Science.gov

Sample records for albedo radiative forcing

  1. Postfire influences of snag attrition on albedo and radiative forcing

    NASA Astrophysics Data System (ADS)

    O'Halloran, Thomas L.; Acker, Steven A.; Joerger, Verena M.; Kertis, Jane; Law, Beverly E.

    2014-12-01

    This paper examines albedo perturbation and radiative forcing after a high-severity fire in a mature forest in the Oregon Cascade Range. Correlations between postfire albedo and seedling, sapling, and snag (standing dead tree) density were investigated across fire severity classes and seasons for years 4-15 after fire. Albedo perturbation was 14 times larger in winter compared to summer and increased with fire severity class for the first several years. Albedo perturbation increased linearly with time over the study period. Correlations between albedo perturbations and the vegetation densities were strongest with snags, and significant in all fire classes in both summer and winter (R < -0.92, p < 0.01). The resulting annual radiative forcing at the top of the atmosphere became more negative linearly at a rate of -0.86 W m-2 yr-1, reaching -15 W m-2 in year 15 after fire. This suggests that snags can be the dominant controller of postfire albedo on decadal time scales.

  2. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    SciTech Connect

    Liu, Y.; Wu, W.; Jensen, M. P.; Toto, T.

    2011-07-21

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surface-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction, and cloud albedo. The analytical expression is then used to deduce a new approach for inferring cloud albedo from concurrent surface-based measurements of downwelling surface shortwave radiation and cloud fraction. High-resolution decade-long data on cloud albedos are obtained by use of this surface-based approach over the US Department of Energy's Atmospheric Radiaton Measurement (ARM) Program at the Great Southern Plains (SGP) site. The surface-based cloud albedos are further compared against those derived from the coincident GOES satellite measurements. The three long-term (1997-2009) sets of hourly data on shortwave cloud radiative forcing, cloud fraction and cloud albedo collected over the SGP site are analyzed to explore the multiscale (diurnal, annual and inter-annual) variations and covariations. The analytical formulation is useful for diagnosing deficiencies of cloud-radiation parameterizations in climate models.

  3. Radiative forcing over the conterminous United States due to contemporary land cover land use albedo change

    NASA Astrophysics Data System (ADS)

    Barnes, C. A.; Roy, D. P.

    2009-04-01

    Land cover and land use (LCLU) change affects Earth surface properties including albedo that impose a radiative forcing on the climate. Recently available satellite derived LCLU change data for the conterminous United States (CONUS) are used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 61 ecoregions covering 73% of the CONUS. Mean monthly broadband Moderate Resolution Imaging Spectroradiometer snow and snow-free albedo values are derived from decadal Landsat 60m LCLU classification maps located within ecoregions using a stratified random sampling methodology. These data and European Center for Medium-Range Weather Forecasts incoming surface solar radiation reanalysis are used to estimate ecoregion estimates of LCLU induced albedo change and surface radiative forcing. The results illustrate that radiative forcing due to contemporary LCLU albedo change varies geographically in sign and magnitude, with the most positive radiative forcing due to conversion of agriculture to other LCLU types, and the most negative radiative forcing due to forest loss, with snow modifying the results. At the ecoregion level this magnitude of radiative forcing is not insignificant, being similar in magnitude to global radiative forcing estimates due to LCLU change during the twentieth century.

  4. Global analysis of radiative forcing from fire-induced shortwave albedo change

    NASA Astrophysics Data System (ADS)

    López-Saldaña, G.; Bistinas, I.; Pereira, J. M. C.

    2015-01-01

    Land surface albedo, a key parameter to derive Earth's surface energy balance, is used in the parameterization of numerical weather prediction, climate monitoring and climate change impact assessments. Changes in albedo due to fire have not been fully investigated on a continental and global scale. The main goal of this study, therefore, is to quantify the changes in instantaneous shortwave albedo produced by biomass burning activities and their associated radiative forcing. The study relies on the MODerate-resolution Imaging Spectroradiometer (MODIS) MCD64A1 burned-area product to create an annual composite of areas affected by fire and the MCD43C2 bidirectional reflectance distribution function (BRDF) albedo snow-free product to compute a bihemispherical reflectance time series. The approximate day of burning is used to calculate the instantaneous change in shortwave albedo. Using the corresponding National Centers for Environmental Prediction (NCEP) monthly mean downward solar radiation flux at the surface, the global radiative forcing associated with fire was computed. The analysis reveals a mean decrease in shortwave albedo of -0.014 (1σ = 0.017), causing a mean positive radiative forcing of 3.99 Wm-2 (1σ = 4.89) over the 2002-20012 time period in areas affected by fire. The greatest drop in mean shortwave albedo change occurs in 2002, which corresponds to the highest total area burned (378 Mha) observed in the same year and produces the highest mean radiative forcing (4.5 Wm-2). Africa is the main contributor in terms of burned area, but forests globally give the highest radiative forcing per unit area and thus give detectable changes in shortwave albedo. The global mean radiative forcing for the whole period studied (~0.0275 Wm-2) shows that the contribution of fires to the Earth system is not insignificant.

  5. Radiative forcing over the conterminous United States due to contemporary land cover land use albedo change

    USGS Publications Warehouse

    Barnes, Christopher; Roy, David P.

    2008-01-01

    Recently available satellite land cover land use (LCLU) and albedo data are used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 36 ecoregions covering 43% of the conterminous United States (CONUS). Moderate Resolution Imaging Spectroradiometer (MODIS) snow-free broadband albedo values are derived from Landsat LCLU classification maps located using a stratified random sampling methodology to estimate ecoregion estimates of LCLU induced albedo change and surface radiative forcing. The results illustrate that radiative forcing due to LCLU change may be disguised when spatially and temporally explicit data sets are not used. The radiative forcing due to contemporary LCLU albedo change varies geographically in sign and magnitude, with the most positive forcings (up to 0.284 Wm−2) due to conversion of agriculture to other LCLU types, and the most negative forcings (as low as −0.247 Wm−2) due to forest loss. For the 36 ecoregions considered a small net positive forcing (i.e., warming) of 0.012 Wm−2 is estimated.

  6. Radiative forcing over the conterminous United States due to contemporary land cover land use albedo change

    NASA Astrophysics Data System (ADS)

    Barnes, Christopher A.; Roy, David P.

    2008-05-01

    Recently available satellite land cover land use (LCLU) and albedo data are used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 36 ecoregions covering 43% of the conterminous United States (CONUS). Moderate Resolution Imaging Spectroradiometer (MODIS) snow-free broadband albedo values are derived from Landsat LCLU classification maps located using a stratified random sampling methodology to estimate ecoregion estimates of LCLU induced albedo change and surface radiative forcing. The results illustrate that radiative forcing due to LCLU change may be disguised when spatially and temporally explicit data sets are not used. The radiative forcing due to contemporary LCLU albedo change varies geographically in sign and magnitude, with the most positive forcings (up to 0.284 Wm-2) due to conversion of agriculture to other LCLU types, and the most negative forcings (as low as -0.247 Wm-2) due to forest loss. For the 36 ecoregions considered a small net positive forcing (i.e., warming) of 0.012 Wm-2 is estimated.

  7. United States Land Cover Land Use Change, Albedo and Surface Radiative Forcing 1973 to 2000

    NASA Astrophysics Data System (ADS)

    Barnes, C. A.; Roy, D. P.

    2007-12-01

    This research responds to the recent recommendations made by the U.S. National Research Council for regional forcing studies to better understand climatic responses to land cover land use change. Surface albedo affects the earth's radiative energy balance, by controlling how much incoming solar radiation is absorbed and reflected. It is well established that Land Cover Land Use (LCLU) change results in changes in the surface albedo which has a radiative forcing effect, however, to date, studies have been limited due to data uncertainties. New spatially explicit satellite derived LCLU change and albedo data for the conterminous U.S. are used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing. The methodology and preliminary results for 42% of the U.S. processed to date are presented as spatially explicit maps and summary statistics. The results indicate a negative (cooling) radiative forcing effect due to U.S. LCLU change over the last three decades. Data used include USGS Landsat based decadal land cover maps of the conterminous U.S. located using a stratified sampling methodology across 84 ecoregions, mean 2000-2002 MODIS broadband albedo values extracted in each ecoregion for the 10 mapped LCLU classes, and monthly mean surface incoming solar radiation from the recent European Center for Medium Range Weather Forecast 40 year Reanalysis (ERA40) product.

  8. Radiative Forcing and Temperature Response to Changes in Urban Albedos and Associated CO2 Offsets

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; Akbari, Hashem; Mahanama, Sarith; Sednev, Igor; Levinson, Ronnen

    2009-01-01

    The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the response of the total outgoing (outgoing shortwave+longwave) radiation to urban albedo changes. Globally, the total outgoing radiation increased by 0.5 W/square m and temperature decreased by -0.008 K for an average 0.003 increase in albedo. For the U.S. the total outgoing total radiation increased by 2.3 W/square meter, and temperature decreased by approximately 0.03 K for an average 0.01 increase in albedo. These values are for the boreal summer (Tune-July-August). Based on these forcings, the expected emitted CO2 offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be approximately 57 Gt CO2 . A more meaningful evaluation of the impacts of urban albedo increases on climate and the expected CO2 offsets would require simulations which better characterizes urban surfaces and represents the full annual cycle.

  9. Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets

    SciTech Connect

    Menon, Surabi; Akbari, Hashem; Mahanama, Sarith; Sednev, Igor; Levinson, Ronnen

    2010-02-12

    The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and land surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe by 0.1. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the change in the total outgoing (outgoing shortwave+longwave) radiation and land surface temperature to a 0.1 increase in urban albedos for all global land areas. The global average increase in the total outgoing radiation was 0.5 Wm{sup -2}, and temperature decreased by {approx}0.008 K for an average 0.003 increase in surface albedo. These averages represent all global land areas where data were available from the land surface model used and are for the boreal summer (June-July-August). For the continental U.S. the total outgoing radiation increased by 2.3 Wm{sup -2}, and land surface temperature decreased by {approx}0.03 K for an average 0.01 increase in surface albedo. Based on these forcings, the expected emitted CO{sub 2} offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be {approx} 57 Gt CO{sub 2}. A more meaningful evaluation of the impacts of urban albedo increases on global climate and the expected CO{sub 2} offsets would require simulations which better characterizes urban surfaces and represents the full annual cycle.

  10. Radiative forcing impacts of boreal forest biofuels: a scenario study for Norway in light of albedo.

    PubMed

    Bright, Ryan M; Strømman, Anders Hammer; Peters, Glen P

    2011-09-01

    Radiative forcing impacts due to increased harvesting of boreal forests for use as transportation biofuel in Norway are quantified using simple climate models together with life cycle emission data, MODIS surface albedo data, and a dynamic land use model tracking carbon flux and clear-cut area changes within productive forests over a 100-year management period. We approximate the magnitude of radiative forcing due to albedo changes and compare it to the forcing due to changes in the carbon cycle for purposes of attributing the net result, along with changes in fossil fuel emissions, to the combined anthropogenic land use plus transport fuel system. Depending on albedo uncertainty and uncertainty about the geographic distribution of future logging activity, we report a range of results, thus only general conclusions about the magnitude of the carbon offset potential due to changes in surface albedo can be drawn. Nevertheless, our results have important implications for how forests might be managed for mitigating climate change in light of this additional biophysical criterion, and in particular, on future biofuel policies throughout the region. Future research efforts should be directed at understanding the relationships between the physical properties of managed forests and albedo, and how albedo changes in time as a result of specific management interventions. PMID:21797227

  11. Imaging spectroscopy of albedo and radiative forcing by light-absorbing impurities in mountain snow

    NASA Astrophysics Data System (ADS)

    Painter, Thomas H.; Seidel, Felix C.; Bryant, Ann C.; McKenzie Skiles, S.; Rittger, Karl

    2013-09-01

    Recent studies show that deposition of dust and black carbon to snow and ice accelerates snowmelt and perturbs regional climate and hydrologic cycles. Radiative forcing by aerosols is often neglected in climate and hydrological models in part due to scarcity of observations. Here we describe and validate an algorithm suite (Imaging Spectrometer-Snow Albedo and Radiative Forcing (IS-SnARF)) that provides quantitative retrievals of snow grain size, snow albedo, and radiative forcing by light-absorbing impurities in snow and ice (LAISI) from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data collected on 15 June 2011 in the Senator Beck Basin Study Area (SBBSA), SW Colorado, USA. Radiative forcing by LAISI is retrieved by the integral of the convolution of spectral irradiance with spectral differences between the spectral albedo (scaled from the observed hemispherical-directional reflectance factor (HDRF)) and modeled clean snow spectral albedo. The modeled surface irradiance at time of acquisition at test sites was 1052 W m-2 compared to 1048 W m-2 measured with the field spectroradiometer measurements, a relative difference of 0.4%. HDRF retrievals at snow and bare soil sites had mean errors relative to in situ measurements of -0.4 ± 0.1% reflectance averaged across the spectrum and root-mean-square errors of 1.5 ± 0.1%. Comparisons of snow albedo and radiative forcing retrievals from AVIRIS with in situ measurements in SBBSA showed errors of 0.001-0.004 and 2.1 ± 5.1 W m-2, respectively. A counterintuitive result was that, in the presence of light absorbing impurities, near-surface snow grain size increased with elevation, whereas we generally expect that at lower elevation the grain size would be larger.

  12. Radiative forcing bias of simulated surface albedo modifications linked to forest cover changes at northern latitudes

    NASA Astrophysics Data System (ADS)

    Bright, R. M.; Myhre, G.; Astrup, R.; Antón-Fernández, C.; Strømman, A. H.

    2015-04-01

    In the presence of snow, the bias in the prediction of surface albedo by many climate models remains difficult to correct due to the difficulties of separating the albedo parameterizations from those describing snow and vegetation cover and structure. This can be overcome by extracting the albedo parameterizations in isolation, by executing them with observed meteorology and information on vegetation structure, and by comparing the resulting predictions to observations. Here, we employ an empirical data set of forest structure and daily meteorology for three snow cover seasons and for three case regions in boreal Norway to compute and evaluate predicted albedo to those based on daily MODIS retrievals. Forest and adjacent open area albedos are subsequently used to estimate bias in top-of-the-atmosphere (TOA) radiative forcings (RF) from albedo changes (Δα, Open-Forest) connected to land use and land cover changes (LULCC). As expected, given the diversity of approaches by which snow masking by tall-statured vegetation is parameterized, the magnitude and sign of the albedo biases varied considerably for forests. Large biases at the open sites were also detected, which was unexpected given that these sites were snow-covered throughout most of the analytical time period, therefore eliminating potential biases linked to snow-masking parameterizations. Biases at the open sites were mostly positive, exacerbating the strength of vegetation masking effects and hence the simulated LULCC Δα RF. Despite the large biases in both forest and open area albedos by some schemes in some months and years, the mean Δα RF bias over the 3-year period (November-May) was considerably small across models (-2.1 ± 1.04 Wm-2; 21 ± 11%); four of six models had normalized mean absolute errors less than 20%. Identifying systematic sources of the albedo prediction biases proved challenging, although for some schemes clear sources were identified.

  13. Post-fire influences of snag attrition on albedo and radiative forcing

    NASA Astrophysics Data System (ADS)

    O'Halloran, T. L.; Acker, S. A.; Joerger, V.; Kertis, J.; Law, B. E.

    2014-12-01

    We examine albedo perturbation and associated radiative forcing after a high-severity fire in a mature forest in the Oregon Cascade Range. Correlations between post-fire albedo and seedling, sapling, and standing dead tree (snag) density were investigated across fire severity classes and seasons for years 4-15 after fire. Albedo perturbation was 14 times larger in winter compared to summer and increased with fire severity class for the first several years after fire. Summer and winter albedo perturbation increased approximately linearly over the study period. Albedo correlations were strongest with snags, and significant in all fire classes in both summer and winter. The resulting annual radiative forcing at the top of the atmosphere decreased (became more negative) linearly for the first 15 years after fire. These results suggest that snags, more than recovering vegetation, can control the shortwave energy balance of the burned land surface. As such, the dynamics of snag attrition may need to be included in coupled land-atmosphere models to properly represent the climate impacts of wildfire.

  14. Radiative Forcing over the Conterminous United States due to 1973 to 2000 Land Cover Albedo Change

    NASA Astrophysics Data System (ADS)

    Barnes, C. A.; Roy, D. P.

    2011-12-01

    Satellite derived land cover land use (LCLU), snow and albedo data, and incoming surface solar radiation reanalysis data, were used to study the impact of LCLU change on surface albedo and radiative forcing for 84 ecoregions across the conterminous United States. A net continental scale negative radiative forcing of -0.008 Wm-2 due to LCLU albedo change from 1973 to 2000 was estimated associated with decreasing agricultural and forested land and increasing developed land. The radiative forcing for individual ecoregions varied geographically in sign and magnitude, with the most negative (as low as -1.303 Wm-2) due to forest loss and the most positive forcings (up to 0.358 Wm-2) due to the conversion of grassland/shrub. In snow prone ecoregions, where the dominant LCLU transitions were between snow-hiding (e.g., forest) and snow-revealing (e.g., agriculture) LCLU classes, the negative and positive ecoregion forcing estimates were amplified. The results make an important contribution to advancing understanding of the role of LCLU change on the climate system.

  15. Accounting for radiative forcing from albedo change in future global land-use scenarios

    SciTech Connect

    Jones, Andrew D.; Calvin, Katherine V.; Collins, William D.; Edmonds, James A.

    2015-08-01

    We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km² of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and –0.71 nW/m² of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic within each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from –0.06 to –0.29 W/m² by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm–2, corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.

  16. Conterminous United States Surface Radiative Forcing due to Contemporary Land Cover Land Use Albedo Change

    NASA Astrophysics Data System (ADS)

    Barnes, C. A.; Roy, D. P.

    2012-12-01

    Recently available Landsat land cover land use (LCLU) change information for four epochs, 1973-1980, 1980-1986, 1986-1992 and 1992-2000, and MODerate Resolution Imaging Spectroradiometer (MODIS) albedo and snow cover data are used to estimate LCLU albedo change surface radiative forcing for the conterminous United States (CONUS) for each epoch and for 1973 to 2000. Landsat 10 × 10 km or 20 × 20 km LCLU classification maps for 1973, 1980, 1986, 1992 and 2000 located using a stratified random sampling methodology with respect to 84 contiguous CONUS ecoregions are used to provide ecoregion and CONUS estimates. A CONUS scale warming (0.0037 Wm-2) due to LCLU albedo change from 1973 to 2000 is estimated associated with decreasing agricultural and forested lands and increasing developed and grassland/shrublands. The 1986 to 1992 period had the highest overall CONUS forcing (0.0093 Wm-2) due to agricultural land conversion, attributed primarily to the 1985 Farm Bill that established the Conservation Reserve Program. The radiative forcing for individual ecoregions varied geographically in sign and magnitude, with the most negative forcings (as low as -0.8630 Wm-2) due to forest loss, and the most positive forcings (up to 0.2640 Wm-2) due to the conversion of grasslands/shrublands. These results make an important contribution to quantifying the role of LCLU change on the climate system, and underscore the need for repeat, wall-to-wall, spatially-explicit national LCLU mapping.

  17. Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and direct aerosol forcing

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Martins, J. V.; Yu, H.

    2012-06-01

    This study develops an algorithm for the representation of large spectral variations of albedo over vegetation surfaces based on Moderate Resolution Imaging Spectrometer (MODIS) observations at 7 discrete channels centered at 0.47, 0.55, 0.67, 0.86, 1.24, 1.63, and 2.11 μm. The MODIS 7-channel observations miss several major features of vegetation albedo including the vegetation red edge near 0.7 μm and vegetation absorption features at 1.48 and 1.92 μm. We characterize these features by investigating aerosol forcing in different spectral ranges. We show that the correction at 0.7 μm is the most sensitive and important due to the presence of the red edge and strong solar radiation; the other two corrections are less sensitive due to the weaker solar radiation and strong atmospheric water absorption. Four traditional approaches for estimating the reflectance spectrum and the MODIS enhanced vegetation albedo (MEVA) are tested against various vegetation types: dry grass, green grass, conifer, and deciduous from the John Hopkins University (JHU) spectral library; aspens from the US Geological Survey (USGS) digital spectral library; and Amazon vegetation types. Compared to traditional approaches, MEVA improves the accuracy of the outgoing flux at the top of the atmosphere by over 60 W m-2 and aerosol forcing by over 10 W m-2. Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol forcing at equator at equinox by 3.7 W m-2 (about 70% of the aerosol forcing calculated with high spectral resolution surface reflectance). These improvements indicate that MEVA can contribute to vegetation covered regional climate studies, and help to improve understanding of climate processes and climate change.

  18. Radiative forcing bias of surface albedo modifications linked to simulated forest cover changes at northern latitudes

    NASA Astrophysics Data System (ADS)

    Bright, R. M.; Myhre, G.; Astrup, R.; Antón-Fernández, C.; Strømman, A. H.

    2014-12-01

    Simulated land use/land cover change (LULCC) radiative forcings (RF) from changes in surface albedo (Δα) predicted by land surface schemes of six leading climate models were compared to those based on daily MODIS retrievals for three regions in Norway and for three winter-spring seasons. As expected, the magnitude and sign of the albedo biases varied considerably for forests; unexpectedly, however, biases of equal magnitude were evident in predictions at open area sites. The latter were mostly positive and exacerbated the strength of vegetation masking effects and hence the simulated LULCC Δα RF. RF bias was considerably small across models (-0.08 ± 0.04 W m-2; 21 ± 11%); 4 of 6 models had normalized mean absolute errors less than 20% (3-year regional mean). Identifying systematic sources of the albedo prediction biases proved challenging, although for some schemes clear sources were identified. Our study should provide some reassurance that model improvement efforts of recent years are leading to enhanced LULCC climate predictions.

  19. The albedo field and cloud radiative forcing produced by a general circulation model with internally generated cloud optics

    NASA Technical Reports Server (NTRS)

    Charlock, T. P.; Ramanathan, V.

    1985-01-01

    A general circulation model (GCM) study is presented in which cloud radiative properties are computed from cloud liquid water content inferred from the GCM hydrological cycle. Model-generated and satellite albedos are in rough agreement. Analysis of the cloud radiative forcing indicates that cloud albedo effects overcome cloud infrared opacity effects in most regions. Both computed and observed albedo of clouds decrease from low to high altitudes. The model with variable cloud optics produces significantly different regional albedos from the same one with fixed cloud optics, especially over the tropics. The cloud droplet size distribution also has a significant impact on the model albedos. The temperature of the tropical upper troposphere is somewhat sensitive to the microphysical characteristics of the model cirrus clouds.

  20. Projected surface radiative forcing due to 2000--2050 land-cover land-use albedo change over the eastern United States

    USGS Publications Warehouse

    Barnes, Christopher A.; Roy, David P.; Loveland, Thomas R.

    2013-01-01

    Satellite-derived contemporary land-cover land-use (LCLU) and albedo data and modeled future LCLU are used to study the impact of LCLU change from 2000 to 2050 on surface albedo and radiative forcing for 19 ecoregions in the eastern United States. The modeled 2000–2050 LCLU changes indicate a future decrease in both agriculture and forested land and an increase in developed land that induces ecoregion radiative forcings ranging from −0.175 to 0.432 W m−2 driven predominately by differences in the area and type of LCLU change. At the regional scale, these projected LCLU changes induce a net negative albedo decrease (−0.001) and a regional positive radiative forcing of 0.112 W m−2. This overall positive forcing (i.e., warming) is almost 4 times greater than that estimated for documented 1973–2000 LCLU albedo change published in a previous study using the same methods.

  1. Radiative forcing over the conterminous United States due to contemporary land cover land use change and sensitivity to snow and interannual albedo variability

    NASA Astrophysics Data System (ADS)

    Barnes, Christopher A.; Roy, David P.

    2010-12-01

    Satellite-derived land cover land use (LCLU), snow and albedo data, and incoming surface solar radiation reanalysis data were used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 58 ecoregions covering 69% of the conterminous United States. A net positive surface radiative forcing (i.e., warming) of 0.029 Wm-2 due to LCLU albedo change from 1973 to 2000 was estimated. The forcings for individual ecoregions were similar in magnitude to current global forcing estimates, with the most negative forcing (as low as -0.367 Wm-2) due to the transition to forest and the most positive forcing (up to 0.337 Wm-2) due to the conversion to grass/shrub. Snow exacerbated both negative and positive forcing for LCLU transitions between snow-hiding and snow-revealing LCLU classes. The surface radiative forcing estimates were highly sensitive to snow-free interannual albedo variability that had a percent average monthly variation from 1.6% to 4.3% across the ecoregions. The results described in this paper enhance our understanding of contemporary LCLU change on surface radiative forcing and suggest that future forcing estimates should model snow and interannual albedo variation.

  2. Effect of Spectrally Varying Albedo of Vegetation Surfaces on Shortwave Radiation Fluxes and Aerosol Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Zhu, L.; Martins, J. V.; Yu, H.

    2012-01-01

    This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS) observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA) algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 micrometers and vegetation water absorption features at 1.48 and 1.92 micrometers which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF) at the top of atmosphere (TOA) based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 micrometers based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02Wm(exp -2) difference or 48% fraction of the aerosol DRF, .6.28Wm(exp -2), calculated for high spectral resolution surface reflectance from 0.3 to 2.5 micrometers for deciduous vegetation surface). The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27Wm(exp -2), or about 4% of the instantaneous DRF). Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 micrometers at TOA by over 60Wm(exp -2) (for aspen 3 surface) and aerosol DRF by over 10Wm(exp -2) (for dry grass). Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 micrometers at equator at the

  3. Projected Surface Radiative Forcing due to 2000 to 2100 Land Use Land Cover Albedo Change Across the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Barnes, C. A.; Sleeter, B. M.

    2013-12-01

    Satellite-derived contemporary land-use land-cover (LULC) change, albedo data, and modeled future LULC changes are used to study potential impacts of LULC change from 2000 to 2100 on surface albedo and radiative forcing across the conterminous United States (CONUS). Downscaled projected LULC change information, consistent with Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES), is provided by incorporating ecoregion-based land use histories, global integrated assessment models, and expert judgment. The downscaled projections span a wide range of future potential socioeconomic conditions across 10 land cover classes and 84 ecoregions. The A2 scenario had the highest overall CONUS forcing (-0.5369 Wm-2) due to projected high demands for developed and agricultural lands, associated with high population growth and low environmental protection. The B1 scenario had the lowest overall CONUS forcing (-0.0114 Wm-2) due primarily to projected low population growth and strong protection of biodiversity. The radiative forcing for individual ecoregions varied geographically in sign and magnitude, with the most negative forcings (as low as -1.8023 Wm-2, A2 scenario) due primarily to the conversion of forest to agriculture, and the most positive forcings (up to 0.9053 Wm-2, B2 scenario) due to the conversion of agriculture to forest. These results make an important contribution to quantifying the potential future role of LULC change on the climate system, and underscore the need for repeat, wall-to-wall, spatially-explicit national land cover mapping.

  4. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing

    NASA Astrophysics Data System (ADS)

    Sedlar, Joseph; Tjernström, Michael; Mauritsen, Thorsten; Shupe, Matthew D.; Brooks, Ian M.; Persson, P. Ola G.; Birch, Cathryn E.; Leck, Caroline; Sirevaag, Anders; Nicolaus, Marcel

    2011-10-01

    Snow surface and sea-ice energy budgets were measured near 87.5°N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to -7°C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between -50 W m-2 and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m-2, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area.

  5. Case study of spatial and temporal variability of snow cover, grain size, albedo and radiative forcing in the Sierra Nevada and Rocky Mountain snowpack derived from imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Seidel, Felix C.; Rittger, Karl; McKenzie Skiles, S.; Molotch, Noah P.; Painter, Thomas H.

    2016-06-01

    Quantifying the spatial distribution and temporal change in mountain snow cover, microphysical and optical properties is important to improve our understanding of the local energy balance and the related snowmelt and hydrological processes. In this paper, we analyze changes of snow cover, optical-equivalent snow grain size (radius), snow albedo and radiative forcing by light-absorbing impurities in snow and ice (LAISI) with respect to terrain elevation and aspect at multiple dates during the snowmelt period. These snow properties are derived from the NASA/JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data from 2009 in California's Sierra Nevada and from 2011 in Colorado's Rocky Mountains, USA. Our results show a linearly decreasing snow cover during the ablation period in May and June in the Rocky Mountains and a snowfall-driven change in snow cover in the Sierra Nevada between February and May. At the same time, the snow grain size is increasing primarily at higher elevations and north-facing slopes from 200 microns to 800 microns on average. We find that intense snowmelt renders the mean grain size almost invariant with respect to elevation and aspect. Our results confirm the inverse relationship between snow albedo and grain size, as well as between snow albedo and radiative forcing by LAISI. At both study sites, the mean snow albedo value decreases from approximately 0.7 to 0.5 during the ablation period. The mean snow grain size increased from approximately 150 to 650 microns. The mean radiative forcing increases from 20 W m-2 up to 200 W m-2 during the ablation period. The variability of snow albedo and grain size decreases in general with the progression of the ablation period. The spatial variability of the snow albedo and grain size decreases through the melt season while the spatial variability of radiative forcing remains constant.

  6. Analysis of Snow Albedo, Grain Size and Radiative Forcing based on the Airborne Snow Observatory (ASO) Imaging Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Seidel, F. C.; Painter, T. H.

    2013-12-01

    Climate is expected to be most vulnerable in mountainous and arctic regions where the atmosphere and the hydrosphere are directly linked to the cryosphere. A combination of modeling and large-scale observational efforts is required to investigate related scientific questions. NASA's Airborne Snow Observatory (ASO) at the Jet Propulsion Laboratory addresses some of these needs by establishing new quantitative observational capabilities in regional mapping of mountain snow properties. In addition, ASO's key products showed that we are able to achieve societal benefits by improving water resources management. We will show the first analysis of snow optical products (albedo, grain size, and radiative forcing) from the spring 2013 ASO campaign in the Sierra Nevada, CA, USA. In addition, we will present the retrieval methods used to derive these products based on airborne imaging spectroscopy, LiDAR, as well as radiative transfer models. The preliminary findings provide new important insights into the temporal and spatial aspects of Western US mountain snow and its melt.

  7. Impact of mountain pine beetle outbreaks on forest albedo and radiative forcing, as derived from Moderate Resolution Imaging Spectroradiometer, Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Vanderhoof, M.; Williams, C. A.; Ghimire, B.; Rogan, J.

    2013-12-01

    pine beetle (Dendroctonus ponderosae) outbreaks in North America are widespread and have potentially large-scale impacts on albedo and associated radiative forcing. Mountain pine beetle outbreaks in Colorado and southern Wyoming have resulted in persistent and significant increases in both winter albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.05 ± 0.01, in lodgepole pine (Pinus contorta) and ponderosa pine (Pinus ponderosa) stands, respectively) and spring albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.04 ± 0.01, in lodgepole pine and ponderosa pine stands, respectively). Instantaneous top-of-atmosphere radiative forcing peaked for both lodgepole pine and ponderosa pine stands in winter at 10 years post outbreak at -1.7 ± 0.2 W m-2 and -1.4 ± 0.2 W m-2, respectively. The persistent increase in albedo with time since mountain pine beetle disturbance combined with the continued progression of the attack across the landscape from 1994-2011 resulted in an exponential increase in winter and annual radiative cooling (MW) over time. In 2011 the rate of radiative forcing within the study area reached -982.7 ± 139.0 MW, -269.8 ± 38.2 MW, -31.1 ± 4.4 MW, and -147.8 ± 20.9 MW in winter, spring, summer, and fall, respectively. An increase in radiative cooling has the potential to decrease sensible and/or latent heat flux by reducing available energy. Such changes could affect current mountain pine beetle outbreaks which are influenced by climatic conditions.

  8. Determination of the single scattering albedo and direct radiative forcing of biomass burning aerosol with data from the MODIS (Moderate Resolution Imaging Spectroradiometer) satellite instrument

    NASA Astrophysics Data System (ADS)

    Zhu, Li

    Biomass burning aerosols absorb and scatter solar radiation and therefore affect the energy balance of the Earth-atmosphere system. The single scattering albedo (SSA), the ratio of the scattering coefficient to the extinction coefficient, is an important parameter to describe the optical properties of aerosols and to determine the effect of aerosols on the energy balance of the planet and climate. Aerosol effects on radiation also depend strongly on surface albedo. Large uncertainties remain in current estimates of radiative impacts of biomass burning aerosols, due largely to the lack of reliable measurements of aerosol and surface properties. In this work we investigate how satellite measurements can be used to estimate the direct radiative forcing of biomass burning aerosols. We developed a method using the critical reflectance technique to retrieve SSA from the Moderate Resolution Imaging Spectroradiometer (MODIS) observed reflectance at the top of the atmosphere (TOA). We evaluated MODIS retrieved SSAs with AErosol RObotic NETwork (AERONET) retrievals and found good agreements within the published uncertainty of the AERONET retrievals. We then developed an algorithm, the MODIS Enhanced Vegetation Albedo (MEVA), to improve the representations of spectral variations of vegetation surface albedo based on MODIS observations at the discrete 0.67, 0.86, 0.47, 0.55, 1.24, 1.64, and 2.12 mu-m channels. This algorithm is validated using laboratory measurements of the different vegetation types from the Amazon region, data from the Johns Hopkins University (JHU) spectral library, and data from the U.S. Geological Survey (USGS) digital spectral library. We show that the MEVA method can improve the accuracy of flux and aerosol forcing calculations at the TOA compared to more traditional interpolated approaches. Lastly, we combine the MODIS retrieved biomass burning aerosol SSA and the surface albedo spectrum determined from the MEVA technique to calculate TOA flux and

  9. Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: observations and modeling of the impact on snow albedo, melting, and radiative forcing

    NASA Astrophysics Data System (ADS)

    Jacobi, H.-W.; Lim, S.; Ménégoz, M.; Ginot, P.; Laj, P.; Bonasoni, P.; Stocchi, P.; Marinoni, A.; Arnaud, Y.

    2014-10-01

    Black carbon (BC) in the snow in the Himalayas has recently attracted considerable interest due to its impact on snow albedo, snow and glacier melting, regional climate and water resources. A single particle soot photometer (SP2) instrument was used to measure refractory BC (rBC) in a series of surface snow samples collected in the upper Khumbu Valley in Nepal between November 2009 and February 2012. The obtained time series indicates annual cycles with maximum concentration before the onset of the monsoon season and fast decreases in rBC during the monsoon period. Measured concentrations ranged from a few ppb up to 70 ppb rBC. However, due to the handling of the samples the measured concentrations possess rather large uncertainties. Detailed modeling of the snowpack including the measured range and an estimated upper limit of rBC concentrations was performed to study the role of BC in the seasonal snowpack. Simulations were performed for three winter seasons with the snowpack model Crocus including a detailed description of the radiative transfer inside the snowpack. While the standard Crocus model strongly overestimates the height and the duration of the seasonal snowpack, a better calculation of the snow albedo with the new radiative transfer scheme enhanced the representation of the snow. However, the period with snow on the ground neglecting BC in the snow was still over-estimated between 37 and 66 days, which was further diminished by 8 to 15% and more than 40% in the presence of 100 or 300 ppb of BC. Compared to snow without BC the albedo is on average reduced by 0.027 and 0.060 in the presence of 100 and 300 ppb BC. While the impact of increasing BC in the snow on the albedo was largest for clean snow, the impact on the local radiative forcing is the opposite. Here, increasing BC caused an even larger impact at higher BC concentrations. This effect is related to an accelerated melting of the snowpack caused by a more efficient metamorphism of the snow due

  10. Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: observations and modeling of the impact on snow albedo, melting, and radiative forcing

    NASA Astrophysics Data System (ADS)

    Jacobi, H.-W.; Lim, S.; Ménégoz, M.; Ginot, P.; Laj, P.; Bonasoni, P.; Stocchi, P.; Marinoni, A.; Arnaud, Y.

    2015-08-01

    Black carbon (BC) in snow in the Himalayas has recently attracted considerable interest due to its impact on snow albedo, snow and glacier melting, regional climate and water resources. A single particle soot photometer (SP2) instrument was used to measure refractory BC (rBC) in a series of surface snow samples collected in the upper Khumbu Valley, Nepal between November 2009 and February 2012. The obtained time series indicates annual cycles with maximum rBC concentrations before the onset of the monsoon season and fast decreases during the monsoon period. Detected concentrations ranged from a few up to 70 ppb with rather large uncertainties due to the handling of the samples. Detailed modeling of the snowpack, including the detected range and an estimated upper limit of BC concentrations, was performed to study the role of BC in the seasonal snowpack. Simulations were performed for three winter seasons with the snowpack model Crocus, including a detailed description of the radiative transfer inside the snowpack. While the standard Crocus model strongly overestimates the height and the duration of the seasonal snowpack, a better calculation of the snow albedo with the new radiative transfer scheme enhanced the representation of the snow. However, the period with snow on the ground without BC in the snow was still overestimated between 37 and 66 days, which was further diminished by 8 to 15 % and more than 40 % in the presence of 100 or 300 ppb of BC. Compared to snow without BC, the albedo is reduced on average by 0.027 and 0.060 in the presence of 100 and 300 ppb BC. While the impact of increasing BC in the snow on the albedo was largest for clean snow, the impact on the local radiative forcing is the opposite. Here, increasing BC caused an even larger impact at higher BC concentrations. This effect is related to an accelerated melting of the snowpack caused by a more efficient metamorphism of the snow due to an increasing size of the snow grains with increasing

  11. Effect of including land-use driven radiative forcing of the surface albedo of land on climate response in the 16th-21st centuries

    NASA Astrophysics Data System (ADS)

    Eliseev, A. V.; Mokhov, I. I.

    2011-02-01

    A change in ecosystem types, such as through natural-vegetation-agriculture conversion, alters the surface albedo and triggers attendant shortwave radiative forcing (RF). This paper describes numerical experiments performed using the climate model (CM) of the Institute of Atmospheric Physics (IAP), Russian Academy of Sciences, for the 16th-21st centuries; this model simulated the response to a change in the contents of greenhouse gases (tropospheric and stratospheric), sulfate aerosols, solar constant, as well as the response to change in surface albedo of land due to natural-vegetation-agriculture conversion. These forcing estimates relied on actual data until the late 20th century. In the 21st century, the agricultural area was specified according to scenarios of the Land Use Harmonization project and other anthropogenic impacts were specified using SRES scenarios. The change in the surface vegetation during conversion from natural vegetation to agriculture triggers a cooling RF in most regions except for those of natural semiarid vegetation. The global and annual average RF derived from the IAP RAS CM in late 20th century is -0.11 W m-2. Including the land-use driven RF in IAP RAS CM appreciably reconciled the model calculations to observations in this historical period. For instance, in addition to the net climate warming, IAP RAS CM predicted an annually average cooling and reduction in precipitation in the subtropics of Eurasia and North America and in Amazonia and central Africa, as well as a local maximum in annually average and summertime warming in East China. The land-use driven RF alters the sign in the dependence that the amplitude of the annual cycle of the near-surface atmospheric temperature has on the annually averaged temperature. One reason for the decrease in precipitation as a result of a change in albedo due to land use may be the suppression of the convective activity in the atmosphere in the warm period (throughout the year in the tropics

  12. Large atmospheric shortwave radiative forcing by Mediterranean aerosols derived from simultaneous ground-based and spaceborne observations and dependence on the aerosol type and single scattering albedo

    NASA Astrophysics Data System (ADS)

    di Biagio, Claudia; di Sarra, Alcide; Meloni, Daniela

    2010-05-01

    Aerosol optical properties and shortwave irradiance measurements at the island of Lampedusa (central Mediterranean) during 2004-2007 are combined with Clouds and the Earth's Radiant Energy System observations of the outgoing shortwave flux at the top of the atmosphere (TOA). The measurements are used to estimate the surface (FES), the top of the atmosphere (FETOA), and the atmospheric (FEATM) shortwave aerosol forcing efficiencies for solar zenith angle (θ) between 15° and 55° for desert dust (DD), urban/industrial-biomass burning aerosols (UI-BB), and mixed aerosols (MA). The forcing efficiency at the different atmospheric levels is derived by applying the direct method, that is, as the derivative of the shortwave net flux versus the aerosol optical depth at fixed θ. The diurnal average forcing efficiency at the surface/TOA at the equinox is (-68.9 ± 4.0)/(-45.5 ± 5.4) W m-2 for DD, (-59.0 ± 4.3)/(-19.2 ± 3.3) W m-2 for UI-BB, and (-94.9 ± 5.1)/(-36.2 ± 1.7) W m-2 for MA. The diurnal average atmospheric radiative forcing at the equinox is (+7.3 ± 2.5) W m-2 for DD, (+8.4 ± 1.9) W m-2 for UI-BB, and (+8.2 ± 1.9) W m-2 for MA, suggesting that the mean atmospheric forcing is almost independent of the aerosol type. The largest values of the atmospheric forcing may reach +35 W m-2 for DD, +23 W m-2 for UI-BB, and +34 W m-2 for MA. FETOA is calculated for MA and 25° ≤ θ ≤ 35° for three classes of single scattering albedo (0.7 ≤ ω < 0.8, 0.8 ≤ ω < 0.9, and 0.9 ≤ ω ≤ 1) at 415.6 and 868.7 nm: FETOA increases, in absolute value, for increasing ω. A 0.1 increment in ω determines an increase in FETOA by 10-20 W m-2.

  13. Radiative Forcing of Climate Change

    SciTech Connect

    Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

    2001-10-01

    Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

  14. Combining the effect of crops surface albedo variability on the radiative forcing together with crop GHG budgets calculated from in situ flux measurements in a life cycle assessment approach: methodology and results

    NASA Astrophysics Data System (ADS)

    Ceschia, E.; Ferlicoq, M.; Brut, A.; Tallec, T.

    2013-12-01

    The carbon and GHG budgets (GHGB) of the 2 crop sites with contrasted management located in South West France was estimated over a complete rotation by combining a classical LCA approach with on site CO2 flux measurements. At both sites, carbon inputs (organic fertilization, seeds), carbon exports (harvest) and net ecosystem production (NEP), measured with the eddy covariance technique, were estimated. The variability of the different terms and their relative contributions to the net ecosystem carbon budget (NECB) were analyzed for all site-years, and the effect of management on NECB was assessed. To account for GHG fluxes that were not directly measured on site, we estimated the emissions caused by field operations (EFO) for each site using emission factors from the literature. The EFO were added to the NECB to calculate the total GHGB for a range of cropping systems and management regimes. N2O emissions were calculated following the IPCC (2007) guidelines or and CH4 emissions were assumed to be negligible. Albedo was calculated continuously using the short wave incident and reflected radiation measurements in the field from CNR1 sensors. Rapid changes in surface albedo typical from those ecosystems and resulting from management and crop phenology were analysed. The annual radiative forcing for each plot was estimated by calculating the difference between a mean annual albedo for each crop and a reference bare soil albedo value calculated over 5 years for each plot. To finalize the radiative forcing calculation, the method developed by Muñoz et al (2010) using up and down atmospheric transmittance had to be corrected so it would only account for up-going atmospheric transmittance. Annual differences in radiative forcing between crops were then converted in g C equivalent m-2 in order to add this effect to the GHG budget of each crop within a rotation. This methodology could be applied to all ICOS/NEON cropland sites. We found that the differences in radiative

  15. Spatiotemporal variation of surface shortwave forcing from fire-induced albedo change in interior Alaska

    USGS Publications Warehouse

    Huang, Shengli; Dahal, Devendra; Liu, Heping; Jin, Suming; Young, Claudia J.; Liu, Shuang; Liu, Shu-Guang

    2015-01-01

    The albedo change caused by both fires and subsequent succession is spatially heterogeneous, leading to the need to assess the spatiotemporal variation of surface shortwave forcing (SSF) as a component to quantify the climate impacts of high-latitude fires. We used an image reconstruction approach to compare postfire albedo with the albedo assuming fires had not occurred. Combining the fire-caused albedo change from the 2001-2010 fires in interior Alaska and the monthly surface incoming solar radiation, we examined the spatiotemporal variation of SSF in the early successional stage of around 10 years. Our results showed that while postfire albedo generally increased in fall, winter, and spring, some burned areas could show an albedo decrease during these seasons. In summer, the albedo increased for several years and then declined again. The spring SSF distribution did not show a latitudinal decrease from south to north as previously reported. The results also indicated that although the SSF is usually largely negative in the early successional years, it may not be significant during the first postfire year. The annual 2005-2010 SSF for the 2004 fire scars was -1.30, -4.40, -3.31, -4.00, -3.42, and -2.47 Wm-2. The integrated annual SSF map showed significant spatial variation with a mean of -3.15 Wm-2 and a standard deviation of 3.26 Wm-2, 16% of burned areas having positive SSF. Our results suggest that boreal deciduous fires would be less positive for climate change than boreal evergreen fires. Future research is needed to comprehensively investigate the spatiotemporal radiative and non-radiative forcings to determine the effect of boreal fires on climate.

  16. Radiation Dose from Lunar Neutron Albedo

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Bhattacharya, M.; Lin, Zi-Wei; Pendleton, G.

    2006-01-01

    The lunar neutron albedo from thermal energies to 8 MeV was measured on the Lunar Prospector Mission in 1998-1999. Using GEANT4 we have calculated the neutron albedo due to cosmic ray bombardment of the moon and found a good-agreement with the measured fast neutron spectra. We then calculated the total effective dose from neutron albedo of all energies, and made comparisons with the effective dose contributions from both galactic cosmic rays and solar particle events to be expected on the lunar surface.

  17. Regionally Differentiated Scenarios of Future Albedo Forcing from Anthropogenic Land Cover Change

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Calvin, K. V.; Collins, W.; Edmonds, J.

    2014-12-01

    Using the Community Earth System Model (CESM), we develop geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions across 151 regions globally. The regions are formed through the intersectrion of 18 agro-ecological zones with 15 geo-political units, and correspond to the agricultural and land-use decision regions utilized by the Global Change Assessment Model (GCAM). Incorporating these forcing factors into GCAM allows us to calculate total radiative forcing associated with alternative scenarios of future anthropogenic land cover change. We find that conversion of 1 km2 of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 to -0.71 nW/m2 of globally averaged radiative forcing, depending on regional vegetation characteristics, snow dynamics, and atmospheric radiation environments. Across a set of scenarios designed to span a range of potential future anthropogenic landcover change, we find albedo forcing ranging from -0.05 to -0.25 W/m2 by 2070. The scenarios vary in terms of assumptions regarding future crop yield growth and climate policies, which could favor either afforestation or bioenergy crops. This range of forcing is similar in magnitude to central estimates for present-day forcing from historical land cover change and to several other forcing agents including nitrous oxide.

  18. Soot climate forcing via snow and ice albedos

    PubMed Central

    Hansen, James; Nazarenko, Larissa

    2004-01-01

    Plausible estimates for the effect of soot on snow and ice albedos (1.5% in the Arctic and 3% in Northern Hemisphere land areas) yield a climate forcing of +0.3 W/m2 in the Northern Hemisphere. The “efficacy” of this forcing is ∼2, i.e., for a given forcing it is twice as effective as CO2 in altering global surface air temperature. This indirect soot forcing may have contributed to global warming of the past century, including the trend toward early springs in the Northern Hemisphere, thinning Arctic sea ice, and melting land ice and permafrost. If, as we suggest, melting ice and sea level rise define the level of dangerous anthropogenic interference with the climate system, then reducing soot emissions, thus restoring snow albedos to pristine high values, would have the double benefit of reducing global warming and raising the global temperature level at which dangerous anthropogenic interference occurs. However, soot contributions to climate change do not alter the conclusion that anthropogenic greenhouse gases have been the main cause of recent global warming and will be the predominant climate forcing in the future. PMID:14699053

  19. Simultaneous Spectral Albedo Measurements Near the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) Central Facility

    SciTech Connect

    Michalsky, Joseph J.; Min, Qilong; Barnard, James C.; Marchand, Roger T.; Pilewskie, Peter

    2003-04-30

    In this study, a data analysis is performed to determine the area-averaged, spectral albedo at ARM's SGP central facility site. The spectral albedo is then fed into radiation transfer models to show that the diffuse discrepancy is diminished when the spectral albedo is used (as opposed to using the broadband albedo).

  20. Assessing surface albedo change and its induced radiation budget under rapid urbanization with Landsat and GLASS data

    NASA Astrophysics Data System (ADS)

    Hu, Yonghong; Jia, Gensuo; Pohl, Christine; Zhang, Xiaoxuan; van Genderen, John

    2016-02-01

    Radiative forcing (RF) induced by land use (mainly surface albedo) change is still not well understood in climate change science, especially the effects of changes in urban albedo due to rapid urbanization on the urban radiation budget. In this study, a modified RF derivation approach based on Landsat images was used to quantify changes in the solar radiation budget induced by variations in surface albedo in Beijing from 2001 to 2009. Field radiation records from a Beijing meteorological station were used to identify changes in RF at the local level. There has been rapid urban expansion over the last decade, with the urban land area increasing at about 3.3 % annually from 2001 to 2009. This has modified three-dimensional urban surface properties, resulting in lower albedo due to complex building configurations of urban centers and higher albedo on flat surfaces of suburban areas and cropland. There was greater solar radiation (6.93 × 108 W) in the urban center in 2009 than in 2001. However, large cropland and urban fringe areas caused less solar radiation absorption. RF increased with distance from the urban center (less than 14 km) and with greater urbanization, with the greatest value being 0.41 W/m2. The solar radiation budget in urban areas was believed to be mainly influenced by urban structural changes in the horizontal and vertical directions. Overall, the results presented herein indicate that cumulative urbanization impacts on the natural radiation budget could evolve into an important driver of local climate change.

  1. Aerosol Absorption and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier

    2007-01-01

    We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0

  2. From Regional Cloud-Albedo to a Global Albedo Footprint - Studying Aerosol Effects on the Radiation Budget Using the Relation Between Albedo and Cloud Fraction

    NASA Astrophysics Data System (ADS)

    Bender, F.; Engström, A.; Karlsson, J.; Wood, R.; Charlson, R. J.

    2015-12-01

    Earth's albedo is the primary determinant of the amount of energy absorbed by the Earth-atmosphere system. The main factor controlling albedo is the amount of clouds present, but aerosols can affect and alter both clear-sky and cloudy-sky reflectance. How albedo depends on cloud fraction and how albedo varies at a given cloud fraction and a given cloud water content, reveals information about these aerosol effects on the radiation budget. Hence, the relation between total albedo and cloud fraction can be used for illustration and quantification of aerosol effects, and as a diagnostic tool, to test model performance. Here, we show examples of the utilisation of this relation focusing on satellite observations from CERES and MODIS on Aqua, as well as from Calipso and CloudSat, and performing comparisons with climate models on the way: In low-cloud regions in the subtropics, we find that climate models well represent a near-constant regional cloud albedo, and this representation has improved from CMIP3 to CMIP5. CMIP5 models indicate more reflective clouds in present-day climate than pre-industrial, as a result of increased aerosol burdens. On monthly mean time scale, models are found to over-estimate the regional cloud-brightening due to aerosols. On the global scale we find an increasing cloud albedo with increasing cloud fraction - a relation that is very well defined in observations, and less so in CMIP5 models. Cloud brightening from pre-industrial to present day is also seen on global scale. Further, controlling for both cloud fraction and cloud water content we can trace small variations in albedo, or perturbations of solar reflectivity, that create a near-global coherent geographical pattern that is consistent with aerosol impacts on climate, with albedo enhancement in regions dominant of known aerosol sources and suppression of albedo in regions associated with high rates of aerosol removal (deduced using CloudSat precipitation estimates). This mapping can be

  3. Radiative transfer in dusty nebulae. III - The effects of dust albedo

    NASA Technical Reports Server (NTRS)

    Petrosian, V.; Dana, R. A.

    1980-01-01

    The effects of an albedo of internal dust, such as ionization structure and temperature of dust grain, were studied by the quasi-diffusion method with an iterative technique for solving the radiative heat transfer equations. It was found that the generalized on-the-spot approximation solution is adequate for most astrophysical applications for a zero albedo; for a nonzero albedo, the Eddington approximation is more accurate. The albedo increases the average energy of the diffuse photons, increasing the ionization level of hydrogen and heavy elements if the Eddington approximation is applied; the dust thermal gradient is reduced so that the infrared spectrum approaches blackbody spectrum with an increasing albedo.

  4. Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing

    SciTech Connect

    Ghan, Steven J.

    2013-10-09

    Estimating anthropogenic aerosol effects on the planetary energy balance through the aerosol influence on clouds using the difference in cloud radiative forcing from simulations with and without anthropogenic emissions produces estimates that are positively biased. A more representative method is suggested using the difference in cloud radiative forcing calculated with aerosol radiative effects neglected. The method also yields an aerosol radiative forcing decomposition that includes a term quantifying the impact of changes in surface albedo. The method requires only two additional diagnostic calculations: the whole-sky and clear-sky top-of-atmosphere radiative flux with aerosol radiative effects neglected.

  5. The Global Radiative Impact of the Sea-Ice-Albedo Feedback in the Arctic

    NASA Astrophysics Data System (ADS)

    Hudson, S. R.

    2009-12-01

    The sea-ice-albedo feedback is known to be an important element of climatic changes over and near regions of ocean with ice cover. It is one of several feedbacks that lead to the polar enhancement of observed and projected global warming. Many studies in the past have used climate models to look at the regional and global impact of the albedo feedback on specific climate variables, most often temperature. These studies generally report a strong regional effect, but also some global effects due to the feedback. Recent changes in Arctic sea ice have led to increased reference to the importance of the sea-ice-albedo feedback, but few studies have examined the global impact of the feedback specifically associated with changes to sea ice in the Arctic; most have included changes to sea ice in both hemispheres, and in many cases, also to snow. That reduced sea ice cover will have a local warming effect is clear from modeling studies. On the other hand, given the relatively small area of the globe that is covered by Arctic sea ice, and the relatively small amounts of sunlight incident on these areas annually, it should be investigated how important reductions in sea ice are to the global solar radiation budget. In this study I present calculations of the global radiative impact of the reduction in Earth’s albedo resulting from reduced sea-ice cover in the Arctic. The intended result is a number, in W m-2, that represents the total increase in absorbed solar radiation due to the reduction in Arctic sea-ice cover, averaged over the globe and over the year. This number is relevant to assessing the long-term, global importance of the sea-ice-albedo feedback to climate change, and can help put it into context by allowing a comparison of this radiative forcing with other forcings, such as those due to CO2 increases and to aerosols, as given in Figure SPM.2 from the IPCC AR4 WG1. Rather than try to determine this forcing with a model, in which the assumptions and

  6. Radiative Forcing by Contrails

    NASA Technical Reports Server (NTRS)

    Meerkoetter, R.; Schumann, U.; Doelling, D. R.; Nakajima, T.; Tsushima, Y.

    1999-01-01

    A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmospheres The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 W/m(exp 2)a daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.

  7. Radiative forcing of climate

    NASA Technical Reports Server (NTRS)

    Ramanswamy, V.; Shine, Keith; Leovy, Conway; Wang, Wei-Chyung; Rodhe, Henning; Wuebbles, Donald J.; Ding, M.; Lelieveld, Joseph; Edmonds, Jae A.; Mccormick, M. Patrick

    1991-01-01

    An update of the scientific discussions presented in Chapter 2 of the Intergovernmental Panel on Climate Change (IPCC) report is presented. The update discusses the atmospheric radiative and chemical species of significance for climate change. There are two major objectives of the present update. The first is an extension of the discussion on the Global Warming Potentials (GWP's), including a reevaluation in view of the updates in the lifetimes of the radiatively active species. The second important objective is to underscore major developments in the radiative forcing of climate due to the observed stratospheric ozone losses occurring between 1979 and 1990.

  8. Assigning a Price to Radiative Forcing: Methods, Results, and Implications

    NASA Astrophysics Data System (ADS)

    Lutz, D. A.; Howarth, R. B.

    2015-12-01

    Climate change mitigation frameworks have increasingly begun to include components that involve active management of the land surface. Predominantly, these programs focus on the sequestration of greenhouse gasses in vegetation and soils, generating offset credits for projects which demonstrate considerable storage. However, it is widely known that biogeophysical interactions between the land surface and the atmosphere, such as latent and sensible heat flux, albedo radiative forcing, and surface roughness, can in many cases outweigh the influence of greenhouse gas storage on global and local climate. Surface albedo, in particular, has attracted attention in the context of these frameworks because it has been shown to influence the overall climate benefits of high-latitude forest growth through tradeoffs between carbon sequestration and radiative forcing from seasonal snow cover albedo. Here we review a methodology for pricing albedo-related radiative forcing through the use of an integrated assessment model, present the results under several emissions and social preference scenarios, and describe the implications that this pricing methodology may have on forest land management in the Northeastern United States. Additionally, we investigate the consequences of projected decreased winter precipitation on the net climate benefits of snow albedo throughout the state of New Hampshire, USA.

  9. Radiative Forcing Over Ocean by Ship Wakes

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; Wilcox, E.; Poudyal, R.; Wang, J.

    2011-01-01

    Changes in surface albedo represent one of the main forcing agents that can counteract, to some extent, the positive forcing from increasing greenhouse gas concentrations. Here, we report on enhanced ocean reflectance from ship wakes over the Pacific Ocean near the California coast, where we determined, based on airborne radiation measurements that ship wakes can increase reflected sunlight by more than 100%. We assessed the importance of this increase to climate forcing, where we estimated the global radiative forcing of ship wakes to be -0.00014 plus or minus 53% Watts per square meter assuming a global distribution of 32331 ships of size of greater than or equal to 100000 gross tonnage. The forcing is smaller than the forcing of aircraft contrails (-0.007 to +0.02 Watts per square meter), but considering that the global shipping fleet has rapidly grown in the last five decades and this trend is likely to continue because of the need of more inter-continental transportation as a result of economic globalization, we argue that the radiative forcing of wakes is expected to be increasingly important especially in harbors and coastal regions.

  10. Influence of urban aerosol pollution to radiative forcing

    NASA Astrophysics Data System (ADS)

    Nemuc, Anca; Stefan, Sabina; Talianu, Camelia L.

    2007-10-01

    Daily PM10 concentrations of samples collected at two sites, urban and rural from Romania have been used to estimate the aerosol direct radiative forcing. Using OPAC (Optical Properties of Aerosols and Cloud) model we determined the single scattering albedo, the aerosol optical depth and aerosol up-scatter fraction, aerosol's properties needed to estimate the magnitude and sign of direct aerosol radiative forcing. The surface albedo was assumed 0.2 for the urban site and 0.06 for the rural site for all wavelengths. For aerosol scale height we used 1km in winter and 2 km in the summer to calculate the optical depth of the boundary layer. Statistical analysis of the PM10 concentration for both sites show clear seasonal cycle with maxima in the winter. As a consequence of urban atmospheric pollution the radiative forcing for urban site appears strongly modified in comparison with rural site.

  11. Diurnal variations of outgoing longwave radiation and albedo from ERBE scanner data

    NASA Technical Reports Server (NTRS)

    Hartmann, Dennis L.; Kowalewsky, Karen J.; Michelsen, Marc L.

    1991-01-01

    The scanning instruments of the Earth Radiation Budget Experiment provide measurements of instantaneous broadband albedo and outgoing longwave radiation (OLR) with a spatial resolution of about 50 km. Data from the Earth Radiation Budget Satellite (ERBS), which is in an orbit that precesses through local time at the rate of one hour every three days, can be used to describe the mean, hourly diurnal variations in the distribution of OLR and albedo on this scale. Much of this variation is caused by cloud type and amount changes. Two-dimensional histograms show the coevolution of OLR and albedo with the diurnal cycle, and the distribution of albedo-OLR pairings associated with the cloud distribution in a particular region and season. The albedo-OLR pairing characterizes a cloud type and determines its net effect on the energy balance at the top of the atmosphere. Diurnal variations in cloud type and amount in many regions are sufficient to cause substantial errors in radiation budget quantities and cloud properties estimated from observations taken from a single sun-synchronous orbit. Errors in estimated net radiation can be as large as 50 W/sq m for oceanic stratus regions and for land regions during summer.

  12. Albedo enhancement and perturbation of radiation balance due to stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1978-01-01

    The effect of stratospheric aerosols on the earth's monthly zonal radiation balance is investigated using a model layer consisting of 75% H2SO4, which is the primary constituent of the background aerosol layer. The reduction in solar energy absorbed by the earth-atmosphere system is determined through the albedo sensitivity, defined here as the change in albedo per unit mid-visible optical depth of the aerosol layer. The optically thin approximation is used in conjunction with the Henyey-Greenstein phase function for scattering to simplify computations. Satellite derived planetary albedos are used as the frame of reference about which the change in albedo is computed. An infrared radiative transfer model is used to estimate the increased greenhouse effect attributed to the aerosol layer. The infrared heating tends to compensate for the albedo effect in altering the radiation balance. The results indicate that the dominant influence of the thin model stratospheric aerosol layer is an increased reflection of solar energy all over the globe except for the polar-winter region, but the change in the radiation balance is seen to be uniform and small equatorwards of 50%.

  13. Observations of albedo and radiation balance over postforest land surfaces in the eastern Amazon Basin

    SciTech Connect

    Giambelluca, T.W.; Nullet, M.A.; Ziegler, A.D.

    1997-05-01

    Regional climatic change, including significant reductions in Amazon Basin evaporation and precipitation, has been predicted by numerical simulations of total tropical forest removal. These results have been shown to be very sensitive to the prescription of the albedo shift associated with conversion from forest to a replacement land cover. Modelers have so far chosen to use an {open_quotes}impoverished grassland{close_quotes} scenario to represent the postforest land surface. This choice maximizes the shifts in land surface parameters, especially albedo (fraction of incident shortwave radiation reflected by the surface). Recent surveys show secondary vegetation to be the dominant land cover for some deforested areas of the Amazon. This paper presents the results of field measurements of radiation flux over various deforested surfaces on a small farm in the eastern Amazonian state of Para. The albedo of fields in active use was as high as 0.176, slightly less than the 0.180 recently determined for Amazonian pasture and substantially less than the 0.19 commonly used in GCM simulations of deforestation. For 10-yr-old secondary vegetation, albedo was 0.135, practically indistinguishable from the recently published mean primary forest albedo of 0.134. Measurements of surface temperature and net radiation show that, despite similarity in albedo, secondary vegetation differs from primary forest in energy and mass exchange. The elevation of midday surface temperature above air temperature was found to be greatest for actively and recently farmed land, declining with time since abandonment. Net radiation was correspondingly lower for fields in active or recent use. Using land cover analyses of the region surrounding the study area for 1984, 1988, and 1991, the pace of change in regional-mean albedo is estimated to have declined and appears to be leveling at a value less than 0.03 above that of the original forest cover. 41 refs., 3 figs., 8 tabs.

  14. Comparative accuracy of the Albedo, transmission and absorption for selected radiative transfer approximations

    NASA Technical Reports Server (NTRS)

    King, M. D.; HARSHVARDHAN

    1986-01-01

    Illustrations of both the relative and absolute accuracy of eight different radiative transfer approximations as a function of optical thickness, solar zenith angle and single scattering albedo are given. Computational results for the plane albedo, total transmission and fractional absorption were obtained for plane-parallel atmospheres composed of cloud particles. These computations, which were obtained using the doubling method, are compared with comparable results obtained using selected radiative transfer approximations. Comparisons were made between asymptotic theory for thick layers and the following widely used two stream approximations: Coakley-Chylek's models 1 and 2, Meador-Weaver, Eddington, delta-Eddington, PIFM and delta-discrete ordinates.

  15. Black carbon radiative forcing over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    He, Cenlin; Li, Qinbin; Liou, Kuo-Nan; Takano, Yoshi; Gu, Yu; Qi, Ling; Mao, Yuhao; Leung, L. Ruby

    2014-11-01

    We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. The annual mean BC snow albedo forcing is 2.9 W m-2 averaged over snow-covered plateau regions, which is a factor of 3 larger than the value over global land snowpack. BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing, and coated BC increases the forcing by 30-50% compared with uncoated BC aggregates, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. The annual BC DRF at the top of the atmosphere is 2.3 W m-2 with uncertainties of -70-85% in the plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network observations. The BC forcings are attributed to emissions from different regions.

  16. Black Carbon Radiative Forcing over the Tibetan Plateau

    SciTech Connect

    He, Cenlin; Li, Qinbin; Liou, K. N.; Takano, Y.; Gu, Yu; Qi, L.; Mao, Yuhao; Leung, Lai-Yung R.

    2014-11-28

    We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. Our best estimate of the annual BC snow albedo forcing in the Plateau is 2.9 W m-2 (uncertainty: 1.5–5.0 W m-226 ). We find that BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing and coated BC increases the forcing by 30-50% compared with uncoated BC, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. Our best estimate of the annual BC DRF at the top of the atmosphere is 2.3 W m-2 (uncertainty: 0.7–4.3 W m-230 ) in the Plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network (AERONET) observations. The BC forcings are attributed to emissions from different regions.

  17. Estimates of the Spectral Aerosol Single Sea Scattering Albedo and Aerosol Radiative Effects during SAFARI 2000

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Pilewskie, Peter; Schmid, Beat; Russell, Philip B.

    2003-01-01

    Using measurements of the spectral solar radiative flux and optical depth for 2 days (24 August and 6 September 2000) during the SAFARI 2000 intensive field experiment and a detailed radiative transfer model, we estimate the spectral single scattering albedo of the aerosol layer. The single scattering albedo is similar on the 2 days even though the optical depth for the aerosol layer was quite different. The aerosol single scattering albedo was between 0.85 and 0.90 at 350 nm, decreasing to 0.6 in the near infrared. The magnitude and decrease with wavelength of the single scattering albedo are consistent with the absorption properties of small black carbon particles. We estimate the uncertainty in the single scattering albedo due to the uncertainty in the measured fractional absorption and optical depths. The uncertainty in the single scattering albedo is significantly less on the high-optical-depth day (6 September) than on the low-optical-depth day (24 August). On the high-optical-depth day, the uncertainty in the single scattering albedo is 0.02 in the midvisible whereas on the low-optical-depth day the uncertainty is 0.08 in the midvisible. On both days, the uncertainty becomes larger in the near infrared. We compute the radiative effect of the aerosol by comparing calculations with and without the aerosol. The effect at the top of the atmosphere (TOA) is to cool the atmosphere by 13 W/sq m on 24 August and 17 W/sq m on 6 September. The effect on the downward flux at the surface is a reduction of 57 W/sq m on 24 August and 200 W/sq m on 6 September. The aerosol effect on the downward flux at the surface is in good agreement with the results reported from the Indian Ocean Experiment (INDOEX).

  18. Dependence of global radiation on cloudiness and surface albedo in Tartu, Estonia

    NASA Astrophysics Data System (ADS)

    Tooming, H.

    The dependence of global and diffuse radiation on surface albedo due to multiple reflection of radiation between the surface and the atmosphere (base of clouds) is found on the basis of data obtained at the Tartu-Tõravere Actinometric Station over the period 1955-2000. It is found that the monthly totals of global radiation increase by up to 1.38-1.88 times, particularly in the winter half-year between November and March, when snow cover albedo may be high. A semi-empirical formula is derived for calculating with sufficient accuracy the monthly totals of global radiation, considering the amount of cloudiness and the surface albedo. In the time series of the monthly total by global radiation a downward trend occurs in winter months. A decrease in global radiation by up to 20% in the past 46 years can be explained primarily by a relatively high negative trend in the snow cover duration and surface albedo (up to -0.24). As a result, days are growing darker, a new phenomenon associated with climate change, which undoubtedly affects human mood to some extent.

  19. SAS 2 observations of the earth albedo gamma radiation above 35 MeV

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Simpson, G. A.; Ozel, M. E.

    1981-01-01

    The earth albedo gamma radiation above 35 MeV in the equatorial region is investigated using observations from the second Small Astronomy Satellite. The zenith angle distribution of the gamma radiation has a peak toward the horizon which is about an order of magnitude more intense than the radiation coming from the nadir, and nearly two orders of magnitude more intense than the gamma radiation from most parts of the sky. The gamma radiation originating from the western horizon is a factor of four more intense than the radiation from the eastern horizon and a factor of three more intense than that from the northern and southern directions. This reflects the geomagnetic effects on the incident cosmic rays whose interactions produce the albedo gamma rays. The variation of the upcoming gamma ray intensity with vertical cutoff rigidity is consistent with the empirical relationship found by Gur'yan et al. (1979).

  20. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo of Natural Waters

    EPA Science Inventory

    Three numerical algorithms were compared to provide a solution of a radiative transfer equation (RTE) for plane albedo (hemispherical reflectance) in semi-infinite one-dimensional plane-parallel layer. Algorithms were based on the invariant imbedding method and two different var...

  1. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo in Natural Waters

    EPA Science Inventory

    Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...

  2. Net radiative forcing from widespread deployment of photovoltaics.

    PubMed

    Nemet, Gregory F

    2009-03-15

    If photovoltaics (PV) are to contribute significantly to stabilizing the climate, they will need to be deployed on the scale of multiple terawatts. Installation of that much PV would cover substantial portions of the Earth's surface with dark-colored, sunlight-absorbing panels, reducing the Earth's albedo. How much radiative forcing would result from this change in land use? How does this amount compare to the radiative forcing avoided by substituting PV for fossil fuels? This analysis uses a series of simple equations to compare the two effects and finds that substitution dominates; the avoided radiative forcing due to substitution of PV for fossil fuels is approximately 30 times largerthan the forcing due to albedo modification. Sensitivity analysis, including discounting of future costs and benefits, identifies unfavorable yet plausible configurations in which the albedo effect substantially reduces the climatic benefits of PV. The value of PV as a climate mitigation option depends on how it is deployed, not just how much it is deployed--efficiency of PV systems and the carbon intensity of the substituted energy are particularly important PMID:19368231

  3. Application of the TLD albedo technique for monitoring and interpretation of neutron stray radiation fields

    NASA Astrophysics Data System (ADS)

    Piesch, E.; Burgkhardt, B.

    1980-09-01

    A single sphere albedo technique with TLD 600/TLD 700 detectors has been applied in neutron monitoring to calibrate albedo dosimeters and to interpret neutron stray radiation fields in terms of neutron dose equivalent separated for the energy groups below 0.4 eV, 0.4-10 keV and 10 keV-10 MeV, and Eeff for fast neutrons. The paper describes the technique for field and personnel monitoring under the aspect of an on-line computer program for data recording and processing.

  4. Radiative transfer in dusty nebulae. III. The effects of dust albedo

    SciTech Connect

    Petrosian, V.; Dana, R.A.

    1980-11-01

    The effects of an albedo of dust internal to nebulae on the observable parameters of the nebulae, such as ionization structure and temperature of dust grain have been investigated. We have used the quasi-diffusion method which entails an iterative procedure for solution of the radiative transfer equations to determine the accuracy of less-complicated, but approximate, solutions such as the Eddington approximation, a modified Eddington approximation, the on-the-spot approximation, and the generalized on-the-spot appproximation of Paper I. It is found that for zero albedo the generalized on-the-spot approximation is sufficiently accurate for most astrophysical applications. Similarly, for nonzero albedo the Eddington approximation gives accurate results, and the additional accuracy achieved through the modification of this approximation is, in most cases, negligible.

  5. Radiative forcing under mixed aerosol conditions

    NASA Astrophysics Data System (ADS)

    GarcíA, O. E.; Expósito, F. J.; DíAz, J. P.; DíAz, A. M.

    2011-01-01

    The mixture of mineral dust with biomass burning or urban-industrial aerosols presents significant differences in optical properties when compared to those of the individual constituents, leading to different impacts on solar radiation levels. This effect is assessed by estimating the direct radiative forcing (ΔF) of these aerosols from solar flux models using the radiative parameters derived from the Aerosol Robotic Network (AERONET). These data reveal that, in oceanic and vegetative covers (surface albedo (SA) < 0.30), the aerosol effect at the top of atmosphere (TOA) is always cooling the Earth-atmosphere system, regardless of the aerosol type. The obtained average values of ΔF range between -27 ± 15 Wm-2 (aerosol optical depth (AOD) at 0.55 μm, 0.3 ± 0.3) for mineral dust mixed with urban-industrial aerosols, registered in the East Asia region, and -34 ± 18 Wm-2 (AOD = 0.8 ± 0.4) for the mixture of the mineral dust and biomass burning particles, observed in the Central Africa region. In the intermediate SA range (0.30-0.50) the TOA radiative effect depends on the aerosol absorption properties. Thus, aerosols with single scattering albedo at 0.55 μm lower than ˜0.88 lead to a warming of the system, with ΔF of 10 ± 11 Wm-2 for the mixture of mineral dust and biomass burning. Cases with SA > 0.30 are not present in East Asia region. At the bottom of atmosphere (BOA) the maximum ΔF values are associated with the highest AOD levels obtained for the mixture of mineral dust and biomass burning aerosols (-130 ± 44 Wm-2 with AOD = 0.8 ± 0.4 for SA < 0.30).

  6. Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation

    NASA Astrophysics Data System (ADS)

    Howell, Fergus W.; Haywood, Alan M.; Dowsett, Harry J.; Pickering, Steven J.

    2016-05-01

    General circulation model (GCM) simulations of the mid-Pliocene Warm Period (mPWP, 3.264 to 3.025 Myr ago) do not reproduce the magnitude of Northern Hemisphere high latitude surface air and sea surface temperature (SAT and SST) warming that proxy data indicate. There is also large uncertainty regarding the state of sea ice cover in the mPWP. Evidence for both perennial and seasonal mPWP Arctic sea ice is found through analyses of marine sediments, whilst in a multi-model ensemble of mPWP climate simulations, half of the ensemble simulated ice-free summer Arctic conditions. Given the strong influence that sea ice exerts on high latitude temperatures, an understanding of the nature of mPWP Arctic sea ice would be highly beneficial. Using the HadCM3 GCM, this paper explores the impact of various combinations of potential mPWP orbital forcing, atmospheric CO2 concentrations and minimum sea ice albedo on sea ice extent and high latitude warming. The focus is on the Northern Hemisphere, due to availability of proxy data, and the large data-model discrepancies in this region. Changes in orbital forcings are demonstrated to be sufficient to alter the Arctic sea ice simulated by HadCM3 from perennial to seasonal. However, this occurs only when atmospheric CO2 concentrations exceed 300 ppm. Reduction of the minimum sea ice albedo from 0.5 to 0.2 is also sufficient to simulate seasonal sea ice, with any of the combinations of atmospheric CO2 and orbital forcing. Compared to a mPWP control simulation, monthly mean increases north of 60°N of up to 4.2 °C (SST) and 9.8 °C (SAT) are simulated. With varying CO2, orbit and sea ice albedo values we are able to reproduce proxy temperature records that lean towards modest levels of high latitude warming, but other proxy data showing greater warming remain beyond the reach of our model. This highlights the importance of additional proxy records at high latitudes and ongoing efforts to compare proxy signals between sites.

  7. Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation

    NASA Astrophysics Data System (ADS)

    Howell, Fergus; Haywood, Alan; Pickering, Steven

    2016-04-01

    General circulation model (GCM) simulations of the mid-Pliocene Warm Period (mPWP, 3.264 to 3.025 Myr ago) do not reproduce the magnitude of Northern Hemisphere high latitude surface air and sea surface temperature (SAT and SST) warming that proxy data indicates. There is also large uncertainty regarding the state of sea ice cover in the mPWP. Evidence for both perennial and seasonal mPWP Arctic sea ice is found in analyses of marine sediments, whilst in a multi-model ensemble of mPWP climate simulations, half of the ensemble simulated ice-free summer Arctic conditions. Given the strong influence that sea ice exerts on high latitude temperatures, a better understanding of the nature of mPWP Arctic sea ice would be highly beneficial in understanding proxy derived estimates of high latitude surface temperature change, and the ability of climate models to reproduce this. In GCM simulations, the mPWP is typically represented with fixed orbital forcing, usually identical to modern, and atmospheric CO2 concentrations of ˜ 400 ppm. However, orbital forcing varied over the ˜ 240,000 years of the mPWP, and it is likely that atmospheric CO2 varied as well. A previous study has suggested that the parameterisation of sea ice albedo in the HadCM3 GCM may not reflect the sea ice albedo for a warmer climate, where seasonal sea ice constitutes a greater proportion of the Arctic sea ice cover. These three factors, in isolation and combined, can greatly influence the simulation of Arctic sea ice cover and the degree of high latitude surface temperature warming. This paper explores the impact of various combinations of potential mPWP orbital forcing, atmospheric CO2 concentrations and minimum sea ice albedo on sea ice extent and high latitude warming. The focus is on the Northern Hemisphere, due to availability of proxy data, and the large data-model discrepancies in this region. Changes in orbital forcings are demonstrated to be sufficient to alter the Arctic sea ice simulated by

  8. Evaluation of aerosol indirect radiative forcing in MIRAGE

    NASA Astrophysics Data System (ADS)

    Ghan, Steven; Easter, Richard; Hudson, James; BréOn, Francois-Marie

    2001-03-01

    We evaluate aerosol indirect radiative forcing simulated by the Model for Integrated Research on Atmospheric Global Exchange (MIRAGE). Although explicit measurements of aerosol indirect radiative forcing do not exist, measurements of many of the links between aerosols and indirect radiative forcing are available and can be used for evaluation. These links include the cloud condensation nuclei concentration, the ratio of droplet number to aerosol number, the droplet number concentration, the column droplet number, the column cloud water, the droplet effective radius, the cloud optical depth, the correlation between cloud albedo and droplet effective radius, and the cloud radiative forcing. The CCN concentration simulated by MIRAGE agrees with measurements for supersaturations larger than 0.1% but not for smaller supersaturations. Simulated droplet number concentrations are too low in most but not all locations with available measurements, even when normalized by aerosol number. MIRAGE correctly simulates the higher droplet numbers and smaller droplet sizes over continents and in the Northern Hemisphere. Biases in column cloud water, cloud optical depth, and shortwave cloud radiative forcing are evident in the Intertropical Convergence Zone and in the subtropical oceans. MIRAGE correctly simulates a negative correlation between cloud albedo and droplet size over remote oceans for cloud optical depths greater than 15 and a positive correlation for cloud optical depths less than 15 but fails to simulate a negative correlation over land.

  9. Evaluation of Aerosol Indirect Radiative Forcing in MIRAGE

    SciTech Connect

    Ghan, Steven J.; Easter, Richard C.; Hudson, J D.; Breon, Francois

    2001-04-01

    We evaluate aerosol indirect radiative forcing simulated by the Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE). Although explicit measurements of aerosol indirect radiative forcing do not exist, measurements of many of the links between aerosols and indirect radiative forcing are available and can be used for evaluation. These links include the cloud condensation nuclei concentration, the ratio of droplet number to aerosol number, the droplet number concentration, the column droplet number, the column cloud water, the droplet effective radius, the cloud optical depth, the correlation between cloud albedo and droplet effective radius, and the cloud radiative forcing. The CCN concentration simulated by MIRAGE agrees with measurements for supersaturations larger than 0.1%, but not for smaller supersaturations. Simulated droplet number concentrations are too low in most, but not all, locations with available measurements, even when normalized by aerosol number. MIRA GE correctly simulates the higher droplet numbers and smaller droplet sizes over continents and in the Northern Hemisphere. Biases in column cloud water, cloud optical depth, and shortwave cloud radiative forcing are evident in the Intertropical Convergence Zone and in the subtropical oceans. MIRAGE correctly simulates a negative correlation between cloud albedo and droplet size over remote oceans for cloud optical depths greater than 15 and a positive correlation for cloud optical depths less than 15, but fails to simulate a negative correlation over land.

  10. Toward a new radiative-transfer-based model for remote sensing of terrestrial surface albedo.

    PubMed

    Cui, Shengcheng; Zhen, Xiaobing; Wang, Zhen; Yang, Shizhi; Zhu, WenYue; Li, Xuebin; Huang, Honghua; Wei, Heli

    2015-08-15

    This Letter formulates a simple yet accurate radiative-transfer-based theoretical model to characterize the fraction of radiation reflected by terrestrial surfaces. Emphasis is placed on the concept of inhomogeneous distribution of the diffuse sky radiation function (DSRF) and multiple interaction effects (MIE). Neglecting DSRF and MIE produces a -1.55% mean relative bias in albedo estimates. The presented model can elucidate the impact of DSRF on the surface volume scattering and geometry-optical scattering components, respectively, especially for slant illuminations with solar zenith angles (SZA) larger than 50°. Particularly striking in the comparisons between our model and ground-based observations is the achievement of the agreement level, indicating that our model can effectively resolve the longstanding issue in accurately estimating albedo at extremely large SZAs and is promising for land-atmosphere interactions studies. PMID:26274674

  11. Multiscale climatological albedo look-up maps derived from moderate resolution imaging spectroradiometer BRDF/albedo products

    NASA Astrophysics Data System (ADS)

    Gao, Feng; He, Tao; Wang, Zhuosen; Ghimire, Bardan; Shuai, Yanmin; Masek, Jeffrey; Schaaf, Crystal; Williams, Christopher

    2014-01-01

    Surface albedo determines radiative forcing and is a key parameter for driving Earth's climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth's radiation balance due to land cover change. This paper presents albedo look-up maps (LUMs) using a multiscale hierarchical approach based on moderate resolution imaging spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo products and Landsat imagery. Ten years (2001 to 2011) of MODIS BRDF/albedo products were used to generate global albedo climatology. Albedo LUMs of land cover classes defined by the International Geosphere-Biosphere Programme (IGBP) at multiple spatial resolutions were generated. The albedo LUMs included monthly statistics of white-sky (diffuse) and black-sky (direct) albedo for each IGBP class for visible, near-infrared, and shortwave broadband under both snow-free and snow-covered conditions. The albedo LUMs were assessed by using the annual MODIS IGBP land cover map and the projected land use scenarios from the Intergovernmental Panel on Climate Change land-use harmonization project. The comparisons between the reconstructed albedo and the MODIS albedo data product show good agreement. The LUMs provide high temporal and spatial resolution global albedo statistics without gaps for investigating albedo variations under different land cover scenarios and could be used for land surface modeling.

  12. Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Carslaw, K. S.; Mann, G.; Rap, A.; Pringle, K. J.; Spracklen, D. V.; Wilson, M.; Forster, P.

    2013-12-01

    Observations and models have shown that continuously degassing volcanoes have a potentially large effect on the natural background aerosol loading and the radiative state of the atmosphere. We use a global aerosol microphysics model to quantify the impact of these volcanic emissions on the cloud albedo radiative forcing under pre-industrial (PI) and present-day (PD) conditions. We find that volcanic degassing increases global annual mean cloud droplet number concentrations by 40% under PI conditions, but by only 10% under PD conditions. Consequently, volcanic degassing causes a global annual mean cloud albedo effect of -1.06 W m-2 in the PI era but only -0.56 W m-2 in the PD era. This non-equal effect is explained partly by the lower background aerosol concentrations in the PI era, but also because more aerosol particles are produced per unit of volcanic sulphur emission in the PI atmosphere. The higher sensitivity of the PI atmosphere to volcanic emissions has an important consequence for the anthropogenic cloud radiative forcing because the large uncertainty in volcanic emissions translates into an uncertainty in the PI baseline cloud radiative state. Assuming a -50/+100% uncertainty range in the volcanic sulphur flux, we estimate the annual mean anthropogenic cloud albedo forcing to lie between -1.16 W m-2 and -0.86 W m-2. Therefore, the volcanically induced uncertainty in the PI baseline cloud radiative state substantially adds to the already large uncertainty in the magnitude of the indirect radiative forcing of climate. Effect of uncertain volcanic sulphur emissions on the annual global mean cloud albedo effect and anthropogenic cloud albedo forcing. The grey and blue bars show the magnitude and the uncertainty range for the volcanic cloud albedo effect for present-day (PD) and pre-industrial (PI), respectively. In the central panel, the top red bar shows the magnitude of the anthropogenic cloud albedo forcing as estimated by IPCC based on a range of

  13. Generating multi-scale albedo look-up maps using MODIS BRDF/Albedo products and landsat imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface albedo determines radiative forcing and is a key parameter for driving Earth’s climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth’s radiation balance due to land cover change. This paper presents a mult...

  14. Albedo and flux extinction coefficient of impure snow for diffuse shortwave radiation

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Mo, T.; Wang, J. R.; Chang, A. T. C.

    1981-01-01

    Impurities enter a snowpack as a result of fallout of scavenging by falling snow crystals. Albedo and flux extinction coefficient of soot contaminated snowcovers were studied using a two stream approximation of the radiative transfer equation. The effect of soot was calculated by two methods: independent scattering by ice grains and impurities and average refractive index for ice grains. Both methods predict a qualitatively similar effect of soot; the albedo is decreased and the extinction coefficient is increased compared to that for pure snow in the visible region; the infrared properties are largely unaffected. Quantitatively, however, the effect of soot is more pronounced in the average refractive index method. Soot contamination provides a qualitative explanation for several snow observations.

  15. Effective radiative forcing from historical land use change

    NASA Astrophysics Data System (ADS)

    Andrews, Timothy; Betts, Richard A.; Booth, Ben B. B.; Jones, Chris D.; Jones, Gareth S.

    2016-08-01

    The effective radiative forcing (ERF) from the biogeophysical effects of historical land use change is quantified using the atmospheric component of the Met Office Hadley Centre Earth System model HadGEM2-ES. The global ERF at 2005 relative to 1860 (1700) is -0.4 (-0.5) Wm-2, making it the fourth most important anthropogenic driver of climate change over the historical period (1860-2005) in this model and larger than most other published values. The land use ERF is found to be dominated by increases in the land surface albedo, particularly in North America and Eurasia, and occurs most strongly in the northern hemisphere winter and spring when the effect of unmasking underlying snow, as well as increasing the amount of snow, is at its largest. Increased bare soil fraction enhances the seasonal cycle of atmospheric dust and further enhances the ERF. Clouds are shown to substantially mask the radiative effect of changes in the underlying surface albedo. Coupled atmosphere-ocean simulations forced only with time-varying historical land use change shows substantial global cooling (dT = -0.35 K by 2005) and the climate resistance (ERF/dT = 1.2 Wm-2 K-1) is consistent with the response of the model to increases in CO2 alone. The regional variation in land surface temperature change, in both fixed-SST and coupled atmosphere-ocean simulations, is found to be well correlated with the spatial pattern of the forced change in surface albedo. The forcing-response concept is found to work well for historical land use forcing—at least in our model and when the forcing is quantified by ERF. Our results suggest that land-use changes over the past century may represent a more important driver of historical climate change then previously recognised and an underappreciated source of uncertainty in global forcings and temperature trends over the historical period.

  16. Albedo of the South Pole on Mars Determined by Topographic Forcing of Atmosphere Dynamics

    NASA Technical Reports Server (NTRS)

    Colaprete, Anthony; Barnes, Jeffrey R.; Haberle, Robert M.; Hollingsworth, Jeffery L.; Kleffer, Hugh H.; Titus, Timothy N.

    2005-01-01

    The nature of the martian south polar cap has remained enigmatic since the first spacecraft observations. In particular, the presence of a perennial carbon dioxide ice cap, the formation of a vast area of black slab ice known as the Cryptic region and the asymmetric springtime retreat of the cap have eluded explanation. Here we present observations and climate modelling that indicate the south pole of Mars is characterized by two distinct regional climates that are the result of dynamical forcing by the largest southern impact basins, Argyre and Hellas. The style of surface frost deposition is controlled by these regional climates. In the cold and stormy conditions that exist poleward of 60 degrees S and extend 180 degrees in longitude west from the Mountains of Mitchel (about 30 degrees W), surface frost accumulation is dominated by precipitation. In the opposite hemisphere, the polar atmosphere is relatively warm and clear and frost accumulation is dominated by direct vapour deposition. It is the differences in these deposition styles that determine the cap albedo.

  17. Albedo of the south pole on Mars determined by topographic forcing of atmosphere dynamics

    USGS Publications Warehouse

    Colaprete, A.; Barnes, J.R.; Haberle, R.M.; Hollingsworth, J.L.; Kieffer, H.H.; Titus, T.N.

    2005-01-01

    The nature of the martian south polar cap has remained enigmatic since the first spacecraft observations. In particular, the presence of a perennial carbon dioxide ice cap, the formation of a vast area of black 'slab ice' known as the Cryptic region and the asymmetric springtime retreat of the cap have eluded explanation. Here we present observations and climate modelling that indicate the south pole of Mars is characterized by two distinct regional climates that are the result of dynamical forcing by the largest southern impact basins, Argyre and Hellas. The style of surface frost deposition is controlled by these regional climates. In the cold and stormy conditions that exist poleward of 60?? S and extend 180?? in longitude west from the Mountains of Mitchel (???30?? W), surface frost accumulation is dominated by precipitation. In the opposite hemisphere, the polar atmosphere is relatively warm and clear and frost accumulation is dominated by direct vapour deposition. It is the differences in these deposition styles that determine the cap albedo.

  18. Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements

    SciTech Connect

    Xie, Yu; Liu, Yangang; Long, Charles N.; Min, Qilong

    2014-07-27

    Ground-based radiation measurements have been widely conducted to gain information on clouds and the surface radiation budget; here several different techniques for retrieving cloud fraction (Long2006, Min2008 and XL2013) and cloud albedo (Min2008, Liu2011 and XL2013) from ground-based shortwave broadband and spectral radiation measurements are examined, and sixteen years of retrievals collected at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared. The comparison shows overall good agreement between the retrievals of both cloud fraction and cloud albedo, with noted differences however. The Long2006 and Min2008 cloud fractions are greater on average than the XL2013 values. Compared to Min2008 and Liu2011, the XL2013 retrieval of cloud albedo tends to be greater for thin clouds but smaller for thick clouds, with the differences decreasing with increasing cloud fraction. Further analysis reveals that the approaches that retrieve cloud fraction and cloud albedo separately may suffer from mutual contamination of errors in retrieved cloud fraction and cloud albedo. Potential influences of cloud absorption, land-surface albedo, cloud structure, and measurement instruments are explored.

  19. Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Boucher, O.; Schwartz, S. E.; Ackerman, T. P.; Anderson, T. L.; Bergstrom, B.; Bonnel, B.; Dahlback, A.; Fouquart, Y.; Chylek, P.; Fu, Q.; Halthore, R. N.; Haywood, J. M.; Iversen, T.; Kato, S.; Kinne, S.; Kirkevag, A.; Knapp, K. R.; Lacis, A.; Laszlo, I.; Mishchenko, M. I.

    2000-01-01

    The importance of aerosols as agents of climate change has recently been highlighted. However, the magnitude of aerosol forcing by scattering of shortwave radiation (direct forcing) is still very uncertain even for the relatively well characterized sulfate aerosol. A potential source of uncertainty is in the model representation of aerosol optical properties and aerosol influences on radiative transfer in the atmosphere. Although radiative transfer methods and codes have been compared in the past, these comparisons have not focused on aerosol forcing (change in net radiative flux at the top of the atmosphere). Here we report results of a project involving 12 groups using 15 models to examine radiative forcing by sulfate aerosol for a wide range of values of particle radius, aerosol optical depth, surface albedo, and solar zenith angle. Among the models that were employed were high and low spectral resolution models incorporating a variety of radiative transfer approximations as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the several radiative transfer models were examined, and the discrepancies were characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence) except at high surface albedo combined with small solar zenith angle. The relative standard deviation of the zenith-angle-averaged normalized broadband forcing for 15 models-was 8% for particle radius near the maximum in this forcing (approx. 0.2 microns) and at low surface albedo. Somewhat greater model-to-model discrepancies were exhibited at specific solar zenith angles. Still greater discrepancies were exhibited at small particle radii and much greater discrepancies were exhibited at high surface albedos, at which the forcing changes sign; in these situations, however, the normalized forcing is

  20. Incorporation of surface albedo-temperature feedback in a one-dimensional radiative-connective climate model

    NASA Technical Reports Server (NTRS)

    Wang, W. C.; Stone, P. H.

    1979-01-01

    The feedback between ice snow albedo and temperature is included in a one dimensional radiative convective climate model. The effect of this feedback on sensitivity to changes in solar constant is studied for the current values of the solar constant and cloud characteristics. The ice snow albedo feedback amplifies global climate sensitivity by 33% and 50%, respectively, for assumptions of constant cloud altitude and constant cloud temperature.

  1. Radiation damage in silicon due to albedo neutrons emitted from hadronic beam dumps (Fe and U)

    SciTech Connect

    Gabriel, T.A.; Bishop, B.L.

    1987-01-01

    Calculations have been carried out to determine the level of radiation damage that can be expected from albedo neutrons when 1- and 5-GeV negative pions are incident on iron and uranium beam dumps. The calculated damage data are presented in several ways including neutron fluence above 0.111 MeV, 1 MeV equivalent neutron fluence, damage energy deposition, and DPA or displacements per atom. Details are presented as to the method of calculation. 14 refs., 1 fig., 1 tab.

  2. Modeling radiation forces acting on satellites for precision orbit determination

    NASA Technical Reports Server (NTRS)

    Marshall, J. A.; Antreasian, P. G.; Rosborough, G. W.; Putney, B. H.

    1992-01-01

    Models of the TOPEX/Poseidon spacecraft are developed by means of finite-element analyses for use in generating acceleration histories for various orbit orientations which account for nonconservative radiation forces. The acceleration profiles are developed with an analysis based on the use of the 'box-wing' model in which the satellite is modeled as a combination of flat plates. The models account for the effects of solar, earth-albedo, earth-IR, and spacecraft-thermal radiation. The finite-element analysis gives the total force and induced accelerations acting on the satellite. The plate types used in the analysis have parameters that can be adjusted to optimize model performance according to the micromodel analysis and tracking observations. Acceleration related to solar radiation pressure is modeled effectively, and the techniques are shown to be useful for the precise orbit determinations required for spacecraft such as the TOPEX/Poseidon.

  3. Development of a radiative cloud parameterization scheme of stratocumulus and stratus clouds which includes the impact of CCN on cloud albedo

    SciTech Connect

    Cotton, W.R.

    1994-01-18

    The objective of this research is to develop a parameterization scheme that is able to dispose or predict changes in stratocumulus cloud cover, atmospheric boundary layer (ABL) stability, liquid water paths (LWPs), and cloud albedo due to changes in sea-surface temperatures, large scale vertical motion and wind shear, and cloud condensation nuclei (CCN). The motivation for developing such a parameterization scheme is that it is hypothesized that anthropogenic sources of CCN can result in increased concentrations of cloud droplets. The higher concentrations of CCN result in higher concentrations of cloud droplets, thereby enhancing cloud albedo which in the absence of other effects will induce a climate forcing opposed to that associated with ``Greenhouse`` warming. As a result of the complicated interactions between cloud microstructure, cloud macrostructure, and cloud radiative transfer, only a limited range of clouds are susceptible to changes in CCN concentrations causing changes in cloud albedo. It is the intent of this research to determine the range of cloud types that are susceptible to albedo changes by anthropogenic CCN and incorporate that information into a cloud parameterization scheme.

  4. Global warming and climate forcing by recent albedo changes on Mars.

    PubMed

    Fenton, Lori K; Geissler, Paul E; Haberle, Robert M

    2007-04-01

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by approximately 0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies. PMID:17410170

  5. Global warming and climate forcing by recent albedo changes on Mars

    USGS Publications Warehouse

    Fenton, L.K.; Geissler, P.E.; Haberle, R.M.

    2007-01-01

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by ???0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies. ??2007 Nature Publishing Group.

  6. Implications of albedo changes following afforestation on the benefits of forests as carbon sinks

    NASA Astrophysics Data System (ADS)

    Kirschbaum, M. U. F.; Whitehead, D.; Dean, S. M.; Beets, P. N.; Shepherd, J. D.; Ausseil, A.-G. E.

    2011-12-01

    Increased carbon storage with afforestation leads to a decrease in atmospheric carbon dioxide concentration and thus decreases radiative forcing and cools the Earth. However, afforestation also changes the reflective properties of the surface vegetation from more reflective pasture to relatively less reflective forest cover. This increase in radiation absorption by the forest constitutes an increase in radiative forcing, with a warming effect. The net effect of decreased albedo and carbon storage on radiative forcing depends on the relative magnitude of these two opposing processes. We used data from an intensively studied site in New Zealand's Central North Island that has long-term, ground-based measurements of albedo over the full short-wave spectrum from a developing Pinus radiata forest. Data from this site were supplemented with satellite-derived albedo estimates from New Zealand pastures. The albedo of a well-established forest was measured as 13 % and pasture albedo as 20 %. We used these data to calculate the direct radiative forcing effect of changing albedo as the forest grew. We calculated the radiative forcing resulting from the removal of carbon from the atmosphere as a decrease in radiative forcing of -104 GJ tC-1 yr-1. We also showed that the observed change in albedo constituted a direct radiative forcing of 2759 GJ ha-1 yr-1. Thus, following afforestation, 26.5 tC ha-1 needs to be stored in a growing forest to balance the increase in radiative forcing resulting from the observed albedo change. Measurements of tree biomass and albedo were used to estimate the net change in radiative forcing as the newly planted forest grew. Albedo and carbon-storage effects were of similar magnitude for the first four to five years after tree planting, but as the stand grew older, the carbon storage effect increasingly dominated. Averaged over the whole length of the rotation, the changes in albedo negated the benefits from increased carbon storage by 17-24 %.

  7. The design and operation of a planet emitted and albedo radiation simulator

    NASA Technical Reports Server (NTRS)

    Sweet, G. E.; Taylor, J. T.; Abbott, I. H. A.

    1972-01-01

    A simulator is described, which provides a dynamic simulation of planetary albedo and planet-emitted thermal radiation. The simulator was designed for model tests of advanced thermal control concepts, the development of space hardware, and flight qualification of small payloads. The simulator was designed to be used in a vacuum chamber equipped with liquid nitrogen cold walls and a solar simulator. The simulator consists of two major components: a gimbaled model support system and an array of quartz infrared lamps. Tests indicate that the apparatus will satisfactorily simulate the secondary radiation on a 0.92-meter spherical body in near-earth orbits. Calculations indicate that other shapes can be accommodated without structural modifications.

  8. Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation

    USGS Publications Warehouse

    Howell, Fergus W.; Haywood, Alan M.; Dowsett, Harry J.; Pickering, Steven J.

    2016-01-01

    With varying CO2, orbit and sea ice albedo values we are able to reproduce proxy temperature records that lean towards modest levels of high latitude warming, but other proxy data showing greater warming remain beyond the reach of our model. This highlights the importance of additional proxy records at high latitudes and ongoing efforts to compare proxy signals between sites.

  9. Atlas of albedo and absorbed solar radiation derived from Nimbus 7 Earth radiation budget data set, November 1978 to October 1985

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Rutan, David; Bess, T. Dale

    1990-01-01

    An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented. This atlas contains 7 years of continuous data from November 1978 through October 1985. The data were retrieved from measurements made by the second Earth Radiation Budget (ERB) wide field-of-view instrument, which flew on the Nimbus 7 spacecraft in 1978. The deconvolution method used to produce these data is briefly discussed here so that the user may understand their generation and limitations. These geographical distributions of albedo and absorbed solar radiation are provided as a resource for researchers studying the radiation budget of the Earth. This atlas of albedo and absorbed solar radiation complements the atlases of outgoing longwave radiation by Bess and Smith, also based on the Nimbus 6 and 7 ERB data.

  10. Atlas of albedo and absorbed solar radiation derived from Nimbus 6 earth radiation budget data set, July 1975 to May 1978

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Bess, T. Dale; Rutan, David

    1989-01-01

    An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented. The atlas is based on 35 months of continuous measurements from July 1975 through May 1978. The data were retrieved from measurements made by the shortwave wide field-of-view radiometer of the first Earth Radiation Budget (ERB) instrument, which flew on the Nimbus 6 spacecraft in 1975. Profiles of zonal mean albedos and absorbed solar radiation are tabulated. These geographical distributions are provided as a resource for studying the radiation budget of the earth. This atlas of albedo and absorbed solar radiation complements the atlases of outgoing longwave radiation by Bess and Smith in NASA-RP-1185 and RP-1186, also based on the Nimbus 6 and 7 ERB data.

  11. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities.

    PubMed

    Bright, Ryan M; Zhao, Kaiguang; Jackson, Robert B; Cherubini, Francesco

    2015-09-01

    By altering fluxes of heat, momentum, and moisture exchanges between the land surface and atmosphere, forestry and other land-use activities affect climate. Although long recognized scientifically as being important, these so-called biogeophysical forcings are rarely included in climate policies for forestry and other land management projects due to the many challenges associated with their quantification. Here, we review the scientific literature in the fields of atmospheric science and terrestrial ecology in light of three main objectives: (i) to elucidate the challenges associated with quantifying biogeophysical climate forcings connected to land use and land management, with a focus on the forestry sector; (ii) to identify and describe scientific approaches and/or metrics facilitating the quantification and interpretation of direct biogeophysical climate forcings; and (iii) to identify and recommend research priorities that can help overcome the challenges of their attribution to specific land-use activities, bridging the knowledge gap between the climate modeling, forest ecology, and resource management communities. We find that ignoring surface biogeophysics may mislead climate mitigation policies, yet existing metrics are unlikely to be sufficient. Successful metrics ought to (i) include both radiative and nonradiative climate forcings; (ii) reconcile disparities between biogeophysical and biogeochemical forcings, and (iii) acknowledge trade-offs between global and local climate benefits. We call for more coordinated research among terrestrial ecologists, resource managers, and coupled climate modelers to harmonize datasets, refine analytical techniques, and corroborate and validate metrics that are more amenable to analyses at the scale of an individual site or region. PMID:25914206

  12. Shortwave spectral radiative forcing of cumulus clouds from surface observations

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Barnard, J.; Berg, L. K.; Long, C. N.; Flynn, C.

    2011-04-01

    The spectral changes of the shortwave total, direct and diffuse cloud radiative forcing (CRF) at surface are examined for the first time using spectrally resolved all-sky flux observations and clear-sky fluxes. The latter are computed applying a physically based approach, which accounts for the spectral changes of aerosol optical properties and surface albedo. Application of this approach to 13 summertime days with single-layer continental cumuli demonstrates: (i) the substantial contribution of the diffuse component to the total CRF, (ii) the well-defined spectral variations of total CRF in the visible spectral region, and (iii) the strong statistical relationship between spectral (500 nm) and shortwave broadband values of total CRF. Our results suggest that the framework based on the visible narrowband fluxes can provide important radiative quantities for rigorous evaluation of radiative transfer parameterizations and also can be applied for estimation of the shortwave broadband CRF.

  13. Factors Affecting Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  14. Direct solar and earth-albedo radiation pressure effects on the orbit of Pageos 1

    NASA Technical Reports Server (NTRS)

    Zerbini, S.

    1980-01-01

    The orbit of the Pageos 1 balloon satellite was analyzed for the effects of direct solar and albedo radiation pressure. Anomalous behavior occurred in the orbital acceleration near the end of the 2nd year of the satellite's lifetime which may have resulted from the change in its shape; the shape has become slightly oblate, spinning about a minor axis and precessing about the direction of the sun. The near-earth micrometeoroid particle flux was estimated to be 5 x 10 to the -8th/sq cm/s by analyzing the balloon inflation process with sublimating compounds and the resulting variation of the satellite mass due to the leakage through the holes produced by micrometeoroid bombardment.

  15. Sensitivity of the shortwave to longwave ratio in contrail radiative forcing calculations with different radiation schemes

    NASA Astrophysics Data System (ADS)

    Ponater, Michael; Dietmüller, Simone; Frömming, Christine

    2013-04-01

    Contrail radiative forcing is difficult to obtain, even if contrail parameters like coverage, ice water content, crystal size etc. are known. A substantial respective uncertainty has been documented in literature. One key problem is the considerable amount of cancellation between the positive (warming) component from the contrails' greenhouse effect and the negative (cooling) component from backscattering of solar irradiance. Furthermore, the longwave/shortwave cancellation depends on ambient parameters like temperature, co-existing natural clouds, and surface albedo. High demands are set for any radiative transfer model aiming at reliable results of the net radiative forcing. Climate models are optimally suited to provide a representation of the required variety of ambient parameters for a climatological estimate of contrail radiative forcing. However, comprehensive global climate models use simplified radiative transfer schemes for reasons of computational economy. Hence, a dedicated test of these schemes is required. We present a comparison of contrail radiative forcing estimates from two global climate models with different radiation schemes. The first estimate results from the ECHAM4 model that has been frequently used over the last ten years for contrail climate impact calculations. The second estimate originates from the more recent ECHAM5/MESSy Atmospheric Chemistry (EMAC) model that is used in current and future studies. Use is made of the so-called "Myhre benchmark test" with specified contrail parameters. Particular emphasis is given to longwave/shortwave ratios for different seasons and to daytime/nighttime differences.

  16. An Iterative, Geometric, Tilt Correction Method for Radiation and Albedo Observed by Automatic Weather Stations on Snow-Covered Surfaces: Application to Greenland

    NASA Astrophysics Data System (ADS)

    Wang, W.; Zender, C. S.; van As, D.; Smeets, P.; van den Broeke, M.

    2015-12-01

    a better agreement with previous studies (see Fig. 2 and 3). The consistent tilt-corrected shortwave radiation dataset derived here will provide better observations and validations for surface energy budget studies on Greenland Ice Sheet, including albedo variation, surface melt simulations and cloud radiative forcing estimates.

  17. Signatures of semi-direct radiative forcing by absorbing aerosols in satellite observations and models

    NASA Astrophysics Data System (ADS)

    Wilcox, E. M.; Hosseinpour, F.; Colarco, P. R.

    2014-12-01

    Semi-direct radiative forcing of climate occurs when interactions between aerosols and radiative fluxes in the atmosphere yield a dynamical response in clouds. Semi-direct forcing is typically thought to be a positive radiative forcing whereby soot and biomass burning aerosols absorb sunlight and burn-off clouds. However, a negative semi-direct forcing is suspected in at least two regimes, the summertime Southeast Atlantic Ocean and the wintertime North Indian Ocean, where the heating profile by aerosol absorption by solar radiation is elevated above the elevation of the low clouds. Here we use a combination of satellite data and a model simulation to further characterize the signature of semi-direct radiative forcing in these two locations and elsewhere on the globe. We apply CERES albedos, Calipso profiles of aerosol extinction and cloud-top altitude, and a simulation with the Goddard Earth Observing System Model version 5 (GEOS-5) Earth system model with meteorology constrained by MERRA and an assimilation of MODIS AOT (MERRAero). to quantify the vertical heating profile by aerosols under clear and cloudy skies. We seek to determine: (1) where aerosol heating by soot and biomass burning aerosol is occurring; (2) where vertically in the column the heating is occurring relative to the observed level of low cloud development; and (3) whether the variations of albedo with aerosol forcing suggest a positive, negative, or inconclusive semi-direct radiative forcing.

  18. Sea ice radiative forcing, sea ice area, and climate sensitivity

    NASA Astrophysics Data System (ADS)

    Caldeira, Ken; Cvijanovic, Ivana

    2014-05-01

    Changes in sea ice cover affect climate sensitivity by modifying albedo and surface heat flux exchange, which in turn affect the absorbed solar radiation at the surface as well as cloud cover, atmospheric water content and poleward atmospheric heat transport. Here, we use a configuration of the Community Earth System Model 1.0.4 with a slab ocean model and a thermodynamic-dynamic sea ice model to investigate the overall net effect of feedbacks associated with the sea ice loss. We analyze the strength of the overall sea ice feedback in terms of two factors: the sensitivity of sea ice area to changes in temperature, and the sensitivity of sea ice radiative forcing to changes in sea ice area. In this model configuration, sea ice area decreases by ~3 × 1012 m2 per K of global warming, while the effective global radiative forcing per square meter of sea ice loss is ~0.1 × 10-12 W m-2. The product of these two terms (~0.3 W m-2 K-1) approximately equals the difference in climate feedback parameter found in simulations with sea ice response (1.05 W m-2 K-1) and simulations without sea ice response (1.31 W m-2 K-1 or 1.35 W m-2 K-1, depending on the method used to disable changes in sea ice cover). Thus, we find that in our model simulations, sea ice response accounts for about 20% to 22% of the climate sensitivity to an imposed change in radiative forcing. In our model, the additional radiative forcing resulting from a loss of all sea ice in the 'pre-industrial' state is comparable to but somewhat less than the radiative forcing from a doubling of atmospheric CO2 content.

  19. Sea Ice Radiative Forcing, Sea Ice Area, and Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Caldeira, K.; Cvijanovic, I.

    2014-12-01

    Changes in sea ice cover affect climate sensitivity by modifying albedo and surface heat flux exchange, which in turn affect the absorbed solar radiation at the surface as well as cloud cover, atmospheric water content and poleward atmospheric heat transport. Here, we use a configuration of the Community Earth System Model 1.0.4 with a slab ocean model and a thermodynamic-dynamic sea ice model to investigate the overall net effect of feedbacks associated with the sea ice loss. We analyze the strength of the overall sea ice feedback in terms of two factors: the sensitivity of sea ice area to changes in temperature, and the sensitivity of sea ice radiative forcing to changes in sea ice area. In this model configuration, sea ice area decreases by ~3 × 1012 m2 per K of global warming, while the effective global radiative forcing per unit area of sea ice loss is ~0.1 × 10-12 W m-2. The product of these two terms (~0.3 W m-2 K-1) approximately equals the difference in climate feedback parameter found in simulations with sea ice response (1.05 W m-2 K-1) and simulations without sea ice response (1.31 W m-2 K-1 or 1.35 W m-2 K-1, depending on the method used to disable the changes in sea ice cover). Thus, we find that in our model simulations, sea ice response accounts for about 20% to 22% of the climate sensitivity to an imposed change in radiative forcing. In our model, the additional radiative forcing resulting from a loss of all sea-ice in the "pre-industrial" state is comparable to but somewhat less than the radiative forcing from a doubling of atmospheric CO2 content.

  20. A two-dimensional energy balance climate model including radiation and ice caps-albedo feedback

    NASA Astrophysics Data System (ADS)

    Yingyi, Chen; Jiping, Chao

    1984-11-01

    A simplified two-dimensional energy balance climate model including the solar and infrared radiation transports, the turbulent exchanges of heat in vertical and horizontal directions and the ice caps-albedo feedback is developed. The solutions show that if the atmosphere is considered as a grey body and the grey coefficient depends upon the distributions of absorption medium and cloudiness, both horizontal and vertical distribution of temperature are identical to the observation. On the other hand, comparing the models that the atmosphere is considered as a grey body with ones that the infrared radiation is parameterized as a linear function of temperature, as was considered by Budyko, Sellers(1969), then the results show that even though both of them can obtain the earth's surface temperature in agreement with the observation, the sensitivity of the climate to the changes of solar constant is very different. In the former case, the requirement for the ice edge to move southward from the normal 72°N to 50°N(i.e. where the glacial climate would take place) is that the solar constant should decrease by 13% to 16%. However, in the latter case, the climate is highly sensitive to the changes of solar radiation. In this case, the requirement of solar radiation occurring in the glacial climate should decrease by, 2% to 6%. According to the investigations mentioned above we must be careful when the parameterizations of the radiation and other processes are conducted in a climate model., otherwise the reliability of the results is suspicious.

  1. Tables of phase functions, opacities, albedos, equilibrium temperatures, and radiative accelerations of dust grains in exoplanets

    NASA Astrophysics Data System (ADS)

    Budaj, J.; Kocifaj, M.; Salmeron, R.; Hubeny, I.

    2015-11-01

    There has been growing observational evidence for the presence of condensates in the atmospheres and/or comet-like tails of extrasolar planets. As a result, systematic and homogeneous tables of dust properties are useful in order to facilitate further observational and theoretical studies. In this paper we present calculations and analysis of non-isotropic phase functions, asymmetry parameter (mean cosine of the scattering angle), absorption and scattering opacities, single scattering albedos, equilibrium temperatures, and radiative accelerations of dust grains relevant for extrasolar planets. Our assumptions include spherical grain shape, Deirmendjian particle size distribution, and Mie theory. We consider several species: corundum/alumina, perovskite, olivines with 0 and 50 per cent iron content, pyroxenes with 0, 20, and 60 per cent iron content, pure iron, carbon at two different temperatures, water ice, liquid water, and ammonia. The presented tables cover the wavelength range of 0.2-500 μm and modal particle radii from 0.01 to 100 μm. Equilibrium temperatures and radiative accelerations assume irradiation by a non-blackbody source of light with temperatures from 7000 to 700 K seen at solid angles from 2π to 10-6 sr. The tables are provided to the community together with a simple code which allows for an optional, finite, angular dimension of the source of light (star) in the phase function.

  2. An evaluation of the schemes of ocean surface albedo parameterization in shortwave radiation estimation

    NASA Astrophysics Data System (ADS)

    Niu, Hailin; Zhang, Xiaotong; Liu, Qiang; Feng, Youbin; Li, Xiuhong; Zhang, Jialin; Cai, Erli

    2015-12-01

    The ocean surface albedo (OSA) is a deciding factor on ocean net surface shortwave radiation (ONSSR) estimation. Several OSA schemes have been proposed successively, but there is not a conclusion for the best OSA scheme of estimating the ONSSR. On the base of analyzing currently existing OSA parameterization, including Briegleb et al.(B), Taylor et al.(T), Hansen et al.(H), Jin et al.(J), Preisendorfer and Mobley(PM86), Feng's scheme(F), this study discusses the difference of OSA's impact on ONSSR estimation in condition of actual downward shortwave radiation(DSR). Then we discussed the necessity and applicability for the climate models to integrate the more complicated OSA scheme. It is concluded that the SZA and the wind speed are the two most significant effect factor to broadband OSA, thus the different OSA parameterizations varies violently in the regions of both high latitudes and strong winds. The OSA schemes can lead the ONSSR results difference of the order of 20 w m-2. The Taylor's scheme shows the best estimate, and Feng's result just following Taylor's. However, the accuracy of the estimated instantaneous OSA changes at different local time. Jin's scheme has the best performance generally at noon and in the afternoon, and PM86's is the best of all in the morning, which indicate that the more complicated OSA schemes reflect the temporal variation of OWA better than the simple ones.

  3. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  4. Radiation Forces and Torques without Stress (Tensors)

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2011-01-01

    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  5. Retrievals of Dust and Black Carbon Radiative Forcing in Snow using Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seidel, F. C.; Painter, T.; Bryant, A. C.; Skiles, M.; Rittger, K. E.

    2012-12-01

    The reduction of snow albedo due to impurities of dust and black carbon provides an additional energy flux into a snowpack. This positive radiative forcing accelerates snowmelt, reduces snow cover duration and water runoff. Extensive information in time and space on dust and black carbon radiative forcing in snow are therefore required to model and predict water availability from snow and ice reservoirs. We present a novel processing chain to retrieve dust and black carbon radiative forcing in snow from orthorectified remote sensing data. We use JPL's classic version of the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) to measure upwelling solar radiance at the sensor level. The first stage of processing comprises the modeling and compensation for atmospheric and topographic influences on the AVIRIS data. The resulting directional surface reflectance factor is used to determine snow cover and to retrieve the snow grain size distribution. The latter requires a simple inversion strategy using a look up table with pre-calculated values of spectral ice absorption features, which depend to the first order on the snow grain size. Spectral snow albedo is determined by generalizing the directional snow surface spectral reflectance with the anisotropy factor given by the bidirectional reflectance distribution function. The integration over the visible spectral range of solar light yields the broadband snow albedo. The difference of the latter with a modeled clean snow albedo multiplied by the irradiance provides the spatial distribution of the radiative forcing in snow. In addition, we validate the spectral irradiance and directional surface reflectance of snow against independent in-situ reference observations in the Senator Beck Basin Study Area, Upper Colorado River Basin, San Juan Mountains, Colorado, USA. The results indicate that the products derived from AVIRIS data enable us to retrieve and monitor quantitative snow surface properties relevant to

  6. Use of AVHRR-derived spectral reflectances to estimate surface albedo across the Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect

    Qiu, J.; Gao, W.

    1997-03-01

    Substantial variations in surface albedo across a large area cause difficulty in estimating regional net solar radiation and atmospheric absorption of shortwave radiation when only ground point measurements of surface albedo are used to represent the whole area. Information on spatial variations and site-wide averages of surface albedo, which vary with the underlying surface type and conditions and the solar zenith angle, is important for studies of clouds and atmospheric radiation over a large surface area. In this study, a bidirectional reflectance model was used to inversely retrieve surface properties such as leaf area index and then the bidirectional reflectance distribution was calculated by using the same radiation model. The albedo was calculated by converting the narrowband reflectance to broadband reflectance and then integrating over the upper hemisphere.

  7. Large radiative forcing efficiency of atmospheric aerosols over the Himalaya

    NASA Astrophysics Data System (ADS)

    Gasbarra, Daniele; di Sarra, Alcide; Meloni, Daniela; Bonasoni, Paolo; Di Biagio, Claudia; Gobbi, Gian Paolo; Marinoni, Angela; Pietro Verza, Gian; Vuillermoz, Elisa

    2014-05-01

    This study is based on measurements made at the Nepal Climate Observatory at Pyramid (NCO-P, 27.95 N, 86.82 E), located at 5079 m altitude in the Sagamartha National Park, Eastern Nepal Himalaya. We analised seasonal variations of solar downward irradiance (SW), columnar water vapour content (wv), aerosol optical depth at 500 nm (τ) and surface albedo (A) in the period between 2007 and 2010, in order to obtain the radiative perturbations produced by aerosols in the SW. SW measurements are carried out by a CMP21 pyranometer, while A is derived from a CNR1 radiometer. Values of wv and τ are retrieved from the measurements by the EVK2-CNR Cimel sunphotometer operating within the AERONET network. τ was found to be lower than 0.1 in 98% of the cases. However, during the pre-monsoon season, especially in the months of April and May, cases with τ reaching 0.27 were recorded. The aerosol surface shortwave radiative effect in cloud-free periods was estimated during the elevated aerosol optical depth cases using different methods. The 'hybrid method' was applied using experimental measurements of solar downward irradiance and simulations made with the MODTRAN (MODerate resolution atmospheric TRANsmission) model. The dependency of SW on A and wv was determined from MODTRAN simulations, and was used to correct experimental measurements for albedo and water vapour changes. The radiative perturbation produced by aerosol was thus obtained as the difference between the measured irradiances and the modelled values for aerosol-free conditions and the same water vapour and albedo values, and at the same solar zenith angle. The aerosol radiative effect was also derived by comparing elevated and low aerosol optical depth cases, at similar values of solar zenith angle, albedo, and column water vapour. In addition the direct method, relating SW to changes in τ, was also used. These three methods produce consistent results. Although the overall aerosol radiative perturbation is small

  8. Uncertainty in the magnitude of aerosol-cloud radiative forcing over recent decades

    NASA Astrophysics Data System (ADS)

    Regayre, L. A.; Pringle, K. J.; Booth, B. B. B.; Lee, L. A.; Mann, G. W.; Browse, J.; Woodhouse, M. T.; Rap, A.; Reddington, C. L.; Carslaw, K. S.

    2014-12-01

    Aerosols and their effect on the radiative properties of clouds are one of the largest sources of uncertainty in calculations of the Earth's energy budget. Here the sensitivity of aerosol-cloud albedo effect forcing to 31 aerosol parameters is quantified. Sensitivities are compared over three periods; 1850-2008, 1978-2008, and 1998-2008. Despite declining global anthropogenic SO2 emissions during 1978-2008, a cancelation of regional positive and negative forcings leads to a near-zero global mean cloud albedo effect forcing. In contrast to existing negative estimates, our results suggest that the aerosol-cloud albedo effect was likely positive (0.006 to 0.028Wm-2) in the recent decade, making it harder to explain the temperature hiatus as a forced response. Proportional contributions to forcing variance from aerosol processes and natural and anthropogenic emissions are found to be period dependent. To better constrain forcing estimates, the processes that dominate uncertainty on the timescale of interest must be better understood.

  9. Evaluation of aerosol direct radiative forcing in MIRAGE

    NASA Astrophysics Data System (ADS)

    Ghan, Steven; Laulainen, Nels; Easter, Richard; Wagener, Richard; Nemesure, Seth; Chapman, Elaine; Zhang, Yang; Leung, Ruby

    2001-03-01

    A variety of measurements have been used to evaluate the treatment of aerosol radiative properties and radiative impacts of aerosols simulated by the Model for Integrated Research on Atmospheric Global Exchange (MIRAGE). The treatment of water uptake in MIRAGE agrees with laboratory measurements, and the growth of aerosol extinction with relative humidity in MIRAGE simulations agrees with field measurements. The simulated frequency of relative humidity near 100% is about twice that of analyzed relative humidity. When the analyzed relative humidity is used to calculate aerosol water uptake in MIRAGE, the simulated aerosol optical depth agrees with most surface measurements after cloudy conditions are filtered out and differences between model and station elevations are accounted for, but simulated optical depths are too low over Brazil and central Canada. Simulated optical depths are mostly within a factor of 2 of satellite estimates, but are too high off the east coasts of the United States and China and too low off the coast of West Africa and in the Arabian Sea. The simulated single-scatter albedo is consistent with surface measurements. MIRAGE correctly simulates a larger Ångström exponent near regions with emissions of submicron particles and aerosol precursor gases, and a smaller exponent near regions with emissions of coarse particles. The simulated sensitivity of radiative forcing to aerosol optical depth is consistent with estimates from measurements. The simulated direct forcing is within the uncertainty of estimates from measurements in the North Atlantic.

  10. Sensitivity of contrail cirrus radiative forcing to air traffic scheduling

    NASA Astrophysics Data System (ADS)

    Newinger, Christina; Burkhardt, Ulrike

    2012-05-01

    Air traffic effects high cloudiness and therefore the Earth's radiation budget by producing contrail cirrus. Contrail cirrus comprise of line-shaped contrails and irregularly shaped ice clouds that originate from them. The warming effect of contrail cirrus is disproportionally large at night, since at daytime the cooling due to the short wave cloud albedo effect acts toward compensating the long wave warming effect. Therefore it has been suggested to restrict air traffic to daytime in order to reduce its climate impact. The potential for reducing the contrail cirrus radiative forcing by shifting air traffic to daytime depends on the diurnal cycle of contrail cirrus coverage which is in turn determined by the diurnal cycle of air traffic and the contrail cirrus lifetimes. Simulations with a global atmospheric general circulation model indicate that the annual mean contrail cirrus coverage may be almost constant over the day even in areas where air traffic is close to zero at night. A conceptual model describing the temporal evolution of contrail cirrus coverage reveals that this is due to the large variability in contrail cirrus lifetimes in combination with the spreading of contrail cirrus. This large variability of lifetimes is consistent with observational evidence but more observations are needed to constrain the contrail lifetime distribution. An idealized mitigation experiment, shifting nighttime flights to daytime, indicates that contrail cirrus radiative forcing is not significantly changed.

  11. Albedos. Final report

    SciTech Connect

    Hansen, F.V.

    1993-07-01

    The albedo of the earth's surface varies dramatically from values of about 3 to 4 percent for calm bodies of water up to about 55 percent for gypsum sands. This rather broad range of reflected incoming solar radiation presents difficulties when attempting to define an average albedo for terrain over a large region from locally determined values. The patchwork, or checkerboard, appearance of the earth's surface as viewed from above is the result of various human activities, such as agriculture, the proliferation of urban sprawl, and road building. Each of these variable appearing surfaces will have individual albedos, rendering any attempt to determine an a real albedo almost an impossibility on the mesoscale. However, a vast data base exists for microscale applications for individual acreages, for example. A compilation of these data is presented.... Albedo, Solar radiation, Crops, Urban areas, Land uses.

  12. A comparison to schemes of ocean surface albedo parameterization and their impact on shortwave radiatation estimation

    NASA Astrophysics Data System (ADS)

    Niu, H.; Liu, Q.; Zhang, X.; Feng, Y.; Li, X.; Zhang, J.; Cai, E.

    2015-12-01

    The ocean covers 71% of the Earth's surface and plays a pivotal role in the earth radiation energy balance. The ocean surface albedo(OSA) is a deciding factor on ocean net surface shortwave radiation(ONSSR) estimation. Several OSA schemes have been proposed successively, but there is not a conclusion for the best OSA scheme of estimating the ONSSR. This study, on the base of analyzing currently existing OSA parameterization, including Briegleb et al.(B), Taylor et al.(T), Hansen et al.(H), Jin et al.(J), Preisendorfer and Mobley(PM86), Feng's scheme(F), discusses the difference of OSA's impact on ONSSR estimation in condition of actual downward shortwave radiation(DSR). Then we evaluate the necessity and applicability for the climate models to integrate the more complicated OSA scheme. We got some conclusions: The SZA and the wind speed are the two most significant effect factor to broadband OSA, thus the different OSA parameterizations varies violently in the regions of both high latitudes and strong winds. In the summer, the Northern Hemisphere(NH) is high ONSSR, but small deviations compared with Northern Hemisphere(SH),and contrary in the winter. The OSA schemes can lead the ONSSR results difference of the order of 20 w m-2 by the analysis of the ONSSR reanalysis dataset, the Modern Era Retrospective-analysis for Research and Applications (MERRA).The simple scheme of Taylor and the more complicate schemes of Jin and Feng is very similar, and the scheme B and H is close to each other, the PM86 is more close to MERRA. We use the COVE ocean platform observation data to validate the several scheme result, and the RMSE is 10.96 w m-2, 5.24 w m-2, 12.88 w m-2, 6.52 w m-2, 6.33 w m-2, 6.30 w m-2 for B,T,H,J,PM86,F, respectively. The Taylor's scheme shows the best estimate, and Feng's result just following Taylor's. However, the accuracy of the estimated instantaneous OSA changes at different local time. Jin's scheme has the best performance generally at noon and in

  13. Atlas of albedo and absorbed solar radiation derived from Nimbus 7 earth radiation budget data set, November 1985 to October 1987

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Rutan, David; Bess, T. Dale

    1992-01-01

    An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented for 21 months from Nov. 1985 to Oct. 1987. These data were retrieved from measurements made by the shortwave wide-field-of-view radiometer of the Earth Radiation Budget (ERB) instrument aboard the Nimbus 7 spacecraft. Profiles of zonal mean albedos and absorbed solar radiation were tabulated. These geographical distributions are provided as a resource for researchers studying the radiation budget of the Earth. The El Nino/Southern Oscillation event of 1986-1987 is included in this data set. This atlas of albedo and absorbed solar radiation extends to 12 years the period covered by two similar atlases: NASA RP-1230 (Jul. 1975 - Oct. 1978) and NASA RP-1231 (Nov. 1978 - Oct. 1985). These three compilations complement the atlases of outgoing longwave radiation by Bess and Smith in NASA RP-1185, RP-1186, and RP-1261, which were also based on the Nimbus 6 and 7 ERB data.

  14. Infrared Aerosol Radiative Forcing at the Surface and the Top of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Markowicz, Krzysztof M.; Flatau, Piotr J.; Vogelmann, Andrew M.; Quinn, Patricia K.; Welton, Ellsworth J.

    2003-01-01

    We study the clear-sky aerosol radiative forcing at infrared wavelengths using data from the Aerosol Characterization Experiment (ACE-Asia) cruise of the NOAA R/V Ronald H. Brown. Limited number of data points is analyzed mostly from ship and collocated satellite values. An optical model is derived from chemical measurements, lidar profiles, and visible extinction measurements which is used to and estimate the infrared aerosol optical thickness and the single scattering albedo. The IR model results are compared to detailed Fourier Transform Interferometer based infrared aerosol forcing estimates, pyrgeometer based infrared downward fluxes, and against the direct solar forcing observations. This combined approach attests for the self-consistency of the optical model and allows to derive quantities such as the infrared forcing at the top of the atmosphere or the infrared optical thickness. The mean infrared aerosol optical thickness at 10 microns is 0.08 and the single scattering albedo is 0.55. The modeled infrared aerosol forcing reaches 10 W/sq m during the cruise, which is a significant contribution to the total direct aerosol forcing. The surface infrared aerosol radiative forcing is between 10 to 25% of the shortwave aerosol forcing. The infrared aerosol forcing at the top of the atmosphere can go up to 19% of the solar aerosol forcing. We show good agreement between satellite (CERES instrument) retrievals and model results at the top of the atmosphere. Over the Sea of Japan, the average infrared radiative forcing is 4.6 W/sq m in the window region at the surface and it is 1.5 W/sq m at top of the atmosphere. The top of the atmosphere IR forcing efficiency is a strong function of aerosol temperature while the surface IR forcing efficiency varies between 37 and 55 W/sq m (per infrared optical depth unit). and changes between 10 to 18 W/sq m (per infrared optical depth unit).

  15. Observations of Surfzone Albedo

    NASA Astrophysics Data System (ADS)

    Sinnett, G.; Feddersen, F.

    2014-12-01

    The surfzone environment (where waves break) contains several unique and previously unconsidered processes that affect the heat budget. Entering short-wave radiation is a dominant term in both shelf and surfzone heat budgets. In contrast to the shelf, however, depth limited wave breaking in the surfzone generates spray, whitewater and suspended sediments, elevating the surface albedo (ratio of reflected to incident short-wave radiation). Elevated albedo reduces the level of solar short-wave radiation entering the water, potentially resulting in less heating. Additionally, surfzone water quality is often impacted by fecal bacteria contamination. As bacteria mortality is related to short-wave solar radiation, elevated surfzone albedo could reduce pathogen mortality, impacting human health. Albedo in the open ocean has been frequently studied and parameterizations often consider solar zenith angle, wind speed and ocean chlorophyll concentration, producing albedo values typically near 0.06. However, surfzone albedo observations have been extremely sparse, yet show depth limited wave breaking may increase the albedo by nearly a factor of 10 up to 0.5. Here, we present findings from a field study at the Scripps Institution of Oceanography pier to observe the affect of waves on surfzone albedo. Concurrent measurements were taken with a four-way radiometer (to measure both downwelling and upwelling short-wave and long wave radiation) mounted above the surfzone. A co-located GoPro camera was used to relate visual aspects of the surfzone to measured reflectance, and wave height and period were observed with a bottom mounted pressure sensor in 5 m water depth just outside the surfzone. Wind speed and direction were observed on the pier 10 m above the water surface. Here, we will examine the surfzone albedo dependence on surfzone parameters, such as wave height.

  16. Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Carslaw, K. S.; Mann, G. W.; Rap, A.; Pringle, K. J.; Spracklen, D. V.; Wilson, M.; Forster, P. M.

    2012-08-01

    Observations and models have shown that continuously degassing volcanoes have a potentially large effect on the natural background aerosol loading and the radiative state of the atmosphere. We use a global aerosol microphysics model to quantify the impact of these volcanic emissions on the cloud albedo radiative forcing under pre-industrial (PI) and present-day (PD) conditions. We find that volcanic degassing increases global annual mean cloud droplet number concentrations by 40% under PI conditions, but by only 10% under PD conditions. Consequently, volcanic degassing causes a global annual mean cloud albedo effect of -1.06 W m-2 in the PI era but only -0.56 W m-2 in the PD era. This non-equal effect is explained partly by the lower background aerosol concentrations in the PI era, but also because more aerosol particles are produced per unit of volcanic sulphur emission in the PI atmosphere. The higher sensitivity of the PI atmosphere to volcanic emissions has an important consequence for the anthropogenic cloud radiative forcing because the large uncertainty in volcanic emissions translates into an uncertainty in the PI baseline cloud radiative state. Assuming a -50/+100% uncertainty range in the volcanic sulphur flux, we estimate the annual mean anthropogenic cloud albedo forcing to lie between -1.16 W m-2 and -0.86 W m-2. Therefore, the volcanically induced uncertainty in the PI baseline cloud radiative state substantially adds to the already large uncertainty in the magnitude of the indirect radiative forcing of climate.

  17. Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Carslaw, K. S.; Mann, G. W.; Rap, A.; Pringle, K. J.; Spracklen, D. V.; Wilson, M.; Forster, P. M.

    2012-03-01

    Observations and models have shown that continuously degassing volcanoes have a potentially large effect on the natural background aerosol loading and the radiative state of the atmosphere. Here, we use a global aerosol microphysics model to quantify the impact of these volcanic emissions on the cloud albedo radiative forcing under pre-industrial (PI) and present-day (PD) conditions. We find that volcanic degassing increases global annual mean cloud droplet number concentrations by 40% under PI conditions, but by only 10% under PD conditions. Consequently, volcanic degassing causes a global annual mean cloud albedo effect of -1.06 W m-2 in the PI era but only -0.56 W m-2 in the PD era. This non-equal effect is explained partly by the lower background aerosol concentrations in the PI era, but also because more aerosol particles are produced per unit of volcanic sulphur emission in the PI atmosphere. The higher sensitivity of the PI atmosphere to volcanic emissions has an important consequence for the anthropogenic cloud radiative forcing because the large uncertainty in volcanic emissions translates into an uncertainty in the PI baseline cloud radiative state. Assuming a -50/+100% uncertainty range in the volcanic sulphur flux, we estimate the annual mean anthropogenic cloud albedo forcing to lie between -1.16 W m-2 and -0.86 W m-2. Therefore, the volcanically induced uncertainty in the PI baseline cloud radiative state substantially adds to the already large uncertainty in the magnitude of the indirect radiative forcing of climate.

  18. Saharan Dust Aerosol Radiative Forcing Measured from Space.

    NASA Astrophysics Data System (ADS)

    Li, F.; Vogelmann, A. M.; Ramanathan, V.

    2004-07-01

    This study uses data collected from the Clouds and the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments to determine Saharan dust broadband shortwave aerosol radiative forcing over the Atlantic Ocean near the African coast (15° 25°N, 45° 15°W). The clear-sky aerosol forcing is derived directly from these data, without requiring detailed information about the aerosol properties that are not routinely observed such as chemical composition, microphysical properties, and their height variations. To determine the diurnally averaged Saharan dust radiative forcing efficiency (i.e., broadband shortwave forcing per unit optical depth at 550 nm, W m-2 τ-1a), two extreme seasons are juxtaposed: the high-dust months [June August (JJA)] and the low-dust months [November January (NDJ)]. It is found that the top-of-atmosphere (TOA) diurnal mean forcing efficiency is -35 ± 3 W m-2 τ-1a for JJA, and -26 ± 3 W m-2 τ-1a for NDJ. These efficiencies can be fit by reducing the spectrally varying aerosol single-scattering albedo such that its value at 550 nm is reduced from 0.95 ± 0.04 for JJA to about 0.86 ± 0.04 for NDJ. The lower value for the low-dust months might be influenced by biomass-burning aerosols that were transported into the study region from equatorial Africa. Although the high-dust season has a greater (absolute value of the) TOA forcing efficiency, the low-dust season may have a greater surface forcing efficiency. Extrapolations based on model calculations suggest the surface forcing efficiencies to be about -65 W m-2 τ-1a for the high-dust season versus -81 W m-2 τ-1a for the low-dust season. These observations indicate that the aerosol character within a region can be readily modified, even immediately adjacent to a powerful source region such as the Sahara. This study provides important observational constraints for models of dust radiative forcing.


  19. Improving Estimates of Cloud Radiative Forcing over Greenland

    NASA Astrophysics Data System (ADS)

    Wang, W.; Zender, C. S.

    2014-12-01

    Multiple driving mechanisms conspire to increase melt extent and extreme melt events frequency in the Arctic: changing heat transport, shortwave radiation (SW), and longwave radiation (LW). Cloud Radiative Forcing (CRF) of Greenland's surface is amplified by a dry atmosphere and by albedo feedback, making its contribution to surface melt even more variable in time and space. Unfortunately accurate cloud observations and thus CRF estimates are hindered by Greenland's remoteness, harsh conditions, and low contrast between surface and cloud reflectance. In this study, cloud observations from satellites and reanalyses are ingested into and evaluated within a column radiative transfer model. An improved CRF dataset is obtained by correcting systematic discrepancies derived from sensitivity experiments. First, we compare the surface radiation budgets from the Column Radiation Model (CRM) driven by different cloud datasets, with surface observations from Greenland Climate Network (GC-Net). In clear skies, CRM-estimated surface radiation driven by water vapor profiles from both AIRS and MODIS during May-Sept 2010-2012 are similar, stable, and reliable. For example, although AIRS water vapor path exceeds MODIS by 1.4 kg/m2 on a daily average, the overall absolute difference in downwelling SW is < 4 W/m2. CRM estimates are within 20 W/m2 range of GC-Net downwelling SW. After calibrating CRM in clear skies, the remaining differences between CRM and observed surface radiation are primarily attributable to differences in cloud observations. We estimate CRF using cloud products from MODIS and from MERRA. The SW radiative forcing of thin clouds is mainly controlled by cloud water path (CWP). As CWP increases from near 0 to 200 g/m2, the net surface SW drops from over 100 W/m2 to 30 W/m2 almost linearly, beyond which it becomes relatively insensitive to CWP. The LW is dominated by cloud height. For clouds at all altitudes, the lower the clouds, the greater the LW forcing. By

  20. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    NASA Astrophysics Data System (ADS)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  1. Near-linear response of mean monsoon strength to a broad range of radiative forcings.

    PubMed

    Boos, William R; Storelvmo, Trude

    2016-02-01

    Theoretical models have been used to argue that seasonal mean monsoons will shift abruptly and discontinuously from wet to dry stable states as their radiative forcings pass a critical threshold, sometimes referred to as a "tipping point." Further support for a strongly nonlinear response of monsoons to radiative forcings is found in the seasonal onset of the South Asian summer monsoon, which is abrupt compared with the annual cycle of insolation. Here it is shown that the seasonal mean strength of monsoons instead exhibits a nearly linear dependence on a wide range of radiative forcings. First, a previous theory that predicted a discontinuous, threshold response is shown to omit a dominant stabilizing term in the equations of motion; a corrected theory predicts a continuous and nearly linear response of seasonal mean monsoon strength to forcings. A comprehensive global climate model is then used to show that the seasonal mean South Asian monsoon exhibits a near-linear dependence on a wide range of isolated greenhouse gas, aerosol, and surface albedo forcings. This model reproduces the observed abrupt seasonal onset of the South Asian monsoon but produces a near-linear response of the mean monsoon by changing the duration of the summer circulation and the latitude of that circulation's ascent branch. Thus, neither a physically correct theoretical model nor a comprehensive climate model support the idea that seasonal mean monsoons will undergo abrupt, nonlinear shifts in response to changes in greenhouse gas concentrations, aerosol emissions, or land surface albedo. PMID:26811462

  2. Radiation force and balance of electromagnetic momentum

    NASA Astrophysics Data System (ADS)

    Campos, I.; Jiménez, J. L.; Roa-Neri, J. A. E.

    2016-07-01

    Some force densities can be expressed as a divergence of a stress tensor, as is the case with the electromagnetic force density. We have shown elsewhere that from the Maxwell equations several balance equations of electromagnetic momentum can be derived, depending on the form these equations are expressed in terms of fields E, D, B, H, and polarisations P and M. These balance equations imply different force densities and different stress tensors, providing a great flexibility to solve particular problems. Among these force densities we have found some proposed in the past with plausibility arguments, like the Einstein–Laub force density, while other proposed force densities appear as particular or limit cases of these general force densities, like the Helmholtz force density. We calculate the radiation force of an electromagnetic wave incident on a semi-infinite negligibly absorbing material using these balance equations, corroborating in this way that the surface integration of the stress tensor gives the same result that the calculation made through a volume integration of the force density, as done by Bohren. As is usual in applications of Gauss’s theorem, the surface on which the surface integral is to be performed must be chosen judiciously, and due care of discontinuities on the boundary conditions must be taken. Advanced undergraduates and graduate students will find a different approach to new aspects of the interaction of radiation with matter.

  3. Vertical profiles of aerosol radiative forcing - a comparison of AEROCOM phase 2 model submissions

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Myhre, G.

    2012-04-01

    Aerosols in the earth's atmosphere affect the radiation balance of the planet. The radiative forcing (RF) induced by a given aerosol burden is however sensitive to its vertical density profile, in addition to aerosol optical properties, cloud distributions and surface albedo. Differences in vertical profiles are thought to be among the causes for the large intermodel differences in RF of the aerosol direct effect. As part of the AEROCOM phase 2 direct radiative forcing experiment, this study compares 3D concentration fields of black carbon from fossil fuel burning (BC) and sulphate (SO4) from a set of major global climate models. The participating models were run using a prescribed set of emissions of aerosol and aerosol precursors and the same meteorological year. We assume that model differences due to the aerosol vertical profile can be factored out from other differences such as aerosol physics, radiative transfer or ground albedo. We consequently analyse model RF variability using profiles of normalized RF (radiative forcing per unit mass, NDRF) calculated from a single model. This tool allows us to quantify the fraction of the intermodel variability due to differences in aerosol vertical profiles. We show that there are still significant differences between both modelled vertical density profiles, treatment of aerosol physics and other factors influencing the RF profiles.

  4. Selection of a model of Earth's albedo radiation, practical calculation of its effect on the trajectory of a satellite

    NASA Technical Reports Server (NTRS)

    Walch, J. J.

    1985-01-01

    Theoretical models of Earth's albedo radiation was proposed. By comparing disturbing accelerations computed from a model to those measured in flight with the CACTUS Accelerometer, modified according to the results. Computation of the satellite orbit perturbations from a model is very long because for each position of this satellite the fluxes coming from each elementary surface of the terrestrial portion visible from the satellite must be summed. The speed of computation is increased ten times without significant loss of accuracy thanks to a stocking of some intermediate results. Now it is possible to confront the orbit perturbations computed from the selected model with the measurements of these perturbations found with satellite as LAGEOS.

  5. Albedo reduction by dirty snow: measurements and implications

    NASA Astrophysics Data System (ADS)

    Zender, C. S.; Gallet, J.; Domine, F.; Picard, G.

    2008-12-01

    Industrial and biomass burning emissions of black carbon (BC) from low- and mid-latitudes dominate the radiative forcing by absorbing impurities trapped in snow and ice at mid- and high- northern latitudes. Correct model representation of albedo reduction by BC-contaminated snow is crucial because our GCM simulations show that dirty snow can explain about 30% of the observed 20th century Arctic warming. Until now, measurements of actual snow darkening by BC have been attempted only in the field, under non- reproducible conditions, and limited to the environmental BC concentration. We have conducted the first measurements of the direct effect of BC-contamination on snow albedo by in a controlled environment. We doped natural snow with a commercially available BC-analogue and measured the resulting albedo change at visible and near-infrared wavelengths. Snow albedo was measured in a (portable) integrating sphere system. Snow grain size is estimated from the near-infrared albedo. Snow density, temperature, and BC properties were known a priori. The albedo measurement reproducibility is about 1% for natural snow. Our measurements agree with model predictions that BC concentrations from 250 ppbm to 200 ppmm darken snow albedo by 1--70%. Our results lend confidence to the current model representations of surface darkening in the cryosphere. Applying these methods to impurity records in polar ice cores yields surface radiative forcing estimates that can be extrapolated to regional scales.

  6. Precipitation Response to Regional Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.; Voulgarakis, A.; Faluvegi, G.; Milly, G.

    2012-01-01

    Precipitation shifts can have large impacts on human society and ecosystems. Many aspects of how inhomogeneous radiative forcings influence precipitation remain unclear, however. Here we investigate regional precipitation responses to various forcings imposed in different latitude bands in a climate model. We find that several regions show strong, significant responses to most forcings, but that the magnitude and even the sign depends upon the forcing location and type. Aerosol and ozone forcings typically induce larger responses than equivalent carbon dioxide (CO2) forcing, and the influence of remote forcings often outweighs that of local forcings. Consistent with this, ozone and especially aerosols contribute greatly to precipitation changes over the Sahel and South and East Asia in historical simulations, and inclusion of aerosols greatly increases the agreement with observed trends in these areas, which cannot be attributed to either greenhouse gases or natural forcings. Estimates of precipitation responses derived from multiplying our Regional Precipitation Potentials (RPP; the response per unit forcing relationships) by historical forcings typically capture the actual response in full transient climate simulations fairly well, suggesting that these relationships may provide useful metrics. The strong sensitivity to aerosol and ozone forcing suggests that although some air quality improvements may unmask greenhouse gas-induced warming, they have large benefits for reducing regional disruption of the hydrologic cycle.

  7. The impacts of optical properties on radiative forcing due to dust aerosol

    NASA Astrophysics Data System (ADS)

    Wang, H.; Shi, G. Y.; Li, S. Y.; Li, W.; Wang, B.; Huang, Y. B.

    2006-05-01

    There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity experiments to estimate the impacts of optical characteristics on regional radiative forcing in this paper. The experiments involve in refractive indices, single scattering albedo, asymmetry factor and optical depth. An updated dataset of refractive indices representing East Asian dust and the one recommended by the World Meteorology Organization (WMO) are contrastively analyzed and used. A radiative transfer code for solar and thermal infrared radiation with detailed aerosol parameterization is employed. The strongest emphasis is on the refractive indices since other optical parameters strongly depend on it, and the authors found a strong sensitivity of radiative forcing on refractive indices. Studies show stronger scattering, weaker absorption and forward scattering of the East Asian dust particles at solar wavelengths, which leads to higher negative forcing, lower positive forcing and bigger net forcing at the top of the atmosphere (TOA) than that of the WMO dust model. It is also found that the TOA forcings resulting from these two dust models have opposite signs in certain regions, which implies the importance of accurate measurements of optical properties in the quantitative estimation of radiative forcing.

  8. Thermal Infrared Radiative Forcing By Atmospheric Aerosol

    NASA Astrophysics Data System (ADS)

    Adhikari, Narayan

    The work mainly focuses on the study of thermal infrared (IR) properties of atmospheric greenhouse gases and aerosols, and the estimation of the aerosol-induced direct longwave (LW) radiative forcing in the spectral region 5-20 mum at the Earth's surface (BOA; bottom of the atmosphere) and the top of the atmosphere (TOA) in cloud-free atmospheric conditions. These objectives were accomplished by conducting case studies on clear sky, smoky, and dusty conditions that took place in the Great Basin of the USA in 2013. Both the solar and thermal IR measurements and a state-of-the-science radiative transfer model, the LBLDIS, a combination of the Line-By-Line Radiative Transfer Model and the Discrete Ordinate Radiative Transfer (DISORT) solver were employed for the study. The LW aerosol forcing is often not included in climate models because the aerosol effect on the LW is often assumed to be negligible. We lack knowledge of aerosol characteristics in the LW region, and aerosol properties exhibit high variability. We have found that the LW TOA radiative forcing due to fine mode aerosols, mainly associated with small biomass burning smoke particles, is + 0.4 W/m2 which seems to be small, but it is similar to the LW radiative forcing due to increase in CO2 concentration in the Earth's atmosphere since the preindustrial era of 1750 (+ 1.6 W/m 2). The LW radiative forcing due to coarse mode aerosols, associated with large airborne mineral dust particles, was found to be as much as + 5.02 W/m2 at the surface and + 1.71 W/m2 at the TOA. All of these significant positive values of the aerosol radiative forcing both at the BOA and TOA indicate that the aerosols have a heating effect in the LW range, which contributes to counterbalancing the cooling effect associated with the aerosol radiative forcing in the shortwave (SW) spectral region. In the meantime, we have found that LW radiative forcing by aerosols is highly sensitive to particle size and complex refractive indices of

  9. Implications of albedo changes following afforestation on the benefits of forests as carbon sinks

    NASA Astrophysics Data System (ADS)

    Kirschbaum, M. U. F.; Whitehead, D.; Dean, S. M.; Beets, P. N.; Shepherd, J. D.; Ausseil, A.-G. E.

    2011-08-01

    Increased carbon storage with afforestation leads to a decrease in atmospheric carbon dioxide concentration and thus decreases radiative forcing and cools the Earth. However, land-use change also changes the reflective properties of the surface vegetation from more reflective pasture to relatively less reflective forest cover. This increase in radiation absorption by the forest constitutes an increase in radiative forcing, with a warming effect. The net effect of decreased albedo and carbon storage on radiative forcing depends on the relative magnitude of these two opposing processes. We used data from an intensively studied site in New Zealand's Central North Island that has long-term, ground-based measurements of albedo over the full short-wave spectrum from a developing Pinus radiata forest. Data from this site were supplemented with satellite-derived albedo estimates from New Zealand pastures. The albedo of a well-established forest was measured as 13 % and pasture albedo as 20 %. We used these data to calculate the direct radiative forcing effect of changing albedo as the forest grew. We calculated the radiative forcing resulting from the removal of carbon from the atmosphere as a decrease in radiative forcing of -104 GJ tC-1 yr-1. We also showed that the observed change in albedo constituted a direct radiative forcing of 2759 GJ ha-1 yr-1. Thus, following afforestation, 26.5 tC ha-1 needs to be stored in a growing forest to balance the increase in radiative forcing resulting from the observed albedo change. Measurements of tree biomass and albedo were used to estimate the net change in radiative forcing as the newly planted forest grew. Albedo and carbon-storage effects were of similar magnitude for the first four to five years after tree planting, but as the stand grew older, the carbon storage effect increasingly dominated. Averaged over the whole length of the rotation, the changes in albedo negated the benefits from increased carbon storage by 17-24 %.

  10. Placement and efficiency effects on radiative forcing of solar installations

    NASA Astrophysics Data System (ADS)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno

    2015-09-01

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  11. Placement and efficiency effects on radiative forcing of solar installations

    SciTech Connect

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno

    2015-09-28

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  12. The Radiative Forcing from Biogenic Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Scott, C. E.; Forster, P.; Spracklen, D. V.; Carslaw, K. S.; Arnold, S.; Rap, A.

    2012-12-01

    Vegetation emits biogenic volatile organic compounds (BVOCs), such as monoterpenes, isoprene and sesquiterpenes, into the atmosphere. Once emitted, BVOCs rapidly undergo reactions with the hydroxyl radical, ozone and the nitrate radical to yield a range of lower volatility oxidation products. These compounds are of sufficiently low volatility to partition into the aerosol phase, forming secondary organic aerosol (SOA). Increasingly, there are indications that organic compounds, specifically the oxidation products of terpenes, may contribute to the process of new particle formation as well as the growth of existing particles. The formation of SOA can influence the Earth's radiative balance by absorbing and scattering radiation (the direct effect) and by altering the properties of clouds (the indirect effect), via their action as cloud condensation nuclei (CCN). Biogenic SOA formed from the oxidation products of isoprene and monoterpenes has been shown to be CCN active under atmospherically relevant conditions, indicating that complex climate feedbacks may result from the emission of BVOCs. Using a global aerosol microphysics model (GLOMAP), and offline radiative transfer code, we simulate a present day aerosol indirect radiative forcing of between -0.07 and - 0.81 W.m-2, for the emission of BVOCs, due to a simulated increase in the number of particles able to act as CCN. The forcing obtained per emission is not spatially uniform, with monoterpenes in the southern hemisphere being most efficient at inducing a radiative change. We find a strong sensitivity to the treatment of concurrent anthropogenic emissions. In the present day, biogenic secondary organic material is more efficient at perturbing CCN number concentrations, but when anthropogenic emissions from 1750 are included in our simulations, the lower background aerosol concentration results in a more significant radiative response. The largest uncertainty in the forcing obtained however, comes from the

  13. Evaluation of Aerosol Direct Radiative Forcing in MIRAGE

    SciTech Connect

    Ghan, Steven J.; Laulainen, Nels S.; Easter, Richard C.; Wagener, Richard; Nemesure, Seth; Chapman, Elaine G.; Zhang, Yang; Leung, Lai-Yung R.

    2001-04-01

    A variety of measurements have been used to evaluate the treatment of aerosol radiative properties and radiative impacts of aerosols simulated by the Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE). The treatment of water uptake in MIRAGE agrees with laboratory measurements for the aerosol components that have been measured. The simulated frequency of relative humidity near 100% is about twice that of European Center for Medium-range Weather Forecasts analyzed relative humidity. When the analyzed relative humidity is used to calculate aerosol water uptake in MIRAGE, the simulated aerosol optical depth agrees with most surface measurements after cloudy conditions are filtered out and differences between model and station elevations are accounted for. Simulated optical depths are low over sites in Brazil during the biomass burning season and over sites in central Canada during the wildfire season, which can be attributed to limitations in the organic and black car bon emissions data used by MIRAGE. The simulated aerosol optical depths are mostly within a factor of two of satellite estimates, but MIRAGE simulates excessively high aerosol optical depths off the east coast of the US and China, and too little dust off the coast of West Africa and in the Arabian Sea. The simulated distribution of single-scatter albedo is consistent with the available in situ surface measurements. The simulated sensitivity of radiative forcing to aerosol optical depth is consistent with estimates from measurements where available. The simulated spatial distribution of aerosol radiance is broadly consistent with estimates from satellite measurements, but with the same errors as the aerosol optical depth. The simulated direct forcing is within the uncertainty of estimates from measurements in the North Atlantic.

  14. Inhomogeneous radiative forcing of homogeneous greenhouse gases

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Tan, Xiaoxiao; Xia, Yan

    2016-03-01

    Radiative forcing of a homogeneous greenhouse gas (HGG) can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO2, the monthly mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range (-2.5-5.1 W m-2) being more than 3 times the magnitude of the global mean value (2.3 W m-2). The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the Climate Model Intercomparison Project Phase 5 models, we find that intermodel discrepancy in CO2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport.

  15. Radiative Forcing of Dust in Mountain Snow from MODIS surface reflectance data

    NASA Astrophysics Data System (ADS)

    Painter, T. H.

    2009-05-01

    Here I present an algorithm that retrieves the radiative forcing by desert dust in mountain snow cover from surface reflectance data from NASA Moderate Resolution Imaging Spectroradiometer (MODIS). Dust emitted from natural and disturbed lands frequently deposits to mountain snow cover through dry and wet deposition, particularly in spring when synoptic scale storms entrain material from recently dried surfaces. Dust decreases snow spectral albedo, primarily in the visible wavelengths where the imaginary parts of the complex refractive indices of dust and ice have the greatest contrast. This surface radiative forcing accelerates melt and contributes to the snow-albedo feedback. In the Rocky Mountains of Colorado, this has been shown to shorten the duration of snow cover by approximately a month. The algorithm presented here, MODIS Dust Radiative Forcing in Snow (MOD-DRFS), determines the per pixel radiative forcing by dust in snow from a coupled radiative transfer model that infers the reflectance difference between clean snow spectra and dust- laden snow spectra according to a grain size matching in the near infrared and shortwave infrared wavelengths that are not affected by dust absorption. The spectral residuals are splined to a high spectral resolution and convolved with the at surface spectral irradiance modulated by local topography, and subsequently integrated to the instantaneous surface radiative forcing. I demonstrate the model with retrievals in the Zagros Mountains, Iran and the San Juan Mountains, Colorado, USA. Preliminary validation of the model with in situ detailed pyranometer measurements in the San Juan Mountains indicates that the model has uncertainties of < 7 W/m2.

  16. Seasonal and Elevational Variations of Black Carbon and Dust in Snow and Ice in the Solu-Khumbu, Nepal and Estimated Radiative Forcings

    NASA Astrophysics Data System (ADS)

    Kaspari, S.; Painter, T. H.; Gysel, M.; Skiles, M.; Schwikowski, M.

    2014-12-01

    Black carbon (BC) and dust deposited on snow and glacier surfaces can reduce the surface albedo, accelerate melt, and trigger albedo feedback. Assessing BC and dust concentrations in snow and ice in the Himalaya is of interest because this region borders large BC and dust sources, and seasonal snow and glacier ice in this region are an important source of water resources. Snow and ice samples were collected from crevasse profiles and snowpits at elevations between 5400 and 6400 m asl from Mera glacier located in the Solu-Khumbu region of Nepal. The samples were measured for Fe concentrations (used as a dust proxy) via ICP-MS, total impurity content gravimetrically, and BC concentrations using a Single Particle Soot Photometer (SP2). BC and Fe concentrations are substantially higher at elevations < 6000 m due to post-depositional processes including melt and sublimation and greater loading in the lower troposphere. Because the largest areal extent of snow and ice resides at elevations < 6000 m, the higher BC and dust concentrations at these elevations can reduce the snow and glacier albedo over large areas, accelerating melt, affecting glacier mass-balance and water resources, and contributing to a positive climate forcing. Radiative transfer modeling constrained by measurements at 5400 m at Mera La indicates that BC concentrations in the winter-spring snow/ice horizons are sufficient to reduce albedo by 6-10% relative to clean snow, corresponding to localized instantaneous radiative forcings of 75-120 W m-2. The other bulk impurity concentrations, when treated separately as dust, reduce albedo by 40-42% relative to clean snow and give localized instantaneous radiative forcings of 488 to 525 W m-2. Adding the BC absorption to the other impurities results in additional radiative forcings of 3 W m-2. While these results suggest that the snow albedo and radiative forcing effect of dust is considerably greater than BC, there are several sources of uncertainty.

  17. Sierra Nevada, California, U.S.A., Snow Algae: Snow albedo changes, algal-bacterial interrelationships and ultraviolet radiation effects

    SciTech Connect

    Thomas, W.H.; Duval, B.

    1995-11-01

    In the Tioga Pass area (upper LeeVining Creek watershed) of the Sierra Nevada (California), snow algae were prevalent in the early summers of 1993 and 1994. Significant negative correlations were found between snow water content. However, red snow caused by algal blooms did not decrease mean albedos in representative snowfields. This was due to algal patchiness; mean albedos would not decrease over the whole water catchment basin; and water supplies would not be affected by the presence of algae. Albedo was also reduced by dirt on the snow, and wind-blown dirt may provide a source of allochthonous organic matter for snow bacteria. However, several observations emphasize the importance of an autochthonous source for bacterial nutrition. Bacterial abundances and production rates were higher in red snow containing algae than in noncolored snow. Bacterial production was about two orders-of-magnitude lower than photosynthetic algal production. Bacteria were also sometimes attached to algal cells. In experiments where snow algae were contained in UV-transmitting quartz tubes, ultraviolet radiation inhibited red snow (collected form open, sunlit areas) photosynthesis about 25%, while green snow (collected from forested, shady locations) photosynthesis was inhibited by 85%. Methanol extracts of red snow algae had greater absorbances in blue and UV spectral regions than did algae from green snow. These differences in UV responses and spectra may be due to habitat (sun vs shade) differences, or may be genetic, since different species were found in the two snow types. However, both habitat and genetic mechanisms may be operating together to cause these differences. 53 refs., 5 figs., 5 tabs.

  18. Program for Computing Albedo

    NASA Technical Reports Server (NTRS)

    Justus, Carl G.

    2003-01-01

    Simple Thermal Environment Model (STEM) is a FORTRAN-based computer program that provides engineering estimates of top-of-atmosphere albedo and outgoing long-wave radiation (OLR) for use in analyzing thermal loads on spacecraft near Earth. The thermal environment of a spacecraft is represented in STEM as consisting of direct solar radiation; short-wave radiation reflected by the atmosphere of the Earth, as characterized in terms of the albedo of the Earth; and OLR emitted by the atmosphere of the Earth. STEM can also address effects of heat loads internal to a spacecraft. Novel features of STEM include (1) the use of Earth albedo and OLR information based on time series of measurements by Earth Radiation Budget Experiment satellites in orbit; (2) the ability to address thermal time constants of spacecraft systems by use of albedo and OLR values representing averages over a range of averaging times; and (3) the ability to address effects, on albedo and OLR values, of satellite orbital inclination, the angle between the plane of a spacecraft orbit and the line between the centers of the Earth and Sun, the solar zenith angle, and latitude.

  19. Observed relationship between Arctic sea ice, cloud, and solar radiation and its implication for ice-albedo feedback

    NASA Astrophysics Data System (ADS)

    Choi, Y. S.; Kim, B. M.; Hur, S. K.; Kim, S. J.; Kim, J. H.; Ho, C. H.

    2014-12-01

    This study demonstrates that absorbed solar radiation (ASR) at the top of the atmosphere in early summer (May-July) plays a precursory role in determining the Arctic sea ice concentration (SIC) in late summer (August-October). The monthly ASR anomalies are obtained over the Arctic Ocean (65°N-90°N) from the Clouds and the Earth's Radiant Energy System during 2000-2013. The ASR anomaly changes primarily with cloud variation that determines relative contributions of cloud and surface albedo to the ASR. We found that the ASR anomaly in early summer is significantly negatively correlated with the SIC anomaly in late summer (correlation coefficient, r ≈ -0.8 with a lag of 1 to 4 months). The region exhibiting high (low) ASR anomalies and low (high) SIC anomalies varies yearly. This intimate delayed ASR-SIC relationship is not represented in most of current climate models. Rather, the models tend to over-emphasize internal sea ice processes in summer. Implication of the observed results for ice-albedo feedback will be presented.

  20. Case Studies of the Vertical Structure of the Direct Shortwave Aerosol Radiative Forcing During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Hobbs, P. V.; Hartley, W. S.; Bergstrom, R. W.; Browell, E. V.; Russell, P. B.

    2000-01-01

    The vertical structure of aerosol-induced radiative flux changes in the Earth's troposphere affects local heating rates and thereby convective processes, the formation and lifetime of clouds, and hence the distribution of chemical constituents. We present observationally-based estimates of the vertical structure of direct shortwave aerosol radiative forcing for two case studies from the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) which took place on the US East coast in July 1996. The aerosol radiative forcings are computed using the Fu-Liou broadband radiative transfer model. The aerosol optical properties used in the radiative transfer simulations are calculated from independent vertically-resolved estimates of the complex aerosol indices of refraction in two to three distinct vertical layers, using profiles of in situ particle size distributions measured aboard the University of Washington research aircraft. Aerosol single-scattering albedos at 450 nm thus determined range from 0.9 to 0.985, while the asymmetry factor varies from 0.6 to 0.8. The instantaneous shortwave aerosol radiative forcings derived from the optical profiles of the aerosols are of the order of -36 W/sq m at the top of the atmosphere and about -56 W/sq m at the surface for both case studies.

  1. Case Studies of the Vertical Structure of the Direct Shortwave Aerosol Radiative Forcing During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Hobbs, P. V.; Hartley, W. S.; Bergstrom, R. W.; Browell, E. V.; Russell, P. B.

    2000-01-01

    The vertical structure of aerosol-induced radiative flux changes in the Earth's troposphere affects local heating rates and thereby convective processes, the formation and lifetime of clouds, and hence the distribution of chemical constituents. We present observationally based estimates of the vertical structure of direct shortwave aerosol radiative forcing for two case studies from the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) which took place on the U.S. east coast in July 1996. The aerosol radiative forcings are computed using the Fu-Liou broadband radiative transfer model. The aerosol optical properties used in the radiative transfer simulations are calculated from independent vertically resolved estimates of the complex aerosol indices of refraction in two to three distinct vertical layers, using profiles of in situ particle size distributions measured aboard the University of Washington research aircraft. Aerosol single-scattering albedos at 450 nm thus determined range from 0.9 to 0.985, while the asymmetry factor varies from 0.6 to 0.8. The instantaneous shortwave aerosol radiative forcings derived from the optical properties of the aerosols are of the order of -36 Wm(exp -2) at the top of the atmosphere and about -56 Wm(exp -2) at the surface for both case studies.

  2. Thermal cracking of CO2 slab ice as the main driving force for albedo increase of the martian seasonal polar caps

    NASA Astrophysics Data System (ADS)

    Philippe, S.; Schmitt, B.; Beck, P.; Brissaud, O.

    2015-10-01

    Understanding the microphysical processes occuring on the Martian seasonal cap is critical since their radiative properties can affect the martian climate. A well documented phenomenom is the albedo increase of the Martian seasonal caps during spring, Fig.1. There are a lot of hypotheses that have been proposed as an explanation for this observation : the decrease of the CO2 grain size [2], a cleaning process of the CO2 slab that would imply either the sinking or the ejection of the dust contained in its volume ([1], [2], [5]), a water-layer accumulation on the top of the slab [5], the role played by aerosols [2] etc ... So far, no experimental simulations have been realized to discriminate between these processes. We designed an experiment to investigate the hypothesis of CO2 ice grain size decrease through thermal cracking as well as that of dust segregation as the possible reasons for albedo increase.

  3. Albedo Boundary

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-510, 11 October 2003

    The sharp, nearly straight line that runs diagonally across the center of this April 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an albedo boundary. Albedois a term that refers to reflectance of sunlight. A surface with a low albedo is one that appears dark because it reflects less light than a high albedo (bright) surface. On Mars, albedo boundaries occur between two materials of differing texture, particle size, or composition, or some combination of these three factors. The boundary shown here is remarkable because it is so sharp and straight. This is caused by wind. Most likely, the entire surface was once covered with the lower-albedo (darker) material that is now seen in the upper half of the image. At some later time, wind stripped away this darker material from the surfaces in the lower half of the image. The difference in albedo here might be related to composition, and possibly particle size. This picture is located near the southwest rim of Schiaparelli Basin at 5.5oS, 345.9oW. The picture covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the left.

  4. Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, I.

    2007-01-01

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and

  5. Greenland Glacier Albedo Variability

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.

  6. Tropical cirrus cloud radiative forcing: Sensitivity studies

    SciTech Connect

    Jensen, E.J.; Kinne, S.; Toon, O.B.

    1994-09-01

    We have performed one dimensional radiative transfer calculations to evaluate the impact of cirrus clouds on the tropical radiation budget. We investigate the sensitivity of solar and infrared fluxes to cloud optical depth, particle size distributions, and cloud height. If the observed solar cloud forcing in excess of 100 W/sq m is to be attributed to cirrus anvils alone, then the optical depth of these anvils must be at least 5 (assuming 50% cloud cover and an ice crystal effective radius of 15 microns). The net radiative forcing of cirrus near the tropical tropopause is positive (heating) for cloud optical depths less than about 16 and negative (cooling) for larger optical depths. If cirrus clouds alone are responsible for the equal and opposite shortwave and longwave cloud forcing in excess of 100 W/sq m observed by Earth Radiation Budget Experiment (ERBE), then the cirrus must typically take the form of deep, optically thick clouds with relatively small particles (radii of 10-20 microns) and cloud-tops well below the tropopause. The maintenance of this balance on monthly time scales can be attributed to a variety of correlations: The cloud cover of optically thick cirrus or thin cirrus overlying low-level stratus clouds could vary; or cirrus anvil height cloud increase along with a decrease in the ice crystal effective radius and an increase in optical depth. It would be of great interest to determine observationally which of these correlations is responsible for the observed lack of variation in cloud forcing.

  7. Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Kassianov, E. I.; Barnard, J.; Flynn, C.; Ackerman, T. P.

    2009-07-01

    The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility (AMF) was deployed to Niamey, Niger, during 2006. Niamey, which is located in sub-Saharan Africa, is affected by both dust and biomass burning emissions. Column aerosol optical properties were derived from multifilter rotating shadowband radiometer, measurements and the vertical distribution of aerosol extinction was derived from a micropulse lidar during the two observed dry seasons (January-April and October-December). Mean aerosol optical depth (AOD) and single scattering albedo (SSA) at 500 nm during January-April were 0.53 ± 0.4 and 0.94 ± 0.05, while during October-December mean AOD and SSA were 0.33 ± 0.25 and 0.99 ± 0.01. Aerosol extinction profiles peaked near 500 m during the January-April period and near 100 m during the October-December period. Broadband shortwave surface fluxes and heating rate profiles were calculated using retrieved aerosol properties. Comparisons for noncloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the aerosol optical properties, with mean differences between calculated and observed fluxes of less than 5 W m-2 and RMS differences less than 25 W m-2. Sensitivity tests showed that the observed fluxes could be matched with variations of <10% in the inputs to the radiative transfer model. The calculated 24-h averaged SW instantaneous surface aerosol radiative forcing (ARF) was -21.1 ± 14.3 W m-2 and was estimated to account for 80% of the total radiative forcing at the surface. The ARF was larger during January-April (-28.5 ± 13.5 W m-2) than October-December (-11.9 ± 8.9 W m-2).

  8. The Potential Radiative Forcing of Global Land Use and Land Cover Change Activities

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2014-12-01

    Given the expected increase in pressure on land resources over the next century, there is a need to understand the total impacts of activities associated with land use and land cover change (LULCC). Here we quantify these impacts using the radiative forcing metric, including forcings from changes in long-lived greenhouse gases, tropospheric ozone, aerosol effects, and land surface albedo. We estimate radiative forcings from the different agents for historical LULCC and for six future projections using simulations from the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. When all forcing agents are considered together we show that 45% (+30%, -20%) of the present-day (2010) anthropogenic radiative forcing can be attributed to LULCC. Changes in the emission of non-CO2 greenhouse gases and aerosols from LULCC enhance the total LULCC radiative forcing by a factor of 2 to 3 with respect to the forcing from CO2 alone. In contrast, the non-CO2 forcings from fossil fuel burning are roughly neutral, due largely to the negative (cooling) impact of aerosols from these sources. We partition the global LULCC radiative forcing into three major sources: direct modification of land cover (e.g. deforestation), agricultural activities, and fire regime changes. Contributions from deforestation and agriculture are roughly equal in the present day, while changes to wildfire activity impose a small negative forcing globally. In 2100, deforestation activities comprise the majority of the LULCC radiative forcing for all projections except one (Representative Concentration Pathway (RCP) 4.5). This suggests that realistic scenarios of future forest area change are essential for projecting the contribution of LULCC to climate change. However, the commonly used RCP land cover change projections all include decreases in global deforestation rates over the next 85 years. To place an upper bound on the potential

  9. Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse

    NASA Astrophysics Data System (ADS)

    Bond, T. C.; Zarzycki, C.; Flanner, M. G.; Koch, D. M.

    2010-06-01

    We propose a measure to quantify climate warming or cooling by pollutants with atmospheric lifetimes of less than one year: the Specific Forcing Pulse (SFP). SFP is the amount of energy added to the Earth system per mass of pollutant emitted. Global average SFP for black carbon, including atmosphere and cryosphere, is 1.12 GJ g-1 and that for organic matter is -0.061 GJ g-1. We provide regional values for black carbon (BC) and organic matter (OM) emitted from 23 source-region combinations, divided between atmosphere and cryosphere impacts and identifying forcing by latitude. Regional SFP varies by about 40% for black carbon. This variation is relatively small because of compensating effects; particles from regions that affect ice albedo typically have shorter atmospheric lifetimes because of lower convection. The ratio between BC and OM SFP implies that, for direct forcing, an OM:BC mass ratio of 15 has a neutral effect on top-of-atmosphere direct forcing for any region, and any lower ratio induces direct warming. However, important processes, particularly cloud changes that tend toward cooling, have not been included here. We demonstrate ensemble adjustment, in which we produce a "best estimate" by combining a suite of diverse but simple models and enhanced models of greater complexity. Adjustments for black carbon internal mixing and for regional variability are discussed; regions with convection are implicated in greater model diversity. SFP expresses scientific uncertainty and separates it from policy uncertainty; the latter is caused by disagreements about the relevant time horizon, impact, or spatial scale of interest. However, metrics used in policy discussions, such as global warming potentials, are easily derived from SFP. Global-average SFP for biofuel and fossil fuel emissions translates to a 100-year GWP of about 760 for black carbon and -40 for organic matter when snow forcing is included. Ensemble-adjusted estimates of atmospheric radiative impact by

  10. Coefficients of an analytical aerosol forcing equation determined with a Monte-Carlo radiation model

    NASA Astrophysics Data System (ADS)

    Hassan, Taufiq; Moosmüller, H.; Chung, Chul E.

    2015-10-01

    Simple analytical equations for global-average direct aerosol radiative forcing are useful to quickly estimate aerosol forcing changes as function of key atmosphere, surface and aerosol parameters. The surface and atmosphere parameters in these analytical equations are the globally uniform atmospheric transmittance and surface albedo, and have so far been estimated from simplified observations under untested assumptions. In the present study, we take the state-of-the-art analytical equation and write the aerosol forcing as a linear function of the single scattering albedo (SSA) and replace the average upscatter fraction with the asymmetry parameter (ASY). Then we determine the surface and atmosphere parameter values of this equation using the output from the global MACR (Monte-Carlo Aerosol Cloud Radiation) model, as well as testing the validity of the equation. The MACR model incorporated spatio-temporally varying observations for surface albedo, cloud optical depth, water vapor, stratosphere column ozone, etc., instead of assuming as in the analytical equation that the atmosphere and surface parameters are globally uniform, and should thus be viewed as providing realistic radiation simulations. The modified analytical equation needs globally uniform aerosol parameters that consist of AOD (Aerosol Optical Depth), SSA, and ASY. The MACR model is run here with the same globally uniform aerosol parameters. The MACR model is also run without cloud to test the cloud effect. In both cloudy and cloud-free runs, the equation fits in the model output well whether SSA or ASY varies. This means the equation is an excellent approximation for the atmospheric radiation. On the other hand, the determined parameter values are somewhat realistic for the cloud-free runs but unrealistic for the cloudy runs. The global atmospheric transmittance, one of the determined parameters, is found to be around 0.74 in case of the cloud-free conditions and around 1.03 with cloud. The surface

  11. Intercalibration of CERES, MODIS, and MISR reflected solar radiation and its application to albedo trends

    NASA Astrophysics Data System (ADS)

    Zhan, Yizhe; Davies, Roger

    2016-06-01

    Measurements on the Terra satellite by the Cloud and the Earth's Radiant Energy System (CERES), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Multiangle Imaging Spectroradiometer (MISR), between 2001 and 2015 over the polar regions, are analyzed in order to investigate the intercalibration differences between these instruments. Direct comparisons of colocated near-nadir radiances from CERES, MODIS, and MISR show relative agreement within 2.4% decade-1. By comparison with the CERES shortwave broadband, MODIS Collection 6 is getting brighter, by 1.0 ± 0.7% decade-1 in the red band and 1.4 ± 0.7% decade-1 in the near infrared. MISR's red and near-infrared bands, however, show darkening trends of -1.0 ± 0.6% decade-1 and -1.1 ± 0.6% decade-1, respectively. The CERES/MODIS or CERES/MISR visible and near IR radiance ratio is shown to have a significant negative correlation with precipitable water content over the Antarctic Plateau. The intercalibration results successfully correct the differential top-of-atmosphere trends in zonal albedos between CERES and MISR.

  12. The implication of radiative forcing and feedback for meridional energy transport

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Zhang, Minghong

    2014-03-01

    The distributions of radiative forcing and feedback in the Coupled Model Intercomparison Project phase 5 abrupt4xCO2 and Historical experiments are diagnosed, with a focus on their effects on the zonal mean structure of the top-of-the-atmosphere radiation anomalies and implications for the meridional energy transport. It is found that because the greenhouse gas longwave forcing peaks in the low latitudes, it reinforces the equator-to-pole net radiation gradient and accounts for the increase in the poleward energy transport in both hemispheres under global warming. The shortwave forcing by aerosol, ozone, etc. peaks in the Northern Hemisphere and instead implies an interhemispheric energy transport. Although the water vapor feedback also reinforces the equator-to-pole gradient of the net radiation, the temperature and albedo feedback act against it. The feedback tend to offset the zonal mean radiation anomaly caused by the forcing, although the overall feedback effect on the energy transport is rather uncertain, mainly due to the uncertainty in the cloud feedback.

  13. Radiative Forcing Effects Due to Black Carbon and Dust in the Atmosphere and Snow in the Western United States

    NASA Astrophysics Data System (ADS)

    Mao, Y.; Li, Q.; Liou, K. N.; Liao, H.; Gu, Y.; He, C.; Zhang, L.

    2014-12-01

    BC and dust are two of the most important light absorbing aerosols in the atmosphere and thus have significant direct radiative forcing and snow albedo effects regionally. There are large uncertainties in the estimates of direct radiative forcing of BC and dust, which range from 0.2 to 0.9 W m-2 for BC (Bond et al., 2013) and 0.07 to 0.31 W m-2 in the long waves for dust (IPCC, 2007). BC and dust deposited on snow can significantly reduce the surface albedos and further affect the regional hydrological cycle. In the western U.S. (WUS), mountain snowmelt accounts for over 70% of the annual fresh water supply, which is facing severe challenges in the region recently. Transpacific transport of Asian emissions is likely becoming an even larger contributor to the fine particulate matter in the WUS in spring, as the Asian emissions are increasing under the rapid economic development in this region. We thus intend to better understand the radiative forcing effects of BC and dust in the atmosphere and snow in the WUS using an offline coupled 3-D global chemical transport model with a radiative transfer model. With improved dust and BC emissions and dust particle size distributions, we would like to quantify the relative contributions from different sources and source regions to the radiative forcing of BC and dust.

  14. Prognostic land surface albedo from a dynamic global vegetation model clumped canopy radiative transfer scheme and satellite-derived geographic forest heights

    NASA Astrophysics Data System (ADS)

    Kiang, N. Y.; Yang, W.; Ni-Meister, W.; Aleinov, I. D.; Jonas, J.

    2014-12-01

    Vegetation cover was introduced into general circulations models (GCMs) in the 1980's to account for the effect of land surface albedo and water vapor conductance on the Earth's climate. Schemes assigning canopy albedoes by broad biome type have been superceded in 1990's by canopy radiative transfer schemes for homogeneous canopies obeying Beer's Law extinction as a function of leaf area index (LAI). Leaf albedo and often canopy height are prescribed by plant functional type (PFT). It is recognized that this approach does not effectively describe geographic variation in the radiative transfer of vegetated cover, particularly for mixed and sparse canopies. GCM-coupled dynamic global vegetation models (DGVMs) have retained these simple canopy representations, with little further evaluation of their albedos. With the emergence lidar-derived canopy vertical structure data, DGVM modelers are now revisiting albedo simulation. We present preliminary prognostic global land surface albedo produced by the Ent Terrestrial Biosphere Model (TBM), a DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM. The Ent TBM is a next generation DGVM designed to incorporate variation in canopy heights, and mixed and sparse canopies. For such dynamically varying canopy structure, it uses the Analytical Clumped Two-Stream (ACTS) canopy radiative transfer model, which is derived from gap probability theory for canopies of tree cohorts with ellipsoidal crowns, and accounts for soil, snow, and bare stems. We have developed a first-order global vegetation structure data set (GVSD), which gives a year of satellite-derived geographic variation in canopy height, maximum canopy leaf area, and seasonal LAI. Combined with Ent allometric relations, this data set provides population density and foliage clumping within crowns. We compare the Ent prognostic albedoes to those of the previous GISS GCM scheme, and to satellite estimates. The impact of albedo differences on surface

  15. Global mountain snow and ice loss driven by dust and black carbon radiative forcing

    NASA Astrophysics Data System (ADS)

    Painter, T. H.

    2014-12-01

    Changes in mountain snow and glaciers have been our strongest indicators of the effects of changing climate. Earlier melt of snow and losses of glacier mass have perturbed regional water cycling, regional climate, and ecosystem dynamics, and contributed strongly to sea level rise. Recent studies however have revealed that in some regions, the reduction of albedo by light absorbing impurities in snow and ice such as dust and black carbon can be distinctly more powerful than regional warming at melting snow and ice. In the Rocky Mountains, dust deposition has increased 5 to 7 fold in the last 150 years, leading to ~3 weeks earlier loss of snow cover from forced melt. In absolute terms, in some years dust radiative forcing there can shorten snow cover duration by nearly two months. Remote sensing retrievals are beginning to reveal powerful dust and black carbon radiative forcing in the Hindu Kush through Himalaya. In light of recent ice cores that show pronounced increases in loading of dust and BC during the Anthropocene, these forcings may have contributed far more to glacier retreat than previously thought. For example, we have shown that the paradoxical end of the Little Ice Age in the European Alps beginning around 1850 (when glaciers began to retreat but temperatures continued to decline and precipitation was unchanged) very likely was driven by the massive increases in deposition to snow and ice of black carbon from industrialization in surrounding nations. A more robust understanding of changes in mountain snow and ice during the Anthropocene requires that we move past simplistic treatments (e.g. temperature-index modeling) to energy balance approaches that assess changes in the individual forcings such as the most powerful component for melt - net solar radiation. Remote sensing retrievals from imaging spectrometers and multispectral sensors are giving us more powerful insights into the time-space variation of snow and ice albedo.

  16. Near-linear response of mean monsoon strength to a broad range of radiative forcings

    PubMed Central

    Boos, William R.; Storelvmo, Trude

    2016-01-01

    Theoretical models have been used to argue that seasonal mean monsoons will shift abruptly and discontinuously from wet to dry stable states as their radiative forcings pass a critical threshold, sometimes referred to as a “tipping point.” Further support for a strongly nonlinear response of monsoons to radiative forcings is found in the seasonal onset of the South Asian summer monsoon, which is abrupt compared with the annual cycle of insolation. Here it is shown that the seasonal mean strength of monsoons instead exhibits a nearly linear dependence on a wide range of radiative forcings. First, a previous theory that predicted a discontinuous, threshold response is shown to omit a dominant stabilizing term in the equations of motion; a corrected theory predicts a continuous and nearly linear response of seasonal mean monsoon strength to forcings. A comprehensive global climate model is then used to show that the seasonal mean South Asian monsoon exhibits a near-linear dependence on a wide range of isolated greenhouse gas, aerosol, and surface albedo forcings. This model reproduces the observed abrupt seasonal onset of the South Asian monsoon but produces a near-linear response of the mean monsoon by changing the duration of the summer circulation and the latitude of that circulation’s ascent branch. Thus, neither a physically correct theoretical model nor a comprehensive climate model support the idea that seasonal mean monsoons will undergo abrupt, nonlinear shifts in response to changes in greenhouse gas concentrations, aerosol emissions, or land surface albedo. PMID:26811462

  17. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    NASA Technical Reports Server (NTRS)

    Henze, Daven K.; Shindell, Drew Todd; Akhtar, Farhan; Spurr, Robert J. D.; Pinder, Robert W.; Loughlin, Dan; Kopacz, Monika; Singh, Kumaresh; Shim, Changsub

    2012-01-01

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary to assess realistic policy options. To address this challenge, here we show how adjoint model sensitivities can be used to provide highly spatially resolved estimates of the DRF from emissions of black carbon (BC), primary organic carbon (OC), sulfur dioxide (SO2), and ammonia (NH3), using the example of emissions from each sector and country following multiple Representative Concentration Pathway (RCPs). The radiative forcing efficiencies of many individual emissions are found to differ considerably from regional or sectoral averages for NH3, SO2 from the power sector, and BC from domestic, industrial, transportation and biomass burning sources. Consequently, the amount of emissions controls required to attain a specific DRF varies at intracontinental scales by up to a factor of 4. These results thus demonstrate both a need and means for incorporating spatially refined aerosol DRF into analysis of future emissions scenario and design of air quality and climate change mitigation policies.

  18. Effects of aerosol and horizontal inhomogeneity on the broadband albedo of marine stratus: Numerical simulations

    SciTech Connect

    Duda, D.P.; Stephens, G.L.; Stevens, B.; Cotton, W.R.

    1996-12-15

    Recent estimates of the effect of increasing of anthropogenic sulfate aerosol on the radiative forcing of the atmosphere have indicated that its impact may be comparable in magnitude to the effect from increases in CO{sub 2}. Much of this impact is expected from the effects of the aerosol on cloud microphysics and the subsequent impact on cloud albedo. A solar broadband version of a 2D radiative transfer model was used to quantify the impact of enhanced aerosol concentrations and horizontal inhomogeneity on the solar broadband albedo of marine stratus. The results of the radiative transfer calculations indicated that in unbroken marine stratus clouds the net horizontal transport of photons over a domain of a few kilometers was nearly zero, and the domain-average broadband albedo computed in a 2D cross section was nearly identical to the domain average calculated from a series of independent pixel approximation (IPA) calculations of the same cross section. However, the horizontal inhomogeneity does affect the cloud albedo compared to plane-parallel approximation (PPA) computations due to the nonlinear relationship between albedo and optical depth. The reduction in cloud albedo could be related to the variability of the distribution of log (cloud optical depth). These results extend the finding of Cahalan et al. to broadband solar albedos in a more realistic cloud model and suggest that accurate computation of domain-averaged broadband albedos in unbroken (or nearly unbroken) marine stratus can be made using IPA calculations with 1D radiative transfer models. Computations of the mean albedo over portions of the 3D RAMS domain show the relative increase in cloud albedo due to a 67% increase in the boundary-layer average CCN concentration was between 6% and 9%. The effects of cloud inhomogeneity on the broadband albedo as measured from the PPA bias ranged from 3% to 5%. 25 refs., 8 figs., 4 tabs.

  19. Remote Sensing of Aerosol and their Radiative Forcing of Climate

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Remer, Lorraine A.

    1999-01-01

    Remote sensing of aerosol and aerosol radiative forcing of climate is going through a major transformation. The launch in next few years of new satellites designed specifically for remote sensing of aerosol is expected to further revolutionized aerosol measurements: until five years ago satellites were not designed for remote sensing of aerosol. Aerosol optical thickness was derived as a by product, only over the oceans using one AVHRR channel with errors of approx. 50%. However it already revealed a very important first global picture of the distribution and sources of aerosol. In the last 5 years we saw the introduction of polarization and multi-view observations (POLDER and ATSR) for satellite remote sensing of aerosol over land and ocean. Better products are derived from AVHRR using its two channels. The new TOMS aerosol index shows the location and transport of aerosol over land and ocean. Now we anticipate the launch of EOS-Terra with MODIS, MISR and CERES on board for multi-view, multi-spectral remote sensing of aerosol and its radiative forcing. This will allow application of new techniques, e.g. using a wide spectral range (0.55-2.2 microns) to derive precise optical thickness, particle size and mass loading. Aerosol is transparent in the 2.2 microns channel, therefore this channel can be used to detect surface features that in turn are used to derive the aerosol optical thickness in the visible part of the spectrum. New techniques are developed to derive the aerosol single scattering albedo, a measure of absorption of sunlight, and techniques to derive directly the aerosol forcing at the top of the atmosphere. In the last 5 years a global network of sun/sky radiometers was formed, designed to communicate in real time the spectral optical thickness from 50-80 locations every day, every 15 minutes. The sky angular and spectral information is also measured and used to retrieve the aerosol size distribution, refractive index, single scattering albedo and the

  20. Snow surface temperature, radiative forcing and snow depth as determinants of snow density

    NASA Astrophysics Data System (ADS)

    Kirchner, P. B.; Painter, T. H.; Skiles, M.; Deems, J. S.

    2014-12-01

    Watershed scale observations of snow water equivalence (SWE) are becoming increasingly important globally as the quantity and timing of snowmelt has become less predictable. In the Colorado River watershed, where dust deposition can hasten snowmelt by several weeks, the need for these observations is critical. While advances in measuring snow depth and albedo from the NASA Airborne Snow Observatory have greatly improved our ability to constrain snow depth and radiative forcing, we have yet to develop a method for remotely observing snow density, which is required for calculating SWE. We evaluate measured and modeled variables of snow- infrared surface temperature, radiative forcing and snow depth as predictors of snow density. We use 10 seasons of in situ measured snow surface temperature, cumulative modeled dust in snow radiative forcing, snow depth and manually measured snow density from locations in the Rocky Mountains of southwestern Colorado. We also use measured snow depth and SWE from the 2013 and 2014 water years, from 23-35 locations stratified by modeled downwelling short wave radiation, and evaluate them as predictors of snow density. Our analysis shows that daily mean snow surface temperature (R2 0.61, p = <0.001) and cumulative radiative forcing (R2 0.54, p = <0.001) individually have significant coefficients of determination whereas snow depth alone was not significant. Multiple regression with all three variables (R2 0.84, p = <0.001) was the best predictor of density. Furthermore, when snowpack conditions were isothermal at 0° C, the diurnal coefficient of variation, of measured hourly surface temperature, exhibited consistently high variance. In 2013 we found significant correlations between spatially distributed measurements of snow density (R2 0.33, p = <0.001) and modeled downwelling short wave radiation. However, in 2014 the correlation was very low, supporting our hypothesis that seasonal differences in dust driven radiative forcing are also

  1. Longwave radiative forcing by aqueous aerosols

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.

    1995-01-01

    Recently, a great deal of interest has been focused on the role of aerosols in climatic change because of their potential cooling impacts due to light scattering. Recent advances in infrared spectroscopy using cylindrical internal reflectance have allowed the longwave absorption of dissolved aerosol species and the associated liquid water to be accurately determined and evaluated. Experimental measurements using these techniques have shown that dissolved sulfate, nitrate, and numerous other aerosol species will act to cause greenhouse effects. Preliminary calculations indicate that the longwave climate forcing (i.e., heating) for sulfate aerosol will be comparable in magnitude to the cooling effect produced by light scattering. However, more detailed modeling will clearly be needed to address the impact of the longwave forcing due to aerosols as a function of atmospheric height and composition. Their work has shown that aerosol composition will be important in determining longwave forcing, while shortwave forcing will be more related to the physical size of the aerosol droplets. On the basis of these studies, it is increasingly apparent that aerosols, fogs, and clouds play a key role in determining the radiative balance of the atmosphere and in controlling regional and global climates.

  2. Dust, Elemental Carbon and Other Impurities on Central Asian Glaciers: Origin and Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Schmale, J.; Flanner, M.; Kang, S.; Sprenger, M.; Zhang, Q.; Li, Y.; Guo, J.; Schwikowski, M.

    2015-12-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and radiative forcing (RF). 218 snow samples were taken from 13 snow pits on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental and organic carbon by a thermo-optical method, mineral dust by gravimetry, and iron by ICP-MS. Back trajectory ensembles were released every 6 hours with the Lagranto model for the covered period at all sites. Boundary layer "footprints" were calculated to estimate general source regions and combined with MODIS fire counts for potential fire contributions. Albedo reduction due to black carbon and mineral dust was calculated with the Snow-Ice-Aerosol-Radiative model (SNICAR), and surface spectral irradiances were derived from atmospheric radiative transfer calculations to determine the RF under clear-sky and all sky conditions using local radiation measurements. Dust contributions came from Central Asia, the Arabian Peninsula, the Sahara and partly the Taklimakan. Fire contributions were higher in 2014 and generally came from the West and North. We find that EC exerts roughly 3 times more RF than mineral dust in fresh and relatively fresh snow (~5 W/m2) and up to 6 times more in snow that experienced melting (> 10 W/m2) even though EC concentrations (average per snow pit from 90 to 700 ng/g) were up to two orders of magnitude lower than mineral dust (10 to 140 μg/g).

  3. Retention and radiative forcing of black carbon in Eastern Sierra Nevada snow

    NASA Astrophysics Data System (ADS)

    Sterle, K. M.; McConnell, J. R.; Dozier, J.; Edwards, R.; Flanner, M. G.

    2012-06-01

    Snow and glacier melt water contribute water resources to a fifth of Earth's population. Snow melt processes are sensitive not only to temperature changes, but also changes in albedo caused by deposition of particles such as refractory black carbon (rBC) and continental dust. The concentrations, sources, and fate of rBC particles in seasonal snow and its surface layers are uncertain, and thus an understanding of rBC's effect on snow albedo, melt processes, and radiation balance is critical for water management in a changing climate. Measurements of rBC in a sequence of snow pits and surface snow samples in the Eastern Sierra Nevada of California during the snow accumulation and melt seasons of 2009 show that concentrations of rBC were enhanced seven fold in surface snow (~25 ng g-1) compared to bulk values in the snow pack (~3 ng g-1). Unlike major ions which are preferentially released during initial melt, rBC and continental dust are retained in the snow, enhancing concentrations late into spring, until a final flush well into the melt period. We estimate a combined rBC and continental dust surface radiative forcing of 20 to 40 W m-2 during April and May, with dust likely contributing a greater share of the forcing than rBC.

  4. Global Albedo

    Atmospheric Science Data Center

    2013-04-19

    ... to one in the visible region of the solar spectrum whereas deep clean ocean water has an albedo that is close to zero. Five years of ... Atmospheric Science Data Center's  MISR Level 3 Imagery  web site. The Multi-angle Imaging SpectroRadiometer observes the daylit ...

  5. Material fabrication using acoustic radiation forces

    SciTech Connect

    Sinha, Naveen N.; Sinha, Dipen N.; Goddard, Gregory Russ

    2015-12-01

    Apparatus and methods for using acoustic radiation forces to order particles suspended in a host liquid are described. The particles may range in size from nanometers to millimeters, and may have any shape. The suspension is placed in an acoustic resonator cavity, and acoustical energy is supplied thereto using acoustic transducers. The resulting pattern may be fixed by using a solidifiable host liquid, forming thereby a solid material. Patterns may be quickly generated; typical times ranging from a few seconds to a few minutes. In a one-dimensional arrangement, parallel layers of particles are formed. With two and three dimensional transducer arrangements, more complex particle configurations are possible since different standing-wave patterns may be generated in the resonator. Fabrication of periodic structures, such as metamaterials, having periods tunable by varying the frequency of the acoustic waves, on surfaces or in bulk volume using acoustic radiation forces, provides great flexibility in the creation of new materials. Periodicities may range from millimeters to sub-micron distances, covering a large portion of the range for optical and acoustical metamaterials.

  6. Host Model Uncertainties in Aerosol Radiative Forcing Estimates: Results from the AeroCom Prescribed Intercomparison Study

    SciTech Connect

    Stier, Phillip; Schutgens, Nick A.; Bellouin, N.; Bian, Huisheng; Boucher, Olivier; Chin, Mian; Ghan, Steven J.; Huneeus, N.; Kinne, Stefan; Lin, G.; Ma, Xiaoyan; Myhre, G.; Penner, J. E.; Randles, Cynthia; Samset, B. H.; Schulz, M.; Takemura, T.; Yu, Fangqun; Yu, Hongbin; Zhou, Cheng

    2013-03-20

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as mea- sure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in nine participating models. Even with prescribed aerosol radiative properties,simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.51 Wm-2 and the inter-model standard deviation is 0.70 Wm-2, corresponding to a relative standard deviation of 15%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.26 Wm-2, and the standard deviation increases to 1.21 W-2, corresponding to a significant relative standard deviation of 96%. However, the top-of-atmosphere forcing variability owing to absorption is low, with relative standard deviations of 9% clear-sky and 12% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative in the AeroCom Direct Effect experiment, demonstrates that host model uncertain- ties could explain about half of the overall sulfate forcing diversity of 0.13 Wm-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained.

  7. Climatic Benefit of Swiss Forest Cover Change: Including Albedo Change into Net Carbon Balance

    NASA Astrophysics Data System (ADS)

    Schwaab, J.; Lehning, M.; Bebi, P.

    2012-12-01

    Forests influence climate through physical, chemical and biological processes. It has been shown that warming caused by the comparatively low albedo of forests (albedo-effect), can reduce or even exceed cooling caused by carbon storage in forests (CO2-effect). Although warming caused by albedo and the amount of carbon storage depend on local characteristics, studies are lacking that investigate the combined local patterns of albedo and CO2-effect. Our study area, Switzerland, provides a variety of geographical features and thus the possibility to show how different geographical variables influence the two effects. We used the concept of radiative forcing to compare the effect of a changing albedo and a change in atmospheric CO2 concentration due to land cover change in the past. The change of forest cover was analysed over a period of 12 years based on aerial photographs. We estimate the albedo-effect by combining albedo data derived from the satellite sensor MODIS and data on snow cover derived from the satellite sensor AVHRR. Changes in carbon storage were calculated as differences in biomass and soil stocks of specific land cover classes. We found carbon storage induced cooling to be higher than albedo induced warming everywhere in Switzerland. However, especially in altitudes over 1200 m the albedo-effect reduced the benefits of carbon storage by more than 50%. In lower altitudes the albedo change was less important. The albedo-effect in altitudes above 1200 m was more relevant because of a more persistent snow-cover, a slightly higher global radiation and less additional carbon storage. The relevance of warming caused by an albedo change did not only depend on altitude, but also on the characteristics of forest cover change. While transitions from open land to open forest were accompanied by high albedo changes, the albedo change was only marginal if open forest turned into closed forest. Since snow cover has a large influence on the albedo effect, we included

  8. Global Aerosol Radiative Forcing Derived from Sea WiFS-Inferred Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chan, Pui-King; Wang, Menghua

    1999-01-01

    Aerosol optical properties inferred from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) radiance measurements are used to compute the aerosol shortwave radiative forcing using a radiative transfer model. The aerosol optical thickness at the wavelength of 865-nm is taken from the SeaWIFS archive. It is found that the nominal optical thickness over oceans ranges from 0.1 to 0.2. Using a maritime aerosol model and the radiances measured at the various SeaWiFS channels, the Angstrom exponent is determined to be 0.2174, the single-scattering albedo to be 0.995, and the asymmetry factor to be 0.786. The radiative transfer model has eight bands in the visible and ultraviolet spectral regions and three bands in the near infrared. It includes the absorption due to aerosols, water vapor, carbon dioxide, and oxygen, and the scattering due to aerosols and gases (Rayleigh scattering). The radiative forcing is computed over global oceans for four months (January, April, July, and October, 1998) to represent four seasons. It is found that the aerosol radiative forcing is large and changes significantly with seasons near the continents with large-scale forest fires and desert dust. Averaged over oceans and the four months, the aerosol radiative forcing is approximately 7 W/sq m at the top of the atmosphere. This large radiative forcing is expected to have a significant cooling effect on the Earth's climate as implied from simulations of a number of general circulation models.

  9. Radiative forcing caused by rocket engine emissions

    NASA Astrophysics Data System (ADS)

    Ross, Martin N.; Sheaffer, Patti M.

    2014-04-01

    Space transportation plays an important and growing role in Earth's economic system. Rockets uniquely emit gases and particles directly into the middle and upper atmosphere where exhaust from hundreds of launches accumulates, changing atmospheric radiation patterns. The instantaneous radiative forcing (RF) caused by major rocket engine emissions CO2, H2O, black carbon (BC), and Al2O3 (alumina) is estimated. Rocket CO2 and H2O emissions do not produce significant RF. BC and alumina emissions, under some scenarios, have the potential to produce significant RF. Absorption of solar flux by BC is likely the main RF source from rocket launches. In a new finding, alumina particles, previously thought to cool the Earth by scattering solar flux back to space, absorb outgoing terrestrial longwave radiation, resulting in net positive RF. With the caveat that BC and alumina microphysics are poorly constrained, we find that the present-day RF from rocket launches equals 16 ± 8 mW m-2. The relative contributions from BC, alumina, and H2O are 70%, 28%, and 2%. respectively. The pace of rocket launches is predicted to grow and space transport RF could become comparable to global aviation RF in coming decades. Improved understanding of rocket emission RF requires more sophisticated modeling and improved data describing particle microphysics.

  10. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, D. T.; Bernsten, T.; Bisiaux, M. M.; Cao, J.; Collins, W. J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, S.; Horowitz, L. W.; McConnell, J. R.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S. T.; Skeie, R. B.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, J.-H.

    2013-01-01

    As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996-2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5-3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period.We find a large divergence among models at both Northern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to adequately capture both the observed temporal trends and the magnitudes at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan Plateau ice cores

  11. Operational Derivation of Surface Albedo and Down-Welling Short-Wave Radiation in the Satellite Application Facility for Land Surface Analysis

    NASA Astrophysics Data System (ADS)

    Geiger, B.; Carrer, D.; Meurey, C.; Roujean, J.-L.

    2006-08-01

    The Satellite Application Facility for Land Surface Anal- ysis hosted by the Portuguese Meteorological Institute in Lisbon generates and distributes value added satellite products for numerical weather prediction and environ- mental applications in near-real time. Within the project consortium M´et´eo-France is responsible for the land sur- face albedo and down-welling short-wave radiation flux products. Since the beginning of the year 2005 Meteosat Second Generation data are routinely processed by the Land-SAF operational system. In general the validation studies carried out so far show a good consistency with in-situ observations or equivalent products derived from other satellites. After one year of operations a summary of the product characteristics and performances is given. Key words: Surface Albedo; Down-welling Radiation; Land-SAF.

  12. Aerosol direct radiative forcing in desert and semi-desert regions of northwestern China

    NASA Astrophysics Data System (ADS)

    Xin, Jinyuan; Gong, Chongshui; Wang, Shigong; Wang, Yuesi

    2016-05-01

    The optical properties of dust aerosols were measured using narrow-band data from a portable sun photometer at four desert and semi-desert stations in northwestern China from 2004 to 2007. Ground-based and satellite observations indicated absorbing dust aerosol loading over the region surrounded by eight large-scale deserts. Radiation forcing was identified by using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The ranges of annual mean aerosol optical depth (AOD), Angström exponents, and single-scattering albedo (SSA) were from 0.25 to 0.35, from - 0.73 to 1.18, and from 0.77 to 0.86, respectively. The ranges of annual mean aerosol direct radiative forcing values at the top of the atmosphere (TOA), mid-atmosphere, and on the surface were from 3.9 to 12.0, from 50.0 to 53.1, and from - 39.1 to - 48.1 W/m2, respectively. The aerosols' optical properties and radiative characteristics showed strong seasonal variations in both the desert and semi-desert regions. Strong winds and relatively low humidity will lead dust aerosols in the atmosphere to an increase, which played greatly affected these optical properties during spring and winter in northwestern China. Based on long-term observations and retrieved data, aerosol direct radiative forcing was confirmed to heat the atmosphere (50-53 W/m2) and cool the surface (- 39 to - 48 W/m2) above the analyzed desert. Radiative forcing in the atmosphere in spring and winter was 18 to 21 W/m2 higher than other two seasons. Based on the dust sources around the sites, the greater the AOD, the more negative the forcing. The annual averaged heating rates for aerosols close to the ground (1 km) were approximately 0.80-0.85 K/day.

  13. Effect of aerosol radiative forcing on the seasonal variation of snow over the northern hemisphere

    NASA Astrophysics Data System (ADS)

    Kim, M.; Lau, W. K.; Lee, W.; Kim, K.

    2009-12-01

    In this study, the effect of aerosol radiative forcing on the seasonal variation of snow is studied based on GCM simulation with prescribed aerosols. Numerical experiments are conducted using NASA fvGCM with McRAS. Monthly mean distribution of five aerosol species (black carbon, organic carbon, dust, sulfate, and sea salt) is obtained from GOCART model. In the control run, all five aerosol species are included. For sensitivity test, we carry out an experiment without any aerosol radiative forcing and three additional runs, which are identical to the control run, except for exclusion of black carbon, of dust, and of sulfate, to show the effect of different types of aerosols. The results show that atmospheric warming by absorbing aerosols, dust and black carbon, initiate the elevated heat pump (EHP) and subsequently warm the atmosphere and land surface, especially over Tibetan Plateau (TP). As a results snow over TP reduced greatly in April and May, and the reduction of snow cover decrease surface albedo. Surface energy balance analysis shows that the surface warming due to absorbing aerosol cause early snow melting and further increase surface-atmosphere warming through snow/ice albedo feedback. The similar relations between aerosol radiative forcing and snow melt are also found over other higher latitude region in the Northern Hemisphere. The intensity and duration of earlier snow melt by black carbon aerosol is more significant than that of dust aerosol over the higher latitude in the Northern Hemisphere while over the Tibetan Plateau both black carbon and dust aerosol are important in driving earlier snow melt.

  14. Magnetic resonance acoustic radiation force imaging

    PubMed Central

    McDannold, Nathan; Maier, Stephan E.

    2008-01-01

    Acoustic radiation force impulse imaging is an elastography method developed for ultrasound imaging that maps displacements produced by focused ultrasound pulses systematically applied to different locations. The resulting images are “stiffness weighted” and yield information about local mechanical tissue properties. Here, the feasibility of magnetic resonance acoustic radiation force imaging (MR-ARFI) was tested. Quasistatic MR elastography was used to measure focal displacements using a one-dimensional MRI pulse sequence. A 1.63 or 1.5 MHz transducer supplied ultrasound pulses which were triggered by the magnetic resonance imaging hardware to occur before a displacement-encoding gradient. Displacements in and around the focus were mapped in a tissue-mimicking phantom and in an ex vivo bovine kidney. They were readily observed and increased linearly with acoustic power in the phantom (R2=0.99). At higher acoustic power levels, the displacement substantially increased and was associated with irreversible changes in the phantom. At these levels, transverse displacement components could also be detected. Displacements in the kidney were also observed and increased after thermal ablation. While the measurements need validation, the authors have demonstrated the feasibility of detecting small displacements induced by low-power ultrasound pulses using an efficient magnetic resonance imaging pulse sequence that is compatible with tracking of a dynamically steered ultrasound focal spot, and that the displacement increases with acoustic power. MR-ARFI has potential for elastography or to guide ultrasound therapies that use low-power pulsed ultrasound exposures, such as drug delivery. PMID:18777934

  15. Acoustic radiation force impulse of the liver

    PubMed Central

    D’Onofrio, Mirko; Crosara, Stefano; De Robertis, Riccardo; Canestrini, Stefano; Demozzi, Emanuele; Gallotti, Anna; Pozzi Mucelli, Roberto

    2013-01-01

    Acoustic radiation force impulse (ARFI) imaging is a new and promising ultrasound-based diagnostic technique that, evaluating the wave propagation speed, allows the assessment of the tissue stiffness. ARFI is implemented in the ultrasound scanner. By short-duration acoustic radiation forces (less than 1 ms), localized displacements are generated in a selected region of interest not requiring any external compression so reducing the operator dependency. The generated wave scan provides qualitative or quantitative (wave velocity values) responses. Several non-invasive methods for assessing the staging of fibrosis are used, in order to avoid liver biopsy. Liver function tests and transient elastography are non-invasive, sensitive and accurate tools for the assessment of liver fibrosis and for the discrimination between cirrhotic and non-cirrhotic liver. Many published studies analyse ARFI performance and feasibility in studying diffuse liver diseases and compare them to other diagnostic imaging modalities such as conventional ultrasonography and transient elastography. Solid focal liver lesions, both benign and malignant, are common findings during abdominal examinations. The accurate characterization and differential diagnosis are important aims of all the imaging modalities available today. Only few papers describe the application of ARFI technology in the study of solid focal liver lesions, with different results. In the present study, the existing literature, to the best of our knowledge, about ARFI application on diffuse and focal liver pathology has been evaluated and results and statistical analyses have been compared, bringing to the conclusion that ARFI can be used in the study of the liver with similar accuracy as transient elastography in diagnosing significant fibrosis or cirrhosis and has got some advantages in respect to transient elastography since it does not require separate equipment, better displays anatomical structures and measurements can be

  16. Aerosol Radiative Effects: Expected Variations in Optical Depth Spectra and Climate Forcing, with Implications for Closure Experiment Strategies

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Stowe, L. L.; Hobbs, P. V.; Podolske, James R. (Technical Monitor)

    1995-01-01

    We examine measurement strategies for reducing uncertainties in aerosol direct radiative forcing by focused experiments that combine surface, air, and space measurements. Particularly emphasized are closure experiments, which test the degree of agreement among different measurements and calculations of aerosol properties and radiative effects. By combining results from previous measurements of large-scale smokes, volcanic aerosols, and anthropogenic aerosols with models of aerosol evolution, we estimate the spatial and temporal variability in optical depth spectra to be expected in the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, planned for summer 1996 off the Eastern U.S. seaboard). In particular, we examine the expected changes in the wavelength dependence of optical depth as particles evolve through nucleation, growth by condensation and coagulation, and removal via sedimentation. We then calculate the expected radiative climate forcing (i.e. change in net radiative flux) for typical expected aerosols and measurement conditions (e.g. solar elevations, surface albedos, radiometer altitudes). These calculations use new expressions for flux and albedo changes, which account not only for aerosol absorption, but also for instantaneous solar elevation angles and the dependence of surface albedo on solar elevation. These factors, which are usually ignored or averaged in calculations of global aerosol effects, can have a strong influence on fluxes measured in closure experiments, and hence must be accounted for in calculations if closure is to be convincingly tested. We compare the expected measurement signal to measurement uncertainties expected for various techniques in various conditions. Thereby we derive recommendations for measurement strategies that combine surface, airborne, and spaceborne measurements.

  17. Global Albedo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new sensor aboard NASA?s Terra satellite is now collecting the most detailed and accurate measurements ever made of how much sunlight the Earth?s surface reflects back up into the atmosphere. By quantifying precisely our planet?s reflectivity, or albedo, the Moderate Resolution Imaging Spectroradiometer (MODIS) is helping scientists better understand and predict how various surface features influence both short-term weather patterns as well as longer-term climate trends. (Click to read the press release.) The colors in this image emphasize the albedo over the Earth?s land surfaces, ranging from 0.0 to 0.4. Areas colored red show the brightest, most reflective regions; yellows and greens are intermediate values; and blues and violets show relatively dark surfaces. White indicates where no data were available, and no albedo data are provided over the oceans. This image was produced using data composited over a 16-day period, from April 7-22, 2002. Image courtesy Crystal Schaaf, Boston University, based upon data processed by the MODIS Land Science Team

  18. Dust and Black Carbon Radiative Forcing Controls on Snowmelt in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Skiles, Sara McKenzie

    Light absorbing impurities (LAIs), like dust and black carbon (BC), initiate powerful albedo feedbacks when deposited on snow cover, yet due to a scarcity of observations radiative forcing by LAIs is often neglected, or poorly constrained, in climate and hydrological models. This has important consequences for regions like the Colorado River Basin, where dust deposition to mountain snow cover frequently occurs in the upper basin in the springtime, a relatively new phenomenon since western expansion of the US. Previous work showed that dust on snow (DOS) enhances snowmelt by 3-7 weeks, shifts timing and intensity of runoff, and reduces total water yield. Here, advanced methods are presented to measure, model, and monitor DOS in the hydrologically sensitive Colorado River Basin. A multi-year multi-site spatial variability analysis indicates the heaviest dust loading comes from point sources in the southern Colorado Plateau, but also shows that lower levels of dust loading from diffuse sources still advances melt by 3-4 weeks. A high-resolution snow property dataset, including vertically resolved measurements of snow optical grain size and dust/BC concentrations, confirms that impurity layers remain in the layer in which they are deposited and converge at the surface as snow melts: influencing snow properties, rapidly reducing snow albedo, and increasing snowmelt rates. The optical properties of deposited impurities, which are mainly dust, are determined using an inversion technique from measurements of hemispherical reflectance and particle size distributions. Using updated optical properties in the snow+aerosols radiative transfer model SNICAR improves snow albedo modeling over a more general dust characterization, reducing errors by 50% across the full range of snow reflectance. Radiative forcing by LAIs in the CRB, estimated directly from measurements and updated optical properties, is most strongly controlled by dust concentrations in the uppermost surface layer

  19. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Bradway, David Pierson

    This dissertation investigates the feasibility of a real-time transthoracic Acoustic Radiation Force Impulse (ARFI) imaging system to measure myocardial function non-invasively in clinical setting. Heart failure is an important cardiovascular disease and contributes to the leading cause of death for developed countries. Patients exhibiting heart failure with a low left ventricular ejection fraction (LVEF) can often be identified by clinicians, but patients with preserved LVEF might be undetected if they do not exhibit other signs and symptoms of heart failure. These cases motivate development of transthoracic ARFI imaging to aid the early diagnosis of the structural and functional heart abnormalities leading to heart failure. M-Mode ARFI imaging utilizes ultrasonic radiation force to displace tissue several micrometers in the direction of wave propagation. Conventional ultrasound tracks the response of the tissue to the force. This measurement is repeated rapidly at a location through the cardiac cycle, measuring timing and relative changes in myocardial stiffness. ARFI imaging was previously shown capable of measuring myocardial properties and function via invasive open-chest and intracardiac approaches. The prototype imaging system described in this dissertation is capable of rapid acquisition, processing, and display of ARFI images and shear wave elasticity imaging (SWEI) movies. Also presented is a rigorous safety analysis, including finite element method (FEM) simulations of tissue heating, hydrophone intensity and mechanical index (MI) measurements, and thermocouple transducer face heating measurements. For the pulse sequences used in later animal and clinical studies, results from the safety analysis indicates that transthoracic ARFI imaging can be safely applied at rates and levels realizable on the prototype ARFI imaging system. Preliminary data are presented from in vivo trials studying changes in myocardial stiffness occurring under normal and abnormal

  20. Seasonal variation of atmospheric aerosols and its impact on aerosol radiation forcing over Delhi

    NASA Astrophysics Data System (ADS)

    Singh, S.; Srivastava, M. K.; Bano, T.; Nath, S.; Tanwar, R. S.; Singh, R.

    Seasonal variability in suspended particulate matter concentration optical properties of aerosol and radiation flux have been studied for Delhi station India using long-term data that comprised of ground based and satellite-borne observations Ground based measurements were taken by a hand-held portable spectrometer MICROTOPS II Solar Light Co Inc USA operating at central wavelengths 340 500 675 870 and 1020 nms FWHM pm 2-10 nm The global radiation flux was measured using the CM-21 pyranometer Kipp and Zonen Germany for wavelength range 305-2800 nm The flux for 290-320 nm wavelength range was measured using UV-Biometer Solar Light Co Inc USA The seasonal change in radiative forcing due to seasonal variability in number density and character of the aerosols is done using Santa Barbara Discrete Ordinate Radiation Transfer model SBDART Since the chemical character of the dominating aerosols for different season was not readily available an estimation of the aerosol composition was done using Optical Properties of Aerosols and Cloud OPAC model The output of the OPAC model gives the required parameters for the estimation of radiation forcing by SBDART These include single scattering albedo and asymmetry parameter Initial results reveal three specific seasonal characteristics of aerosols pre-monsoon post monsoon and the winter excluding monsoon period when data is highly irregular due to predominantly cloudy conditions and heavy downpour During pre-monsoon high aerosol optical depth AOD and near zero often

  1. Albedo, clouds and climate sensitivity in the CMIP3 models

    NASA Astrophysics Data System (ADS)

    Bender, F.; Rodhe, H.; Ekman, A. M.; Charlson, R.

    2010-12-01

    The albedo is a key parameter in the radiative budget of the Earth and a primary determinant of the planetary temperature and is therefore also central to questions regarding climate stability, climate change and climate sensitivity. Global climate models are essential for studying the albedo, and the parameters determining it (specifically clouds), on large spatial and temporal scales. Although models (here represented by the CMIP3 models) are able to capture the large-scale characteristics of the albedo, a bias is found between modelled and observed global albedo estimates, and on a regional scale particularly problematic regions can be identified. Many cloud parameters are poorly constrained by observations, and vary widely among models. This freedom of variability can be used in tuning models to the better constrained radiative budget, which may influence the model climate sensitivity. The effect can be kept small, compared to the range of climate sensitivities estimated by different models. Despite their different parameterizations of clouds, aerosols etc., models do have fundamental features in common, which can further the understanding of the real climate system. For instance, sensitivity to volcanic forcing is related to climate sensitivity in an ensemble of CMIP3 models. If this relation is valid for the real climate as well, observations of the volcanic sensitivity can help restrict estimates of climate sensitivity. The range of climate sensitivity estimates in models can largely be attributed to variations in cloud response to external forcing. In models with high (low) climate sensitivity, changes in cloud cover and cloud reflectivity generally enhance (counteract) a positive radiative forcing due to increased CO2 concentrations, feeding back on (damping) the warming, with a more (less) negative albedo response to the forcing. Cloud albedo is important in this regard, yet not well known. Regional cloud albedo, particularly for low-level marine

  2. How effective is albedo modification (solar radiation management geoengineering) in preventing sea-level rise from the Greenland Ice Sheet?

    NASA Astrophysics Data System (ADS)

    Applegate, Patrick J.; Keller, Klaus

    2015-08-01

    Albedo modification (AM) is sometimes characterized as a potential means of avoiding climate threshold responses, including large-scale ice sheet mass loss. Previous work has investigated the effects of AM on total sea-level rise over the present century, as well as AM’s ability to reduce long-term (≫103 yr) contributions to sea-level rise from the Greenland Ice Sheet (GIS). These studies have broken new ground, but neglect important feedbacks in the GIS system, or are silent on AM’s effectiveness over the short time scales that may be most relevant for decision-making (<103 yr). Here, we assess AM’s ability to reduce GIS sea-level contributions over decades to centuries, using a simplified ice sheet model. We drive this model using a business-as-usual base temperature forcing scenario, as well as scenarios that reflect AM-induced temperature stabilization or temperature drawdown. Our model results suggest that (i) AM produces substantial near-term reductions in the rate of GIS-driven sea-level rise. However, (ii) sea-level rise contributions from the GIS continue after AM begins. These continued sea level rise contributions persist for decades to centuries after temperature stabilization and temperature drawdown begin, unless AM begins in the next few decades. Moreover, (iii) any regrowth of the GIS is delayed by decades or centuries after temperature drawdown begins, and is slow compared to pre-AM rates of mass loss. Combined with recent work that suggests AM would not prevent mass loss from the West Antarctic Ice Sheet, our results provide a nuanced picture of AM’s possible effects on future sea-level rise.

  3. Improving modeled snow albedo estimates during the spring melt season

    NASA Astrophysics Data System (ADS)

    Malik, M. Jahanzeb; Velde, Rogier; Vekerdy, Zoltan; Su, Zhongbo

    2014-06-01

    Snow albedo influences snow-covered land energy and water budgets and is thus an important variable for energy and water fluxes calculations. Here, we quantify the performance of the three existing snow albedo parameterizations under alpine, tundra, and prairie snow conditions when implemented in the Noah land surface model (LSM)—Noah's default and ones from the Biosphere-Atmosphere Transfer Scheme (BATS) and the Canadian Land Surface Scheme (CLASS) LSMs. The Noah LSM is forced with and its output is evaluated using in situ measurements from seven sites in U.S. and France. Comparison of the snow albedo simulations with the in situ measurements reveals that the three parameterizations overestimate snow albedo during springtime. An alternative snow albedo parameterization is introduced that adopts the shape of the variogram for the optically thick snowpacks and decreases the albedo further for optically thin conditions by mixing the snow with the land surface (background) albedo as a function of snow depth. In comparison with the in situ measurements, the new parameterization improves albedo simulation of the alpine and tundra snowpacks and positively impacts the simulation of snow depth, snowmelt rate, and upward shortwave radiation. An improved model performance with the variogram-shaped parameterization can, however, not be unambiguously detected for prairie snowpacks, which may be attributed to uncertainties associated with the simulation of snow density. An assessment of the model performance for the Upper Colorado River Basin highlights that with the variogram-shaped parameterization Noah simulates more evapotranspiration and larger runoff peaks in Spring, whereas the Summer runoff is lower.

  4. The albedo of fractal stratocumulus clouds

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Ridgway, William; Wiscombe, Warren J.; Bell, Thomas L.; Snider, Jack B.

    1994-01-01

    An increase in the planetary albedo of the earth-atmosphere system by only 10% can decrease the equilibrium surface temperature to that of the last ice age. Nevertheless, albedo biases of 10% or greater would be introduced into large regions of current climate models if clouds were given their observed liquid water amounts, because of the treatment of clouds as plane parallel. The focus on marine stratocumulus clouds is due to their important role in cloud radiative forcing and also that, of the wide variety of earth's cloud types, they are most nearly plane parallel, so that they have the least albedo bias. The fractal model employed here reproduces both the probability distribution and the wavenumber spectrum of the stratocumulus liquid water path, as observed during the First ISCCP Regional Experiment (FIRE). A single new fractal parameter 0 less than or equal to f less than or equal to 1, is introduced and determined empirically by the variance of the logarithm of the vertically integrated liquid water. The reduced reflectivity of fractal stratocumulus clouds is approximately given by the plane-parallel reflectivity evaluated at a reduced 'effective optical thickness,' which when f = 0.5 is tau(sub eff) approximately equal to 10. Study of the diurnal cycle of stratocumulus liquid water during FIRE leads to a key unexpected result: the plane-parallel albedo bias is largest when the cloud fraction reaches 100%, that is, when any bias associated with the cloud fraction vanishes. This is primarily due to the variability increase with cloud fraction. Thus, the within-cloud fractal structure of stratocumulus has a more significant impact on estimates of its mesoscale-average albedo than does the cloud fraction.

  5. Understanding the Factors That Control Snow Albedo Over Central Greenland

    NASA Astrophysics Data System (ADS)

    Wright, P.; Bergin, M. H.; Dibb, J. E.; Domine, F.; Carmagnola, C.; Courville, Z.; Sokolik, I. N.; Lefer, B. L.

    2011-12-01

    Snow albedo plays a critical role in the energy balance of the Greenland Ice Sheet. In particular, the snow albedo influences the extent to which absorbing aerosols over Greenland (i.e. dust and black carbon) force climate. With this in mind the spectral snow albedo, physical snow properties, and snow chemistry were measured during May, June, and July 2011 at Summit, Greenland to investigate the variability in snow spectral albedo and its impact on aerosol direct radiative forcing. Optical and chemical properties of aerosol and aerosol optical depth were also measured as part of this study. Strellis et. al. will present a preliminary assessment of aerosol radiative forcing at Summit in summer 2011, in a separate presentation at this meeting. Spectral albedo was measured from 350-2500 nm with an ASD FieldSpec Pro spectroradiometer daily at four permanent sites and a moving fifth site where snow was sampled for characterization, as well as in more intensive diurnal and spatial surveys. Snow specific surface area (SSA), the ratio of snow crystal surface area to mass, was measured with a Dual Frequency Integrating Sphere (DUFISSS) at 1310 nm and 1550 nm, as well as with dyed and cast samples collected for stereology analysis. Snow stratigraphy, crystal size, and density were also measured on a daily basis, and snow samples will be analyzed for microstructural parameters determined from micro-CT imaging. Snow chemistry measurements include specific elements, major ions, and elemental and organic carbon. The time series of daily albedo measurements ranged from 0.88 to nearly 1.0 in visible wavelengths and from 0.42 to 0.65 in the near infrared. Changes as large as 0.1 were observed between consecutive daily measurements across the spectrum. Preliminary results show a strong correlation between variation in albedo and co-located measurements of snow specific surface area, specifically in the near infrared. By conducting our measurements near solar noon every day, and

  6. Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings

    NASA Astrophysics Data System (ADS)

    Kaspari, S.; Painter, T. H.; Gysel, M.; Skiles, S. M.; Schwikowski, M.

    2014-08-01

    Black carbon (BC) and dust deposited on snow and glacier surfaces can reduce the surface albedo, accelerate snow and ice melt, and trigger albedo feedback. Assessing BC and dust concentrations in snow and ice in the Himalaya is of interest because this region borders large BC and dust sources, and seasonal snow and glacier ice in this region are an important source of water resources. Snow and ice samples were collected from crevasse profiles and snow pits at elevations between 5400 and 6400 m a.s.l. from Mera glacier located in the Solu-Khumbu region of Nepal during spring and fall 2009, providing the first observational data of BC concentrations in snow and ice from the southern slope of the Himalaya. The samples were measured for Fe concentrations (used as a dust proxy) via ICP-MS, total impurity content gravimetrically, and BC concentrations using a Single Particle Soot Photometer (SP2). Measured BC concentrations underestimate actual BC concentrations due to changes to the sample during storage and loss of BC particles in the ultrasonic nebulizer; thus, we correct for the underestimated BC mass. BC and Fe concentrations are substantially higher at elevations < 6000 m due to post-depositional processes including melt and sublimation and greater loading in the lower troposphere. Because the largest areal extent of snow and ice resides at elevations < 6000 m, the higher BC and dust concentrations at these elevations can reduce the snow and glacier albedo over large areas, accelerating melt, affecting glacier mass balance and water resources, and contributing to a positive climate forcing. Radiative transfer modeling constrained by measurements at 5400 m at Mera La indicates that BC concentrations in the winter-spring snow/ice horizons are sufficient to reduce albedo by 6-10% relative to clean snow, corresponding to localized instantaneous radiative forcings of 75-120 W m-2. The other bulk impurity concentrations, when treated separately as dust, reduce albedo by

  7. Mars Albedo

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These two views of Mars are derived from the MGS Thermal Emission Spectrometer (TES) measurements of global broadband (0.3 - 3.0 microns) visible and near-infrared reflectance, also known as albedo. The range of colors are in dimensionless units. The values are the ratio of the amount of electromagnetic energy reflected by the surface to the amount of energy incident upon it from the sun (larger values are brighter surfaces).

    The TES instrument was built by Santa Barbara Remote Sensing and is operated by Philip R. Christensen, of Arizona State University, Tempe, AZ.

  8. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    PubMed

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  9. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations

    PubMed Central

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  10. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  11. SOURCE ATTRIBUTION OF RADIATIVE FORCING FROM SHORT LIVED CLIMATE FORCING AGENTS

    EPA Science Inventory

    The immediate project result is quantification of the pre-industrial to present forcing for anthropogenic emissions, the radiative effects of natural emissions, and spatial distribution of the radiative forcing efficiency for key aerosol and O3 precursors (i.e., mW/m2<...

  12. Aerosols over Delhi during pre-monsoon months: Characteristics and effects on surface radiation forcing

    NASA Astrophysics Data System (ADS)

    Singh, Sachchidanand; Nath, Shambhu; Kohli, Ramesh; Singh, Risal

    2005-07-01

    The surface fluxes in the wavelength range 280-2800 nm were measured during the pre-monsoon period, April-June 2003 along with the spectral distribution of aerosol optical depth (AOD) in the visible and near infrared wavelengths. The Ångström exponent alpha retrieved from the data showed abundance of desert aerosols over Delhi during this period. The aerosol composition constructed using the OPAC model indicated a typical mixture of two aerosol types: urban and desert. Due to this the aerosol mixture had a very low value of single scattering albedo ~0.67. The average total radiative forcing efficiency observed at the surface in the broad wavelength band (280-2800 nm) was estimated and compared with the SBDART model calculated values.

  13. Response of Colorado river runoff to dust radiative forcing in snow

    USGS Publications Warehouse

    Painter, T.H.; Deems, J.S.; Belnap, J.; Hamlet, A.F.; Landry, C.C.; Udall, B.

    2010-01-01

    The waters of the Colorado River serve 27 million people in seven states and two countries but are overallocated by more than 10% of the river's historical mean. Climate models project runoff losses of 7-20% from the basin in this century due to human-induced climate change. Recent work has shown however that by the late 1800s, decades prior to allocation of the river's runoff in the 1920s, a fivefold increase in dust loading from anthropogenically disturbed soils in the southwest United States was already decreasing snow albedo and shortening the duration of snow cover by several weeks. The degree to which this increase in radiative forcing by dust in snow has affected timing and magnitude of runoff from the Upper Colorado River Basin (UCRB) is unknown. Hereweuse the Variable Infiltration Capacity model with postdisturbance and predisturbance impacts of dust on albedo to estimate the impact on runoff from the UCRB across 1916-2003. We find that peak runoff at Lees Ferry, Arizona has occurred on average 3 wk earlier under heavier dust loading and that increases in evapotranspiration from earlier exposure of vegetation and soils decreases annual runoff by more than 1.0 billion cubic meters or ???5% of the annual average. The potential to reduce dust loading through surface stabilization in the deserts and restore more persistent snow cover, slow runoff, and increase water resources in the UCRB may represent an important mitigation opportunity to reduce system management tensions and regional impacts of climate change.

  14. Atmospheric and Surface Contributions to Planetary Albedo and their Relationship to the Total Meridional Energy Transport

    NASA Astrophysics Data System (ADS)

    Donohoe, A.; Battisti, D. S.

    2010-12-01

    The meridional distribution of incident solar radiation and planetary albedo both contribute to the equator-to-pole gradient in absorbed solar radiation (ASR) in the observed climate system. While the former component is determined by the Earth-Sun geometry and composes 60% of the equator-to-pole gradient in ASR, the latter component makes a significant (40%) contribution to the ASR gradient and is potentially a function of climate state due to its dependence on both atmospheric and surface albedo. In turn, the equator-to-pole gradient in planetary albedo is found to be primarily (86% -89%) dictated by atmospheric albedo with meridional gradients in surface albedo playing a much smaller role in forcing the climate system on the equator-to-pole scale. Simulations of the pre-industrial climate system using the CMIP3 coupled models show large differences in the equator-to-pole gradient in planetary albedo which are mainly due to differences in the simulated cloud distribution, with surface processes playing a much smaller role. The inter-model spread in total meridional heat transport is also primarily (85% of the inter-model spread) due to differences in the simulated cloud distribution. Further model simulations demonstrate that the surface albedo changes associated with moving from the present climate to an ice free climate have a small effect on the equator-to-pole gradient of ASR as compared to the uncertainty in simulated cloud distributions, and hence a small effect on the meridional heat transport.

  15. Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing

    NASA Astrophysics Data System (ADS)

    Liu, J.; Scheuer, E.; Dibb, J.; Diskin, G. S.; Ziemba, L. D.; Thornhill, K. L.; Anderson, B. E.; Wisthaler, A.; Mikoviny, T.; Devi, J. J.; Bergin, M.; Perring, A. E.; Markovic, M. Z.; Schwarz, J. P.; Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.; Weber, R. J.

    2015-07-01

    Chemical components of organic aerosol (OA) selectively absorb light at short wavelengths. In this study, the prevalence, sources, and optical importance of this so-called brown carbon (BrC) aerosol component are investigated throughout the North American continental tropospheric column during a summer of extensive biomass burning. Spectrophotometric absorption measurements on extracts of bulk aerosol samples collected from an aircraft over the central USA were analyzed to directly quantify BrC abundance. BrC was found to be prevalent throughout the 1 to 12 km altitude measurement range, with dramatic enhancements in biomass-burning plumes. BrC to black carbon (BC) ratios, under background tropospheric conditions, increased with altitude, consistent with a corresponding increase in the absorption Ångström exponent (AAE) determined from a three-wavelength particle soot absorption photometer (PSAP). The sum of inferred BC absorption and measured BrC absorption at 365 nm was within 3 % of the measured PSAP absorption for background conditions and 22 % for biomass burning. A radiative transfer model showed that BrC absorption reduced top-of-atmosphere (TOA) aerosol forcing by ~ 20 % in the background troposphere. Extensive radiative model simulations applying this study background tropospheric conditions provided a look-up chart for determining radiative forcing efficiencies of BrC as a function of a surface-measured BrC : BC ratio and single scattering albedo (SSA). The chart is a first attempt to provide a tool for better assessment of brown carbon's forcing effect when one is limited to only surface data. These results indicate that BrC is an important contributor to direct aerosol radiative forcing.

  16. Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings

    NASA Astrophysics Data System (ADS)

    Kaspari, S.; Painter, T. H.; Gysel, M.; Schwikowski, M.

    2013-12-01

    Black carbon (BC) and dust deposited on snow and glacier surfaces can reduce the surface albedo, accelerate snow and ice melt, and trigger albedo feedback. Assessing BC concentrations in snow and ice in the Himalaya is of interest because this region borders large BC sources, and seasonal snow and glacier ice in this region are an important source of water resources. Snow and ice samples were collected from crevasse profiles and snowpits at elevations between 5400 and 6400 m a.s.l. from Mera glacier located in the Solu-Khumbu region of Nepal on the southern slope of the Himalaya during spring and fall 2009. The samples were measured for Fe concentrations (used as a dust proxy) via ICP-MS, total impurity content gravimetrically, and BC concentrations using a Single Particle Soot Photometer (SP2). Measured BC concentrations underestimate actual BC concentrations due to changes to the sample during storage, and loss of BC particles in the ultrasonic nebulizer. BC and Fe concentrations peak during the winter-spring, and are substantially higher at elevations <6000 m due to post-depositional processes including melt and sublimation and greater loading in the lower troposphere. Because the largest areal extent of snow and ice resides at elevations <6000 m, the higher BC and dust concentrations at these elevations can reduce the snow and glacier albedo over large areas, accelerating melt, affecting glacier mass-balance and water resources, and contributing to a positive climate forcing. Radiative transfer modeling constrained by measurements indicates that BC concentrations in the winter-spring snow/ice horizons are sufficient to reduce albedo by 6-10% relative to clean snow, corresponding to instantaneous radiative forcings of 75-120 W m-2. The other bulk impurity concentrations, when treated separately as dust, reduce albedo by 40-42% relative to clean snow and give instantaneous radiative forcings of 490 to 520 W m-2. Adding the BC absorption to the other impurities

  17. Acoustic radiation force-based elasticity imaging methods

    PubMed Central

    Palmeri, Mark L.; Nightingale, Kathryn R.

    2011-01-01

    Conventional diagnostic ultrasound images portray differences in the acoustic properties of soft tissues, whereas ultrasound-based elasticity images portray differences in the elastic properties of soft tissues (i.e. stiffness, viscosity). The benefit of elasticity imaging lies in the fact that many soft tissues can share similar ultrasonic echogenicities, but may have different mechanical properties that can be used to clearly visualize normal anatomy and delineate pathological lesions. Acoustic radiation force-based elasticity imaging methods use acoustic radiation force to transiently deform soft tissues, and the dynamic displacement response of those tissues is measured ultrasonically and is used to estimate the tissue's mechanical properties. Both qualitative images and quantitative elasticity metrics can be reconstructed from these measured data, providing complimentary information to both diagnose and longitudinally monitor disease progression. Recently, acoustic radiation force-based elasticity imaging techniques have moved from the laboratory to the clinical setting, where clinicians are beginning to characterize tissue stiffness as a diagnostic metric, and commercial implementations of radiation force-based ultrasonic elasticity imaging are beginning to appear on the commercial market. This article provides an overview of acoustic radiation force-based elasticity imaging, including a review of the relevant soft tissue material properties, a review of radiation force-based methods that have been proposed for elasticity imaging, and a discussion of current research and commercial realizations of radiation force based-elasticity imaging technologies. PMID:22419986

  18. Simulated radiative forcing from contrails and contrail cirrus

    NASA Astrophysics Data System (ADS)

    Chen, C.-C.; Gettelman, A.

    2013-12-01

    A comprehensive general circulation model including ice supersaturation is used to estimate the climate impact of aviation induced contrails. The model uses a realistic aviation emissions inventory for 2006 to initiate contrails, and allows them to evolve consistently with the model hydrologic cycle. The radiative forcing from linear contrails is very sensitive to the diurnal cycle. For linear contrails, including the diurnal cycle of air traffic reduces the estimated radiative forcing by 29%, and for contrail cirrus estimates, the radiative forcing is reduced by 25%. Estimated global radiative forcing from linear contrails is 0.0031 ± 0.0005 Wm-2. The linear contrail radiative forcing is found to exhibit a strong diurnal cycle. The contrail cirrus radiative forcing is less sensitive to the diurnal cycle of flights. The estimated global radiative forcing from contrail cirrus is 0.013 ± 0.01 Wm-2. Over regions with the highest air traffic, the regional effect can be as large as 1 Wm-2.

  19. Surface Albedo Assessment in Clear Sky and Dense Smoke Atmospheres Using a Shortwave Radiation Stochastic Model and MODIS 1B Image

    NASA Astrophysics Data System (ADS)

    de Souza, Juarez D.; Ceballos, Juan C.; da Silva, Bernardo B.

    2009-03-01

    The surface albedo, which is a fundamental parameter in the estimation of the radiation balance, corresponds to the reflectance integrated in the solar spectrum. It can be obtained through satellite images that have great spatial coverage. A stochastic model of two-flux, presented by Ceballos [1] and developed by Souza and Ceballos [2], is used to establish a direct relationship between the reflectance of the surface and the radiance measured by MODIS-Terra/Aqua sensor. The propagation of radiation, in the solar spectrum from 0.3 to 3.0 μm, is described by an scheme of 16 layers. In such scheme, it is obtained the necessary parameters to establish the radiation balance in the top of the atmosphere. The optical properties of the atmospheric layers are defined by aerosol, ozone and water vapor. In this way, to determine the surface albedo, it is considered that the radiance originated from the system earth-atmosphere, measured by the satellite, is isotropic. A simple adjustment factor is introduced to compensate anisotropic and multiple reflections effects between the surface and the atmosphere. An application for Amazonian region in conditions of low and high aerosol load due to smoke caused by forest burning, is presented. The results show similarity in the assessed surface reflectance, with and without burning in the region.

  20. Developing a global mixed-canopy, height-variable vegetation structure dataset for estimating global vegetation albedo by a clumped canopy radiative transfer scheme in the NASA Ent Terrestrial Biosphere Model and GISS GCM

    NASA Astrophysics Data System (ADS)

    Montes, Carlo; Kiang, Nancy Y.; Ni-Meister, Wenge; Yang, Wenze; Schaaf, Crystal; Aleinov, Igor; Jonas, Jeffrey A.; Zhao, Feng; Yao, Tian; Wang, Zhuosen; Sun, Qingsong; Carrer, Dominique

    2016-04-01

    Processes determining biosphere-atmosphere coupling are strongly influenced by vegetation structure. Thus, ecosystem carbon sequestration and evapotranspiration affecting global carbon and water balances will depend upon the spatial extent of vegetation, its vertical structure, and its physiological variability. To represent this globally, Dynamic Global Vegetation Models (DGVMs) coupled to General Circulation Models (GCMs) make use of satellite and/or model-based vegetation classifications often composed by homogeneous communities. This work aims at developing a new Global Vegetation Structure Dataset (GVSD) by incorporating varying vegetation heights for mixed plant communities to be used as boundary conditions to the Analytical Clumped Two-Stream (ACTS) canopy radiative transfer scheme (Ni-Meister et al., 2010) incorporated into the NASA Ent Terrestrial Biosphere Model (TBM), the DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM. Information sources about land surface and vegetation characteristics obtained from a number of earth observation platforms and algorithms include the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), soil albedo derived from MODIS (Carrer et al., 2014), along with vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014). Three widely used Leaf Area Index (LAI) products are compared as input to the GVSD and ACTS forcing in terms of vegetation albedo: Global Data Sets of Vegetation (LAI)3g (Zhu et al. 2013), Beijing Normal University LAI (Yuan et al., 2011), and MODIS MOD15A2H product (Yang et al., 2006). Further PFT partitioning is performed according to a climate classification utilizing the Climate Research Unit (CRU; Harris et al., 2013) and the NOAA Global Precipitation Climatology Centre (GPCC; Scheider et al., 2014) data. Final

  1. Calculation of albedos for neutrons and photons

    NASA Astrophysics Data System (ADS)

    Brockhoff, Ronald Carl

    2003-07-01

    The albedo concept is used to describe radiation that appears to be reflected from a surface, although in reality this reflected radiation is comprised of radiation that has entered the medium, and is subsequently scattered back through the surface. The albedo often offers a computationally simple alternative to estimate doses from radiation reflected from surfaces surrounding a streaming region. However, albedo data available prior to this study, are limited to relatively few source energies and reflecting media, and are based on obsolete and incomplete cross sections and response functions. The Monte Carlo code MCNP is applied in this study to calculate the differential photon and neutron dose albedos, along with the differential secondary-photon dose albedo, based on modern response functions and cross section data. Differential photon dose albedo data were calculated for source energies ranging from 0.1 to 10 MeV incident on slabs of concrete, iron, lead, and water. Differential neutron dose albedo data, and the associated differential secondary-photon dose albedo data, were calculated for source energy bands ranging from 0.1 to 10 MeV, and for thermal, Californium, and 14 MeV source spectra, incident on the same four reflecting media. The results indicate that (1) the approximation of the differential photon dose albedo proposed by Chilton and Huddleston usually deviates from the raw albedo data by less than 10% for source energies between 0.1 and 10.0 MeV, (2) the new 24-parameter approximation of the differential neutron dose albedo deviates from the raw albedo data by less than 10% for source energy bands between 0.1 and 10 MeV, and (3) the five-parameter approximation of the secondary-photon dose albedo deviates from the raw albedo data by less than 25% for source energies between 0.1 and 10 MeV. The differential dose albedo approximations obtained in this study are used to solve several example radiation transport problems, where the dose from reflected

  2. Surface temperature cooling trends and negative radiative forcing due to land use change toward greenhouse farming in southeastern Spain

    NASA Astrophysics Data System (ADS)

    Campra, Pablo; Garcia, Monica; Canton, Yolanda; Palacios-Orueta, Alicia

    2008-09-01

    Greenhouse horticulture has experienced in recent decades a dramatic spatial expansion in the semiarid province of Almeria, in southeastern (SE) Spain, reaching a continuous area of 26,000 ha in 2007, the widest greenhouse area in the world. A significant surface air temperature trend of -0.3°C decade-1 in this area during the period 1983-2006 is first time reported here. This local cooling trend shows no correlation with Spanish regional and global warming trends. Radiative forcing (RF) is widely used to assess and compare the climate change mechanisms. Surface shortwave RF (SWRF) caused through clearing of pasture land for greenhouse farming development in this area is estimated here. We present the first empirical evidences to support the working hypothesis of the development of a localized forcing created by surface albedo change to explain the differences in temperature trends among stations either inside or far from this agricultural land. SWRF was estimated from satellite-retrieved surface albedo data and calculated shortwave outgoing fluxes associated with either uses of land under typical incoming solar radiation. Outgoing fluxes were calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data. A difference in mean annual surface albedo of +0.09 was measured comparing greenhouses surface to a typical pasture land. Strong negative forcing associated with land use change was estimated all year round, ranging from -5.0 W m-2 to -34.8 W m-2, with a mean annual value of -19.8 W m-2. According to our data of SWRF and local temperatures trends, recent development of greenhouse horticulture in this area may have masked local warming signals associated to greenhouse gases increase.

  3. Simulation of the global contrail radiative forcing: A sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Yi, Bingqi; Yang, Ping; Liou, Kuo-Nan; Minnis, Patrick; Penner, Joyce E.

    2012-12-01

    The contrail radiative forcing induced by human aviation activity is one of the most uncertain contributions to climate forcing. An accurate estimation of global contrail radiative forcing is imperative, and the modeling approach is an effective and prominent method to investigate the sensitivity of contrail forcing to various potential factors. We use a simple offline model framework that is particularly useful for sensitivity studies. The most-up-to-date Community Atmospheric Model version 5 (CAM5) is employed to simulate the atmosphere and cloud conditions during the year 2006. With updated natural cirrus and additional contrail optical property parameterizations, the RRTMG Model (RRTM-GCM application) is used to simulate the global contrail radiative forcing. Global contrail coverage and optical depth derived from the literature for the year 2002 is used. The 2006 global annual averaged contrail net (shortwave + longwave) radiative forcing is estimated to be 11.3 mW m-2. Regional contrail radiative forcing over dense air traffic areas can be more than ten times stronger than the global average. A series of sensitivity tests are implemented and show that contrail particle effective size, contrail layer height, the model cloud overlap assumption, and contrail optical properties are among the most important factors. The difference between the contrail forcing under all and clear skies is also shown.

  4. Climatic effects of surface albedo geoengineering

    NASA Astrophysics Data System (ADS)

    Irvine, Peter J.; Ridgwell, Andy; Lunt, Daniel J.

    2011-12-01

    Various surface albedo modification geoengineering schemes such as those involving desert, urban, or agricultural areas have been proposed as potential strategies for helping counteract the warming caused by greenhouse gas emissions. However, such schemes tend to be inherently limited in their potential and would create a much more heterogeneous radiative forcing than propositions for space-based "reflectors" and enhanced stratospheric aerosol concentrations. Here we present results of a series of atmosphere-ocean general circulation model (GCM) simulations to compare three surface albedo geoengineering proposals: urban, cropland, and desert albedo enhancement. We find that the cooling effect of surface albedo modification is strongly seasonal and mostly confined to the areas of application. For urban and cropland geoengineering, the global effects are minor but, because of being colocated with areas of human activity, they may provide some regional benefits. Global desert geoengineering, which is associated with significant global-scale changes in circulation and the hydrological cycle, causes a smaller reduction in global precipitation per degree of cooling than sunshade geoengineering, 1.1% K-1 and 2.0% K-1 respectively, but a far greater reduction in the precipitation over land, 3.9% K-1 compared with 1.0% K-1. Desert geoengineering also causes large regional-scale changes in precipitation with a large reduction in the intensity of the Indian and African monsoons in particular. None of the schemes studied reverse the climate changes associated with a doubling of CO2, with desert geoengineering profoundly altering the climate and with urban and cropland geoengineering providing only some regional amelioration at most.

  5. Unravelling the effects of radiation forces in water.

    PubMed

    Astrath, Nelson G C; Malacarne, Luis C; Baesso, Mauro L; Lukasievicz, Gustavo V B; Bialkowski, Stephen E

    2014-01-01

    The effect of radiation forces at the interface between dielectric materials has been a long-standing debate for over a century. Yet there has been so far only limited experimental verification in complete accordance with the theory. Here we measure the surface deformation at the air-water interface induced by continuous and pulsed laser excitation and match this to rigorous theory of radiation forces. We demonstrate that the experimental results are quantitatively described by the numerical calculations of radiation forces. The Helmholtz force is used for the surface radiation pressure. The resulting surface pressure obtained is consistent with the momentum conservation using the Minkowski momentum density expression assuming that the averaged momentum per photon is given by the Minkowski momentum. Considering the total momentum as a sum of that propagating with the electromagnetic wave and that deposited locally in the material, the Abraham momentum interpretation also appears to be appropriate. PMID:24999561

  6. Comprehensive radiative forcing assesment highlights trade-offs in climate mitigation potential of managed boreal forests

    NASA Astrophysics Data System (ADS)

    Kalliokoski, Tuomo; Berninger, Frank; Bäck, Jaana; Boy, Michael; Kuusinen, Nea; Mäkelä, Annikki; Matthies, Brent; Minkkinen, Kari; Mogensen, Ditte; Peltoniemi, Mikko; Sievänen, Risto; Zhou, Luxi; Vanhatalo, Anni; Valsta, Lauri; Nikinmaa, Eero

    2016-04-01

    Boreal forests have an important role in the mitigation of climate change. In this study we evaluated four key climate impacts of forest management: (1) carbon sequestration (in forest ecosystems and wood products), (2) surface albedo of forest area, (3) forest originating Secondary Organic Aerosols (SOA) and (4) avoided CO2-emissions from wood energy and product substitution. We calculated their net effect at both a single stand and regional level using Finland as a case study. We made analyses both in current climate up to a year 2050 and in the projected climate of year 2050. At the stand level, the carbon sequestration effect and avoided CO2 emissions due to substituted materials dominated in net RF in current climate. The warming effect of surface albedo of forest cover was lower or of same magnitude than cooling effect of SOAs. Together, the rarely considered SOAs and product substitution corresponded over 70% of the total cooling effect of forest cover. The cooling effect of net radiative forcing increased along the increasing site fertility. Although the carbon stocks of broadleaved trees were smaller than that of conifers their total radiative cooling effect was larger due to the integrated albedo and aerosol effects. In the projected climate of 2050, the radiative cooling of aerosols approached the level of forest carbon fixation. These results emphasize the need for holistic evaluation of climate impacts over simple carbon sequestration analysis to understand the role of forest management in climate change mitigation. Landscape level analyses emphasized the broad range of options to reach the cooling effect. The lowest harvest regime, 50% of current annual increment (CAI), yielded the largest cooling effect. Yet, harvests up to CAI produced only slightly less cooling RF if avoided emissions were considered. This result was highly sensitive to used substitution factors. Our result highlights that the combination of intensive harvests and the use of wood

  7. Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the

  8. Cloud Radiative Forcing in the Tropics

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar Anand

    1995-01-01

    Understanding the role of clouds is one of the highest priority science objectives in the global climate change program. In particular there has been a renewed interest in understanding the cloud radiative interactions in the tropical regions. Although a number of studies have emphasized the importance of cloud optical properties on the earth's radiative energy balance, information concerning cloud optical depth and particle size as a function of cloud type is lacking.

  9. Forcing the Issue on Radiation Policy

    SciTech Connect

    Rockwell, Theodore

    1999-06-06

    The recent case of a group of tobacco interests suing the U.S. Environmental Protection Agency (EPA) in Federal court on its policy on second-hand smoke has important implications for radiation policy. The issue was only tangentially about tobacco; its main thrust was at EPA's rule-making process.The EPA is at least as vulnerable to the same charges in the radiation area, particularly with respect to radon.

  10. Radiative Forcing Due to Enhancements in Tropospheric Ozone and Carbonaceous Aerosols Caused by Asian Fires During Spring 2008

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.

    2012-01-01

    Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.

  11. Radiative forcing due to enhancements in tropospheric ozone and carbonaceous aerosols caused by Asian fires during spring 2008

    NASA Astrophysics Data System (ADS)

    Natarajan, Murali; Pierce, R. Bradley; Schaack, Todd K.; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.

    2012-03-01

    Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/m2 occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/m2 occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.

  12. Acoustic Radiation Force Impulse (ARFI) Imaging: a Review

    PubMed Central

    Nightingale, Kathy

    2012-01-01

    Acoustic radiation force based elasticity imaging methods are under investigation by many groups. These methods differ from traditional ultrasonic elasticity imaging methods in that they do not require compression of the transducer, and are thus expected to be less operator dependent. Methods have been developed that utilize impulsive (i.e. < 1 ms), harmonic (pulsed), and steady state radiation force excitations. The work discussed herein utilizes impulsive methods, for which two imaging approaches have been pursued: 1) monitoring the tissue response within the radiation force region of excitation (ROE) and generating images of relative differences in tissue stiffness (Acoustic Radiation Force Impulse (ARFI) imaging); and 2) monitoring the speed of shear wave propagation away from the ROE to quantify tissue stiffness (Shear Wave Elasticity Imaging (SWEI)). For these methods, a single ultrasound transducer on a commercial ultrasound system can be used to both generate acoustic radiation force in tissue, and to monitor the tissue displacement response. The response of tissue to this transient excitation is complicated and depends upon tissue geometry, radiation force field geometry, and tissue mechanical and acoustic properties. Higher shear wave speeds and smaller displacements are associated with stiffer tissues, and slower shear wave speeds and larger displacements occur with more compliant tissues. ARFI images have spatial resolution comparable to that of B-mode, often with greater contrast, providing matched, adjunctive information. SWEI images provide quantitative information about the tissue stiffness, typically with lower spatial resolution. A review these methods and examples of clinical applications are presented herein. PMID:22545033

  13. Radiative forcing from the 1991 Mount Pinatubo volcanic eruption

    NASA Astrophysics Data System (ADS)

    Stenchikov, Georgiy L.; Kirchner, Ingo; Robock, Alan; Graf, Hans-F.; AntuñA, Juan Carlos; Grainger, R. G.; Lambert, Alyn; Thomason, Larry

    1998-06-01

    Volcanic sulfate aerosols in the stratosphere produce significant long-term solar and infrared radiative perturbations in the Earth's atmosphere and at the surface, which cause a response of the climate system. Here we study the fundamental process of the development of this volcanic radiative forcing, focusing on the eruption of Mount Pinatubo in the Philippines on June 15, 1991. We develop a spectral-, space-, and time-dependent set of aerosol parameters for 2 years after the Pinatubo eruption using a combination of SAGE II aerosol extinctions and UARS-retrieved effective radii, supported by SAM II, AVHRR, lidar and balloon observations. Using these data, we calculate the aerosol radiative forcing with the ECHAM4 general circulation model (GCM) for cases with climatological and observed sea surface temperature (SST), as well as with and without climate response. We find that the aerosol radiative forcing is not sensitive to the climate variations caused by SST or the atmospheric response to the aerosols, except in regions with varying dense cloudiness. The solar forcing in the near infrared contributes substantially to the total stratospheric heating. A complete formulation of radiative forcing should include not only changes of net fluxes at the tropopause but also the vertical distribution of atmospheric heating rates and the change of downward thermal and net solar radiative fluxes at the surface. These forcing and aerosol data are available for GCM experiments with any spatial and spectral resolution.

  14. Simulated radiative forcing from contrails and contrail cirrus

    NASA Astrophysics Data System (ADS)

    Chen, C.-C.; Gettelman, A.

    2013-04-01

    A comprehensive general circulation model including ice supersaturation is used to estimate the climate impact of aviation induced contrails. The model uses a realistic aviation emissions inventory for 2006 to initiate contrails, and allows them to evolve consistently with the model hydrologic cycle. The radiative forcing from linear contrails is very sensitive to the diurnal cycle of flights. For linear contrails, including the diurnal cycle of flights reduces the estimated global radiative forcing by 55%, and for contrails cirrus estimates, the global radiative forcing is reduced by 25%. Estimated global radiative forcing from linear contrails is 0.0029±0.00125 W m-2. The instantaneous radiative forcing for contrails is found to exhibit a strong diurnal cycle. The integrated effect of contrail cirrus is much less sensitive to the diurnal cycle of flights. The estimated global radiative forcing from contrail cirrus is 0.012±0.01 W m-2. Over regions with the highest air traffic, the regional effect can be as large as 1 W m-2.

  15. Contributions of projected land use to global radiative forcing ascribed to local sources

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2013-12-01

    With global demand for food expected to dramatically increase and put additional pressures on natural lands, there is a need to understand the environmental impacts of land use and land cover change (LULCC). Previous studies have shown that the magnitude and even the sign of the radiative forcing (RF) of biogeophysical effects from LULCC depends on the latitude and forest ecology of the disturbed region. Here we ascribe the contributions to the global RF by land-use related anthropogenic activities to their local sources, organized on a grid of 1.9 degrees latitude by 2.5 degrees longitude. We use RF estimates for the year 2100, using five future LULCC projections, computed from simulations with the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. Our definition of the LULCC RF includes changes to terrestrial carbon storage, methane and nitrous oxide emissions, atmospheric chemistry, aerosol emissions, and surface albedo. We ascribe the RF to gridded locations based on LULCC-related emissions of relevant trace gases and aerosols, including emissions from fires. We find that the largest contributions to the global RF in year 2100 from LULCC originate in the tropics for all future scenarios. In fact, LULCC is the largest tropical source of anthropogenic RF. The LULCC RF in the tropics is dominated by emissions of CO2 from deforestation and methane emissions from livestock and soils. Land surface albedo change is rarely the dominant forcing agent in any of the future LULCC projections, at any location. By combining the five future scenarios we find that deforested area at a specific tropical location can be used to predict the contribution to global RF from LULCC at that location (the relationship does not hold as well in the extratropics). This information could support global efforts like REDD (Reducing Emissions from Deforestation and Forest Degradation), that aim to reduce greenhouse gas

  16. Spectral albedos of midlatitude snowpacks

    NASA Technical Reports Server (NTRS)

    Choudhury, B.

    1981-01-01

    Spectral albedos of impure-nonhomogeneous snowpacks, typical of midlatitudes, from 400 to 2200 nm were modeled through a numerical solution of the radiative transfer equation in the two-stream approximation. Discrete depth-dependent values of density, grain size and impurity concentration were used to characterize the snowpacks. The model is for diffuse incident radiation, and the numerical method is based on doubling and invariant imbedding. The effect of soot impurities on snowpack albedos is illustrated when a snowpack is several centimeters deep and soot reduces the albedos at visible wavelengths, however, when a snowpack is only a few centimeters deep, soot may increase the albedos at visible wavelengths. By adjusting soot content and snow grain size, good quantitative agreement with some observations at the Cascade Mountains (Washington) and at Point Barrow (Alaska) are obtained; however, the model grain sizes are found to be fifty to four hundred percent larger than the measured values. For satellite snowcover observations, a model for effective albedo of partially snow-covered areas was developed and compared with some NOAA-2 observations of the southeastern United States.

  17. Detection limits of albedo changes induced by climate engineering

    NASA Astrophysics Data System (ADS)

    Seidel, Dian J.; Feingold, Graham; Jacobson, Andrew R.; Loeb, Norman

    2014-02-01

    A key question surrounding proposals for climate engineering by increasing Earth's reflection of sunlight is the feasibility of detecting engineered albedo increases from short-duration experiments or prolonged implementation of solar-radiation management. We show that satellite observations permit detection of large increases, but interannual variability overwhelms the maximum conceivable albedo increases for some schemes. Detection of an abrupt global average albedo increase <0.002 (comparable to a ~0.7 W m-2 reduction in radiative forcing) would be unlikely within a year, given a five-year prior record. A three-month experiment in the equatorial zone (5° N-5° S), a potential target for stratospheric aerosol injection, would need to cause an ~0.03 albedo increase, three times larger than that due to the Mount Pinatubo eruption, to be detected. Detection limits for three-month experiments in 1° (latitude and longitude) regions of the subtropical Pacific, possible targets for cloud brightening, are ~0.2 larger than might be expected from some model simulations.

  18. Effects of aerosol optical properties on deep convective clouds and radiative forcing

    SciTech Connect

    Fan, Jiwen; Zhang, Renyi; Tao, Wei-Kuo; Mohr, Karen I

    2008-04-23

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case without ARE, the cloud fraction and optical depth decrease by about 18% and 20%, respectively. Ice particle number concentrations, liquid water path, ice water path, and droplet size decrease by more than 15% when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6 K day-1 higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection explains the less cloudiness, lower cloud optical depth, less LWP and IWP, smaller droplet size, and less precipitation resulting from the ARE. The daytime-mean direct forcing induced by black carbon is about 2.2 W m-2 at the top of atmosphere (TOA) and -17.4 W m-2 at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W m-2 at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA when aerosol optical depth is high. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable atmosphere due to enhanced

  19. Effects of aerosol optical properties on deep convective clouds and radiative forcing

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Zhang, Renyi; Tao, Wei-Kuo; Mohr, Karen I.

    2008-04-01

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case without ARE, the cloud fraction and optical depth decrease by about 18% and 20%, respectively. Ice particle number concentrations, liquid water path, ice water path, and droplet size decrease by more than 15% when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6 K day-1 higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection explains the less cloudiness, lower cloud optical depth, less LWP and IWP, smaller droplet size, and less precipitation resulting from the ARE. The daytime-mean direct forcing induced by black carbon is about 2.2 W m-2 at the top of atmosphere (TOA) and -17.4 W m-2 at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W m-2 at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA when aerosol optical depth is high. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable atmosphere due to enhanced surface cooling and atmospheric heating.

  20. Simulated 2050 aviation radiative forcing from contrails and aerosols

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Chieh; Gettelman, Andrew

    2016-06-01

    The radiative forcing from aviation-induced cloudiness is investigated by using the Community Atmosphere Model Version 5 (CAM5) in the present (2006) and the future (through 2050). Global flight distance is projected to increase by a factor of 4 between 2006 and 2050. However, simulated contrail cirrus radiative forcing in 2050 can reach 87 mW m-2, an increase by a factor of 7 from 2006, and thus does not scale linearly with fuel emission mass. This is due to non-uniform regional increase in air traffic and different sensitivities for contrail radiative forcing in different regions. CAM5 simulations indicate that negative radiative forcing induced by the indirect effect of aviation sulfate aerosols on liquid clouds in 2050 can be as large as -160 mW m-2, an increase by a factor of 4 from 2006. As a result, the net 2050 radiative forcing of contrail cirrus and aviation aerosols may have a cooling effect on the planet. Aviation sulfate aerosols emitted at cruise altitude can be transported down to the lower troposphere, increasing the aerosol concentration, thus increasing the cloud drop number concentration and persistence of low-level clouds. Aviation black carbon aerosols produce a negligible net forcing globally in 2006 and 2050 in this model study. Uncertainties in the methodology and the modeling are significant and discussed in detail. Nevertheless, the projected percentage increase in contrail radiative forcing is important for future aviation impacts. In addition, the role of aviation aerosols in the cloud nucleation processes can greatly influence on the simulated radiative forcing from aircraft-induced cloudiness and even change its sign. Future research to confirm these results is necessary.

  1. 5 THE RADIATIVE FORCING DUE TO CLOUDS AND WATER VAPOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter utilizes results from the spaceborne Earth Radiation Budget Experiment (ERBE), launched in 1984 aboard the NOAA-9 (National Oceanic and Atmospheric Agency) satellite, to summarize our understanding of the radiative forcing due to water vapor and clouds. The effect of clouds on the rad...

  2. Evaluation of Preindustrial to Present-day Black Carbon and its Albedo Forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    SciTech Connect

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, Drew; Berntsen, T.; Bisiauxs, M.; Cao, J.; Collins, W. J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, Steven J.; Horowitz, L.; McConnell, J.R.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, Vaishali; Rumbold, S.; Skeie, R. B.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, Jin-Ho

    2013-03-05

    As a part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against the observations including 12 ice core records, a long-term surface mass concentrations and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using the NCAR Community Land and Sea-Ice model 4 with prescribed meteorology from 1996-2000, which includes the SNICAR BC-snow model. We evaluated the vertical profile of BC snow concentrations from these offline simulations to using recent BC snowpack measurements. Despite using the same BC emissions, global BC burden differs by approximately a factor of 3 among models due to the differences in aerosol removal parameterizations and simulated meteorology among models; 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However,models agree well on 2.5~3 times increase in the global BC burden from preindustrial to present-day, which matches with the 2.5 times increase in BC emissions. We find a large model diversity at both NH and SH high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC mass concentrations well in Europe and North America except at Jungfrauch and Ispra. However, the models fail to capture the Arctic BC seasonality due tosevere underestimations during winter and spring. Compared to recent snowpack measurements, the simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of observations except for Greenland and Arctic Ocean. However, model and observation differ widely due to missing interannual variations in emissions and possibly due to the choice of the prescribed meteorology period (i.e., 1996-2000).

  3. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    PubMed

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon. PMID:22753522

  4. Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts

    NASA Astrophysics Data System (ADS)

    Collins, William D.; Rasch, Phillip J.; Eaton, Brian E.; Fillmore, David W.; Kiehl, Jeffrey T.; Beck, C. Trevor; Zender, Charles S.

    2002-10-01

    The direct radiative forcing by aerosols over the Indian Ocean region is simulated for the Indian Ocean Experiment (INDOEX) Intensive Field Phase during Spring 1999. The forcing is calculated for the top-of-atmosphere (TOA), surface, and atmosphere by differencing shortwave fluxes computed with and without aerosols. The calculation includes the effects of sea-salt, sulfate, carbonaceous, and soil-dust aerosols. The aerosol distributions are obtained from a global aerosol simulation including assimilation of satellite retrievals of aerosol optical thickness (AOT). The time-dependent, three-dimensional aerosol distributions are derived with a chemical transport model driven with meteorological analyses for this period. The surface albedos are obtained from a land-surface model forced with an identical meteorological analysis and satellite-derived rainfall and insolation. These calculations are consistent with in situ observations of the surface insolation over the central Indian Ocean and with satellite measurements of the reflected shortwave radiation. The calculations show that the surface insolation under clear skies is reduced by as much as 40 W/m2 over the Indian subcontinent by natural and anthropogenic aerosols. This reduction in insolation is accompanied by an increase in shortwave flux absorbed in the atmosphere by 25 W/m2. The inclusion of clouds in the calculations changes the direct effect by less than 2 W/m2 over the Indian subcontinent, although the reduction is much larger over China. The magnitude of the difference between all-sky and clear-sky forcing is quite sensitive to the three-dimensional spatial relationship between the aerosol and cloud fields, and other estimates of the difference for the INDOEX Intensive Field Phase are as large as 5 W/m2.

  5. Forcing the issue on radiation policy

    SciTech Connect

    Rockwell, T.

    1999-09-01

    For those frustrated by an inability to get a fair hearing on evidence that challenges current radiation policy, the recent case of a group of tobacco interests suing the US Environmental Protection Agency (EPA) in Federal court on its policy on second-hand smoke has important implications for radiation policy. The issue was only tangentially about tobacco; its main thrust was at EPA`s arbitrary and capricious rule-making process. The EPA is at least as vulnerable to the same charges in the radiation area, particularly with respect to radon. Radiation protection is associated in many people`s minds with the US Nuclear Regulatory Commission (NRC), but other agencies have also been involved. Radon, like second-hand smoke, has been tolerated for generations, and EPA has the burden of proving that it is a public hazard. The law and the unwritten rules of science are quite explicit in defining what must be done to make such a finding. In the case of radon, there is no prior basis for public concern. In fact, the public uses radium spas with radon concentrations up to one million times as high as the EPA permissible limit. In many countries, such spa usage is formally prescribed by physicians and paid for by national health insurance. The health effects, if any, from radon, as from second-hand smoke, are hard to quantify. But, this does not justify--in either case--the EPA`s straying from its published criteria and procedures for testing whether such health effects occur. A Federal court has now demonstrated its willingness to judge and strike down the EPA`s actions regarding second-hand smoke on their own merits, without attempting to be an arbiter of science. The result is a welcome breath of fresh air and an object lesson for those concerned about the mounting costs of treating radon as a major public health hazard.

  6. Effect on number albedo values for 662 keV photons from radiation shielding materials stratified with lead

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, A.; Sinha, A. K.

    1988-07-01

    Albedo measurements for backscattered gamma rays from semi-infinite scatterers have suitable applications in the design of gamma ray shields particularly in nuclear reactor and accelerator shields and in many other nuclear installations. The insertion of lead slabs into stratified combination with other shielding materials has been found to increase the shielding property appreciably. The stratified slabs of alternating heterogeneous layers have been found in this investigation to have a virtual homogeneous property with a definite effective atomic number. The purpose of the present investigation is to find out the extent to which the shielding property increases in binary configuration with lead and to investigate into the dependence of the saturation thickness of the shielding media on the effective atomic number of each configuration. The indigeneously designed Uniform Sensitivity Photon Counter used in this investigation has an edge over all previous methods of experimental measurements that it is independent of response correction. The number albedo values as well as angular distribution of backscattered photons for iron, aluminium and concrete stratified with lead slabs at 662 keV energy have been reported here.

  7. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data

    NASA Astrophysics Data System (ADS)

    García, O. E.; Díaz, J. P.; Expósito, F. J.; Díaz, A. M.; Dubovik, O.; Derimian, Y.; Dubuisson, P.; Roger, J.-C.

    2011-12-01

    The shortwave radiative forcing (ΔF) and the radiative forcing efficiency (ΔFeff) of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the top (TOA) and at the bottom of atmosphere (BOA) modeled based on AERONET aerosol retrievals. In this study we have considered six main types of atmospheric aerosols: desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere. The ΔF averages obtained vary from -148 ± 44 Wm-2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45) at the BOA for the mixture of desert mineral dust and biomass burning aerosols in Central Africa and -42 ± 22 Wm-2 (AOD = 0.86 ± 0.51) at the TOA for the pure mineral dust also in this region up to -6 ± 3 Wm-2 and -4 ± 2 Wm-2 (AOD = 0.03 ± 0.02) at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions) atmospheric aerosols lead to a warming of the Earth-atmosphere system, contributing to the greenhouse gas effect.

  8. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data

    NASA Astrophysics Data System (ADS)

    García, O. E.; Díaz, J. P.; Expósito, F. J.; Díaz, A. M.; Dubovik, O.; Derimian, Y.; Dubuisson, P.; Roger, J.-C.

    2012-06-01

    The shortwave radiative forcing (ΔF) and the radiative forcing efficiency (ΔFeff) of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the Top (TOA) and at the Bottom Of Atmosphere (BOA) modeled based on AERONET aerosol retrievals. Six main types of atmospheric aerosols have been compared (desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere) in similar observational conditions (i.e., for solar zenith angles between 55° and 65°) in order to compare the nearly same solar geometry. The instantaneous ΔF averages obtained vary from -122 ± 37 Wm-2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45) at the BOA for the mixture of desert mineral dust and biomass burning aerosols in West Africa and -42 ± 22 Wm-2 (AOD = 0.9 ± 0.5) at the TOA for the pure mineral dust also in this region up to -6 ± 3 Wm-2 and -4 ± 2 Wm-2 (AOD = 0.03 ± 0.02) at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions) atmospheric aerosols lead to a warming of the Earth-atmosphere system.

  9. Radiation forces on small particles in the solar system

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Lamy, P. L.; Soter, S.

    1979-01-01

    Solar radiation forces on small particles in the solar system are examined, and the resulting orbital evolution of interplanetary and circumplanetary dust is considered. An expression is derived for the effects of radiation pressure and Poynting-Robertson drag on small, spherical particles using the energy and momentum transformation laws of special relativity, and numerical examples are presented to illustrate that radiation pressure and Poynting-Robertson drag are only important for particles within a narrow size range. The orbital consequences of these radiation forces are considered both for heliocentric and planetocentric orbiting particles, and the coupling between particle sizes and dynamics is discussed. A qualitative derivation is presented for the differential Doppler effect, which is due to the differential Doppler shifting of radiation from approaching and receding solar hemispheres, and the Yarkovsky effect, which is important for rotating meter-to kilometer-sized particles, is briefly described.

  10. Annual Cycle of Cloud Forcing of Surface Radiation Budget

    NASA Technical Reports Server (NTRS)

    Wilber, Anne C.; Smith, G. Louis; Stackhouse, Paul W., Jr.; Gupta, Shashi K.

    2006-01-01

    The climate of the Earth is determined by its balance of radiation. The incoming and outgoing radiation fluxes are strongly modulated by clouds, which are not well understood. The Earth Radiation Budget Experiment (Barkstrom and Smith, 1986) provided data from which the effects of clouds on radiation at the top of the atmosphere (TOA) could be computed (Ramanathan, 1987). At TOA, clouds increase the reflected solar radiation, tending to cool the planet, and decrease the OLR, causing the planet to retain its heat (Ramanathan et al., 1989; Harrison et al., 1990). The effects of clouds on radiation fluxes are denoted cloud forcing. These shortwave and longwave forcings counter each other to various degrees, so that in the tropics the result is a near balance. Over mid and polar latitude oceans, cloud forcing at TOA results in large net loss of radiation. Here, there are large areas of stratus clouds and cloud systems associated with storms. These systems are sensitive to surface temperatures and vary strongly with the annual cycle. During winter, anticyclones form over the continents and move to the oceans during summer. This movement of major cloud systems causes large changes of surface radiation, which in turn drives the surface temperature and sensible and latent heat released to the atmosphere.

  11. Can increasing albedo of existing ship wakes reduce climate change?

    NASA Astrophysics Data System (ADS)

    Crook, Julia A.; Jackson, Lawrence S.; Forster, Piers M.

    2016-02-01

    Solar radiation management schemes could potentially alleviate the impacts of global warming. One such scheme could be to brighten the surface of the ocean by increasing the albedo and areal extent of bubbles in the wakes of existing shipping. Here we show that ship wake bubble lifetimes would need to be extended from minutes to days, requiring the addition of surfactant, for ship wake area to be increased enough to have a significant forcing. We use a global climate model to simulate brightening the wakes of existing shipping by increasing wake albedo by 0.2 and increasing wake lifetime by ×1440. This yields a global mean radiative forcing of -0.9 ± 0.6 Wm-2 (-1.8 ± 0.9 Wm-2 in the Northern Hemisphere) and a 0.5°C reduction of global mean surface temperature with greater cooling over land and in the Northern Hemisphere, partially offsetting greenhouse gas warming. Tropical precipitation shifts southward but remains within current variability. The hemispheric forcing asymmetry of this scheme is due to the asymmetry in the distribution of existing shipping. If wake lifetime could reach ~3 months, the global mean radiative forcing could potentially reach -3 Wm-2. Increasing wake area through increasing bubble lifetime could result in a greater temperature reduction, but regional precipitation would likely deviate further from current climatology as suggested by results from our uniform ocean albedo simulation. Alternatively, additional ships specifically for the purpose of geoengineering could be used to produce a larger and more hemispherically symmetrical forcing.

  12. Recent and future trends in synthetic greenhouse gas radiative forcing

    NASA Astrophysics Data System (ADS)

    Rigby, M.; Prinn, R. G.; O'Doherty, S.; Miller, B. R.; Ivy, D.; Mühle, J.; Harth, C. M.; Salameh, P. K.; Arnold, T.; Weiss, R. F.; Krummel, P. B.; Steele, L. P.; Fraser, P. J.; Young, D.; Simmonds, P. G.

    2014-04-01

    Atmospheric measurements show that emissions of hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons are now the primary drivers of the positive growth in synthetic greenhouse gas (SGHG) radiative forcing. We infer recent SGHG emissions and examine the impact of future emissions scenarios, with a particular focus on proposals to reduce HFC use under the Montreal Protocol. If these proposals are implemented, overall SGHG radiative forcing could peak at around 355 mW m-2 in 2020, before declining by approximately 26% by 2050, despite continued growth of fully fluorinated greenhouse gas emissions. Compared to "no HFC policy" projections, this amounts to a reduction in radiative forcing of between 50 and 240 mW m-2 by 2050 or a cumulative emissions saving equivalent to 0.5 to 2.8 years of CO2 emissions at current levels. However, more complete reporting of global HFC emissions is required, as less than half of global emissions are currently accounted for.

  13. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  14. Speciated local aerosol characteristics and radiative forcing at a rural midwestern site

    NASA Astrophysics Data System (ADS)

    Dillner, Ann Marie

    2000-11-01

    In this research, physical and chemical properties of ambient aerosols were measured at a rural perturbed mid- latitude site (Bondville, IL) and used to calculate the aerosol optical properties and the resulting direct radiative forcing. Size-segregated aerosol samples were collected during the summer of 1997 using three parallel MOUDIs operating at ambient relative humidity. Two sample sets were used to obtain sulfate, organic carbon (OC), elemental carbon (EC), carbonate and total aerosol mass. The third sample set was used to obtain the size-specific and wavelength-dependent extinction efficiency of EC. The measured submicrometer mass concentration was 11.4 +/- 4.0 μg m-3. Ammonium sulfate comprised nearly half of the submicrometer aerosol and OC plus EC comprised 25%. Water content for ammonium sulfate and OC was estimated using both Köhler theory and parameterized water uptake curves from the literature. Water content for internally mixed aerosols was determined using a ZSR method. Aerosol optical properties (extinction efficiency, asymmetry parameter, single scatter albedo) were calculated from measured size distributions and wavelength dependent refractive indexes for each species and for internal and external mixtures using Mie theory. A technique, utilizing transmission measurements through extracts of size segregated ambient aerosol samples, was developed to obtain the extinction efficiency of EC. Measured EC extinction efficiencies ranged from 7.3 to 1.7 m2 g-1 at 550 nm, depending on particle diameter. Normalized direct aerosol radiative forcing (W g-1 ) was calculated using the Column Radiation Module (CRM) of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3). Aerosol optical properties, used in the model, were assumed to be uniform throughout the lowest one kilometer of the atmosphere. The normalized forcing due to ammonium sulfate was -340 +/- 10 W g-1. OC was 1/3 larger and residue was 1/3 smaller. EC within an

  15. Empirical models of monthly and annual surface albedo in managed boreal forests of Norway

    NASA Astrophysics Data System (ADS)

    Bright, Ryan M.; Astrup, Rasmus; Strømman, Anders H.

    2013-04-01

    temporal evolution in managed forests throughout the region, which in turn can be used to estimate the contribution from albedo changes across alternative management scenarios to seasonal and inter-annual radiative forcings. Incorporating temporal descriptions of albedo into regional assessments of the climatic effects of alternative forest management strategies would serve to better inform the development of climate protection policy, and furthermore, help to improve albedo parameterizations of forest (and other land use) management in land-surface components of earth system models that currently suffer from poor representations of temporal transitions.

  16. Response of Colorado River runoff to dust radiative forcing in snow

    PubMed Central

    Painter, Thomas H.; Deems, Jeffrey S.; Belnap, Jayne; Hamlet, Alan F.; Landry, Christopher C.; Udall, Bradley

    2010-01-01

    The waters of the Colorado River serve 27 million people in seven states and two countries but are overallocated by more than 10% of the river’s historical mean. Climate models project runoff losses of 7–20% from the basin in this century due to human-induced climate change. Recent work has shown however that by the late 1800s, decades prior to allocation of the river’s runoff in the 1920s, a fivefold increase in dust loading from anthropogenically disturbed soils in the southwest United States was already decreasing snow albedo and shortening the duration of snow cover by several weeks. The degree to which this increase in radiative forcing by dust in snow has affected timing and magnitude of runoff from the Upper Colorado River Basin (UCRB) is unknown. Here we use the Variable Infiltration Capacity model with postdisturbance and predisturbance impacts of dust on albedo to estimate the impact on runoff from the UCRB across 1916–2003. We find that peak runoff at Lees Ferry, Arizona has occurred on average 3 wk earlier under heavier dust loading and that increases in evapotranspiration from earlier exposure of vegetation and soils decreases annual runoff by more than 1.0 billion cubic meters or ∼5% of the annual average. The potential to reduce dust loading through surface stabilization in the deserts and restore more persistent snow cover, slow runoff, and increase water resources in the UCRB may represent an important mitigation opportunity to reduce system management tensions and regional impacts of climate change. PMID:20855581

  17. Tropospheric radiative forcing of CH{sub 4}

    SciTech Connect

    Grossman, A.S.; Grant, K.E.

    1994-04-01

    We have evaluated the tropospheric radiative forcing of CH{sub 4} in the 0-3000 cm{sup {minus}1} wavenumber range and compared this with prior published calculations. The atmospheric test cases involved perturbed methane scenarios in both a McClatchey mid latitude, summer, clear sky approximation, model atmosphere, as well as a globally and seasonally averaged model atmosphere containing a representative cloud distribution. The scenarios involved pure CH{sub 4} radiative forcing and CH{sub 4} plus a mixture of H{sub 2}O, CO{sub 2}, O{sub 3}, and N{sub 2}O. The IR radiative forcing was calculated using a correlated k-distribution transmission model. The major purposes of this paper are to first, use the correlated k-distribution model to calculate the tropospheric radiative forcing for CH{sub 4}, as the only radiatively active gas, and in a mixture with H{sub 2}O, CO{sub 2}, O{sub 3}, and N{sub 2}O, for a McClatchey mid-latitude summer, clear-sky model atmosphere, and to compare the results to those obtained in the studies mentioned above. Second, we will calculate the tropospheric methane forcing in a globally and annually averaged atmosphere with and without a representative cloud distribution in order to validate the conjecture given in IPCC (1990) that the inclusion of clouds in the forcing calculations results in forcing values which are approximately 20 percent less than those obtained using clear sky approximations.

  18. Modeling radiation forces acting on TOPEX/Poseidon for precision orbit determination

    NASA Technical Reports Server (NTRS)

    Marshall, J. A.; Luthcke, S. B.; Antreasian, P. G.; Rosborough, G. W.

    1992-01-01

    Geodetic satellites such as GEOSAT, SPOT, ERS-1, and TOPEX/Poseidon require accurate orbital computations to support the scientific data they collect. Until recently, gravity field mismodeling was the major source of error in precise orbit definition. However, albedo and infrared re-radiation, and spacecraft thermal imbalances produce in combination no more than a 6-cm radial root-mean-square (RMS) error over a 10-day period. This requires the development of nonconservative force models that take the satellite's complex geometry, attitude, and surface properties into account. For TOPEX/Poseidon, a 'box-wing' satellite form was investigated that models the satellite as a combination of flat plates arranged in a box shape with a connected solar array. The nonconservative forces acting on each of the eight surfaces are computed independently, yielding vector accelerations which are summed to compute the total aggregate effect on the satellite center-of-mass. In order to test the validity of this concept, 'micro-models' based on finite element analysis of TOPEX/Poseidon were used to generate acceleration histories in a wide variety of orbit orientations. These profiles are then compared to the box-wing model. The results of these simulations and their implication on the ability to precisely model the TOPEX/Poseidon orbit are discussed.

  19. Radiation forces between dust grains in a plasma

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Stenflo, L.

    2008-04-01

    In this work we show that a repulsive force between nearby dust grains in a plasma can exist, due to scattering of the incident radiation. Two types of forces are discussed, one of them being formally identical to electrostatic repulsion. This leads to the definition of an effective dust charge of the dust grain, which only depends on the scattering process. Our discussion shows that such a repulsive interaction occurs in quite general physical conditions.

  20. Modulation of ultrasound to produce multifrequency radiation force1

    PubMed Central

    Urban, Matthew W.; Fatemi, Mostafa; Greenleaf, James F.

    2010-01-01

    Dynamic radiation force has been used in several types of applications, and is performed by modulating ultrasound with different methods. By modulating ultrasound, energy can be transmitted to tissue, in this case a dynamic force to elicit a low frequency cyclic displacement to inspect the material properties of the tissue. In this paper, different types of modulation are explored including amplitude modulation (AM), double sideband suppressed carrier amplitude modulation AM, linear frequency modulation, and frequency-shift keying. Generalized theory is presented for computing the radiation force through the short-term time average of the energy density for these various types of modulation. Examples of modulation with different types of signals including sine waves, square waves, and triangle waves are shown. Using different modulating signals, multifrequency radiation force with different numbers of frequency components can be created, and can be used to characterize tissue mimicking materials and soft tissue. Results for characterization of gelatin phantoms using a method of vibrating an embedded sphere are presented. Different degrees of accuracy were achieved using different modulation techniques and modulating signals. Modulating ultrasound is a very flexible technique to produce radiation force with multiple frequency components that can be used for various applications. PMID:20329821

  1. Dynamic Response of Model Lipid Membranes to Ultrasonic Radiation Force

    PubMed Central

    Prieto, Martin Loynaz; Oralkan, Ömer; Khuri-Yakub, Butrus T.; Maduke, Merritt C.

    2013-01-01

    Low-intensity ultrasound can modulate action potential firing in neurons in vitro and in vivo. It has been suggested that this effect is mediated by mechanical interactions of ultrasound with neural cell membranes. We investigated whether these proposed interactions could be reproduced for further study in a synthetic lipid bilayer system. We measured the response of protein-free model membranes to low-intensity ultrasound using electrophysiology and laser Doppler vibrometry. We find that ultrasonic radiation force causes oscillation and displacement of lipid membranes, resulting in small (<1%) changes in membrane area and capacitance. Under voltage-clamp, the changes in capacitance manifest as capacitive currents with an exponentially decaying sinusoidal time course. The membrane oscillation can be modeled as a fluid dynamic response to a step change in pressure caused by ultrasonic radiation force, which disrupts the balance of forces between bilayer tension and hydrostatic pressure. We also investigated the origin of the radiation force acting on the bilayer. Part of the radiation force results from the reflection of the ultrasound from the solution/air interface above the bilayer (an effect that is specific to our experimental configuration) but part appears to reflect a direct interaction of ultrasound with the bilayer, related to either acoustic streaming or scattering of sound by the bilayer. Based on these results, we conclude that synthetic lipid bilayers can be used to study the effects of ultrasound on cell membranes and membrane proteins. PMID:24194863

  2. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  3. Fully covariant radiation force on a polarizable particle

    NASA Astrophysics Data System (ADS)

    Pieplow, Gregor; Henkel, Carsten

    2013-02-01

    The electromagnetic force on a polarizable particle is calculated in a covariant framework. Local equilibrium temperatures for the electromagnetic field and the particle's dipole moment are assumed, using a relativistic formulation of the fluctuation-dissipation theorem. Two examples illustrate radiative friction forces: a particle moving through a homogeneous radiation background and above a planar interface. Previous results for arbitrary relative velocities are recovered in a compact way. The authors acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA) in the video abstract. Support for LAMBDA is provided by the NASA Office of Space Science.

  4. Mimicking biochar-albedo feedback in complex Mediterranean agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Bozzi, E.; Genesio, L.; Toscano, P.; Pieri, M.; Miglietta, F.

    2015-08-01

    Incorporation of charcoal produced by biomass pyrolysis (biochar) in agricultural soils is a potentially sustainable strategy for climate change mitigation. However, some side effects of large-scale biochar application need to be investigated. In particular a massive use of a low-reflecting material on large cropland areas may impact the climate via changes in surface albedo. Twelve years of MODIS-derived albedo data were analysed for three pairs of selected agricultural sites in central Italy. In each pair bright and dark coloured soil were identified, mimicking the effect of biochar application on the land surface albedo of complex agricultural landscapes. Over this period vegetation canopies never completely masked differences in background soil colour. This soil signal, expressed as an albedo difference, induced a local instantaneous radiative forcing of up to 4.7 W m-2 during periods of high solar irradiance. Biochar mitigation potential might therefore be reduced up to ˜30%. This study proves the importance of accounting for crop phenology and crop management when assessing biochar mitigation potential and provides more insights into the analysis of its environmental feedback.

  5. A study of the acoustical radiation force considering attenuation

    NASA Astrophysics Data System (ADS)

    Wu, RongRong; Liu, XiaoZhou; Gong, XiuFen

    2013-07-01

    Acoustical tweezer is a primary application of the radiation force of a sound field. When an ultrasound focused beam passes through a micro-particle, like a cell or living biological specimens, the particle will be manipulated accurately without physical contact and invasion, due to the three-dimensional acoustical trapping force. Based on the Ray acoustics approach in the Mie regime, this work discusses the effects on the particle caused by Gaussian focused ultrasound, studies the acoustical trapping force of spherical Mie particles by ultrasound in any position, and analyzes the numerical calculation on the two-dimensional acoustical radiation force. This article also analyzes the conditions for the acoustical trapping phenomenon, and discusses the impact of the initial position and size of the particle on the magnitude of the acoustical radiation force. Furthermore, this paper considers the ultrasonic attenuation in a particle in the case of two-dimension, studies the attenuation's effects on the acoustical trapping force, and amends the calculation to the ordinary case with attenuation.

  6. The price of snow: albedo valuation and a case study for forest management

    NASA Astrophysics Data System (ADS)

    Lutz, David A.; Howarth, Richard B.

    2015-06-01

    Several climate frameworks have included the role of carbon storage in natural landscapes as a potential mechanism for climate change mitigation. This has resulted in an incentive to grow and maintain intact long-lived forest ecosystems. However, recent research has suggested that the influence of albedo-related radiative forcing can impart equal and in some cases greater magnitudes of climate mitigation compared to carbon storage in forests where snowfall is common and biomass is slow-growing. While several methodologies exist for relating albedo-associated radiative forcing to carbon storage for the analysis of the tradeoffs of these ecosystem services, they are varied, and they have yet to be contrasted in a case study with implications for future forest management. Here we utilize four methodologies for calculating a shadow price for albedo radiative forcing and apply the resulting eight prices to an ecological and economic forest model to examine the effects on optimal rotation periods on two different forest stands in the White Mountain National Forest in New Hampshire, USA. These pricing methodologies produce distinctly different shadow prices of albedo, varying from a high of 9.36 × 10-4 and a low of 1.75 × 10-5 w-1yr-1 in the initial year, to a high of 0.019 and a low of 3.55 × 10-4 w-1yr-1 in year 200 of the simulation. When implemented in the forest model, optimal rotation periods also varied considerably, from a low of 2 to a high of 107 years for a spruce-fir stand and from 35 to 80 years for a maple-beech-birch stand. Our results suggest that the choice of climate metrics and pricing methodologies for use with forest albedo alter albedo prices considerably, may substantially adjust optimal rotation period length, and therefore may have consequences with respect to forest land cover change.

  7. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  8. Variability of albedo and utility of the MODIS albedo product in forested wetlands

    USGS Publications Warehouse

    Sumner, David M.; Wu, Qinglong; Pathak, Chandra S.

    2011-01-01

    Albedo was monitored over a two-year period (beginning April 2008) at three forested wetland sites in Florida, USA using up- and down-ward facing pyranometers. Water level, above and below land surface, is the primary control on the temporal variability of daily albedo. Relatively low reflectivity of water accounts for the observed reductions in albedo with increased inundation of the forest floor. Enhanced canopy shading of the forest floor was responsible for lower sensitivity of albedo to water level at the most dense forest site. At one site, the most dramatic reduction in daily albedo was observed during the inundation of a highly-reflective, calcareous periphyton-covered land surface. Satellite-based Moderate-Resolution Imaging Spectroradiometer (MODIS) estimates of albedo compare favorably with measured albedo. Use of MODIS albedo values in net radiation computations introduced a root mean squared error of less than 4.7 W/m2 and a mean, annual bias of less than 2.3 W/m2 (1.7%). These results suggest that MODIS-estimated albedo values can reliably be used to capture areal and temporal variations in albedo that are important to the surface energy balance.

  9. Global Albedo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Once home to the powerful Inca Empire, the spectacular vistas and canyons of the South American Andes are now a favorite to mountain bikers, climbers and other tourists looking for an adventure. This true color image of the Central Andes and surrounding landscape was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. The dark green area to the right of the brown mountains are the Gran Chaco planes, which consist mostly of alluvial fans and wetlands. To the west is the Pacific Ocean. In the upper half of this image, the Andes are formed by two distinct mountain ranges that appear as darker reddish-brown bands running northwest to southeast. Between the two ranges, shown in a lighter brown, sits the Altiplano plateau, which spans southern Peru and northern Bolivia. The plateau sits at 3660 meters (12,000 feet) and is covered in mazelike canyons, marshlands and lakes. The largest of the lakes-Lake Titticaca-can be seen as the dark blue patch in southern Peru. The two mountain ranges supporting the plateau eventually come together along the border of Argentina and Chile to form one continuous range. The Andes have been forming over the past 170 million years as the Nazca Plate lying under the Pacific Ocean has forced its way under the South American Plate and pushed up its western edge. The subduction of one plate under the other has given rise to a number of volcanoes that dot the western edge of the mountain range. Earthquakes are also very common in this region. Image by NASA GSFC, based on data from the MODIS science team.

  10. High Resolution Aerosol Modeling: Decadal Changes in Radiative Forcing

    SciTech Connect

    Bergmann, D J; Chuang, C C; Govindasamy, B; Cameron-Smith, P J; Rotman, D A

    2005-02-01

    The Atmospheric Science Division of LLNL has performed high-resolution calculations of direct sulfate forcing using a DOE-provided computer resource at NERSC. We integrated our global chemistry-aerosol model (IMPACT) with the LLNL high-resolution global climate model (horizontal resolution as high as 100 km) to examine the temporal evolution of sulfate forcing since 1950. We note that all previous assessments of sulfate forcing reported in IPCC (2001) were based on global models with coarse spatial resolutions ({approx} 300 km or even coarser). However, the short lifetime of aerosols ({approx} days) results in large spatial and temporal variations of radiative forcing by sulfate. As a result, global climate models with coarse resolutions do not accurately simulate sulfate forcing on regional scales. It requires much finer spatial resolutions in order to address the effects of regional anthropogenic SO{sub 2} emissions on the global atmosphere as well as the effects of long-range transport of sulfate aerosols on the regional climate forcing. By taking advantage of the tera-scale computer resources at NERSC, we simulated the historic direct sulfate forcing at much finer spatial resolutions than ever attempted before. Furthermore, we performed high-resolution chemistry simulations and saved monthly averaged oxidant fields, which will be used in subsequent simulations of sulfate aerosol formation and their radiative impact.

  11. Implication of radiative forcing distribution for energy transport

    NASA Astrophysics Data System (ADS)

    Huang, Yi

    2016-04-01

    Radiative forcing of a homogeneous greenhouse gas can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO2, the mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range being more than three times the magnitude of the global mean value. The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the CMIP5 models, we find that inter-model discrepancy in CO2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport.

  12. Long-wave radiative forcing due to mineral dust aerosol

    NASA Astrophysics Data System (ADS)

    Gunn, L. N.; Collins, W.

    2010-12-01

    Radiative forcing due to aerosols has been identified by the IPCC as a major contributor to the total radiative forcing uncertainty budget. Optically thick plumes of dust and pollutants extending out from Africa and Asia can be lifted into the middle troposphere and often are transported over synoptic length scales. These events can decrease the upwelling long-wave fluxes at the top of the atmosphere, especially in the mid-infrared "window". Typically these effects have not been included in model simulations and the spectrally integrated effects of aerosols on the planetary long-wave energy budget have not employed satellite data to produce systematic global estimates. In this study we will show initial results for the quantitative determination of a global radiative forcing due to mineral dust calculated using A-train satellite instrument measurements from AIRS, TES, and MODIS. The initial results focus on localized dust outbreaks, over Australia, Africa and Asia, and describe the methods that will be implemented for the determination of a quantitative global radiative forcing estimate.

  13. Experimental Characterization of Radiation Forcing due to Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Sreenivas, K. R.; Singh, D. K.; Ponnulakshmi, V. K.; Subramanian, G.

    2011-11-01

    Micro-meteorological processes in the nocturnal atmospheric boundary layer (NBL) including the formation of radiation-fog and the development of inversion layers are controlled by heat transfer and the vertical temperature distribution close to the ground. In a recent study, it has been shown that the temperature profile close to the ground in stably-stratified, NBL is controlled by the radiative forcing due to suspended aerosols. Estimating aerosol forcing is also important in geo-engineering applications to evaluate the use of aerosols to mitigate greenhouse effects. Modeling capability in the above scenarios is limited by our knowledge of this forcing. Here, the design of an experimental setup is presented which can be used for evaluating the IR-radiation forcing on aerosols under either Rayleigh-Benard condition or under conditions corresponding to the NBL. We present results indicating the effect of surface emissivities of the top and bottom boundaries and the aerosol concentration on the temperature profiles. In order to understand the observed enhancement of the convection-threshold, we have determined the conduction-radiation time constant of an aerosol laden air layer. Our results help to explain observed temperature profiles in the NBL, the apparent stability of such profiles and indicate the need to account for the effect of aerosols in climatic/weather models.

  14. LAGEOS Solar Radiation Force: Contribution from Cube-Corner Retroreflection

    NASA Astrophysics Data System (ADS)

    Slabinski, Victor J.

    2016-05-01

    The surface of a spherical LAGEOS satellite contains 426 Cube Corner Reflectors (CCRs) for the retro-reflection of incident laser ranging beams back to their source. For practical reasons, the number of CCRs is finite, so their distribution over the surface is not perfectly uniform.At any time, the ~9 CCRs near the sub-solar point on the LAGEOS surface will also retroreflect incident sunlight back toward the Sun. This concentration of reflected sunlight into a parallel beam increases the resulting radiation force on the satellite over what occurs for the usual broad-beam specular and diffuse reflection by ordinary surfaces. Because of the non-uniform CCR distribution, the retroreflection of sunlight (and hence the solar radiation force on the satellite) varies with the Sun aspect angle, even when averaged over the spin period. The Sun aspect angle is the co-latitude of the sub-solar surface point measured from the spin pole.We use ray tracing of sunlight through the CCRs to determine the Sun angle dependence of the solar radiation force and the resulting variation in secular perturbation rates for the LAGEOS orbit, especially for the eccentricity elements. We investigate the possibility of using the observed variations in the eccentricity vector as a check on the spacecraft spin-axis attitude. Attitude information is important for computing radiation-force perturbations to the orbit node when determining the Lense-Thirring effect.

  15. Radiative Forcing and Climate Response: From Paleoclimate to Future Climate

    NASA Astrophysics Data System (ADS)

    Caldeira, K.; Cao, L.

    2011-12-01

    The concept of radiative forcing was introduced to allow comparison of climate effects of different greenhouse gases. In the classic view, radiative forcing is applied to the climate system and the climate responds to this forcing, approaching some equilibrium temperature change that is the product of the radiative forcing times the 'climate sensitivity' to radiative forcing. However, this classic view is oversimplified in several respects. Climate forcing and response often cannot be clearly separated. When carbon dioxide is added to the atmosphere, within days, the increased absorption of longwave radiation begins to warm the interior of the troposphere, affecting various tropospheric properties. Especially in the case of aerosols, it has been found that considering rapid tropospheric adjustment gives a better predictor of "equilibrium" climate change than does the classic definition of radiative forcing. Biogeochemistry also provides additional feedbacks on the climate system. It is generally thought that biogeochemistry helps diminish climate sensitivity to a carbon dioxide emission, since carbon dioxide tends to stimulate carbon dioxide uptake by land plants and the ocean. However, there is potential to destabilize carbon locked up in permafrost and at least some possibility to destabilize methane in continental shelf sediments. Furthermore, wetlands may provide a significant methane feedback. These and other possible biogeochemical feedbacks have the potential to greatly increase the sensitivity of the climate system to carbon dioxide emissions. As time scales extend out to millennia, the large ice sheets can begin to play an important role. In addition to affecting atmospheric flows by their sheer bulk, ice sheets tend to reflect a lot of energy to space. If carbon dioxide remains in the atmosphere long enough, there is potential to melt back the large ice sheets, which would add additional warming to the climate system. It is likely that these millennial

  16. Mariner Venus/Mercury 1973 solar radiation force and torques

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1974-01-01

    The need for an improvement of the mathematical model of the solar radiation force and torques for the Mariner Venus/Mercury spacecraft arises from the fact that this spacecraft will be steering toward the inner planets (Venus and Mercury), where, due to the proximity of the Sun, the effect of the solar radiation pressure is much larger than it was on the antecedent Mariner spacecraft, steering in the opposite direction. Therefore, although the model yielded excellent results in the case of the Mariner 9 Mars Orbiter, additional effects of negligible magnitudes for the previous missions of the Mariner spacecraft should now be included in the model. This study examines all such effects and incorporates them into the already existing model, as well as using the improved model for calculation of the solar radiation force and torques acting on the Mariner Venus/Mercury spacecraft.

  17. Response of the Water Cycle of West Africa and Atlantic to Radiative Forcing by Saharan Dust

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, Kyu-Myong; Sud, Yogesh C.; Walker, Gregory L.

    2010-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence in support of the "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summer, as a result of large-scale atmospheric feed back triggered by absorbing dust aerosols, rainfall and cloudiness are enhanced over the West Africa/Easter Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean. region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while long wave has the opposite response. The elevated dust layer warms the air over Nest Africa and the eastern Atlantic. The condensation heating associated with the induced deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface energy fluxes, resulting in cooling of the Nest African land and the eastern Atlantic, and a warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at 0.95 or higher.

  18. Aerosol radiative forcing efficiency in the UV-B region over central Argentina

    NASA Astrophysics Data System (ADS)

    Palancar, Gustavo G.; Olcese, Luis E.; Lanzaco, Bethania L.; Achad, Mariana; López, María Laura; Toselli, Beatriz M.

    2016-07-01

    AEROSOL Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer (MODIS) and global UV-B (280-315 nm) irradiance measurements and calculations were combined to investigate the effects of aerosol loading on the ultraviolet B radiation (UV-B) reaching the surface under cloudless conditions in Córdoba, Argentina. The aerosol radiative forcing (ARF) and the aerosol forcing efficiency (ARFE) were calculated for an extended period of time (2000-2013) at a ground-based monitoring site affected by different types and loading of aerosols. The ARFE was evaluated by using the aerosol optical depth (AOD) at 340 nm retrieved by AERONET at the Cordoba CETT site. The individual and combined effects of the single scattering albedo (SSA) and the solar zenith angle (SZA) on the ARFE were also analyzed. In addition, and for comparison purposes, the MODIS AOD at 550 nm was used as input in a machine learning method to better characterize the aerosol load at 340 nm and evaluate the ARFE retrieved from AOD satellite measurements. The ARFE at the surface calculated using AOD data from AERONET ranged from (-0.11 ± 0.01) to (-1.76 ± 0.20) Wm-2 with an average of -0.61 Wm-2; however, when using AOD data from MODIS (TERRA/AQUA satellites), it ranged from (-0.22 ± 0.03) to (-0.65 ± 0.07) Wm-2 with an average value of -0.43 Wm-2. At the same SZA and SSA, the maximum difference between ground and satellite-based was 0.22 Wm-2.

  19. Radiative forcing and feedback by forests in warm climates - a sensitivity study

    NASA Astrophysics Data System (ADS)

    Port, Ulrike; Claussen, Martin; Brovkin, Victor

    2016-07-01

    We evaluate the radiative forcing of forests and the feedbacks triggered by forests in a warm, basically ice-free climate and in a cool climate with permanent high-latitude ice cover using the Max Planck Institute for Meteorology Earth System Model. As a paradigm for a warm climate, we choose the early Eocene, some 54 to 52 million years ago, and for the cool climate, the pre-industrial climate, respectively. To isolate first-order effects, we compare idealised simulations in which all continents are covered either by dense forests or by deserts with either bright or dark soil. In comparison with desert continents covered by bright soil, forested continents warm the planet for the early Eocene climate and for pre-industrial conditions. The warming can be attributed to different feedback processes, though. The lapse-rate and water-vapour feedback is stronger for the early Eocene climate than for the pre-industrial climate, but strong and negative cloud-related feedbacks nearly outweigh the positive lapse-rate and water-vapour feedback for the early Eocene climate. Subsequently, global mean warming by forests is weaker for the early Eocene climate than for pre-industrial conditions. Sea-ice related feedbacks are weak for the almost ice-free climate of the early Eocene, thereby leading to a weaker high-latitude warming by forests than for pre-industrial conditions. When the land is covered with dark soils, and hence, albedo differences between forests and soil are small, forests cool the early Eocene climate more than the pre-industrial climate because the lapse-rate and water-vapour feedbacks are stronger for the early Eocene climate. Cloud-related feedbacks are equally strong in both climates. We conclude that radiative forcing by forests varies little with the climate state, while most subsequent feedbacks depend on the climate state.

  20. The Costs of Climate Change: Impact of Future Snow Cover Projections on Valuation of Albedo in Forest Management

    NASA Astrophysics Data System (ADS)

    Burakowski, E. A.; Lutz, D. A.

    2014-12-01

    Surface albedo provides an important climate regulating ecosystem service, particularly in the mid-latitudes where seasonal snow cover influences surface radiation budgets. In the case of substantial seasonal snow cover, the influence of albedo can equal or surpass the climatic benefits of carbon sequestration from forest growth. Climate mitigation platforms should therefore consider albedo in their framework in order to integrate these two climatic services in an economic context for the effective design and implementation of forest management projects. Over the next century, the influence of surface albedo is projected to diminish under higher emissions scenarios due to an overall decrease in snow depth and duration of snow cover in the mid-latitudes. In this study, we focus on the change in economic value of winter albedo in the northeastern United States projected through 2100 using the Special Report on Emissions Scenarios (SRES) a1 and b1 scenarios. Statistically downscaled temperature and precipitation are used as input to the Variable Infiltration Capacity (VIC) model to provide future daily snow depth fields through 2100. Using VIC projections of future snow depth, projected winter albedo fields over deforested lands were generated using an empirical logarithmic relationship between snow depth and albedo derived from a volunteer network of snow observers in New Hampshire over the period Nov 2011 through 2014. Our results show that greater reductions in snow depth and the number of winter days with snow cover in the a1 compared to the b1 scenario reduce wintertime albedo when forested lands are harvested. This result has implications on future trade-offs among albedo, carbon storage, and timber value that should be investigated in greater detail. The impacts of forest harvest on radiative forcing associated with energy redistribution (e.g., latent heat and surface roughness length) should also be considered in future work.

  1. CLouds, and Aerosols Radiative Impacts and Forcing: Year 2016 (CLARIFY-2016)

    NASA Astrophysics Data System (ADS)

    Haywood, J. M.; Bellouin, N.; Carslaw, K. S.; Coe, H.; Field, P.; Highwood, E. J.; Redemann, J.; Stier, P.; Wood, R.; Zuidema, P.

    2013-12-01

    Strongly absorbing biomass burning aerosols (BBAs) exist above highly reflectant stratocumulus clouds in the SE Atlantic with implications on the direct (e.g. Haywood et al., 2003), semi-direct (e.g. Johnson et al., 2006), and indirect effect of aerosols, implications on the remote sensing of cloud optical properties, development of clouds and feedback processes. Here, we present an analysis of modelled estimates of the direct effect using twelve models from the AEROCOM project (Myhre et al., 2013) to show that estimates of the direct effect in SE Atlantic range from strongly negative to strongly positive. Furthermore, we evaluate the performance of the HadGEM2 model and show it cannot replicate the extreme values of positive forcing inferred from high spectral resolution satellite retrievals. By examining patterns of deposition, we infer that the indirect effect from biomass burning aerosols is very limited in the model, but without detailed measurements we are unsure of the validity of this inference. We conclude that the SE Atlantic is therefore of key importance in determining the radiative forcing of biomass burning aerosols and provides a very stringent test for global climate models as they need to accurately represent the geographic distribution of the aerosol optical depth, the wavelength dependent aerosol single scattering albedo, the vertical profile of the aerosol, the geographic distribution of the cloud, the cloud fraction, the cloud liquid water content, the cloud droplet effective radii, and the vertical profile of the cloud. These results are used as scientific rationale to justify a new measurement campaign: CLouds and Aerosol Radiative Impacts and Forcing: Year-2016 (CLARIFY-2016). Haywood, J.M., Osborne, S.R. Francis, P.N., Keil, A., Formenti, P., Andreae, M.O., and Kaye, P.H., The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000, J. Geophys. Res., 108

  2. Radiative transfer. II. Impact of meteorological variables and surface albedo on atmospheric optical properties retrieved from ground-based multispectral measurements.

    PubMed

    Kambezidis, H D; Djepa-Petrova, V; Adamopoulos, A D

    1997-09-20

    In a companion paper we describe a radiative transfer model and a consequent algorithm for retrieving atmospheric variables from ground-based multispectral measurements of direct solar irradiance. The accuracy of retrieved data depends on measured spectral irradiance as well as surface meteorological variables. Here we analyze the impact of the surface albedo on diffuse scattered solar irradiance in the Sun-sensor direction. We also investigate the impact of visibility on the retrieved spectral transmission function and optical thickness. We discuss the application of a spectrometric system, the passive pyrheliometric scanner (PPS), for the estimation of atmospheric turbidity and visibility. The spectral transmission of the atmosphere derived with the PPS for the Athens atmosphere and for different zenith angles is given. We present results of retrieved aerosol optical properties using as atmospheric turbidity those values estimated from the ground-based measurements of direct solar radiation with the aid of the PPS. It is shown that another application of the PPS may be the estimation of horizontal visibility. PMID:18259571

  3. Cloud radiative forcing on surface shortwave fluxes: A case study based on Cloud Lidar and Radar Exploratory Test

    SciTech Connect

    Shi, L.

    1994-12-20

    Shortwave downward fluxes for selected stratus, cirrus, and mixed phase cloud cases are analyzed based on cloud and surface radiation measurements from the Cloud Lidar and Radar Exploratory Test conducted in the Denver-Boulder area of Colorado during September-October, 1989. A medium resolution, discrete-ordinate shortwave radiative transfer model is used to provide clear-sky conditions and to examine the cloud shortwave radiative forcing. The model simulation indicates that for stratus clouds the effective radius increases with increasing liquid water path. For cirrus cloud simulation, the model results are within 10% agreement with the surface flux measurements. However, using the one-dimensional plane-parallel model, the model results are in poor agreement for the inhomogeneous mixed phase cloud case. Over the elevated observation site, the reduction in shortwave downward flux by clouds can be as large as 40% for a small cloud water path value of 20 g m{sup {minus}2}. The variation in observed cloud shortwave forcing is highly correlated with the integrated cloud water path. The normalized (by the clear-sky value) cloud shortwave forcing increases rapidly when the cloud water path is small. The rate of increase decreases, and the normalized cloud forcing approaches saturation when cloud water path becomes large. The magnitude of the saturation value depends on cloud optical properties. The variation in observed cloud forcing is consistent with the theoretical curve for cloudy atmospheric albedo variation. At a constant value of cloud water path, the normalized cloud forcing increases with solar zenith angle. The solar zenith angle effect is less significant for larger value of cloud water path. 44 refs., 11 figs.

  4. Material properties from acoustic radiation force step response

    PubMed Central

    Orescanin, Marko; Toohey, Kathleen S.; Insana, Michael F.

    2009-01-01

    An ultrasonic technique for estimating viscoelastic properties of hydrogels, including engineered biological tissues, is being developed. An acoustic radiation force is applied to deform the gel locally while Doppler pulses track the induced movement. The system efficiently couples radiation force to the medium through an embedded scattering sphere. A single-element, spherically-focused, circular piston element transmits a continuous-wave burst to suddenly apply and remove a radiation force to the sphere. Simultaneously, a linear array and spectral Doppler technique are applied to track the position of the sphere over time. The complex shear modulus of the gel was estimated by applying a harmonic oscillator model to measurements of time-varying sphere displacement. Assuming that the stress-strain response of the surrounding gel is linear, this model yields an impulse response function for the gel system that may be used to estimate material properties for other load functions. The method is designed to explore the force-frequency landscape of cell-matrix viscoelasticity. Reported measurements of the shear modulus of gelatin gels at two concentrations are in close agreement with independent rheometer measurements of the same gels. Accurate modulus measurements require that the rate of Doppler-pulse transmission be matched to a priori estimates of gel properties. PMID:19425636

  5. Axial acoustic radiation force on a sphere in Gaussian field

    SciTech Connect

    Wu, Rongrong; Liu, Xiaozhou Gong, Xiufen

    2015-10-28

    Based on the finite series method, the acoustical radiation force resulting from a Gaussian beam incident on a spherical object is investigated analytically. When the position of the particles deviating from the center of the beam, the Gaussian beam is expanded as a spherical function at the center of the particles and the expanded coefficients of the Gaussian beam is calculated. The analytical expression of the acoustic radiation force on spherical particles deviating from the Gaussian beam center is deduced. The acoustic radiation force affected by the acoustic frequency and the offset distance from the Gaussian beam center is investigated. Results have been presented for Gaussian beams with different wavelengths and it has been shown that the interaction of a Gaussian beam with a sphere can result in attractive axial force under specific operational conditions. Results indicate the capability of manipulating and separating spherical spheres based on their mechanical and acoustical properties, the results provided here may provide a theoretical basis for development of single-beam acoustical tweezers.

  6. Radiative Forcing and Balance of the World's Wetlands

    NASA Astrophysics Data System (ADS)

    Bridgham, S. D.; Megonigal, P.

    2014-12-01

    Wetlands have been important in their radiative forcing effect on the Earth's past glacial-interglacial cycles, and evidence suggests that recent interannual variations in atmospheric methane concentrations are driven partly by climatic effects on wetland methane emissions. Methane emissions from wetlands are offset by their substantial ability to sequester carbon. We use best estimates from the literature to construct a radiative mass balance for trace gas emissions and soil carbon sequestration from the world's wetlands. We also distinguish between the static radiative balance of wetlands and their radiative forcing, with only the latter affecting climate. Large uncertainties in our estimates are particularly due to uncertainties in historical and current wetland area and soil sequestration rates in mineral-soil wetlands. Overall, we conclude that destruction of mineral-soil wetlands has likely had a global cooling effect (and vice-versa for restoration), whereas destruction of peatlands and marine-associated wetlands has had a warming effect using a 100 year global warming potential. We also emphasize the myriad goods and services that wetlands provide besides their effects on climate forcing.

  7. Indirect radiative forcing by ion-mediated nucleation of aerosol

    SciTech Connect

    Yu, Fangqun; Luo, Gan; Liu, Xiaohong; Easter, Richard C.; Ma, Xiaoyan; Ghan, Steven J.

    2012-12-03

    A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN) in generating new particles and cloud condensation nuclei (CCN) in the atmosphere. Here we implement for the first time a physically based treatment of IMN into the Community Atmosphere Model version 5. Our simulations show that, compared to globally averaged results based on binary homogeneous nucleation (BHN), the presence of ionization (i.e., IMN) halves H2SO4 column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ~ 3, CCN burden by ~ 10% (at 0.2% supersaturation) to 65% (at 1.0% supersaturation), and cloud droplet number burden by ~ 18%. Compared to BHN, IMN increases cloud liquid water path by 7.5%, decreases precipitation by 1.1%, and increases total cloud cover by 1.9%. This leads to an increase of total shortwave cloud radiative forcing by 3.67 W/m2 (more negative) and longwave cloud forcing by 1.78 W/m2 (more positive), resulting in a -1.9 W/m2 net change in cloud radiative forcing associated with IMN. The significant impacts of ionization on global aerosol formation, CCN abundance, and cloud radiative forcing may provide an important physical mechanism linking the global energy balance to various processes affecting atmospheric ionization, which should be properly represented in climate models.

  8. Impact of climate and anthropogenic changes on urban surface albedo assessed from time-series MODIS satellite data

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Dida, Adrian I.; Zoran, Liviu Florin V.

    2015-10-01

    Urbanization may be considered the most significant anthropogenic force that has brought about fundamental changes in urban land cover and landscape pattern around the globe, being one of the crucial issues of global change in the 21st century affecting urban ecosystem. In the physical climate system, land surface albedo determines the radiation balance of the surface and affects the surface temperature and boundary-layer structure of the atmosphere. Due to anthropogenic and natural factors, urban land covers changes result is the land surfaces albedo changes. The main aim of this paper is to investigate the albedo patterns dynamics due to the impact of atmospheric pollution and climate variations on land cover of Bucharest metropolitan area, Romania based on satellite remote sensing MODIS Terra/Aqua (Moderate Imaging Spectroradiometer) data over 2000-2014 time period. This study is based on MODIS derived biogeophysical parameters land surface BRDF/albedo products and in-situ monitoring ground data (as air temperature, aerosols distribution, relative humidity, etc.). For urban land cover changes over the same investigated period have been used also IKONOS satellite data. Due to deforestation in the periurban areas albedo changes appear to be the most significant biogeophysical effect in temperate forests. As the physical climate system is very sensitive to surface albedo, urban/periurban vegetation systems could significantly feedback to the projected climate change modeling scenarios through albedo changes.

  9. Remote sensing of snow cover and radiative forcing by dust in snow from MODIS toward distributed snowmelt modeling and water management

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Bryant, A. C.

    2011-12-01

    Accelerated snowmelt runoff frequently contributes to flooding in snow-dominated basins. For example, extreme dust deposition to the mountains of the Upper Colorado River basin in 2009 accelerated snowmelt with albedos as low as 0.33 and created unprecedented runoff rates, particularly in rivers of southern Colorado. Operationally, seasonal forecasts of snowmelt-generated streamflow are leveraged through empirical relations based on past snowmelt periods. These historical data show that climate is changing, but the changes reduce the reliability of the empirical relations. Moreover, they lack the capacity to ingest information on albedo changes that dramatically alter melt rates. Therefore optimal future management of snowmelt derived water resources will require explicit physical models driven by remotely sensed data. The most critical snow properties for modeling the energy and mass balance of the snow cover are its spatial extent and albedo. In this talk, we will explore the snow cover properties in the Upper Colorado River during the extreme dust year of 2009. We will use the MODIS Snow Covered Area and Grain size (MODSCAG) model and the MODIS Dust Radiative Forcing in Snow (MOD-DRFS) model to determine the spatial distribution of fractional snow cover and the impact of dust on snow net solar radiation, respectively, and determine the hydrologic response in the Uncompahgre and Rio Grande River basins. This work provides fundamental insights into the migration to energy balance approaches for water research and management to mitigate natural hazards such as flooding.

  10. Radiation reaction as a non-conservative force

    NASA Astrophysics Data System (ADS)

    Aashish, Sandeep; Haque, Asrarul

    2016-09-01

    We study a system of a finite size charged particle interacting with a radiation field by exploiting Hamilton’s principle for a non-conservative system recently introduced by Galley [1]. This formulation leads to the equation of motion of the charged particle that turns out to be the same as that obtained by Jackson [2]. We show that the radiation reaction stems from the non-conservative part of the effective action for a charged particle. We notice that a charge interacting with a radiation field modeled as a heat bath affords a way to justify that the radiation reaction is a non-conservative force. The topic is suitable for graduate courses on advanced electrodynamics and classical theory of fields.

  11. Deformation of red blood cells using acoustic radiation forces

    PubMed Central

    Mishra, Puja; Hill, Martyn; Glynne-Jones, Peter

    2014-01-01

    Acoustic radiation forces have been used to manipulate cells and bacteria in a number of recent microfluidic applications. The net force on a cell has been subject to careful investigation over a number of decades. We demonstrate that the radiation forces also act to deform cells. An ultrasonic standing wave field is created in a 0.1 mm glass capillary at a frequency of 7.9 MHz. Using osmotically swollen red-blood cells, we show observable deformations up to an aspect ratio of 1.35, comparable to deformations created by optical tweezing. In contrast to optical technologies, ultrasonic devices are potentially capable of deforming thousands of cells simultaneously. We create a finite element model that includes both the acoustic environment of the cell, and a model of the cell membrane subject to forces resulting from the non-linear aspects of the acoustic field. The model is found to give reasonable agreement with the experimental results, and shows that the deformation is the result of variation in an acoustic force that is directed outwards at all points on the cell membrane. We foresee applications in diagnostic devices, and in the possibility of mechanically stimulating cells to promote differentiation and physiological effects. PMID:25379070

  12. Characterization of Speciated Aerosol Direct Radiative Forcing Over California

    SciTech Connect

    Zhao, Chun; Leung, Lai-Yung R.; Easter, Richard C.; Hand, Jenny; Avise, J.

    2013-03-16

    A fully coupled meteorology-chemistry model (WRF-Chem) with added capability of diagnosing the spatial and seasonal distribution of radiative forcings for individual aerosol species over California is used to characterize the radiative forcing of speciated aerosols in California. Model simulations for the year of 2005 are evaluated with various observations including meteorological data from California Irrigation Management Information System (CIMIS), aerosol mass concentrations from US EPA Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Environments (IMPROVE), and aerosol optical depth from AErosol RObotic NETwork (AERONET) and satellites. The model well captures the observed seasonal meteorological conditions over California. Overall, the simulation is able to reproduce the observed spatial and seasonal distribution of mass concentration of total PM2.5 and the relative contribution from individual aerosol species, except the model significantly underestimates the surface concentrations of organic matter (OM) and elemental carbon (EC), potentially due to uncertainty in the anthropogenic emissions of OM and EC and the outdated secondary organic aerosol mechanism used in the model. A sensitivity simulation with anthropogenic EC emission doubled significantly reduces the model low bias of EC. The simulation reveals high anthropogenic aerosol loading over the Central Valley and the Los Angeles metropolitan regions and high natural aerosol (dust) loading over southeastern California. The seasonality of aerosol surface concentration is mainly determined by vertical turbulent mixing, ventilation, and photochemical activity, with distinct characteristics for individual aerosol species and between urban and rural areas. The simulations show that anthropogenic aerosols dominate the aerosol optical depth (AOD). The ratio of AOD to AAOD (aerosol absorption optical depth) shows distinct seasonality with a winter maximum and a summer minimum

  13. Lorentz force and radiation pressure on a spherical cloak

    SciTech Connect

    Chen Hongsheng; Wu, B.-I.; Zhang Baile; Luo Yu; Zhang Jingjing; Ran Lixin; Kemp, Brandon A.

    2009-07-15

    The mechanical behavior of a transformation based spherical cloak under wave illumination is derived. We show that the equatorial region of the cloak is subject to much higher stress than the polar regions, where the polar axis is defined along the wave propagation direction. These forces do not exist before transformation but stem from the squeezed electromagnetic space. The trajectory of the ray can be interpreted as a result of the recoil force that the cloak exerts upon the ray. The total radiation pressure on an ideal cloak is shown to be exactly zero, effecting a stationary cloak.

  14. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing During Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2005-01-01

    The direct effects of aerosols on global and regional climate during boreal spring are investigated based on simulations using the NASA Global Modeling and Assimilation Office (GMAO) finite-volume general circulation model (fvGCM) with Microphyics of clouds in Relaxed Arakawa Schubert Scheme (McRAS). The aerosol loading are prescribed from three-dimensional monthly distribution of tropospheric aerosols viz., sulfate, black carbon, organic carbon, soil dust, and sea salt from output of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol extinction coefficient, single scattering albedo, and asymmetric factor are computed as wavelength-dependent radiative forcing in the radiative transfer scheme of the fvGCM, and as a function of the aerosol loading and ambient relative humidity. We find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excites a planetary scale teleconnection pattern in sea level pressure, temperature and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, i.e., South Asia, East Asia, and northern and western Africa. Additionally, atmospheric heating is found in regions with large loading of dust (over Northern Africa, and Middle East), and black carbon (over South-East Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east-west dipole anomaly with strong cooling over the Caspian Sea, and warming over central and northeastern Asia, where aerosol concentration are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes

  15. Air pollution radiative forcing from specific emissions sectors at 2030

    NASA Astrophysics Data System (ADS)

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.

    2008-01-01

    Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.

  16. Cloud radiative forcing effects on observed and simulated global energetics

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Robertson, Franklin

    1993-01-01

    The research objectives are the following: (1) to examine how cloud-radiation processes generate/destroy available potential energy by altering both meridional and zonal temperature gradient; (2) to investigate how the atmospheric dynamic fields respond to the cloud-altered mass distributions through the energy conversion circuit; and (3) to examine how the improved version of CCM1 simulates observationally obtained cloud-radiative forcing and its associated energetics and circulations. Significant accomplishments in the past year towards obtaining these objectives and the focus of current research and plans for next year are discussed.

  17. A Study of Direct and Cloud-Mediated Radiative Forcing of Climate Due to Aerosols

    NASA Technical Reports Server (NTRS)

    Yu, Shao-Cai

    1999-01-01

    radiative properties to aerosol composition, size distribution, relative humidity (RH) is examined for the following aerosol systems: inorganic and organic ions (Cl-, Br-, NO3 -, SO4 2-, Na+, NH4 +, K+, Ca2+, Mg2+, HCOO-, CH3COO-, CH3CH2COO-, CH3COCOO-, OOCCOO2-, MSA-1); water-insoluble inorganic and organic compounds (elemental carbon, n-alkanes, SiO2, Al2O3, Fe2O3 and other organic compounds). The partial molar refraction method was used to calculate the real part of the refractive index. It was found that the asymmetry factor increased by approximately 48% with the real part varying from 1.40 to 1.65, and the single scattering albedo decreased by 24% with the imaginary part varying from -0.005 to -0.1. The asymmetry factor increased by 5.4 times with the geometric standard deviation varying from 1.2 to 3.0. The radiation transmission is very sensitive to the change in size distribution; other factors are not as significant. To determine the aerosol direct radiative forcing (ADRF), the aerosol optical depth (AOD) values at the three operational wavelengths (415, 500 and 673 nm) were determined at a regionally representative site, namely, Mt. Gibbs (35.78 deg N, 82.29 deg W, elevation 2006 m) in Mt. Mitchell State Park, NC, and a site located in an adjacent valley (Black Mountain, 35.66 deg N, 82.38 deg W, elevation 951 m) in the southeastern US. The two sites are separated horizontally by 10 km and vertically by 1 km. It was found that the representative total AOD values at 500 nm at the valley site for highly polluted (HP), marine (M) and continental (C) air masses were 0.68 +/- 0.33, 0.29 +/- 0.19 and 0.10 +/- 0.04, respectively. A search-graph method was used to retrieve the columnar size distribution (number concentration N, effective radius reff and geometric standard deviation=?g) from the optical depth observations at three operational wavelengths. The ground albedo, single scattering albedo and imaginary part of the refractive index were calculated using a

  18. Surface summertime radiative forcing by shallow cumuli at the Atmospheric Radiation Measurement Southern Great Plains site

    SciTech Connect

    Berg, Larry K.; Kassianov, Evgueni I.; Long, Charles N.; Mills Jr., David L.

    2011-01-08

    Although shallow cumuli are common over large areas of the globe, their impact on the surface radiative forcing has not been carefully evaluated. This study addresses this shortcoming by analyzing data from days with shallow cumuli collected over eight summers (2000-2007) at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (collectively ACRF) Southern Great Plains site. During periods with clouds, the average shortwave and longwave radiative forcings are 45.5 W m-2 and +11.6 W m-2, respectively. The forcing has been defined so that a negative (positive) forcing indicates a surface cooling (warming). On average, the shortwave forcing is negative, however, instances with positive shortwave forcing are observed approximately 20% of the time. These positive values of shortwave forcing are associated with three-dimensional radiative effects of the clouds. The three-dimensional effects are shown to be largest for intermediate cloud amounts. The magnitude of the three-dimensional effects decreased with averaging time, but it is not negligibly small even for large averaging times as long as four hours.

  19. Tissue deformation induced by radiation force from Gaussian transducers.

    PubMed

    Myers, Matthew R

    2006-05-01

    Imaging techniques based upon the tissue mechanical response to an acoustic radiation force are being actively researched. In this paper a model for predicting steady-state tissue displacement induced by a radiation force arising from the absorption of Gaussian ultrasound beams is presented. A simple analytic expression is derived that agrees closely with the numerical quadrature of the displacement convolution integrals. The analytic result reveals the dependence of the steady-state axial displacement upon the operational parameters, e.g., an inverse proportional relationship to the tissue shear modulus. The derivation requires that the transducer radius be small compared to the focal length, but accurate results were obtained for transducer radii comparable to the focal length. Favorable comparisons with displacement predictions for non-Gaussian transducers indicate that the theory is also useful for a broader range of transducer intensity profiles. PMID:16708969

  20. Aerosol radiative forcing in the European Skynet Radiometers network

    NASA Astrophysics Data System (ADS)

    Estelles, V.; Campanelli, M.; Expósito, F. J.; Utrillas, M. P.; Díaz, J. P.; Martínez-Lozano, J. A.

    2012-04-01

    The influence of the atmospheric aerosols is one of the most important factors of the Earth climate system and, despite of our present understanding have increased in last years, they are still one of the largest unknown variables. In fact, recently, the total anthropogenic radiative effect on global scale was estimated to be +1.6 (-1.0 to +0.8) Wm-2, of which -0.5 (±0.4) Wm-2 are associated to the direct radiative forcing of the atmospheric aerosols. In order to reduce the current uncertainties of the direct aerosol forcing it is important to accurately determine the aerosol effect by combining modeling techniques with experimental radiation and aerosol measurements. To model the radiative effect of the aerosols, atmospheric radiative transfer models are applied, such as SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer), GAME (Global Atmospheric Model), MODTRAN (Moderate resolution atmospheric Transmission) and RSTAR. With these models, the direct aerosol radiative forcing at ground and top of atmosphere levels is estimated as the difference between the energy flux for an atmosphere with/without aerosols. To estimate the accuracy of the models, the modeled global, diffuse and direct solar radiation at ground level is compared with experimental measurements. To characterize the aerosol properties, sun-sky radiometric measurements at ground level are also needed, usually from systems such as Cimel CE318 or Prede POM. In last years, a good amount of such studies have been performed for different areas of the world. One of the most promising efforts comes from the AERONET (Aerosol Robotic Network). AERONET is an international operative network of Cimel CE318 sky-sunphotometers that provides the most extensive aerosol database globally available. García et al. (2008) already validated the AERONET direct aerosol forcing methodology with solar radiation measurements from the SolRad-Net (Solar Radiation Network) and BSRN (Baseline Solar Ratiation Network) for

  1. Links between extreme UV-radiation, total ozone, surface albedo and cloudiness: An analysis of 30 years of data from Switzerland and Austria

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Weihs, P.; Vuilleumier, L.; Blumthaler, M.; Holawe, F.; Lindfors, A.; Maeder, J. A.; Simic, S.; Wagner, J. E.; Walker, D.; Ribatet, M.

    2009-04-01

    Since the discovery of anthropogenic ozone depletion in the early 1970s (e.g. Molina and Rowland, 1974; Farman et al., 1985) the interest in stratospheric ozone trends and solar UV-B increased within the scientific community and the general public because of the link between reduced total column ozone and increased UV-radiation doses. Stratospheric ozone (e.g. Koch et al., 2005) and erythemal UV-radiation (e.g. Rieder et al., 2008) in the northern mid-latitudes are characterized by strong temporal variability. Long-term measurements of UV-B radiation are rare and datasets are only available for few locations and most of these measurements do not provide spectral information on the UV part of the spectra. During strong efforts in the reconstruction of erythemal UV, datasets of past UV-radiation doses became available for several measurement sites all over the globe. For Switzerland and Austria reconstructed UV datasets are available for 3 measurement sites (Davos, Sonnblick and Vienna) (Lindfors and Vuilleumier, 2005; Rieder et al., 2008). The world's longest ozone time series dating back to 1926 is available from Arosa, Switzerland, and is discussed in detail by Staehelin et al. (1998a,b). Recently new tools from extreme value theory have been applied to the Arosa time series to describe extreme events in low and high total ozone (Rieder et al., 2009). In our study we address the question of how much of the extremes in UV-radiation can be attributed to extremes in total ozone, high surface albedo and cloudiness. An analysis of the frequency distributions of such extreme events for the last decades is presented to gain a better understanding of the links between extreme erythemal UV-radiation, total ozone, surface albedo and clouds. References: Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315, 207-210, 1985. Koch, G., Wernli, H., Schwierz, C., Staehelin, J., and Peter, T

  2. Distribution and Radiative Forcing of Tropical Thin Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Lee, Joonsuk; Yang, Ping; Dessler, Andrew E.; Gao, Bo-Cai; Platnick, Steven

    2009-01-01

    To understand the radiative impact of tropical thin cirrus clouds, the frequency of occurrence and optical depths of these clouds have been derived. Thin cirrus clouds are defined here as being those that are not detected by the operational Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask, corresponding to an optical depth value of approximately 0.3 or smaller, but that are detectable in terms of the cirrus reflectance product based on the MODIS 1.375-micron channel. With such a definition, thin cirrus clouds were present in more than 40% of the pixels flagged as clear sky by the operational MODIS cloud mask algorithm. It is shown that these thin cirrus clouds are frequently observed in deep convective regions in the western Pacific. Thin cirrus optical depths were derived from the cirrus reflectance product. Regions of significant cloud fraction and large optical depths were observed in the Northern Hemisphere during the boreal spring and summer and moved southward during the boreal autumn and winter. The radiative effects of tropical thin cirrus clouds were studied on the basis of the retrieved cirrus optical depths, the atmospheric profiles derived from the Atmospheric Infrared Sounder (AIRS) observations, and a radiative transfer model in conjunction with a parameterization of ice cloud spectral optical properties. To understand how these clouds regulate the radiation field in the atmosphere, the instantaneous net fluxes at the top of the atmosphere (TOA) and at the surface were calculated. The present study shows positive and negative net forcings at the TOA and at the surface, respectively. The positive (negative) net forcing at the TOA (surface) is due to the dominance of longwave (shortwave) forcing. Both the TOA and surface forcings are in a range of 0-20 W/sq m, depending on the optical depths of thin cirrus clouds.

  3. Enhanced shortwave cloud radiative forcing due to anthropogenic aerosols

    SciTech Connect

    Schwartz, S.E.; Slingo, A.

    1995-05-01

    It has been suggested that anthropogenic aerosols in the troposphere can influence the microphysical properties of clouds and in turn their reflectivity, thereby exerting a radiative influence on climate. This article presents the theoretical basis for of this so-called indirect forcing and reviews pertinent observational evidence and climate model calculations of its magnitude and geographical distribution. We restrict consideration to liquid-water clouds.

  4. Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger

    SciTech Connect

    McFarlane, Sally A.; Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Ackerman, Thomas P.

    2009-03-18

    This study presents ground-based remote sensing measurements of aerosol optical properties and corresponding shortwave surface radiative effect calculations for the deployment of the Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility (AMF) to Niamey, Niger during 2006. Aerosol optical properties including aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (AP) were derived from multi-filter rotating shadowband radiometer (MFRSR) measurements during the two dry seasons (Jan-Apr and Oct-Dec) at Niamey. The vertical distribution of aerosol extinction was derived from the collocated micropulse lidar (MPL). The aerosol optical properties and vertical distribution of extinction varied significantly throughout the year, with higher AOD, lower SSA, and deeper aerosol layers during the Jan-Apr time period, when biomass burning aerosol layers were more frequent. Using the retrieved aerosol properties and vertical extinction profiles, broadband shortwave surface fluxes and atmospheric heating rate profiles were calculated. Corresponding calculations with no aerosol were used to estimate the aerosol direct radiative effect at the surface. Comparison of the calculated surface fluxes to observed fluxes for non-cloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the optical properties, with mean differences between calculated and observed fluxes of less than 5 W/m2 and RMS differences less than 25 W/m2. Sensitivity tests for a particular case study showed that the observed fluxes could be matched with variations of < 10% in the inputs to the radiative transfer model. We estimated the daily-averaged aerosol radiative effect at the surface by subtracting the clear calculations from the aerosol calculations. The average daily SW aerosol radiative effect over the study period was -27 W/m2, which is comparable to values estimated from satellite data and from climate models with sophisticated

  5. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models

    SciTech Connect

    Collins, William; Iacono, Michael J.; Delamere, Jennifer S.; Mlawer, Eli J.; Shephard, Mark W.; Clough, Shepard A.; Collins, William D.

    2008-04-01

    A primary component of the observed, recent climate change is the radiative forcing from increased concentrations of long-lived greenhouse gases (LLGHGs). Effective simulation of anthropogenic climate change by general circulation models (GCMs) is strongly dependent on the accurate representation of radiative processes associated with water vapor, ozone and LLGHGs. In the context of the increasing application of the Atmospheric and Environmental Research, Inc. (AER) radiation models within the GCM community, their capability to calculate longwave and shortwave radiative forcing for clear sky scenarios previously examined by the radiative transfer model intercomparison project (RTMIP) is presented. Forcing calculations with the AER line-by-line (LBL) models are very consistent with the RTMIP line-by-line results in the longwave and shortwave. The AER broadband models, in all but one case, calculate longwave forcings within a range of -0.20 to 0.23 W m{sup -2} of LBL calculations and shortwave forcings within a range of -0.16 to 0.38 W m{sup -2} of LBL results. These models also perform well at the surface, which RTMIP identified as a level at which GCM radiation models have particular difficulty reproducing LBL fluxes. Heating profile perturbations calculated by the broadband models generally reproduce high-resolution calculations within a few hundredths K d{sup -1} in the troposphere and within 0.15 K d{sup -1} in the peak stratospheric heating near 1 hPa. In most cases, the AER broadband models provide radiative forcing results that are in closer agreement with high 20 resolution calculations than the GCM radiation codes examined by RTMIP, which supports the application of the AER models to climate change research.

  6. Small global-mean cooling due to volcanic radiative forcing

    NASA Astrophysics Data System (ADS)

    Gregory, J. M.; Andrews, T.; Good, P.; Mauritsen, T.; Forster, P. M.

    2016-03-01

    In both the observational record and atmosphere-ocean general circulation model (AOGCM) simulations of the last ˜ 150 years, short-lived negative radiative forcing due to volcanic aerosol, following explosive eruptions, causes sudden global-mean cooling of up to ˜ 0.3 K. This is about five times smaller than expected from the transient climate response parameter (TCRP, K of global-mean surface air temperature change per W m-2 of radiative forcing increase) evaluated under atmospheric CO2 concentration increasing at 1 % yr-1. Using the step model (Good et al. in Geophys Res Lett 38:L01703, 2011. doi: 10.1029/2010GL045208), we confirm the previous finding (Held et al. in J Clim 23:2418-2427, 2010. doi: 10.1175/2009JCLI3466.1) that the main reason for the discrepancy is the damping of the response to short-lived forcing by the thermal inertia of the upper ocean. Although the step model includes this effect, it still overestimates the volcanic cooling simulated by AOGCMs by about 60 %. We show that this remaining discrepancy can be explained by the magnitude of the volcanic forcing, which may be smaller in AOGCMs (by 30 % for the HadCM3 AOGCM) than in off-line calculations that do not account for rapid cloud adjustment, and the climate sensitivity parameter, which may be smaller than for increasing CO2 (40 % smaller than for 4 × CO2 in HadCM3).

  7. Radiative forcing of black carbon over eastern India

    NASA Astrophysics Data System (ADS)

    Sreekanth, V.; Niranjan, K.; Madhavan, B. L.

    2007-09-01

    Measurements of aerosol Black Carbon using a 7 channel Aethalometer at Visakhapatnam, a coastal tropical station on the east coast of India are used to study the temporal variation of surface BC mass concentration. The surface BC mass concentrations show a significant diurnal variation which is seasonally dependant. Analysis using the multi spectral data indicates that the BC mass does not show significant absorption due to non-BC aerosol species which indicates that the surface BC mass is dominated by fossil fuel sources with no indication of any other strong anthropogenic source. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was used in conjunction with Optical Properties of Aerosols and Clouds (OPAC) to estimate the BC radiative forcing. The results show large negative surface forcing during winter (-35.78 W/m2), moderate during summer (-16.8 W/m2) and lower forcing during monsoon (-9.9 W/m2) and post monsoon (-2.81 W/m2). The forcing at the top of the atmosphere is positive for all the seasons.

  8. Radiative forcing calculations for CH{sub 3}Br

    SciTech Connect

    Grossman, A.S.; Blass, W.E.; Wuebbles, D.J.

    1995-06-01

    Methyl Bromide, CH{sub 3}Br, is the major organobromine species in the lower atmosphere and is a primary source of bromine in the stratosphere. It has a lifetime of 1.3 years. The IR methyl bromide spectra in the atmospheric window region, 7--13{mu}, was determined using a well tested Coriolis resonance and {ell}-doubling (and {ell}-resonance) computational system. A radiative forcing value of 0.00493 W/m{sup 2}/ppbv was obtained for CH{sub 3}Br and is approximately linear in the background abundance. This value is about 2 percent of the forcing of CFC-11 and about 278 times the forcing of C0{sub 2}, on a per molecule basis. The radiative forcing calculation is used to estimate the global warming potential (GWP) of CH{sub 3}Br. The results give GWPs for CH{sub 3}Br of the order of 13 for an integration period of 20 years and 4 for an integration period of 100 years (assuming C0{sub 2} = 1, following IPCC [1994]). While CH{sub 3}Br has a GWP which is approximately 25 percent of the GWP of CH{sub 4}, the current emission rates are too low to cause serious atmospheric greenhouse heating effects at this time.

  9. Long-wave radiative forcing due to desert dust

    NASA Astrophysics Data System (ADS)

    Gunn, L. N.; Collins, W.

    2011-12-01

    Radiative forcing due to aerosols has been identified by the IPCC as a major contributor to the total radiative forcing uncertainty budget. Optically thick plumes of dust and pollutants extending out from Africa and Asia can be lifted into the middle troposphere and often are transported over synoptic length scales. These events can decrease the upwelling long-wave fluxes at the top of the atmosphere, especially in the mid-infrared "window". Although the long-wave effects of dust are included in model simulations, they are hard to validate in the absence of satellite-driven global estimates. Using hyper spectral satellite measurements (from NASA's AIRS instrument) it is possible to estimate the effect of dust on the outgoing long-wave radiation directly from the measured spectra, by differencing the simulated clear sky radiance spectra (which are calculated using ECMWF analysis) and the observed dust filled radiance spectra (observations from AIRS). We will summarize this method and show global estimates of the dust radiative effect in the long-wave. These global estimates will be used to validate GCM model output and help us to improve our understanding of dust in the global energy budget.

  10. Optical properties and radiative forcing of the Eyjafjallajökull volcanic ash layer observed over Lille, France, in 2010

    NASA Astrophysics Data System (ADS)

    Derimian, Y.; Dubovik, O.; Tanre, D.; Goloub, P.; Lapyonok, T.; Mortier, A.

    2012-10-01

    In this work we characterize optical properties and assess the direct radiative effect of an ash plume observed on April 17, 2010 by AERONET, lidar and broadband solar flux measurements collocated on the roof of the Laboratory of Atmospheric Optics in Lille, northern France. These measurements allowed experimental evaluation of ash radiative impact and validation of simulations. The derived aerosol model of ash is characterized by a bi-modal size distribution dominated by coarse mode centered at a radius of 1.5 μm and by relatively strong absorption at short wavelengths (single scattering albedo of 0.81 ± 0.02 at 440 nm as opposed to 0.92 ± 0.02 at 670, 870 and 1020 nm). Due to relatively low aerosol optical thickness during the ash plume transport (˜0.26 at 440 nm), which is unfavorable for AERONET retrievals, the uncertainties in derived ash aerosol model were additionally evaluated. The complex refractive index of ash was derived assuming that effective refractive index retrieved by AERONET for externally mixed bi-component aerosol can be approximated as an average of refractive indices of two components weighted by their volume concentrations. Evaluation of the accuracy of this approximation showed acceptably small errors in simulations of single scattering albedo and aerosol phase function over the range of scattering angles observed by the AERONET almucantar. Daily average radiative forcing efficiency of ash calculated for a land surface reflectance representing Lille was about -93 ± 12 Wm-2 τ550-1 and -31 ± 2 Wm-2 τ550-1 at the bottom and top of the atmosphere; the values for an ocean surface reflectance are also provided.

  11. Earth's Reflection: Albedo

    ERIC Educational Resources Information Center

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  12. Clear-sky direct aerosol radiative forcing variations over mega-city Delhi

    NASA Astrophysics Data System (ADS)

    Singh, S.; Soni, K.; Bano, T.; Tanwar, R. S.; Nath, S.; Arya, B. C.

    2010-05-01

    The direct aerosol radiative forcing (DARF) has been estimated for the clear-sky conditions over Delhi from January 2006 to January 2007 using Santa Barbara DISORT Atmospheric Radiative Transfer model (SBDART) in the wavelength range 300-3000 nanometer. The single scattering albedo (SSA) and the asymmetry parameter used in this model were estimated using the Optical Properties of Aerosol and Cloud (OPAC) model. The annual average AOD observed at 500 nm was ~0.86±0.42 with an average Angstrom exponent ~0.68±0.35. The average monthly AOD throughout the year over Delhi was found to be in the range 0.56 to 1.22 with the Angstrom exponent in the range 0.38 to 0.96. A high monthly average BC concentration in the range 4-15 μg m-3 led to monthly average SSA in the range 0.90±0.4 to 0.74±0.3 during the year. Consequently, the monthly average clear-sky DARF at the surface was found to vary in the range -46±8 W m-2 to -110±20 W m-2, at TOA in the range -1.4±0.4 to 21±2 W m-2, whereas in the atmosphere it was in the range 46±9 W m-2 to 115±19 W m-2 throughout the year. As the dust concentration in the atmosphere was highest (May-June) the SSA showed an increase with wavelength however when dust concentration was low the SSA decreased with the wavelength.

  13. Atmospheric effects on insolation in the Brazilian Amazon: Observed modification of solar radiation by clouds and smoke and derived single scattering albedo of fire aerosols

    NASA Astrophysics Data System (ADS)

    Schafer, J. S.; Holben, B. N.; Eck, T. F.; Yamasoe, M. A.; Artaxo, P.

    2002-10-01

    Five aerosol and solar flux monitoring sites were established in Brazil for the Large Scale Biosphere-Atmosphere Experiment in Amazônia (LBA) project. The first two sites were developed in the states of Rondonia and Mato Grosso in January 1999, while the others were initiated in September 1999 in Amazonas, Para, and near Brasilia (later relocated to Acre). Daily insolation [photosynthetically active radiation (PAR) and total solar] for 1999 and 9 months of 2000 was determined from flux measurements, and the daily fraction of theoretical cloud-free, background-aerosol insolation, fB(day), was evaluated for each site. Observed daily shortfall (MJ m-2 d-1) of PAR insolation due to clouds and aerosols (relative to modeled values for background aerosol), and the instantaneous reductions of PAR irradiance due to high aerosol optical thickness (AOT) smoke events are presented for 1999 at Alta Floresta. The ratio of PAR flux to total solar flux (PAR fraction) was examined for all atmospheric conditions during 1999, and the observed dependence of this parameter on column water vapor and smoke AOT was quantified. No significant relationship with cloud amount (as quantified) was found. Instantaneous PAR irradiance measurements and concurrent, cloud-cleared aerosol data from collocated CIMEL sunphotometers were used with a radiative transfer model to investigate the optical properties of smoke aerosols during the burning season. In particular, the single scattering albedo (SSA) was evaluated in the PAR spectral range for AOT440 nm values ranging from 0.8 to 3.0. These estimates were compared with the operational retrievals of the same parameter from algorithms developed by AERONET for CIMEL sunphotometer radiance measurements.

  14. Aerosol Climate Effects: Local Radiative Forcing and Column Closure Experiments

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Bergstrom, Robert W.; Kinne, S. A.

    2000-01-01

    In an effort to reduce uncertainties in climate change predictions, experiments are being planned and conducted to measure anthropogenic aerosol properties and effects, including effects on radiative fields. The global average, direct anthropogenic aerosol effect on upwelling shortwave fluxes is estimated to be about +1/2 W/sq m, whereas errors in flux changes measured with airborne and spaceborne radiometers are 2 to 8 W/sq m or larger. This poses the question of whether flux changes expected in field experiments will be large enough to measure accurately. This paper obtains a new expression for the aerosol-induced change in upwelling flux, compares it to two-stream and adding-doubling (AD) results, and uses all three methods to estimate expected flux changes. The new expression accounts for the solar zenith angle dependences of aerosol transmission and reflection, as well as of surface albedo, all of which can have a strong effect in determining flux changes measured in field experiments. Despite its relative simplicity, the new expression gives results similar to previous two-stream results. Relative to AD results, it agrees within a few watts per square meter for the intermediate solar elevation angles where the flux changes peak (roughly 10 to 30 degrees), but it has negative errors for higher Sun and positive errors for lower Sun. All three techniques yield aerosol-induced changes in upwelling flux of +8 to +50 W/sq m for aerosol midvisible optical depths of 0.1 to 0.5. Because such aerosol optical depths occur frequently off the U.S. and European Atlantic coasts in summer, the flux changes they induce should be measurable by airborne, and possibly by spaceborne, radiometers, provided sufficient care is taken in experiment design (including measurements to separate aerosol radiative effects from those of absorbing gases). The expected flux changes are about 15 to 100 times larger than the global average flux change expected for the global average

  15. Global simulation of chemistry and radiative forcing of mineral aerosols

    SciTech Connect

    Zhang, Yang; Easter, R.C.; Ghan, S.J.; Leung, L.R.

    1996-12-31

    Mineral aerosols are increasingly gaining attention because of their roles in atmospheric chemistry and climate system. A global three-dimensional aerosol/chemistry model (GChM) coupled with a general circulation model (GCM) is used to simulate the sources/sinks, chemistry and radiative forcing of mineral aerosols. Regional and seasonal variations in distribution of mineral aerosols are predicted based on vegetation types, threshold wind velocities and soil moisture data. The role of mineral aerosols as a reactive surface available for heterogeneous uptake of gas-phase species in the global atmosphere is investigated along with their impact on the tropospheric sulfur cycle and the photochemical oxidant cycle. In particular, the heterogeneous surface reactions of SO{sub 2}, H{sub 2}SO{sub 4}, NO{sub 3}, N{sub 2}O{sub 5}, HNO{sub 3}, O{sub 3}, OH, HO{sub 2}, H{sub 2}O{sub 2} and CH{sub 3}O{sub 2} on mineral aerosols are simulated. The direct radiative forcing by mineral aerosols and the indirect forcing through influencing droplet number concentration are further estimated. The model simulation results are analyzed and compared against the available observational data.

  16. Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling

    PubMed Central

    Schwartz, Stephen E.; Harshvardhan; Benkovitz, Carmen M.

    2002-01-01

    The Twomey effect of enhanced cloud droplet concentration, optical depth, and albedo caused by anthropogenic aerosols is thought to contribute substantially to radiative forcing of climate change over the industrial period. However, present model-based estimates of this indirect forcing are highly uncertain. Satellite-based measurements would provide global or near-global coverage of this effect, but previous efforts to identify and quantify enhancement of cloud albedo caused by anthropogenic aerosols in satellite observations have been limited, largely because of strong dependence of albedo on cloud liquid water path (LWP), which is inherently highly variable. Here we examine satellite-derived cloud radiative properties over two 1-week episodes for which a chemical transport and transformation model indicates substantial influx of sulfate aerosol from industrial regions of Europe or North America to remote areas of the North Atlantic. Despite absence of discernible dependence of optical depth or albedo on modeled sulfate loading, examination of the dependence of these quantities on LWP readily permits detection and quantification of increases correlated with sulfate loading, which are otherwise masked by variability of LWP, demonstrating brightening of clouds because of the Twomey effect on a synoptic scale. Median cloud-top spherical albedo was enhanced over these episodes, relative to the unperturbed base case for the same LWP distribution, by 0.02 to 0.15. PMID:11854481

  17. An Earth albedo model: A mathematical model for the radiant energy input to an orbiting spacecraft due to the diffuse reflectance of solar radiation from the Earth below

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas W.; Moore, Wendy A.

    1994-01-01

    Past missions have shown that the earth's albedo can have a significant effect on the sun sensors used for spacecraft attitude control information. In response to this concern, an algorithm was developed to simulate this phenomenon, consisting of two parts, the physical model of albedo and its effect on the sun sensors. This paper contains the theoretical development of this model, practical operational notes, and its implementation in a FORTRAN subroutine.

  18. Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates

    NASA Astrophysics Data System (ADS)

    Skiles, S. Mckenzie; Painter, Thomas H.; Deems, Jeffrey S.; Bryant, Ann C.; Landry, Christopher C.

    2012-07-01

    Here we present the radiative and snowmelt impacts of dust deposition to snow cover using a 6-year energy balance record (2005-2010) at alpine and subalpine micrometeorological towers in the Senator Beck Basin Study Area (SBBSA) in southwestern Colorado, USA. These results follow from the measurements described in part I. We simulate the evolution of snow water equivalent at each station under scenarios of observed and dust-free conditions, and +2°C and +4°C melt-season temperature perturbations to these scenarios. Over the 6 years of record, daily mean dust radiative forcing ranged from 0 to 214 W m-2, with hourly peaks up to 409 W m-2. Mean springtime dust radiative forcings across the period ranged from 31 to 49 W m-2 at the alpine site and 45 to 75 W m-2 at the subalpine site, in turn shortening snow cover duration by 21 to 51 days. The dust-advanced loss of snow cover (days) is linearly related to total dust concentration at the end of snow cover, despite temporal variability in dust exposure and solar irradiance. Under clean snow conditions, the temperature increases shorten snow cover by 5-18 days, whereas in the presence of dust they only shorten snow duration by 0-6 days. Dust radiative forcing also causes faster and earlier peak snowmelt outflow with daily mean snowpack outflow doubling under the heaviest dust conditions. On average, snow cover at the towers is lost 2.5 days after peak outflow in dusty conditions, and 1-2 weeks after peak outflow in clean conditions.

  19. Absorbing Aerosols Above Cloud: Detection, Quantitative Retrieval, and Radiative Forcing from Satellite-based Passive Sensors

    NASA Astrophysics Data System (ADS)

    Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.

    2012-12-01

    , respectively. This study constitutes the first attempt to use non-polarized and non-lidar reflectance observations-both of them shown to have above-cloud aerosols retrieval capability, to retrieve above-cloud AOT by a passive non-polarized sensor. The uncertainty analysis suggests that the present method should retrieve above-cloud AOT within -10% to 50% which mainly arises due to uncertainty associated with the single-scattering albedo assumption. Although, currently tested by making use of OMI and MODIS measurements, the present color ratio method can be equally applied to the other satellite measurements that carry similar or near-by channels in VIS region of the spectrum such as MISR and NPP/VIIRS. The capability of quantifying the above-cloud aerosol load will facilitate several aspects of cloud-aerosol interaction research such as estimation of the direct radiative forcing of aerosols above clouds; the sign of which can be opposite (warming) to cloud-free aerosol forcing (cooling), aerosol transport, indirect effects of aerosols on clouds, and hydrological cycle.

  20. Do Diurnal Aerosol Changes Affect Daily Average Radiative Forcing?

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

    2013-06-17

    Strong diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29 days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project (TCAP) on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF, when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing.

  1. Do diurnal aerosol changes affect daily average radiative forcing?

    NASA Astrophysics Data System (ADS)

    Kassianov, Evgueni; Barnard, James; Pekour, Mikhail; Berg, Larry K.; Michalsky, Joseph; Lantz, Kathy; Hodges, Gary

    2013-06-01

    diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29 days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing.

  2. Observational determination of albedo decrease caused by vanishing Arctic sea ice.

    PubMed

    Pistone, Kristina; Eisenman, Ian; Ramanathan, V

    2014-03-01

    The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m(2) of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming. PMID:24550469

  3. NASA Airborne Snow Observatory: Measuring Spatial Distribution of Snow Water Equivalent and Snow Albedo

    NASA Astrophysics Data System (ADS)

    Joyce, M.; Painter, T. H.; Mattmann, C. A.; Ramirez, P.; Laidlaw, R.; Bormann, K. J.; Skiles, M.; Richardson, M.; Berisford, D. F.

    2015-12-01

    The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still largely unquantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. NASA Jet Propulsion Laboratory, in partnership with the California Department of Water Resources, has developed the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties for cutting edge cryospheric science, and provide complete, robust inputs to water management models and systems of the future. This poster will describe the NASA Airborne Snow Observatory, its outputs and their uses and applications, along with recent advancements to the system and plans for the project's future. Specifically, we will look at how ASO uses its imaging spectrometer to quantify spectral albedo, broadband albedo, and radiative forcing by dust and black carbon in snow. Additionally, we'll see how the scanning LiDAR is used to determine snow depth against snow-free acquisitions and to quantify snow water equivalent when combined with in-situ constrained modeling of snow density.

  4. Climate Response of Direct Radiative Forcing of Anthropogenic Black Carbon

    NASA Technical Reports Server (NTRS)

    Chung, Serena H.; Seinfeld,John H.

    2008-01-01

    The equilibrium climate effect of direct radiative forcing of anthropogenic black carbon (BC) is examined by 100-year simulations in the Goddard Institute for Space Studies General Circulation Model II-prime coupled to a mixed-layer ocean model. Anthropogenic BC is predicted to raise globally and annually averaged equilibrium surface air temperature by 0.20 K if BC is assumed to be externally mixed. The predicted increase is significantly greater in the Northern Hemisphere (0.29 K) than in the Southern Hemisphere (0.11 K). If BC is assumed to be internally mixed with the present day level of sulfate aerosol, the predicted annual mean surface temperature increase rises to 0.37 K globally, 0.54 K for the Northern Hemisphere, and 0.20 K for the Southern Hemisphere. The climate sensitivity of BC direct radiative forcing is calculated to be 0.6 K W (sup -1) square meters, which is about 70% of that of CO2, independent of the assumption of BC mixing state. The largest surface temperature response occurs over the northern high latitudes during winter and early spring. In the tropics and midlatitudes, the largest temperature increase is predicted to occur in the upper troposphere. Direct radiative forcing of anthropogenic BC is also predicted to lead to a change of precipitation patterns in the tropics; precipitation is predicted to increase between 0 and 20 N and decrease between 0 and 20 S, shifting the intertropical convergence zone northward. If BC is assumed to be internally mixed with sulfate instead of externally mixed, the change in precipitation pattern is enhanced. The change in precipitation pattern is not predicted to alter the global burden of BC significantly because the change occurs predominantly in regions removed from BC sources.

  5. Bidirectional Reflectance of a Macroscopically Flat, High-Albedo Particulate Surface: An Efficient Radiative Transfer Solution and Applications to Regoliths

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Zakharova, Nadia T.

    1999-01-01

    Many remote sensing applications rely on accurate knowledge of the bidirectional reflection function (BRF) of surfaces composed of discrete, randomly positioned scattering particles. Theoretical computations of BRFs for plane-parallel particulate layers are usually reduced to solving the radiative transfer equation (RTE) using one of existing exact or approximate techniques. Since semi-empirical approximate approaches are notorious for their low accuracy, violation of the energy conservation law, and ability to produce unphysical results, the use of numerically exact solutions of RTE has gained justified popularity. For example, the computation of BRFs for macroscopically flat particulate surfaces in many geophysical publications is based on the adding-doubling (AD) and discrete ordinate (DO) methods. A further saving of computer resources can be achieved by using a more efficient technique to solve the plane-parallel RTE than the AD and DO methods. Since many natural particulate surfaces can be well represented by the model of an optically semi-infinite, homogeneous scattering layer, one can find the BRF directly by solving the Ambartsumian's nonlinear integral equation using a simple iterative technique. In this way, the computation of the internal radiation field is avoided and the computer code becomes highly efficient and very accurate and compact. Furthermore, the BRF thus obtained fully obeys the fundamental physical laws of energy conservation and reciprocity. In this paper, we discuss numerical aspects and the computer implementation of this technique, examine the applicability of the Henyey-Greenstein phase function and the sigma-Eddington approximation in BRF and flux calculations, and describe sample applications demonstrating the potential effect of particle shape on the bidirectional reflectance of flat regolith surfaces. Although the effects of packing density and coherent backscattering are currently neglected, they can also be incorporated. The

  6. Radiation force on a single atom in a cavity

    NASA Technical Reports Server (NTRS)

    Kim, M. S.

    1992-01-01

    We consider the radiation pressure microscopically. Two perfectly conducting plates are parallelly placed in a vacuum. As the vacuum field hits the plates they get pressure from the vacuum. The excessive outside modes of the vacuum field push the plates together, which is known as the Casimer force. We investigate the quantization of the standing wave between the plates to study the interaction between this wave and the atoms on the plates or between the plates. We show that even the vacuum field pushes the atom to place it at nodes of the standing wave.

  7. Nonlinear aspects of acoustic radiation force in biomedical applications

    SciTech Connect

    Ostrovsky, Lev; Tsyuryupa, Sergey; Sarvazyan, Armen

    2015-10-28

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual “finger” for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.

  8. Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Rajan K.; Gyawali, Madhu; Yatavelli, Reddy L. N.; Pandey, Apoorva; Watts, Adam C.; Knue, Joseph; Chen, Lung-Wen A.; Pattison, Robert R.; Tsibart, Anna; Samburova, Vera; Moosmüller, Hans

    2016-03-01

    The surface air warming over the Arctic has been almost twice as much as the global average in recent decades. In this region, unprecedented amounts of smoldering peat fires have been identified as a major emission source of climate-warming agents. While much is known about greenhouse gas emissions from these fires, there is a knowledge gap on the nature of particulate emissions and their potential role in atmospheric warming. Here, we show that aerosols emitted from burning of Alaskan and Siberian peatlands are predominantly brown carbon (BrC) - a class of visible light-absorbing organic carbon (OC) - with a negligible amount of black carbon content. The mean fuel-based emission factors for OC aerosols ranged from 3.8 to 16.6 g kg-1. Their mass absorption efficiencies were in the range of 0.2-0.8 m2 g-1 at 405 nm (violet) and dropped sharply to 0.03-0.07 m2 g-1 at 532 nm (green), characterized by a mean Ångström exponent of ≈ 9. Electron microscopy images of the particles revealed their morphologies to be either single sphere or agglomerated "tar balls". The shortwave top-of-atmosphere aerosol radiative forcing per unit optical depth under clear-sky conditions was estimated as a function of surface albedo. Only over bright surfaces with albedo greater than 0.6, such as snow cover and low-level clouds, the emitted aerosols could result in a net warming (positive forcing) of the atmosphere.

  9. Black Carbon Vertical Profiles Strongly Affect Its Radiative Forcing Uncertainty

    NASA Technical Reports Server (NTRS)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2013-01-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  10. Black Carbon Vertical Profiles Strongly Affect its Radiative Forcing Uncertainty

    SciTech Connect

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, Susanne E.; Berntsen, T.; Bian, Huisheng; Bellouin, N.; Diehl, T.; Easter, Richard C.; Ghan, Steven J.; Iversen, T.; Kinne, Stefan; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, Xiaohong; Penner, Joyce E.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, Kai

    2013-03-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  11. Historical anthropogenic radiative forcing of changes in biogenic secondary aerosol

    NASA Astrophysics Data System (ADS)

    Acosta Navarro, Juan; D'Andrea, Stephen; Pierce, Jeffrey; Ekman, Annica; Struthers, Hamish; Zorita, Eduardo; Guenther, Alex; Arneth, Almut; Smolander, Sampo; Kaplan, Jed; Farina, Salvatore; Scott, Catherine; Rap, Alexandru; Farmer, Delphine; Spracklen, Domink; Riipinen, Ilona

    2016-04-01

    Human activities have lead to changes in the energy balance of the Earth and the global climate. Changes in atmospheric aerosols are the second largest contributor to climate change after greenhouse gases since 1750 A.D. Land-use practices and other environmental drivers have caused changes in the emission of biogenic volatile organic compounds (BVOCs) and secondary organic aerosol (SOA) well before 1750 A.D, possibly causing climate effects through aerosol-radiation and aerosol-cloud interactions. Two numerical emission models LPJ-GUESS and MEGAN were used to quantify the changes in aerosol forming BVOC emissions in the past millennium. A chemical transport model of the atmosphere (GEOS-Chem-TOMAS) was driven with those BVOC emissions to quantify the effects on radiation caused by millennial changes in SOA. We found that global isoprene emissions decreased after 1800 A.D. by about 12% - 15%. This decrease was dominated by losses of natural vegetation, whereas monoterpene and sesquiterpene emissions increased by about 2% - 10%, driven mostly by rising surface air temperatures. From 1000 A.D. to 1800 A.D, isoprene, monoterpene and sesquiterpene emissions decline by 3% - 8% driven by both, natural vegetation losses, and the moderate global cooling between the medieval climate anomaly and the little ice age. The millennial reduction in BVOC emissions lead to a 0.5% to 2% reduction in climatically relevant aerosol particles (> 80 nm) and cause a direct radiative forcing between +0.02 W/m² and +0.07 W/m², and an indirect radiative forcing between -0.02 W/m² and +0.02 W/m².

  12. Impact of springtime biomass-burning aerosols on radiative forcing over northern Thailand during the 7SEAS campaign

    NASA Astrophysics Data System (ADS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Lee, Chung-Te; Tsay, Si-Chee; Holben, Brent; Janjai, Serm; Hsiao, Ta-Chih; Chuang, Ming-Tung; Chantara, Somporn

    2016-04-01

    Biomass-burning (BB) aerosols are the significant contributor to the regional/global aerosol loading and radiation budgets. BB aerosols affect the radiation budget of the earth and atmosphere by scattering and absorbing directly the incoming solar and outgoing terrestrial radiation. These aerosols can exert either cooling or warming effect on climate, depending on the balance between scattering and absorption. BB activities in the form of wildland forest fires and agricultural crop burning are very pronounced in the Indochina peninsular regions in Southeast Asia mainly in spring (late February to April) season. The region of interest includes Doi Ang Khang (19.93° N, 99.05° E, 1536 msl) in northern Thailand, as part of the Seven South East Asian Studies (7-SEAS)/BASELInE (Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment) campaign in 2013. In this study, for the first time, the direct aerosol radiative effects of BB aerosols over near-source BB emissions, during the peak loading spring season, in northern Indochina were investigated by using ground-based physical, chemical, and optical properties of aerosols as well as the aerosol optical and radiative transfer models. Information on aerosol parameters in the field campaign was used in the OPAC (Optical Properties of Aerosols and Clouds) model to estimate various optical properties corresponding to aerosol compositions. Clear-sky shortwave direct aerosol radiative effects were further estimated with a raditive transfer model SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer). The columnar aerosol optical depth (AOD500) was found to be ranged from 0.26 to 1.13 (with the mean value 0.71 ± 0.24). Fine-mode (fine mode fraction ≈0.98, angstrom exponent ≈1.8) and significantly absorbing aerosols (columnar single-scattering albedo ≈0.89, asymmetry-parameter ≈0.67 at 441 nm wavelength) dominated in this region. Water soluble and black carbon (BC) aerosols mainly

  13. Albedo in the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Sokolskaya, N. V.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.; Six, N. Frank (Technical Monitor)

    2002-01-01

    ATIC(Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first 16-day flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2000. The ATIC flight collected approximately 25 million events. To measure charge of primary particle in presence of radiation scattered back from the interaction and subsequent shower development in the calorimeter a charge detector must be a mosaic of small detector pads so that the pad containing the signal from the incident particle has no additional signal from albedo particles. Therefore the silicon matrix was built of 4480 individual silicon pads each 2 cm x 1.5 cm. The matrix consists of four planes of detectors and the active detector area, in these planes are partially overlapped to completely cover the aperture. The lateral and amplitude distributions of albedo signals in Si-matrix are analyzed for different primary nuclei and different energy deposits in BGO calorimeter. The greater part of albedo signals has Q near 1, where Q = square root of Amplitude(MIP). The albedo distribution exponentially decreases up to Q near 8. These high values are produced by slow protons and plans. There are also a small number of signals of Q > 8, mainly for heavy nucleus primaries. These signals are apparently generated by neutrons. The comparison of the experimental data and simulations with GEANT 3-21 code using QGSM generator for nucleus-nucleus interactions is presented.

  14. Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Stier, P.; Zhang, K.; Quaas, J.; Kinne, S.; O'Donnell, D.; Rast, S.; Esch, M.; Ferrachat, S.; Lohmann, U.; Feichter, J.

    2010-11-01

    Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative forcing. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are -1.15 W/m2 for charged H2SO4/H2O nucleation, -0.235 W/m2 for cluster activation, and -0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is -2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with -2.18 W/m2 to total absorbed solar short-wave radiation, compared to -0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative forcing over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local

  15. Temperature rise and safety considerations for radiation force ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Herman, Bruce A.; Harris, Gerald R.

    2002-11-01

    Current models for estimating temperature increase during ultrasound exposure calculate the steady-state rise, using time-averaged acoustic output, as the worst case for safety consideration. While valid for the typically very short (microsecond) pulses used by conventional diagnostic techniques, this analysis does not necessarily correspond to a worst case scenario for the longer pulses or pulse bursts used by a new method, radiation force imaging. Radiation force imaging, employing ultrasound pulse durations up to hundreds of milliseconds, produces and detects motion in solid tissue or acoustic streaming in fluids via a high intensity beam. Models that calculate the transient temperature rise from these pulses are developed for both the bone at focus and soft tissue cases. Based on accepted time-temperature dose criteria, it is shown that for pulse lengths and intensities utilized by this technique, temperature may increase to levels that raise safety concerns for bone at the focus of the ultrasound beam. Also, the impact on this modality of the current U.S. Food and Drug Administration output limits for diagnostic ultrasound devices is discussed.

  16. A Continental United States High Resolution NLCD Land Cover – MODIS Albedo Database to Examine Albedo and Land Cover Change Relationships

    EPA Science Inventory

    Surface albedo influences climate by affecting the amount of solar radiation that is reflected at the Earth’s surface, and surface albedo is, in turn, affected by land cover. General Circulation Models typically use modeled or prescribed albedo to assess the influence of land co...

  17. Radiative forcing in the ACCMIP historical and future climate simulations

    SciTech Connect

    Shindell, D. T.; Lamarque, J. -F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P. J.; Lee, Y. H.; Rotstayn, L.; Mahowald, N.; Milly, G.; Faluvegi, G.; Balkanski, Y.; Collins, W. J.; Conley, A. J.; Dalsoren, S.; Easter, R.; Ghan, S.; Horowitz, L.; Liu, X.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S. T.; Skeie, R.; Sudo, K.; Szopa, S.; Takemura, T.; Voulgarakis, A.; Yoon, J. -H.; Lo, F.

    2013-01-01

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The models reproduce present-day total aerosol optical depth (AOD) relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980-2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF) and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects). The models’ all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range) -0.26Wm-2-2. Screening based on model skill in capturing observed AOD yields a best estimate of -0.42Wm-2-2-2-2forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global

  18. Contrasting regional versus global radiative forcing by megacity pollution emissions

    NASA Astrophysics Data System (ADS)

    Dang, H.; Unger, N.

    2015-10-01

    We assess the regional and global integrated radiative forcing on 20- and 100-year time horizons caused by a one-year pulse of present day pollution emissions from 10 megacity areas: Los Angeles, Mexico City, New York City, Sao Paulo, Lagos, Cairo, New Delhi, Beijing, Shanghai and Manila. The assessment includes well-mixed greenhouse gases: carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4); and short-lived climate forcers: tropospheric ozone (O3) and fine mode aerosol particles (sulfate, nitrate, black carbon, primary and secondary organic aerosol). All megacities contribute net global warming on both time horizons. Most of the 10 megacity areas exert a net negative effect on their own regional radiation budget that is 10-100 times larger in magnitude than their global radiative effects. Of the cities examined, Beijing, New Delhi, Shanghai and New York contribute most to global warming with values ranging from +0.03 to 0.05 Wm-2yr on short timescales and +0.07-0.10 Wm-2yr on long timescales. Regional net 20-year radiative effects are largest for Mexico City (-0.84 Wm-2yr) and Beijing (-0.78 Wm-2yr). Megacity reduction of non-CH4 O3 precursors to improve air quality offers zero co-benefits to global climate. Megacity reduction of aerosols to improve air quality offers co-benefits to the regional radiative budget but minimal or no co-benefits to global climate with the exception of black carbon reductions in a few cities, especially Beijing and New Delhi. Results suggest that air pollution and global climate change mitigation can be treated as separate environmental issues in policy at the megacity level with the exception of CH4 action. Individual megacity reduction of CO2 and CH4 emissions can mitigate global warming and therefore offers climate safety improvements to the entire planet.

  19. Global Cooling: Increasing World-Wide Urban Albedos to Offset CO2

    SciTech Connect

    Akbari, Hashem; Menon, Surabi; Rosenfeld, Arthur

    2008-01-14

    Modification of urban albedos reduces summertime urban temperatures, resulting in a better urban air quality and building air-conditioning savings. Furthermore, increasing urban albedos has the added benefit of reflecting some of the incoming global solar radiation and countering to some extent the effects of global warming. In many urban areas, pavements and roofs constitute over 60% of urban surfaces (roof 20-25%, pavements about 40%). Using reflective materials, both roof and the pavement albedos can be increased by about 0.25 and 0.10, respectively, resulting in a net albedo increase for urban areas of about 0.1. Many studies have demonstrated building cooling-energy savings in excess of 20% upon raising roof reflectivity from an existing 10-20% to about 60% (a U.S. potential savings in excess of $1 billion (B) per year in net annual energy bills). On a global basis, our preliminary estimate is that increasing the world-wide albedos of urban roofs and paved surfaces will induce a negative radiative forcing on the earth equivalent to removing {approx} 22-40 Gt of CO{sub 2} from the atmosphere. Since, 55% of the emitted CO{sub 2} remains in the atmosphere, removal of 22-40 Gt of CO{sub 2} from the atmosphere is equivalent to reducing global CO{sub 2} emissions by 40-73 Gt. At {approx} $25/tonne of CO{sub 2}, a 40-73 Gt CO{sub 2} emission reduction from changing the albedo of roofs and paved surfaces is worth about $1,000B to 1800B. These estimated savings are dependent on assumptions used in this study, but nevertheless demonstrate considerable benefits that may be obtained from cooler roofs and pavements.

  20. Radiation Force Caused by Scattering, Absorption, and Emission of Light by Nonspherical Particles

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)

    2001-01-01

    General formulas for computing the radiation force exerted on arbitrarily oriented and arbitrarily shaped nonspherical particles due to scattering, absorption, and emission of electromagnetic radiation are derived. For randomly oriented particles with a plane of symmetry, the formula for the average radiation force caused by the particle response to external illumination reduces to the standard Debye formula derived from the Lorenz-Mie theory, whereas the average radiation force caused by emission vanishes.

  1. Aerosol and ozone radiative forcing 1990-2015

    NASA Astrophysics Data System (ADS)

    Myhre, Cathrine Lund; Myhre, Gunnar; Samset, Bjørn H.; Schulz, Michael

    2016-04-01

    The regional changes in economic growth and pollution regulations have caused large changes in the geographical distribution of emissions of precursors and components affecting the radiation balance. Here we use recently updated emission data over the 1990-2015 period in eight global aerosol models to simulate aerosol and ozone changes and their radiative forcing. The models reproduce the general large-scale changes in aerosol and ozone changes over this period. The surface particle mass changes is simulated to 2-3 %/yr for the total fine particle concentration over main industrialized regions. Six models simulated changes in PM2.5 (particulate matter with aerodynamic diameters less 2.5 μm) over the 1990-2015 period. Observations of changes in PM2.5 are available for selected regions and time periods. The available PM2.5 trends from observations and model mean results are compared and for Europe the observed trend is 20% stronger than the model-mean over the 2000-2010 period. Over the 1990-2010 period the US observed changes are 13% lower than the simulated changes. Despite this relatively promising result, the agreement over US for the 2000-2010 period is poor. The reasons for this will be further explored. The forcing for ozone and aerosols increase over the 1990-2015 period and more positive relative to results in IPCC AR5. The main reason for a positive aerosol forcing over this period is explained by a substantial reduction of global mean SO2 emissions, in parallel with increasing black carbon emissions.

  2. Radiative Forcing in the ACCMIP Historical and Future Climate Simulations

    NASA Technical Reports Server (NTRS)

    Shindell, Drew Todd; Lamarque, J.-F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P. J.; Lee, Y. H.; Rotstayn, L.; Mahowald, N.; Milly, G.; Faluvegi, G.; Balkanski, Y.; Collins, W. J.; Conley, A. J.; Dalsoren, S.; Easter, R.; Ghan, S.; Horowitz, L.; Liu, X.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S. T.; Skeie, R.; Voulgarakis, A.

    2013-01-01

    A primary goal of the Atmospheric Chemistry and Climate Model IntercomparisonProject (ACCMIP) was to characterize the short-lived drivers of preindustrial to 2100climate change in the current generation of climate models. Here we evaluate historicaland 5 future radiative forcing in the 10 ACCMIP models that included aerosols, 8 of whichalso participated in the Coupled Model Intercomparison Project phase 5 (CMIP5).The models generally reproduce present-day climatological total aerosol opticaldepth (AOD) relatively well. components to this total, however, and most appear to underestimate AOD over East10 Asia. The models generally capture 1980-2000 AOD trends fairly well, though theyunderpredict AOD increases over the YellowEastern Sea. They appear to strongly underestimate absorbing AOD, especially in East Asia, South and Southeast Asia, SouthAmerica and Southern Hemisphere Africa.We examined both the conventional direct radiative forcing at the tropopause (RF) and the forcing including rapid adjustments (adjusted forcing AF, including direct andindirect effects). The models calculated all aerosol all-sky 1850 to 2000 global meanannual average RF ranges from 0.06 to 0.49 W m(sup -2), with a mean of 0.26 W m(sup -2) and a median of 0.27 W m(sup -2. Adjusting for missing aerosol components in some modelsbrings the range to 0.12 to 0.62W m(sup -2), with a mean of 0.39W m(sup -2). Screen20ing the models based on their ability to capture spatial patterns and magnitudes ofAOD and AOD trends yields a quality-controlled mean of 0.42W m(sup -2) and range of0.33 to 0.50 W m(sup -2) (accounting for missing components). The CMIP5 subset of ACCMIPmodels spans 0.06 to 0.49W m(sup -2), suggesting some CMIP5 simulations likelyhave too little aerosol RF. A substantial, but not well quantified, contribution to histori25cal aerosol RF may come from climate feedbacks (35 to 58). The mean aerosol AF during this period is 1.12W m(sup -2) (median value 1.16W m(sup -2), range 0.72 to1.44W m

  3. Analysis of clot formation with acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Longo, Diane M.; Lawrence, Michael B.; Walker, William F.

    2002-04-01

    Inappropriate blood coagulation plays an important role in diseases including stroke, heart attack, and deep vein thrombosis (DVT). DVT arises when a blood clot forms in a large vein of the leg. DVT is detrimental because the blood flow may be partially or completely obstructed. More importantly, a potentially fatal situation may arise if part of the clot travels to the arteries in the lungs, forming a pulmonary embolism (PE). Characterization of the mechanical properties of DVT could improve diagnosis and suggest appropriate treatment. We are developing a technique to assess mechanical properties of forming thrombi. The technique uses acoustic radiation force as a means to produce small, localized displacements within the sample. Returned ultrasound echoes are processed to estimate the time dependent displacement of the sample. Appropriate mechanical modeling and signal processing produce plots depicting relative mechanical properties (relative elasticity and relative viscosity) and force-free parameters (time constant, damping ratio, and natural frequency). We present time displacement curves of blood samples obtained during coagulation, and show associated relative and force-free parameter plots. These results show that the Voigt model with added mass accurately characterizes blood behavior during clot formation.

  4. Sea ice-albedo climate feedback mechanism

    SciTech Connect

    Schramm, J.L.; Curry, J.A.; Ebert, E.E.

    1995-02-01

    The sea ice-albedo feedback mechanism over the Arctic Ocean multiyear sea ice is investigated by conducting a series of experiments using several one-dimensional models of the coupled sea ice-atmosphere system. In its simplest form, ice-albedo feedback is thought to be associated with a decrease in the areal cover of snow and ice and a corresponding increase in the surface temperature, further decreasing the area cover of snow and ice. It is shown that the sea ice-albedo feedback can operate even in multiyear pack ice, without the disappearance of this ice, associated with internal processes occurring within the multiyear ice pack (e.g., duration of the snow cover, ice thickness, ice distribution, lead fraction, and melt pond characteristics). The strength of the ice-albedo feedback mechanism is compared for several different thermodynamic sea ice models: a new model that includes ice thickness distribution., the Ebert and Curry model, the Mayjut and Untersteiner model, and the Semtner level-3 and level-0 models. The climate forcing is chosen to be a perturbation of the surface heat flux, and cloud and water vapor feedbacks are inoperative so that the effects of the sea ice-albedo feedback mechanism can be isolated. The inclusion of melt ponds significantly strengthens the ice-albedo feedback, while the ice thickness distribution decreases the strength of the modeled sea ice-albedo feedback. It is emphasized that accurately modeling present-day sea ice thickness is not adequate for a sea ice parameterization; the correct physical processes must be included so that the sea ice parameterization yields correct sensitivities to external forcing. 22 refs., 6 figs., 1 tab.

  5. Global direct radiative forcing by process-parameterized aerosol optical properties

    NASA Astrophysics Data System (ADS)

    KirkevâG, Alf; Iversen, Trond

    2002-10-01

    A parameterization of aerosol optical parameters is developed and implemented in an extended version of the community climate model version 3.2 (CCM3) of the U.S. National Center for Atmospheric Research. Direct radiative forcing (DRF) by monthly averaged calculated concentrations of non-sea-salt sulfate and black carbon (BC) is estimated. Inputs are production-specific BC and sulfate from [2002] and background aerosol size distribution and composition. The scheme interpolates between tabulated values to obtain the aerosol single scattering albedo, asymmetry factor, extinction coefficient, and specific extinction coefficient. The tables are constructed by full calculations of optical properties for an array of aerosol input values, for which size-distributed aerosol properties are estimated from theory for condensation and Brownian coagulation, assumed distribution of cloud-droplet residuals from aqueous phase oxidation, and prescribed properties of the background aerosols. Humidity swelling is estimated from the Köhler equation, and Mie calculations finally yield spectrally resolved aerosol optical parameters for 13 solar bands. The scheme is shown to give excellent agreement with nonparameterized DRF calculations for a wide range of situations. Using IPCC emission scenarios for the years 2000 and 2100, calculations with an atmospheric global cliamte model (AFCM) yield a global net anthropogenic DRF of -0.11 and 0.11 W m-2, respectively, when 90% of BC from biomass burning is assumed anthropogenic. In the 2000 scenario, the individual DRF due to sulfate and BC has separately been estimated to -0.29 and 0.19 W m-2, respectively. Our estimates of DRF by BC per BC mass burden are lower than earlier published estimates. Some sensitivity tests are included to investigate to what extent uncertain assumptions may influence these results.

  6. WRF-Chem Simulations of Aerosols and Anthropogenic Aerosol Radiative Forcing in East Asia

    SciTech Connect

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, Lai-Yung R.

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at different sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korean, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 um or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan due to the pollutant transport from polluted area of East Asia. AOD is high over Southwest and Central China in winter, spring and autumn and over North China in summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. The model also captures the dust events at the Zhangye site in the semi-arid region of China. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over ocean at the top of atmosphere (TOA), 5 to 30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO4 2-, NO3 - and NH4+. Positive BC RF at TOA compensates 40~50% of the TOA cooling associated with anthropogenic aerosol.

  7. Toward Standardized Acoustic Radiation Force (ARF)-Based Ultrasound Elasticity Measurements With Robotic Force Control

    PubMed Central

    Kumar, Shalki; Lily, Kuo; Sen, H. Tutkun; Iordachita, Iulian; Kazanzides, Peter

    2016-01-01

    Objective Acoustic radiation force (ARF)-based approaches to measure tissue elasticity require transmission of a focused high-energy acoustic pulse from a stationary ultrasound probe and ultrasound-based tracking of the resulting tissue displacements to obtain stiffness images or shear wave speed estimates. The method has established benefits in biomedical applications such as tumor detection and tissue fibrosis staging. One limitation, however, is the dependence on applied probe pressure, which is difficult to control manually and prohibits standardization of quantitative measurements. To overcome this limitation, we built a robot prototype that controls probe contact forces for shear wave speed quantification. Methods The robot was evaluated with controlled force increments applied to a tissue-mimicking phantom and in vivo abdominal tissue from three human volunteers. Results The root-mean-square error between the desired and measured forces was 0.07 N in the phantom and higher for the fatty layer of in vivo abdominal tissue. The mean shear wave speeds increased from 3.7 to 4.5 m/s in the phantom and 1.0 to 3.0 m/s in the in vivo fat for compressive forces ranging from 2.5 to 30 N. The standard deviation of shear wave speeds obtained with the robotic approach were low in most cases (< 0.2 m/s) and comparable to that obtained with a semiquantitative landmark-based method. Conclusion Results are promising for the introduction of robotic systems to control the applied probe pressure for ARF-based measurements of tissue elasticity. Significance This approach has potential benefits in longitudinal studies of disease progression, comparative studies between patients, and large-scale multidimensional elasticity imaging. PMID:26552071

  8. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations

    SciTech Connect

    Qian, Yun; Gustafson, William I.; Leung, Lai-Yung R.; Ghan, Steven J.

    2009-02-14

    Radiative forcing induced by soot on snow is a major anthropogenic forcing affecting the global climate. However, it is uncertain how the soot-induced snow albedo perturbation affects regional snowpack and the hydrological cycle. In this study we simulated the deposition of soot aerosol on snow and investigated the resulting impact on snowpack and the surface water budget in the western United States. A yearlong simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine an annual budget of soot deposition, followed by two regional climate simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the net solar radiation flux at the surface during late winter to early spring, increase the surface air temperature, reduce snow water equivalent amount, and lead to reduced snow accumulation and less spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow covered regions. Our simulations indicate that the change of maximum snow albedo induced by soot on snow contributes to 60% of the net albedo reduction over the central Rockies. Snowpack reduction accounts for the additional 40%.

  9. Change in Urban Albedo in London: A Multi-scale Perspective

    NASA Astrophysics Data System (ADS)

    Susca, T.; Kotthaus, S.; Grimmond, S.

    2013-12-01

    Urbanization-induced change in land use has considerable implications for climate, air quality, resources and ecosystems. Urban-induced warming is one of the most well-known impacts. This directly and indirectly can extend beyond the city. One way to reduce the size of this is to modify the surface atmosphere exchanges through changing the urban albedo. As increased rugosity caused by the morphology of a city results in lower albedo with constant material characteristics, the impacts of changing the albedo has impacts across a range of scales. Here a multi-scale assessment of the potential effects of the increase in albedo in London is presented. This includes modeling at the global and meso-scale informed by local and micro-scale measurements. In this study the first order calculations are conducted for the impact of changing the albedo (e.g. a 0.01 increase) on the radiative exchange. For example, when incoming solar radiation and cloud cover are considered, based on data retrieved from NASA (http://power.larc.nasa.gov/) for ~1600 km2 area of London, would produce a mean decrease in the instantaneous solar radiative forcing on the same surface of 0.40 W m-2. The nature of the surface is critical in terms of considering the impact of changes in albedo. For example, in the Central Activity Zone in London pavement and building can vary from 10 to 100% of the plan area. From observations the albedo is seen to change dramatically with changes in building materials. For example, glass surfaces which are being used increasingly in the central business district results in dramatic changes in albedo. Using the documented albedo variations determined across different scales the impacts are considered. For example, the effect of the increase in urban albedo is translated into the corresponding amount of avoided emission of carbon dioxide that produces the same effect on climate. At local scale, the effect that the increase in urban albedo can potentially have on local

  10. Radiative forcing in the ACCMIP historical and future climate simulations

    NASA Astrophysics Data System (ADS)

    Shindell, D. T.; Lamarque, J.-F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P.; Lee, Y. H.; Rotstayn, L.; Milly, G.; Faluvegi, G.; Balkanski, Y.; Collins, W. J.; Conley, A. J.; Dalsoren, S.; Easter, R.; Ghan, S.; Horowitz, L.; Liu, X.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S.; Skeie, R.; Sudo, K.; Szopa, S.; Takemura, T.; Voulgarakis, A.; Yoon, J.-H.

    2012-08-01

    A primary goal of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) was to characterize the short-lived drivers of preindustrial to 2100 climate change in the current generation of climate models. Here we evaluate historical and future radiative forcing in the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The models generally reproduce present-day climatological total aerosol optical depth (AOD) relatively well. They have quite different contributions from various aerosol components to this total, however, and most appear to underestimate AOD over East Asia. The models generally capture 1980-2000 AOD trends fairly well, though they underpredict AOD increases over the Yellow/Eastern Sea. They appear to strongly underestimate absorbing AOD, especially in East Asia, South and Southeast Asia, South America and Southern Hemisphere Africa. We examined both the conventional direct radiative forcing at the tropopause (RF) and the forcing including rapid adjustments (adjusted forcing; AF, including direct and indirect effects). The models' calculated all aerosol all-sky 1850 to 2000 global mean annual average RF ranges from -0.06 to -0.49 W m-2, with a mean of -0.26 W m-2 and a median of -0.27 W m-2. Adjusting for missing aerosol components in some models brings the range to -0.12 to -0.62 W m-2, with a mean of -0.39 W m-2. Screening the models based on their ability to capture spatial patterns and magnitudes of AOD and AOD trends yields a quality-controlled mean of -0.42 W m-2 and range of -0.33 to -0.50 W m-2 (accounting for missing components). The CMIP5 subset of ACCMIP models spans -0.06 to -0.49 W m-2, suggesting some CMIP5 simulations likely have too little aerosol RF. A substantial, but not well quantified, contribution to historical aerosol RF may come from climate feedbacks (35 to -58 %). The mean aerosol AF during this period is -1.12 W m-2 (median

  11. Characterizing the stiffness of Human Prostates using Acoustic Radiation Force

    PubMed Central

    Zhai, Liang; Madden, John; Foo, Wen-Chi; Mouraviev, Vladimir; Polascik, Thomas J.; Palmeri, Mark L.; Nightingale, Kathryn R.

    2012-01-01

    Acoustic Radiation Force Impulse (ARFI) imaging has been previously reported to portray normal anatomic structures and pathologies in ex vivo human prostates with good contrast and resolution. These findings were based on comparison with histological slides and McNeal’s zonal anatomy. In ARFI images, the central zone (CZ) appears darker (smaller displacement) than other anatomic zones, and prostate cancer (PCa) is darker than normal tissue in the peripheral zone (PZ). Since displacement amplitudes in ARFI images are determined by both the underlying tissue stiffness and the amplitude of acoustic radiation force which varies with acoustic attenuation, one question that arises is: how are the relative displacements in prostate ARFI images related to the underlying prostatic tissue stiffness? In linear, isotropic elastic materials and in tissues that are relatively uniform in acoustic attenuation (e.g. liver), relative displacement in ARFI images has been shown to be correlated with underlying tissue stiffness. However, the prostate is known to be heterogeneous. Variations in acoustic attenuation of prostatic structures could confound the interpretation of ARFI images due to the associated variations in the applied acoustic radiation force. Therefore, in this study, co-registered three-dimensional (3D) ARFI datasets and quantitative shear wave elasticity imaging (SWEI) datasets were acquired in freshly excised human prostates to investigate the relationship between displacement amplitudes in ARFI prostate images and the matched reconstructed shear moduli. The lateral time-to-peak (LTTP) algorithm was applied to the SWEI data to compute the shear wave speed and reconstruct the shear moduli. Five types of prostatic tissue (PZ, CZ, transition zone (TZ) and benign prostatic hyperplasia (BPH), PCa, and atrophy) were identified, whose shear moduli were quantified to be 4.1±0.8 kPa, 9.9±0.9 kPa, 4.8±0.6 kPa, 10.0±1.0 kPa and 8.0 kPa, respectively. Linear regression was

  12. Identifying Vulnerable Plaques with Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Doherty, Joshua Ryan

    The rupture of arterial plaques is the most common cause of ischemic complications including stroke, the fourth leading cause of death and number one cause of long term disability in the United States. Unfortunately, because conventional diagnostic tools fail to identify plaques that confer the highest risk, often a disabling stroke and/or sudden death is the first sign of disease. A diagnostic method capable of characterizing plaque vulnerability would likely enhance the predictive ability and ultimately the treatment of stroke before the onset of clinical events. This dissertation evaluates the hypothesis that Acoustic Radiation Force Impulse (ARFI) imaging can noninvasively identify lipid regions, that have been shown to increase a plaque's propensity to rupture, within carotid artery plaques in vivo. The work detailed herein describes development efforts and results from simulations and experiments that were performed to evaluate this hypothesis. To first demonstrate feasibility and evaluate potential safety concerns, finite- element method simulations are used to model the response of carotid artery plaques to an acoustic radiation force excitation. Lipid pool visualization is shown to vary as a function of lipid pool geometry and stiffness. A comparison of the resulting Von Mises stresses indicates that stresses induced by an ARFI excitation are three orders of magnitude lower than those induced by blood pressure. This thesis also presents the development of a novel pulse inversion harmonic tracking method to reduce clutter-imposed errors in ultrasound-based tissue displacement estimates. This method is validated in phantoms and was found to reduce bias and jitter displacement errors for a marked improvement in image quality in vivo. Lastly, this dissertation presents results from a preliminary in vivo study that compares ARFI imaging derived plaque stiffness with spatially registered composition determined by a Magnetic Resonance Imaging (MRI) gold standard

  13. Dust Aerosol Optical Properties Retrieval and Radiative Forcing over Northwestern China during 2008 China-US Joint Field Experiment

    NASA Astrophysics Data System (ADS)

    Ge, J.; Su, J.; Ackerman, T. P.; Fu, Q.; Huang, J.; Shi, J.

    2009-12-01

    The Atmosphere Radiation Measurements (ARM) Program’s Ancillary Facility (AAF/SMART-COMMIT) was deployed to Zhangye (39.082° N, 100.276° E), which is located in a semi-desert area of Northwest China, during the period of late April to mid June in 2008. We selected 11 cases to retrieve dust aerosol optical depth (AOD), Angstrom exponent, size distribution, single-scattering albedo (SSA) and asymmetry parameter (ASY) from Multi-filter Rotating Shadowband Radiometer (MFRSR) measurements. These cases are dominated by large particles with Angstrom exponent values ranging from 0.34 to 0.93. The values of AOD at 0.67 µm range from 0.074 to 0.249. The mean SSA value increases with wavelength from 0.76±0.02 at 0.415 µm to 0.86±0.01 at 0.867 µm, while the mean ASY value decreases from 0.74±0.04 to 0.70±0.02. Before estimating dust aerosol direct radiative forcing, a radiative closure experiment was performed to verify that the retrieved aerosol optical properties and other input parameters to the radiative transfer model appropriately represent atmospheric conditions. The daytime-averaged differences between model simulations and ground observations are -8.5, -2.9, and -2.1 Wm-2 for the total, diffuse, and direct normal fluxes, respectively. The mean difference in the instantaneous reflected solar fluxes at the top of atmosphere (TOA) between the model and CERES observations is 8.0 Wm-2. The solar aerosol direct radiative forcing (ARF), averaged over a 24-hour period, at the surface is-22.4±8.9 Wm-2, while the TOA ARF is small and has an average value of only 0.52±1.69 Wm-2. The daily-average surface aerosol radiative forcing efficiency (ARFE) at 0.5 µm is -95.1±10.3 Wm-2τ-1. Our results illustrate that the primary role of dust aerosol is to alter the distribution of solar radiation within the climate system, rather than reflecting solar energy to space. We assess the satellite aerosol optical depth products from MISR and MODIS observations by comparing them

  14. Mixing state of aerosols over the Indo-Gangetic Plain: Radiative forcing and heating rate

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Ramachandran, S.

    2012-12-01

    Aerosols are a major atmospheric variable which perturb the Earth-atmosphere radiation balance by absorbing and scattering the solar and terrestrial radiation. Aerosols are produced by natural and anthropogenic processes. The presence of different types of aerosol over a location and aerosols transported from long-range can give rise to different mixing states because of aging and interaction among the different aerosol species. Knowledge of the mixing state of aerosols is important for an accurate assessment of aerosols in climate forcing, as assumptions regarding the mixing state of aerosol and its effect on optical properties can give rise to uncertainties in modeling their direct and indirect effects [1]. Seasonal variations in mixing states of aerosols over an urban (Kanpur) and a rural location (Gandhi College) in the Indo-Gangetic Plain (IGP) are determined using the measured and modeled aerosol optical properties, and the impact of aerosol mixing state on aerosol radiative forcing are investigated. IGP is one of the most populated and polluted river basins in the world, rich in fertile lands and agricultural production. Kanpur is an urban, industrial and densely populated city, and has several large/small scale industries and vehicles, while Gandhi College in IGP is a rural village, located southeast of Kanpur. Aerosol optical properties obtained from Aerosol Robotic Network sun/sky radiometers [2] over these two environmentally distinct locations in Indo-Gangetic Plain are used in the study, along with aerosol vertical profiles obtained from CALIPSO (Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar observations. Probable mixing state of aerosols is determined utilizing the aerosol optical properties viz., aerosol optical depth, single scattering albedo and asymmetry parameter. The coated-sphere Mie calculation requires the refractive index of core and shell species, and the radius of core and shell particles. Core to shell radius

  15. Solar Radiation as Driving Force In Early Evolution

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    2002-01-01

    Ultraviolet radiation (UVR) has provided an evolutionary challenge to life on Earth in that it is both an agent of mutation and as well as a selective force. Today surface fluxes of UVR vary diurnally, seasonally, etc. Still, the UVR flux was probably substantially higher during the early phases of evolution, suggesting that its role in evolution was even more prominent during this time. In this presentation, the creative role of UVR in evolution is discussed, specifically in connection with the role that UVR may have played in the evolution of early microbial ecosystems. The presentation will include discussions of the direct influence of UVR on such processes as photosynthesis and genetic damage, as well as the indirect influence of UVR as mediated through the production of reactive oxygen species. These biological effects of UVR will be viewed against the backdrop of the physical nature of the early Earth, surely a very different place then than now.

  16. Radiation pressure force from optical cycling on a polyatomic molecule

    NASA Astrophysics Data System (ADS)

    Kozyryev, Ivan; Baum, Louis; Matsuda, Kyle; Hemmerling, Boerge; Doyle, John M.

    2016-07-01

    We demonstrate multiple photon cycling and radiative force deflection on the triatomic free radical strontium monohydroxide (SrOH). Optical cycling is achieved on SrOH in a cryogenic buffer-gas beam by employing the rotationally closed P(N\\prime\\prime =1) branch of the vibronic transition {\\tilde{X}}2{{{Σ }}}+(000)≤ftrightarrow {\\tilde{A}}2{{{\\Pi }}}1/2(000). A single repumping laser excites the Sr–O stretching vibrational mode, and photon cycling of the molecule deflects the SrOH beam by an angle of 0.2^\\circ via scattering of ∼100 photons per molecule. This approach can be used for direct laser cooling of SrOH and more complex, isoelectronic species.

  17. Acoustic Radiation Force Impulse (ARFI) Imaging-Based Needle Visualization

    PubMed Central

    Rotemberg, Veronica; Palmeri, Mark; Rosenzweig, Stephen; Grant, Stuart; Macleod, David; Nightingale, Kathryn

    2011-01-01

    Ultrasound-guided needle placement is widely used in the clinical setting, particularly for central venous catheter placement, tissue biopsy and regional anesthesia. Difficulties with ultrasound guidance in these areas often result from steep needle insertion angles and spatial offsets between the imaging plane and the needle. Acoustic Radiation Force Impulse (ARFI) imaging leads to improved needle visualization because it uses a standard diagnostic scanner to perform radiation force based elasticity imaging, creating a displacement map that displays tissue stiffness variations. The needle visualization in ARFI images is independent of needle-insertion angle and also extends needle visibility out of plane. Although ARFI images portray needles well, they often do not contain the usual B-mode landmarks. Therefore, a three-step segmentation algorithm has been developed to identify a needle in an ARFI image and overlay the needle prediction on a coregistered B-mode image. The steps are: (1) contrast enhancement by median filtration and Laplacian operator filtration, (2) noise suppression through displacement estimate correlation coefficient thresholding and (3) smoothing by removal of outliers and best-fit line prediction. The algorithm was applied to data sets from horizontal 18, 21 and 25 gauge needles between 0–4 mm offset in elevation from the transducer imaging plane and to 18G needles on the transducer axis (in plane) between 10° and 35° from the horizontal. Needle tips were visualized within 2 mm of their actual position for both horizontal needle orientations up to 1.5 mm off set in elevation from the transducer imaging plane and on-axis angled needles between 10°–35° above the horizontal orientation. We conclude that segmented ARFI images overlaid on matched B-mode images hold promise for improved needle visibility in many clinical applications. PMID:21608445

  18. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing

    USGS Publications Warehouse

    Rocha, Adrian V.; Loranty, Michael M.; Higuera, Phil E.; Mack, Michelle C.; Hu, Feng Sheng; Jones, Benjamin M.; Breen, Amy L.; Rastetter, Edward B.; Goetz, Scott J.; Shaver, Gus R.

    2012-01-01

    Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (>10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required.

  19. Statistical dependence of albedo and cloud cover on sea surface temperature for two tropical marine stratocumulus regions

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Davies, Roger

    1993-01-01

    The relationship between sea surface temperature (SST) and albedo or cloud cover is examined for two tropical regions with high values of cloud radiative forcing and persistent marine stratocumulus (mSc)-one off the west coast of Peru, the other off the west coast of Angola. The data span five years, from December 1984 to November 1989. Albedos are from the Earth Radiation Budget Experiment (ERBE), cloud covers are from the International Satellite Cloud Climatology Project (ISCCP), and SSTS are from the Climate Analysis Center. Negative correlation coefficients between albedo and SST are found to be about -0.8 when the seasonal variation of the entire dataset is analyzed. The interannual variation and the spatial variation of individual months also yields correlation coefficients that are negative. The correlation between cloud cover and SST is found to be similar to but weaker than the correlation between albedo and SST, suggesting a decrease in cloud amount and a decrease in cloud albedo with increasing SST for these regions. The corresponding albedo sensitivity averages -0.018/K with local values reaching -0.04/K. These findings are valid from 19 C to 25 C for the Peru mSc and 22 C to 27 C for the Angola mSc. These temperatures approximately bound the domains over which mSc is the prevalent cloud type within each region. These results imply a potential positive feedback to global warming by marine stratocumulus that ranges from approximately 0.14 W/sq m/K to approximately 1 W/sq m/K, depending on whether or not our results apply to all marine stratocumulus. While these values are uncertain to at least +/- 50%, the sensitivity of albedo to sea surface temperature in the present climate may serve as a useful diagnostic tool in monitoring the performance of global climate models.

  20. Transformation of surface albedo to surface: Atmosphere surface and irradiance, and their spectral and temporal averages

    NASA Technical Reports Server (NTRS)

    Nack, M. L.; Curran, R. J.

    1978-01-01

    The dependence of the albedo at the top of a realistic atmosphere upon the surface albedo, solar zenith angle, and cloud optical thickness is examined for the cases of clear sky, total cloud cover, and fractional cloud cover. The radiative transfer calculations of Dave and Braslau (1975) for particular values of surface albedo and solar zenith angle, and a single value of cloud optical thickness are used as the basis of a parametric albedo model. The question of spectral and temporal averages of albedos and reflected irradiances is addressed, and unique weighting functions for the spectral and temporal albedo averages are developed.

  1. Arctic stratospheric sulphur injections: radiative forcings and cloud responses

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Gasparini, B.; Miriam, K.; Kravitz, B.; Rasch, P. J.

    2014-12-01

    Observations and climate projections show a high sensitivity of the Arctic climate to the increase in greenhouse gas emissions, known as the polar amplification. This study evaluates the options of counteracting the rising polar temperatures by stratospheric sulphur injections in the Northern Hemisphere high latitudes.10 Mt of sulphur dioxide are emitted in a point emission source setup centred at the 100 hPa pressure level over Svalbard island (80°N,15°E). We perform simulations with the general circulation models ECHAM5, ECHAM6, and GISS ModelE. We study pulsed emission simulations that differ among themselves by the injection starting date (March-September), injection length (1, 30, or 90 day emission period), and the vertical resolution of the model (for ECHAM6). We find injections in April to be the most efficient in terms of the shortwave radiative forcing at the top-of-the atmosphere over the Arctic region. The distribution of sulphate aerosol spreads out beyond the injection region, with a significant share reaching the Southern Hemisphere. Results from ModelE show high latitude injections could counteract the spring and summer temperature increase due to higher atmospheric CO2 concentrations. Preliminary results with a more realistic description of clouds in ECHAM-HAM reveal a complex pattern of responses, most notably: a decrease in Northern Hemisphere cirrus clouds strengthening the effect of stratospheric aerosols in ECHAM5 a decrease in low-level clouds over the Arctic increasing the incoming solar radiation and causing a net positive radiative balance cirrus clouds are resilient to stratospheric sulphur injections in the absence of sulphate warming

  2. Climate implications of including albedo effects in terrestrial carbon policy

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Collins, W.; Torn, M. S.; Calvin, K. V.

    2012-12-01

    Proposed strategies for managing terrestrial carbon in order to mitigate anthropogenic climate change, such as financial incentives for afforestation, soil carbon sequestration, or biofuel production, largely ignore the direct effects of land use change on climate via biophysical processes that alter surface energy and water budgets. Subsequent influences on temperature, hydrology, and atmospheric circulation at regional and global scales could potentially help or hinder climate stabilization efforts. Because these policies often rely on payments or credits expressed in units of CO2-equivalents, accounting for biophysical effects would require a metric for comparing the strength of biophysical climate perturbation from land use change to that of emitting CO2. One such candidate metric that has been suggested in the literature on land use impacts is radiative forcing, which underlies the global warming potential metric used to compare the climate effects of various greenhouse gases with one another. Expressing land use change in units of radiative forcing is possible because albedo change results in a net top-of-atmosphere radiative flux change. However, this approach has also been critiqued on theoretical grounds because not all climatic changes associated with land use change are principally radiative in nature, e.g. changes in hydrology or the vertical distribution of heat within the atmosphere, and because the spatial scale of land use change forcing differs from that of well-mixed greenhouse gases. To explore the potential magnitude of this discrepancy in the context of plausible scenarios of future land use change, we conduct three simulations with the Community Climate System Model 4 (CCSM4) utilizing a slab ocean model. Each simulation examines the effect of a stepwise change in forcing relative to a pre-industrial control simulation: 1) widespread conversion of forest land to crops resulting in approximately 1 W/m2 global-mean radiative forcing from albedo

  3. The ultraviolet continuum albedo of Uranus

    SciTech Connect

    Cochran, W.D.; Wagener, R.; Caldwell, J.; Fricke, K.H. New York State Univ., Stony Brook York Univ., Toronto Bonn Universitaet )

    1990-01-01

    A radiative transfer code explicitly treating the Raman scattering of solar protons by H{sub 2} is presently used to analyze the Uranus geometric albedo in the 2000-5000 A range. The Baines and Bergstralh (1986) baseline model used reproduces the geometric albedo peak produced by Raman scattering filling of solar absorption line cores, but is found to be excessively bright for wavelengths below 2400 A. This discrepancy is resolvable through inclusion of an absorbing stratospheric haze layer, and results are thereby obtained which are consistent with the Pollack et al. (1987) model, in which aerosols are generated stratospherically through photochemical effects on hydrocarbons. 20 refs.

  4. Dust aerosol properties and radiative forcing observed in spring during 2001-2014 over urban Beijing, China.

    PubMed

    Yu, Xingna; Lü, Rui; Kumar, K Raghavendra; Ma, Jia; Zhang, Qiuju; Jiang, Yilun; Kang, Na; Yang, Suying; Wang, Jing; Li, Mei

    2016-08-01

    The ground-based characteristics (optical and radiative properties) of dust aerosols measured during the springtime between 2001 and 2014 were investigated over urban Beijing, China. The seasonal averaged aerosol optical depth (AOD) during spring of 2001-2014 was about 0.78 at 440 nm. During dust days, higher AOD occurred associated with lower Ångström exponent (AE). The mean AE440-870 in the springtime was about 1.0, indicating dominance of fine particles over the region. The back-trajectory analysis revealed that the dust was transported from the deserts of Inner Mongolia and Mongolia arid regions to Beijing. The aerosol volume size distribution showed a bimodal distribution pattern, with its highest peak observed in coarse mode for all episodes (especially for dust days with increased volume concentration). The single scattering albedo (SSA) increased with wavelength on dust days, indicating the presence of more scattering particles. Furthermore, the complex parts (real and imaginary) of refractive index showed distinct characteristics with lower imaginary values (also scattering) on dust days. The shortwave (SW; 0.2-4.0 μm) and longwave (LW; 4-100 μm) aerosol radiative forcing (ARF) values were computed from the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model both at the top of atmosphere (TOA) and the bottom of atmosphere (BOA) during dust and non-dust (dust free) days, and the corresponding heating rates and forcing efficiencies were also estimated. The SW (LW) ARF, therefore, produced significant cooling (warming) effects at both the TOA and the BOA over Beijing. PMID:27117151

  5. Identification of aerosol types over Indo-Gangetic Basin: implications to optical properties and associated radiative forcing.

    PubMed

    Tiwari, S; Srivastava, A K; Singh, A K; Singh, Sachchidanand

    2015-08-01

    The aerosols in the Indo-Gangetic Basin (IGB) are a mixture of sulfate, dust, black carbon, and other soluble and insoluble components. It is a challenge not only to identify these various aerosol types, but also to assess the optical and radiative implications of these components. In the present study, appropriate thresholds for fine-mode fraction and single-scattering albedo have been used to first identify the aerosol types over IGB. Four major aerosol types may be identified as polluted dust (PD), polluted continental (PC), black carbon-enriched (BCE), and organic carbon-enriched (OCE). Further, the implications of these different types of aerosols on optical properties and radiative forcing have been studied. The aerosol products derived from CIMEL sun/sky radiometer measurements, deployed under Aerosol Robotic Network program of NASA, USA were used from four different sites Karachi, Lahore, Jaipur, and Kanpur, spread over Pakistan and Northern India. PD is the most dominant aerosol type at Karachi and Jaipur, contributing more than 50% of all the aerosol types. OCE, on the other hand, contributes only about 12-15% at all the stations except at Kanpur where its contribution is ∼38%. The spectral dependence of AOD was relatively low for PD aerosol type, with the lowest AE values (<0.5); whereas, large spectral dependence in AOD was observed for the remaining aerosol types, with the highest AE values (>1.0). SSA was found to be the highest for OCE (>0.9) and the lowest for BCE (<0.9) type aerosols, with drastically different spectral variability. The direct aerosol radiative forcing at the surface and in the atmosphere was found to be the maximum at Lahore among all the four stations in the IGB. PMID:25893625

  6. Aerosol Radiative Forcing over North India during Pre-Monsoon Season using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Misra, A.; Kumar, K.; Michael, M.; Tripathi, S. N.

    2013-12-01

    Study of aerosols is important for a fair understanding of the Earth climate system. This requires knowledge of the physical, chemical, optical, and morphological properties of aerosols. Aerosol radiative forcing provides information on the effect of aerosols on the Earth radiation budget. Radiative forcing estimates using model data provide an opportunity to examine the contribution of individual aerosol species to overall radiative forcing. We have used Weather Research and Forecast with Online Chemistry (WRF-Chem) derived aerosol concentration data to compute aerosol radiative forcing over north India during pre-monsoon season of 2008, 2009, and 2010. WRF-Chem derived mass concentrations are converted to number concentrations using standard procedure. Optical Properties of Aerosol and Cloud (OPAC) software package is used to compute extinction and scattering coefficients, and asymmetry parameter. Computations are performed at different altitudes and the obtained values are integrated to get the column optical properties. Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model is used to calculate the radiative forcing at surface and top-of-atmosphere. Higher values of aerosol radiative forcing are observed over desert region in western Indian state of Rajasthan, and Punjab of Pakistan. Contribution of individual aerosol species to atmospheric radiative forcing is also assessed. Dust radiative forcing is high over western India. Radiative forcing due to BC and water-soluble (WASO) aerosols are higher over north-west Indian states of Punjab and Haryana, and the Indo-Gangetic Basin. A pool of high WASO optical depth and radiative forcing is observed over the Indo-Bangladesh border. The findings of aerosol optical depth and radiative forcing are consistent with the geography and prevailing aerosol climatology of various regions. Heating rate profiles due to total aerosols and only due to BC have been evaluated at selected stations in north India. They show

  7. WRF-Chem simulations of aerosols and anthropogenic aerosol radiative forcing in East Asia

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, L. Ruby

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF, including direct, semi-direct and indirect forcing) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at many sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korea, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 μm or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan, which indicates the possible influence of pollutant transport from polluted area of East Asia. The model underestimates SO42- and organic carbon (OC) concentrations over mainland China by about a factor of 2, while overestimates NO3- concentration in autumn along the Yangtze River. The model captures the dust events at the Zhangye site in the semi-arid region of China. AOD is high over Southwest and Central China in winter and spring and over North China in winter, spring and summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over adjacent oceans at the top of atmosphere (TOA), 5-30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO42-, NO3- and NH4

  8. Aerosol Direct Radiative Forcing over Delhi NCR, India: Sensitivity to Mixing State and Particle Shape

    NASA Astrophysics Data System (ADS)

    Srivastava, Parul; Dey, Sagnik; Srivastava, Atul; Singh, Sachchidanand; Agarwal, Poornima

    2015-04-01

    Aerosol properties changes with the change in mixing state of aerosols and thus aerosol direct radiative forcing (DRF). The problem is important in the Indo-Gangetic Basin, Northern India, where various aerosol types mix and show strong seasonal variations. A detailed chemical composition analysis of aerosols for Delhi National capital region (NCR) is carried out during 2007-2008. These results were used to examine the sensitivity of optical properties to the aerosol mixing state. Black carbon, BC was measured directly by Aethalometer. The species are grouped into four major components; dust, water soluble (WS), water insoluble (WINS) and BC. To infer the probable mixing state of aerosols in the Delhi NCR, eight different mixing cases, external mixing, internal mixing, and six combinations of core- shell type mixing which includes two modes of dust (accumulation and coarse) have been considered. Core-shell mixing cases are considered to be as follows - BC over dust, WS over dust, BC over WS and, WS over BC. These core shell mixed components are then externally mixed with rest of the aerosol species. The spectral aerosol optical properties - extinction coefficient, single scattering albedo (SSA) and asymmetry parameter (g) for each of the mixing state cases are calculated. These optical properties are utilized to estimate the radiative forcing using a radiative transfer model. The surface-reaching fluxes for each of the cases are compared with MERRA downward shortwave surface flux. MISR aerosol products were also analyzed to understand the seasonal variations of the bulk aerosol properties that may help in interpreting the sensitivity results. We observed that for the pre-monsoon season (MAMJ), core shell mixed case; BC coated over WS (surface DRF is -10.52 Wm-2) and BC over coarse dust (surface DRF is -2.81 Wm-2) are the most probable mixing states. For monsoon season (JAS,) BC coated over coarse dust (often referred to as polluted dust) (surface DRF is -0.60 Wm-2

  9. A Strategy to Assess Aerosol Direct Radiative Forcing of Climate Using Satellite Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Atmospheric aerosols have a complex internal chemical composition and optical properties. Therefore it is difficult to model their impact on redistribution and absorption of solar radiation, and the consequent impact on atmospheric dynamics and climate. The use in climate models of isolated aerosol parameters retrieved from satellite data (e.g. optical thickness) may result in inconsistent calculations, if the model assumptions differ from these of the satellite retrieval schemes. Here we suggest a strategy to assess the direct impact of aerosol on the radiation budget at the top and bottom of the atmosphere using satellite and ground based measurements of the spectral solar radiation scattered by the aerosol. This method ensures consistent use of the satellite data and increases its accuracy. For Kaufman and Tanre: Strategy for aerosol direct forcing anthropogenic aerosol in the fine mode (e.g. biomass burning smoke and urban pollution) consistent use of satellite derived optical thickness can yield the aerosol impact on the spectral solar flux with accuracy an order of magnitude better than the optical thickness itself. For example, a simulated monthly average smoke optical thickness of 0.5 at 0.55 microns (forcing of 40-50 W/sq m) derived with an error of 20%, while the forcing can be measured directly with an error of only 0-2 W/sq m. Another example, the effect of large dust particles on reflection of solar flux can be derived three times better than retrievals of optical thickness. Since aerosol impacts not only the top of the atmosphere but also the surface irradiation, a combination of satellite and ground based measurements of the spectral flux, can be the most direct mechanism to evaluate the aerosol effect on climate and assimilate it in climate models. The strategy is applied to measurements from SCAR-B and the Tarfox experiments. In SCAR-B aircraft spectral data are used to derive the 24 hour radiative forcing of smoke at the top of the atmosphere of

  10. Impact of weather events on Arctic sea ice albedo evolution

    NASA Astrophysics Data System (ADS)

    Arntsen, A. E.; Perovich, D. K.; Polashenski, C.; Stwertka, C.

    2015-12-01

    Arctic sea ice undergoes a seasonal evolution from cold snow-covered ice to melting snow to bare ice with melt ponds. Associated with this physical evolution is a decrease in the albedo of the ice cover. While the change in albedo is often considered as a steady seasonal decrease, weather events during melt, such as rain or snow, can impact the albedo evolution. Measurements on first year ice in the Chukchi Sea showed a decrease in visible albedo to 0.77 during the onset of melt. New snow from 4 - 6 June halted melting and increased the visible albedo to 0.87. It took 12 days for the albedo to decrease to levels prior to the snowfall. Incident solar radiation is large in June and thus a change in albedo has a large impact on the surface heat budget. The snowfall increased the albedo by 0.1 and reduced the absorbed sunlight from 5 June to 17 June by approximately 32 MJ m-2. The total impact of the snowfall will be even greater, since the delay in albedo reduction will be propagated throughout the entire summer. A rain event would have the opposite impact, increasing solar heat input and accelerating melting. Snow or rain in May or June can impact the summer melt cycle of Arctic sea ice.

  11. Experimental study of acoustic radiation force of an ultrasound beam on absorbing and scattering objects

    SciTech Connect

    Nikolaeva, Anastasiia V. Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.

    2015-10-28

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.

  12. Experimental Study of Acoustic Radiation Force of an Ultrasound Beam on Absorbing and Scattering Objects

    PubMed Central

    Nikolaeva, Anastasiia V.; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.

    2016-01-01

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter. PMID:27147775

  13. Experimental study of acoustic radiation force of an ultrasound beam on absorbing and scattering objects

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Anastasiia V.; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.

    2015-10-01

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.

  14. The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing

    NASA Astrophysics Data System (ADS)

    Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith

    2006-06-01

    Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.

  15. The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing.

    PubMed

    Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith

    2006-06-15

    Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation. PMID:16778887

  16. Simultaneous observations of aerosol–cloud–albedo interactions with three stacked unmanned aerial vehicles

    PubMed Central

    Roberts, G. C.; Ramana, M. V.; Corrigan, C.; Kim, D.; Ramanathan, V.

    2008-01-01

    Aerosol impacts on climate change are still poorly understood, in part, because the few observations and methods for detecting their effects are not well established. For the first time, the enhancement in cloud albedo is directly measured on a cloud-by-cloud basis and linked to increasing aerosol concentrations by using multiple autonomous unmanned aerial vehicles to simultaneously observe the cloud microphysics, vertical aerosol distribution, and associated solar radiative fluxes. In the presence of long-range transport of dust and anthropogenic pollution, the trade cumuli have higher droplet concentrations and are on average brighter. Our observations suggest a higher sensitivity of radiative forcing by trade cumuli to increases in cloud droplet concentrations than previously reported owing to a constrained droplet radius such that increases in droplet concentrations also increase cloud liquid water content. This aerosol-cloud forcing efficiency is as much as −60 W m−2 per 100% percent cloud fraction for a doubling of droplet concentrations and associated increase of liquid water content. Finally, we develop a strategy for detecting aerosol–cloud interactions based on a nondimensional scaling analysis that relates the contribution of single clouds to albedo measurements and illustrates the significance of characterizing cloud morphology in resolving radiometric measurements. This study demonstrates that aerosol–cloud–albedo interactions can be directly observed by simultaneous observations below, in, and above the clouds. PMID:18499803

  17. Simultaneous observations of aerosol-cloud-albedo interactions with three stacked unmanned aerial vehicles.

    PubMed

    Roberts, G C; Ramana, M V; Corrigan, C; Kim, D; Ramanathan, V

    2008-05-27

    Aerosol impacts on climate change are still poorly understood, in part, because the few observations and methods for detecting their effects are not well established. For the first time, the enhancement in cloud albedo is directly measured on a cloud-by-cloud basis and linked to increasing aerosol concentrations by using multiple autonomous unmanned aerial vehicles to simultaneously observe the cloud microphysics, vertical aerosol distribution, and associated solar radiative fluxes. In the presence of long-range transport of dust and anthropogenic pollution, the trade cumuli have higher droplet concentrations and are on average brighter. Our observations suggest a higher sensitivity of radiative forcing by trade cumuli to increases in cloud droplet concentrations than previously reported owing to a constrained droplet radius such that increases in droplet concentrations also increase cloud liquid water content. This aerosol-cloud forcing efficiency is as much as -60 W m(-2) per 100% percent cloud fraction for a doubling of droplet concentrations and associated increase of liquid water content. Finally, we develop a strategy for detecting aerosol-cloud interactions based on a nondimensional scaling analysis that relates the contribution of single clouds to albedo measurements and illustrates the significance of characterizing cloud morphology in resolving radiometric measurements. This study demonstrates that aerosol-cloud-albedo interactions can be directly observed by simultaneous observations below, in, and above the clouds. PMID:18499803

  18. Aerosol physical properties and Radiative forcing at the outflow region from the Indo-Gangetic plains during typical clear and hazy periods of wintertime

    NASA Astrophysics Data System (ADS)

    Niranjan, K.; Sreekanth, V.; Madhavan, B. L.; Krishna Moorthy, K.

    2007-10-01

    Results of a campaign mode measurements of column integrated aerosol optical depths, near surface mass concentrations and LIDAR profiles during winter 2004 at Kharagpur located at the vent of the out flow region from the Indo-Gangetic plains are presented with a view to characterize the atmospheric aerosol radiative forcing during hazy and clear sky conditions. The multispectral optical depths, surface mass concentrations and black carbon are high, while a decrease in Angstrom exponent value was observed during the hazy sky days. During hazy conditions, the LIDAR profiles show a decrease in the mixed layer height leading to confinement and subsidence of aerosols. Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model along with Optical Properties of Aerosols and Clouds (OPAC) are used to perform composite aerosol forcing estimation, incorporating LIDAR derived mixed layer heights. A considerable decrease in estimated single scattering albedo has been observed during hazy sky days. The atmospheric absorption during hazy sky days increased by 75% compared to clear days. Negative forcing was observed both at the top of the atmosphere and at the surface. The forcing estimates of the present study are compared with the similar studies over other locations in the Indo-Gangetic plains during the campaign period.

  19. Ultrasonic Measurement of Microdisplacement Induced by Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Nagaoka, Ryo; Izumi, Takuya; Komatsu, Yosuke; Kobayashi, Kazuto; Saijo, Yoshifumi

    2013-07-01

    Quantitative evaluation of human skin aging is achieved by measuring the viscoelasticity of the skin. In the present study, microdisplacement induced by acoustic radiation force (ARF) is quantitatively measured by high-frequency ultrasonography (HFUS) and the result is confirmed by laser-Doppler velocimetry (LDV). Poly(vinyl alcohol) (PVA) with 1% cellulose particles was used as the biological phantom. A concave piezoelectric zirconate titanate (PZT) transducer with a diameter and focal length of 3 cm was used as an applicator to generate ARF. Microdisplacement at each depth of PVA was measured by the phased tracking method at 100 MHz of ultrasound with a repetition rate of 2000 Hz. When 80 tone-burst pulses were applied, the displacement measured by HFUS was 9 µm and the same result was obtained by LDV. As the displacement at each depth of PVA is measurable using ARF and the HFUS system, the system could be applied to measuring the viscoelasticity of the layered structure of the human skin.

  20. Response of air stagnation frequency to anthropogenically enhanced radiative forcing.

    PubMed

    Horton, Daniel E; Harshvardhan; Diffenbaugh, Noah S

    2012-01-01

    Stagnant atmospheric conditions can lead to hazardous air quality by allowing ozone and particulate matter to accumulate and persist in the near-surface environment. By changing atmospheric circulation and precipitation patterns, global warming could alter the meteorological factors that regulate air stagnation frequency. We analyze the response of the National Climatic Data Center (NCDC) Air Stagnation Index (ASI) to anthropogenically enhanced radiative forcing using global climate model projections of late-21(st) century climate change (SRES A1B scenario). Our results indicate that the atmospheric conditions over the highly populated, highly industrialized regions of the eastern United States, Mediterranean Europe, and eastern China are particularly sensitive to global warming, with the occurrence of stagnant conditions projected to increase 12-to-25% relative to late-20(th) century stagnation frequencies (3-18+ days/year). Changes in the position/strength of the polar jet, in the occurrence of light surface winds, and in the number of precipitation-free days all contribute to more frequent late-21(st) century air mass stagnation over these high-population regions. In addition, we find substantial inter-model spread in the simulated response of stagnation conditions over some regions using either native or bias corrected global climate model simulations, suggesting that changes in the atmospheric circulation and/or the distribution of precipitation represent important sources of uncertainty in the response of air quality to global warming. PMID:23284587

  1. Revisit on dynamic radiation forces induced by pulsed Gaussian beams.

    PubMed

    Wang, Li-Gang; Chai, Hai-Shui

    2011-07-18

    Motivated by the recent optical trapping experiments using ultra-short pulsed lasers [Opt. Express 18, 7554 (2010); Appl. Opt. 48, G33 (2009)], in this paper we have re-investigated the trapping effects of the pulsed radiation force (PRF), which is induced by a pulsed Gaussian beam acting on a Rayleigh dielectric sphere. Based on our previous model [Opt. Express 15, 10615 (2007)], we have considered the effects arisen from both the transverse and axial PRFs, which lead to the different behaviors of both velocities and displacements of a Rayleigh particle within a pulse duration. Our analysis shows that, for the small-sized Rayleigh particles, when the pulse has the large pulse duration, it might provide the three-dimensional optical trapping; and when the pulse has the short pulse duration, it only provides the two-dimensional optical trapping with the axial movement along the pulse propagation. When the particle is in the vacuum or in the situation with the very weak Brownian motion, the particle can always be trapped stably due to the particle's cumulative momentum transferred from the pulse, and only in this case the trapping effect is independent of pulse duration. Finally, we have predicted that for the large-sized Rayleigh particles, the pulse beam can only provide the two-dimensional optical trap (optical guiding). Our results provide the important information about the trapping mechanism of pulsed tweezers. PMID:21934801

  2. Bipolar high temporal resolution measurements of snow UV albedo in Sodankylä and Marambio

    NASA Astrophysics Data System (ADS)

    Meinander, Outi; Kontu, Anna; Asmi, Eija; Sanchez, Ricardo; Mei, Miguel; de Leeuw, Gerrit

    2015-04-01

    In this presentation we will give an overview of our high temporal resolution polar snow UV albedo data from Arctic Sodankylä, and from Marambio, Antarctica. These both are WMO GAW stations with many measurement parameters relevant to the albedo data usage. We will also describe our campaign based polar albedo data (SNORTEX and SOS campaigns), and an important data set of light absorbing impurities (BC) in the Arctic snow. The black carbon (BC) has been estimated to be the second most important human emission after carbon dioxide, in terms of its climate forcing in the present-day atmosphere. The reflectance effect of BC deposited on snow surface is the bigger the smaller the wavelength, i.e. the albedo effect of BC is the biggest at UV. This is also shown in SNICAR-model simulated albedo values. In Sodankylä, our bipolar snow ultraviolet (UV) albedo research started within the International Polar Year (IPY) 2007-2008. In 2007, the continuous Sodankylä snow UV albedo measurements were installed in Sodankylä, in the operational albedo field of the Finnish Meteorological Institute Arctic Research Center (FMI-ARC). These Sodankylä 1-min data during snow time were soon compared with the German Antarctic Neumayer Station UV albedo data, also with the same sensor type. In both data we found an up to 10 % decrease in albedo as a function of time within a day, ranging from 0.77 to 0.67 in Sodankylä and from 0.96 to 0.86 in Neumeyer. Physical explanations to asymmetry were found for cases with high relative humidity and low surface temperature during the previous night, favorable to frost and higher albedo on the next morning; new snow on the previous night; snow melting during day time and refreezing during night. In Marambio, in the beginning of 2013, our new continuous Finnish-Argentinian co-operation snow UV albedo measurements were installed and started as part of a larger continuous meteorological and environmental instrumentation. These new UV radiation data

  3. A Climatology of Midlatitude Continental Clouds from the ARM SGP Site. Part II; Cloud Fraction and Surface Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Xi, B.; Minnis, P.

    2006-01-01

    affected by uncertainties in data sampling and clear-sky screening. Traditionally, cloud radiative forcing includes, not only the radiative impact of the hydrometeors, but also the changes in the environment. Taken together over the ARM SCF, changes in humidity and surface albedo between clear and cloudy conditions offset approximately 20% of the NET radiative forcing caused by the cloud hydrometeors alone. Variations in water vapor, on average, account for 10% and 83% of the SW and LW CRFs, respectively, in total cloud cover conditions. The error analysis further reveals that the cloud hydrometeors dominate the SW CRF, while water vapor changes are most important for LW flux changes in cloudy skies. Similar studies over other locales are encouraged where water and surface albedo changes from clear to cloudy conditions may be much different than observed over the ARM SCF.

  4. Direct weakening of tropical circulations from masked CO2 radiative forcing

    PubMed Central

    Merlis, Timothy M.

    2015-01-01

    Climate models robustly simulate weakened mean circulations of the tropical atmosphere in direct response to increased carbon dioxide (CO2). The direct response to CO2, defined by the response to radiative forcing in the absence of changes in sea surface temperature, affects tropical precipitation and tropical cyclone genesis, and these changes have been tied to the weakening of the mean tropical circulation. The mechanism underlying this direct CO2-forced circulation change has not been elucidated. Here, I demonstrate that this circulation weakening results from spatial structure in CO2’s radiative forcing. In regions of ascending circulation, such as the intertropical convergence zone, the CO2 radiative forcing is reduced, or “masked,” by deep-convective clouds and high humidity; in subsiding regions, such as the subtropics, the CO2 radiative forcing is larger because the atmosphere is drier and deep-convective clouds are infrequent. The spatial structure of the radiative forcing reduces the need for the atmosphere to transport energy. This, in turn, weakens the mass overturning of the tropical circulation. The previously unidentified mechanism is demonstrated in a hierarchy of atmospheric general circulation model simulations with altered radiative transfer to suppress the cloud masking of the radiative forcing. The mechanism depends on the climatological distribution of clouds and humidity, rather than uncertain changes in these quantities. Masked radiative forcing thereby offers an explanation for the robustness of the direct circulation weakening under increased CO2. PMID:26460034

  5. Direct weakening of tropical circulations from masked CO2 radiative forcing.

    PubMed

    Merlis, Timothy M

    2015-10-27

    Climate models robustly simulate weakened mean circulations of the tropical atmosphere in direct response to increased carbon dioxide (CO2). The direct response to CO2, defined by the response to radiative forcing in the absence of changes in sea surface temperature, affects tropical precipitation and tropical cyclone genesis, and these changes have been tied to the weakening of the mean tropical circulation. The mechanism underlying this direct CO2-forced circulation change has not been elucidated. Here, I demonstrate that this circulation weakening results from spatial structure in CO2's radiative forcing. In regions of ascending circulation, such as the intertropical convergence zone, the CO2 radiative forcing is reduced, or "masked," by deep-convective clouds and high humidity; in subsiding regions, such as the subtropics, the CO2 radiative forcing is larger because the atmosphere is drier and deep-convective clouds are infrequent. The spatial structure of the radiative forcing reduces the need for the atmosphere to transport energy. This, in turn, weakens the mass overturning of the tropical circulation. The previously unidentified mechanism is demonstrated in a hierarchy of atmospheric general circulation model simulations with altered radiative transfer to suppress the cloud masking of the radiative forcing. The mechanism depends on the climatological distribution of clouds and humidity, rather than uncertain changes in these quantities. Masked radiative forcing thereby offers an explanation for the robustness of the direct circulation weakening under increased CO2. PMID:26460034

  6. Uncertainties in Carbon Dioxide Radiative Forcing in Atmospheric General Circulation Models

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M.-H.; Potter, G. L.; Gates, W. L.; Taylor, K. E.; Barker, H. W.; Colman, R. A.; Fraser, J. R.; McAvaney, B. J.; Dazlich, D. A.; Randall, D. A.; DelGenio, A. D.; Lacis, A. A.; Esch, M.; Roeckner, E.; Galin, V.; Hack, J. J.; Kiehl, J. T.; Ingram, W. J.; LeTreut, H.

    1993-01-01

    Global warming, caused by an increase in the concentrations of greenhouse gases, is the direct result of greenhouse gas-induced radiative forcing. When a doubling of atmospheric carbon dioxide is considered, this forcing differed substantially among 15 atmospheric general circulation models. Although there are several potential causes, the largest contributor was the carbon dioxide radiation parameterizations of the models.

  7. Impact of absorbing aerosol deposition on snow albedo reduction over the southern Tibetan plateau based on satellite observations

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Liang; Liou, K. N.; He, Cenlin; Liang, Hsin-Chien; Wang, Tai-Chi; Li, Qinbin; Liu, Zhenxin; Yue, Qing

    2016-07-01

    We investigate the snow albedo variation in spring over the southern Tibetan Plateau induced by the deposition of light-absorbing aerosols using remote sensing data from moderate resolution imaging spectroradiometer (MODIS) aboard Terra satellite during 2001-2012. We have selected pixels with 100 % snow cover for the entire period in March and April to avoid albedo contamination by other types of land surfaces. A model simulation using GEOS-Chem shows that aerosol optical depth (AOD) is a good indicator for black carbon and dust deposition on snow over the southern Tibetan Plateau. The monthly means of satellite-retrieved land surface temperature (LST) and AOD over 100 % snow-covered pixels during the 12 years are used in multiple linear regression analysis to derive the empirical relationship between snow albedo and these variables. Along with the LST effect, AOD is shown to be an important factor contributing to snow albedo reduction. We illustrate through statistical analysis that a 1-K increase in LST and a 0.1 increase in AOD indicate decreases in snow albedo by 0.75 and 2.1 % in the southern Tibetan Plateau, corresponding to local shortwave radiative forcing of 1.5 and 4.2 W m-2, respectively.

  8. Satellite observed changes in the Northern Hemisphere snow cover phenology and the associated radiative forcing and feedback between 1982 and 2013

    NASA Astrophysics Data System (ADS)

    Chen, Xiaona; Liang, Shunlin; Cao, Yunfeng

    2016-08-01

    Quantifying continental-scale changes in snow cover phenology (SCP) and evaluating their associated radiative forcing and feedback is essential for meteorological, hydrological, ecological, and societal purposes. However, the current SCP research is inadequate because few published studies have explored the long-term changes in SCP, as well as their associated radiative forcing and feedback in the context of global warming. Based on satellite-observed snow cover extent (SCE) and land surface albedo datasets, and using a radiative kernel modeling method, this study quantified changes in SCP and the associated radiative forcing and feedback over the Northern Hemisphere (NH) snow-covered landmass from 1982 to 2013. The monthly SCE anomaly over the NH displayed a significant decreasing trend from May to August (‑0.89 × 106 km2 decade‑1), while an increasing trend from November to February (0.65 × 106 km2 decade‑1) over that period. The changes in SCE resulted in corresponding anomalies in SCP. The snow onset date (D o) moved forward slightly, but the snow end date (D e) advanced significantly at the rate of 1.91 days decade‑1, with a 73% contribution from decreased SCE in Eurasia (EU). The anomalies in D e resulted in a weakened snow radiative forcing of 0.12 (±0.003) W m‑2 and feedback of 0.21 (±0.005) W m‑2 K‑1, in melting season, over the NH, from 1982 to 2013. Compared with the SCP changes in EU, the SCP anomalies in North America were relatively stable because of the clearly contrasting D e anomalies between the mid- and high latitudes in this region.

  9. Radiated power and radiation reaction forces of coherently oscillating charged particles in classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Niknejadi, Pardis; Madey, John M. J.; Kowalczyk, Jeremy M. D.

    2015-05-01

    For the foreseeable future, the analysis and design of the complex systems needed to generate intense beams of radiation via the process of coherent emission into free-space will depend on the principles and methods of classical electrodynamics (CED). But the fields and forces predicted by the currently accepted CED theory are manifestly incompatible with Maxwell's equations' energy integral as applied to the process of coherent emission into free-space. It is the purpose of this paper to review the evidence for these limitations of conventional CED, to identify an alternative formulation of CED that does not suffer from these defects, and to describe how the predictions of this more physically realistic formulation of electrodynamics, including the role of the advanced interactions allowed by Maxwell's equations and thermodynamics, might be tested by experiment and applied to enhance the capabilities of devices and systems employing the mechanism of "radiation into free-space."

  10. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    SciTech Connect

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy`s (DOE`s) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM`s highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM`s experimental approach, and recent activities within the ARM program.

  11. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    SciTech Connect

    Patrinos, A.A. ); Renne, D.S.; Stokes, G.M. ); Ellingson, R.G. )

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program.

  12. Fire disturbance effects on land surface albedo in Alaskan tundra

    NASA Astrophysics Data System (ADS)

    French, Nancy H. F.; Whitley, Matthew A.; Jenkins, Liza K.

    2016-03-01

    The study uses satellite Moderate Resolution Imaging Spectroradiometer albedo products (MCD43A3) to assess changes in albedo at two sites in the treeless tundra region of Alaska, both within the foothills region of the Brooks Range, the 2007 Anaktuvuk River Fire (ARF) and 2012 Kucher Creek Fire (KCF). Results are compared to each other and other studies to assess the magnitude of albedo change and the longevity of impact of fire on land surface albedo. In both sites there was a marked decrease of albedo in the year following the fire. In the ARF, albedo slowly increased until 4 years after the fire, when it returned to albedo values prior to the fire. For the year immediately after the fire, a threefold difference in the shortwave albedo decrease was found between the two sites. ARF showed a 45.3% decrease, while the KCF showed a 14.1% decrease in shortwave albedo, and albedo is more variable in the KCF site than ARF site 1 year after the fire. These differences are possibly the result of differences in burn severity of the two fires, wherein the ARF burned more completely with more contiguous patches of complete burn than KCF. The impact of fire on average growing season (April-September) surface shortwave forcing in the year following fire is estimated to be 13.24 ± 6.52 W m-2 at the ARF site, a forcing comparable to studies in other treeless ecosystems. Comparison to boreal studies and the implications to energy flux are discussed in the context of future increases in fire occurrence and severity in a warming climate.

  13. Impact of Albedo Contrast Between Cirrus and Boundary-Layer Clouds on Climate Sensitivity

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lindzen, R. S.; Hou, A. Y.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    In assessing the iris effect suggested by Lindzen et al. (2001), Fu et al. (2001) found that the response of high-level clouds to the sea surface temperature had an effect of reducing the climate sensitivity to external radiative forcing, but the effect was not as strong as LCH found. This weaker reduction in climate sensitivity was due to the smaller contrasts in albedos and effective emitting temperatures between cirrus clouds and the neighboring regions. FBH specified the albedos and the outgoing longwave radiation (OLR) in the LCH 3.5-box radiative-convective model by requiring that the model radiation budgets at the top of the atmosphere be consistent with that inferred from the Earth Radiation Budget Experiment (ERBE). In point of fact, the constraint by radiation budgets alone is not sufficient for deriving the correct contrast in radiation properties between cirrus clouds and the neighboring regions, and the approach of FBH to specifying those properties is, we feel inappropriate for assessing the iris effect.

  14. The Impact of Pre-Industrial Land Use Change on Atmospheric Composition and Aerosol Radiative Forcing.

    NASA Astrophysics Data System (ADS)

    Hamilton, D. S.; Carslaw, K. S.; Spracklen, D. V.; Folberth, G.; Kaplan, J. O.; Pringle, K.; Scott, C.

    2015-12-01

    Anthropogenic land use change (LUC) has had a major impact on the climate by altering the amount of carbon stored in vegetation, changing surface albedo and modifying the levels of both biogenic and pyrogenic emissions. While previous studies of LUC have largely focused on the first two components, there has recently been a recognition that changes to aerosol and related pre-cursor gas emissions from LUC are equally important. Furthermore, it has also recently been recognised that the pre-industrial (PI) to present day (PD) radiative forcing (RF) of climate from aerosol cloud interactions (ACI) due to anthropogenic emissions is highly sensitive to the amount of natural aerosol that was present in the PI. This suggests that anthropogenic RF from ACI may be highly sensitive to land-use in the PI. There are currently two commonly used baseline reference years for the PI; 1750 and 1860. Rapid LUC occurred between 1750 and 1860, with large reductions in natural vegetation cover in Eastern Northern America, Europe, Central Russia, India and Eastern China as well as lower reductions in parts of Brazil and Africa. This LUC will have led to significant changes in biogenic and fire emissions with implications for natural aerosol concentrations and PI-to-PD RF. The focus of this study is therefore to quantify the impact of LUC between 1750 and 1860 on aerosol concentrations and PI-to-PD RF calculations from ACI. We use the UK Met Office HadGEM3-UKCA coupled-chemistry-climate model to calculate the impacts of anthropogenic emissions and anthropogenic LUC on aerosol size distributions in both 1750 and 1860. We prescribe LUC using the KK10 historical dataset of land cover change. Monoterpene emissions are coupled directly to the prescribed LUC through the JULES land surface scheme in HadGEM3. Fire emissions from LUC were calculated offline using the fire module LPJ-LMfire in the Lund-Potsdam-Jena dynamic global vegetation model. To separate out the impacts of LUC from

  15. Observations of x-ray radiation pressure force on individual gold nanocrystals

    SciTech Connect

    Sasaki, Yuji C.; Okumura, Yasuaki; Miyazaki, Takuya; Higurashi, Takashi; Oishi, Noboru

    2006-07-31

    We report observations of x-ray radiation pressure force on individual single nanocrystals using an x-ray single molecular methodology. The observed gold nanocrystals are linked to the adsorbed protein molecules. We observed the directed Brownian motion of individual linked nanocrystals. The observed force is estimated at about 0.13-0.63 aN. We will be able to control and measure dynamics of micro- or nanocrystalline materials using x-ray radiation pressure force.

  16. Influence of X-ray radiation on the hot star wind ionization state and on the radiative force

    NASA Astrophysics Data System (ADS)

    Krtička, Jiří; Kubát, Jiří

    2016-09-01

    Hot stars emit large amounts of X-rays, which are assumed to originate in the supersonic stellar wind. Part of the emitted X-rays is subsequently absorbed in the wind and influences its ionization state. Because hot star winds are driven radiatively, the modified ionization equilibrium affects the radiative force. We review the recent progress in modeling the influence of X-rays on the radiative equilibrium and on the radiative force. We focus particularly on single stars with X-rays produced in wind shocks and on binaries with massive components, which belong to the most luminous objects in X-rays.

  17. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Acosta Navarro, J. C.; Farina, S. C.; Scott, C. E.; Rap, A.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.; Pierce, J. R.

    2015-03-01

    Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m-2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m-2 and the global mean cloud-albedo aerosol indirect effect of between -0.008 and -0.056 W m-2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates.

  18. Charred Forests Increase Snow Albedo Decay: Watershed-Scale Implications of the Postfire Snow Albedo Effect

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Nolin, A. W.

    2014-12-01

    Recent work shows that after a high severity forest fire, approximately 60% more solar radiation reaches the snow surface due to the reduction in canopy density. Also, significant amounts of black carbon (BC) particles and larger burned woody debris (BWD) are shed from standing charred trees, which concentrate on the snowpack, darken its surface, and reduce snow albedo by 50% during ablation. The postfire forest environment drives a substantial increase in net shortwave radiation at the snowpack surface, driving earlier and more rapid melt, however hydrologic models do not explicitly incorporate forest fire disturbance effects to snowpack dynamics. In this study we characterized, parameterized, and validated the postfire snow albedo effect: how the deposition and concentration of charred forest debris decreases snow albedo, increases snow albedo decay rates, and drives an earlier date of snow disappearance. For three study sites in the Oregon High Cascade Mountains, a 2-yr old burned forest, a 10-yr burned forest, and a nearby unburned forest, we used a suite of empirical data to characterize the magnitude and duration of the postfire effect to snow albedo decay. For WY 2012, WY2013, and WY2014 we conducted spectral albedo measurements, snow surface sampling, in-situ snow and meteorological monitoring, and snow energy balance modeling. From these data we developed a new parameterization which represents the postfire effect to snow albedo decay as a function of days-since-snowfall. We validated our parameterization using a physically-based, spatially-distributed snow accumulation and melt model, in-situ snow monitoring, net snowpack radiation, and remote sensing data. We modeled snow dynamics across the extent of all burned area in the headwaters of the McKenzie River Basin and validated the watershed-scale implications of the postfire snow albedo effect using in-situ micrometeorological and remote sensing data. This research quantified the watershed scale postfire

  19. Intercomparison and interpretation of satellite-derived directional albedos over deserts

    NASA Technical Reports Server (NTRS)

    Cess, Robert D.; Vulis, Inna L.

    1989-01-01

    Issues related to the dependence of planetary albedo upon solar zenith angle are studied using Nimbus-7, GOES, and Meteosat data over deserts. Geographical variations of the planetary albedo are isolated from the albedo's solar zenith angle dependence. An atmospheric solar radiation model is coupled with desert surface bidirectional reflectance measurements to test the consistency of satellite-derived directional planetary albedos. Consideration is given to the use of narrowband versus broadband instruments, the impact of desert aerosols on the directional planetary albedo, and potential differences in the directional planetary albedo associated with different types of deserts. The results show that the directional planetary albedo is dominated by the directional surface albedo, although surface brightness influences the atmospheric limb brightening and limb darkening processes.

  20. Acoustic Radiation Force Impulse Measurement in Renal Transplantation

    PubMed Central

    Lee, Juhan; Oh, Young Taik; Joo, Dong Jin; Ma, Bo Gyoung; Lee, A-lan; Lee, Jae Geun; Song, Seung Hwan; Kim, Seung Up; Jung, Dae Chul; Chung, Yong Eun; Kim, Yu Seun

    2015-01-01

    Abstract Interstitial fibrosis and tubular atrophy (IF/TA) is a common cause of kidney allograft loss. Several noninvasive techniques developed to assess tissue fibrosis are widely used to examine the liver. However, relatively few studies have investigated the use of elastographic methods to assess transplanted kidneys. The aim of this study was to explore the clinical implications of the acoustic radiation force impulse (ARFI) technique in renal transplant patients. A total of 91 patients who underwent living donor renal transplantation between September 2010 and January 2013 were included in this prospective study. Shear wave velocity (SWV) was measured by ARFI at baseline and predetermined time points (1 week and 6 and 12 months after transplantation). Protocol biopsies were performed at 12 months. Instead of reflecting IF/TA, SWVs were found to be related to time elapsed after transplantation. Mean SWV increased continuously during the first postoperative year (P < 0.001). In addition, mixed model analysis showed no correlation existed between SWV and serum creatinine (r = −0.2426, P = 0.0771). There was also no evidence of a relationship between IF/TA and serum creatinine (odds ratio [OR] = 1.220, P = 0.7648). Furthermore, SWV temporal patterns were dependent on the kidney weight to body weight ratio (KW/BW). In patients with a KW/BW <3.5 g/kg, mean SWV continuously increased for 12 months, whereas it decreased after 6 months in those with a KW/BW ≥3.5 g/kg. No significant correlation was observed between SWV and IF/TA or renal dysfunction. However, SWV was found to be related to the time after transplantation. Renal hemodynamics influenced by KW/BW might impact SWV values. PMID:26426636

  1. Aerosol types and radiative forcing estimates over East Asia

    NASA Astrophysics Data System (ADS)

    Bhawar, Rohini L.; Lee, Woo-Seop; Rahul, P. R. C.

    2016-09-01

    Using the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data sets along with the CSIRO-MK 3.6.0 model simulations, we analyzed the aerosol optical depth (AOD) variability during March-May (MAM), June-August (JJA) along with their annual mean variability over East Asia for the period 2006-2012. The CALIPSO measurements correlated well with the MODIS measurements and the CSIRO-MK 3.6.0 model simulations over the spatial distribution patterns of the aerosols, but CALIPSO underestimated the magnitudes of the AOD. Maximum smoke aerosol loading is observed to occur during JJA, as a result of wind transport from Southern China while dust loading dominated during MAM via the transport from desert region. The vertical distribution profiles revealed that there is uniform distribution of smoke aerosols during both MAM and JJA, only differing at the altitude at which they peak; while the dust aerosols during MAM showed a significant distribution from the surface to 10 km altitude and JJA was marked with lower dust loading at the same altitudes. Both dust and smoke aerosols warm the atmosphere in MAM but due to the absorbing nature of smoke aerosols, they cause considerable cooling at the surface which is double when compared to the dust aerosols. The top of the atmosphere aerosol radiative forcing (ARF) due to smoke and dust aerosols is positive in MAM which indicates warming over East Asia. During MAM a consistent declining trend of the surface ARF due to smoke aerosols persisted over the last three decades as conspicuously evidenced from model analysis; the decline is ∼10 W/m2 from 1980 to 2012.

  2. Influence of the vertical absorption profile of mixed Asian dust plumes on aerosol direct radiative forcing over East Asia

    NASA Astrophysics Data System (ADS)

    Noh, Young Min; Lee, Kwonho; Kim, Kwanchul; Shin, Sung-Kyun; Müller, Detlef; Shin, Dong Ho

    2016-08-01

    We estimate the aerosol direct radiative forcing (ADRF) and heating rate profiles of mixed East Asian dust plumes in the solar wavelength region ranging from 0.25 to 4.0 μm using the Santa Barbara Discrete Ordinate Atmospheric Radiative Transfer (SBDART) code. Vertical profiles of aerosol extinction coefficients and single-scattering albedos (SSA) were derived from measurements with a multi-wavelength Raman lidar system. The data are used as input parameters for our radiative transfer calculations. We considered four cases of radiative forcing in SBDART: 1. dust, 2. pollution, 3. mixed dust plume and the use of vertical profiles of SSA, and 4. mixed dust plumes and the use of column-averaged values of SSA. In our sensitivity study we examined the influence of SSA and aerosol layer height on our results. The ADRF at the surface and in the atmosphere shows a small dependence on the specific shape of the aerosol extinction vertical profile and its light-absorption property for all four cases. In contrast, at the top of the atmosphere (TOA), the ADRF is largely affected by the vertical distribution of the aerosols extinction. This effect increases if the light-absorption capacity (decrease of SSA) of the aerosols increases. We find different radiative effects in situations in which two layers of aerosols had different light-absorption properties. The largest difference was observed at the TOA for an absorbing aerosol layer at high altitude in which we considered in one case the vertical profile of SSA and in another case the column-averaged SSA only. The ADRF at the TOA increases when the light-absorbing aerosol layer is located above 3 km altitude. The differences between height-resolved SSA, which can be obtained from lidar data, and total layer-mean SSA indicates that the use of a layer-mean SSA can be rather misleading as it can induce a large error in the calculation of the ADRF at the TOA, which in turn may cause errors in the vertical profiles of heating rates.

  3. Global Simulations of Radiative Forcing from Sea Salt Injections into Marine Clouds: The Effect of Injection Rate and Particle Size

    NASA Astrophysics Data System (ADS)

    Alterskjaer, K.; Kristjánsson, J.

    2011-12-01

    Sea salt seeding of low level marine clouds is a suggested technique to counteract or slow global warming. The injected sea salt is to act as cloud condensation nuclei (CCN) and through the aerosol indirect effect increase the cloud albedo and therefore the reflection of solar radiation from the earth-atmosphere system. Using the Norwegian Earth System Model (NorESM) we investigate the global radiative forcing achieved through sea salt seeding as a function of both (i) emission rate and (ii) sea salt particle size. The injection rates are uniform and confined over ocean between 30°S and 30°N, and range from 10-9 to 10-11 kg m-2 s-1. The size of the particles ranges from a dry modal radius of 0.022 μm to 0.13 μm, with geometric standard deviations of 1.59. The study includes aerosol indirect effects both in the shortwave and the longwave and investigates the direct radiative effect of the added sea salt particles. Preliminary results show that increasing emissions of the 0.13 μm sea salt mode leads to an aerosol indirect effect of between -3.4 Wm-2 and -0.04 Wm-2, depending on emission rate. The maximum achieved forcing is close to cancelling the positive forcing resulting from a doubling of atmospheric CO2 concentrations (-3.8 Wm-2). Results also show that the direct effect of the sea salt parties is much larger than previously assumed, and the total radiative effect and the cooling potential of this geo-engineering technique may therefore be much greater than what has been assumed earlier. We find that ignoring the direct effect of sea salt may lead to serious errors in determining both the effectiveness of sea salt seeding and possible side effects. The longwave forcing resulting from a change in cloud emissivity with added sea salt is found to be negligible. Results also show that the size of the added sea salt is of crucial importance for the achieved radiative forcing. While adding large sea salt particles leads to a significant negative forcing at the

  4. Asymmetry in the Diurnal Variation of Surface Albedo

    NASA Technical Reports Server (NTRS)

    Mayor, S.; Smith, W. L., Jr.; Nguyen, L.; Alberta, T. A.; Minnis, P.; Whitlock, C. H.; Schuster, G. L.

    1996-01-01

    Remote sensing of surface properties and estimation of clear-sky and surface albedo generally assumes that the albedo depends only on the solar zenith angle. The effects of dew, frost, and precipitation as well as evaporation and wind can lead to some systematic diurnal variability resulting in an asymmetric diurnal cycle of albedo. This paper examines the symmetry of both surface-observed albedos and top-of-the-atmosphere (TOA) albedos derived from satellite data. Broadband and visible surface albedos were measured at the Department of Energy Atmospheric Radiation Measurement (ARM) Program Southern Great Plains Central Facility, at some fields near the ARM site, and over a coniferous forest in eastern Virginia. Surface and wind conditions are available for most cases. GOES-8 satellite radiance data are converted to broadband albedo using bidirectional reflectance functions and an empirical narrowband-to-broadband relationship. The initial results indicate that surface moisture has a significant effect and can change the albedo in the afternoon by 20% relative to its morning counterpart. Such effects may need to be incorporated in mesoscale and even large-scale models of atmospheric processes.

  5. Albedo and transmittance of inhomogeneous stratus clouds

    SciTech Connect

    Zuev, V.E.; Kasyanov, E.I.; Titov, G.A.

    1996-04-01

    A highly important topic is the study of the relationship between the statistical parameters of optical and radiative charactertistics of inhomogeneous stratus clouds. This is important because the radiation codes of general circulation models need improvement, and it is important for geophysical information. A cascade model has been developed at the Goddard Space Flight Center to treat stratocumulus clouds with the simplest geometry and horizontal fluctuations of the liquid water path (optical thickness). The model evaluates the strength with which the stochastic geometry of clouds influences the statistical characteristics of albedo and the trnasmittance of solar radiation.

  6. Relationship between acoustic power and acoustic radiation force on absorbing and reflecting targets for spherically focusing radiators.

    PubMed

    Gélat, Pierre; Shaw, Adam

    2015-03-01

    Total acoustic output power is an important parameter required by standards for most ultrasonic medical equipment including high-intensity focused ultrasound (HIFU) systems. Radiation force balances are routinely used; however, radiation force is not strictly dependent on the ultrasound power but, rather, on the wave momentum resolved in one direction. Consequently, measurements based on radiation force become progressively less accurate as the ultrasound wave deviates further from a true plane wave. HIFU transducers can be very strongly focused with F-numbers less than one: under these conditions, the uncertainty associated with use of the radiation force method becomes very significant. International Standards IEC 61161 and IEC 62555 suggest plane-wave correction factors for unfocused transducers radiating onto an ideal absorbing target and focusing corrections for focused transducers radiating onto ideal absorbing targets and onto conical reflecting targets (IEC 61161). Previous models have relied on calculations based on the Rayleigh integral, which is not strictly correct for curved sources. In the work described here, an approach combining finite element methods with a discretization of the Helmholtz equation was developed, making it possible to model the boundary condition at the structure/fluid interface more correctly. This has been used to calculate the relationship between radiation force and total power for both absorbing and conical reflecting targets for transducers ranging from planar to an F-number of 0.5 (hemispherical) and to compare with the recommendations of IEC 61161 and IEC 62555. PMID:25683223

  7. Spectral albedo and transmittance of thin young Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Taskjelle, Torbjørn; Hudson, Stephen R.; Granskog, Mats A.; Nicolaus, Marcel; Lei, Ruibo; Gerland, Sebastian; Stamnes, Jakob J.; Hamre, Børge

    2016-01-01

    Spectral albedo and transmittance in the range were measured on three separate dates on less than thick new Arctic sea ice growing on Kongsfjorden, Svalbard at , . Inherent optical properties, including absorption coefficients of particulate and dissolved material, were obtained from ice samples and fed into a radiative transfer model, which was used to analyze spectral albedo and transmittance and to study the influence of clouds and snow on these. Integrated albedo and transmittance for photosynthetically active radiation () were in the range 0.17-0.21 and 0.77-0.86, respectively. The average albedo and transmittance of the total solar radiation energy were 0.16 and 0.51, respectively. Values inferred from the model indicate that the ice contained possibly up to 40% brine and only 0.6% bubbles. Angular redistribution of solar radiation by clouds and snow was found to influence both the wavelength-integrated value and the spectral shape of albedo and transmittance. In particular, local peaks and depressions in the spectral albedo and spectral transmittance were found for wavelengths within atmospheric absorption bands. Simulated and measured transmittance spectra were within 5% for most of the wavelength range, but deviated up to 25% in the vicinity of , indicating the need for more optical laboratory measurements of pure ice, or improved modeling of brine optical properties in this near-infrared wavelength region.

  8. First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning Using Satellite Data

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Kliche, Donna A.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.

  9. First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning using Satellite Data

    NASA Technical Reports Server (NTRS)

    Chistopher, Sundar A.; Kliche, Donna V.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.

  10. The ultraviolet spectral albedo of planet earth

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Serafino, George N.

    1987-01-01

    The solar backscattered ultraviolet spectral radiometer on the Nimbus 7 satellite provides a unique set of radiation measurements which allows an evaluation of the spectral albedo of the earth and its atmosphere in the wavelength range 300 to 340 nm. Near 340 nm, the derived spectral albedo expressed as a function of latitude and month exceeds that in the visible part of the spectrum, with values near 45 percent existing equatorward of 30 deg and an increase to 60-80 percent toward the poles. At middle to high latitudes, the monthly mean spectral albedo exceeds the contribution from Rayleigh scattering alone by factors of 1.4 to 2.2. At wavelengths from 300 to 310 nm, where absorption by stratospheric ozone is significant, the daylight averaged spectral albedos receive negligible contribution from scattering by tropospheric clouds, yet the derived values exceed those predicted for Rayleigh scattering from a clean stratosphere. These observations are consistent with the presence of an atmospheric scattering layer, distinct from cloudiness, located at an altitude above the tropopause.

  11. Earth albedo neutrons from 10 to 100 MeV.

    NASA Technical Reports Server (NTRS)

    Preszler, A. M.; Simnett, G. M.; White, R. S.

    1972-01-01

    We report the measurement of the energy and angular distributions of earth albedo neutrons from 10 to 100 MeV at 40 deg N geomagnetic latitude from a balloon at 120,000 ft, below 4.65 g/sq cm. The albedo-neutron omnidirectional energy distribution is flat to 50 MeV, then decreases with energy. The absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the source of the protons trapped in earth's inner radiation belt.

  12. Negative axial radiation forces on solid spheres and shells in a Bessel beam.

    PubMed

    Marston, Philip L

    2007-12-01

    Prior computations predict that fluid spheres illuminated by an acoustic Bessel beam can be subjected to a radiation force directed opposite the direction of beam propagation. The prediction of negative acoustic radiation force is extended to the cases of a solid poly(methylmethacrylate) PMMA sphere in water and an empty aluminum spherical shell in water. Compared with the angular scattering patterns for plane wave illumination, the scattering into the back hemisphere is suppressed when the radiation force is negative. This investigation may be helpful in the development of acoustic tweezers and in the development of methods for manipulating objects during space flight. PMID:18247728

  13. The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing

    SciTech Connect

    Ricchiazzi, P.; O'Hirok, W.; Gautier, C.

    2005-03-18

    Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The effect of the Lambertian assumption is found through comparison with calculations using a more detailed bi-direction reflectance distribution function (BRDF).

  14. Radiative forcing and temperature change at Potsdam between 1893 and 2012

    NASA Astrophysics Data System (ADS)

    Stanhill, Gerald; Ahiman, Ori

    2014-08-01

    Radiative forcing in both the short and long-wave lengths reaching the Earth's surface accounted for more than 80% of the inter-annual variations in the mean yearly temperatures measured at Potsdam, Germany, during the last 120 years. Three quarters of the increase in the long-wave flux was due to changes in the water content of the lower atmosphere; the remainder was attributed to increases in CO2 and other anthropogenic, radiatively active gases. Over the period radiative forcing in the short-wave flux slightly exceeded that in the long wave, but its effect on air temperature was much less as the climate sensitivity to atmospheric radiation, 0.187°C per W m-2, was three times greater than to short-wave global radiation. This anomalous finding, similar to that previously reported at two coastal sites, awaits explanation as does the complex interaction existing between radiative forcing and advection in determining temperature change.

  15. Energy conservation equation for a radiating pointlike charge in the context of the Abraham-Lorentz versus the Abraham-Becker radiation-reaction force

    NASA Astrophysics Data System (ADS)

    Bellotti, U.; Bornatici, M.

    1997-12-01

    With reference to a radiating pointlike charge, the energy conservation equation comprising the effect of the Abraham-Lorentz radiation-reaction force is contrasted with the incorrect energy conservation equation obtained by Hartemann and Luhmann [Phys. Rev. Lett. 74, 1107 (1995)] on considering instead the Abraham-Becker force that accounts only for a part of the instantaneous radiation-reaction force.

  16. Wavelength Dependence of the Absorption of Black Carbon Particles: Predictions and Results from the TARFOX Experiment and Implications for the Aerosol Single Scattering Albedo

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Hignett, Phillip

    2002-01-01

    Measurements are presented of the wavelength dependence of the aerosol absorption coefficient taken during the Tropical Aerosol Radiative Forcing Observational Experiment (TARFOX) over the northern Atlantic. The data show an approximate lamda(exp -1) variation between 0.40 and 1.0 micrometers. The theoretical basis of the wavelength variation of the absorption of solar radiation by elemental carbon [or black carbon (BC)] is explored. For a wavelength independent refractive index the small particle absorption limit simplifies to a lambda(exp -1) variation in relatively good agreement with the data. This result implies that the refractive indices of BC were relatively constant in this wavelength region, in agreement with much of the data on refractive indices of BC. However, the result does not indicate the magnitude of the refractive indices. The implications of the wavelength dependence of BC absorption for the spectral behavior of the aerosol single scattering albedo are discussed. It is shown that the single scattering albedo for a mixture of BC and nonabsorbing material decreases with wavelength in the solar spectrum (i.e., the percentage amount of absorption increases). This decease in the single scattering albedo with wavelength for black carbon mixtures is different from the increase in single scattering allied for most mineral aerosols (dusts). This indicates that, if generally true, the spectral variation of the single- scattering albedo can be used to distinguish aerosol types. It also highlights the importance of measurements of the spectral variation of the aerosol absorption coefficient and single scattering albedo.

  17. Estimation of Asian Dust Aerosol Effect on Cloud Radiation Forcing Using Fu-Liou Radiative Model and CERES Measurements

    NASA Technical Reports Server (NTRS)

    Su, Jing; Huang, Jianping; Fu, Qiang; Minnis, Patrick; Ge, Jinming; Bi, Jianrong

    2008-01-01

    The impact of Asian dust on cloud radiative forcing during 2003-2006 is studied by using the Earth's Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are -138.9, 69.1, and -69.7 Wm(sup -2), which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in more pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm(sup -2), which is 78.4% of the total dust effect. The direct effect is only 22.7 Wm(sup -2), which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust.

  18. Resolution of the uncertainties in the radiative forcing of HFC-134a

    NASA Astrophysics Data System (ADS)

    Forster, Piers M. De F.; Burkholder, J. B.; Clerbaux, C.; Coheur, P. F.; Dutta, M.; Gohar, L. K.; Hurley, M. D.; Myhre, G.; Portmann, R. W.; Shine, K. P.; Wallington, T. J.; Wuebbles, D.

    2005-07-01

    HFC-134a (CF3CH2F) is the most rapidly growing hydrofluorocarbon in terms of atmospheric abundance. It is currently used in a large number of household refrigerators and air-conditioning systems and its concentration in the atmosphere is forecast to increase substantially over the next 50 100 years. Previous estimates of its radiative forcing per unit concentration have differed significantly ˜25%. This paper uses a two-step approach to resolve this discrepancy. In the first step six independent absorption cross section datasets are analysed. We find that, for the integrated cross section in the spectral bands that contribute most to the radiative forcing, the differences between the various datasets are typically smaller than 5% and that the dependence on pressure and temperature is not significant. A “recommended'' HFC-134a infrared absorption spectrum was obtained based on the average band intensities of the strongest bands. In the second step, the “recommended'' HFC-134a spectrum was used in six different radiative transfer models to calculate the HFC-134a radiative forcing efficiency. The clear-sky instantaneous radiative forcing, using a single global and annual mean profile, differed by 8%, between the 6 models, and the latitudinally-resolved adjusted cloudy sky radiative forcing estimates differed by a similar amount. We calculate that the radiative forcing efficiency of HFC-134a is 0.16±0.02Wmppbv.

  19. Surprises and anomalies in acoustical and optical scattering and radiation forces

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2015-09-01

    Experiments on radiation torques and negative radiation forces by various researchers display how the underlying wave-field geometry influences radiation forces. Other situations strongly influenced by wave-field geometry include high-order caustics present in light-scattering patterns of objects as simple as oblate drops of water or oblate bubbles of air in water. Related theoretical and experimental investigations are considered. Acoustic scattering enhancements associated with various guided waves are also examined. These include guided waves having negative group velocities and guided wave radiating wavefronts having a vanishing Gaussian curvature.

  20. Cloud radiation forcings and feedbacks: General circulation model tests and observational validation

    SciTech Connect

    Lee, Wan-Ho; Iacobellis, S.F.; Somerville, R.C.J.

    1997-10-01

    Using an atmospheric general circulation model (the National Center for Atmospheric Research Community Climate Model: CCM2), the effects on climate sensitivity of several different cloud radiation parameterizations have been investigated. In addition to the original cloud radiation scheme of CCM2, four parameterizations incorporating prognostic cloud water were tested: one version with prescribed cloud radiative properties and three other versions with interactive cloud radiative properties. The authors` numerical experiments employ perpetual July integrations driven by globally constant sea surface temperature forcings of two degrees, both positive and negative. A diagnostic radiation calculation has been applied to investigate the partial contributions of high, middle, and low cloud to the total cloud radiative forcing, as well as the contributions of water vapor, temperature, and cloud to the net climate feedback. The high cloud net radiative forcing is positive, and the middle and low cloud net radiative forcings are negative. The total net cloud forcing is negative in all of the model versions. The effect of interactive cloud radiative properties on global climate sensitivity is significant. The net cloud radiative feedbacks consist of quite different shortwave and longwave components between the schemes with interactive cloud radiative properties and the schemes with specified properties. The increase in cloud water content in the warmer climate leads to optically thicker middle- and low-level clouds and in turn to negative shortwave feedbacks for the interactive radiative schemes, while the decrease in cloud amount simply produces a positive shortwave feedback for the schemes with a specified cloud water path. For the longwave feedbacks, the decrease in high effective cloudiness for the schemes without interactive radiative properties leads to a negative feedback, while for the other cases, the longwave feedback is positive. 29 refs., 18 figs., 6 tabs.

  1. On the influence of the diurnal variations of aerosol content to estimate direct aerosol radiative forcing using MODIS data

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Guo, Jianping; Ceamanos, Xavier; Roujean, Jean-Louis; Min, Min; Carrer, Dominique

    2016-09-01

    Long-term measurements of aerosol optical depth (AOD) from the Aerosol Robotic Network (AERONET) located in Beijing reveal a strong diurnal cycle of aerosol load staged by seasonal patterns. Such pronounced variability is matter of importance in respect to the estimation of daily averaged direct aerosol radiative forcing (DARF). Polar-orbiting satellites could only offer a daily revisit, which turns in fact to be even much less in case of frequent cloudiness. Indeed, this places a severe limit to properly capture the diurnal variations of AOD and thus estimate daily DARF. Bearing this in mind, the objective of the present study is however to evaluate the impact of AOD diurnal variations for conducting quantitative assessment of DARF using Moderate Resolution Imaging Spectroradiometer (MODIS) AOD data over Beijing. We provide assessments of DARF with two different assumptions about diurnal AOD variability: taking the observed hourly-averaged AOD cycle into account and assuming constant MODIS (including Terra and Aqua) AOD value throughout the daytime. Due to the AOD diurnal variability, the absolute differences in annual daily mean DARFs, if the constant MODIS/Terra (MODIS/Aqua) AOD value is used instead of accounting for the observed hourly-averaged daily variability, is 1.2 (1.3) Wm-2 at the top of the atmosphere, 27.5 (30.6) Wm-2 at the surface, and 26.4 (29.3) Wm-2 in the atmosphere, respectively. During the summertime, the impact of the diurnal AOD variability on seasonal daily mean DARF estimates using MODIS Terra (Aqua) data can reach up to 2.2 (3.9) Wm-2 at the top of the atmosphere, 43.7 (72.7) Wm-2 at the surface, and 41.4 (68.8) Wm-2 in the atmosphere, respectively. Overall, the diurnal variation in AOD tends to cause large bias in the estimated DARF on both seasonal and annual scales. In summertime, the higher the surface albedo, the stronger impact on DARF at the top of the atmosphere caused by dust and biomass burning (continental) aerosol. This

  2. Comparison of spectral surface albedos and their impact on the general circulation model simulated surface climate

    NASA Astrophysics Data System (ADS)

    Roesch, A.; Wild, M.; Pinker, R.; Ohmura, A.

    2002-07-01

    This study investigates the impact of spectrally resolved surface albedo on the total surface albedo. The neglect of albedo variation within the shortwave spectrum may lead to substantial errors as the atmospheric water greatly influences the spectral distribution of the incoming radiation. It is shown that ignoring the spectral dependence of the surface albedo will affect the predicted climate. The study reveals substantial changes in the climate over northern Africa when modifying the surface albedo of the Sahara deserts. Detailed information is given how the European Center/Hamburg General Circulation Model (ECHAM4) can be extended to include surface boundary conditions for both the visible and near-infrared incoming radiation. This comprises global climatologies for both the visible and near-infrared albedo for snow-free conditions, as well as the corresponding albedo values over snow, land-/sea ice and over snow covered forests. Comparisons between several available surface albedo climatologies and a newly compiled albedo data set show substantial scatter in estimated albedos. The largest albedo differences are found in snow covered forest regions as well as in arid and semi-arid terrains.

  3. MISR Level 2 TOA/Cloud Albedo parameters (MIL2TCAL_V2)

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    The TOA/Cloud Albedo data contain albedo values, including finely-sampled or local (2.2 km) TOA albedos registered to the RLRA, and two coarsely-sampled (35.2 km resolution) TOA albedos projected to 30-km altitude. The local (2.2 km) albedos do not take the obscuration of cloud features into account, so they should only be treated as traditional albedos when the number of obscured pixels is low. The restrictive and expansive albedos are both available at 35.2 km resolution: the restrictive albedos are only calculated using the radiation upwelling from the pixel under consideration, whereas the expansive albedos use all the radiation emanating from the surrounding area. Therefore, the expansive albedo is closer to the traditional definition of top-of-atmosphere albedos. [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1.1 km; Longitude_Resolution=1.1 km; Temporal_Resolution=about 15 orbits/day].

  4. Aerosols optical and physical characteristics and direct radiative forcing during a "Shamal" dust storm, a case study

    NASA Astrophysics Data System (ADS)

    Saeed, T. M.; Al-Dashti, H.; Spyrou, C.

    2013-09-01

    Dust aerosols are analyzed for their optical and physical properties during an episode of dust storm that hit Kuwait on 26 March 2003 when "Iraqi Freedom" military operation was in full swing. The intensity of the dust storm was such that it left a thick suspension of dust throughout the following day, 27 March, resulting in a considerable cooling effect at the surface on both days. Ground-based measurements of aerosol optical thickness reached 3.617 and 4.17 on 26-27 March respectively while Ångstrom coefficient, α870/440, dropped to -0.0234 and -0.0318. Particulate matter concentration of diameter 10 μm or less, PM10, peaked at 4800 μg m-3 during dust storm hours of 26 March. Moderate resolution imaging spectrometer (MODIS) retrieved optical and physical characteristics that exhibited extreme values as well. The synoptic of the dust storm is presented and source regions are identified using total ozone mapping spectrometer (TOMS) aerosol index retrieved images. The vertical profile of the dust layer was simulated using SKIRON atmospheric model. Instantaneous net direct radiative forcing is calculated at top of atmosphere (TOA) and surface level. The thick dust layer of 26 March resulted in cooling the TOA by -60 Wm-2 and surface level by -175 Wm-2 for a surface albedo of 0.35. Slightly higher values were obtained for 27 March due to the increase in aerosol optical thickness. The large reduction in the radiative flux at the surface level had caused a drop in surface temperature by approximately 6 °C below its average value. Radiative heating/cooling rates in the shortwave and longwave bands were also examined. Shortwave heating rate reached a maximum value of 2 °K day-1 between 3 and 5 km, dropped to 1.5 °K day-1 at 6 km and diminished at 8 km. Longwave radiation initially heated the lower atmosphere by a maximum value of 0.2 °K day-1 at surface level, declined sharply at increasing altitude and diminished at 4 km. Above 4 km longwave radiation started to

  5. Liver reserve function assessment by acoustic radiation force impulse imaging

    PubMed Central

    Sun, Xiao-Lan; Liang, Li-Wei; Cao, Hui; Men, Qiong; Hou, Ke-Zhu; Chen, Zhen; Zhao, Ya-E

    2015-01-01

    AIM: To evaluate the utility of liver reserve function by acoustic radiation force impulse (ARFI) imaging in patients with liver tumors. METHODS: Seventy-six patients with liver tumors were enrolled in this study. Serum biochemical indexes, such as aminotransferase (ALT), aspartate aminotransferase (AST), serum albumin (ALB), total bilirubin (T-Bil), and other indicators were observed. Liver stiffness (LS) was measured by ARFI imaging, measurements were repeated 10 times, and the average value of the results was taken as the final LS value. Indocyanine green (ICG) retention was performed, and ICG-K and ICG-R15 were recorded. Child-Pugh (CP) scores were carried out based on patient’s preoperative biochemical tests and physical condition. Correlations among CP scores, ICG-R15, ICG-K and LS values were observed and analyzed using either the Pearson correlation coefficient or the Spearman rank correlation coefficient. Kruskal-Wallis test was used to compare LS values of CP scores, and the receiver-operator characteristic (ROC) curve was used to analyze liver reserve function assessment accuracy. RESULTS: LS in the ICG-R15 10%-20% group was significantly higher than in the ICG-R15 < 10% group; and the difference was statistically significant (2.19 ± 0.27 vs 1.59 ± 0.32, P < 0.01). LS in the ICG-R15 > 20% group was significantly higher than in the ICG-R15 < 10% group; and the difference was statistically significant (2.92 ± 0.29 vs 1.59 ± 0.32, P < 0.01). The LS value in patients with CP class A was lower than in patients with CP class B (1.57 ± 0.34 vs 1.86 ± 0.27, P < 0.05), while the LS value in patients with CP class B was lower than in patients with CP class C (1.86 ± 0.27 vs 2.47 ± 0.33, P < 0.01). LS was positively correlated with ICG-R15 (r = 0.617, P < 0.01) and CP score (r = 0.772, P < 0.01). Meanwhile, LS was negatively correlated with ICG-K (r = -0.673, P < 0.01). AST, ALT and T-Bil were positively correlated with LS, while ALB was negatively

  6. Longwave Radiative Forcing of Saharan Dust Aerosols Estimated from MODIS, MISR and CERES Observations on Terra

    NASA Technical Reports Server (NTRS)

    Zhang, Jiang-Long; Christopher, Sundar A.

    2003-01-01

    Using observations from the Multi-angle Imaging Spectroradiometer (MISR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Clouds and the Earth's Radiant Energy System (CERES) instruments onboard the Terra satellite; we present a new technique for studying longwave (LW) radiative forcing of dust aerosols over the Saharan desert for cloud-free conditions. The monthly-mean LW forcing for September 2000 is 7 W/sq m and the LW forcing efficiency' (LW(sub eff)) is 15 W/sq m. Using radiative transfer calculations, we also show that the vertical distribution of aerosols and water vapor are critical to the understanding of dust aerosol forcing. Using well calibrated, spatially and temporally collocated data sets, we have combined the strengths of three sensors from the same satellite to quantify the LW radiative forcing, and show that dust aerosols have a "warming" effect over the Saharan desert that will counteract the shortwave "cooling effect" of aerosols.

  7. Direct observations of shortwave aerosol radiative forcing at surface and its diurnal variation during the Asian dry season at southwest Indian peninsula

    NASA Astrophysics Data System (ADS)

    Mishra, Manoj Kumar; Rajeev, K.

    2016-08-01

    The Arabian Sea witnesses consistent occurrence of a large-scale aerosol plume transported by the northerlies from the Asian region during the dry season (December-April). This paper presents direct observations of the diurnal variation (and dependence on solar zenith angle, SZA) of instantaneous aerosol direct radiative forcing efficiency (IADRFE) and aerosol direct radiative forcing (ADRF) at surface during the period from December to March of 2010-2013 at Thiruvananthapuram (8.5°N, 77°E), an Indian peninsular station adjoining the Arabian Sea coast, which resides well within this aerosol plume. Magnitude of the IADRFE increases with SZA from -75 ± 20 W m-2 τ 500 -1 at SZA of ~80° to attain a peak value of -170 ± 30 W m-2 τ 500 -1 at SZA ~60° in March (~3 h before and after the local noon). Absolute magnitudes and SZA dependence of the observed seasonal mean IADRFE are in agreement (within 16 % of the absolute magnitudes) with those estimated using radiation transfer computations employing an aerosol model with visible band single-scattering albedo of ~0.90 ± 0.03. Observed values of the diurnal mean aerosol radiative forcing efficiency (ADRFE) averaged during the season (December-March) vary between -71 and -76.5 W m-2 τ 500 -1 , which is in agreement with the model estimate of -71 W m-2 τ 500 -1 . The present observations show that the seasonal mean ADRF at surface (-25 to -28 W m-2) is about 10 % of the diurnal mean downwelling shortwave flux reaching the surface (in the absence of aerosols) during dry season at this location, indicating the major role of aerosols in regulating surface energetics.

  8. Direct observations of shortwave aerosol radiative forcing at surface and its diurnal variation during the Asian dry season at southwest Indian peninsula

    NASA Astrophysics Data System (ADS)

    Mishra, Manoj Kumar; Rajeev, K.

    2016-01-01

    The Arabian Sea witnesses consistent occurrence of a large-scale aerosol plume transported by the northerlies from the Asian region during the dry season (December-April). This paper presents direct observations of the diurnal variation (and dependence on solar zenith angle, SZA) of instantaneous aerosol direct radiative forcing efficiency (IADRFE) and aerosol direct radiative forcing (ADRF) at surface during the period from December to March of 2010-2013 at Thiruvananthapuram (8.5°N, 77°E), an Indian peninsular station adjoining the Arabian Sea coast, which resides well within this aerosol plume. Magnitude of the IADRFE increases with SZA from -75 ± 20 W m-2 τ {500/-1} at SZA of ~80° to attain a peak value of -170 ± 30 W m-2 τ {500/-1} at SZA ~60° in March (~3 h before and after the local noon). Absolute magnitudes and SZA dependence of the observed seasonal mean IADRFE are in agreement (within 16 % of the absolute magnitudes) with those estimated using radiation transfer computations employing an aerosol model with visible band single-scattering albedo of ~0.90 ± 0.03. Observed values of the diurnal mean aerosol radiative forcing efficiency (ADRFE) averaged during the season (December-March) vary between -71 and -76.5 W m-2 τ {500/-1}, which is in agreement with the model estimate of -71 W m-2 τ {500/-1}. The present observations show that the seasonal mean ADRF at surface (-25 to -28 W m-2) is about 10 % of the diurnal mean downwelling shortwave flux reaching the surface (in the absence of aerosols) during dry season at this location, indicating the major role of aerosols in regulating surface energetics.

  9. Radiation pressure excitation of Low Temperature Atomic Force & Magnetic Force Microscope (LT-AFM/MFM) for Imaging

    NASA Astrophysics Data System (ADS)

    Karci, Ozgur; Celik, Umit; Oral, Ahmet; NanoMagnetics Instruments Ltd. Team; Middle East Tech Univ Team

    2015-03-01

    We describe a novel method for excitation of Atomic Force Microscope (AFM) cantilevers by means of radiation pressure for imaging in an AFM for the first time. Piezo excitation is the most common method for cantilever excitation, but it may cause spurious resonance peaks. A fiber optic interferometer with 1310 nm laser was used both to measure the deflection of cantilever and apply a force to the cantilever in a LT-AFM/MFM from NanoMagnetics Instruments. The laser power was modulated at the cantilever`s resonance frequency by a digital Phase Lock Loop (PLL). The force exerted by the radiation pressure on a perfectly reflecting surface by a laser beam of power P is F = 2P/c. We typically modulate the laser beam by ~ 800 μW and obtain 10nm oscillation amplitude with Q ~ 8,000 at 2.5x10-4 mbar. The cantilever's stiffness can be accurately calibrated by using the radiation pressure. We have demonstrated performance of the radiation pressure excitation in AFM/MFM by imaging a hard disk sample between 4-300K and Abrikosov vortex lattice in BSCCO single crystal at 4K to for the first time.

  10. Non-Kyoto Radiative Forcing in Long-Run Greenhouse Gas Emissions and Climate Change Scenarios

    SciTech Connect

    Rose, Steven K.; Richels, Richard G.; Smith, Steven J.; Riahi, Keywan; Stefler, Jessica; Van Vuuren, Detlef

    2014-04-27

    Climate policies designed to achieve climate change objectives must consider radiative forcing from the Kyoto greenhouse gas, as well as other forcing constituents, such as aerosols and tropospheric ozone. Net positive forcing leads to global average temperature increases. Modeling of non-Kyoto forcing is a relatively new component of climate management scenarios. Five of the nineteen models in the EMF-27 Study model both Kyoto and non-Kyoto forcing. This paper describes and assesses current non-Kyoto radiative forcing modeling within these integrated assessment models. The study finds negative forcing from aerosols masking significant positive forcing in reference non-climate policy projections. There are however large differences across models in projected non-Kyoto emissions and forcing, with differences stemming from differences in relationships between Kyoto and non-Kyoto emissions and fundamental differences in modeling structure and assumptions. Air pollution and non-Kyoto forcing decline in the climate policy scenarios. However, non-Kyoto forcing appears to be influencing mitigation results, including allowable carbon dioxide emissions, and further evaluation is merited. Overall, there is substantial uncertainty related to non-Kyoto forcing that must be considered.

  11. Impact on Climate due to Changes in Radiative Forcing from Stratospheric Aircraft Emissions

    NASA Astrophysics Data System (ADS)

    Dutta, M.; Wuebbles, D. J.; Herman, R.; Baughcum, S. L.

    2004-05-01

    Aircraft emissions can affect climate both directly and indirectly. The 1999 Intergovernmental Panel on Climate Change report on Aviation and The Global Atmosphere estimated that emissions from a fleet of one thousand High Speed Civil Transport aircraft (flying at Mach 2.4) could produce a non-negligible impact on the radiative forcing driving changes in climate. In this study we reexamine the radiative forcing from fleets of aircraft flying at stratospheric altitudes and predominantly in the northern hemisphere mid-latitude regions. We use our narrowband radiative transfer model in these studies, along with model calculations of calculated changes in ozone and water vapor from our zonally-averaged model of atmospheric chemical and physical processes. The radiative transfer model has higher resolution in the tropopause and lower stratosphere region than the models used in the 1999 IPCC assessment. Our results suggest that the radiative forcing for the water vapor emissions from aircraft was overestimated previously.

  12. Arid land monitoring using Landsat albedo difference images

    USGS Publications Warehouse

    Robinove, Charles J.; Chavez, Pat S., Jr.; Gehring, Dale G.; Holmgren, Ralph

    1981-01-01

    The Landsat albedo, or percentage of incoming radiation reflected from the ground in the wavelength range of 0.5 [mu]m to 1.1 [mu]m, is calculated from an equation using the Landsat digital brightness values and solar irradiance values, and correcting for atmospheric scattering, multispectral scanner calibration, and sun angle. The albedo calculated for each pixel is used to create an albedo image, whose grey scale is proportional to the albedo. Differencing sequential registered images and mapping selected values of the difference is used to create quantitative maps of increased or decreased albedo values of the terrain. All maps and other output products are in black and white rather than color, thus making the method quite economical. Decreases of albedo in arid regions may indicate improvement of land quality; increases may indicate degradation. Tests of the albedo difference mapping method in the Desert Experimental Range in southwestern Utah (a cold desert with little long-term terrain change) for a four-year period show that mapped changes can be correlated with erosion from flash floods, increased or decreased soil moisture, and increases or decreases in the density of desert vegetation, both perennial shrubs and annual plants. All terrain changes identified in this test were related to variations in precipitation. Although further tests of this method in hot deserts showing severe "desertification" are needed, the method is nevertheless recommended for experimental use in monitoring terrain change in other arid and semiarid regions of the world.

  13. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves

    NASA Astrophysics Data System (ADS)

    Johnson, Kennita A.; Vormohr, Hannah R.; Doinikov, Alexander A.; Bouakaz, Ayache; Shields, C. Wyatt; López, Gabriel P.; Dayton, Paul A.

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.

  14. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves.

    PubMed

    Johnson, Kennita A; Vormohr, Hannah R; Doinikov, Alexander A; Bouakaz, Ayache; Shields, C Wyatt; López, Gabriel P; Dayton, Paul A

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid. PMID:27300980

  15. The directional sensitivity of the acoustic radiation force to particle diameter.

    PubMed

    Ran, W; Saylor, J R

    2015-06-01

    When viscous corrections to the inviscid acoustic radiation force theory are implemented and applied to a standing wave field, the direction of the acoustic radiation force on particles varies from theory to theory. Specifically, some theories predict that the direction of the force depends on the particle diameter, while others reveal that the direction of the force is independent of particle diameter. The present study is an experimental investigation of the direction of the acoustic radiation force which suggests that particle diameter does affect the direction. Experiments were conducted in air using an ultrasonic standing wave field with a nominal frequency of 30 kHz. Smoke particles and fine water droplets having a range of diameters were flowed into the region of a standing wave field. The direction of the acoustic radiation force was determined by observing whether the particles accumulated in the nodes or the anti-nodes of the standing wave. Results show a change in the direction of the acoustic radiation force at a particle diameter of 0.3±0.1 μm, which corresponds to a particle diameter to acoustic-boundary-layer thickness ratio of 0.023±0.008. PMID:26093419

  16. Radiative forcing perturbation due to observed increases in tropospheric ozone at Hohenpeissenberg

    NASA Technical Reports Server (NTRS)

    Wang, Wei-Chyung; Bojkov, Rumen D.; Zhuang, Yi-Cheng

    1994-01-01

    The effect on surface temperature due to changes in atmospheric O3 depends highly on the latitude where the change occurs. Previous sensitivity calculations indicate that ozone changes in the upper troposphere and lower stratosphere are more effective in causing surface temperature change (Wang et al., 1980). Long term ground-based observations show that tropospheric ozone, especially at the tropopause region, has been increasing at middle and high latitudes in the Northern Hemisphere (NATO, 1988; Quadrennial Ozone Symposium, 1992). These increases will enhance the greenhouse effect and increase the radiative forcing to the troposphere-surface system, which is opposite to the negative radiative forcing calculated from the observed stratospheric ozone depletion recently reported in WMO (1992). We used more than two thousands regularly measured ozonesondes providing reliable vertical O3 distribution at Hohenpeissenberg (47N; 11E) for the 1967-1990 to study the instantaneous solar and longwave radiative forcing the two decades 1971-1990 and compare the forcing with those caused by increasing CO2, CH4, N2O, and CFCs. Calculations are also made to compare the O3 radiative forcing between stratospheric depletion and tropospheric increase. Results indicate that the O3 changes will induce a positive radiative forcing dominated by tropospheric O3 increase and the magnitude of the forcing is comparable to that due to CO2 increases during the two decades. The significant implications of the tropospheric O3 increase to the global climate are discussed.

  17. SEAC4RS Aerosol Radiative Effects and Heating Rates

    NASA Astrophysics Data System (ADS)

    Cochrane, S.; Schmidt, S.; Redemann, J.; Hair, J. W.; Ferrare, R. A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2015-12-01

    We will present (a) aerosol optical properties, (b) aerosol radiative forcing, (c) aerosol and gas absorption and heating rates, and (d) spectral surface albedo for cases from August 19th and 26th of the SEAC4RS mission. This analysis is based on irradiance data from the Solar Spectral Flux Radiometer (SSFR), spectral aerosol optical depth from the Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), and extinction profiles from the DIAL/High Spectral Resolution Lidar (HSRL). We derive spectrally resolved values of single scattering albedo, asymmetry parameter, and surface albedo from the data, and determine profiles of absorption and heating rate segregated by absorber (aerosol and gas).

  18. Trade-offs between three forest ecosystem services across the state of New Hampshire, USA: timber, carbon, and albedo.

    PubMed

    Lutz, David A; Burakowski, Elizabeth A; Murphy, Mackenzie B; Borsuk, Mark E; Niemiec, Rebecca M; Howarth, Richard B

    2016-01-01

    Forests are more frequently being managed to store and sequester carbon for the purposes of climate change mitigation. Generally, this practice involves long-term conservation of intact mature forests and/or reductions in the frequency and intensity of timber harvests. However, incorporating the influence of forest surface albedo often suggests that long rotation lengths may not always be optimal in mitigating climate change in forests characterized by frequent snowfall. To address this, we investigated trade-offs between three ecosystem services: carbon storage, albedo-related radiative forcing, and timber provisioning. We calculated optimal rotation length at 498 diverse Forest Inventory and Analysis forest sites in the state of New Hampshire, USA. We found that the mean optimal rotation lengths across all sites was 94 yr (standard deviation of sample means = 44 yr), with a large cluster of short optimal rotation lengths that were calculated at high elevations in the White Mountain National Forest. Using a regression tree approach, we found that timber growth, annual storage of carbon, and the difference between annual albedo in mature forest vs. a post-harvest landscape were the most important variables that influenced optimal rotation. Additionally, we found that the choice of a baseline albedo value for each site significantly altered the optimal rotation lengths across all sites, lowering the mean rotation to 59 yr with a high albedo baseline, and increasing the mean rotation to 112 yr given a low albedo baseline. Given these results, we suggest that utilizing temperate forests in New Hampshire for climate mitigation purposes through carbon storage and the cessation of harvest is appropriate at a site-dependent level that varies significantly across the state. PMID:27039516

  19. New Directions: Emerging Satellite Observations of Above-cloud Aerosols and Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Zhang, Zhibo

    2013-01-01

    Spaceborne lidar and passive sensors with multi-wavelength and polarization capabilities onboard the A-Train provide unprecedented opportunities of observing above-cloud aerosols and direct radiative forcing. Significant progress has been made in recent years in exploring these new aerosol remote sensing capabilities and generating unique datasets. The emerging observations will advance the understanding of aerosol climate forcing.

  20. Regional Attribution of Ozone Production and Associated Radiative Forcing: a Step to Crediting NOx Emission Reductions

    NASA Astrophysics Data System (ADS)

    Naik, V.; Mauzerall, D. L.; Horowitz, L.; Schwarzkopf, D.; Ramaswamy, V.; Oppenheimer, M.

    2004-12-01

    The global distribution of tropospheric ozone (O3) depends on the location of emissions of its precursors in addition to chemical and dynamical factors. The global picture of O3 forcing is, therefore, a sum of regional forcings arising from emissions of precursors from different sources. The Kyoto Protocol does not include ozone as a greenhouse gas, and emission reductions of ozone precursors made under Kyoto or any similar agreement would presently receive no credit. In this study, we quantitatively estimate the contribution of emissions of nitrogen oxides (NOx), the primary limiting O3 precursor in the non-urban atmosphere, from specific countries and regions of the world to global O3 concentration distributions. We then estimate radiative forcing resulting from the regional perturbations of NOx emissions. This analysis is intended as an early step towards incorporating O3 into the Kyoto Protocol or any successor agreement. Under such a system countries could obtain credit for improvements in local air quality that result in reductions of O3 concentrations because of the associated reductions in radiative forcing. We use the global chemistry transport model, MOZART-2, to simulate the global O3 distribution for base year 1990 and perturbations to this distribution caused by a 10% percent reduction in the base emissions of NOx from the United States, Europe, East Asia, India, South America, and Africa. We calculate the radiative forcing for the simulated base and perturbed O3 distributions using the GFDL radiative transfer model. The difference between the radiative forcing from O3 for the base and perturbed distributions provides an estimate of the marginal radiative forcing from a region's emissions of NOx. We will present a quantitative analysis of the magnitude, spatial, and temporal distribution of radiative forcing resulting from marginal changes in the NOx emissions from each region.

  1. Satellite Estimates of the Direct Radiative Forcing of Biomass Burning Aerosols Over South America and Africa

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Kliche, Donna V.; Berendes, Todd; Welch, Ronald M.; Yang, S.K.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic are important to the earth's radiative balance. Therefore it is important to provide adequate validation information on the spatial, temporal and radiative properties of aerosols. This will enable us to predict realistic global estimates of aerosol radiative effects more confidently. The current study utilizes 66 AVHRR LAC (Local Area Coverage) and coincident Earth Radiation Budget Experiment (ERBE) images to characterize the fires, smoke and radiative forcings of biomass burning aerosols over four major ecosystems of South America.

  2. MISR Level 3 Albedo and Cloud Versioning

    Atmospheric Science Data Center

    2016-09-07

    ... 2:  CLOUD - Wind Vectors, Height Histogram Stage 1:  ALBEDO - Expansive, Restrictive and Local Albedo (except over snow and ... Stage 2 CLOUD - Height Histogram Stage 1 CLOUD - Wind Vectors Stage 1 ALBEDO - Expansive and Restrictive ...

  3. ENSO surface longwave radiation forcing over the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Pavlakis, K. G.; Hatzidimitriou, D.; Drakakis, E.; Matsoukas, C.; Fotiadi, A.; Hatzianastassiou, N.; Vardavas, I.

    2006-12-01

    We have studied the spatial and temporal variation of the surface longwave radiation (downwelling and net) over a 21-year period in the tropical and subtropical Pacific Ocean (40 S-40 N, 90 E-75 W). The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database and reanalysis data from NCEP/NCAR (acronyms explained in main text), for the key atmospheric and surface input parameters. An excellent correlation was found between the downwelling longwave radiation (DLR) anomaly and the Niño-3.4 index time-series, over the Niño-3.4 region located in the central Pacific. A high anti-correlation was also found over the western Pacific (15-0 S, 105-130 E). There is convincing evidence that the time series of the mean downwelling longwave radiation anomaly in the western Pacific precedes that in the Niño-3.4 region by 3-4 months. Thus, the downwelling longwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to asses whether or not El Niño or La Niña conditions prevail. Over the Niño-3.4 region, the mean DLR anomaly values range from +20 Wm-2 during El Niño episodes to -20 Wm-2 during La Niña events, while over the western Pacific (15-0 S, 105-130 E) these values range from -15 Wm-2 to +10 Wm-2, respectively. The long- term average (1984-2004) distribution of the net surface longwave radiation to the surface over the tropical and subtropical Pacific for the three month period November-December-January shows a net thermal cooling of the ocean surface. When El Niño conditions prevail, the thermal radiative cooling in the central and south-eastern tropical Pacific becomes weaker by 10 Wm-2 south of the equator in the central Pacific (7-0 S, 160-120 W) for the three-month period of NDJ, because the DLR increase is larger than the increase in surface thermal emission. In contrast

  4. ENSO surface longwave radiation forcing over the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Pavlakis, K. G.; Hatzidimitriou, D.; Drakakis, E.; Matsoukas, C.; Fotiadi, A.; Hatzianastassiou, N.; Vardavas, I.

    2007-04-01

    We have studied the spatial and temporal variation of the surface longwave radiation (downwelling and net) over a 21-year period in the tropical and subtropical Pacific Ocean (40 S-40 N, 90 E-75 W). The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database and reanalysis data from NCEP/NCAR (acronyms explained in main text), for the key atmospheric and surface input parameters. An excellent correlation was found between the downwelling longwave radiation (DLR) anomaly and the Niño-3.4 index time-series, over the Niño-3.4 region located in the central Pacific. A high anti-correlation was also found over the western Pacific (15-0 S, 105-130 E). There is convincing evidence that the time series of the mean downwelling longwave radiation anomaly in the western Pacific precedes that in the Niño-3.4 region by 3-4 months. Thus, the downwelling longwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to asses whether or not El Niño or La Niña conditions prevail. Over the Niño-3.4 region, the mean DLR anomaly values range from +20 Wm-2 during El Niño episodes to -20 Wm-2 during La Niña events, while over the western Pacific (15-0 S, 105-130 E) these values range from -15 Wm-2 to +10 Wm-2, respectively. The long- term average (1984-2004) distribution of the net downwelling longwave radiation at the surface over the tropical and subtropical Pacific for the three month period November-December-January shows a net thermal cooling of the ocean surface. When El Niño conditions prevail, the thermal radiative cooling in the central and south-eastern tropical Pacific becomes weaker by 10 Wm-2 south of the equator in the central Pacific (7-0 S, 160-120 W) for the three-month period of NDJ, because the DLR increase is larger than the increase in surface thermal emission. In contrast

  5. Observation of Nonclassical Radiation Pressure Forces on a Mechanical Oscillator

    NASA Astrophysics Data System (ADS)

    Clark, Jeremy; Lecocq, Florent; Simmonds, Raymond; Aumentado, Jose; Teufel, John

    Squeezed states of light are known to be useful for enhancing mechanical displacement sensing since they can be tailored to reduce the ``photon counting noise'' that limits the measurement's noise floor. On the other hand, recent experiments in cavity optomechanics have reached measurement regimes where an interrogating light field exerts radiation pressure noise on a mechanical oscillator. One outstanding challenge has been to explore the intersection between such experiments. I will present data obtained using a superconducting cavity optomechanical system wherein a mechanical oscillator is driven by nonclassical radiation pressure imparted by squeezed microwave fields. JBC acknowledges the NRC for financial support.

  6. Aerosol's optical and physical characteristics and direct radiative forcing during a shamal dust storm, a case study

    NASA Astrophysics Data System (ADS)

    Saeed, T. M.; Al-Dashti, H.; Spyrou, C.

    2014-04-01

    Dust aerosols are analyzed for their optical and physical properties during an episode of a dust storm that blew over Kuwait on 26 March 2003 when the military Operation Iraqi Freedom was in full swing. The intensity of the dust storm was such that it left a thick suspension of dust throughout the following day, 27 March. The synoptic sequence leading to the dust storm and the associated wind fields are discussed. Ground-based measurements of aerosol optical thickness reached 3.617 and 4.17 on 26 and 27 March respectively while the Ångstrom coefficient, α870/440, dropped to -0.0234 and -0.0318. Particulate matter concentration of 10 μm diameter or less, PM10, peaked at 4800 μg m-3 during dust storm hours of 26 March. Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved aerosol optical depth (AOD) by Deep Blue algorithm and Total Ozone Mapping Spectrometer (TOMS) aerosol index (AI) exhibited high values. Latitude-longitude maps of AOD and AI were used to deduce source regions of dust transport over Kuwait. The vertical profile of the dust layer was simulated using the SKIRON atmospheric model. Instantaneous net direct radiative forcing is calculated at top of atmosphere (TOA) and surface level. The thick dust layer of 26 March resulted in cooling the TOA by -60 Wm-2 and surface level by -175 Wm-2 for a surface albedo of 0.35. Slightly higher values were obtained for 27 March due to the increase in aerosol optical thickness. Radiative heating/cooling rates in the shortwave and longwave bands were also examined. Shortwave heating rate reached a maximum value of 2 K day-1 between 3 and 5 km, dropped to 1.5 K day-1 at 6 km and diminished at 8 km. Longwave radiation initially heated the lower atmosphere by a maximum value of 0.2 K day-1 at surface level, declined sharply at increasing altitude and diminished at 4 km. Above 4 km longwave radiation started to cool the atmosphere slightly reaching a maximum rate of -0.1 K day-1 at 6 km.

  7. Mapping of laser diode radiation intensity by atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Alekseev, P. A.; Dunaevskii, M. S.; Slipchenko, S. O.; Podoskin, A. A.; Tarasov, I. S.

    2015-09-01

    The distribution of the intensity of laser diode radiation has been studied using an original method based on atomic-force microscopy (AFM). It is shown that the laser radiation intensity in both the near field and transition zone of a high-power semiconductor laser under room-temperature conditions can be mapped by AFM at a subwavelength resolution. The obtained patterns of radiation intensity distribution agree with the data of modeling and the results of near-field optical microscopy measurements.

  8. Changes in Snow Albedo Resulting from Snow Darkening Caused by Black Carbon

    NASA Astrophysics Data System (ADS)

    Engels, J.; Kloster, S.; Bourgeois, Q.

    2014-12-01

    potential climate impact will be analyzed in terms of the radiative forcing caused by the snow darkening induced changes in surface albedo.

  9. Interpretation of surface and planetary directional albedos for vegetated regions

    NASA Technical Reports Server (NTRS)

    Cess, Robert D.; Vulis, Inna L.

    1989-01-01

    An atmospheric solar radiation model has been coupled with surface reflectance measurements for two vegetation types, pasture land and savannah, in order to address several issues associated with understanding the directional planetary albedo; i.e., the dependence of planetary albedo upon solar zenith angle. These include an elucidation of processes that influence the variation of planetary albedo with solar zenith angle, as well as emphasizing potential problems associated with converting narrowband planetary albedo measurements to broadband quantities. It is suggested that, for vegetated surfaces, this latter task could be somewhat formidable, since the model simulations indicate that narrowband to broadband conversions strongly depend upon vegetation type. A further aspect of this paper is to illustrate a procedure by which reciprocity inconsistencies within a bidirectional reflectance dataset, if they are not too severe, can be circumvented.

  10. Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires

    USGS Publications Warehouse

    Guo, S.; Leighton, H.

    2008-01-01

    The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.

  11. Acoustic radiation force impulse (ARFI) imaging: Characterizing the mechanical properties of tissues using their transient response to localized force

    NASA Astrophysics Data System (ADS)

    Nightingale, Kathryn R.; Palmeri, Mark L.; Congdon, Amy N.; Frinkely, Kristin D.; Trahey, Gregg E.

    2001-05-01

    Acoustic radiation force impulse (ARFI) imaging utilizes brief, high energy, focused acoustic pulses to generate radiation force in tissue, and conventional diagnostic ultrasound methods to detect the resulting tissue displacements in order to image the relative mechanical properties of tissue. The magnitude and spatial extent of the applied force is dependent upon the transmit beam parameters and the tissue attenuation. Forcing volumes are on the order of 5 mm3, pulse durations are less than 1 ms, and tissue displacements are typically several microns. Images of tissue displacement reflect local tissue stiffness, with softer tissues (e.g., fat) displacing farther than stiffer tissues (e.g., muscle). Parametric images of maximum displacement, time to peak displacement, and recovery time provide information about tissue material properties and structure. In both in vivo and ex vivo data, structures shown in matched B-mode images are in good agreement with those shown in ARFI images, with comparable resolution. Potential clinical applications under investigation include soft tissue lesion characterization, assessment of focal atherosclerosis, and imaging of thermal lesion formation during tissue ablation procedures. Results from ongoing studies will be presented. [Work supported by NIH Grant R01 EB002132-03, and the Whitaker Foundation. System support from Siemens Medical Solutions USA, Inc.

  12. Microwave radiation force and torque on a disk resonator excited by a circularly polarized plane wave

    NASA Astrophysics Data System (ADS)

    Makarov, S.; Kulkarni, S.

    2004-05-01

    A numerical simulation method [S. Makarov and S. Kulkarni, Appl. Phys. Lett. 84, 1600 (2004)] is used in order to determine the radiation force and radiation torque on a parallel-plate disk resonator, whose size is comparable to wavelength. The method is based on the MOM solution of the electric-field integral equation, accurate calculation of the near field, and removal of the self-interaction terms responsible for the pinch effect. The local force/torque distribution at the normal incidence of a circularly polarized plane wave is found. It is observed that, at the resonance, the individual disks are subject to unexpectedly large local force densities, despite the fact that the net radiation force on the resonator remains very small. On the other hand, the total axial torque on the disk resonator also increases at the resonance.

  13. Off-axial acoustic radiation force of repulsor and tractor bessel beams on a sphere.

    PubMed

    Silva, Glauber T; Lopes, J Henrique; Mitri, Farid G

    2013-06-01

    Acoustic Bessel beams are known to produce an axial radiation force on a sphere centered on the beam axis (on-axial configuration) that exhibits both repulsor and tractor behaviors. The repulsor and the tractor forces are oriented along the beam's direction of propagation and opposite to it, respectively. The behavior of the acoustic radiation force generated by Bessel beams when the sphere lies outside the beam's axis (off-axial configuration) is unknown. Using the 3-D radiation force formulas given in terms of the partial wave expansion coefficients for the incident and scattered waves, both axial and transverse components of the force exerted on a silicone- oil sphere are obtained for a zero- and a first-order Bessel vortex beam. As the sphere departs from the beam's axis, the tractor force becomes weaker. Moreover, the behavior of the transverse radiation force field may vary with the sphere's size factor ka (where k is the wavenumber and a is the sphere radius). Both stable and unstable equilibrium regions around the beam's axis are found, depending on ka values. These results are particularly important for the design of acoustical tractor beam devices operating with Bessel beams. PMID:25004483

  14. Analysis of radiation exposure, Task Force RAZOR. Exercise Desert Rock VI, Operation Teapot. Technical report

    SciTech Connect

    Edwards, R.; Goetz, J.; Klemm, J.

    1983-07-15

    The radiation dose to Task Force RAZOR personnel participating in Shot Apple II of Operation Teapot, Exercise Desert Rock VI, is reconstructed. Task force personnel were exposed to initial radiation while in their vehicles or in trenches at the time of Apple II detonation. They were also exposed to residual radiation during their subsequent manuever and during an inspection of the equipment display area. The calculated total gamma doses to fully-participating Task Force RAZOR personnel range from about 0.8 rem to 1.8 rem. The highest dose was received by personnel of the armored infantry platoon on right flank nearest ground zero. Internal radiation dose commitments to maximally exposed personnel inside vehicles are estimated to be about 0.4 rem to the thyroid, 0.003 rem to the whole body, and 0.002 rem to the bone.

  15. The relationship between aerosol model uncertainty and radiative forcing uncertainty

    NASA Astrophysics Data System (ADS)

    Carslaw, Ken; Lee, Lindsay; Reddington, Carly

    2016-04-01

    There has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated aerosol-cloud forcing between pre-industrial and present day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the pre-industrial aerosol state. But the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are "equally acceptable" compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty, but this hides a range of very different aerosol models. These multiple so-called "equifinal" model variants predict a wide range of forcings. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model-observation agreement could give a misleading impression of model robustness.

  16. A GCM Study of Responses of the Atmospheric Water Cycle of West Africa and the Atlantic to Saharan Dust Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, K. M.; Sud, Y. C.; Walker, G. K.

    2009-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summerr, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are ehanIed over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer overr the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at0

  17. On the contribution of circumferential resonance modes in acoustic radiation force experienced by cylindrical shells

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Behzad, Mehdi

    2014-10-01

    A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.

  18. Cloud Radiation Forcings and Feedbacks: General Circulation Model Tests and Observational Validation

    NASA Technical Reports Server (NTRS)

    Lee,Wan-Ho; Iacobellis, Sam F.; Somerville, Richard C. J.

    1997-01-01

    Using an atmospheric general circulation model (the National Center for Atmospheric Research Community Climate Model: CCM2), the effects on climate sensitivity of several different cloud radiation parameterizations have been investigated. In addition to the original cloud radiation scheme of CCM2, four parameterizations incorporating prognostic cloud water were tested: one version with prescribed cloud radiative properties and three other versions with interactive cloud radiative properties. The authors' numerical experiments employ perpetual July integrations driven by globally constant sea surface temperature forcings of two degrees, both positive and negative. A diagnostic radiation calculation has been applied to investigate the partial contributions of high, middle, and low cloud to the total cloud radiative forcing, as well as the contributions of water vapor, temperature, and cloud to the net climate feedback. The high cloud net radiative forcing is positive, and the middle and low cloud net radiative forcings are negative. The total net cloud forcing is negative in all of the model versions. The effect of interactive cloud radiative properties on global climate sensitivity is significant. The net cloud radiative feedbacks consist of quite different shortwave and longwave components between the schemes with interactive cloud radiative properties and the schemes with specified properties. The increase in cloud water content in the warmer climate leads to optically thicker middle- and low-level clouds and in turn to negative shortwave feedbacks for the interactive radiative schemes, while the decrease in cloud amount simply produces a positive shortwave feedback for the schemes with a specified cloud water path. For the longwave feedbacks, the decrease in high effective cloudiness for the schemes without interactive radiative properties leads to a negative feedback, while for the other cases, the longwave feedback is positive. These cloud radiation

  19. TRADEOFFs in climate effects through aircraft routing: forcing due to radiatively active gases

    NASA Astrophysics Data System (ADS)

    Stordal, F.; Gauss, M.; Myhre, G.; Mancini, E.; Hauglustaine, D. A.; Köhler, M. O.; Berntsen, T.; . G Stordal, E. J.; Iachetti, D.; Pitari, G.; Isaksen, I. S. A.

    2006-10-01

    We have estimated impacts of alternative aviation routings on the radiative forcing. Changes in ozone and OH have been estimated in four Chemistry Transport Models (CTMs) participating in the TRADEOFF project. Radiative forcings due to ozone and methane have been calculated accordingly. In addition radiative forcing due to CO2 is estimated based on fuel consumption. Three alternative routing cases are investigated; one scenario assuming additional polar routes and two scenarios assuming aircraft cruising at higher (+2000 ft) and lower (-6000 ft) altitudes. Results from the base case in year 2000 are included as a reference. Taking first a steady state backward looking approach, adding the changes in the forcing from ozone, CO2 and CH4, the ranges of the models used in this work are -0.8 to -1.8 and 0.3 to 0.6 m Wm-2 in the lower (-6000 ft) and higher (+2000 ft) cruise levels, respectively. In relative terms, flying 6000ft lower reduces the forcing by 5-10% compared to the current flight pattern, whereas flying higher, while saving fuel and presumably flying time, increases the forcing by about 2-3%. Taking next a forward looking approach we have estimated the integrated forcing (m Wm-2 yr) over 20 and 100 years time horizons. The relative contributions from each of the three climate gases are somewhat different from the backward looking approach. The differences are moderate adopting 100 year time horizon, whereas under the 20 year horizon CO2 naturally becomes less important relatively. Thus the forcing agents impact climate differently on various time scales. Also, we have found significant differences between the models for ozone and methane. We conclude that we are not yet at a point where we can include non-CO2 effects of aviation in emission trading schemes. Nevertheless, the rerouting cases that have been studied here yield relatively small changes in the radiative forcing due to the radiatively active gases.

  20. Estimation of uncertainty of direct radiative forcing of the aerosol for a rural site in central Europe

    NASA Astrophysics Data System (ADS)

    Feczkó, T.; Marton, A.; Molnár, A.; Szentes, G.

    Direct climate forcing due to scattering and absorption of the main aerosol components (ammonium sulfate and total carbon) was estimated seasonally in Hungary by a box model. Ammonium sulfate played an important role in the direct forcing while the carbonaceous aerosol contributed significantly to the development of extinction. In summer, the scattering effect of both species showed a maximum (ammonium sulfate: -2.21±1.73 W m -2, total carbon: -0.88±0.73 W m -2), while the absorption of carbon was the