS)

    Dong, Taifeng; Liu, Jiangui; Qian, Budong; Zhao, Ting; Jing, Qi; Geng, Xiaoyuan; Wang, Jinfei; Huffman, Ted; Shang, Jiali

    2016-07-01

    A sufficient number of satellite acquisitions in a growing season are essential for deriving agronomic indicators, such as green leaf area index (GLAI), to be assimilated into crop models for crop productivity estimation. However, for most high resolution orbital optical satellites, it is often difficult to obtain images frequently due to their long revisit cycles and unfavorable weather conditions. Data fusion algorithms, such as the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and the Enhanced STARFM (ESTARFM), have been developed to generate synthetic data with high spatial and temporal resolution to address this issue. In this study, we evaluated the approach of assimilating GLAI into the Simple Algorithm for Yield Estimation model (SAFY) for winter wheat biomass estimation. GLAI was estimated using the two-band Enhanced Vegetation Index (EVI2) derived from data acquired by the Operational Land Imager (OLI) onboard the Landsat-8 and a fusion dataset generated by blending the Moderate-Resolution Imaging Spectroradiometer (MODIS) data and the OLI data using the STARFM and ESTARFM models. The fusion dataset had the temporal resolution of the MODIS data and the spatial resolution of the OLI data. Key parameters of the SAFY model were optimised through assimilation of the estimated GLAI into the crop model using the Shuffled Complex Evolution-University of Arizona (SCE-UA) algorithm. A good agreement was achieved between the estimated and field measured biomass by assimilating the GLAI derived from the OLI data (GLAIL) alone (R2 = 0.77 and RMSE = 231 g m-2). Assimilation of GLAI derived from the fusion dataset (GLAIF) resulted in a R2 of 0.71 and RMSE of 193 g m-2 while assimilating the combination of GLAIL and GLAIF led to further improvements (R2 = 0.76 and RMSE = 176 g m-2). Our results demonstrated the potential of using the fusion algorithms to improve crop growth monitoring and crop productivity estimation when the number of high resolution

  10. Estimation of Leaf Area Index (LAI) Through the Acquisition of Ground Truth Data in Yosemite National Park

    NASA Astrophysics Data System (ADS)

    Basson, G.; Hawk, A.; Lue, E.; Ottman, D.; Schiffman, B.; Ghosh, M.; Melton, F.; Schmidt, C.; Skiles, J.

    2007-12-01

    Leaf area index (LAI) is an important indicator of ecosystem health. Remote sensing offers the only feasible method of estimating LAI at global and regional scales. Land managers can efficiently monitor changes in vegetation by using NASA data products such as the MODIS LAI 1km product. To increase confidence in use of the MODIS LAI product in Yosemite National Park, we investigated the accuracy of remotely sensed LAI data and created LAI maps using three optical in-situ instruments: the LAI-2000 instrument, digital hemispheric photography (DHP), and the Tracing Radiation and Architecture of Canopies (TRAC) instrument. We compared our in-situ data with three spectral vegetation indices derived from Landsat Thematic Mapper imagery: Reduced Simple Ratio (RSR), Simple Ratio (SR), and Normalized Difference Vegetation Index (NDVI) to produce models which created LAI maps at 30m and 1km resolution. The strongest correlations occurred between DHP LAI values and RSR. Pixel values from the 1km LAI map were then compared to pixel values from a MODIS LAI map. A strong correlation exists between our in-situ data and MODIS LAI values which confirms its accuracy for use by the National Park Service as a decision support tool in Yosemite. The MODIS LAI product is particularly useful because of its high temporal resolution of 1-2 days and can be used to monitor current and future vegetation changes. The model created using the in-situ data can also be applied to Landsat data to provide thirty years of historical LAI values.

  11. Total belowground carbon flux in subalpine forests is related to leaf area index, soil nitrogen, and tree height

    USGS Publications Warehouse

    Berryman, Erin Michele; Ryan, Michael G.; Bradford, John B.; Hawbaker, Todd J.; Birdsey, R.

    2016-01-01

    In forests, total belowground carbon (C) flux (TBCF) is a large component of the C budget and represents a critical pathway for delivery of plant C to soil. Reducing uncertainty around regional estimates of forest C cycling may be aided by incorporating knowledge of controls over soil respiration and TBCF. Photosynthesis, and presumably TBCF, declines with advancing tree size and age, and photosynthesis increases yet C partitioning to TBCF decreases in response to high soil fertility. We hypothesized that these causal relationships would result in predictable patterns of TBCF, and partitioning of C to TBCF, with natural variability in leaf area index (LAI), soil nitrogen (N), and tree height in subalpine forests in the Rocky Mountains, USA. Using three consecutive years of soil respiration data collected from 22 0.38-ha locations across three 1-km2 subalpine forested landscapes, we tested three hypotheses: (1) annual soil respiration and TBCF will show a hump-shaped relationship with LAI; (2) variability in TBCF unexplained by LAI will be related to soil nitrogen (N); and (3) partitioning of C to TBCF (relative to woody growth) will decline with increasing soil N and tree height. We found partial support for Hypothesis 1 and full support for Hypotheses 2 and 3. TBCF, but not soil respiration, was explained by LAI and soil N patterns (r2 = 0.49), and the ratio of annual TBCF to TBCF plus aboveground net primary productivity (ANPP) was related to soil N and tree height (r2 = 0.72). Thus, forest C partitioning to TBCF can vary even within the same forest type and region, and approaches that assume a constant fraction of TBCF relative to ANPP may be missing some of this variability. These relationships can aid with estimates of forest soil respiration and TBCF across landscapes, using spatially explicit forest data such as national inventories or remotely sensed data products.

  12. Exploiting Surface Albedos Products to Bridge the Gap Between Remote Sensing Information and Climate Models

    NASA Astrophysics Data System (ADS)

    Pinty, Bernard; Andredakis, Ioannis; Clerici, Marco; Kaminski, Thomas; Taberner, Malcolm; Stephen, Plummer

    2011-01-01

    We present results from the application of an inversion method conducted using MODIS derived broadband visible and near-infrared surface albedo products. This contribution is an extension of earlier efforts to optimally retrieve land surface fluxes and associated two- stream model parameters based on the Joint Research Centre Two-stream Inversion Package (JRC-TIP). The discussion focuses on products (based on the mean and one-sigma values of the Probability Distribution Functions (PDFs)) obtained during the summer and winter and highlight specific issues related to snowy conditions. This paper discusses the retrieved model parameters including the effective Leaf Area Index (LAI), the background brightness and the scattering efficiency of the vegetation elements. The spatial and seasonal changes exhibited by these parameters agree with common knowledge and underscore the richness of the high quality surface albedo data sets. At the same time, the opportunity to generate global maps of new products, such as the background albedo, underscores the advantages of using state of the art algorithmic approaches capable of fully exploiting accurate satellite remote sensing datasets. The detailed analyses of the retrieval uncertainties highlight the central role and contribution of the LAI, the main process parameter to interpret radiation transfer observations over vegetated surfaces. The posterior covariance matrix of the uncertainties is further exploited to quantify the knowledge gain from the ingestion of MODIS surface albedo products. The estimation of the radiation fluxes that are absorbed, transmitted and scattered by the vegetation layer and its background is achieved on the basis of the retrieved PDFs of the model parameters. The propagation of uncertainties from the observations to the model parameters is achieved via the Hessian of the cost function and yields a covariance matrix of posterior parameter uncertainties. This matrix is propagated to the radiation

  13. Variability of albedo and utility of the MODIS albedo product in forested wetlands

    USGS Publications Warehouse

    Sumner, David M.; Wu, Qinglong; Pathak, Chandra S.

    2011-01-01

    Albedo was monitored over a two-year period (beginning April 2008) at three forested wetland sites in Florida, USA using up- and down-ward facing pyranometers. Water level, above and below land surface, is the primary control on the temporal variability of daily albedo. Relatively low reflectivity of water accounts for the observed reductions in albedo with increased inundation of the forest floor. Enhanced canopy shading of the forest floor was responsible for lower sensitivity of albedo to water level at the most dense forest site. At one site, the most dramatic reduction in daily albedo was observed during the inundation of a highly-reflective, calcareous periphyton-covered land surface. Satellite-based Moderate-Resolution Imaging Spectroradiometer (MODIS) estimates of albedo compare favorably with measured albedo. Use of MODIS albedo values in net radiation computations introduced a root mean squared error of less than 4.7 W/m2 and a mean, annual bias of less than 2.3 W/m2 (1.7%). These results suggest that MODIS-estimated albedo values can reliably be used to capture areal and temporal variations in albedo that are important to the surface energy balance.

  14. Using Remote Sensing to Quantify Roof Albedo in Seven California Cities

    NASA Astrophysics Data System (ADS)

    Ban-Weiss, G. A.; Woods, J.; Millstein, D.; Levinson, R.

    2013-12-01

    Cool roofs reflect sunlight and therefore can reduce cooling energy use in buildings. Further, since roofs cover about 20-25% of cities, wide spread deployment of cool roofs could mitigate the urban heat island effect and partially counter urban temperature increases associated with global climate change. Accurately predicting the potential for increasing urban albedo using reflective roofs and its associated energy use and climate benefits requires detailed knowledge of the current stock of roofs at the city scale. Until now this knowledge has been limited due to a lack of availability of albedo data with sufficient spatial coverage, spatial resolution, and spectral information. In this work we use a novel source of multiband aerial imagery to derive the albedos of individual roofs in seven California cities: Los Angeles, Long Beach, San Diego, Bakersfield, Sacramento, San Francisco, and San Jose. The radiometrically calibrated, remotely sensed imagery has high spatial resolution (1 m) and four narrow (less than 0.1 μm wide) band reflectances: blue, green, red, and near-infrared. To derive the albedo of roofs in each city, we first locate roof pixels within GIS building outlines. Next we use laboratory measurements of the solar spectral reflectances of 190 roofing products to empirically relate solar reflectance (albedo) to reflectances in the four narrow bands; the root-mean-square of the residuals for the albedo prediction is 0.016. Albedos computed from remotely sensed reflectances are calibrated to ground measurements of roof albedo in each city. The error (both precision and accuracy) of albedo values is presented for each city. The area-weighted mean roof albedo (× standard deviation) for each city ranges from 0.17 × 0.08 (Los Angeles) to 0.29 × 0.15 (San Diego). In each city most roofs have low albedo in the range of 0.1 to 0.3. Roofs with albedo greater than 0.4 comprise less than 3% of total roofs and 7% of total roof area in each city. The California

  15. Radiation Dose from Lunar Neutron Albedo

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Bhattacharya, M.; Lin, Zi-Wei; Pendleton, G.

    2006-01-01

    The lunar neutron albedo from thermal energies to 8 MeV was measured on the Lunar Prospector Mission in 1998-1999. Using GEANT4 we have calculated the neutron albedo due to cosmic ray bombardment of the moon and found a good-agreement with the measured fast neutron spectra. We then calculated the total effective dose from neutron albedo of all energies, and made comparisons with the effective dose contributions from both galactic cosmic rays and solar particle events to be expected on the lunar surface.

  16. Quantifying the missing link between albedo and productivity of boreal forests

    NASA Astrophysics Data System (ADS)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-04-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Several studies have examined the relation between forest structure and albedo in the boreal zone. Studies regarding FAPAR are fewer and the relations between albedo and FAPAR are still poorly understood. To study these relations we simulated shortwave black sky albedo and canopy FAPAR, using the FRT forest reflectance model. We used two sets of field plots as input data. The plots were located in Alaska, USA (N = 584) and in Finland (N = 506) between Northern latitudes of 60° and 68° , and they represent naturally grown and more intensively managed (regularly thinned) forests, respectively. The simulations were carried out with sun zenith angles (SZA) typical to the biome, ranging from 40° to 80° . The simulated albedos in coniferous plots decreased with increasing tree height, whereas canopy FAPAR showed an opposite trend. The albedo of broadleaved plots was notably higher than that of coniferous plots. No species differences in canopy FAPAR were seen, except for pine forests in Finland that showed lowest FAPAR among species. Albedo and canopy FAPAR were negatively correlated (r ranged from -0.93 to -0.69) in coniferous plots. The correlations were notably weaker (r ranged from -0.64 to 0.05) if plots with broadleaved trees were included. To show the influence of forest management, we further examined the response of albedo and FAPAR to forest density (basal area) and fraction of broadleaved trees. Plots with low basal area showed high albedos but also low canopy FAPAR. When comparing the sparse plots to dense ones, the relative decrease in canopy FAPAR was larger than the relative increase in albedo. However, at large SZAs the basal area could be lowered to approx. 20 m2 ha-1 before FAPAR was notably reduced. Increasing the proportion of broadleaved trees from 0% to 100% increased the albedos to approximately

  17. Gross primary production variability associated with meteorology, physiology, leaf area, and water supply in contrasting woodland and grassland semiarid riparian ecosystems

    NASA Astrophysics Data System (ADS)

    Jenerette, G. D.; Scott, R. L.; Barron-Gafford, G. A.; Huxman, T. E.

    2009-12-01

    Understanding ecosystem-atmosphere carbon exchanges in dryland environments has been more challenging than in mesic environments, likely due to more pronounced nonlinear responses of ecosystem processes to environmental variation. To better understand diurnal to interannual variation in gross primary productivity (GPP) variability, we coupled continuous eddy-covariance derived whole ecosystem gas exchange measurements with an ecophysiologic model based on fundamental principles of diffusion, mass balance, reaction kinetics, and biochemical regulation of photosynthesis. We evaluated the coupled data-model system to describe and understand the dynamics of 3 years of growing season GPP from a riparian grassland and woodland in southern Arizona. The data-model fusion procedure skillfully reproduced the majority of daily variation GPP throughout three growing seasons. While meteorology was similar between sites, the woodland site had consistently higher GPP rates and lower variability at daily and interannual timescales relative to the grassland site. We examined the causes of this variation using a new state factor model analysis that partitioned GPP variation into four factors: meteorology, physiology, leaf area, and water supply. The largest proportion of GPP variation was associated with physiological differences. The woodland showed a greater sensitivity than the grassland to water supply, while the grassland showed a greater sensitivity to leaf area. These differences are consistent with hypotheses of woody species using resistance mechanisms, stomatal regulation, and grassland species using resilience mechanisms, leaf area regulation, in avoiding water stress and have implications for future GPP sensitivity to climate variability following wood-grass transitions.

  18. Reduction of leaf area and symptom severity as proxies of disease-induced plant mortality: the example of the Cauliflower mosaic virus infecting two Brassicaceae hosts.

    PubMed

    Doumayrou, Juliette; Leblaye, Sophie; Froissart, Rémy; Michalakis, Yannis

    2013-09-01

    Disease induced effects on host survival are important to understand the evolution of parasitic virulence and host resistance/tolerance. Unfortunately, experiments evaluating such effects are in most cases logistically demanding justifying the measurement of survival proxies. For plant hosts commonly used proxies are leaf area and the nature and severity of visual qualitative disease symptoms. In this study we tested whether these traits are indeed correlated to the host mortality rate induced by viral infection. We infected Brassica rapa and Arabidopsis thaliana plants with different natural isolates of Cauliflower mosaic virus (CaMV) and estimated over time the development of symptoms and the relative reduction of leaf area compared to healthy plants and followed plant mortality. We observed that the mortality of infected plants was correlated with the relative reduction of leaf area of both B. rapa and A. thaliana. Measures of mortality were also correlated with the severity of visual qualitative symptoms but the magnitude of the correlations and the time frame at which they were significant depended on the host plant: stronger and earlier correlations were observed on A. thaliana.

  19. Intercomparison and validation of MODIS and GLASS leaf area index (LAI) products over mountain areas: A case study in southwestern China

    NASA Astrophysics Data System (ADS)

    Jin, Huaan; Li, Ainong; Bian, Jinhu; Nan, Xi; Zhao, Wei; Zhang, Zhengjian; Yin, Gaofei

    2017-03-01

    The validation study of leaf area index (LAI) products over rugged surfaces not only gives additional insights into data quality of LAI products, but deepens understanding of uncertainties regarding land surface process models depended on LAI data over complex terrain. This study evaluated the performance of MODIS and GLASS LAI products using the intercomparison and direct validation methods over southwestern China. The spatio-temporal consistencies, such as the spatial distributions of LAI products and their statistical relationship as a function of topographic indices, time, and vegetation types, respectively, were investigated through intercomparison between MODIS and GLASS products during the period 2011-2013. The accuracies and change ranges of these two products were evaluated against available LAI reference maps over 10 sampling regions which standed for typical vegetation types and topographic gradients in southwestern China. The results show that GLASS LAI exhibits higher percentage of good quality data (i.e. successful retrievals) and smoother temporal profiles than MODIS LAI. The percentage of successful retrievals for MODIS and GLASS is vulnerable to topographic indices, especially to relief amplitude. Besides, the two products do not capture seasonal dynamics of crop, especially in spring over heterogeneously hilly regions. The yearly mean LAI differences between MODIS and GLASS are within ±0.5 for 64.70% of the total retrieval pixels over southwestern China. The spatial distribution of mean differences and temporal profiles of these two products are inclined to be dominated by vegetation types other than topographic indices. The spatial and temporal consistency of these two products is good over most area of grasses/cereal crops; however, it is poor for evergreen broadleaf forest. MODIS presents more reliable change range of LAI than GLASS through comparison with fine resolution reference maps over most of sampling regions. The accuracies of direct

  20. The radius and albedo of Hyperion

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.

    1979-01-01

    A measurement of the 20-micron thermal flux from Hyperion is reported, and the radius and surface geometric albedo of this outer satellite of Saturn are computed by the photometric/radiometric method. A corrected and normalized 20-micron thermal flux of 0.033 + or - 0.012 Jy is determined. A radius of 112 + or - 15 km and a surface geometric albedo of 0.47 + or - 0.11 are obtained by assuming values of unity for the phase integral, emissivity, and bolometric/visual geometric-albedo ratio. The sensitivity of the photometric/radiometric method to the assumed values of the parameters involved is discussed, and the results are compared with similar studies of Triton. It is concluded that neither Hyperion nor Triton appears to have a geometric albedo in the lower end of the distribution of small bodies in the solar system.

  1. Algebraic method for calculating a neutron albedo

    NASA Astrophysics Data System (ADS)

    Ignatovich, V. K.; Shabalin, E. P.

    2007-02-01

    A neutron albedo from arbitrary homogeneous and finely grained substances is examined on the basis of a new, algebraic, method. In the approximation of an isotropic distribution of incident and reflected neutrons, it is shown that, in the case of thermal neutrons, coherent scattering on individual particles of finely grained media increases only slightly the transport cross section, but, at a given wall thickness, it reduces the albedo because of a decrease in the density of the substance. A significant increase in the albedo is possible only for neutrons of wavelength on the order of dimensions of a powder grain. The angular distribution of reflected neutrons is discussed, and it is proven that a deviation of this distribution from an isotropic one does not lead to a change in the magnitude of the albedo.

  2. Landsat monitoring of albedo changes in northwestern Arizona, 1977-1980

    USGS Publications Warehouse

    Robinove, Charles Joseph

    1982-01-01

    As part of a cooperative project between the U.S. Geological Survey and the Bureau of Land Management, changes in albedo (percentage of light reflected from the ground) were calculated and mapped from Landsat images for an area in northwestern Arizona for three periods: August 26, 1977, to September 3, 1979; September 3, 1979, to August 28, 1980; and August 26, 1977, to August 28, 1980. The mapped albedo changes were field checked in April 1981. Decreases in albedo were associated with increases in vegetation, primarily the flush of annual vegetation and the regrowth of vegetation in chained areas and sites of past fires. Increases in albedo were due to recent fires. Continuous monitoring of changes in albedo using current, rather than historical, Landsat images can provide the Bureau of Land Management with a means of monitoring vegetation growth, determining areas of high fire potential, and more efficiently deploying of field personnel to sites where severe changes are occuring in the quality of the land and vegetation resources. For example, an albedo change could be an indication of encroachment by an invader species. Similarly, it could indicate where rangeland is being lost to desertification.

  3. Multiscale assessment of green leaf area in a semi-arid rangeland with a small unmanned aerial vehicle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial variability in green leaf cover of a western rangeland was studied by comparing field measurements on 50 m crossed transects to aerial and satellite imagery. The normalized difference vegetation index was calculated for multiple 2 cm resolution images collected over the field transects with ...

  4. Assimilation of leaf area index and surface soil moisture satellite observations into the SIM hydrological model over France

    NASA Astrophysics Data System (ADS)

    Fairbairn, David; Calvet, Jean-Christophe; Mahfouf, Jean-Francois; Barbu, Alina

    2016-04-01

    Hydrological models have a variety of uses, including flood and drought prediction and water management. The SAFRAN-ISBA-MODCOU (SIM) hydrological model consists of three stages: An atmospheric analysis (SAFRAN) over France, which forces a land surface model (ISBA-A-gs), which then provides drainage and runoff inputs to a hydrological model (MODCOU). The river discharge from MODCOU is validated using observed river discharge over France. Data assimilation (DA) combines a short model forecast from the past with observations to improve the estimate of the model state. The ISBA-A-gs representation of soil moisture and its influence by vegetation can be improved by assimilating surface soil moisture (SSM) and leaf area index (LAI) observations respectively. The Advanced Scatterometer (ASCAT) on board the MetOP satellite measures a low-frequency microwave signal, which is used to retrieve daily SSM over France. The SPOT-VGT sensor observes LAI over France at a temporal frequency of about 10 days. The Simplified Extended Kalman (SEKF) filter combines the model and observed variables by weighting them according to their respective accuracies. Although the SEKF makes incorrect linear assumptions, past experiments have shown that it improves on the model estimates of SSM and LAI. However, due to nonlinearities in the land surface model, improvements in SSM and LAI do not imply improved soil moisture fluxes (drainage, runoff and evapotranspiration). This study indirectly examines the impact of the SEKF on the soil moisture fluxes using the MODCOU hydrological model. The ISBA-A-gs model appears to underestimate the LAI for grasslands in winter and spring, which results in an underestimation (overestimation) of evapotranspiration (drainage and runoff). The excess water flowing into the rivers and aquifers contributes to an overestimation of the MODCOU discharge. Assimilating LAI observations slightly increases the LAI analysis in winter and spring and therefore reduces the

  5. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].

    PubMed

    Gao, Lin; Li, Chang-chun; Wang, Bao-shan; Yang Gui-jun; Wang, Lei; Fu, Kui

    2016-01-01

    With the innovation of remote sensing technology, remote sensing data sources are more and more abundant. The main aim of this study was to analyze retrieval accuracy of soybean leaf area index (LAI) based on multi-source remote sensing data including ground hyperspectral, unmanned aerial vehicle (UAV) multispectral and the Gaofen-1 (GF-1) WFV data. Ratio vegetation index (RVI), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), difference vegetation index (DVI), and triangle vegetation index (TVI) were used to establish LAI retrieval models, respectively. The models with the highest calibration accuracy were used in the validation. The capability of these three kinds of remote sensing data for LAI retrieval was assessed according to the estimation accuracy of models. The experimental results showed that the models based on the ground hyperspectral and UAV multispectral data got better estimation accuracy (R² was more than 0.69 and RMSE was less than 0.4 at 0.01 significance level), compared with the model based on WFV data. The RVI logarithmic model based on ground hyperspectral data was little superior to the NDVI linear model based on UAV multispectral data (The difference in E(A), R² and RMSE were 0.3%, 0.04 and 0.006, respectively). The models based on WFV data got the lowest estimation accuracy with R2 less than 0.30 and RMSE more than 0.70. The effects of sensor spectral response characteristics, sensor geometric location and spatial resolution on the soybean LAI retrieval were discussed. The results demonstrated that ground hyperspectral data were advantageous but not prominent over traditional multispectral data in soybean LAI retrieval. WFV imagery with 16 m spatial resolution could not meet the requirements of crop growth monitoring at field scale. Under the condition of ensuring the high precision in retrieving soybean LAI and working efficiently, the approach to acquiring agricultural information by UAV remote

  6. Retrieval of wheat leaf area index from AWiFS multispectral data using canopy radiative transfer simulation

    NASA Astrophysics Data System (ADS)

    Nigam, Rahul; Bhattacharya, Bimal K.; Vyas, Swapnil; Oza, Markand P.

    2014-10-01

    Accurate representation of leaf area index (LAI) from high resolution satellite observations is obligatory for various modelling exercises and predicting the precise farm productivity. Present study compared the two retrieval approach based on canopy radiative transfer (CRT) method and empirical method using four vegetation indices (VI) (e.g. NDVI, NDWI, RVI and GNDVI) to estimate the wheat LAI. Reflectance observations available at very high (56 m) spatial resolution from Advanced Wide-Field Sensor (AWiFS) sensor onboard Indian Remote Sensing (IRS) P6, Resourcesat-1 satellite was used in this study. This study was performed over two different wheat growing regions, situated in different agro-climatic settings/environments: Trans-Gangetic Plain Region (TGPR) and Central Plateau and Hill Region (CPHR). Forward simulation of canopy reflectances in four AWiFS bands viz. green (0.52-0.59 μm), red (0.62-0.68 μm), NIR (0.77-0.86 μm) and SWIR (1.55-1.70 μm) were carried out to generate the look up table (LUT) using CRT model PROSAIL from all combinations of canopy intrinsic variables. An inversion technique based on minimization of cost function was used to retrieve LAI from LUT and observed AWiFS surface reflectances. Two consecutive wheat growing seasons (November 2005-March 2006 and November 2006-March 2007) datasets were used in this study. The empirical models were developed from first season data and second growing season data used for validation. Among all the models, LAI-NDVI empirical model showed the least RMSE (root mean square error) of 0.54 and 0.51 in both agro-climatic regions respectively. The comparison of PROSAIL retrieved LAI with in situ measurements of 2006-2007 over the two agro-climatic regions produced substantially less RMSE of 0.34 and 0.41 having more R2 of 0.91 and 0.95 for TGPR and CPHR respectively in comparison to empirical models. Moreover, CRT retrieved LAI had less value of errors in all the LAI classes contrary to empirical estimates

  7. Vegetation biomass, leaf area index, and NDVI patterns and relationships along two latitudinal transects in arctic tundra

    NASA Astrophysics Data System (ADS)

    Epstein, H. E.; Walker, D. A.; Raynolds, M. K.; Kelley, A. M.; Jia, G.; Ping, C.; Michaelson, G.; Leibman, M. O.; Kaarlejärvi, E.; Khomutov, A.; Kuss, P.; Moskalenko, N.; Orekhov, P.; Matyshak, G.; Forbes, B. C.; Yu, Q.

    2009-12-01

    Analyses of vegetation properties along climatic gradients provide first order approximations as to how vegetation might respond to a temporally dynamic climate. Until recently, no systematic study of tundra vegetation had been conducted along bioclimatic transects that represent the full latitudinal extent of the arctic tundra biome. Since 1999, we have been collecting data on arctic tundra vegetation and soil properties along two such transects, the North American Arctic Transect (NAAT) and the Yamal Arctic Transect (YAT). The NAAT spans the arctic tundra from the Low Arctic of the North Slope of Alaska to the polar desert of Cape Isachsen on Ellef Ringnes Island in the Canadian Archipelago. The Yamal Arctic Transect located in northwest Siberia, Russia, presently ranges from the forest-tundra transition at Nadym to the High Arctic tundra on Belyy Ostrov off the north coast of the Yamal Peninsula. The summer warmth indices (SWI - sum of mean monthly temperatures greater than 0°C) range from approximately 40 °C months to 3 °C months from south to north. For largely zonal sites along these transects, we systematically collected leaf area index (LAI-2000 Plant Canopy Analyzer), normalized difference vegetation index (NDVI - PSII hand-held spectro-radiometer), and vegetation biomass (clip harvests). Site-averaged LAI ranges from 1.08 to 0 along the transects, yet can be highly variable at the landscape scale. Site-averaged NDVI ranges from 0.67 to 0.26 along the transects, and is less variable than LAI at the landscape scale. Total aboveground live biomass ranges from approximately 700 g m-2 to < 50 g m-2 along the NAAT, and from approximately 1100 g m-2 to < 400 g m-2 along the YAT (not including tree biomass at Nadym). LAI and NDVI are highly correlated logarithmically (r = 0.80) for the entire dataset. LAI is significantly related to total aboveground (live plus dead) vascular plant biomass, although there is some variability in the data (r = 0.63). NDVI is

  8. Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area?

    PubMed

    Launiainen, Samuli; Katul, Gabriel G; Kolari, Pasi; Lindroth, Anders; Lohila, Annalea; Aurela, Mika; Varlagin, Andrej; Grelle, Achim; Vesala, Timo

    2016-12-01

    Earth observing systems are now routinely used to infer leaf area index (LAI) given its significance in spatial aggregation of land surface fluxes. Whether LAI is an appropriate scaling parameter for daytime growing season energy budget, surface conductance (Gs ), water- and light-use efficiency and surface-atmosphere coupling of European boreal coniferous forests was explored using eddy-covariance (EC) energy and CO2 fluxes. The observed scaling relations were then explained using a biophysical multilayer soil-vegetation-atmosphere transfer model as well as by a bulk Gs representation. The LAI variations significantly alter radiation regime, within-canopy microclimate, sink/source distributions of CO2 , H2 O and heat, and forest floor fluxes. The contribution of forest floor to ecosystem-scale energy exchange is shown to decrease asymptotically with increased LAI, as expected. Compared with other energy budget components, dry-canopy evapotranspiration (ET) was reasonably 'conservative' over the studied LAI range 0.5-7.0 m(2) m(-2) . Both ET and Gs experienced a minimum in the LAI range 1-2 m(2) m(-2) caused by opposing nonproportional response of stomatally controlled transpiration and 'free' forest floor evaporation to changes in canopy density. The young forests had strongest coupling with the atmosphere while stomatal control of energy partitioning was strongest in relatively sparse (LAI ~2 m(2) m(-2) ) pine stands growing on mineral soils. The data analysis and model results suggest that LAI may be an effective scaling parameter for net radiation and its partitioning but only in sparse stands (LAI <3 m(2) m(-2) ). This finding emphasizes the significance of stand-replacing disturbances on the controls of surface energy exchange. In denser forests, any LAI dependency varies with physiological traits such as light-saturated water-use efficiency. The results suggest that incorporating species traits and site conditions are necessary when LAI is used in

  9. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent observations of diffuse bihemispherical (white-sky) and direct beam directional hemispherical (black-sky ) land surface albedo included in the MOD43B3 product from MODIS instruments aboard NASA's Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal characteristics. Cloud and seasonal snow cover, however, curtail retrievals to approximately half the global land surfaces on an annual equal-angle basis, precluding MOD43B3 albedo products from direct inclusion in some research projects and production environments.

  10. Simultaneous Improvement in Water Use, Productivity and Albedo Through Crop Structural Modification

    NASA Astrophysics Data System (ADS)

    Drewry, D.; Kumar, P.; Long, S.

    2014-12-01

    Agricultural lands provide a tremendous opportunity to address challenges at the intersection of climate change, food and water security. Global demand for the major grain and seed crops is beginning to outstrip production, while population growth and the expansion of the global middle class have motivated calls for a doubling of food production by the middle of this century. This is occurring as yield gains for the major food crops have stagnated. At current rates of yield improvement this doubling will not be achieved. Plants have evolved to maximize the capture of radiation in the upper leaves, resulting in sub-optimal monoculture crop fields for maximizing productivity and other biogeophysical services. Using the world's most important protein crop, soybean, as an example, we show that by applying numerical optimization to a micrometeorological crop canopy model that significant, simultaneous gains in water use, productivity and reflectivity are possible with no increased demand on resources. Here we apply the MLCan multi-layer canopy biophysical model, which vertically resolves the radiation and micro-environmental variations that stimulate biochemical and ecophysiological functions that govern canopy-atmosphere exchange processes. At each canopy level photosynthesis, stomatal conductance, and energy balance are solved simultaneously for shaded and sunlit foliage. A multi-layer sub-surface model accounts for water availability as a function of root biomass distribution. MLCan runs at sub-hourly temporal resolution, allowing it to capture variability in CO2, water and energy exchange as a function of environmental variability. By modifying total canopy leaf area, its vertical distribution, leaf angle, and shortwave radiation reflectivity, all traits available in most major crop germplasm collections, we show that increases in either productivity (7%), water use (13%) or albedo (34%) could be achieved with no detriment to the other objectives, under United

  11. Simultaneous improvement in water use, productivity and albedo through canopy structural modification

    NASA Astrophysics Data System (ADS)

    Drewry, Darren; Kumar, Praveen; Long, Stephen

    2015-04-01

    Agricultural lands provide a tremendous opportunity to address challenges at the intersection of food and water security and climate change. Global demand for the major grain and seed crops is beginning to outstrip production, while population growth and the expansion of the global middle class have motivated calls for a doubling of food production by the middle of this century. This is occurring as yield gains for the major food crops have stagnated. At current rates of yield improvement this doubling will not be achieved. Plants have evolved to maximize the capture of radiation in the upper leaves, resulting in sub-optimal monoculture crop fields for maximizing productivity and other biogeophysical services. Using the world's most important protein crop, soybean, as an example, we show that by applying numerical optimization to a micrometeorological crop canopy model that significant, simultaneous gains in water use, productivity and reflectivity are possible with no increased demand on resources. Here we apply the MLCan multi-layer canopy biophysical model, which vertically resolves the radiation and micro-environmental variations that stimulate biochemical and ecophysiological functions that govern canopy-atmosphere exchange processes. At each canopy level photosynthesis, stomatal conductance, and energy balance are solved simultaneously for shaded and sunlit foliage. A multi-layer sub-surface model incorporates water availability as a function of root biomass distribution. MLCan runs at sub-hourly temporal resolution, allowing it to capture variability in CO2, water and energy exchange as a function of environmental variability. By modifying total canopy leaf area, its vertical distribution, leaf angle, and shortwave radiation reflectivity, all traits available in most major crop germplasm collections, we show that increases in either productivity (7%), water use (13%) or albedo (34%) could be achieved with no detriment to the other objectives, under climate

  12. Towards ground-truthing of spaceborne estimates of above-ground biomass and leaf area index in tropical rain forests

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Huth, A.

    2010-05-01

    The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI). The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. It is found that for undisturbed forest and a variety of disturbed forests situations AGB can be expressed as a power-law function of canopy height h (AGB=a·hb) with an r2~60% for a spatial resolution of 20 m×20 m (0.04 ha, also called plot size). The regression is becoming significant better for the hectare wide analysis of the disturbed forest sites (r2=91%). There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2~60%) between AGB and the area fraction in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques have the potential to

  13. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza.

    PubMed

    Xiong, Dongliang; Yu, Tingting; Zhang, Tong; Li, Yong; Peng, Shaobing; Huang, Jianliang

    2015-02-01

    Leaf hydraulic conductance (K leaf) is a major determinant of photosynthetic rate in plants. Previous work has assessed the relationships between leaf morpho-anatomical traits and K leaf with woody species, but there has been very little focus on cereal crops. The genus Oryza, which includes rice (Oryza sativa) and wild species (such as O. rufipogon cv. Griff), is ideal material for identifying leaf features associated with K leaf and gas exchange. Leaf morpho-anatomical traits, K leaf, leaf N content per leaf area, and CO2 diffusion efficiency were investigated in 11 Oryza cultivars. K leaf was positively correlated with leaf thickness and related traits, and therefore positively correlated with leaf mass per area and leaf N content per leaf area, and negatively with inter-veinal distance. K leaf was also positively correlated with leaf area and its related traits, and therefore negatively correlated with the proportion of minor vein length per area. In addition, coordination between K leaf and CO2 diffusion conductance in leaves was observed. We conclude that leaf morpho-anatomical traits and N content per leaf area strongly influence K leaf. Our results suggest that more detailed anatomical and structural studies are needed to elucidate the impacts of leaf feature traits on K leaf and gas exchange in grasses.

  14. Gamma-ray Albedo of Small Solar System Bodies

    SciTech Connect

    Moskalenko, I.V.

    2008-03-25

    We calculate the {gamma}-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the {gamma}-ray albedo for the Main Belt and KBOs strongly depends on the small-body mass spectrum of each system and may be detectable by the forthcoming Gamma Ray Large Area Space Telescope (GLAST). If detected, it can be used to derive the mass spectrum of small bodies in the Main Belt and Kuiper Belt and to probe the spectrum of CR nuclei at close-to-interstellar conditions. The orbits of the Main Belt asteroids and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. Therefore, the {gamma}-ray emission by the Main Belt and Kuiper Belt has to be taken into account when analyzing weak {gamma}-ray sources close to the ecliptic. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center. For details of our calculations and references see [1].

  15. Using albedo to reform wind erosion modelling, mapping and monitoring

    NASA Astrophysics Data System (ADS)

    Chappell, Adrian; Webb, Nicholas P.

    2016-12-01

    Wind erosion and dust emission models are used to assess the impacts of dust on radiative forcing in the atmosphere, cloud formation, nutrient fertilisation and human health. The models are underpinned by a two-dimensional geometric property (lateral cover; L) used to characterise the three-dimensional aerodynamic roughness (sheltered area or wakes) of the Earth's surface and calibrate the momentum it extracts from the wind. We reveal a fundamental weakness in L and demonstrate that values are an order of magnitude too small and significant aerodynamic interactions between roughness elements and their sheltered areas have been omitted, particularly under sparse surface roughness. We describe a solution which develops published work to establish a relation between sheltered area and the proportion of shadow over a given area; the inverse of direct beam directional hemispherical reflectance (black sky albedo; BSA). We show direct relations between shadow and wind tunnel measurements and thereby provide direct calibrations of key aerodynamic properties. Estimation of the aerodynamic parameters from albedo enables wind erosion assessments over areas, across platforms from the field to airborne and readily available satellite data. Our new approach demonstrated redundancy in existing wind erosion models and thereby reduced model complexity and improved fidelity. We found that the use of albedo enabled an adequate description of aerodynamic sheltering to characterise fluid dynamics and predict sediment transport without the use of a drag partition scheme (Rt) or threshold friction velocity (u∗t). We applied the calibrations to produce global maps of aerodynamic properties which showed very similar spatial patterns to each other and confirmed the redundancy in the traditional parameters of wind erosion modelling. We evaluated temporal patterns of predicted horizontal mass flux at locations across Australia which revealed variation between land cover types that would not

  16. Assimilation of Leaf Area Index and Soil Wetness Index into the ISBA-A-gs land surface model over France

    NASA Astrophysics Data System (ADS)

    Barbu, A. L.; Calvet, J.-C.; Lafont, S.

    2012-04-01

    The development of a Land Data Assimilation System (LDAS) dedicated to carbon and water cycles is considered as a key aspect for monitoring activities of terrestrial carbon fluxes. It allows the assimilation of biophysical products in order to reduce the bias between the model simulations and the observations and have a positive impact on carbon and water fluxes. This work shows the benefits of data assimilation of Earth observations for the monitoring of vegetation status and carbon fluxes, in the framework of the GEOLAND2 project, co-funded by the European Commission within the GMES initiative in FP7. In this study, the SURFEX modelling platform developed at Meteo-France is used for describing the continental vegetation state, surface fluxes and soil moisture. It consists of the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The vegetation biomass and Leaf Area Index (LAI) evolve dynamically in response to weather and climate conditions. The ECOCLIMAP database provides detailed information about the land cover at a resolution of 1 km. Over the France domain, the most present ecosystem types are grasslands (32%), C3 crop lands (24%), deciduous forest (20%), bare soil (11%), and C4 crop lands (8%).The model also includes a representation of the soil moisture stress with two different types of drought responses for herbaceous vegetation and forests. A version of the Extended Kalman Filter (EKF) scheme is developed for the joint assimilation of satellite-derived surface soil moisture from ASCAT-25 km product, namely Soil Wetness Index (SWI-01) developed by TU-Wien, and remote sensing LAI product provided by GEOLAND2. The GEOLAND2 LAI product is derived from CYCLOPES V3.1 and MODIS collection 5 data. It is more consistent with an effective LAI for low LAI and close to the actual LAI for high values. The assimilation experiment was conducted across France at a spatial resolution of 8 km. The study period ranges from July 2007 to December

  17. Scaling Sap Flow Results Over Wide Areas Using High-Resolution Aerial Multispectral Digital Imaging, Leaf Area Index (LAI) and MODIS Satellite Imagery in Saltcedar Stands on the Lower Colorado River

    NASA Astrophysics Data System (ADS)

    Murray, R.; Neale, C.; Nagler, P. L.; Glenn, E. P.

    2008-12-01

    Heat-balance sap flow sensors provide direct estimates of water movement through plant stems and can be used to accurately measure leaf-level transpiration (EL) and stomatal conductance (GS) over time scales ranging from 20-minutes to a month or longer in natural stands of plants. However, their use is limited to relatively small branches on shrubs or trees, as the gauged stem section needs to be uniformly heated by the heating coil to produce valid measurements. This presents a scaling problem in applying the results to whole plants, stands of plants, and larger landscape areas. We used high-resolution aerial multispectral digital imaging with green, red and NIR bands as a bridge between ground measurements of EL and GS, and MODIS satellite imagery of a flood plain on the Lower Colorado River dominated by saltcedar (Tamarix ramosissima). Saltcedar is considered to be a high-water-use plant, and saltcedar removal programs have been proposed to salvage water. Hence, knowledge of actual saltcedar ET rates is needed on western U.S. rivers. Scaling EL and GS to large landscape units requires knowledge of leaf area index (LAI) over large areas. We used a LAI model developed for riparian habitats on Bosque del Apache, New Mexico, to estimate LAI at our study site on the Colorado River. We compared the model estimates to ground measurements of LAI, determined with a Li-Cor LAI-2000 Plant Canopy Analyzer calibrated by leaf harvesting to determine Specific Leaf Area (SLA) (m2 leaf area per g dry weight leaves) of the different species on the floodplain. LAI could be adequately predicted from NDVI from aerial multispectral imagery and could be cross-calibrated with MODIS NDVI and EVI. Hence, we were able to project point measurements of sap flow and LAI over multiple years and over large areas of floodplain using aerial multispectral imagery as a bridge between ground and satellite data. The methods are applicable to riparian corridors throughout the western U.S.

  18. Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets

    SciTech Connect

    Menon, Surabi; Akbari, Hashem; Mahanama, Sarith; Sednev, Igor; Levinson, Ronnen

    2010-02-12

    The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and land surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe by 0.1. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the change in the total outgoing (outgoing shortwave+longwave) radiation and land surface temperature to a 0.1 increase in urban albedos for all global land areas. The global average increase in the total outgoing radiation was 0.5 Wm{sup -2}, and temperature decreased by {approx}0.008 K for an average 0.003 increase in surface albedo. These averages represent all global land areas where data were available from the land surface model used and are for the boreal summer (June-July-August). For the continental U.S. the total outgoing radiation increased by 2.3 Wm{sup -2}, and land surface temperature decreased by {approx}0.03 K for an average 0.01 increase in surface albedo. Based on these forcings, the expected emitted CO{sub 2} offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be {approx} 57 Gt CO{sub 2}. A more meaningful evaluation of the impacts of urban albedo increases on global climate and the expected CO{sub 2} offsets would require simulations which better characterizes urban surfaces and represents the full annual cycle.

  19. Sawgrass Density, Biomass, and Leaf Area Index: A Flume Study in Support of Research on Wind Sheltering Effects in the Florida Everglades

    USGS Publications Warehouse

    Rybicki, Nancy B.; Reel, Justin T.; Ruhl, Henry A.; Gammon, Patricia T.; Carter, Virginia; Lee, Jonathan K.

    2000-01-01

    The U.S. Geological Survey is studying the wind sheltering effects of vegetation in the Florida Everglades. In order to test both the flow resistance and wind sheltering effects of sawgrass, uniform dense stands of sawgrass were grown in a tilting flume at Stennis Space Center, Mississippi. In June, 1997, one end of the flume was covered with a wind cowling with a removable top, and a series of experiments were conducted between June, 1997 and July, 1998. During each set of experiments, the sawgrass was sampled for vegetative characteristics, biomass, and leaf area index. The results of the analyses of the vegetation samples are summarized in a series of appendixes.

  20. System albedo as sensed by satellites - Its definition and variability

    NASA Technical Reports Server (NTRS)

    Hughes, N. A.; Henderson-Sellers, A.

    1982-01-01

    System albedo, an important climatological and environmental parameter, is considered. Some of the problems and assumptions involved in evaluating albedo from satellite data are discussed. Clear-sky and cloud albedos over the United Kingdom and parts of northwest Europe are treated. Consideration is given to the spectral, temporal, and spatial variations and the effect of averaging. The implications of these results for those using and archiving albedo values and for future monitoring of system albedo are discussed. Normalization is of especial importance since this correction alters many albedo values. The pronounced difference in spectral albedo of the two visible channels reemphasizes the problem of attempting to calculate integrated albedo values from meteorological satellite data. The assumption of isotropic reflection is seen to be invalid, hindering the computation of accurate albedo values.

  1. Investigating the Cause of Moving Albedo Boundaries in the Oxia Palus Region of Mars

    NASA Astrophysics Data System (ADS)

    Mukherjee, P.; Geissler, P. E.

    2010-12-01

    Recent imagery from the MARCI camera on Mars Reconnaissance Orbiter (MRO) in addition to previous analyses of Mars Global Surveyor MOC data reveals a variety of large scale changes in the appearance of the Martian surface (Geissler and Mukherjee, this meeting). The MOC and MARCI data revealed a surprising range of behavior in various regions of Mars. Our area of focus is a region featuring such albedo changes in Oxia Palus in western Arabia Terra. The albedo boundary between dark and bright terrain at western Oxia Palus moved 26 km eastwards between a MOC mosaic from September 2005 and a MARCI mosaic from July 2009. The goal of this project is to understand what is causing this albedo boundary to move. A distinctive feature of the Oxia Palus albedo boundary is a narrow (~25 km wide) fringe of locally high albedo that shifts as the boundary advances from the dark region (Acidalia) towards the bright terrain (Oxia). High resolution images from MRO’s CTX and HiRISE cameras will be used to test the hypothesis that the high albedo fringe is a coating of bright dust that is stripped by the winds from the advancing dark terrain and deposited ahead of the moving boundary.

  2. Radiative forcing impacts of boreal forest biofuels: a scenario study for Norway in light of albedo.

    PubMed

    Bright, Ryan M; Strømman, Anders Hammer; Peters, Glen P

    2011-09-01

    Radiative forcing impacts due to increased harvesting of boreal forests for use as transportation biofuel in Norway are quantified using simple climate models together with life cycle emission data, MODIS surface albedo data, and a dynamic land use model tracking carbon flux and clear-cut area changes within productive forests over a 100-year management period. We approximate the magnitude of radiative forcing due to albedo changes and compare it to the forcing due to changes in the carbon cycle for purposes of attributing the net result, along with changes in fossil fuel emissions, to the combined anthropogenic land use plus transport fuel system. Depending on albedo uncertainty and uncertainty about the geographic distribution of future logging activity, we report a range of results, thus only general conclusions about the magnitude of the carbon offset potential due to changes in surface albedo can be drawn. Nevertheless, our results have important implications for how forests might be managed for mitigating climate change in light of this additional biophysical criterion, and in particular, on future biofuel policies throughout the region. Future research efforts should be directed at understanding the relationships between the physical properties of managed forests and albedo, and how albedo changes in time as a result of specific management interventions.

  3. Carbon storage versus albedo change: Radiative Forcing of forest expansion in temperate mountainous regions of Switzerland

    NASA Astrophysics Data System (ADS)

    Schwaab, J.; Bavay, M.; Davin, E.; Hagedorn, F.; Hüsler, F.; Lehning, M.; Schneebeli, M.; Thürig, E.; Bebi, P.

    2014-06-01

    Forestation is seen as a possible option to counter climate change by sequestering carbon in forests and thus reducing the atmospheric concentration of carbon dioxide. However, previous studies suggest that the Radiative Forcing (RF) caused by forestation-induced albedo change in snow-rich boreal regions may offset the carbon sequestration effect. The Swiss mountains are characterized by snow-rich areas with strongly varying environmental conditions and forest expansion is currently the dominant land-use change process. Thus, quantifying both carbon sequestration and albedo change on appropriately high resolution in this region will improve our understanding of the forests potential for climate mitigation. We calculated the albedo RF based on remotely sensed datasets of albedo, global radiation and snow cover. Carbon sequestration was estimated from changes in carbon stocks based on National Inventories. Our results show that the net RF of forest expansion ranges from -24 W m-2 at low elevations of the Northern Prealps to 2 W m-2 at high elevations of the Central Alps. The albedo RF increases with increasing altitude, which offsets the CO2 RF at high elevations with long snow-covered periods, high global radiation and low carbon sequestration. Results indicate that the albedo RF is particularly relevant during transitions from open land to open forest and not in later stages of forest development. The albedo RF offsets the CO2 RF by an average of 40% between 1985 and 1997 when overall forest expansion in Switzerland was approximately 4%. We conclude that the albedo RF should be considered at an appropriately high resolution when estimating the climatic effect of forestation in temperate mountainous regions.

  4. Glacier albedo decrease in the European Alps: potential causes and links with mass balances

    NASA Astrophysics Data System (ADS)

    Di Mauro, Biagio; Julitta, Tommaso; Colombo, Roberto

    2016-04-01

    Both mountain glaciers and polar ice sheets are losing mass all over the Earth. They are highly sensitive to climate variation, and the widespread reduction of glaciers has been ascribed to the atmospheric temperature increase. Beside this driver, also ice albedo plays a fundamental role in defining mass balance of glaciers. In fact, dark ice absorbs more energy causing faster glacier melting, and this can drive to more negative balances. Previous studies showed that the albedo of Himalayan glaciers and the Greenland Ice Sheet is decreasing with important rates. In this contribution, we tested the hypothesis that also glaciers in the European Alps are getting darker. We analyzed 16-year time series of MODIS (MODerate resolution Imaging Spectrometer) snow albedo from Terra (MOD13A1, 2000-2015) and Aqua (MYD13A1, 2002-2015) satellites. These data feature a spatial resolution of 500m and a daily temporal resolution. We evaluated the existence of a negative linear and nonlinear trend of the summer albedo values both at pixel and at glacier level. We also calculated the correlation between MODIS summer albedo and glacier mass balances (from the World Glaciological Monitoring Service, WGMS database), for all the glaciers with available mass balance during the considered period. In order to estimate the percentage of the summer albedo that can be explained by atmospheric temperature, we correlated MODIS albedo and monthly air temperature extracted from the ERA-Interim reanalysis dataset. Results show that decreasing trends exist with a strong spatial variability in the whole Alpine chain. In large glaciers, such as the Aletch (Swiss Alps), the trend varies significantly also within the glacier, showing that the trend is higher in the area across the accumulation and ablation zone. Over the 17 glaciers with mass balance available in the WGMS data set, 11 gave significant relationship with the MODIS summer albedo. Moreover, the comparison between ERA-Interim temperature

  5. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA).

    PubMed

    Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial

  6. The ultraviolet continuum albedo of Uranus

    SciTech Connect

    Cochran, W.D.; Wagener, R.; Caldwell, J.; Fricke, K.H. New York State Univ., Stony Brook York Univ., Toronto Bonn Universitaet )

    1990-01-01

    A radiative transfer code explicitly treating the Raman scattering of solar protons by H{sub 2} is presently used to analyze the Uranus geometric albedo in the 2000-5000 A range. The Baines and Bergstralh (1986) baseline model used reproduces the geometric albedo peak produced by Raman scattering filling of solar absorption line cores, but is found to be excessively bright for wavelengths below 2400 A. This discrepancy is resolvable through inclusion of an absorbing stratospheric haze layer, and results are thereby obtained which are consistent with the Pollack et al. (1987) model, in which aerosols are generated stratospherically through photochemical effects on hydrocarbons. 20 refs.

  7. The diameter and albedo of 1943 Anteros

    NASA Technical Reports Server (NTRS)

    Veeder, G. J.; Tedesco, E. F.; Tholen, D. J.; Tokunaga, A.; Matthews, K.; Neugebauer, G.; Soifer, B. T.; Kowal, C.

    1981-01-01

    The results of broadband visual and infrared photometry of the Apollo-Amor asteroid 1943 Anteros during its 1980 apparition are reported. By means of a radiometric model, a diameter of 2.3 + or - 0.2 km and a visual geometric albedo of 0.13 + or - 0.03 is calculated. The albedo and reflectance spectrum of Anteros imply that it is a type S asteroid. Thus, Anteros may have a silicate surface similar to other Apollo-Amor asteroids as well as some stony-iron meteorites.

  8. Ground albedo neutrons produced by cosmic radiations

    NASA Astrophysics Data System (ADS)

    Kodama, M.

    1983-05-01

    Day-to-day variations of cosmic-ray-produced neutron fluxes near the earth's ground surface are measured by using three sets of paraffin-moderated BF3 counters, which are installed in different locations, 3 m above ground, ground level, and 20 cm under ground. Neutron flux decreases observed by these counters when snowcover exists show that there are upward-moving neutrons, that is, ground albedo neutron near the ground surface. The amount of albedo neutrons is estimated to be about 40 percent of total neutron flux in the energy range 1-10 to the 6th eV.

  9. Spectral albedo/reflectance of littered forest snow during the melt season

    NASA Astrophysics Data System (ADS)

    Melloh, Rae A.; Hardy, Janet P.; Davis, Robert E.; Robinson, Peggy B.

    2001-12-01

    Despite the importance of litter on forest floor albedo and brightness, previous studies have not documented forest floor albedo or litter cover in any detail. Our objective was to describe the seasonal influence of litter on spectral albedos and nadir reflectances of a forest snowpack in a mixed-hardwood stand in the Sleepers River Research Watershed (SRRW) in Danville, Vermont (37°39 N, 119°2 W). Experimental measurements in a nearby open area at the Snow Research Station of the SRRW nearly duplicated the spectral trend observed in the forest. Spectral albedo and nadir reflectance measurements in the visible and near infrared (350-2500 nm) transitioned from a gently curved shape through the visible range (for finer-grained, lightly littered snow) to one having a peak in the red/near-infrared (near 760 nm) as the snowmelt season progressed (for coarser-grained, more heavily littered snow). The snowpack became optically thin as surface litter reached high percentages. A point-in-time digital photographic survey of the late-lying snowpacks of three forest stands and the open showed that median litter cover percentages in the coniferous, deciduous, mixed-forest, and an open area were 17·5, 6·1, 1·2, and 0·04 respectively. A Kruskal-Wallis ANOVA on ranks and pairwise comparisons using Dunn's test indicated that the litter covers of the three forest stands were significantly different with >95% confidence. The snowpack was relatively shallow (<1 m), as is typical for this area of Vermont. From a remote-sensing standpoint, and since shallow snow and increased grain size also lower the visible albedo, we can expect that snowpack litter will cause decreased albedo earlier in the snowmelt season, at deeper snow depths, and will tend to shift the maximum albedo peak to the red/NIR range as the melt season progresses. Published in 2001 by John Wiley & Sons, Ltd.

  10. The determination of surface albedo from meteorological satellites

    NASA Technical Reports Server (NTRS)

    Johnson, W. T.

    1977-01-01

    A surface albedo was determined from visible data collected by the NOAA-4 polar orbiting meteorological satellite. To filter out the major cause of atmospheric reflectivity, namely clouds, techniques were developed and applied to the data resulting in a map of global surface albedo. Neglecting spurious surface albedos for regions with persistent cloud cover, sun glint effects, insufficient reflected light and, at this time, some unresolved influences, the surface albedos retrieved from satellite data closely matched those of a global surface albedo map produced from surface and aircraft measurements and from characteristic albedos for land type and land use.

  11. Leaf beetle (Chrysomelidae: Coleoptera) assemblages in a mosaic of natural and altered areas in the Brazilian cerrado.

    PubMed

    Pimenta, M; De Marco, P

    2015-06-01

    In landscape mosaics, species may use different vegetation types or be restricted to a single vegetation type or land-use feature highlighting the importance of the interaction of species requirements and environmental heterogeneity. In these systems, the determination of the overall pattern of β-diversity can indicate the importance of the environmental heterogeneity on diversity patterns. Here, we evaluate leaf beetles (Coleoptera: Chrysomelidae) as habitat quality bioindicators in a system with varying intensities of human impacts and different phyto-physiognomies (from open field to forests). We collected 1117 leaf beetles belonging to 245 species, of which 12 species and 5 genus were considered possible bioindicators based on IndVal measures. Higher species richness was observed in forests and regenerating fields, and habitats with lower species richness included pastures, mines, and veredas. Natural fields, regenerating fields, natural cerrado, and forest had higher values of β-diversity. Bioindicator systems that include not only species richness and abundance but also assemblage composition are needed to allow for a better understanding of Chrysomelidae response to environmental disturbance.

  12. Mars - Experimental study of albedo changes caused by dust fallout

    NASA Technical Reports Server (NTRS)

    Wells, E. N.; Veverka, J.; Thomas, P.

    1984-01-01

    A laboratory apparatus was used to simulate the uniform fallout and deposition of particles 1 to 5 microns in diameter in an experimental study on how the spectral and photometric properties of representative Martian areas are affected by fallout of atmospheric dust (smaller than or equalling 60 microns) suspended during dust storms. In this study, measurements are made in the changes in reflectance at optical and near-infrared wavelengths (0.4 to 1.2 micron) caused by deposition of varying amounts of a Mars-analog dust on bright and dark substrates before and after deposition of 6 x 10 to the -5th to 1.5 x 10 to the -3rd g/sq cm of simulated fallout. It is believed that only small amounts of dust particles (approximately 3 x 10 to the -4th g/sq cm) are needed to make significant albedo changes in dark areas of Mars, and that this would rule out uniform dust deposition on the surface of the planet. Data also indicate that other high albedo features like bright crater-related wind streaks may not be areas of significant sediment deposits. Laboratory simulations have permitted estimates of how much the reflectance of an area on Mars would change given a certain amount of dust fallout (g/sq cm) or reflectance data. These simulations may also be useful in tracking the transport and deposition of the dust.

  13. Influence of subgrid-scale heterogeneity in leaf area index, stomatal resistance, and soil moisture on grid-scale land-atmosphere interactions

    SciTech Connect

    Bonan, G.B.; Pollard, D.; Thompson, S.L. )

    1993-10-01

    The statistical representation of multiple land surfaces within a grid cell has received attention as a means to parameterize the nonlinear effects of subgrid-scale heterogeneity on land-atmosphere energy exchange. However, previous analyses have not identified the critical land-surface parameters to which energy exchanges are sensitive; the appropriate number of within-grid-cell classes for a particular parameter, or the effects of interactions among several parameters on the nonlinearity of energy exchanges. The analyses reported here used a land-surface scheme for climate models to examine the effects of subgrid variability in leaf area index, minimum and maximum stomatal resistances, and soil moisture on grid-scale fluxes. Comparisons between energy fluxes obtained using parameter values for the average of 100 subgrid points and the average fluxes for the 100 subgrid points showed minor differences for emitted infrared radiation and reflected solar radiation, but large differences for sensible heat and evapotranspiration. Leaf area index was the most important parameter; stomatal resistances were only important on wet soils. Interactions among parameters increased the nonlinearity of land-atmosphere energy exchange. When considered separately, six to ten values of each parameter greatly reduced the deviation between the two flux estimates. However, this approach became cumbersome when all four parameters varied independently. These analyses suggest that the debate over how to best parameterize the nonlinear effects of subgrid-scale heterogeneity on land-atmosphere interactions will continue.

  14. Measuring Effective Leaf Area Index, Foliage Profile, and Stand Height in New England Forest Stands Using a Full-Waveform Ground-Based Lidar

    NASA Technical Reports Server (NTRS)

    Zhao, Feng; Yang, Xiaoyuan; Schull, Mithcell A.; Roman-Colon, Miguel O.; Yao, Tian; Wang, Zhuosen; Zhang, Qingling; Jupp, David L. B.; Lovell, Jenny L.; Culvenor, Darius; Newnham, Glenn J.; Richardson, Andrew D.; Ni-Meister, Wenge; Schaaf, Crystal L.; Woodcock, Curtis E.; Strahler, Alan H.

    2011-01-01

    Effective leaf area index (LAI) retrievals from a scanning, ground-based, near-infrared (1064 nm) lidar that digitizes the full return waveform, the Echidna Validation Instrument (EVI), are in good agreement with those obtained from both hemispherical photography and the Li-Cor LAI-2000 Plant Canopy Analyzer. We conducted trials at 28 plots within six stands of hardwoods and conifers of varying height and stocking densities at Harvard Forest, Massachusetts, Bartlett Experimental Forest, New Hampshire, and Howland Experimental Forest, Maine, in July 2007. Effective LAI values retrieved by four methods, which ranged from 3.42 to 5.25 depending on the site and method, were not significantly different ( b0.1 among four methods). The LAI values also matched published values well. Foliage profiles (leaf area with height) retrieved from the lidar scans, although not independently validated, were consistent with stand structure as observed and as measured by conventional methods. Canopy mean top height, as determined from the foliage profiles, deviated from mean RH100 values obtained from the Lidar Vegetation Imaging Sensor (LVIS) airborne large-footprint lidar system at 27 plots by .0.91 m with RMSE=2.04 m, documenting the ability of the EVI to retrieve stand height. The Echidna Validation Instrument is the first realization of the Echidna lidar concept, devised by Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO), for measuring forest structure using full-waveform, ground-based, scanning lidar.

  15. Mapping grassland leaf area index with airborne hyperspectral imagery: A comparison study of statistical approaches and inversion of radiative transfer models

    NASA Astrophysics Data System (ADS)

    Darvishzadeh, Roshanak; Atzberger, Clement; Skidmore, Andrew; Schlerf, Martin

    2011-11-01

    Statistical and physical models have seldom been compared in studying grasslands. In this paper, both modeling approaches are investigated for mapping leaf area index (LAI) in a Mediterranean grassland (Majella National Park, Italy) using HyMap airborne hyperspectral images. We compared inversion of the PROSAIL radiative transfer model with narrow band vegetation indices (NDVI-like and SAVI2-like) and partial least squares regression (PLS). To assess the performance of the investigated models, the normalized RMSE (nRMSE) and R2 between in situ measurements of leaf area index and estimated parameter values are reported. The results of the study demonstrate that LAI can be estimated through PROSAIL inversion with accuracies comparable to those of statistical approaches ( R2 = 0.89, nRMSE = 0.22). The accuracy of the radiative transfer model inversion was further increased by using only a spectral subset of the data ( R2 = 0.91, nRMSE = 0.18). For the feature selection wavebands not well simulated by PROSAIL were sequentially discarded until all bands fulfilled the imposed accuracy requirements.

  16. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, E. G.; King, M. D.; Platnick, S.; Schaaf, C. B.; Gao, F.

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. The availability of global albedo data over a large range of spectral channels and at high spatial resolution has dramatically improved with the launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA s Earth Observing System (EOS) Terra spacecraft in December 1999. However, lack of spatial and temporal coverage due to cloud and snow effects can preclude utilization of official products in production and research studies. We report on a technique used to fill incomplete MOD43 albedo data sets with the intention of providing complete value-added maps. The technique is influenced by the phenological concept that within a certain area, a pixel s ecosystem class should exhibit similar growth cycle events over the same time period. The shape of an area s phenological temporal curve can be imposed upon existing pixel-level data to fill missing temporal points. The methodology will be reviewed by showcasing 2001 global and regional results of complete albedo and NDVl data sets.

  17. Lambert albedo retrieval and analyses over Aram Chaos from OMEGA hyperspectral imaging data

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Arvidson, Raymond E.; Wolff, Michael J.; Mellon, Michael T.; Catalano, Jeffrey G.; Wang, Alian; Bishop, Janice L.

    2012-08-01

    The DISORT radiative transfer model was used to retrieve Lambert albedos from 0.4 to 4.0 μm over hydrated sulfate deposits in Aram Chaos for the Mars Express OMEGA instrument. Albedos were also retrieved for a relatively anhydrous area to the north to use as a control for comparison to the hydrated sulfate spectra. Atmospheric gases and aerosols were modeled, along with both solar and thermal radiance contributions and retrieved Lambert albedos are similar for multiple OMEGA observations over the same areas. The Lambert albedo spectra show that the control area is dominated by electronic transition bands due to nanophase iron oxides and low-calcium orthopyroxenes, together with the ubiquitous 2.98 μm band due in part to water adsorbed onto particle surfaces. The retrieved Lambert albedos for Aram Chaos show an enhanced 2.98 μm water band and bands located at 0.938, 1.46, 1.96, and 2.41 μm. We infer the presence of nanophase iron oxides, schwertmannite, and starkeyite based on consideration of these band locations, inferred electronic and vibrational absorptions, stability under Mars conditions, and pathways for formation. This mineral assemblage, together with gray, crystalline hematite previously detected from TES data (Glotch and Christensen, 2005), can be explained as a result of iron oxidation and evaporation of iron-, magnesium-, and sulfur-rich fluids during periods of rising groundwater.

  18. Spatiotemporal variation of surface shortwave forcing from fire-induced albedo change in interior Alaska

    USGS Publications Warehouse

    Huang, Shengli; Dahal, Devendra; Liu, Heping; Jin, Suming; Young, Claudia J.; Liu, Shuang; Liu, Shu-Guang

    2015-01-01

    The albedo change caused by both fires and subsequent succession is spatially heterogeneous, leading to the need to assess the spatiotemporal variation of surface shortwave forcing (SSF) as a component to quantify the climate impacts of high-latitude fires. We used an image reconstruction approach to compare postfire albedo with the albedo assuming fires had not occurred. Combining the fire-caused albedo change from the 2001-2010 fires in interior Alaska and the monthly surface incoming solar radiation, we examined the spatiotemporal variation of SSF in the early successional stage of around 10 years. Our results showed that while postfire albedo generally increased in fall, winter, and spring, some burned areas could show an albedo decrease during these seasons. In summer, the albedo increased for several years and then declined again. The spring SSF distribution did not show a latitudinal decrease from south to north as previously reported. The results also indicated that although the SSF is usually largely negative in the early successional years, it may not be significant during the first postfire year. The annual 2005-2010 SSF for the 2004 fire scars was -1.30, -4.40, -3.31, -4.00, -3.42, and -2.47 Wm-2. The integrated annual SSF map showed significant spatial variation with a mean of -3.15 Wm-2 and a standard deviation of 3.26 Wm-2, 16% of burned areas having positive SSF. Our results suggest that boreal deciduous fires would be less positive for climate change than boreal evergreen fires. Future research is needed to comprehensively investigate the spatiotemporal radiative and non-radiative forcings to determine the effect of boreal fires on climate.

  19. Global warming and climate forcing by recent albedo changes on Mars

    USGS Publications Warehouse

    Fenton, L.K.; Geissler, P.E.; Haberle, R.M.

    2007-01-01

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by ???0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies. ??2007 Nature Publishing Group.

  20. Radiative Forcing and Temperature Response to Changes in Urban Albedos and Associated CO2 Offsets

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; Akbari, Hashem; Mahanama, Sarith; Sednev, Igor; Levinson, Ronnen

    2009-01-01

    The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the response of the total outgoing (outgoing shortwave+longwave) radiation to urban albedo changes. Globally, the total outgoing radiation increased by 0.5 W/square m and temperature decreased by -0.008 K for an average 0.003 increase in albedo. For the U.S. the total outgoing total radiation increased by 2.3 W/square meter, and temperature decreased by approximately 0.03 K for an average 0.01 increase in albedo. These values are for the boreal summer (Tune-July-August). Based on these forcings, the expected emitted CO2 offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be approximately 57 Gt CO2 . A more meaningful evaluation of the impacts of urban albedo increases on climate and the expected CO2 offsets would require simulations which better characterizes urban surfaces and represents the full annual cycle.

  1. Global warming and climate forcing by recent albedo changes on Mars.

    PubMed

    Fenton, Lori K; Geissler, Paul E; Haberle, Robert M

    2007-04-05

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by approximately 0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies.

  2. Albedo of a Dissipating Snow Cover.

    NASA Astrophysics Data System (ADS)

    Robinson, David A.; Kukla, George

    1984-12-01

    Albedos of surfaces covered with 50 cm of fresh dry snow following a major U.S. East Coast storm on 11-12 February 1983 ranged from 0.20 over a mixed coniferous forest to 0.80 over open farmland. As the snow cover dissipated, albedo decreased in a quasi-linear fashion over forests. It dropped rapidly at first, then slowly, over shrubland; while the opposite was observed over farmland.Following the melt, the albedo of snowfree surfaces ranged from 0.07 over a predominantly wet peat field to 0.20 over a field covered with corn stubble and yellow grass. The difference between snow-covered and snowfree albedo was 0.72 over the peaty field and 0.10 over the mixed forest.Visible band (0.28-0.69 m) reflectivities of snow-covered fields and shrubland were higher than those in the near-infrared (0.69-2.80 m), whereas the opposite was true over mixed coniferous forests. Visible and near-infrared reflectivities were approximately equal over deciduous forests.Data were collected in a series of low-altitude flights between 10 February and 24 March 1984 in northern New Jersey and southeastern New York with Eppley hemispheric pyranometers mounted on the wingtip of a Cessna 172 aircraft.

  3. Albedo Accuracy Impact On Evapotranspiration Estimation

    NASA Astrophysics Data System (ADS)

    Mattar, C.; Franch, B.; Sobrino, J. A.; Corbari, C.; Jimenez-Munoz, J. C.; Olivera, L.; Skerbaba, D.; Soria, G.; Oltra-Carrio, R.; Julien, Y.; Manchini, M.

    2013-12-01

    In this work, we analyze the influence of estimating the land surface albedo directly from the surface reflectance or through the BRDF integration in the estimation of energy balance components such as the net radiation, latent and heat flux and consequently in the land surface evapotranspiration. To this end, we processed remote sensing and in-situ meteorological data measured at the agricultural test site of Barrax in the framework of Earth Observation: optical Data calibration and Information eXtraction (EODIX) project. Remote sensing images were acquisitioned for different View Zenith Angles (VZA) by the Airborne Hyperspectral Images (AHS). Results have shown that albedo estimations derived from BRDF model present stability through every image while albedo estimations using single reflectance presented high variation depending on the VZA. The highest difference was observed in the backward scattering direction along the hot spot region obtaining a RMSE of 0.11 through the AHS image which implied a relative error of 65%. This work has analyzed the error committed by many evapotranspiration studies that assume the surface as Lambertian and estimate the albedo from a surface reflectance weighted average.

  4. Albedos of Centaurs, Jovian Trojans and Hildas

    NASA Astrophysics Data System (ADS)

    Romanishin, William

    2017-01-01

    I present optical V band albedo distributions for samples of outer solar system minor bodies including Centaurs, Jovian Trojans and Hildas. Diameters come almost entirely from the NEOWISE catalog (Mainzer etal 2016- Planetary Data System). Optical photometry (H values) for about 2/3 of the approximately 2700 objects studied are from PanStarrrs (Veres et al 2015 Icarus 261, 34). The PanStarrs optical photometry is supplemented by H values from JPL Horizons (corrected to be on the same photometric system as the PanStarrs data) for the objects in the NEOWISE catalog that are not in the PanStarrs catalog. I compare the albedo distributions of various pairs of subsamples using the nonparametric Wilcoxon rank sum test. Examples of potentially interesting comparisons include: (1) the median L5 Trojan cloud albedo is about 10% darker than that of the L4 cloud at a high level of statistical significance and (2) the median albedo of the gray Centaurs lies between that of the L4 and L5 Trojan groups.

  5. Neutron albedo imager for land mine detection

    NASA Astrophysics Data System (ADS)

    McFee, John E.; Andrews, H. Robert; Ing, Harry; Cousins, Thomas; Faust, Anthony A.; Haslip, Dean S.

    2002-08-01

    Neutron albedo land mine detection involves irradiating the ground with fast neutrons and subsequently detecting the thermalized neutrons which return. This technique has been studied since the 1950's, but only using non-imaging detectors. Without imaging, natural variations in hydrogen content in the soil, chiefly due to moisture, and surface irregularities, produce enough false alarms to render the method impractical in all but the driest conditions. This paper describes research to design and build a prototype landmine detector based on neutron albedo imaging. Realistic Monte Carlo simulations were performed to assess the signal-to-noise ratio for various soil types and moisture contents, assuming a perfect two dimensional neutron imaging system. The study showed that a neutron albedo imager was feasible for mine detection and that image quality could be good enough to significantly improve detector performance and reduce false alarm rates compared to non-imaging albedo detection, particularly in moist soils and where surface irregularities exist. After reviewing various neutron detector technologies, a design concept was developed. It consisted of a novel thermal neutron imaging system, a unique neutron source to uniformly irradiate the underlying ground and hardware and software for image generation and enhancement. Performance capability, including spatial resolution and detection times, were estimated by modeling. A proof-of-principle imager is now being constructed with an expected completion date of Spring 2002. The detector design is described and preliminary results are discussed.

  6. Can increasing albedo of existing ship wakes reduce climate change?

    NASA Astrophysics Data System (ADS)

    Crook, Julia A.; Jackson, Lawrence S.; Forster, Piers M.

    2016-02-01

    Solar radiation management schemes could potentially alleviate the impacts of global warming. One such scheme could be to brighten the surface of the ocean by increasing the albedo and areal extent of bubbles in the wakes of existing shipping. Here we show that ship wake bubble lifetimes would need to be extended from minutes to days, requiring the addition of surfactant, for ship wake area to be increased enough to have a significant forcing. We use a global climate model to simulate brightening the wakes of existing shipping by increasing wake albedo by 0.2 and increasing wake lifetime by ×1440. This yields a global mean radiative forcing of -0.9 ± 0.6 Wm-2 (-1.8 ± 0.9 Wm-2 in the Northern Hemisphere) and a 0.5°C reduction of global mean surface temperature with greater cooling over land and in the Northern Hemisphere, partially offsetting greenhouse gas warming. Tropical precipitation shifts southward but remains within current variability. The hemispheric forcing asymmetry of this scheme is due to the asymmetry in the distribution of existing shipping. If wake lifetime could reach ~3 months, the global mean radiative forcing could potentially reach -3 Wm-2. Increasing wake area through increasing bubble lifetime could result in a greater temperature reduction, but regional precipitation would likely deviate further from current climatology as suggested by results from our uniform ocean albedo simulation. Alternatively, additional ships specifically for the purpose of geoengineering could be used to produce a larger and more hemispherically symmetrical forcing.

  7. Retrieving Leaf Area Index and Foliage Profiles Through Voxelized 3-D Forest Reconstruction Using Terrestrial Full-Waveform and Dual-Wavelength Echidna Lidars

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Yang, X.; Li, Z.; Schaaf, C.; Wang, Z.; Yao, T.; Zhao, F.; Saenz, E.; Paynter, I.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Martel, J.; Howe, G.; Hewawasam, K.; Jupp, D.; Culvenor, D.; Newnham, G.; Lowell, J.

    2013-12-01

    Measuring and monitoring canopy biophysical parameters provide a baseline for carbon flux studies related to deforestation and disturbance in forest ecosystems. Terrestrial full-waveform lidar systems, such as the Echidna Validation Instrument (EVI) and its successor Dual-Wavelength Echidna Lidar (DWEL), offer rapid, accurate, and automated characterization of forest structure. In this study, we apply a methodology based on voxelized 3-D forest reconstructions built from EVI and DWEL scans to directly estimate two important biophysical parameters: Leaf Area Index (LAI) and foliage profile. Gap probability, apparent reflectance, and volume associated with the laser pulse footprint at the observed range are assigned to the foliage scattering events in the reconstructed point cloud. Leaf angle distribution is accommodated with a simple model based on gap probability with zenith angle as observed in individual scans of the stand. The DWEL instrument, which emits simultaneous laser pulses at 1064 nm and 1548 nm wavelengths, provides a better capability to separate trunk and branch hits from foliage hits due to water absorption by leaf cellular contents at 1548 nm band. We generate voxel datasets of foliage points using a classification methodology solely based on pulse shape for scans collected by EVI and with pulse shape and band ratio for scans collected by DWEL. We then compare the LAIs and foliage profiles retrieved from the voxel datasets of the two instruments at the same red fir site in Sierra National Forest, CA, with each other and with observations from airborne and field measurements. This study further tests the voxelization methodology in obtaining LAI and foliage profiles that are largely free of clumping effects and returns from woody materials in the canopy. These retrievals can provide a valuable 'ground-truth' validation data source for large-footprint spaceborne or airborne lidar systems retrievals.

  8. Examining variation in the leaf mass per area of dominant species across two contrasting tropical gradients in light of community assembly.

    PubMed

    Neyret, Margot; Bentley, Lisa Patrick; Oliveras, Imma; Marimon, Beatriz S; Marimon-Junior, Ben Hur; Almeida de Oliveira, Edmar; Barbosa Passos, Fábio; Castro Ccoscco, Rosa; Dos Santos, Josias; Matias Reis, Simone; Morandi, Paulo S; Rayme Paucar, Gloria; Robles Cáceres, Arturo; Valdez Tejeira, Yolvi; Yllanes Choque, Yovana; Salinas, Norma; Shenkin, Alexander; Asner, Gregory P; Díaz, Sandra; Enquist, Brian J; Malhi, Yadvinder

    2016-08-01

    Understanding variation in key functional traits across gradients in high diversity systems and the ecology of community changes along gradients in these systems is crucial in light of conservation and climate change. We examined inter- and intraspecific variation in leaf mass per area (LMA) of sun and shade leaves along a 3330-m elevation gradient in Peru, and in sun leaves across a forest-savanna vegetation gradient in Brazil. We also compared LMA variance ratios (T-statistics metrics) to null models to explore internal (i.e., abiotic) and environmental filtering on community structure along the gradients. Community-weighted LMA increased with decreasing forest cover in Brazil, likely due to increased light availability and water stress, and increased with elevation in Peru, consistent with the leaf economic spectrum strategy expected in colder, less productive environments. A very high species turnover was observed along both environmental gradients, and consequently, the first source of variation in LMA was species turnover. Variation in LMA at the genus or family levels was greater in Peru than in Brazil. Using dominant trees to examine possible filters on community assembly, we found that in Brazil, internal filtering was strongest in the forest, while environmental filtering was observed in the dry savanna. In Peru, internal filtering was observed along 80% of the gradient, perhaps due to variation in taxa or interspecific competition. Environmental filtering was observed at cloud zone edges and in lowlands, possibly due to water and nutrient availability, respectively. These results related to variation in LMA indicate that biodiversity in species rich tropical assemblages may be structured by differential niche-based processes. In the future, specific mechanisms generating these patterns of variation in leaf functional traits across tropical environmental gradients should be explored.

  9. The albedo of fractal stratocumulus clouds

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Ridgway, William; Wiscombe, Warren J.; Bell, Thomas L.; Snider, Jack B.

    1994-01-01

    An increase in the planetary albedo of the earth-atmosphere system by only 10% can decrease the equilibrium surface temperature to that of the last ice age. Nevertheless, albedo biases of 10% or greater would be introduced into large regions of current climate models if clouds were given their observed liquid water amounts, because of the treatment of clouds as plane parallel. The focus on marine stratocumulus clouds is due to their important role in cloud radiative forcing and also that, of the wide variety of earth's cloud types, they are most nearly plane parallel, so that they have the least albedo bias. The fractal model employed here reproduces both the probability distribution and the wavenumber spectrum of the stratocumulus liquid water path, as observed during the First ISCCP Regional Experiment (FIRE). A single new fractal parameter 0 less than or equal to f less than or equal to 1, is introduced and determined empirically by the variance of the logarithm of the vertically integrated liquid water. The reduced reflectivity of fractal stratocumulus clouds is approximately given by the plane-parallel reflectivity evaluated at a reduced 'effective optical thickness,' which when f = 0.5 is tau(sub eff) approximately equal to 10. Study of the diurnal cycle of stratocumulus liquid water during FIRE leads to a key unexpected result: the plane-parallel albedo bias is largest when the cloud fraction reaches 100%, that is, when any bias associated with the cloud fraction vanishes. This is primarily due to the variability increase with cloud fraction. Thus, the within-cloud fractal structure of stratocumulus has a more significant impact on estimates of its mesoscale-average albedo than does the cloud fraction.

  10. Using Voxelized Point-Cloud Forest Reconstructions from Ground-Based Full-Waveform Lidar to Retrieve Leaf Area Index and Foliage Profiles

    NASA Astrophysics Data System (ADS)

    Yang, X.; Strahler, A. H.; Schaaf, C.; Li, Z.; Yao, T.; Zhao, F.; Wang, Z.; Woodcock, C. E.; Jupp, D.; Culvenor, D.; Newnham, G.; Lovell, J.

    2012-12-01

    This study presents a new methodology to directly retrieve two important biophysical parameters, Leaf Area Index (LAI; m^2) and Foliage Area Volume Density (FAVD; m^2 LAI/m^3 volume) profiles through the voxelization of point-cloud forest reconstructions from multiple ground-based full-waveform Echidna® lidar scans. Previous studies have verified that estimates of LAI and FAVD made from single EVI scans, using azimuth-averaged gap probability with zenith angle (Jupp et al. 2009; Zhao et al. 2011), agree well with those of traditional hemispherical photos and LAI-2000 measurements. Strahler et al. (2008) and Yang et al. (2012) established a paradigm for the 3-D reconstruction of forest stands using a full-waveform, ground-based, scanning lidar by merging point clouds constructed from overlapping EVI scans, thereby allowing virtual direct representation of forest biomass. Classification procedures (Yang et al. 2012), based on the shape of the laser pulse returned to the instrument, can separate trunk from foliage scattering events. Volumetric datasets are produced by properly assigning attributes, such as gap probability, apparent reflectance, and volume associated with the laser pulse footprint at the observed range, to the foliage scattering events in the reconstructed point cloud. Leaf angle distribution is accommodated with a simple model based on gap probability with zenith angle as observed in individual scans of the stand. Clumping occurring at scales coarser than elemental volumes associated with scattering events is observed directly and therefore does not require parametric correction. For validation, comparisons are made between LAI and FAVD profiles retrieved directly from the voxelized 3-D forest reconstructions and those observed from airborne and field measurements. The voxelized 3-D forest reconstructions derived from EVI point clouds provide a pathway to estimate "ground truth" FAVD, LAI, and above-ground biomass without destructive sampling. These

  11. The Relationship Between Arctic Sea Ice Albedo and the Geophysical Parameters of the Ice Cover

    NASA Astrophysics Data System (ADS)

    Riihelä, A.

    2015-12-01

    The Arctic sea ice cover is thinning and retreating. Remote sensing observations have also shown that the mean albedo of the remaining ice cover is decreasing on decadal time scales, albeit with significant annual variability (Riihelä et al., 2013, Pistone et al., 2014). Attribution of the albedo decrease between its different drivers, such as decreasing ice concentration and enhanced surface melt of the ice, remains an important research question for the forecasting of future conditions of the ice cover. A necessary step towards this goal is understanding the relationships between Arctic sea ice albedo and the geophysical parameters of the ice cover. Particularly the question of the relationship between sea ice albedo and ice age is both interesting and not widely studied. The recent changes in the Arctic sea ice zone have led to a substantial decrease of its multi-year sea ice, as old ice melts and is replaced by first-year ice during the next freezing season. It is generally known that younger sea ice tends to have a lower albedo than older ice because of several reasons, such as wetter snow cover and enhanced melt ponding. However, the quantitative correlation between sea ice age and sea ice albedo has not been extensively studied to date, excepting in-situ measurement based studies which are, by necessity, focused on a limited area of the Arctic Ocean (Perovich and Polashenski, 2012).In this study, I analyze the dependencies of Arctic sea ice albedo relative to the geophysical parameters of the ice field. I use remote sensing datasets such as the CM SAF CLARA-A1 (Karlsson et al., 2013) and the NASA MeaSUREs (Anderson et al., 2014) as data sources for the analysis. The studied period is 1982-2009. The datasets are spatiotemporally collocated and analysed. The changes in sea ice albedo as a function of sea ice age are presented for the whole Arctic Ocean and for potentially interesting marginal sea cases. This allows us to see if the the albedo of the older sea

  12. Widespread Albedo Decreasing and Induced Melting of Himalayan Snow and Ice in the Early 21st Century

    PubMed Central

    Ming, Jing; Wang, Yaqiang; Du, Zhencai; Zhang, Tong; Guo, Wanqin; Xiao, Cunde; Xu, Xiaobin; Ding, Minghu; Zhang, Dongqi; Yang, Wen

    2015-01-01

    Background The widely distributed glaciers in the greater Himalayan region have generally experienced rapid shrinkage since the 1850s. As invaluable sources of water and because of their scarcity, these glaciers are extremely important. Beginning in the twenty-first century, new methods have been applied to measure the mass budget of these glaciers. Investigations have shown that the albedo is an important parameter that affects the melting of Himalayan glaciers. Methodology/Principal Findings The surface albedo based on the Moderate Resolution Imaging Spectroradiometer (MODIS) data over the Hindu Kush, Karakoram and Himalaya (HKH) glaciers is surveyed in this study for the period 2000–2011. The general albedo trend shows that the glaciers have been darkening since 2000. The most rapid decrease in the surface albedo has occurred in the glacial area above 6000 m, which implies that melting will likely extend to snow accumulation areas. The mass-loss equivalent (MLE) of the HKH glacial area caused by surface shortwave radiation absorption is estimated to be 10.4 Gt yr-1, which may contribute to 1.2% of the global sea level rise on annual average (2003–2009). Conclusions/Significance This work probably presents a first scene depicting the albedo variations over the whole HKH glacial area during the period 2000–2011. Most rapidly decreasing in albedo has been detected in the highest area, which deserves to be especially concerned. PMID:26039088

  13. Albedo boundaries on Mars in 1972: Results from Mariner 9

    USGS Publications Warehouse

    Batson, R.M.; Inge, J.L.

    1976-01-01

    A map of "albedo" boundaries (light and dark markings) on Mars was prepared from Mariner 9 images. After special digital processing, these pictures provide detailed locations of albedo boundaries, which is significant in interpreting recent eolian activity. Derivation of absolute albedo values from the spacecraft data was not attempted. The map correlates well with telescopic observations of Mars after the 1971 dust storm. ?? 1976.

  14. Independent pixel and Monte Carlo estimates of stratocumulus albedo

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Ridgway, William; Wiscombe, Warren J.; Gollmer, Steven; HARSHVARDHAN

    1994-01-01

    Monte Carlo radiative transfer methods are employed here to estimate the plane-parallel albedo bias for marine stratocumulus clouds. This is the bias in estimates of the mesoscale-average albedo, which arises from the assumption that cloud liquid water is uniformly distributed. The authors compare such estimates with those based on a more realistic distribution generated from a fractal model of marine stratocumulus clouds belonging to the class of 'bounded cascade' models. In this model the cloud top and base are fixed, so that all variations in cloud shape are ignored. The model generates random variations in liquid water along a single horizontal direction, forming fractal cloud streets while conserving the total liquid water in the cloud field. The model reproduces the mean, variance, and skewness of the vertically integrated cloud liquid water, as well as its observed wavenumber spectrum, which is approximately a power law. The Monte Carlo method keeps track of the three-dimensional paths solar photons take through the cloud field, using a vectorized implementation of a direct technique. The simplifications in the cloud field studied here allow the computations to be accelerated. The Monte Carlo results are compared to those of the independent pixel approximation, which neglects net horizontal photon transport. Differences between the Monte Carlo and independent pixel estimates of the mesoscale-average albedo are on the order of 1% for conservative scattering, while the plane-parallel bias itself is an order of magnitude larger. As cloud absorption increases, the independent pixel approximation agrees even more closely with the Monte Carlo estimates. This result holds for a wide range of sun angles and aspect ratios. Thus, horizontal photon transport can be safely neglected in estimates of the area-average flux for such cloud models. This result relies on the rapid falloff of the wavenumber spectrum of stratocumulus, which ensures that the smaller

  15. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    DOE PAGES

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    2015-04-01

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modestmore » reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.« less

  16. Linking the fPAR, forest albedo and biomass in the northern biomes of Europe

    NASA Astrophysics Data System (ADS)

    Lukeš, Petr; Stenberg, Pauline; Manninen, Terhikki; Rautiainen, Miina; Mõttus, Matti

    2014-05-01

    Land surface albedo and the fraction of photosynthetically active radiation (fPAR) absorbed by plant canopies are two of the essential climate variables controlling the planetary radiative energy budget. Albedo is directly related to the energy exchange between land and the atmosphere as it is the reflectivity of the surface - the higher the albedo, the more incoming solar radiation is reflected and the less absorbed by the surface. The fPAR is related to plant productivity, quantifying the amount of absorbed light available for photosynthesis. It is a key parameter in the modelling of net primary production (NPP) of terrestrial ecosystems. Global climate scenarios are very sensitive to albedo and fPAR estimates, and thus, the effect of changes in canopy structure and density (biomass) on these two variables needs to be quantified reliably. Both parameters are routinely retrieved from current Earth Observation sensors using specialized algorithms. To date, these satellite products have not been linked to extensive forest inventory data sets due to the lack of ground reference data. Data availability for Finland has significantly improved in December 2012, when National Forest Inventory (NFI) data became freely available to the public. The dataset covers the geographical area of Finland (26.1 million hectares) at a spatial resolution of 20 meters including several forest structural variables. In this study, we use the NFI data to study the links between forest albedo, fPAR and forest structure and density during the green vegetation season. More specifically, we investigated the seasonal trends in fPAR and albedo of different spectral regions of northern forests. Empirical relationships between forest albedo, fPAR and total aboveground biomass were established for selected days within the vegetation growing period and across a latitudinal transect of Finland.

  17. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    SciTech Connect

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    2015-04-01

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modest reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.

  18. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA)

    PubMed Central

    Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial

  19. A data fusion Kalman filter algorithm to estimate leaf area index evolution by using Modis LAI and PROBA-V top of canopy synthesis data

    NASA Astrophysics Data System (ADS)

    Novelli, Antonio

    2016-08-01

    Leaf Area Index (LAI) is essential in ecosystem and agronomic studies, since it measures energy and gas exchanges between vegetation and atmosphere. In the last decades, LAI values have widely been estimated from passive remotely sensed data. Common approaches are based on semi-empirical/statistic techniques or on radiative transfer model inversion. Although the scientific community has been providing several LAI retrieval methods, the estimated results are often affected by noise and measurement uncertainties. The sequential data assimilation theory provides a theoretical framework to combine an imperfect model with incomplete observation data. In this document a data fusion Kalman filter algorithm is proposed in order to estimate the time evolution of LAI by combining MODIS LAI data and PROBA-V surface reflectance data. The reflectance data were linked to LAI by using the Reduced Simple Ratio index. The main working hypotheses were lacking input data necessary for climatic models and canopy reflectance models.

  20. The Importance of Measurement Errors for Deriving Accurate Reference Leaf Area Index Maps for Validation of Moderate-Resolution Satellite LAI Products

    NASA Technical Reports Server (NTRS)

    Huang, Dong; Yang, Wenze; Tan, Bin; Rautiainen, Miina; Zhang, Ping; Hu, Jiannan; Shabanov, Nikolay V.; Linder, Sune; Knyazikhin, Yuri; Myneni, Ranga B.

    2006-01-01

    The validation of moderate-resolution satellite leaf area index (LAI) products such as those operationally generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor data requires reference LAI maps developed from field LAI measurements and fine-resolution satellite data. Errors in field measurements and satellite data determine the accuracy of the reference LAI maps. This paper describes a method by which reference maps of known accuracy can be generated with knowledge of errors in fine-resolution satellite data. The method is demonstrated with data from an international field campaign in a boreal coniferous forest in northern Sweden, and Enhanced Thematic Mapper Plus images. The reference LAI map thus generated is used to assess modifications to the MODIS LAI/fPAR algorithm recently implemented to derive the next generation of the MODIS LAI/fPAR product for this important biome type.

  1. A model of canopy irradiance in relation to changing leaf area in a phytotron-grown snap bean ( Phaseolus vulgaris L.) Crop

    NASA Astrophysics Data System (ADS)

    Lieth, J. H.; Reynolds, J. F.

    1984-03-01

    Simple exponential decay models were used to describe the variation in irradiance profiles within a snap bean ( Phaseolus vulgaris L.) canopy over a 33-day period of canopy development. The extinction coefficients of these models were varied over time as a function of changing canopy leaf area; nonlinear least-squares procedures were used to estimate parameter values. The resultant model response surfaces depict the changes in canopy irradiance that accompany canopy maturation and illustrate the dynamic nature of canopy closure. A criterion index is defined to aid in assessing the applicability of these models for use in whole-plant simulation models, and an evaluation of these models is given based on this index, their predictive accuracy, and the utility for use within varying modeling frameworks.

  2. Quality assessment and improvement of the EUMETSAT Meteosat Surface Albedo Climate Data Record

    NASA Astrophysics Data System (ADS)

    Lattanzio, A.; Fell, F.; Bennartz, R.; Trigo, I. F.; Schulz, J.

    2015-10-01

    Surface albedo has been identified as an important parameter for understanding and quantifying the Earth's radiation budget. EUMETSAT generated the Meteosat Surface Albedo (MSA) Climate Data Record (CDR) currently comprising up to 24 years (1982-2006) of continuous surface albedo coverage for large areas of the Earth. This CDR has been created within the Sustained, Coordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM) framework. The long-term consistency of the MSA CDR is high and meets the Global Climate Observing System (GCOS) stability requirements for desert reference sites. The limitation in quality due to non-removed clouds by the embedded cloud screening procedure is the most relevant weakness in the retrieval process. A twofold strategy is applied to efficiently improve the cloud detection and removal. The first step consists of the application of a robust and reliable cloud mask, taking advantage of the information contained in the measurements of the infrared and visible bands. Due to the limited information available from old radiometers, some clouds can still remain undetected. A second step relies on a post-processing analysis of the albedo seasonal variation together with the usage of a background albedo map in order to detect and screen out such outliers. The usage of a reliable cloud mask has a double effect. It enhances the number of high-quality retrievals for tropical forest areas sensed under low view angles and removes the most frequently unrealistic retrievals on similar surfaces sensed under high view angles. As expected, the usage of a cloud mask has a negligible impact on desert areas where clear conditions dominate. The exploitation of the albedo seasonal variation for cloud removal has good potentialities but it needs to be carefully addressed. Nevertheless it is shown that the inclusion of cloud masking and removal strategy is a key point for the generation of the next MSA CDR release.

  3. Quality assessment and improvement of the EUMETSAT Meteosat Surface Albedo Climate Data Record

    NASA Astrophysics Data System (ADS)

    Lattanzio, A.; Fell, F.; Bennartz, R.; Trigo, I. F.; Schulz, J.

    2015-07-01

    Surface albedo has been identified as an important parameter for understanding and quantifying the Earth's radiation budget. EUMETSAT generated the Meteosat Surface Albedo (MSA) Climate Data Record (CDR) currently comprising up to 24 years (1982-2006) of continuous surface albedo coverage for large areas of the Earth. This CDR has been created within the Sustained and Coordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM) framework. The long-term consistency of the MSA CDR is high and meets the Global Climate Observing System (GCOS) stability requirements for desert reference sites. The limitation in quality due to non removed clouds by the embedded cloud screening procedure is the most relevant weakness in the retrieval process. A twofold strategy is applied to efficiently improve the cloud detection and removal. A first step consists on the application of a robust and reliable cloud mask taking advantage of the information contained in the measurements of the infrared and visible bands. Due to the limited information available from old radiometers some clouds can still remain undetected. A second step relies on a post processing analysis of the albedo seasonal variation together with the usage of a background albedo map in order to detect and screen out such outliers. The usage of a reliable cloud mask has a double effect. It enhances the number of high quality retrievals for tropical forest areas sensed under low view angles and removes the most frequently unrealistic retrievals on similar surfaces sensed under high view angles. As expected, the usage of a cloud mask has a negligible impact on desert areas where clear conditions dominate. The exploitation of the albedo seasonal variation for cloud removal has good potentialities but it needs to be carefully addressed. Nevertheless it is shown that the inclusion of cloud masking and removal strategy is a key point for the generation of the next MSA CDR Release.

  4. Lunar Regolith Albedos Using Monte Carlos

    NASA Technical Reports Server (NTRS)

    Wilson, T. L.; Andersen, V.; Pinsky, L. S.

    2003-01-01

    The analysis of planetary regoliths for their backscatter albedos produced by cosmic rays (CRs) is important for space exploration and its potential contributions to science investigations in fundamental physics and astrophysics. Albedos affect all such experiments and the personnel that operate them. Groups have analyzed the production rates of various particles and elemental species by planetary surfaces when bombarded with Galactic CR fluxes, both theoretically and by means of various transport codes, some of which have emphasized neutrons. Here we report on the preliminary results of our current Monte Carlo investigation into the production of charged particles, neutrons, and neutrinos by the lunar surface using FLUKA. In contrast to previous work, the effects of charm are now included.

  5. Diameters and albedos of satellites of Uranus

    NASA Technical Reports Server (NTRS)

    Brown, R. H.; Cruikshank, D. P.; Morrison, D.

    1982-01-01

    Products of the masses of the five known satellites of Uranus, and estimates of their bulk densities and surface albedos, are used to infer their probable dimensions. Spectrophotometry has established the presence of water ice on the surfaces of all save Rhea, and the brightnesses of the satellites have been measured photoelectrically. The diameter measurements presented were made using a photometric/radiometric technique, whose recent recalibration, using independent solar system object measurements, has yielded absolute accuracies better than 5 per cent. The new albedo measurements show that Umbriel, Titania and Oberon are similar to the Jupiter moon Callisto, while Ariel resembles the Saturn moon Hyperion. The diameters of all four are similar to those of the large, icy Saturn satellites Rhea and Iapetus.

  6. Earth Albedo and the orbit of LAGEOS

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.; Weiss, N. R.

    1985-01-01

    The long-period perturbations in the orbit of the Lageos satellite due to the Earth's albedo have been found using a new analytical formalism. The Earth is assumed to be a sphere whose surface diffusely reflects sunlight according to Lambert's law. Specular reflection is not considered. The formalism is based on spherical harmonics; it produces equations which hold regardless of whether the terminator is seen by the satellite or not. Specializing to the case of a realistic zonal albedo shows that Lageos' orbital semimajor axis changes periodically by only the a few millimeters and the eccentricity by one part in 100,000. The longitude of the node increases secularly. The effect considered here can explain neither the secular decay of 1.1 mm/day in the semimajor axis nor the observed along-track variations in acceleration of order 2 x 10 to the minus 12 power/sq ms.

  7. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics

    PubMed Central

    Xiong, Dongliang; Chen, Jia; Yu, Tingting; Gao, Wanlin; Ling, Xiaoxia; Li, Yong; Peng, Shaobing; Huang, Jianliang

    2015-01-01

    Chlorophyll meters are widely used to guide nitrogen (N) management by monitoring leaf N status in agricultural systems, but the effects of environmental factors and leaf characteristics on leaf N estimations are still unclear. In the present study, we estimated the relationships among SPAD readings, chlorophyll content and leaf N content per leaf area for seven species grown in multiple environments. There were similar relationships between SPAD readings and chlorophyll content per leaf area for the species groups, but the relationship between chlorophyll content and leaf N content per leaf area, and the relationship between SPAD readings and leaf N content per leaf area varied widely among the species groups. A significant impact of light-dependent chloroplast movement on SPAD readings was observed under low leaf N supplementation in both rice and soybean but not under high N supplementation. Furthermore, the allocation of leaf N to chlorophyll was strongly influenced by short-term changes in growth light. We demonstrate that the relationship between SPAD readings and leaf N content per leaf area is profoundly affected by environmental factors and leaf features of crop species, which should be accounted for when using a chlorophyll meter to guide N management in agricultural systems. PMID:26303807

  8. The effect of year-to-year variability of leaf area index on Variable Infiltration Capacity model performance and simulation of runoff

    NASA Astrophysics Data System (ADS)

    Tesemma, Z. K.; Wei, Y.; Peel, M. C.; Western, A. W.

    2015-09-01

    This study assessed the effect of using observed monthly leaf area index (LAI) on hydrological model performance and the simulation of runoff using the Variable Infiltration Capacity (VIC) hydrological model in the Goulburn-Broken catchment of Australia, which has heterogeneous vegetation, soil and climate zones. VIC was calibrated with both observed monthly LAI and long-term mean monthly LAI, which were derived from the Global Land Surface Satellite (GLASS) leaf area index dataset covering the period from 1982 to 2012. The model performance under wet and dry climates for the two different LAI inputs was assessed using three criteria, the classical Nash-Sutcliffe efficiency, the logarithm transformed flow Nash-Sutcliffe efficiency and the percentage bias. Finally, the deviation of the simulated monthly runoff using the observed monthly LAI from simulated runoff using long-term mean monthly LAI was computed. The VIC model predicted monthly runoff in the selected sub-catchments with model efficiencies ranging from 61.5% to 95.9% during calibration (1982-1997) and 59% to 92.4% during validation (1998-2012). Our results suggest systematic improvements, from 4% to 25% in Nash-Sutcliffe efficiency, in sparsely forested sub-catchments when the VIC model was calibrated with observed monthly LAI instead of long-term mean monthly LAI. There was limited systematic improvement in tree dominated sub-catchments. The results also suggest that the model overestimation or underestimation of runoff during wet and dry periods can be reduced to 25 mm and 35 mm respectively by including the year-to-year variability of LAI in the model, thus reflecting the responses of vegetation to fluctuations in climate and other factors. Hence, the year-to-year variability in LAI should not be neglected; rather it should be included in model calibration as well as simulation of monthly water balance.

  9. Spatially Complete Global Spectral Surface Albedos: Value-Added Datasets Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng

    2004-01-01

    Land surface albedo is an important parameter in describing the radiative properties of the earth s surface as it represents the amount of incoming solar radiation that is reflected from the surface. The amount and type of vegetation of the surface dramatically alters the amount of radiation that is reflected; for example, croplands that contain leafy vegetation will reflect radiation very differently than blacktop associated with urban areas. In addition, since vegetation goes through a growth, or phenological, cycle, the amount of radiation that is reflected changes over the course of a year. As a result, albedo is both temporally and spatially dependant upon global location as there is a distribution of vegetated surface types and growing conditions. Land surface albedo is critical for a wide variety of earth system research projects including but not restricted to remote sensing of atmospheric aerosol and cloud properties from space, ground-based analysis of aerosol optical properties from surface-based sun/sky radiometers, biophysically-based land surface modeling of the exchange of energy, water, momentum, and carbon for various land use categories, and surface energy balance studies. These projects require proper representation of the surface albedo s spatial, spectral, and temporal variations, however, these representations are often lacking in datasets prior to the latest generation of land surface albedo products.

  10. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    PubMed

    Pang, Bo; Becker, Frank

    2016-06-24

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding.

  11. Albedo climatology analysis and the determination of fractional cloud cover

    NASA Technical Reports Server (NTRS)

    Curran, R. J.; Wexler, R.; Nack, M. L.

    1978-01-01

    Monthly and zonally averaged surface cover climatology data are presented which are used to construct monthly and zonally averaged surface albedos. The albedo transformations are then applied to the surface albedos, using solar zenith angles characteristic of the Nimbus 6 satellite local sampling times, to obtain albedos at the top of clear and totally cloud covered atmospheres. These albedos are then combined with measured albedo data to solve for the monthly and zonally averaged fractional cloud cover. The measured albedo data were obtained from the wide field of view channels of the Nimbus 6 Earth Radiation Budget experiment, and consequently the fractional cloud cover results are representative of the local sampling times. These fractional cloud cover results are compared with recent studies. The cloud cover results not only show peaks near the intertropical convergence zone, but the monthly migration of the position of these peaks follows general predictions of atmospheric circulation studies.

  12. Change in Urban Albedo in London: A Multi-scale Perspective

    NASA Astrophysics Data System (ADS)

    Susca, T.; Kotthaus, S.; Grimmond, S.

    2013-12-01

    Urbanization-induced change in land use has considerable implications for climate, air quality, resources and ecosystems. Urban-induced warming is one of the most well-known impacts. This directly and indirectly can extend beyond the city. One way to reduce the size of this is to modify the surface atmosphere exchanges through changing the urban albedo. As increased rugosity caused by the morphology of a city results in lower albedo with constant material characteristics, the impacts of changing the albedo has impacts across a range of scales. Here a multi-scale assessment of the potential effects of the increase in albedo in London is presented. This includes modeling at the global and meso-scale informed by local and micro-scale measurements. In this study the first order calculations are conducted for the impact of changing the albedo (e.g. a 0.01 increase) on the radiative exchange. For example, when incoming solar radiation and cloud cover are considered, based on data retrieved from NASA (http://power.larc.nasa.gov/) for ~1600 km2 area of London, would produce a mean decrease in the instantaneous solar radiative forcing on the same surface of 0.40 W m-2. The nature of the surface is critical in terms of considering the impact of changes in albedo. For example, in the Central Activity Zone in London pavement and building can vary from 10 to 100% of the plan area. From observations the albedo is seen to change dramatically with changes in building materials. For example, glass surfaces which are being used increasingly in the central business district results in dramatic changes in albedo. Using the documented albedo variations determined across different scales the impacts are considered. For example, the effect of the increase in urban albedo is translated into the corresponding amount of avoided emission of carbon dioxide that produces the same effect on climate. At local scale, the effect that the increase in urban albedo can potentially have on local

  13. How Universal Is the Relationship Between Remotely Sensed Vegetation Indices (VI) and Crop Leaf Area Index (LAI)?

    NASA Technical Reports Server (NTRS)

    Kang, Yanghui; Ozdogan, Mutlu; Zipper, Samuel C.; Roman, Miguel

    2016-01-01

    Global LAI-VI relationships are statistically significant, crop-specific, and mostly non-linear. This research enables the operationalization of large-area crop modeling and, by extension, has relevance to both fundamental and applied agroecosystem research.

  14. Changes in blast zone albedo patterns around new martian impact craters

    NASA Astrophysics Data System (ADS)

    Daubar, I. J.; Dundas, C. M.; Byrne, S.; Geissler, P.; Bart, G. D.; McEwen, A. S.; Russell, P. S.; Chojnacki, M.; Golombek, M. P.

    2016-03-01

    "Blast zones" (BZs) around new martian craters comprise various albedo features caused by the initial impact, including diffuse halos, extended linear and arcuate rays, secondary craters, ejecta patterns, and dust avalanches. We examined these features for changes in repeat images separated by up to four Mars years. Here we present the first comprehensive survey of the qualitative and quantitative changes observed in impact blast zones over time. Such changes are most likely due to airfall of high-albedo dust restoring darkened areas to their original albedo, the albedo of adjacent non-impacted surfaces. Although some sites show drastic changes over short timescales, nearly half of the sites show no obvious changes over several Mars years. Albedo changes are more likely to occur at higher-latitude sites, lower-elevation sites, and at sites with smaller central craters. No correlation was seen between amount of change and Dust Cover Index, relative halo size, or historical regional albedo changes. Quantitative albedo measurements of the diffuse dark halos relative to their surroundings yielded estimates of fading lifetimes for these features. The average lifetime among sites with measurable fading is ∼15 Mars years; the median is ∼8 Mars years for a linear brightening. However, at approximately half of sites with three or more repeat images, a nonlinear function with rapid initial fading followed by a slow increase in albedo provides a better fit to the fading behavior; this would predict even longer lifetimes. The predicted lifetimes of BZs are comparable to those of slope streaks, and considered representative of fading by global atmospheric dust deposition; they last significantly longer than dust devil or rover tracks, albedo features that are erased by different processes. These relatively long lifetimes indicate that the measurement of the current impact rate by Daubar et al. (Daubar, I.J. et al. [2013]. Icarus 225, 506-516. http://dx.doi.org/10.1016/j

  15. Soot climate forcing via snow and ice albedos

    PubMed Central

    Hansen, James; Nazarenko, Larissa

    2004-01-01

    Plausible estimates for the effect of soot on snow and ice albedos (1.5% in the Arctic and 3% in Northern Hemisphere land areas) yield a climate forcing of +0.3 W/m2 in the Northern Hemisphere. The “efficacy” of this forcing is ∼2, i.e., for a given forcing it is twice as effective as CO2 in altering global surface air temperature. This indirect soot forcing may have contributed to global warming of the past century, including the trend toward early springs in the Northern Hemisphere, thinning Arctic sea ice, and melting land ice and permafrost. If, as we suggest, melting ice and sea level rise define the level of dangerous anthropogenic interference with the climate system, then reducing soot emissions, thus restoring snow albedos to pristine high values, would have the double benefit of reducing global warming and raising the global temperature level at which dangerous anthropogenic interference occurs. However, soot contributions to climate change do not alter the conclusion that anthropogenic greenhouse gases have been the main cause of recent global warming and will be the predominant climate forcing in the future. PMID:14699053

  16. Habitat Complexity of Stream Leaf Packs: Effects on Benthic Macroinvertebrates and Leaf Litter Breakdown

    NASA Astrophysics Data System (ADS)

    Ruetz, C. R.; Vanhaitsma, D. L.; Breen, M. J.

    2005-05-01

    We investigated two attributes of leaf-pack complexity (i.e., leaf-pack mass and leaf surface area) on fish predation, colonization of benthic macroinvertebrates, and leaf breakdown rates in a coldwater Michigan stream. We manipulated three factors using a factorial design: fish (exclusion or control cage), leaf-pack mass (1, 3, or 5 g dry mass), and leaf surface area (<7, 7-10, or >10 cm leaf width). Acer leaves were fastened into leaf packs. Exclusion cages had mesh on all sides; control cages lacked mesh on two sides to provide access to fishes. Two replicate leaf packs were randomly collected after 25-31 d from two sections of the stream (n = 4). Common shredders were Gammarus, Pycnopsyche, and Lepidostoma. We did not detect a significant effect of fish predation on benthic macroinvertebrates or leaf breakdown (i.e., mass loss). Colonization of benthic macroinvertebrates appeared proportional to leaf-pack mass but was unaffected by the surface area of leaves. Leaf breakdown was more rapid among leaf packs with fewer leaves (i.e., leaves with large surface area and leaf packs with low mass) and greater numbers of shredders. We suspect that physical fragmentation is the primary mechanism for higher breakdown rates among leaf packs with fewer leaves.

  17. Global Cooling: Increasing World-Wide Urban Albedos to Offset CO2

    SciTech Connect

    Akbari, Hashem; Menon, Surabi; Rosenfeld, Arthur

    2008-01-14

    Modification of urban albedos reduces summertime urban temperatures, resulting in a better urban air quality and building air-conditioning savings. Furthermore, increasing urban albedos has the added benefit of reflecting some of the incoming global solar radiation and countering to some extent the effects of global warming. In many urban areas, pavements and roofs constitute over 60% of urban surfaces (roof 20-25%, pavements about 40%). Using reflective materials, both roof and the pavement albedos can be increased by about 0.25 and 0.10, respectively, resulting in a net albedo increase for urban areas of about 0.1. Many studies have demonstrated building cooling-energy savings in excess of 20% upon raising roof reflectivity from an existing 10-20% to about 60% (a U.S. potential savings in excess of $1 billion (B) per year in net annual energy bills). On a global basis, our preliminary estimate is that increasing the world-wide albedos of urban roofs and paved surfaces will induce a negative radiative forcing on the earth equivalent to removing {approx} 22-40 Gt of CO{sub 2} from the atmosphere. Since, 55% of the emitted CO{sub 2} remains in the atmosphere, removal of 22-40 Gt of CO{sub 2} from the atmosphere is equivalent to reducing global CO{sub 2} emissions by 40-73 Gt. At {approx} $25/tonne of CO{sub 2}, a 40-73 Gt CO{sub 2} emission reduction from changing the albedo of roofs and paved surfaces is worth about $1,000B to 1800B. These estimated savings are dependent on assumptions used in this study, but nevertheless demonstrate considerable benefits that may be obtained from cooler roofs and pavements.

  18. Relationships between MODIS black-sky shortwave albedo and airborne lidar based forest canopy structure

    NASA Astrophysics Data System (ADS)

    Korhonen, Lauri; Rautiainen, Miina; Arumäe, Tauri; Lang, Mait; Flewelling, James; Tokola, Timo; Stenberg, Pauline

    2016-04-01

    Albedo is one of the essential climate variables affecting the Earth's radiation balance. It is however not well understood how changes in forest canopy structure influence the albedo. Canopy structure can be mapped consistently for fairly large areas using airborne lidar sensors. Our objective was to study the relationships between MODIS shortwave black sky albedo product and lidar-based estimates of canopy structure in different biomes ranging from arctic to tropical. Our study is based on six structurally different forest sites located in Finland, Estonia, USA and Laos. Lidar-based mean height of the canopy, canopy cover and their transformations were used as predictor variables to describe the canopy structure. Tree species composition was also included for the three sites where it was available. We noticed that the variables predicting albedo best were different in open and closed canopy forests. In closed canopy forests, the species information was more important than canopy structure variables (R2=0.31-0.32) and using only structural variables resulted in poor R2 (0.13-0.15). If the 500 m MODIS pixel contained a mixture of forests and other land cover types, the albedo was strongly related to the forest area percent. In open canopy forests, structural variables such as canopy cover or height explained albedo well, but species information still improved the models (R2=0.27-0.52). We obtained the highest R2=0.52 using only structural variables in Laos on a partially degraded tropical forest with large variation in canopy cover. The different canopy structure variables were often correlated and the one that provided the best model changed from site to site.

  19. Disentangling leaf area and environmental effects on the response of the net ecosystem CO2 exchange to diffuse radiation

    PubMed Central

    Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander

    2013-01-01

    There is an ongoing discussion about why the net ecosystem CO2 exchange (NEE) of some ecosystems is less sensitive to diffuse radiation than others and about the role other environmental factors play in determining the response of NEE to diffuse radiation. Using a six-year data set from a temperate mountain grassland in Austria we show that differences between ecosystems may be reconciled based on their green area index (GAI; square meter green plant area per square meter ground area) - the sensitivity to diffuse radiation increasing with GAI. Our data suggest diffuse radiation to have a negligible influence on NEE below a GAI of 2 m2 m−2. Changes in air/soil temperature and air humidity concurrent with the fraction of diffuse radiation were found to amplify the sensitivity of the investigated temperate mountain grassland ecosystem to diffuse radiation. PMID:24347740

  20. [C and N allocation patterns in planted forests and their release patterns during leaf litter decomposition in subalpine area of west Sichuan].

    PubMed

    Liu, Zeng-wen; Duan, Er-jun; Pan, Kai-wen; Zhang, Li-ping; Du, Hong-xia

    2009-01-01

    With the planted forest ecosystems of Cercidiphyllum japonicum, Betula utilis, Pinus yunnansinsis, and Picea asperata in subalpine area of west Sichuan as test objects, their total biomass and the C and N contents in soils and tree organs were determined. The results showed that the allocation of C in tree organs had less correlation with the age of the organs, while that of N and C/N ratio had closer relationship with the age. The N content in young organs was higher than that in aged ones, whereas the C/N ratio was higher in aged organs than in young organs, and higher in the leaf litters of needle-leaved forests than in those of broad-leaved forests. There was an obvious enrichment of C and N in the topsoil of test forests. The accumulated amounts of C and N in the whole planted forest ecosystem, including tree, litter, and 0-40 cm soil layer, were 176.75-228.05 t x hm(-2) and 11.06-16.54 t x hm(-2), respectively, and the nutrients allocation ratio between soil-litter and tree was (1.9-3.3):1 for C and (15.6-41.5):1 for N. Needle-leaved forests functioned as a stronger "C-sink" than broad-leaved forests. The decomposition rate of the leaf litters in needle-leaved forests was larger than that in broad-leaved forests, with the turnover rate being 2.2-3.7 years and 3.9-4.2 years, respectively. During the decomposition of leaf litter, the C in all of the four forests released at super-speed, with the turnover rate being 1.9-3.4 years. As for N, it also released at super-speed in C. japonicum and B. utilis forests, with the turnover rate being 1.9-3.2 years, but released at low speed in P. yunnansinsis and P. asperata forests, with the turnover rate being 6.7-8.5 years.

  1. Project LEAF

    EPA Pesticide Factsheets

    Project LEAF has a goal of educating farmworkers about how to reduce pesticide exposure to their families from pesticide residues they may be inadvertently taking home on their clothing, etc. Find outreach materials.

  2. Evaporation and Deposition Coverage Area of Droplets Containing Insecticides and Spray Additives on Hydrophilic, Hydrophobic and Crabapple Leaf Surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficiency of foliar spray applications is influenced by the evaporation and residual pattern of pesticide droplets on targets. Evaporation time and maximal coverage area of a single droplet sizing from 246 to 886 µm at relative humidity (RH) ranging from 30 to 90% were measured with sequential ...

  3. Effects of Surface Albedo on Smoke Detection Through Geostationary Satellite Imagery in the Hazard Mapping System (HMS)

    NASA Astrophysics Data System (ADS)

    Salemi, A.; Ruminski, M. G.

    2012-12-01

    The Satellite Analysis Branch (SAB) of NOAA/NESDIS uses geostationary and polar orbiting satellite imagery to identify fires and smoke throughout the continental United States. The fires and smoke are analyzed daily on the Hazard Mapping System (HMS) and made available via the internet in various formats. Analysis of smoke plumes generated from wildfires, agricultural and prescribe burns is performed with single channel visible imagery primarily from NOAA's Geostationary Operational Environmental Satellite (GOES) animations. Identification of smoke in visible imagery is complicated by the presence of clouds, the viewing angle produced by the sun, smoke, satellite geometry, and the surface albedo of the ground below the smoke among other factors. This study investigates the role of surface albedo in smoke detection. LIght Detection And Ranging (LIDAR) instruments are capable of detecting smoke and other aerosols. Through the use of ground and space based LIDAR systems in areas of varying albedo a relationship between the subjective analyst drawn smoke plumes versus those detected by LIDAR is established. The ability to detect smoke over regions of higher albedo (brighter surface, such as grassland, scrub and desert) is diminished compared to regions of lower albedo (darker surface, such as forest and water). Users of the HMS smoke product need to be aware of this limitation in smoke detection in areas of higher albedo.

  4. [Effects of enhanced solar UV-B radiation on the effective photosynthetic leaf area and milking phase of oat under natural field condition in Qing Tibetan plateau].

    PubMed

    Wang, Sheng-yao; Wang, Kun; Zhao, Yong-lai; Xin, You-jun

    2009-05-01

    Stratospheric ozone depletion occurs mainly over polar regions during the spring when the solar ultraviolet B-band (280-315 nm, UV-B) radiation is most intense in a year, but over the Qing Tibetan Plateau region, the intensity is highest from June to September when the amount of UV-B radiation reaching the regions is more than that in the adjacent areas lying in the same latitude by 10%. From June to September is just the time of plant's germination, development, and reproduction in the alpine region. The enhanced UV-B radiation may alter the rate of senescence in the forage plant, oats (Avena sativa), which plays the vital role in developing indigenous herdsman's animal husbandry industry. In the trial the authors enhanced the UV-B radiation by using lamp bank of florescent lights to increase the ambient levels of UV-B radiation in the field, we treated 3 groups under nature solar radiation, solar+0.50 W x m2, and solar+1.00 W x m2 respectively, and surveyed the rate of senescence by measuring the rate of lessening in the effective photosynthetic leaf area, the concentration of the chlorophyll, and the milking phase of oat phenology. The results proved that the effect of the enhanced UV-B radiation on the rate of senescence of oats is caused by reducing the effective photosynthetic leaf area per plant by 21.5%, accelerating the rate of the loss of the chlorophyll compared with that of the controlled by an average of 7.6% and shortening the milking phase by an average of 2 days in the treated groups compared with the rate in the controlled, but there were not statistically significant differences from those of the nontreated group in these index of oat's senescence. All the results evidenced that the enhanced solar UV-B radiation has no significantly ominous consequence on the oat ecological characteristics concerning annual plant reproduction in Qing Tibetan plateau.

  5. Leaf Development

    PubMed Central

    Tsukaya, Hirokazu

    2002-01-01

    The shoot system is the basic unit of development of seed plants and is composed of a leaf, a stem, and a lateral bud that differentiates into a lateral shoot. The most specialized organ in angiosperms, the flower, can be considered to be part of the same shoot system since floral organs, such as the sepal, petal, stamen, and carpel, are all modified leaves. Scales, bracts, and certain kinds of needle are also derived from leaves. Thus, an understanding of leaf development is critical to an understanding of shoot development. Moreover, leaves play important roles in photosynthesis, respiration and photoperception. Thus, a full understanding of leaves is directly related to a full understanding of seed plants. The details of leaf development remain unclear. The difficulties encountered in studies of leaf development, in particular in dicotyledonous plants such as Arabidopsis thaliana (L.) Henyn., are derived from the complex process of leaf development, during which the division and elongation of cells occur at the same time and in the same region of the leaf primordium (Maksymowych, 1963; Poethig and Sussex, 1985). Thus, we cannot divide the entire process into unit processes in accordance with the tenets of classical anatomy. Genetic approaches in Arabidopsis, a model plant (Meyerowitz and Pruitt, 1985), have provided a powerful tool for studies of mechanisms of leaf development in dicotyledonous plants, and various aspects of the mechanisms that control leaf development have been revealed in recent developmental and molecular genetic studies of Arabidopsis (for reviews, see Tsukaya, 1995 and 1998; Van Lijsebettens and Clarke, 1998; Sinha, 1999; Van Volkenburgh, 1999; Tsukaya, 2000; Byrne et al., 2001; Dengler and Kang, 2001; Dengler and Tsukaya, 2001; Tsukaya, 2001). In this review, we shall examine the information that is currently available about various mechanisms of leaf development in Arabidopsis. Vascular patterning is also an important factor in the

  6. Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Moody, Eric G.; Schaaf, Crystal B.; Platnick, Steven

    2006-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. , Over five years of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA s Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface s radiative characteristics. However, roughly 30% of the global land surface, on an annual equal-angle basis, is obscured due to persistent and transient cloud cover, while another 207% is obscured due to ephemeral and seasonal snow effects. This precludes the MOD43B3 albedo products from being directly used in some remote sensing and ground-based applications, climate models, and global change research projects. To provide researchers with the requisite spatially complete global snow-free land surface albedo dataset, an ecosystem-dependent temporal interpolation technique was developed to fill missing or lower quality data and snow covered values from the official MOD43B3 dataset with geophysically realistic values. The method imposes pixel-level and local regional ecosystem-dependent phenological behavior onto retrieved pixel temporal data in such a way as to maintain pixel-level spatial and spectral detail and integrity. The phenological curves are derived from statistics based on the MODIS MOD12Q1 IGBP land cover classification product geolocated with the MOD43B3 data.

  7. Evaluating the condition of a mangrove forest of the Mexican Pacific based on an estimated leaf area index mapping approach.

    PubMed

    Kovacs, J M; King, J M L; Flores de Santiago, F; Flores-Verdugo, F

    2009-10-01

    Given the alarming global rates of mangrove forest loss it is important that resource managers have access to updated information regarding both the extent and condition of their mangrove forests. Mexican mangroves in particular have been identified as experiencing an exceptional high annual rate of loss. However, conflicting studies, using remote sensing techniques, of the current state of many of these forests may be hindering all efforts to conserve and manage what remains. Focusing on one such system, the Teacapán-Agua Brava-Las Haciendas estuarine-mangrove complex of the Mexican Pacific, an attempt was made to develop a rapid method of mapping the current condition of the mangroves based on estimated LAI. Specifically, using an AccuPAR LP-80 Ceptometer, 300 indirect in situ LAI measurements were taken at various sites within the black mangrove (Avicennia germinans) dominated forests of the northern section of this system. From this sample, 225 measurements were then used to develop linear regression models based on their relationship with corresponding values derived from QuickBird very high resolution optical satellite data. Specifically, regression analyses of the in situ LAI with both the normalized difference vegetation index (NDVI) and the simple ration (SR) vegetation index revealed significant positive relationships [LAI versus NDVI (R (2) = 0.63); LAI versus SR (R (2) = 0.68)]. Moreover, using the remaining sample, further examination of standard errors and of an F test of the residual variances indicated little difference between the two models. Based on the NDVI model, a map of estimated mangrove LAI was then created. Excluding the dead mangrove areas (i.e. LAI = 0), which represented 40% of the total 30.4 km(2) of mangrove area identified in the scene, a mean estimated LAI value of 2.71 was recorded. By grouping the healthy fringe mangrove with the healthy riverine mangrove and by grouping the dwarf mangrove together with the poor condition

  8. Sizes and albedos of the larger asteroids

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1977-01-01

    The purpose of the present paper is to review all asteroid diameter measurements, current through mid-1976, and to combine them in a consistent way to give the best available estimates for a sample totalling 187 objects. From these diameters it is possible to determine the size-distributions of minor planets down to diameters of 50 km in the inner belt and 100 km in the outer belt. The associated albedos further indicate the distribution of objects of the C, S, and M classes throughout the belt.

  9. Albedo and transmittance of inhomogeneous stratus clouds

    SciTech Connect

    Zuev, V.E.; Kasyanov, E.I.; Titov, G.A.

    1996-04-01

    A highly important topic is the study of the relationship between the statistical parameters of optical and radiative charactertistics of inhomogeneous stratus clouds. This is important because the radiation codes of general circulation models need improvement, and it is important for geophysical information. A cascade model has been developed at the Goddard Space Flight Center to treat stratocumulus clouds with the simplest geometry and horizontal fluctuations of the liquid water path (optical thickness). The model evaluates the strength with which the stochastic geometry of clouds influences the statistical characteristics of albedo and the trnasmittance of solar radiation.

  10. Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic.

    PubMed

    Williamson, Scott N; Barrio, Isabel C; Hik, David S; Gamon, John A

    2016-11-01

    Arctic warming is resulting in reduced snow cover and increased shrub growth, both of which have been associated with altered land surface-atmospheric feedback processes involving sensible heat flux, ground heat flux and biogeochemical cycling. Using field measurements, we show that two common Arctic shrub species (Betula glandulosa and Salix pulchra), which are largely responsible for shrub encroachment in tundra, differed markedly in albedo and that albedo of both species increased as growing season progressed when measured at their altitudinal limit. A moveable apparatus was used to repeatedly measure albedo at six precise spots during the summer of 2012, and resampled in 2013. Contrary to the generally accepted view of shrub-covered areas having low albedo in tundra, full-canopy prostrate B. glandulosa had almost the highest albedo of all surfaces measured during the peak of the growing season. The higher midsummer albedo is also evident in localized MODIS albedo aggregated from 2000 to 2013, which displays a similar increase in growing-season albedo. Using our field measurements, we show the ensemble summer increase in tundra albedo counteracts the generalized effect of earlier spring snow melt on surface energy balance by approximately 40%. This summer increase in albedo, when viewed in absolute values, is as large as the difference between the forest and tundra transition. These results indicate that near future (<50 years) changes in growing-season albedo related to Arctic vegetation change are unlikely to be particularly large and might constitute a negative feedback to climate warming in certain circumstances. Future efforts to calculate energy budgets and a sensible heating feedback in the Arctic will require more detailed information about the relative abundance of different ground cover types, particularly shrub species and their respective growth forms and phenology.

  11. Albedo maps of Pluto and Charon - Initial mutual event results

    NASA Technical Reports Server (NTRS)

    Buie, Marc W.; Tholen, David J.; Horne, Keith

    1992-01-01

    By applying the technique of maximum entropy image reconstruction to invert observed lightcurves, surface maps of single-scattering albedo are obtained for the surfaces of Pluto and Charon from 1954 to 1986. The albedo features of the surface of Pluto are similar to those of the Buie and Tholen (1989) spot model maps; a south polar cap is evident. The map of Charon is somewhat darker, with single-scattering albedos as low as 0.03.

  12. Factors Influencing the Mesoscale Variations in Marine Stratocumulus Albedo

    DTIC Science & Technology

    2007-01-01

    aerosols can indeed modulate cloud albedo, other parameters such as sea surface temperature may similarly affect cloud albedo. Additionally, the...major role in determining planetary albedo and tend to be located along the eastern pe- ripheries of the major oceans (Warren et al., 1988). They...cloud, in cloud and from re- motely retrieved parameters all show substantial interflight vari- ability in their spatial patterns. In some flights the

  13. Anatomical basis of the change in leaf mass per area and nitrogen investment with relative irradiance within the canopy of eight temperate tree species

    NASA Astrophysics Data System (ADS)

    Aranda, I.; Pardo, F.; Gil, L.; Pardos, J. A.

    2004-05-01

    Changes in leaf mass per area (LMA), nitrogen content on a mass-basis (N m) and on an area basis (N a) with relative irradiance were assessed in leaves of eight temperate species harvested at different depths in a canopy. Relative irradiance (GSF) at the points of leaf sampling was estimated by hemispheric photographs. There was a strong species-dependent positive relationship between LMA and GSF for all species. Shade-tolerant species such as Fagus sylvatica showed lower LMA for the same GSF than less tolerant species as Quercus pyrenaica or Quercus petraea. The only evergreen species in the study, Ilex aquifollium, had the highest LMA, independent of light environment, with minimum values much higher than the rest of the broad-leaved species studied. There was no relation between N m and GSF for most species studied and only a very weak relation for the relative shade-intolerant species Q. pyrenaica. Within each species, the pattern of N a investment with regard to GSF was linked mainly to LMA. At the same relative irradiance, differences in N a among species were conditioned both by the LMA-GSF relationship and by the species N m value. The lowest N m value was measured in I. aquifollium (14.3 ± 0.6 mg g -1); intermediate values in Crataegus monogyna (16.9 ± 0.6 mg g -1) and Prunus avium (19.1 ± 0.6 mg g -1) and higher values, all in a narrow range (21.3 ± 0.6 to 23 ± 0.6 mg g -1), were measured for the other five species. Changes in LMA with the relative irradiance were linked both to lamina thickness (LT) and to palisade/spongy parenchyma ratio (PP/SP). In the second case, the LMA changes may be related to an increase in lamina density as palisade parenchyma involves higher cell packing than spongy parenchyma. However, since PP/SP ratio showed a weak species-specific relationship with LMA, the increase in LT should be the main cause of LMA variation.

  14. THE ALBEDO-COLOR DIVERSITY OF TRANSNEPTUNIAN OBJECTS

    SciTech Connect

    Lacerda, Pedro; Rengel, Miriam; Fornasier, Sonia; Lellouch, Emmanuel; Delsanti, Audrey; Kiss, Csaba; Vilenius, Esa; Müller, Thomas; Santos-Sanz, Pablo; Duffard, René; Guilbert-Lepoutre, Aurélie

    2014-09-20

    We analyze albedo data obtained using the Herschel Space Observatory that reveal the existence of two distinct types of surface among midsized trans-Neptunian objects. A color-albedo diagram shows two large clusters of objects, one redder and higher albedo and another darker and more neutrally colored. Crucially, all objects in our sample located in dynamically stable orbits within the classical Kuiper Belt region and beyond are confined to the bright red group, implying a compositional link. Those objects are believed to have formed further from the Sun than the dark neutral bodies. This color-albedo separation is evidence for a compositional discontinuity in the young solar system.

  15. Leaf Development

    PubMed Central

    2013-01-01

    Leaves are the most important organs for plants. Without leaves, plants cannot capture light energy or synthesize organic compounds via photosynthesis. Without leaves, plants would be unable perceive diverse environmental conditions, particularly those relating to light quality/quantity. Without leaves, plants would not be able to flower because all floral organs are modified leaves. Arabidopsis thaliana is a good model system for analyzing mechanisms of eudicotyledonous, simple-leaf development. The first section of this review provides a brief history of studies on development in Arabidopsis leaves. This history largely coincides with a general history of advancement in understanding of the genetic mechanisms operating during simple-leaf development in angiosperms. In the second section, I outline events in Arabidopsis leaf development, with emphasis on genetic controls. Current knowledge of six important components in these developmental events is summarized in detail, followed by concluding remarks and perspectives. PMID:23864837

  16. Impact of dust deposition on the albedo of Vatnaj