New small quantum dots for neuroscience
NASA Astrophysics Data System (ADS)
Selvin, Paul
2014-03-01
In "New Small Quantum Dots for Neuroscience," Paul Selvin (University of Illinois, Urbana-Champaign) notes how the details of synapsis activity in the brain involves chemical receptors that facilitate the creation of the electrical connection between two nerves. In order to understand the details of this neuroscience phenomenon you need to be able to "see" what is happening at the scale of these receptors, which is around 10 nanometers. This is smaller than the diffraction limit of normal microscopy and it takes place on a 3 dimensional structure. Selvin describes the development of small quantum dots (on the order of 6-9 microns) that are surface-sensitized to interact with the receptors. This allows the application of photo-activated localized microscopy (PALM), a superresolution microscopy that can be scanned through focus to develop a 3D map on a scale that is the same size as the emitter, which in this case are the small quantum dots. The quantum dots are stable in time and provide access to the receptors which allows the imaging of the interactions taking place at the synoptic level.
Small quantum absorption refrigerator with reversed couplings.
Silva, Ralph; Skrzypczyk, Paul; Brunner, Nicolas
2015-07-01
Small quantum absorption refrigerators have recently attracted renewed attention. Here we present a missing design of a two-qubit fridge, the main feature of which is that one of the two machine qubits is itself maintained at a temperature colder than the cold bath. This is achieved by "reversing" the couplings to the baths compared to previous designs, where only a transition is maintained cold. We characterize the working regime and the efficiency of the fridge. We demonstrate the soundness of the model by deriving and solving a master equation. Finally, we discuss the performance of the fridge, in particular the heat current extracted from the cold bath. We show that our model performs comparably to the standard three-level quantum fridge and thus appears appealing for possible implementations of nanoscale thermal machines. PMID:26274153
Small quantum absorption refrigerator with reversed couplings
NASA Astrophysics Data System (ADS)
Silva, Ralph; Skrzypczyk, Paul; Brunner, Nicolas
2015-07-01
Small quantum absorption refrigerators have recently attracted renewed attention. Here we present a missing design of a two-qubit fridge, the main feature of which is that one of the two machine qubits is itself maintained at a temperature colder than the cold bath. This is achieved by "reversing" the couplings to the baths compared to previous designs, where only a transition is maintained cold. We characterize the working regime and the efficiency of the fridge. We demonstrate the soundness of the model by deriving and solving a master equation. Finally, we discuss the performance of the fridge, in particular the heat current extracted from the cold bath. We show that our model performs comparably to the standard three-level quantum fridge and thus appears appealing for possible implementations of nanoscale thermal machines.
Small bright charged colloidal quantum dots.
Qin, Wei; Liu, Heng; Guyot-Sionnest, Philippe
2014-01-28
Using electrochemical charge injection, the fluorescence lifetimes of negatively charged core/shell CdTe/CdSe QDs are measured as a function of core size and shell thickness. It is found that the ensemble negative trion lifetimes reach a maximum (∼4.5 ns) for an intermediate shell thickness. This leads to the smallest particles (∼4.5 nm) with the brightest trion to date. Single dot measurements show that the negative charge suppresses blinking and that the trion can be as bright as the exciton at room temperature. In contrast, the biexciton lifetimes remain short and exhibit only a monotonous increase with shell thickness, showing no correlation with the negative trion decays. The suppression of the Auger process in small negatively charged CdTe/CdSe quantum dots is unprecedented and a significant departure from prior results with ultrathick CdSe/CdS core/shell or dot-in-rod structures. The proposed reason for the optimum shell thickness is that the electron-hole overlap is restricted to the CdTe core while the electron is tuned to have zero kinetic energy in the core for that optimum shell thickness. The different trend of the biexciton lifetime is not explained but tentatively attributed to shorter-lived positive trions at smaller sizes. These results improve our understanding of multiexciton recombination in colloidal quantum dots and may lead to the design of bright charged QDs for more efficient light-emitting devices. PMID:24350673
Demonstration of a small programmable quantum computer with atomic qubits.
Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C
2016-08-01
Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels. PMID:27488798
Demonstration of a small programmable quantum computer with atomic qubits
NASA Astrophysics Data System (ADS)
Debnath, S.; Linke, N. M.; Figgatt, C.; Landsman, K. A.; Wright, K.; Monroe, C.
2016-08-01
Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch–Jozsa and Bernstein–Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.
Small target detection using quantum genetic morphological filter
NASA Astrophysics Data System (ADS)
Deng, Lizhen; Zhu, Hu; Wei, Yantao; Lu, Guanmin; Wei, Yu
2015-12-01
Small target detection plays a crucial role in infrared warning and tracking systems. A background suppression method using morphological filter based on quantum genetic algorithm (QGMF) is presented to detect small targets in infrared image. Structure element of morphological filter is encoded and the best structure element is selected using quantum genetic algorithm. The optimized structure element is used for background suppression to detect small target. Experimental results demonstrate that QGMF has good performance in clutter suppression, and obtains higher signal-to-clutter ratio gain (SCRG) and background suppression factor (BSF) than the one using the fixed structure element with the same size.
On the photoelectric quantum yield of small dust particles
NASA Astrophysics Data System (ADS)
Kimura, Hiroshi
2016-07-01
Photoelectron emission is crucial to electric charging of dust particles around main-sequence stars and gas heating in various dusty environments. An estimate of the photoelectric processes contains an ill-defined parameter called the photoelectric quantum yield, which is the total number of electrons ejected from a dust particle per absorbed photon. Here we revisit the so-called small particle effect of photoelectron emission and provide an analytical model to estimate photoelectric quantum yields of small dust particles in sizes down to nanometers. We show that the small particle effect elevates the photoelectric quantum yields of nanoparticles up to by a factor of 103 for carbon, water ice, and organics, and a factor of 102 for silicate, silicon carbide, and iron. We conclude the surface curvature of the particles is a quantity of great importance to the small particle effect, unless the particles are submicrometers in radius or larger.
Evolution of quantum strategies on a small-world network
NASA Astrophysics Data System (ADS)
Li, Q.; Iqbal, A.; Chen, M.; Abbott, D.
2012-11-01
In this paper, quantum strategies are introduced within evolutionary games in order to investigate the evolution of quantum strategies on a small-world network. Initially, certain quantum strategies are taken from the full quantum space at random and assigned to the agents who occupy the nodes of the network. Then, they play n-person quantum games with their neighbors according to the physical model of a quantum game. After the games are repeated a large number of times, a quantum strategy becomes the dominant strategy in the population, which is played by the majority of agents. However, if the number of strategies is increased, while the total number of agents remains constant, the dominant strategy almost disappears in the population because of an adverse environment, such as low fractions of agents with different strategies. On the contrary, if the total number of agents rises with the increase of the number of strategies, the dominant strategy re-emerges in the population. In addition, from results of the evolution, it can be found that the fractions of agents with the dominant strategy in the population decrease with the increase of the number of agents n in a n-person game independent of which game is employed. If both classical and quantum strategies evolve on the network, a quantum strategy can outperform the classical ones and prevail in the population.
Quantum chemical study of small palladium clusters
NASA Astrophysics Data System (ADS)
Efremenko, Irena; Sheintuch, Moshe
1998-09-01
The extended Hückel method with an electrostatic two-body correction has been used to find the structure of small Pd n clusters for n=2-13. Twins formation, with metal-metal bond lengths slightly smaller than those of bulk palladium, was found to be the preferential direction for cluster growth in the absence of external field. In accordance with the experimental results, these close-packed particles show a significant split in the valence d-zone. The energetic gap between HOMO and LUMO narrows from 3.217 to 0.68 eV as the cluster grows from two to 13 atoms. The LUMO has a bonding character toward Pd-Pd bonds, whereas HOMO is antibonding, so one can suggest that both donating and accepting interactions are favorable for strengthening of clusters. Occupation of 5s and 5p orbitals increases during cluster growth, while the net charge on the outer atoms remains very small. The results obtained for two to six atomic clusters are in good agreement with first principle calculations. Very close similarity with Rh cluster growth was observed.
Quantum Phase Diffusion in a Small Underdamped Josephson Junction
NASA Astrophysics Data System (ADS)
Yu, H. F.; Zhu, X. B.; Peng, Z. H.; Tian, Ye; Cui, D. J.; Chen, G. H.; Zheng, D. N.; Jing, X. N.; Lu, Li; Zhao, S. P.; Han, Siyuan
2011-08-01
Quantum phase diffusion in a small underdamped Nb/AlOx/Nb junction (˜0.4μm2) is demonstrated in a wide temperature range of 25-140 mK where macroscopic quantum tunneling (MQT) is the dominant escape mechanism. We propose a two-step transition model to describe the switching process in which the escape rate out of the potential well and the transition rate from phase diffusion to the running state are considered. The transition rate extracted from the experimental switching current distribution follows the predicted Arrhenius law in the thermal regime but is greatly enhanced when MQT becomes dominant.
Quantum Monte Carlo studies on small molecules
NASA Astrophysics Data System (ADS)
Galek, Peter T. A.; Handy, Nicholas C.; Lester, William A., Jr.
The Variational Monte Carlo (VMC) and Fixed-Node Diffusion Monte Carlo (FNDMC) methods have been examined, through studies on small molecules. New programs have been written which implement the (by now) standard algorithms for VMC and FNDMC. We have employed and investigated throughout our studies the accuracy of the common Slater-Jastrow trial wave function. Firstly, we have studied a range of sizes of the Jastrow correlation function of the Boys-Handy form, obtained using our optimization program with analytical derivatives of the central moments in the local energy. Secondly, we have studied the effects of Slater-type orbitals (STOs) that display the exact cusp behaviour at nuclei. The orbitals make up the all important trial determinant, which determines the fixed nodal surface. We report all-electron calculations for the ground state energies of Li2, Be2, H2O, NH3, CH4 and H2CO, in all cases but one with accuracy in excess of 95%. Finally, we report an investigation of the ground state energies, dissociation energies and ionization potentials of NH and NH+. Recent focus paid in the literature to these species allow for an extensive comparison with other ab initio methods. We obtain accurate properties for the species and reveal a favourable tendency for fixed-node and other systematic errors to cancel. As a result of our accurate predictions, we are able to obtain a value for the heat of formation of NH, which agrees to within less than 1 kcal mol-1 to other ab initio techniques and 0.2 kcal mol-1 of the experimental value.
Coulombic Effects on Excited States in a Small Quantum Dot
NASA Astrophysics Data System (ADS)
Goldhaber-Gordon, David; Duncan, David; Westervelt, R. M.; Maranowski, K. M.; Gossard, A. C.
2000-03-01
The excitation spectrum of a quantum dot varies with the addition of electrons, as successive single-particle eigenstates become filled in the ground state and so cannot accomodate additional electrons. Previous experiments have observed that each spatial state becomes unavailable for transport of further electrons after only one electron has occupied it. We have investigated state occupancy in the excitation spectrum of a small (200 nm X 200 nm) quantum dot laterally defined by capacitively coupled gate electrodes in a GaAs/AlGaAs heterostructure. For our dots, quantized level spacing Δ E ≈ 300 μeV and charging energy Ec ≈ 2 meV. We have studied the evolution of features in the excitation spectrum with magnetic field and equilibrium occupancy and have identified the pattern of spins for the added electrons. These results test the applicability of the spin-degenerate constant interaction picture as well as its limitations.
Controllable multiple-quantum transitions in a T-shaped small quantum dot-ring system
NASA Astrophysics Data System (ADS)
Chen, Xiongwen; Chen, Baoju; Song, Kehui; Zhou, Guanghui
2016-05-01
Based on the tight-binding model and the slave boson mean field approximation, we investigate the electron transport properties in a small quantum dot (QD)-ring system. Namely, a strongly correlated QD not only attaches directly to two normal metallic electrodes, but also forms a magnetic control Aharonov-Bohm quantum ring with a few noninteracting QDs. We show that the parity effect, the Kondo effect, and the multiple Fano effects coexist in our system. Moreover, the parities, defined by the odd- and even-numbered energy levels in this system, can be switched by adjusting magnetic flux phase ϕ located at the center of the quantum ring, which induces multiple controllable Fano-interference energy pathways. Therefore, the constructive and destructive multi-Fano interference transition, the Kondo and Fano resonance transition at the Fermi level, the Fano resonance and ani-resonance transition are realized in the even parity system. They can also be observed in the odd parity system when one adjusts the phase ϕ and the gate voltage Vg applied to the noninteracting QDs. The multi-quantum transitions determine some interesting transport properties such as the current switch and its multi-flatsteps, the differential conductance switch at zero bias voltage and its oscillation or quantization at the low bias voltage. These results may be useful for the observation of multiple quantum effect interplays experimentally and the design of controllable QD-based device.
Conformational analysis of small molecules: NMR and quantum mechanics calculations.
Tormena, Cláudio F
2016-08-01
This review deals with conformational analysis in small organic molecules, and describes the stereoelectronic interactions responsible for conformational stability. Conformational analysis is usually performed using NMR spectroscopy through measurement of coupling constants at room or low temperature in different solvents to determine the populations of conformers in solution. Quantum mechanical calculations are used to address the interactions responsible for conformer stability. The conformational analysis of a large number of small molecules is described, using coupling constant measurements in different solvents and at low temperature, as well as recent applications of through-space and through-hydrogen bond coupling constants JFH as tools for the conformational analysis of fluorinated molecules. Besides NMR parameters, stereoelectronic interactions such as conjugative, hyperconjugative, steric and intramolecular hydrogen bond interactions involved in conformational preferences are discussed. PMID:27573182
Quantum Dots for In Vivo Small-Animal Imaging
Bentolila, Laurent A.; Ebenstein, Yuval; Weiss, Shimon
2011-01-01
Nanotechnology is poised to transform research, prevention, and treatment of cancer through the development of novel diagnostic imaging methods and targeted therapies. In particular, the use of nanoparticles for imaging has gained considerable momentum in recent years. This review focuses on the growing contribution of quantum dots (QDs) for in vivo imaging in small-animal models. Fluorescent QDs, which are small nanocrystals (1–10 nm) made of inorganic semiconductor materials, possess several unique optical properties best suited for in vivo imaging. Because of quantum confinement effects, the emission color of QDs can be precisely tuned by size from the ultraviolet to the near-infrared. QDs are extremely bright and photostable. They are also characterized by a wide absorption band and a narrow emission band, which makes them ideal for multiplexing. Finally, the large surface area of QDs permits the assembly of various contrast agents to design multimodality imaging probes. To date, biocompatible QD conjugates have been used successfully for sentinel lymph node mapping, tumor targeting, tumor angiogenesis imaging, and metastatic cell tracking. Here we consider these novel breakthroughs in light of their potential clinical applications and discuss how QDs might offer a suitable platform to unite disparate imaging modalities and provide information along a continuum of length scales. PMID:19289434
Temperature of a small quantum system as an internal property
NASA Astrophysics Data System (ADS)
Wang, Jiaozi; Wang, Wenge
Equilibration of small quantum systems is a topic of current interest both theoretically and experimentally. In this work, we study the extent to which a temperature can be assigned to a small quantum (chaotic) system as an internal property, but not as a property of any large environment. Specifically, we study a total system, which is composed of an Ising chain in a nonhomogeneous transverse field and an additional spin coupled to one of the spins in the chain. The additional spin can be used as a probe to detect local temperature of the chain. The total system lies in a pure state under unitary evolution and initial state of the chain is prepared in a typical state within an energy shell. Our numerical simulations show that the reduced density matrix of the probe spin approaches canonical states with similar temperatures at different locations of the chain beyond a relaxation time, and the results are close to the theoretical prediction given by the statistical mechanics in the thermodynamic limit, namely β =∂lnρ/(E) ∂E with ρ (E) being the density of states. We also study effects due to finite size of the chain, including the dependence on initial state of the probe and difference of numerically-obtain temperature from theoretical results.
Barnes, George L.; Kellman, Michael E.
2013-12-07
Simulations are performed of a small quantum system interacting with a quantum environment. The system consists of various initial states of two harmonic oscillators coupled to give normal modes. The environment is “designed” by its level pattern to have a thermodynamic temperature. A random coupling causes the system and environment to become entangled in the course of time evolution. The approach to a Boltzmann distribution is observed, and effective fitted temperatures close to the designed temperature are obtained. All initial pure states of the system are driven to equilibrium at very similar rates, with quick loss of memory of the initial state. The time evolution of the von Neumann entropy is calculated as a measure of equilibration and of quantum coherence. It is pointed out using spatial density distribution plots that quantum interference is eliminated only with maximal entropy, which corresponds thermally to infinite temperature. Implications of our results for the notion of “classicalizing” behavior in the approach to thermal equilibrium are briefly considered.
Barnes, George L; Kellman, Michael E
2013-12-01
Simulations are performed of a small quantum system interacting with a quantum environment. The system consists of various initial states of two harmonic oscillators coupled to give normal modes. The environment is "designed" by its level pattern to have a thermodynamic temperature. A random coupling causes the system and environment to become entangled in the course of time evolution. The approach to a Boltzmann distribution is observed, and effective fitted temperatures close to the designed temperature are obtained. All initial pure states of the system are driven to equilibrium at very similar rates, with quick loss of memory of the initial state. The time evolution of the von Neumann entropy is calculated as a measure of equilibration and of quantum coherence. It is pointed out using spatial density distribution plots that quantum interference is eliminated only with maximal entropy, which corresponds thermally to infinite temperature. Implications of our results for the notion of "classicalizing" behavior in the approach to thermal equilibrium are briefly considered. PMID:24320365
Renormalization and small-world model of fractal quantum repeater networks
Wei, Zong-Wen; Wang, Bing-Hong; Han, Xiao-Pu
2013-01-01
Quantum networks provide access to exchange of quantum information. The primary task of quantum networks is to distribute entanglement between remote nodes. Although quantum repeater protocol enables long distance entanglement distribution, it has been restricted to one-dimensional linear network. Here we develop a general framework that allows application of quantum repeater protocol to arbitrary quantum repeater networks with fractal structure. Entanglement distribution across such networks is mapped to renormalization. Furthermore, we demonstrate that logarithmical times of recursive such renormalization transformations can trigger fractal to small-world transition, where a scalable quantum small-world network is achieved. Our result provides new insight into quantum repeater theory towards realistic construction of large-scale quantum networks. PMID:23386977
MTF study of planar small pixel pitch quantum IR detectors
NASA Astrophysics Data System (ADS)
Gravrand, O.; Baier, N.; Ferron, A.; Rochette, F.; Berthoz, J.; Rubaldo, L.; Cluzel, R.
2014-06-01
The actual trend in quantum IR detector development is the design of very small pixel pitch large arrays. From previously 30μm pitch, the standard pixel pitch is today 15μm and is expected to decrease to 12μm in the next few years. Furthermore, focal plane arrays (FPA) with pixel pitch as small as small as 10μm has been demonstrated. Such ultra-small pixel pitches are very small compared to the typical length ruling the electrical characteristics of the absorbing materials, namely the minority carrier diffusion length. As an example for low doped N type HgCdTe or InSb material, this diffusion length is of the order of 30 to 50μm, i.e. 3 to 5 times the targeted pixel pitches. This has strong consequences on the modulation transfer function (MTF) for planar structures, where the lateral extension of the photodiode is limited by diffusion. For such aspect ratios, the self-confinement of neighboring diodes may not be efficient enough to maintain optimal MTF. Therefore, this issue has to be addressed in order to take full benefits of the pixel pitch reduction in terms of image resolution. This paper aims at investigating the MTF evolution of HgCdTe and InSb FPAs decreasing the pixel pitch below 15μm. Both experimental measurements and finite element simulations are used to discuss this issue. Different scenarii will be compared, namely deep mesa etch between pixels, internal drift, surface recombination, thin absorbing layers.
A quantum watermarking scheme using simple and small-scale quantum circuits
NASA Astrophysics Data System (ADS)
Miyake, S.; Nakamae, K.
2016-05-01
A new quantum gray-scale image watermarking scheme by using simple and small-scale quantum circuits is proposed. The NEQR representation for quantum images is used. The image sizes for carrier and watermark are assumed to be 2n × 2n and n × n, respectively. At first, a classical watermark with n × n image size and 8 bits gray scale is expanded to an image with 2n × 2n image size and 2 bits gray scale. Then the expanded image is scrambled to be a meaningless image by the SWAP gates that controlled by the keys only known to the operator. The scrambled image is embedded into the carrier image by the CNOT gates (XOR operation). The watermark is extracted from the watermarked image by applying operations in the reverse order. Simulation-based experimental results show that our proposed scheme is excellent in terms of three items, visual quality, robustness performance under noises, and computational complexity.
Quantum simulations of small electron-hole complexes
Lee, M.A.; Kalia, R.K.; Vashishta, P.D.
1984-09-01
The Green's Function Monte Carlo method is applied to the calculation of the binding energies of electron-hole complexes in semiconductors. The quantum simulation method allows the unambiguous determination of the ground state energy and the effects of band anisotropy on the binding energy. 22 refs., 1 fig.
Fujii, K.; Yamamoto, T.; Imoto, N.; Koashi, M.
2014-12-04
We propose a scheme for distributed quantum computation with small local systems connected via noisy quantum channels. We show that the proposed scheme tolerates errors with probabilities ∼30% and ∼ 0.1% in quantum channels and local operations, respectively, both of which are improved substantially compared to the previous works.
Grazing-incidence small-angle X-ray scattering: application to the study of quantum dot lattices
Buljan, Maja Radić, Nikola; Bernstorff, Sigrid; Dražić, Goran; Bogdanović-Radović, Iva; Holý, Václav
2012-01-01
The modelling of grazing-incidence small-angle X-ray scattering (GISAXS) from three-dimensional quantum dot lattices is described. The ordering of quantum dots in three-dimensional quantum dot lattices is investigated by grazing-incidence small-angle X-ray scattering (GISAXS). Theoretical models describing GISAXS intensity distributions for three general classes of lattices of quantum dots are proposed. The classes differ in the type of disorder of the positions of the quantum dots. The models enable full structure determination, including lattice type, lattice parameters, the type and degree of disorder in the quantum dot positions and the distributions of the quantum dot sizes. Applications of the developed models are demonstrated using experimentally measured data from several types of quantum dot lattices formed by a self-assembly process.
Small Quantum Dots Conjugated to Nanobodies as Immunofluorescence Probes for Nanometric Microscopy
2015-01-01
Immunofluorescence, a powerful technique to detect specific targets using fluorescently labeled antibodies, has been widely used in both scientific research and clinical diagnostics. The probes should be made with small antibodies and high brightness. We conjugated GFP binding protein (GBP) nanobodies, small single-chain antibodies from llamas, with new ∼7 nm quantum dots. These provide simple and versatile immunofluorescence nanoprobes with nanometer accuracy and resolution. Using the new probes we tracked the walking of individual kinesin motors and measured their 8 nm step sizes; we tracked Piezo1 channels, which are eukaryotic mechanosensitive channels; we also tracked AMPA receptors on living neurons. Finally, we used a new super-resolution algorithm based on blinking of (small) quantum dots that allowed ∼2 nm precision. PMID:25397889
Optimal discrimination of M coherent states with a small quantum computer
Silva, Marcus P. da; Guha, Saikat; Dutton, Zachary
2014-12-04
The ability to distinguish between coherent states optimally plays in important role in the efficient usage of quantum resources for classical communication and sensing applications. While it has been known since the early 1970’s how to optimally distinguish between two coherent states, generalizations to larger sets of coherent states have so far failed to reach optimality. In this work we outline how optimality can be achieved by using a small quantum computer, building on recent proposals for optimal qubit state discrimination with multiple copies.
How accurately can the microcanonical ensemble describe small isolated quantum systems?
NASA Astrophysics Data System (ADS)
Ikeda, Tatsuhiko N.; Ueda, Masahito
2015-08-01
We numerically investigate quantum quenches of a nonintegrable hard-core Bose-Hubbard model to test the accuracy of the microcanonical ensemble in small isolated quantum systems. We show that, in a certain range of system size, the accuracy increases with the dimension of the Hilbert space D as 1 /D . We ascribe this rapid improvement to the absence of correlations between many-body energy eigenstates. Outside of that range, the accuracy is found to scale either as 1 /√{D } or algebraically with the system size.
Macroscopic quantum tunneling in small Josephson junctions in a magnetic field.
Ovchinnikov, Yu. N.; Barone, A.; Varlamov, A. A.; Materials Science Division; Max-Planck Inst. for Physics of Complex Systems; Landau Inst. Theoretical Physics; Univ. di Napoli Federico II; Coherentia-INFM, CNR
2007-01-01
We study the phenomenon of macroscopic quantum tunneling (MQT) in small Josephson junctions (JJ) with an externally applied magnetic field. The latter results in the appearance of the Fraunhofer type modulation of the current density along the barrier. The problem of MQT for a pointlike JJ is reduced to the motion of the quantum particle in the washboard potential. In the case of a finite size JJ under consideration, this problem corresponds to a MQT in a potential which itself, besides the phase, depends on space variables. The general expression for the crossover temperature To between thermally activated and macroscopic quantum tunneling regimes and the escaping time {tau}{sub esc} have been calculated.
Grazing-incidence small-angle X-ray scattering: application to the study of quantum dot lattices
Buljan, Maja; Radić, Nikola; Bernstorff, Sigrid; Dražić, Goran; Bogdanović-Radović, Iva; Holý, Václav
2012-01-01
The ordering of quantum dots in three-dimensional quantum dot lattices is investigated by grazing-incidence small-angle X-ray scattering (GISAXS). Theoretical models describing GISAXS intensity distributions for three general classes of lattices of quantum dots are proposed. The classes differ in the type of disorder of the positions of the quantum dots. The models enable full structure determination, including lattice type, lattice parameters, the type and degree of disorder in the quantum dot positions and the distributions of the quantum dot sizes. Applications of the developed models are demonstrated using experimentally measured data from several types of quantum dot lattices formed by a self-assembly process. PMID:22186289
Quantum-mechanical diffraction theory of light from a small hole: Extinction-theorem approach
NASA Astrophysics Data System (ADS)
Jung, Jesper; Keller, Ole
2015-07-01
In a recent paper [Phys. Rev. A 90, 043830 (2014), 10.1103/PhysRevA.90.043830] it was shown that the so-called aperture response tensor is the central concept in the microscopic quantum theory of light diffraction from a small hole in a flat screen. It was further shown that the quantum mechanical theory of diffraction only requires a preknowledge of the incident field plus the electronic properties of identical screens with and without a hole. Starting from the quantum mechanical expression for the linear conductivity tensor, we study the related causal conductivity tensor paying particular attention to diamagnetic electron dynamics. Using a nonlocal-potential separation assumption, we present a calculation of the diamagnetic causal surface conductivity for a jellium quantum-well screen using a two-dimensional Hartree-Fock model. In the diamagnetic case the difference between the light-unperturbed electron densities for screens with (n0) and without (n∞0) holes are the primary quantities for the diffraction theory. In a central part (Sec. IV) of this article we determine n0 via a quantum-mechanical two-dimensional extinction-theorem approach related to elastic electron scattering from a hole with an electronic selvedge. For heuristic purposes we illustrate aspects of the extinction-theorem theory by applying the approach for an infinitely high potential barrier to the vacuum hole. Finally, we calculate and discuss the aperture response tensor in the small hole limit and in the zeroth-order Born approximation. Our final result for the aperture response tensor establishes the bridge to the anisotropic electric dipole polarizability tensor of the hole. It turns out that the effective optical aperture (hole) size relates closely to the extension of the relevant electronic wave functions scattered from the hole.
Universality in the equilibration of quantum systems after a small quench
Campos Venuti, Lorenzo; Zanardi, Paolo
2010-03-15
A sudden change in the Hamiltonian parameter drives a quantum system out of equilibrium. For a finite-size system, expectations of observables start fluctuating in time without converging to a precise limit. A new equilibrium state emerges only in the probabilistic sense, when the probability distribution for the observable expectations over long times concentrates around their mean value. In this paper we study the full statistic of generic observables after a small quench. When the quench is performed around a regular (i.e., noncritical) point of the phase diagram, generic observables are expected to be characterized by Gaussian distribution functions ('good equilibration'). Instead, when quenching around a critical point a new, universal, double-peaked distribution function emerges for relevant perturbations. Our analytic predictions are numerically checked for a nonintegrable extension of the quantum Ising model.
Brask, Jonatan Bohr; Brunner, Nicolas
2015-12-01
A small quantum absorption refrigerator, consisting of three qubits, is discussed in the transient regime. We discuss time scales for coherent dynamics, damping, and approach to the steady state, and we study cooling and entanglement. We observe that cooling can be enhanced in the transient regime, in the sense that lower temperatures can be achieved compared to the steady-state regime. This is a consequence of coherent dynamics but can occur even when this dynamics is strongly damped by the dissipative thermal environment, and we note that precise control over couplings or timing is not needed to achieve enhanced cooling. We also show that the amount of entanglement present in the refrigerator can be much larger in the transient regime compared to the steady state. These results are of relevance to future implementations of quantum thermal machines. PMID:26764626
NASA Astrophysics Data System (ADS)
Brask, Jonatan Bohr; Brunner, Nicolas
2015-12-01
A small quantum absorption refrigerator, consisting of three qubits, is discussed in the transient regime. We discuss time scales for coherent dynamics, damping, and approach to the steady state, and we study cooling and entanglement. We observe that cooling can be enhanced in the transient regime, in the sense that lower temperatures can be achieved compared to the steady-state regime. This is a consequence of coherent dynamics but can occur even when this dynamics is strongly damped by the dissipative thermal environment, and we note that precise control over couplings or timing is not needed to achieve enhanced cooling. We also show that the amount of entanglement present in the refrigerator can be much larger in the transient regime compared to the steady state. These results are of relevance to future implementations of quantum thermal machines.
Small and arbitrary shock structures in spin 1/2 magnetohydrodynamic quantum plasma
Sahu, Biswajit; Choudhury, Sourav; Sinha, Anjana
2015-02-15
The shock structures in spin-1/2 quantum plasma, in the presence of magnetic diffusivity, are studied in the framework of the quantum magnetohydrodynamic model. Linear dispersion relation for the system is carried out analytically, and the results are plotted numerically for several values of the plasma parameters. Numerical analysis for arbitrary amplitude waves is carried out, whereas for waves of small amplitude, the reductive perturbation technique is applied to obtain the Korteweg-de Vries-Burgers equation. Both the analyses are observed to give the same qualitative picture. Most importantly, the different plasma parameters are found to play significant roles in determining the nature of the shock waves. The parametric ranges for which monotonic shock and oscillatory shock solutions are observed, are found analytically.
Quantum Chemical Studies of Actinides and Lanthanides: From Small Molecules to Nanoclusters
NASA Astrophysics Data System (ADS)
Vlaisavljevich, Bess
Research into actinides is of high interest because of their potential applications as an energy source and for the environmental implications therein. Global concern has arisen since the development of the actinide concept in the 1940s led to the industrial scale use of the commercial nuclear energy cycle and nuclear weapons production. Large quantities of waste have been generated from these processes inspiring efforts to address fundamental questions in actinide science. In this regard, the objective of this work is to use theory to provide insight and predictions into actinide chemistry, where experimental work is extremely challenging because of the intrinsic difficulties of the experiments themselves and the safety issues associated with this type of chemistry. This thesis is a collection of theoretical studies of actinide chemistry falling into three categories: quantum chemical and matrix isolation studies of small molecules, the electronic structure of organoactinide systems, and uranyl peroxide nanoclusters and other solid state actinide compounds. The work herein not only spans a wide range of systems size but also investigates a range of chemical problems. Various quantum chemical approaches have been employed. Wave function-based methods have been used to study the electronic structure of actinide containing molecules of small to middle-size. Among these methods, the complete active space self consistent field (CASSCF) approach with corrections from second-order perturbation theory (CASPT2), the generalized active space SCF (GASSCF) approach, and Moller-Plesset second-order perturbation theory (MP2) have been employed. Likewise, density functional theory (DFT) has been used along with analysis tools like bond energy decomposition, bond orders, and Bader's Atoms in Molecules. From these quantum chemical results, comparison with experimentally obtained structures and spectra are made.
Cleland, A.N.
1991-04-01
Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q {approx} 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement.
Suresh, Anil K
2014-09-15
Engineered nanoparticles of diverse forms are being profoundly used for various applications and demand ecologically benign synthesis processes. Conventional chemical methods employed for the syntheses of nanoparticles are environmentally unfriendly and energy intensive. Biologically inspired biofabrication approaches that utilize naturally existing microorganisms or plant extracts or biomaterials might overcome these issues. The present investigation for the first time shows the synthesis of small and monodispersed cadmium selenide nanoparticles utilizing the plant pathogenic fungus, Helminthosporum solani upon incubating with an aqueous solution of CdCl2 and SeCl4 under ambient conditions. Multiple physical characterizations involving ultraviolet-visible and photoluminescence spectroscopy, transmission electron microscopy, selected area electron diffraction and X-ray photoelectron spectroscopy confirmed the production, purity, optical and surface characteristics, crystalline nature, size and shape distributions, and elemental composition of the nanoparticles. Pluralities of the particles are monodisperse spheres with a mean diameter of 5.5±2 nm, are hydrophilic, highly stable with a broad photoluminescence and 1% quantum yield. This approach provides an alternative facile route for the biofabrication of quantum dot that is reliable, environmentally friendly, and lends itself directly for the creation of fluorescent biological labels. PMID:24802719
NASA Astrophysics Data System (ADS)
Suresh, Anil K.
2014-09-01
Engineered nanoparticles of diverse forms are being profoundly used for various applications and demand ecologically benign synthesis processes. Conventional chemical methods employed for the syntheses of nanoparticles are environmentally unfriendly and energy intensive. Biologically inspired biofabrication approaches that utilize naturally existing microorganisms or plant extracts or biomaterials might overcome these issues. The present investigation for the first time shows the synthesis of small and monodispersed cadmium selenide nanoparticles utilizing the plant pathogenic fungus, Helminthosporum solani upon incubating with an aqueous solution of CdCl2 and SeCl4 under ambient conditions. Multiple physical characterizations involving ultraviolet-visible and photoluminescence spectroscopy, transmission electron microscopy, selected area electron diffraction and X-ray photoelectron spectroscopy confirmed the production, purity, optical and surface characteristics, crystalline nature, size and shape distributions, and elemental composition of the nanoparticles. Pluralities of the particles are monodisperse spheres with a mean diameter of 5.5 ± 2 nm, are hydrophilic, highly stable with a broad photoluminescence and 1% quantum yield. This approach provides an alternative facile route for the biofabrication of quantum dot that is reliable, environmentally friendly, and lends itself directly for the creation of fluorescent biological labels.
Chang, Hung-Tzu; Cheng, Yuan-Chung; Zhang, Pan-Pan
2013-12-14
The small polaron quantum master equation (SPQME) proposed by Jang et al. [J. Chem. Phys. 129, 101104 (2008)] is a promising approach to describe coherent excitation energy transfer dynamics in complex molecular systems. To determine the applicable regime of the SPQME approach, we perform a comprehensive investigation of its accuracy by comparing its simulated population dynamics with numerically exact quasi-adiabatic path integral calculations. We demonstrate that the SPQME method yields accurate dynamics in a wide parameter range. Furthermore, our results show that the accuracy of polaron theory depends strongly upon the degree of exciton delocalization and timescale of polaron formation. Finally, we propose a simple criterion to assess the applicability of the SPQME theory that ensures the reliability of practical simulations of energy transfer dynamics with SPQME in light-harvesting systems.
Aloisio, R.; Grillo, A.; Galante, A.; Liberati, S.; Luzio, E.; Mendez, F.
2006-02-15
In this article we elaborate on a recently proposed interpretation of deformed special relativity (DSR) as an effective measurement theory in the presence of non-negligible (albeit small) quantum gravitational fluctuations. We provide several heuristic arguments to explain how such a new theory can emerge and discuss the possible observational consequences of this framework. Given that our discussion considers leading order corrections to the standard dispersion relations, our results apply to a very wide class of possible modifications of special relativity.
Yu, Xuezhi; Wen, Kai; Wang, Zhanhui; Zhang, Xiya; Li, Chenglong; Zhang, Suxia; Shen, Jianzhong
2016-04-01
Here, we describe a general bioluminescence resonance energy transfer (BRET) homogeneous immunoassay based on quantum dots (QDs) as the acceptor and Renilla luciferase (Rluc) as the donor (QD-BRET) for the determination of small molecules. The ratio of the donor-acceptor that could produce energy transfer varied in the presence of different concentrations of free enrofloxacin (ENR), an important small molecule in food safety. The calculated Förster distance (R0) was 7.86 nm. Under optimized conditions, the half-maximal inhibitory concentration (IC50) for ENR was less than 1 ng/mL and the linear range covered 4 orders of magnitude (0.023 to 25.60 ng/mL). The cross-reactivities (CRs) of seven representative fluoroquinolones (FQs) were similar to the data obtained by an enzyme-linked immunosorbent assay (ELISA). The average intra- and interassay recoveries from spiked milk of were 79.8-118.0%, and the relative standard deviations (RSDs) were less than 10%, meeting the requirement of residue detection, which was a satisfactory result. Furthermore, we compared the influence of different luciferase substrates on the performance of the assay. Considering sensitivity and stability, coelenterazine-h was the most appropriate substrate. The results from this study will enable better-informed decisions on the choice of Rluc substrate for QD-BRET systems. For the future, the QD-BRET immunosensor could easily be extended to other small molecules and thus represents a versatile strategy in food safety, the environment, clinical diagnosis, and other fields. PMID:26948147
MTF Issues in Small-Pixel-Pitch Planar Quantum IR Detectors
NASA Astrophysics Data System (ADS)
Gravrand, O.; Baier, N.; Ferron, A.; Rochette, F.; Berthoz, J.; Rubaldo, L.; Cluzel, R.
2014-08-01
The current trend in quantum infrared (IR) detector development is the design of very small-pixel-pitch large arrays. From the previous 30 μm pitch, the standard pixel pitch today is 15 μm and is expected to decrease to 12 μm in the next few years. Furthermore, focal-plane arrays (FPAs) with pixel pitch as small as 10 μm have been demonstrated. Such ultrasmall-pixel pitches are very small compared with the typical length ruling the electrical characteristics of the absorbing materials, namely the minority-carrier diffusion length. As an example, for low-doped n-type HgCdTe or InSb material, this diffusion length is on the order of 30 μm to 50 μm, i.e., three to five times the targeted pixel pitches. This has strong consequences for the modulation transfer function (MTF) of planar structures, where the lateral extension of the photodiode is limited by diffusion. For such aspect ratios, the self-confinement of neighboring diodes may not be efficient enough to maintain an optimal MTF. Therefore, this issue has to be addressed to take full advantage of the pixel pitch reduction in terms of image resolution. The aim of this work is to investigate the evolution of the MTF of HgCdTe and InSb FPAs when decreasing the pixel pitch below 15 μm. Both experimental measurements and finite-element simulations are used to discuss this issue. Different scenarios are compared, namely deep mesa etch between pixels, internal drift, surface recombination, and thin absorbing layers.
Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Rafferty, Conor S.; Yu, Zhiping; Dutton, Robert W.; Ancona, Mario G.; Saini, Subhash (Technical Monitor)
1998-01-01
We describe an electronic transport model and an implementation approach that respond to the challenges of device modeling for gigascale integration. We use the density-gradient (DG) transport model, which adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We present the current implementation of the DG model in PROPHET, a partial differential equation solver developed by Lucent Technologies. This implementation approach permits rapid development and enhancement of models, as well as run-time modifications and model switching. We show that even in typical bulk transport devices such as P-N diodes and BJTs, DG quantum effects can significantly modify the I-V characteristics. Quantum effects are shown to be even more significant in small, surface transport devices, such as sub-0.1 micron MOSFETs. In thin-oxide MOS capacitors, we find that quantum effects may reduce gate capacitance by 25% or more. The inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements. Significant quantum corrections also occur in the I-V characteristics of short-channel MOSFETs due to the gate capacitance correction.
Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging.
Muro, Eleonora; Pons, Thomas; Lequeux, Nicolas; Fragola, Alexandra; Sanson, Nicolas; Lenkei, Zsolt; Dubertret, Benoit
2010-04-01
We have developed a novel surface coating for semiconductor quantum dots (QDs) based on a heterobifunctional ligand that overcomes most of the previous limits of these fluorescent probes in bioimaging applications. Here we show that QDs capped with bidentate zwitterionic dihydrolipoic acid-sulfobetaine (DHLA-SB) ligands are a favorable alternative to polyethylene glycol-coated nanoparticles since they combine small sizes, low nonspecific adsorption, preserved optical properties, and excellent stability over time and a wide range of pH and salinity. Additionally, these QDs can easily be functionalized with biomolecules such as streptavidin (SA) and biotin. We applied streptavidin-functionalized DHLA-SB QDs to track the intracellular recycling of cannabinoid receptor 1 (CB1R) in live cells. These QDs selectively recognized the pool of receptors at the cell surface via SA-biotin interactions with negligible nonspecific adsorption. The QDs retained their optical properties, allowing the internalization of CB1R into endosomes to be followed. Moreover, the cellular activity was apparently unaffected by the probe. PMID:20235547
Quantum monte carlo study of the energetics of small hydrogenated and fluoride lithium clusters.
Moreira, N L; Brito, B G A; Rabelo, J N Teixeira; Cândido, Ladir
2016-06-30
An investigation of the energetics of small lithium clusters doped either with a hydrogen or with a fluorine atom as a function of the number of lithium atoms using fixed-node diffusion quantum Monte Carlo (DMC) simulation is reported. It is found that the binding energy (BE) for the doped clusters increases in absolute values leading to a more stable system than for the pure ones in excellent agreement with available experimental measurements. The BE increases for pure, remains almost constant for hydrogenated, and decreases rapidly toward the bulk lithium for the fluoride as a function of the number of lithium atoms in the clusters. The BE, dissociation energy as well as the second difference in energy display a pronounced odd-even oscillation with the number of lithium atoms. The electron correlation inverts the odd-even oscillation pattern for the doped in comparison with the pure clusters and has an impact of 29%-83% to the BE being higher in the pure cluster followed by the hydrogenated and then by the fluoride. The dissociation energy and the second difference in energy indicate that the doped cluster Li3 H is the most stable whereas among the pure ones the more stable are Li2 , Li4 , and Li6 . The electron correlation energy is crucial for the stabilization of Li3 H. © 2016 Wiley Periodicals, Inc. PMID:26992447
Simulation of Ultra-Small Electronic Devices: The Classical-Quantum Transition Region
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Kutler, Paul (Technical Monitor)
1997-01-01
Concern is increasing about how quantum effects will impact electronic device operation as down-scaling continues along the SIA Roadmap through 2010. This document describes part of a new semiconductor device modeling (SDM) program at NAS to investigate these concerns by utilizing advanced NAS and third-party numerical computation software to rapidly implement and investigate electronic device models including quantum effects. This SDM project will investigate quantum effects in devices in the classical-quantum transition region, especially sub-0.1 mm MOSFETs. Specific tasks planned for this project include the use of quantum corrections to the classical drift-diffusion and hydrodynamic models of electron transport, arid the use of nominally quantum models including significant scattering.
Anas, M. M.; Othman, A. P.; Gopir, G.
2014-09-03
Density functional theory (DFT), as a first-principle approach has successfully been implemented to study nanoscale material. Here, DFT by numerical basis-set was used to study the quantum confinement effect as well as electronic properties of silicon quantum dots (Si-QDs) in ground state condition. Selection of quantum dot models were studied intensively before choosing the right structure for simulation. Next, the computational result were used to examine and deduce the electronic properties and its density of state (DOS) for 14 spherical Si-QDs ranging in size up to ∼ 2 nm in diameter. The energy gap was also deduced from the HOMO-LUMO results. The atomistic model of each silicon QDs was constructed by repeating its crystal unit cell of face-centered cubic (FCC) structure, and reconstructed until the spherical shape obtained. The core structure shows tetrahedral (T{sub d}) symmetry structure. It was found that the model need to be passivated, and hence it was noticed that the confinement effect was more pronounced. The model was optimized using Quasi-Newton method for each size of Si-QDs to get relaxed structure before it was simulated. In this model the exchange-correlation potential (V{sub xc}) of the electrons was treated by Local Density Approximation (LDA) functional and Perdew-Zunger (PZ) functional.
Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model
NASA Technical Reports Server (NTRS)
Biegal, Bryan A.; Rafferty, Connor S.; Yu, Zhiping; Ancona, Mario G.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)
1998-01-01
The continued down-scaling of electronic devices, in particular the commercially dominant MOSFET, will force a fundamental change in the process of new electronics technology development in the next five to ten years. The cost of developing new technology generations is soaring along with the price of new fabrication facilities, even as competitive pressure intensifies to bring this new technology to market faster than ever before. To reduce cost and time to market, device simulation must become a more fundamental, indeed dominant, part of the technology development cycle. In order to produce these benefits, simulation accuracy must improve markedly. At the same time, device physics will become more complex, with the rapid increase in various small-geometry and quantum effects. This work describes both an approach to device simulator development and a physical model which advance the effort to meet the tremendous electronic device simulation challenge described above. The device simulation approach is to specify the physical model at a high level to a general-purpose (but highly efficient) partial differential equation solver (in this case PROPHET, developed by Lucent Technologies), which then simulates the model in 1-D, 2-D, or 3-D for a specified device and test regime. This approach allows for the rapid investigation of a wide range of device models and effects, which is certainly essential for device simulation to catch up with, and then stay ahead of, electronic device technology of the present and future. The physical device model used in this work is the density-gradient (DG) quantum correction to the drift-diffusion model [Ancona, Phys. Rev. B 35(5), 7959 (1987)]. This model adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We used the DG model in 1-D and 2-D (for the first time) to simulate both bipolar and unipolar devices. Simulations of heavily-doped, short-base diodes indicated that the DG quantum
Small Lorentz violations in quantum gravity: do they lead to unacceptably large effects?
NASA Astrophysics Data System (ADS)
Gambini, Rodolfo; Rastgoo, Saeed; Pullin, Jorge
2011-08-01
We discuss the applicability of the argument of Collins, Pérez, Sudarsky, Urrutia and Vucetich to loop quantum gravity. This argument suggests that Lorentz violations, even ones that only manifest themselves at energies close to the Planck scale, have significant observational consequences at low energies when one considers perturbative quantum field theory and renormalization. We show that non-perturbative treatments like those of loop quantum gravity may generate deviations of Lorentz invariance of a different type than those considered by Collins et al (2004 Phys. Rev. Lett. 93 191301) that do not necessarily imply observational consequences at low energy.
Quantum chemical calculation of the equilibrium structures of small metal atom clusters
NASA Technical Reports Server (NTRS)
Kahn, L. R.
1982-01-01
Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.
NASA Astrophysics Data System (ADS)
Knowles, Kathryn Eileen
This dissertation describes interactions between colloidal semiconductor quantum dots (QDs) and small organic molecules that affect the electronic structure of the surfaces of the QDs and influence the decay and dissociation pathways available to excitonic charge carriers (electrons and holes) in the QDs. Pathways by which electrons and holes in QDs leave conduction and valence band-edge states, respectively, include charge trapping to a state localized in the QD core or on the surface, charge transfer to a redox partner, and radiative recombination. Analysis of transient absorption and time-resolved photoluminescence (PL) spectroscopies enabled the construction of a time-resolved, charge carrier-resolved map of decay from the first excitonic state of colloidal CdSe QDs. This map reveals three different populations of CdSe QDs that differ in the timescales of available hole and electron-trapping processes. The mechanism by which a p-substituted aniline quenches the PL of CdSe QDs upon displacing native hexadecylamine ligands depends on the electronic nature of its para substituent. Anilines with electron withdrawing substituents quench PL through incomplete passivation of Cd2+ surface sites, and anilines with electron donating substituents quench PL through photoinduced hole transfer. Transient absorption measurements on both the picosecond and microsecond timescales reveal that a series of alkyl-substituted p-benzoquinone (s-BQ) molecules participate in both static and collisional photoinduced electron transfer (PET) with PbS QDs. The efficiencies of both static and collisional PET are limited by the presence of the oleate ligand shell, and depend on the size and shape of the (s-BQ) molecule. A model for the dependence of the collisional quenching efficiency on the volume of the s-BQ molecule produces a parameter that provides a quantitative measure of the permeability of the organic ligand shell of the QDs. Thermodynamically spontaneous electron transfer occurs
NASA Astrophysics Data System (ADS)
Chang, C. S.; Fluhler, H. U.
1991-12-01
Using the Weisskopf-Wigner technique, a self consistent quantum electrodynamic (SCQED) theory of spontaneous emission of radiation and single photon small signal gain is developed for high voltage free electron lasers (FEL). Excellent agreement is obtained simultaneously to our knowledge for the first time between the predictions and the experimental observations for lineshift, linewidth and gain. The SCQED theory predicts lineshift and broadening due to quantum mechanical effects for linear, helical and tapered undulator FELs which are not predicted by the classical/conventional FEL theories, but which have been observed 4,5,18,22,23,45,46. Excellent agreement is obtained between the SCQED theory predicted spontaneous emission spectra and the 1980?81 ACO FEL4,18, ACO Optical Klystron FEL45,46, Stanford 10.6 ?m FEL22 and Stanford 3.4 ?m FEL23 experimental spectra. This agreement is much better than the prediction from the classical/conventional FEL theory which gives errors of many tens of percent. We show that the spontaneous emission spectrum obtained from classical/conventional FEL theories is valid only in the limit of a short undulator containing a small number of periods. The small signal gain derived from the SCQED theory is shown to reduce to Colson's gain formula12,34 in the classical limit. However, the SCQED theory predicts significant reductions in the small signal gain which agree well with the ACO gain data5, and are not predicted well by Colson's formula. Due to the non-neglible finite electron state lifetime, it is discovered that a fundamental physical gain limit exists which is universal to all types of FELs within the limits of the single photon transition scheme considered (i.e. if multiphoton effects are ignored). Finally, the implications of the theoretically obtained results are discussed for practical conditions of experimental interest. It is shown that under practical experimental conditions quantum effects can be quite important in the
Gong, Longyan; Tong, Peiqing
2006-11-01
The von Neumann entropy for an electron in periodic, disorder, and quasiperiodic quantum small-world networks (QSWN's) is studied numerically. For the disorder QSWN's, the derivative of the spectrum-averaged von Neumann entropy is maximal at a certain density of shortcut links p*, which can be as a signature of the localization-delocalization transition of electron states. The transition point p* is agreement with that obtained by the level statistics method. For the quasiperiodic QSWN's, it is found that there are two regions of the potential parameter. The behaviors of electron states in different regions are similar to that of periodic and disorder QSWN's, respectively. PMID:17279964
NASA Astrophysics Data System (ADS)
Decho, Alan W.; Beckman, Erin M.; Chandler, G. Thomas; Kawaguchi, Tomohiro
2008-06-01
An indirect immunofluorescence approach was developed using semiconductor quantum dot nanocrystals to label and detect a specific bacterial serotype of the bacterial human pathogen Vibrio parahaemolyticus, attached to small marine animals (i.e. benthic harpacticoid copepods), which are suspected pathogen carriers. This photostable labeling method using nanotechnology will potentially allow specific serotypes of other bacterial pathogens to be detected with high sensitivity in a range of systems, and can be easily applied for sensitive detection to other Vibrio species such as Vibrio cholerae.
NASA Astrophysics Data System (ADS)
Khots, Boris; Khots, Dmitriy
2014-12-01
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.
Khots, Boris; Khots, Dmitriy
2014-12-10
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.
Min-entropy and quantum key distribution: Nonzero key rates for ''small'' numbers of signals
Bratzik, Sylvia; Mertz, Markus; Kampermann, Hermann; Bruss, Dagmar
2011-02-15
We calculate an achievable secret key rate for quantum key distribution with a finite number of signals by evaluating the quantum conditional min-entropy explicitly. The min-entropy for a classical random variable is the negative logarithm of the maximal value in its probability distribution. The quantum conditional min-entropy can be expressed in terms of the guessing probability, which we calculate for d-dimensional systems. We compare these key rates to previous approaches using the von Neumann entropy and find nonzero key rates for a smaller number of signals. Furthermore, we improve the secret key rates by modifying the parameter estimation step. Both improvements taken together lead to nonzero key rates for only 10{sup 4}-10{sup 5} signals. An interesting conclusion can also be drawn from the additivity of the min-entropy and its relation to the guessing probability: for a set of symmetric tensor product states, the optimal minimum-error discrimination (MED) measurement is the optimal MED measurement on each subsystem.
Quantum Hall effect with small numbers of vortices in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Byrnes, Tim; Dowling, Jonathan P.
2015-08-01
When vortices are displaced in Bose-Einstein condensates (BECs), the Magnus force gives the system a momentum transverse in the direction to the displacement. We show that BECs in long channels with vortices exhibit a quantization of the current response with respect to the spatial vortex distribution. The quantization originates from the well-known topological property of the phase around a vortex; it is an integer multiple of 2 π . In a way similar to that of the integer quantum Hall effect, the current along the channel is related to this topological phase and can be extracted from two experimentally measurable quantities: the total momentum of the BEC and the spatial distribution. The quantization is in units of m /2 h , where m is the mass of the atoms and h is Planck's constant. We derive an exact vortex momentum-displacement relation for BECs in long channels under general circumstances. Our results present the possibility that the configuration described here can be used as a novel way of measuring the mass of the atoms in the BEC using a topological invariant of the system. If an accurate determination of the plateaus are experimentally possible, this gives the possibility of a topological quantum mass standard and precise determination of the fine structure constant.
Quantum chemical calculation of the equilibrium structures of small metal atom clusters
NASA Technical Reports Server (NTRS)
Kahn, L. R.
1981-01-01
The application of ab initio quantum mechanical approaches in the study of metal atom clusters requires simplifying techniques that do not compromise the reliability of the calculations. Various aspects of the implementation of the effective core potential (ECP) technique for the removal of the metal atom core electrons from the calculation were examined. The ECP molecular integral formulae were modified to bring out the shell characteristics as a first step towards fulfilling the increasing need to speed up the computation of the ECP integrals. Work on the relationships among the derivatives of the molecular integrals that extends some of the techniques pioneered by Komornicki for the calculation of the gradients of the electronic energy was completed and a formulation of the ECP approach that quite naturally unifies the various state-of-the-art "shape- and Hamiltonian-consistent" techniques was discovered.
Real applications of quantum imaging
NASA Astrophysics Data System (ADS)
Genovese, Marco
2016-07-01
In previous years the possibility of creating and manipulating quantum states of light has paved the way for the development of new technologies exploiting peculiar properties of quantum states, such as quantum information, quantum metrology and sensing, quantum imaging, etc. In particular quantum imaging addresses the possibility of overcoming limits of classical optics by using quantum resources such as entanglement or sub-Poissonian statistics. Albeit, quantum imaging is a more recent field than other quantum technologies, e.g. quantum information, it is now mature enough for application. Several different protocols have been proposed, some of them only theoretically, others with an experimental implementation and a few of them pointing to a clear application. Here we present a few of the most mature protocols ranging from ghost imaging to sub shot noise imaging and sub-Rayleigh imaging.
Yao, Dan-Yang; Zhang, Jin-Chuan; Cathabard, Olivier; Zhai, Shen-Qiang; Liu, Ying-Hui; Jia, Zhi-Wei; Liu, Feng-Qi; Wang, Zhan-Guo
2015-01-01
High-power broad area substrate emitting photonic-crystal distributed feedback (DFB) quantum cascade lasers (QCLs) emitting around 4.73 μm is reported. Two-dimensional centered rectangular photonic-crystal (CRPC) grating is introduced to enhance optical coherence in large area device. Main lobe far-field radiation pattern with a very small divergence angle of about 0.65° × 0.31° is obtained. A record peak output power for vertical emitting QCLs exceeding 10 W is obtained with high reflectivity (HR) coating. Robust single longitudinal mode emission with a side mode suppression ratio (SMSR) of 30 dB is continuously tunable by the heat sink temperature up to 65°C. PMID:25977652
NASA Astrophysics Data System (ADS)
Zhang, Yating; Xu, Zhangcheng
2008-08-01
Small PbS quantum dots (QDs) with diameters ranging from 2.5 to 3 nm were synthesized directly in the conjugated polymer poly[2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene] (MEH-PPV) at 70 °C. To monitor the size dependence of Dexter energy transfer [D. L. Dexter, J. Chem. Phys. 21, 836 (1953)] from MEH-PPV to PbS QDs, the photoluminescence of MEH-PPV is measured for a series of samples with varying QD sizes controlled by the reaction time. A decreased transfer rate is observed for PbS QDs with a diameter of about 2.65 nm due to the minimum overlap between the emission spectrum of MEH-PPV and the 1Se-1Sh and 1Pe-1Sh transitions of PbS QDs.
Gao, Lin-Feng; Xu, Jing-Yin; Zhu, Zhi-Yuan; Hu, Chen-Xia; Zhang, Lei; Wang, Qiang; Zhang, Hao-Li
2016-08-18
Ultrathin BP QDs with a uniform size of ∼3.4 nm were prepared via small molecule-assisted liquid phase exfoliation and they exhibited superior broadband nonlinear saturable absorption promising for nonlinear optical applications. Laser photolysis measurement implied that the nonlinear response origin was related to the long-lived electron-hole pairs delocalized within the BP QDs. PMID:27491959
Probing the small distance structure of canonical quantum gravity using the conformal group
NASA Astrophysics Data System (ADS)
Hooft, Gerard't.
2013-07-01
In canonical quantum gravity, the formal functional integral includes an integration over the local conformal factor, and we propose to perform the functional integral over this factor before doing any of the other functional integrals. By construction, the resulting effective theory would be expected to be conformally invariant and therefore finite. However, also the conformal integral itself diverges, and the effects of a renormalization counter term are considered. It generates problems such as unitarity violation, due to a Landau-like ghost, and conformal anomalies. Adding (massive or massless) matter fields does not change the picture. Various alternative ideas are offered, including a more daring speculation, which is that no counter term should be allowed for at all. This has far-reaching and important consequences, which we discuss. A surprising picture emerges of quantized elementary particles interacting with a gravitational field, in particular gravitons, which are "partly classical". This approach was inspired by a search towards the reconciliation of Hawking radiation with unitarity and locality, and it offers basic new insights there.
NASA Astrophysics Data System (ADS)
Qayyum, Hamza; Lu, Chieh-Hsun; Chuang, Ying-Hung; Lin, Jiunn-Yuan; Chen, Szu-yuan
2016-05-01
The capability to fabricate Ge/Si quantum dots with small dot size and high dot density uniformly over a large area is crucial for many applications. In this work, we demonstrate that this can be achieved by scanning a pre-deposited Ge thin layer on Si substrate with a line-focused pulsed laser beam to induce formation of quantum dots. With suitable setting, Ge/Si quantum dots with a mean height of 2.9 nm, a mean diameter of 25 nm, and a dot density of 6×1010 cm-2 could be formed over an area larger than 4 mm2. The average size of the laser-induced quantum dots is smaller while their density is higher than that of quantum dots grown by using Stranski-Krastanov growth mode. Based on the dependence of the characteristics of quantum dots on the laser parameters, a model consisting of laser-induced strain, surface diffusion, and Ostwald ripening is proposed for the mechanism underlying the formation of the Ge/Si quantum dots. The technique demonstrated could be applicable to other materials besides Ge/Si.
Multiplexed Chirped Pulse Quantum Cascade Laser Measurements of Ammonia and Other Small Molecules
NASA Astrophysics Data System (ADS)
Picken, Craig; Langford, Nigel; Duxbury, Geoffrey
2014-06-01
Spectrometers based on Quantum Cascade (QC) lasers can be run in either continuous or pulsed operation. Although the instrumentation based upon the most recent versions of continuously operating QC lasers can have higher resolution than chirped lasers, using chirped pulse QC lasers can give an advantage when rapid changes in gas composition occur. For example, when jet engines are being tested, a variety of temperature dependent effects on the trace gas concentrations of the plume may be observed. Most pulsed QC lasers are operated in the down chirped mode, in which the chirp rate slows during the pulse. In our spectrometer the changes in frequency are recorded using two Ge etalons, one with a free spectral range of 0.0495 cm-1, and the other with a fringe spacing of 0.0195 cm-1.They can also be deployed in multiplex schemes in which two or more down-chirped lasers are used. In this paper we wish to show examples of the use of multiplexed chirped pulse lasers to allow overlapping spectra to be recorded. The examples of multiplex methods used are taken partly from measurements of 14NH3 and 15NH3 in the region from 1630 to 1622 cm-1, and partly from the use of other chirped pulse lasers operating in the 8 μm region. Among the effects seen are rapid passage effects caused by the rapid down-chirp, and the use of gases such as nitrogen to cause variation in the shape of the collisional broadened absorption lines.
Silva, Mateus X; Galvão, Breno R L; Belchior, Jadson C
2014-05-21
Genetic algorithm is employed to survey an empirical potential energy surface for small Na(x)K(y) clusters with x + y ≤ 15, providing initial conditions for electronic structure methods. The minima of such empirical potential are assessed and corrected using high level ab initio methods such as CCSD(T), CR-CCSD(T)-L and MP2, and benchmark results are obtained for specific cases. The results are the first calculations for such small alloy clusters and may serve as a reference for further studies. The validity and choice of a proper functional and basis set for DFT calculations are then explored using the benchmark data, where it was found that the usual DFT approach may fail to provide the correct qualitative result for specific systems. The best general agreement to the benchmark calculations is achieved with def2-TZVPP basis set with SVWN5 functional, although the LANL2DZ basis set (with effective core potential) and SVWN5 functional provided the most cost-effective results. PMID:24691391
Quantum robots and quantum computers
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Gupta, Vinay; Upreti, Tanvi; Chand, Suresh
2013-12-16
We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl) bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh{sub 2}){sub 2}: Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh{sub 2}){sub 2}: CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe::60:40 leads to a short circuit current density (J{sub sc}) = 5.45 mA/cm{sup 2}, open circuit voltage (V{sub oc}) = 0.727 V, and fill factor (FF) = 51%, and a power conversion efficiency = 2.02% at 100 mW/cm{sup 2} under AM1.5G illumination. The J{sub sc} and FF are sensitive to the ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe, which is a crucial factor for the device performance.
Small codes for magic state distillation
NASA Astrophysics Data System (ADS)
Howard, Mark; Dawkins, Hillary
2016-03-01
Magic state distillation is a critical component in leading proposals for fault-tolerant quantum computation. Relatively little is known, however, about how to construct a magic state distillation routine or, more specifically, which stabilizer codes are suitable for the task. While transversality of a non-Clifford gate within a code often leads to efficient distillation routines, it appears to not be a necessary condition. Here we have examined a number of small stabilizer codes and highlight a handful of which displaying interesting, albeit inefficient, distillation behaviour. Many of these distill noisy states right up to the boundary of the known undististillable region, while some distill toward non-stabilizer states that have not previously been considered.
NASA Astrophysics Data System (ADS)
Kormos, Márton; Wu, Jianda; Si, Qimiao
2014-03-01
When the transverse-field Ising chain at its quantum critical point is subjected to a small longitudinal field, the perturbed conformal field theory led to a field theory with an exotic E8 symmetry. Recent neutron scattering experiments have provided evidence for the lightest two particles in this E8 model in the quasi-1D Ising ferromagnet CoNb2O6. While the zero temperature dynamic of the model is well known, its finite-temperature counterpart has not yet been systematically studied. We study the low-frequency dynamical spin structure factor at finite temperatures using the form-factor method. We show that the dominant contribution to the spin dynamics comes from the channel between two lightest particles, and demonstrate how the spin dynamics differ from a diffusion form. Using these results, we determine the temperature dependence of the NMR relaxation rate. We suggest that, for CoNb2O6, measurements of the NMR relaxation rate provide a means to further test the applicability of the E8 model.
NASA Astrophysics Data System (ADS)
Luck, J. M.
2016-03-01
We investigate the equilibration of a small isolated quantum system by means of its matrix of asymptotic transition probabilities in a preferential basis. The trace of this matrix is shown to measure the degree of equilibration of the system launched from a typical state, from the standpoint of the chosen basis. This approach is substantiated by an in-depth study of the example of a tight-binding particle in one dimension. In the regime of free ballistic propagation, the above trace saturates to a finite limit, testifying good equilibration. In the presence of a random potential, the trace grows linearly with the system size, testifying poor equilibration in the insulating regime induced by Anderson localization. In the weak-disorder situation of most interest, a universal finite-size scaling law describes the crossover between the ballistic and localized regimes. The associated crossover exponent 2/3 is dictated by the anomalous band-edge scaling characterizing the most localized energy eigenstates.
NASA Astrophysics Data System (ADS)
Yu, Sun; Ping, Zhang; Jiangtao, Xu; Zhiyuan, Gao; Chao, Xu
2012-12-01
To improve the full well capacity (FWC) of a small size backside illuminated (BSI) CMOS image sensor (CIS), the effect of photodiode capacitance (CPD) on FWC is studied, and a reformed pinned photodiode (PPD) structure is proposed. Two procedures are implemented for the optimization. The first is to form a varying doping concentration and depth stretched new N region, which is implemented by an additional higher-energy and lower-dose N type implant beneath the original N region. The FWC of this structure is increased by extending the side wall junctions in the substrate. Secondly, in order to help the enlarged well capacity achieve full depletion, two step P-type implants with different implant energies are introduced to form a P-type insertion region in the interior of the stretched N region. This vertical inserted P region guarantees that the proposed new PD structure achieves full depletion in the reset period. The simulation results show that the FWC can be improved from 1289e- to 6390e-, and this improvement does not sacrifice any image lag performance. Additionally, quantum efficiency (QE) is enhanced in the full wavelength range, especially 6.3% at 520 nm wavelength. This technique can not only be used in such BSI structures, but also adopted in an FSI pixel with any photodiode-type readout scheme.
NASA Astrophysics Data System (ADS)
Gilbreath, G. Charmaine; Rabinovich, William S.; Meehan, Timothy J.; Vilcheck, Michael J.; Mahon, Rita; Burris, Ray; Ferraro, Mina; Sokolsky, Ilene; Vasquez, John A.; Bovais, Chris S.; Cochrell, Kerry; Goins, Kim C.; Barbehenn, Robin; Katzer, D. Scott; Ikossi-Anastasiou, Kiki; Montes, Marcos J.
2000-11-01
In this paper, we describe progress in the development of the NRL Multiple Quantum Well modulating retro-reflector including a description of recent demonstrations of an infrared data link between a small rotary-wing unmanned airborne vehicle and a ground based laser interrogator using the NRL multiple quantum well modulating retro-reflector. Modulating retro-reflector systems couple an optical retro- reflector, such as a corner-cube, and an electro-optic shutter to allow two-way optical communications using a laser, telescope and pointer-tracker on only one platform. The NRL modulating retro-reflector uses a semiconductor based multiple quantum well shutter capable of modulation rates up to 10 Mbps, depending on link characteristics. The technology enable the use of near-infrared frequencies, which is well known to provide covert communications immune to frequency allocation problems. The multiple quantum well modulating retro-reflector has the added advantage of being compact, lightweight, covert, and requires very low power. Up to an order of magnitude in onboard power can be saved using a small array of these devices instead of the Radio Frequency equivalent. In the described demonstration, a Mbps optical link to an unmanned aerial vehicle in flight at a range of 100-200 feet is shown. Near real-time compressed video is also demonstrated at the Mbps level.
Wen, Lei; Gao, Fangliang; Zhang, Shuguang; Li, Guoqiang
2016-08-01
On page 4277, G. Li and co-workers aim to promote III-V compound semiconductors and devices for a broad range of applications with various technologies. The growth process of InAs quantum dots on GaAs (511)A substrates is systematically studied. By carefully controlling the competition between growth thermal-dynamics and kinetics, InAs quantum dots with high size uniformity are prepared, which are highly desirable for the fabrication of high-efficiency solar cells. PMID:27510365
NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2005-02-01
The regular approximation to the normalized elimination of the small component (NESC) in the modified Dirac equation has been developed and presented in matrix form. The matrix form of the infinite-order regular approximation (IORA) expressions, obtained in [Filatov and Cremer, J. Chem. Phys. 118, 6741 (2003)] using the resolution of the identity, is the exact matrix representation and corresponds to the zeroth-order regular approximation to NESC (NESC-ZORA). Because IORA (=NESC-ZORA) is a variationally stable method, it was used as a suitable starting point for the development of the second-order regular approximation to NESC (NESC-SORA). As shown for hydrogenlike ions, NESC-SORA energies are closer to the exact Dirac energies than the energies from the fifth-order Douglas-Kroll approximation, which is much more computationally demanding than NESC-SORA. For the application of IORA (=NESC-ZORA) and NESC-SORA to many-electron systems, the number of the two-electron integrals that need to be evaluated (identical to the number of the two-electron integrals of a full Dirac-Hartree-Fock calculation) was drastically reduced by using the resolution of the identity technique. An approximation was derived, which requires only the two-electron integrals of a nonrelativistic calculation. The accuracy of this approach was demonstrated for heliumlike ions. The total energy based on the approximate integrals deviates from the energy calculated with the exact integrals by less than 5×10-9hartree units. NESC-ZORA and NESC-SORA can easily be implemented in any nonrelativistic quantum chemical program. Their application is comparable in cost with that of nonrelativistic methods. The methods can be run with density functional theory and any wave function method. NESC-SORA has the advantage that it does not imply a picture change.
Emergent mechanics, quantum and un-quantum
NASA Astrophysics Data System (ADS)
Ralston, John P.
2013-10-01
There is great interest in quantum mechanics as an "emergent" phenomenon. The program holds that nonobvious patterns and laws can emerge from complicated physical systems operating by more fundamental rules. We find a new approach where quantum mechanics itself should be viewed as an information management tool not derived from physics nor depending on physics. The main accomplishment of quantum-style theory comes in expanding the notion of probability. We construct a map from macroscopic information as data" to quantum probability. The map allows a hidden variable description for quantum states, and efficient use of the helpful tools of quantum mechanics in unlimited circumstances. Quantum dynamics via the time-dependent Shroedinger equation or operator methods actually represents a restricted class of classical Hamiltonian or Lagrangian dynamics, albeit with different numbers of degrees of freedom. We show that under wide circumstances such dynamics emerges from structureless dynamical systems. The uses of the quantum information management tools are illustrated by numerical experiments and practical applications
NASA Astrophysics Data System (ADS)
Ryabov, V. A.
2015-08-01
Quantum systems in a mechanical embedding, the breathing mode of a small particles, optomechanical system, etc. are far not the full list of examples in which the volume exhibits quantum behavior. Traditional consideration suggests strain in small systems as a result of a collective movement of particles, rather than the dynamics of the volume as an independent variable. The aim of this work is to show that some problem here might be essentially simplified by introducing periodic boundary conditions. At this case, the volume is considered as the independent dynamical variable driven by the internal pressure. For this purpose, the concept of quantum volume based on Schrödinger’s equation in 𝕋3 manifold is proposed. It is used to explore several 1D model systems: An ensemble of free particles under external pressure, quantum manometer and a quantum breathing mode. In particular, the influence of the pressure of free particle on quantum oscillator is determined. It is shown also that correction to the spectrum of the breathing mode due to internal degrees of freedom is determined by the off-diagonal matrix elements of the quantum stress. The new treatment not using the “force” theorem is proposed for the quantum stress tensor. In the general case of flexible quantum 3D dynamics, quantum deformations of different type might be introduced similarly to monopole mode.
Zhou, Liping; Zhu, Anna; Lou, Xuening; Song, Dan; Yang, Rong; Shi, Hanchang; Long, Feng
2016-01-28
A universal sandwich-like immunoassay strategy based on quantum-dots immunoprobe (QD-labeled anti-mouse IgG antibody) was developed for rapid and ultrasensitive detection of small molecules. A portable and reusable optofluidic nano-biosensing platform was applied to investigate the sandwich-like immunoassay mechanism and format of small molecules, as well as the binding kinetics between QD immunoprobe and anti-small molecule antibody. A two-step immunoassay method that involves pre-incubation mixture of different concentration of small molecule and anti-small molecule antibody, and subsequent introduction of QD immunoprobe into the optofluidic cell was conducted for small molecule determination. Compared with the one-step immunoassay method, the two-step immunoassay method can obtain higher fluorescence signal and higher sensitivity index, thus improving the nano-biosensing performance. Based on the proposed strategy, two mode targets, namely, microcystin-LR (MC-LR) and Bisphenol A (BPA) were tested with high sensitivity, rapidity, and ease of use. A higher concentration of small molecules in the sample led to less anti-small molecule antibody bound with antigen-carrier protein conjugate immobilized onto the sensor surface, and less QD immunoprobes bound with anti-small molecule antibody. This phenomenon lowered the fluorescence signal detected by nano-biosensing platform. Under optimal operating conditions, MC-LR and BPA exhibited a limit of detection of 0.003 and 0.04 μg/L, respectively. The LODs were better than those of the indirect competitive immunoassay method for small molecules via Cy5.5-labeled anti-small molecule antibody. The proposed QD-based sandwich-like immunoassay strategy was evaluated in spiked water samples, and showed good recovery, precision and accuracy without complicated sample pretreatments. All these results demonstrate that the new detection strategy could be readily applied to the other trace small molecules in real water samples
NASA Astrophysics Data System (ADS)
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The
Barone, Vincenzo; Improta, Roberto; Rega, Nadia
2008-05-01
Interpretation of structural properties and dynamic behavior of molecules in solution is of fundamental importance to understand their stability, chemical reactivity, and catalytic action. While information can be gained, in principle, by a variety of spectroscopic techniques, the interpretation of the rich indirect information that can be inferred from the analysis of experimental spectra is seldom straightforward because of the subtle interplay of several different effects, whose specific role is not easy to separate and evaluate. In such a complex scenario, theoretical studies can be very helpful at two different levels: (i) supporting and complementing experimental results to determine the structure of the target molecule starting from its spectral properties; (ii) dissecting and evaluating the role of different effects in determining the observed spectroscopic properties. This is the reason why computational spectroscopy is rapidly evolving from a highly specialized research field into a versatile and widespread tool for the assignment of experimental spectra and their interpretation in terms of chemical physical effects. In such a situation, it becomes important that both computationally and experimentally oriented chemists are aware that new methodological advances and integrated computational strategies are available, providing reliable estimates of fundamental spectral parameters not only for relatively small molecules in the gas phase but also for large and flexible molecules in condensed phases. In this Account, we review the most significant methodological contributions from our research group in this field, and by exploiting some recent results of their application to the computation of IR, UV-vis, NMR, and EPR spectral parameters, we discuss the microscopic mechanisms underlying solvent and vibrational effects on the spectral parameters. After reporting some recent achievements for the study of excited states by first principle quantum mechanical
Quantum size effect as evidenced by small-angle X-ray scattering of In{sub 2}O{sub 3} nanoparticles
Souza, E. C. C.; Rey, J. F. Q.; Muccillo, E. N. S.
2009-01-29
Indium oxide nanoparticles were synthesized by a surfactant-free room-temperature soft chemistry route. The medium particle size of the thermally treated gel was evaluated by X-ray diffraction experiments, nitrogen adsorption measurements, transmission electron microscopy observations and small-angle X-ray scattering using synchrotron radiation. The main results show the single-crystalline nature of the prepared nanoparticles with 8 nm in diameter. The photoluminescence emission spectrum at room-temperature shows a broad peak with onset at, approximately, 315 nm as a result of quantum size effect produced by a small population of nanoparticles with average size of about 2.8 nm as revealed by small-angle X-ray scattering.
NASA Astrophysics Data System (ADS)
Steffen, Matthias
2013-03-01
Quantum mechanics plays a crucial role in many day-to-day products, and has been successfully used to explain a wide variety of observations in Physics. While some quantum effects such as tunneling limit the degree to which modern CMOS devices can be scaled to ever reducing dimensions, others may potentially be exploited to build an entirely new computing architecture: The quantum computer. In this talk I will review several basic concepts of a quantum computer. Why quantum computing and how do we do it? What is the status of several (but not all) approaches towards building a quantum computer, including IBM's approach using superconducting qubits? And what will it take to build a functional machine? The promise is that a quantum computer could solve certain interesting computational problems such as factoring using exponentially fewer computational steps than classical systems. Although the most sophisticated modern quantum computing experiments to date do not outperform simple classical computations, it is increasingly becoming clear that small scale demonstrations with as many as 100 qubits are beginning to be within reach over the next several years. Such a demonstration would undoubtedly be a thrilling feat, and usher in a new era of controllably testing quantum mechanics or quantum computing aspects. At the minimum, future demonstrations will shed much light on what lies ahead.
Thermoelectric performance of strongly correlated quantum impurity models
NASA Astrophysics Data System (ADS)
Taylor, Edward; Segal, Dvira
2015-09-01
We derive asymptotically exact expressions for the thermopower and figure of merit of a quantum impurity connecting two noninteracting leads in the linear response regime where the chemical potential and temperature differences between the leads are small. Based on sum rules for the single-particle impurity spectral function, these expressions become exact at high temperatures as well as in the very strongly correlated regime, where the impurity Coulomb repulsion is much larger than the temperature. Although modest interactions impede thermoelectric performance, a very large Coulomb scale restores the optimal transport properties of noninteracting electrons, albeit renormalized to account for the absence of double occupancy in the impurity. As with noninteracting electrons, the electronic contribution to the figure of merit is limited only by the spectral broadening that arises from the coupling between the impurity and the leads.
Liu, Yixi; Wang, Yong; Liu, Le; He, Yonghong; He, Qinghua; Ji, Yanhong
2016-07-01
A method to detect small molecules with a molecularly imprinted polymer/quantum dot (MIP-QD) chip using a home-built optical fluidic system was first proposed in this study. Ractopamine (RAC) was used as the model molecule to demonstrate its feasibility. The sensing of the target molecule is based on the quenching amount of the quantum dots. The method is facile, cost-saving, easy for miniaturization and avoids the cumbersome steps that are needed to get the fluorescent quenching curve using a spectrofluorometer. Most importantly, more details and accurate response time can be obtained by use of this method. The experimental results show that the prepared chips with low cost are highly selective and the home-built detection system allows the fast binding kinetics. The recorded quenching process was used to study the kinetic uptake of RAC onto the MIP-QD chip and the specificity towards RAC. The system can further be utilized to study the effect of the solvent, pH and temperature on the selectivity of the prepared MIP. The methodology could be extended to other similar studies with different molecules. Graphical abstract Schematic illustration of the molecularly imprinted polymer/quantum dot chip capturing the target molecule. PMID:27235159
Sure, Rebecca; Brandenburg, Jan Gerit; Grimme, Stefan
2016-04-01
In quantum chemical computations the combination of Hartree-Fock or a density functional theory (DFT) approximation with relatively small atomic orbital basis sets of double-zeta quality is still widely used, for example, in the popular B3LYP/6-31G* approach. In this Review, we critically analyze the two main sources of error in such computations, that is, the basis set superposition error on the one hand and the missing London dispersion interactions on the other. We review various strategies to correct those errors and present exemplary calculations on mainly noncovalently bound systems of widely varying size. Energies and geometries of small dimers, large supramolecular complexes, and molecular crystals are covered. We conclude that it is not justified to rely on fortunate error compensation, as the main inconsistencies can be cured by modern correction schemes which clearly outperform the plain mean-field methods. PMID:27308221
Sure, Rebecca; Brandenburg, Jan Gerit
2015-01-01
Abstract In quantum chemical computations the combination of Hartree–Fock or a density functional theory (DFT) approximation with relatively small atomic orbital basis sets of double‐zeta quality is still widely used, for example, in the popular B3LYP/6‐31G* approach. In this Review, we critically analyze the two main sources of error in such computations, that is, the basis set superposition error on the one hand and the missing London dispersion interactions on the other. We review various strategies to correct those errors and present exemplary calculations on mainly noncovalently bound systems of widely varying size. Energies and geometries of small dimers, large supramolecular complexes, and molecular crystals are covered. We conclude that it is not justified to rely on fortunate error compensation, as the main inconsistencies can be cured by modern correction schemes which clearly outperform the plain mean‐field methods. PMID:27308221
Frost, Thomas; Banerjee, Animesh; Bhattacharya, Pallab
2013-11-18
We report small-signal modulation bandwidth and differential gain measurements of a ridge waveguide In{sub 0.4}Ga{sub 0.6}N/GaN quantum dot laser grown by molecular beam epitaxy. The laser peak emission is at λ = 630 nm. The −3 dB bandwidth of an 800 μm long device was measured to be 2.4 GHz at 250 mA under pulsed biasing, demonstrating the possibility of high-speed operation of these devices. The differential gain was measured to be 5.3 × 10{sup −17} cm{sup 2}, and a gain compression factor of 2.87 × 10{sup −17} cm{sup 3} is also derived from the small-signal modulation response.
NASA Astrophysics Data System (ADS)
Hu, Dehong; Zhang, Pengfei; Gong, Ping; Lian, Shuhong; Lu, Yangyang; Gao, Duyang; Cai, Lintao
2011-11-01
Highly luminescent near-infrared (NIR) emitting CdTe/CdSe quantum dots (QDs) were prepared through a fast and convenient method, and a new type of multivalent polymer ligands was used as the surface substituents to prepare highly stable hydrophilic QDs with small sizes. The well-defined CdTe/CdSe QDs were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy and photoluminescence (PL) spectroscopy, respectively. The as-prepared CdTe/CdSe QDs were photostable with high PL quantum yields (QYs) (up to 66% at room temperature), low toxicity to cells at experimental dosages, and the QDs' fluorescence emissions were tunable between 700 and 820 nm. Furthermore, fluorescence imaging using CdTe/CdSe QDs conjugated with the AS1411 aptamer (targeting nucleolin) probe in cancer cells was reported, and the CdTe/CdSe QDs were also successfully applied for the fluorescence imaging of living animals. Our preliminary results illustrated that the CdTe/CdSe NIR-QDs with small sizes would be an alternative probe for ultrasensitive, multicolor, and multiplex applications, especially for in vivo imaging applications.
Microwave Levitation Of Small Objects
NASA Technical Reports Server (NTRS)
Watkins, John L.; Jackson, Henry W.
1991-01-01
Microwave radiation in resonant cavities used to levitate small objects, according to proposal. Feedback control and atmosphere not needed. Technique conceived for use in experiments on processing of materials in low gravitation of outer space, also used in normal Earth gravitation, albeit under some limitations.
Li, Xin; Carravetta, Vincenzo; Li, Cui; Monti, Susanna; Rinkevicius, Zilvinas; Ågren, Hans
2016-07-12
Motivated by the growing importance of organometallic nanostructured materials and nanoparticles as microscopic devices for diagnostic and sensing applications, and by the recent considerable development in the simulation of such materials, we here choose a prototype system - para-nitroaniline (pNA) on gold nanoparticles - to demonstrate effective strategies for designing metal nanoparticles with organic conjugates from fundamental principles. We investigated the motion, adsorption mode, and physical chemistry properties of gold-pNA particles, increasing in size, through classical molecular dynamics (MD) simulations in connection with quantum chemistry (QC) calculations. We apply the quantum mechanics-capacitance molecular mechanics method [Z. Rinkevicius et al. J. Chem. Theory Comput. 2014, 10, 989] for calculations of the properties of the conjugate nanoparticles, where time dependent density functional theory is used for the QM part and a capacitance-polarizability parametrization of the MM part, where induced dipoles and charges by metallic charge transfer are considered. Dispersion and short-range repulsion forces are included as well. The scheme is applied to one- and two-photon absorption of gold-pNA clusters increasing in size toward the nanometer scale. Charge imaging of the surface introduces red-shifts both because of altered excitation energy dependence and variation of the relative intensity of the inherent states making up for the total band profile. For the smaller nanoparticles the difference in the crystal facets are important for the spectral outcome which is also influenced by the surrounding MM environment. PMID:27224666
NASA Astrophysics Data System (ADS)
Goyal, Ketan; Kawai, Ryoichi
As nanotechnology advances, understanding of the thermodynamic properties of small systems becomes increasingly important. Such systems are found throughout physics, biology, and chemistry manifesting striking properties that are a direct result of their small dimensions where fluctuations become predominant. The standard theory of thermodynamics for macroscopic systems is powerless for such ever fluctuating systems. Furthermore, as small systems are inherently quantum mechanical, influence of quantum effects such as discreteness and quantum entanglement on their thermodynamic properties is of great interest. In particular, the quantum fluctuations due to quantum uncertainty principles may play a significant role. In this talk, we investigate thermodynamic properties of an autonomous quantum heat engine, resembling a quantum version of the Feynman Ratchet, in non-equilibrium condition based on the theory of open quantum systems. The heat engine consists of multiple subsystems individually contacted to different thermal environments.
NASA Astrophysics Data System (ADS)
Fasching, G.; Benz, A.; Deutsch, Ch.; Andrews, A. M.; Zobl, R.; Klang, P.; Schrenk, W.; Strasser, G.; Tamošiūnas, V.; Unterrainer, K.
2008-04-01
We present terahertz quantum-cascade lasers based on sub-wavelength circular-shaped double-metal microcavities whose single-mode emission can be fine-tuned via dynamical frequency pulling. This allows to estimate the peak gain of the material to 27 cm-1 and the shift of the cavity mode towards the gain maximum by 30 GHz. Strong mode confinement in the growth and in-plane directions are provided by a double-plasmon waveguide and due to the strong impedance mismatch between the gain material and air. These ultra-compact devices exhibit threshold currents as low as 13.5 mA. We lifted the natural two-fold degeneracy of the whispering-gallery modes by lifting the rotational symmetry of such resonators.
Colognesi, Daniele; Celli, Milva; Ulivi, Lorenzo; Powers, Anna; Xu, Minzhong; Bačić, Zlatko
2014-10-07
We report inelastic neutron scattering (INS) measurements on molecular hydrogen deuteride (HD) trapped in binary cubic (sII) and hexagonal (sH) clathrate hydrates, performed at low temperature using two different neutron spectrometers in order to probe both energy and momentum transfer. The INS spectra of binary clathrate samples exhibit a rich structure containing sharp bands arising from both the rotational transitions and the rattling modes of the guest molecule. For the clathrates with sII structure, there is a very good agreement with the rigorous fully quantum simulations which account for the subtle effects of the anisotropy, angular and radial, of the host cage on the HD microscopic dynamics. The sH clathrate sample presents a much greater challenge, due to the uncertainties regarding the crystal structure, which is known only for similar crystals with different promoter, but nor for HD (or H{sub 2}) plus methyl tert-butyl ether (MTBE-d12)
2014-01-01
A new strategy for in situ preparation of highly fluorescent CdTe quantum dots (QDs) with 3-mercaptopropionic acid (MPA) and hyperbranched poly(amidoamine)s (HPAMAM) as co-stabilizers was proposed in this paper. MPA and HPAMAM were added in turn to coordinate Cd2+. After adding NaHTe and further microwave irradiation, fluorescent CdTe QDs stabilized by MPA and HPAMAM were obtained. Such a strategy avoids the aftertreatment of thiol-stabilized QDs in their bioapplication and provides an opportunity for direct biomedical use of QDs due to the existence of biocompatible HPAMAM. The resulting CdTe QDs combine the mechanical, biocompatibility properties of HPAMAM and the optical, electrical properties of CdTe QDs together. PMID:24636234
Optical properties of small GaN-Al0.5Ga0.5N quantum dots grown on (11-22) GaN templates
NASA Astrophysics Data System (ADS)
Sellés, Julien; Rosales, Daniel; Gil, Bernard; Cassabois, Guillaume; Guillet, Thierry; Brault, Julien; Damilano, Benjamin; Vennéguès, Philippe; de Mierry, Philippe; Massies, Jean
2015-03-01
GaN/Al0.5Ga0.5N quantum dots deposited on the (11-22) plane have been grown by combining Molecular Beam Epitaxy (MBE) and Metal Organic Vapor Phase Epitaxy (MOVPE). The (11-22) GaN oriented template was realized by MOVPE starting from a M-plane oriented sapphire substrate. The average dot sizes are the following: between 15 and 20 nm in the <-1-123> and <1-100> directions and a height ranging between 0.8 and 1.4 nm. Their density is ranging between 2 and 8x1010cm-2. The crystal field splitting is measured in Al0.5Ga0.5N via polarized microphotoluminescence. We study the photoluminescence properties of small quantum dots which present innovative optical properties among which are the evolution of the polarization of the emitted photons at different temperatures. We also analyze the distortion of the photoluminescence at different time delays after the excitation pulse. A redshift is found that is attributed to the complex thermally-induced delocalization of the carriers through the assembly of dots from the smaller ones to the bigger ones.
NASA Astrophysics Data System (ADS)
Kitano, H.; Ota, K.; Hamada, K.; Takemura, R.; Ohmaki, M.; Maeda, A.; Suzuki, M.
2009-03-01
A nanometer-thick small mesa consiting of only two or three Bi2Sr2CaCu2Oy intrinsic Josephson junctions (IJJs) is studied through the switching current distribution measurements down to 0.4 K. Experimental results clearly show that the first switching events from the zero-voltage state for 1 K < T < 4 K are successfully described by a conventional thermal activation (TA) theory for a single Josephson junction, and that they become independent of temperature below T* ~ 0.7 K. We observe the microwave-induced peak in the switching distribution at 0.4 K, which is induced by the microwave irradiation at 55 GHz. These results strongly suggest that the system crossovers to macroscopic quantum tunneling (MQT) regime below T*, which is as high as the previously reported value for a stacked IJJs with several tens of junctions, in contrast to the recent result on a similar mesa-structured surface IJJ.
NASA Astrophysics Data System (ADS)
Galloway, Justin F.
To achieve long-term fluorescence imaging with quantum dots (QDs), a CdSe core/shell must first be synthesized. The synthesis of bright CdSe QDs is not trivial and as a consequence, the role of surfactant in nucleation and growth was investigated. It was found that the type of surfactant used, either phosphonic or fatty acid, played a pivotal role in the size of the CdSe core. The study of surfactant on CdSe synthesis, ultimately led to an electrical passivation method that utilized a short-chained phosphonic acid and highly reactive organometallic precursors to achieve high quantum yield (QY) as has been previously described. The synthesis of QDs using organometallic precursors and a phosphonic acid for passivation resulted in 4 out of 9 batches of QDs achieving QYs greater than 50% and 8 out of 9 batches with QYs greater than 35%. The synthesis of CdSe QDs was done in organic solutions rendering the surface of the particle hydrophobic. To perform cell-targeting experiments, QDs must be transferred to water. The transfer of QDs to water was successfully accomplished by using single acyl chain lipids. A systematic study of different lipid combinations and coatings demonstrated that 20-40 mol% single acyl chained lipids were able to transfer QDs to water resulting in monodispersed, stable QDs without adversely affecting the QY. The advantage to water solubilization using single acyl chain lipids is that the QD have a hydrodynamic radius less than 15 nm, QYs that can exceed 50% and additional surface functionalization can be down using the reactive sites incorporated into the lipid bilayer. QDs that are bright and stable in water were studied for the purpose of targeting G protein-coupled Receptors (GPCR). GPCRs are transmembrane receptors that internalize extracellular cues, and thus mediate signal transduction. The cyclic Adenosine Monophosphate Receptor 1 of the model organism Dictyostelium disodium was the receptor of interest. The Halo protein, a genetically
Navascués, Miguel; Guryanova, Yelena; Hoban, Matty J; Acín, Antonio
2015-01-01
Quantum theory is not only successfully tested in laboratories every day but also constitutes a robust theoretical framework: small variations usually lead to implausible consequences, such as faster-than-light communication. It has even been argued that quantum theory may be special among possible theories. Here we report that, at the level of correlations among different systems, quantum theory is not so special. We define a set of correlations, dubbed 'almost quantum', and prove that it strictly contains the set of quantum correlations but satisfies all-but-one of the proposed principles to capture quantum correlations. We present numerical evidence that the remaining principle is satisfied too. PMID:25697645
Quantum Particles From Quantum Information
NASA Astrophysics Data System (ADS)
Görnitz, T.; Schomäcker, U.
2012-08-01
Many problems in modern physics demonstrate that for a fundamental entity a more general conception than quantum particles or quantum fields are necessary. These concepts cannot explain the phenomena of dark energy or the mind-body-interaction. Instead of any kind of "small elementary building bricks", the Protyposis, an abstract and absolute quantum information, free of special denotation and open for some purport, gives the solution in the search for a fundamental substance. However, as long as at least relativistic particles are not constructed from the Protyposis, such an idea would remain in the range of natural philosophy. Therefore, the construction of relativistic particles without and with rest mass from quantum information is shown.
Omogo, Benard; Gao, Feng; Bajwa, Pooja; Kaneko, Mizuho; Heyes, Colin D
2016-04-26
Currently, the most common way to reduce blinking in quantum dots (QDs) is accomplished by using very thick and/or perfectly crystalline CdS shells on CdSe cores. Ideally, a nontoxic material such as ZnS is preferred to be the outer material in order to reduce environmental and cytotoxic effects. Blinking suppression with multishell configurations of CdS and ZnS has been reported only for "giant" QDs of 15 nm or more. One of the main reasons for the limited progress is that the role that interfacial trap states play in blinking in these systems is not very well understood. Here, we show a "Goldilocks" effect to reduce blinking in small (∼7 nm) QDs by carefully controlling the thicknesses of the shells in multishell QDs. Furthermore, by correlating the fluorescence lifetime components with the fraction of time that a QD spends in the on-state, both with and without applying a threshold, we found evidence for two types of blinking that separately affect the average fluorescence lifetime of a single QD. A thorough characterization of the time-resolved fluorescence at the ensemble and single-particle level allowed us to propose a detailed physical model involving both short-lived interfacial trap states and long-lived surface trap states that are coupled. This model highlights a strategy of reducing QD blinking in small QDs by balancing the magnitude of the induced lattice strain, which results in the formation of interfacial trap states between the inner shell and the outer shell, and the confinement potential that determines how accessible the interfacial trap states are. The combination of reducing blinking while maintaining a small overall QD size and using a Cd-free outer shell of ZnS will be useful in a wide array of applications, particularly for advanced bioimaging. PMID:27058120
Shao, Dahai
2013-05-15
This dissertation focuses on how QSE-stabilized, surface-supported Ag nanoclusters will interact with ethylene or oxygen. Experiments are performed to determine whether the QSE-mediated Ag islands react differently toward adsorption of ethylene or oxygen, or whether the adsorption of these small molecules will affect the QSE-mediated stability of Ag islands. Studies of the interaction of oxygen with Ag/Si(111)-7×7 were previously reported, but these studies were performed at a low Ag coverage where 3D Ag islands were not formed. So the study of such a system at a higher Ag coverage will be a subject of this work. The interaction of ethylene with Ag/Si(111)-7×7, as well as the interaction of oxygen with Ag/NiAl(110) are also important parts of this study.
Self-dual black holes in loop quantum gravity: Theory and phenomenology
Modesto, Leonardo; Premont-Schwarz, Isabeau
2009-09-15
In this paper we have recalled the semiclassical metric obtained from a classical analysis of the loop quantum black hole (LQBH). We show that the regular Reissner-Nordstroem-like metric is self-dual in the sense of T-duality: the form of the metric obtained in loop quantum gravity is invariant under the exchange r{yields}a{sub 0}/r where a{sub 0} is proportional to the minimum area in loop quantum gravity and r is the standard Schwarzschild radial coordinate at asymptotic infinity. Of particular interest, the symmetry imposes that if an observer in r{yields}+{infinity} sees a black hole of mass m an observer in the other asymptotic infinity beyond the horizon (at r{approx_equal}0) sees a dual mass m{sub P}/m. We then show that small LQBH are stable and could be a component of dark matter. Ultralight LQBHs created shortly after the big bang would now have a mass of approximately 10{sup -5}m{sub P} and emit radiation with a typical energy of about 10{sup 13}-10{sup 14} eV but they would also emit cosmic rays of much higher energies, albeit few of them. If these small LQBHs form a majority of the dark matter of the Milky Way's Halo, the production rate of ultra-high-energy-cosmic-rays (UHECR) by these ultralight black holes would be compatible with the observed rate of the Auger detector.
Quantum Computation and Quantum Information
NASA Astrophysics Data System (ADS)
Nielsen, Michael A.; Chuang, Isaac L.
2010-12-01
Part I. Fundamental Concepts: 1. Introduction and overview; 2. Introduction to quantum mechanics; 3. Introduction to computer science; Part II. Quantum Computation: 4. Quantum circuits; 5. The quantum Fourier transform and its application; 6. Quantum search algorithms; 7. Quantum computers: physical realization; Part III. Quantum Information: 8. Quantum noise and quantum operations; 9. Distance measures for quantum information; 10. Quantum error-correction; 11. Entropy and information; 12. Quantum information theory; Appendices; References; Index.
Chen, Huide; Xia, Yunsheng
2014-11-18
In this study, we have presented a novel plasmon enhanced fluorescence (PEF) system for label-free sensing of small molecules in bulk solution. The amine-terminated gold nanodendrite (AuND) and carboxyl-terminated QDs directly assemble each other by amine-carboxyl attraction. Without any spacer layers, PEF can be increased by 4 times during the formation of the compact hybrid (AuND-QDs) assembly. Both experiment and finite-difference time domain calculation results indicate that the distinct solution-PEF effect is ascribed to two reasons: (1) The used AuNDs simultaneously possess four features in morphology and topology, well-defined superstructure, sharp tips and edges, moderately elongated subunits, and smaller size. (2) The hybrid (AuND-QDs) assembly has a very compact structure. So, the fluorescence is well enhanced by the effective increase of excitation and radiative decay rates with the decrease of scattering effect. The (AuND-QDs) assembly is then employed for sensing of trinitrotoluene (TNT), one of the highly explosive and environmentally detrimental substances, in bulk solution. The sensing principle is that the analytes can react with primary amines on the AuND surface and form Meisenheimer complexes, which break the preformed assemblies and result in the fluorescence recovery of the QDs. The linear range is 0-8.8 nM with 0.05 nM detection limit. The present quasi-picomole level sensitivity is one of the best results for fluorescent TNT sensing. The developed method is successfully applied to TNT sensing in real environmental samples, indicating the practical potential. PMID:25317671
Firdaus, Yuliar; Van der Auweraer, Mark; Vandenplas, Erwin; Gehlhaar, Robert; Cheyns, David; Justo, Yolanda; Hens, Zeger
2014-09-07
Different approaches of surface modification of the quantum dots (QDs), namely, solution-phase (octylamine, octanethiol) and post-deposition (acetic acid, 1,4-benzenedithiol) ligand exchange were used in the fabrication of hybrid bulk heterojunction solar cell containing poly (3-hexylthiophene) (P3HT) and small (2.4 nm) PbS QDs. We show that replacing oleic acid by shorter chain ligands improves the figures of merit of the solar cells. This can possibly be attributed to a combination of a reduced thickness of the barrier for electron transfer and an optimized phase separation. The best results were obtained for post-deposition ligand exchange by 1,4-benzenedithiol, which improves the power conversion efficiency of solar cells based on a bulk heterojunction of lead sulfide (PbS) QDs and P3HT up to two orders of magnitude over previously reported hybrid cells based on a bulk heterojunction of P3HT:PbS QDs, where the QDs are capped by acetic acid ligands. The optimal performance was obtained for solar cells with 69 wt. % PbS QDs. Besides the ligand effects, the improvement was attributed to the formation of an energetically favorable bulk heterojunction with P3HT, when small size (2.4 nm) PbS QDs were used. Dark current density-voltage (J-V) measurements carried out on the device provided insight into the working mechanism: the comparison between the dark J-V characteristics of the bench mark system P3HT:PCBM and the P3HT:PbS blends allows us to conclude that a larger leakage current and a more efficient recombination are the major factors responsible for the larger losses in the hybrid system.
Feasible quantum engineering of quantum multiphoton superpositions
NASA Astrophysics Data System (ADS)
Stobińska, Magdalena
2015-02-01
We examine an experimental setup implementing a family of quantum non-Gaussian filters. The filters can be applied to an arbitrary two-mode input state. We assume realistic photodetection in the filtering process and explore two different models of inefficient detections: a beam splitter of a small reflectivity located in front of a perfect detector and a Weierstrass transform applied to the unperturbed measurement outcomes. We explicitly give an operator which describes the coherent action of the filters in the realistic experimental conditions. The filtered states may find applications in quantum metrology, quantum communication and other quantum tasks.
Sekharan, Sivakumar; Yokoyama, Shozo; Morokuma, Keiji
2011-12-29
Since Vogt's discovery of A(3)-retinal or 3-hydroxyretinal in insects in 1983 and Matsui's discovery of A(4)-retinal or 4-hydroxyretinal in firefly squid in 1988, hydroxyretinal-protein interactions mediating vision have remained largely unexplored. In the present study, A(3)- and A(4)-retinals are theoretically incorporated into squid and bovine visual pigments by use of the hybrid quantum mechanics/molecular mechanics [SORCI+Q//B3LYP/6-31G(d):Amber96] method, and insights into structure, enantioselectivity, and spectroscopy are gathered and presented for the first time. Contrary to general perception, our findings rule out the formation of a hydrogen bond between the hydroxyl-bearing β-ionone ring portion of retinal and opsin. Compared to A(1)-pigments, A(3)- and A(4)-pigments exhibit slightly blue-shifted absorption maxima due to increase in bond-length alternation of the hydroxyretinal. We suggest that (i) the binding site of firefly squid (Watasenia scintillans) opsin is very similar to that of the Japanese common squid (Todarodes pacificus) opsin; (ii) the molecular mechanism of spectral tuning in small white butterflies involve sites S116 and T185 and breaking of a hydrogen bond between sites E180 and T185; and finally (iii) A(3)-retinal may have occurred during the conversion of A(1)- to A(2)-retinal and insects may have acquired them, in order to absorb light in the blue-green wavelength region and to speed up the G-protein signaling cascade. PMID:22087641
Simple quantum password checking
NASA Astrophysics Data System (ADS)
Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro
2015-06-01
We present a quantum password checking protocol where secrecy is protected by the laws of quantum mechanics. The passwords are encoded in quantum systems that can be compared but have a dimension too small to allow reading the encoded bits. We study the protocol under different replay attacks and show it is robust even for poorly chosen passwords. We also describe a possible implementation with conventional optical elements.
Audenaert, Koenraad M. R.
2014-11-15
In this paper, we study the quantum generalisation of the skew divergence, which is a dissimilarity measure between distributions introduced by Lee in the context of natural language processing. We provide an in-depth study of the quantum skew divergence, including its relation to other state distinguishability measures. Finally, we present a number of important applications: new continuity inequalities for the quantum Jensen-Shannon divergence and the Holevo information, and a new and short proof of Bravyi's Small Incremental Mixing conjecture.
Quantum discord with weak measurements
Singh, Uttam Pati, Arun Kumar
2014-04-15
Weak measurements cause small change to quantum states, thereby opening up the possibility of new ways of manipulating and controlling quantum systems. We ask, can weak measurements reveal more quantum correlation in a composite quantum state? We prove that the weak measurement induced quantum discord, called as the “super quantum discord”, is always larger than the quantum discord captured by the strong measurement. Moreover, we prove the monotonicity of the super quantum discord as a function of the measurement strength and in the limit of strong projective measurement the super quantum discord becomes the normal quantum discord. We find that unlike the normal discord, for pure entangled states, the super quantum discord can exceed the quantum entanglement. Our results provide new insights on the nature of quantum correlation and suggest that the notion of quantum correlation is not only observer dependent but also depends on how weakly one perturbs the composite system. We illustrate the key results for pure as well as mixed entangled states. -- Highlights: •Introduced the role of weak measurements in quantifying quantum correlation. •We have introduced the notion of the super quantum discord (SQD). •For pure entangled state, we show that the SQD exceeds the entanglement entropy. •This shows that quantum correlation depends not only on observer but also on measurement strength.
Fan, Lihong; Qi, Huiwei; Teng, Junliang; Su, Bo; Chen, Hao; Wang, Changhui; Xia, Qing
2016-06-01
Circulating microRNAs (miRNAs) are potential noninvasive biomarkers for cancer detection. We used preoperative serum samples from non-small cell lung cancer (NSCLC) patients and healthy controls to investigate whether serum levels of candidate miRNAs could be used as diagnostic biomarkers in patients with resectable NSCLC and whether they were associated with clinicopathologic characteristics. We initially detected expression of 12 miRNAs using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in preoperative serum samples of 94 NSCLC patients and 58 healthy controls. We further validated our results using the fluorescence quantum dots liquid bead array for differentially expressed miRNAs in serum samples of 70 NSCLC patients and 54 healthy controls. Receiver operating characteristic (ROC) analysis was performed to select the best diagnostic miRNA cutoff value. A predictive model of miRNAs for NSCLC was derived by multivariate logistic regression. We found that five serum miRNAs (miR-16-5p, miR-17b-5p, miR-19-3p, miR-20a-5p, and miR-92-3p) were significantly downregulated in NSCLC, while miR-15b-5p was significantly upregulated (p < 0.05). Multivariate logistic regression analysis revealed that miR-15b-5p, miR-16-5p, and miR-20a-5p expression were independent diagnostic factors for the identification of patients with NSCLC after adjustment for patient's age and sex. In addition, the expression of serum miR-106-5p was higher in stage I than in stages IIa-IIIb, and no significant association was observed between expression of miRNAs and other variables including pathological type, tumor size, and lymph nodes status. Six serum miRNAs could potentially serve as noninvasive diagnostic biomarkers for resectable NSCLC. The predictive model combining miR-15b-5p, miR-16-5p, and miR-20a-5p was the best diagnostic approach. PMID:26695145
NASA Astrophysics Data System (ADS)
Semenov, Andrew G.; Zaikin, Andrei D.
2016-07-01
Quantum phase slips (QPSs) generate voltage fluctuations in superconducting nanowires. Employing the Keldysh technique and making use of the phase-charge duality arguments, we develop a theory of QPS-induced voltage noise in such nanowires. We demonstrate that quantum tunneling of the magnetic flux quanta across the wire yields quantum shot noise which obeys Poisson statistics and is characterized by a power-law dependence of its spectrum SΩ on the external bias. In long wires, SΩ decreases with increasing frequency Ω and vanishes beyond a threshold value of Ω at T →0 . The quantum coherent nature of QPS noise yields nonmonotonous dependence of SΩ on T at small Ω .
Quantum computing. Defining and detecting quantum speedup.
Rønnow, Troels F; Wang, Zhihui; Job, Joshua; Boixo, Sergio; Isakov, Sergei V; Wecker, David; Martinis, John M; Lidar, Daniel A; Troyer, Matthias
2014-07-25
The development of small-scale quantum devices raises the question of how to fairly assess and detect quantum speedup. Here, we show how to define and measure quantum speedup and how to avoid pitfalls that might mask or fake such a speedup. We illustrate our discussion with data from tests run on a D-Wave Two device with up to 503 qubits. By using random spin glass instances as a benchmark, we found no evidence of quantum speedup when the entire data set is considered and obtained inconclusive results when comparing subsets of instances on an instance-by-instance basis. Our results do not rule out the possibility of speedup for other classes of problems and illustrate the subtle nature of the quantum speedup question. PMID:25061205
Quantum correlation via quantum coherence
NASA Astrophysics Data System (ADS)
Yu, Chang-shui; Zhang, Yang; Zhao, Haiqing
2014-06-01
Quantum correlation includes quantum entanglement and quantum discord. Both entanglement and discord have a common necessary condition—quantum coherence or quantum superposition. In this paper, we attempt to give an alternative understanding of how quantum correlation is related to quantum coherence. We divide the coherence of a quantum state into several classes and find the complete coincidence between geometric (symmetric and asymmetric) quantum discords and some particular classes of quantum coherence. We propose a revised measure for total coherence and find that this measure can lead to a symmetric version of geometric quantum correlation, which is analytic for two qubits. In particular, this measure can also arrive at a monogamy equality on the distribution of quantum coherence. Finally, we also quantify a remaining type of quantum coherence and find that for two qubits, it is directly connected with quantum nonlocality.
Emergence of the product of constant curvature spaces in loop quantum cosmology
NASA Astrophysics Data System (ADS)
Dadhich, Naresh; Joe, Anton; Singh, Parampreet
2015-09-01
The loop quantum dynamics of Kantowski-Sachs spacetime and the interior of higher genus black hole spacetimes with a cosmological constant has some peculiar features not shared by various other spacetimes in loop quantum cosmology. As in the other cases, though the quantum geometric effects resolve the physical singularity and result in a non-singular bounce, after the bounce a spacetime with small spacetime curvature does not emerge in either the subsequent backward or the forward evolution. Rather, in the asymptotic limit the spacetime manifold is a product of two constant curvature spaces. Interestingly, though the spacetime curvature of these asymptotic spacetimes is very high, their effective metric is a solution to Einstein’s field equations. Analysis of the components of the Ricci tensor shows that after the singularity resolution, the Kantowski-Sachs spacetime leads to an effective metric which can be interpreted as the ‘charged’ Nariai, while the higher genus black hole interior can similarly be interpreted as an anti Bertotti-Robinson spacetime with a cosmological constant. These spacetimes are ‘charged’ in the sense that the energy-momentum tensor that satisfies Einstein’s field equations is formally the same as the one for the uniform electromagnetic field, albeit it has a purely quantum geometric origin. The asymptotic spacetimes also have an emergent cosmological constant which is different in magnitude, and sometimes even its sign, from the cosmological constant in the Kantowski-Sachs and the interior of higher genus black hole metrics. With a fine tuning of the latter cosmological constant, we show that ‘uncharged’ Nariai, and anti Bertotti-Robinson spacetimes with a vanishing emergent cosmological constant can also be obtained.
Behavior of single-scale hard small-x processes in QCD near the black disk limit
NASA Astrophysics Data System (ADS)
Blok, B.; Frankfurt, L.
2006-03-01
We argue that at sufficiently small Bjorken x where pQCD amplitudes rapidly increase with energy and violate probability conservation the shadowing effects in the single-scale small x hard QCD processes can be described by an effective quantum field theory of interacting quasiparticles—perturbative QCD ladders. We find, within the WKB approximation, that the smallness of the QCD coupling constant ensures the hierarchy among many-quasiparticle interactions evaluated within the physical vacuum and, in particular, the dominance in the Lagrangian of the triple quasiparticle interaction. It is explained that the effective field theory considered near the perturbative QCD vacuum contains a tachyon relevant for the divergency of the perturbative QCD series at sufficiently small x. We solve the equations of motion of the effective field theory within the WKB approximation and find the physical vacuum and the transitions between the false (perturbative) and physical vacua. Classical solutions which dominate transitions between the false and physical vacua are kinks that cannot be decomposed into perturbative series over the powers of αs. These kinks lead to color inflation and the Bose-Einstein condensation of quasiparticles. The account of the quantum fluctuations around the WKB solution reveals the appearance of the “massless” particles—phonons. It is explained that phonons are relevant for the black disk behavior of cross sections of small x processes. The Bose-Einstein condensation of the ladders produces a color network occupying a “macroscopic” longitudinal volume. We discuss briefly the possible detection of new QCD effects. We outline albeit briefly the relationship between the small x hard QCD processes and the coherent critical phenomena.
NASA Astrophysics Data System (ADS)
Andrist, Ruben S.; Wootton, James R.; Katzgraber, Helmut G.
2015-04-01
Current approaches for building quantum computing devices focus on two-level quantum systems which nicely mimic the concept of a classical bit, albeit enhanced with additional quantum properties. However, rather than artificially limiting the number of states to two, the use of d -level quantum systems (qudits) could provide advantages for quantum information processing. Among other merits, it has recently been shown that multilevel quantum systems can offer increased stability to external disturbances. In this study we demonstrate that topological quantum memories built from qudits, also known as Abelian quantum double models, exhibit a substantially increased resilience to noise. That is, even when taking into account the multitude of errors possible for multilevel quantum systems, topological quantum error-correction codes employing qudits can sustain a larger error rate than their two-level counterparts. In particular, we find strong numerical evidence that the thresholds of these error-correction codes are given by the hashing bound. Considering the significantly increased error thresholds attained, this might well outweigh the added complexity of engineering and controlling higher-dimensional quantum systems.
Environmental noise reduction for holonomic quantum gates
Parodi, Daniele; Zanghi, Nino; Sassetti, Maura; Solinas, Paolo
2007-07-15
We study the performance of holonomic quantum gates, driven by lasers, under the effect of a dissipative environment modeled as a thermal bath of oscillators. We show how to enhance the performance of the gates by a suitable choice of the loop in the manifold of the controllable parameters of the laser. For a simplified, albeit realistic model, we find the surprising result that for a long time evolution the performance of the gate (properly estimated in terms of average fidelity) increases. On the basis of this result, we compare holonomic gates with the so-called stimulated raman adiabatic passage (STIRAP) gates.
Emergence of quantum mechanics from a sub-quantum statistical mechanics
NASA Astrophysics Data System (ADS)
Grössing, Gerhard
2014-07-01
A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level. It is further demonstrated both analytically and with the aid of computer simulations that our model provides explanations for various quantum effects such as double-slit or n-slit interference. We show the averaged trajectories emerging from our model to be identical to Bohmian trajectories, albeit without the need to invoke complex wavefunctions or any other quantum mechanical tool. Finally, the model provides new insights into the origins of entanglement, and, in particular, into the phenomenon of a "systemic" non-locality.
NASA Astrophysics Data System (ADS)
Aspelmeyer, Markus; Zeilinger, Anton
2008-07-01
Pure curiosity has been the driving force behind many groundbreaking experiments in physics. This is no better illustrated than in quantum mechanics, initially the physics of the extremely small. Since its beginnings in the 1920s and 1930s, researchers have wanted to observe the counterintuitive properties of quantum mechanics directly in the laboratory. However, because experimental technology was not sufficiently developed at the time, people like Niels Bohr, Albert Einstein, Werner Heisenberg and Erwin Schrödinger relied instead on "gedankenexperiments" (thought experiments) to investigate the quantum physics of individual particles, mainly electrons and photons.
Intrinsic time quantum geometrodynamics
NASA Astrophysics Data System (ADS)
Ita, Eyo Eyo; Soo, Chopin; Yu, Hoi-Lai
2015-08-01
Quantum geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl curvature hypothesis, and thermodynamic and gravitational "arrows of time" point in the same direction. Ricci scalar potential corresponding to Einstein's general relativity emerges as a zero-point energy contribution. A new set of fundamental commutation relations without Planck's constant emerges from the unification of gravitation and quantum mechanics.
NASA Astrophysics Data System (ADS)
Georgescu, I. M.; Ashhab, S.; Nori, Franco
2014-01-01
Simulating quantum mechanics is known to be a difficult computational problem, especially when dealing with large systems. However, this difficulty may be overcome by using some controllable quantum system to study another less controllable or accessible quantum system, i.e., quantum simulation. Quantum simulation promises to have applications in the study of many problems in, e.g., condensed-matter physics, high-energy physics, atomic physics, quantum chemistry, and cosmology. Quantum simulation could be implemented using quantum computers, but also with simpler, analog devices that would require less control, and therefore, would be easier to construct. A number of quantum systems such as neutral atoms, ions, polar molecules, electrons in semiconductors, superconducting circuits, nuclear spins, and photons have been proposed as quantum simulators. This review outlines the main theoretical and experimental aspects of quantum simulation and emphasizes some of the challenges and promises of this fast-growing field.
Colognesi, Daniele; Celli, Milva; Ulivi, Lorenzo; Xu, Minzhong; Bačić, Zlatko
2013-08-15
We report inelastic neutron scattering (INS) measurements on molecular hydrogen trapped in simple (D2O) and binary (D2O plus perdeuterated tetrahydrofuran) clathrate hydrates, performed at a low temperature using two different neutron spectrometers to probe both energy and momentum transfer. The INS spectra of binary clathrate samples exhibit a rich structure containing sharp bands arising from both the rotational transitions and the rattling modes of the guest H2 molecule. They agree well with the rigorous fully quantum simulations, which account for the subtle effects of the anisotropy, angular and radial, of the host cage on the H2 microscopic dynamics and the resulting spectra. The simple clathrate samples present a much greater challenge, due to the multiple H2 occupancy of the large cages, which makes the quantum calculations an extremely difficult task. In addition, we discuss in detail various physical aspects of the experimental and simulated INS spectra, such as their temperature dependence, the effects of the cage geometry, and the different features associated with the ortho-hydrogen and para-hydrogen species. PMID:23514207
Quantum secure direct communication and deterministic secure quantum communication
NASA Astrophysics Data System (ADS)
Long, Gui-Lu; Deng, Fu-Guo; Wang, Chuan; Li, Xi-Han; Wen, Kai; Wang, Wan-Ying
2007-07-01
In this review article, we review the recent development of quantum secure direct communication (QSDC) and deterministic secure quantum communication (DSQC) which both are used to transmit secret message, including the criteria for QSDC, some interesting QSDC protocols, the DSQC protocols and QSDC network, etc. The difference between these two branches of quantum communication is that DSQC requires the two parties exchange at least one bit of classical information for reading out the message in each qubit, and QSDC does not. They are attractive because they are deterministic, in particular, the QSDC protocol is fully quantum mechanical. With sophisticated quantum technology in the future, the QSDC may become more and more popular. For ensuring the safety of QSDC with single photons and quantum information sharing of single qubit in a noisy channel, a quantum privacy amplification protocol has been proposed. It involves very simple CHC operations and reduces the information leakage to a negligible small level. Moreover, with the one-party quantum error correction, a relation has been established between classical linear codes and quantum one-party codes, hence it is convenient to transfer many good classical error correction codes to the quantum world. The one-party quantum error correction codes are especially designed for quantum dense coding and related QSDC protocols based on dense coding.
Quantum networks reveal quantum nonlocality.
Cavalcanti, Daniel; Almeida, Mafalda L; Scarani, Valerio; Acín, Antonio
2011-01-01
The results of local measurements on some composite quantum systems cannot be reproduced classically. This impossibility, known as quantum nonlocality, represents a milestone in the foundations of quantum theory. Quantum nonlocality is also a valuable resource for information-processing tasks, for example, quantum communication, quantum key distribution, quantum state estimation or randomness extraction. Still, deciding whether a quantum state is nonlocal remains a challenging problem. Here, we introduce a novel approach to this question: we study the nonlocal properties of quantum states when distributed and measured in networks. We show, using our framework, how any one-way entanglement distillable state leads to nonlocal correlations and prove that quantum nonlocality is a non-additive resource, which can be activated. There exist states, local at the single-copy level, that become nonlocal when taking several copies of them. Our results imply that the nonlocality of quantum states strongly depends on the measurement context. PMID:21304513
Quantum Optical Signature of Plasmonically Coupled Nanocrystal Quantum Dots.
Wang, Feng; Karan, Niladri S; Nguyen, Hue Minh; Mangum, Benjamin D; Ghosh, Yagnaseni; Sheehan, Chris J; Hollingsworth, Jennifer A; Htoon, Han
2015-10-01
Small clusters of two to three silica-coated nanocrystals coupled to plasmonic gap-bar antennas can exhibit photon antibunching, a characteristic of single quantum emitters. Through a detailed analysis of their photoluminescence emissions characteristics, it is shown that the observed photon antibunching is the evidence of coupled quantum dot formation resulting from the plasmonic enhancement of dipole-dipole interaction. PMID:26140499
Stapp, H.P.
1988-12-01
Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs.
Quantum Computer Games: Quantum Minesweeper
ERIC Educational Resources Information Center
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
NASA Astrophysics Data System (ADS)
Blencowe, Miles
The emergence of the macroscopic classical world from the microscopic quantum world is commonly understood to be a consequence of the fact that any given quantum system is open, unavoidably interacting with unobserved environmental degrees of freedom that will cause initial quantum superposition states of the system to decohere, resulting in classical mixtures of either-or alternatives. A fundamental question concerns how large a macroscopic object can be placed in a manifest quantum state, such as a center of mass quantum superposition state, under conditions where the effects of the interacting environmental degrees of freedom are reduced (i.e. in ultrahigh vacuum and at ultralow temperatures). Recent experiments have in fact demonstrated manifest quantum behavior in nano-to-micron-scale mechanical systems. Gravity has been invoked in various ways as playing a possible fundamental role in enforcing classicality of matter systems beyond a certain scale. Adopting the viewpoint that the standard perturbative quantization of general relativity provides an effective description of quantum gravity that is valid at ordinary energies, we show that it is possible to describe quantitatively how gravity as an environment can induce the decoherence of matter superposition states. The justification for such an approach follows from the fact that we are considering laboratory scale systems, where the matter is localized to regions of small curvature. As with other low energy effects, such as the quantum gravity correction to the Newtonian potential between two ordinary masses, it should be possible to quantitatively evaluate gravitationally induced decoherence rates by employing standard perturbative quantum gravity as an effective field theory; whatever the final form the eventual correct quantum theory of gravity takes, it must converge in its predictions with the effective field theory description at low energies. Research supported by the National Science Foundation (NSF
Tsai, Chia Nung; Mazumder, Shivnath; Zhang, Xiu Zhu; Schlegel, H Bernhard; Chen, Yuan Jang; Endicott, John F
2016-08-01
Metal to ligand charge-transfer (MLCT) excited state emission quantum yields, ϕem, are reported in 77 K glasses for a series of pentaammine and tetraammine ruthenium(II) complexes with monodentate aromatic acceptor ligands (Ru-MDA) such as pyridine and pyrazine. These quantum yields are only about 0.2-1% of those found for their Ru-bpy (bpy = 2,2'-bipyridine) analogs in similar excited state energy ranges (hνem). The excited state energy dependencies of the emission intensity are characterized by mean radiative decay rate constants, kRAD, resolved from ϕem/τobs = kRAD (τobs = the observed emission decay lifetime; τobs(-1) = kRAD + kNRD; kNRD = nonradiative decay rate constant). Except for the Ru-pz chromophores in alcohol glasses, the values of kNRD for the Ru-MDA chromophores are slightly smaller, and their dependences on excited state energies are very similar to those of related Ru-bpy chromophores. In principle, one expects kRAD to be proportional to the product of (hνem)(3) and the square of the transition dipole moment (Me,g).(2) However, from experimental studies of Ru-bpy chromophores, an additional hνem dependence has been found that originates in an intensity stealing from a higher energy excited state with a much larger value of Me,g. This additional hνem dependence is not present in the kRAD energy dependence for Ru-MDA chromophores in the same energy regime. Intensity stealing in the phosphorescence of these complexes is necessary since the triplet-to-singlet transition is only allowed through spin-orbit coupling and since the density functional theory modeling implicates configurational mixing between states in the triplet spin manifold; this is treated by setting Me,g equal to the product of a mixing coefficient and the difference between the molecular dipole moments of the states involved, which implicates an experimental first order dependence of kRAD on hνem. The failure to observe intensity stealing for the Ru-MDA complexes suggests
NASA Astrophysics Data System (ADS)
Pfeiffer, P.; Egusquiza, I. L.; di Ventra, M.; Sanz, M.; Solano, E.
2016-07-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.
Pfeiffer, P; Egusquiza, I L; Di Ventra, M; Sanz, M; Solano, E
2016-01-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511
Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.
2016-01-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511
NASA Astrophysics Data System (ADS)
Nieuwenhuizen, Theo M.; Mehmani, Bahar; Špička, Václav; Aghdami, Maryam J.; Khrennikov, Andrei Yu
2007-09-01
pt. A. Introductions. The mathematical basis for deterministic quantum mechanics / G.'t Hooft. What did we learn from quantum gravity? / A. Ashtekar. Bose-Einstein condensates and EPR quantum non-locality / F. Laloe. The quantum measurement process: lessons from an exactly solvable model / A.E. Allahverdyan, R. Balian and Th. M. Nieuwenhuizen -- pt. B. Quantum mechanics and quantum information. POVMs: a small but important step beyond standard quantum mechanics / W. M. de Muynck. State reduction by measurements with a null result / G. Nienhuis. Solving open questions in the Bose-Einstein condensation of an ideal gas via a hybrid mixture of laser and statistical physics / M. Kim, A. Svidzinsky and M.O. Scully. Twin-Photon light scattering and causality / G. Puentes, A. Aiello and J. P. Woerdman. Simultaneous measurement of non-commuting observables / G. Aquino and B. Mehmani. Quantum decoherence and gravitational waves / M.T. Jaekel ... [et al.]. Role of various entropies in the black hole information loss problem / Th. M. Nieuwenhuizen and I.V. Volovich. Quantum and super-quantum correlations / G.S. Jaeger -- pt. C. Long distance correlations and bell inequalities. Understanding long-distance quantum correlations / L. Marchildon. Connection of probability models to EPR experiments: probability spaces and Bell's theorem / K. Hess and W. Philipp. Fair sampling vs no-signalling principle in EPR experiments / G. Adenier and A. Yu. Khrennikov -- pt. D. Mathematical foundations. Where the mathematical structure of quantum mechanics comes from / G.M. D'Ariano. Phase space description of quantum mechanics and non-commutative geometry: Wigner-Moyal and Bohm in a wider context / B.J. Hiley. Quantum mechanics as simple algorithm for approximation of classical integrals / A. Yu. Khrennikov. Noncommutative quantum mechanics viewed from Feynman Formalism / J. Lages ... [et al.]. Beyond the quantum in Snyder space / J.F.S. van Huele and M. K. Transtrum -- pt. E. Stochastic
Perspective on quantum thermodynamics
NASA Astrophysics Data System (ADS)
Millen, James; Xuereb, André
2016-01-01
Classical thermodynamics is unrivalled in its range of applications and relevance to everyday life. It enables a description of complex systems, made up of microscopic particles, in terms of a small number of macroscopic quantities, such as work and entropy. As systems get ever smaller, fluctuations of these quantities become increasingly relevant, prompting the development of stochastic thermodynamics. Recently we have seen a surge of interest in exploring the quantum regime, where the origin of fluctuations is quantum rather than thermal. Many questions, such as the role of entanglement and the emergence of thermalisation, lie wide open. Answering these questions may lead to the development of quantum heat engines and refrigerators, as well as to vitally needed simple descriptions of quantum many-body systems.
Adiabatic Quantum Simulation of Quantum Chemistry
Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán
2014-01-01
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187
Quantum hair and quantum gravity
Coleman, S. ); Krauss, L.M. ); Preskill, J. ); Wilczek, F. )
1992-01-01
A black hole may carry quantum numbers that are not associated with massless gauge fields, contrary to the spirit of the 'no-hair' theorems. The 'quantum hair' is invisible in the classical limit, but measurable via quantum interference experiments. Quantum hair alters the temperature of the radiation emitted by a black hole. It also induces non-zero expectation values for fields outside the event horizon; these expectation values are non-perturbative in [Dirac h], and decay exponentially far from the hole. The existence of quantum hair demonstrates that a black hole can have an intricate quantum-mechanical structure that is completely missed by standard semiclassical theory.
Zurek, Wojciech H
2008-01-01
Quantum Darwinism - proliferation, in the environment, of multiple records of selected states of the system (its information-theoretic progeny) - explains how quantum fragility of individual state can lead to classical robustness of their multitude.
NASA Astrophysics Data System (ADS)
Harju, Antti J.
2016-06-01
This is a study of orbifold-quotients of quantum groups (quantum orbifolds {Θ } rightrightarrows Gq). These structures have been studied extensively in the case of the quantum S U 2 group. A generalized theory of quantum orbifolds over compact simple and simply connected quantum groups is developed. Associated with a quantum orbifold there is an invariant subalgebra and a crossed product algebra. For each spin quantum orbifold, there is a unitary equivalence class of Dirac spectral triples over the invariant subalgebra, and for each effective spin quantum orbifold associated with a finite group action, there is a unitary equivalence class of Dirac spectral triples over the crossed product algebra. A Hopf-equivariant Fredholm index problem is studied as an application.
Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.
2016-07-06
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantummore » regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.« less
NASA Astrophysics Data System (ADS)
Chang, C. S.; Fluhler, H. U.
1990-10-01
A self-consistent QED (SCQED) theory of spontaneous emission of radiation and single-photon small-signal gain (SSG) is developed for FELs using the Weisskopf-Wigner method. The results agree with existing experimental data on both the line broadening and the line shift and to a reasonable extent with the measured gain. It is shown that the spontaneous-emission spectrum obtained from classical or conventional FEL theories is valid only in the limit of a short undulator that contains a small number of periods. The SSG derived from the SCQED theory is shown to reduce to Colson's (1977) gain formula in the classical limit. However, the SCQED theory predicts significant reductions in the SSG that agree well with the ACO gain data and are not predicted well by Colson's formula. It is discovered that a fundamental physical gain limit exists that is universal to all types of FELs within the limits of the single-photon transition scheme considered.
NASA Astrophysics Data System (ADS)
Cuenca, D. Zorrilla; Márquez, J. Sánchez; Núñez, M. Fernández; Huertas, R. Rodríguez
This project consists of two parts. In the first part, a series of test calculations is performed to verify that the integrals involved in the determination of atomic and molecular properties by standard self-consistent field (SCF) methods can be obtained through Halton, Korobov, or Hammersley quasi-random integration procedures. Through these calculations, we confirm that all three methods lead to results that meet the levels of precision required for their use in the calculation of properties of small atoms or molecules at least at a Hartree-Fock level. Moreover, we have ensured that the efficiency of quasi-random integration methods that we have tested is Halton=Korobov>Hammersley≫pseudo-random. We also find that these results are comparable to those yielded by ordinary Monte Carlo (pseudo-random) integration, with a calculation effort of two orders of smaller magnitude. The second part, which would not have been possible without the integration method previously analyzed, contains a first study of atoms constrained in spherical boxes through SCF calculations with basis functions adapted to the features of the problem: Slater-type orbitals (STOs) trimmed by multiplying them by a function that yields 1 for 0 < r < (R-?), polynomial values for (R-?) < r < R and null for r > R, R being the radius of the box and ? a variationally determined interval. As a result, we obtain a equation of state for electrons of small systems, valid just in the limit of low temperatures, but fairly simple.
Gao, Yi; Neuhauser, Daniel
2013-05-14
We show how to obtain the correct electronic response of a large system by embedding; a small region is propagated by TDDFT (time-dependent density functional theory) simultaneously with a classical electrodynamics evolution using the Near-Field method over a larger external region. The propagations are coupled through a combined time-dependent density yielding a common Coulomb potential. We show that the embedding correctly describes the plasmonic response of a Mg(0001) slab and its influence on the dynamical charge transfer between an adsorbed H2O molecule and the substrate, giving the same spectral shape as full TDDFT (similar plasmon peak and molecular-dependent differential spectra) with much less computational effort. The results demonstrate that atomistic embedding electrodynamics is promising for nanoplasmonics and nanopolaritonics. PMID:23676021
Gao Yi; Neuhauser, Daniel
2013-05-14
We show how to obtain the correct electronic response of a large system by embedding; a small region is propagated by TDDFT (time-dependent density functional theory) simultaneously with a classical electrodynamics evolution using the Near-Field method over a larger external region. The propagations are coupled through a combined time-dependent density yielding a common Coulomb potential. We show that the embedding correctly describes the plasmonic response of a Mg(0001) slab and its influence on the dynamical charge transfer between an adsorbed H{sub 2}O molecule and the substrate, giving the same spectral shape as full TDDFT (similar plasmon peak and molecular-dependent differential spectra) with much less computational effort. The results demonstrate that atomistic embedding electrodynamics is promising for nanoplasmonics and nanopolaritonics.
NASA Astrophysics Data System (ADS)
Moulick, Subhayan Roy; Panigrahi, Prasanta K.
2016-06-01
We propose the idea of a quantum cheque scheme, a cryptographic protocol in which any legitimate client of a trusted bank can issue a cheque, that cannot be counterfeited or altered in anyway, and can be verified by a bank or any of its branches. We formally define a quantum cheque and present the first unconditionally secure quantum cheque scheme and show it to be secure against any no-signalling adversary. The proposed quantum cheque scheme can been perceived as the quantum analog of Electronic Data Interchange, as an alternate for current e-Payment Gateways.
NASA Astrophysics Data System (ADS)
Moulick, Subhayan Roy; Panigrahi, Prasanta K.
2016-03-01
We propose the idea of a quantum cheque scheme, a cryptographic protocol in which any legitimate client of a trusted bank can issue a cheque, that cannot be counterfeited or altered in anyway, and can be verified by a bank or any of its branches. We formally define a quantum cheque and present the first unconditionally secure quantum cheque scheme and show it to be secure against any no-signalling adversary. The proposed quantum cheque scheme can been perceived as the quantum analog of Electronic Data Interchange, as an alternate for current e-Payment Gateways.
NASA Astrophysics Data System (ADS)
Brown, Matthew J.
2014-02-01
The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.
Siddiqui, Shamoon Ahmad; Bouarissa, Nadir; Rasheed, Tabish; Al-Assiri, M.S.
2013-03-15
Graphical abstract: Binding energies as a function of cluster size for Au{sub n}Hg, Au{sub n}Hg{sup +} and Au{sub n}Hg{sup −} complexes. Highlights: ► Hg adsorption of neutral and charged Au{sub n} (n = 1–6) clusters has been discussed. ► Size and charged state of cluster significantly affect the Hg adsorption. ► Transfer of electron mainly found from s orbital of Hg to s orbital of Au. - Abstract: Adsorption of elemental mercury (Hg) on small neutral, cationic and anionic gold clusters (Au{sub n}, n = 1–6) has been studied by using the density functional theory (DFT). Results of this investigation show that frontier molecular orbital theory is a useful tool to predict the selectivity of Hg adsorption. It is found that adsorption of Hg on neutral, cationic and anionic Au{sub n} (n = 1–6) clusters are thermodynamically favorable. The binding energies of Hg on the cationic Au{sub n} clusters are greater than those on the neutral and anionic clusters. Natural bond orbital (NBO) analysis indicates that the flow of electrons in the neutral and charged clusters is mainly due to the s orbitals of Hg and Au. Results of NBO analysis also indicate that the binding energy of Hg with Au{sub n} clusters is directly proportional to the charge transfer, i.e. greater is the charge transfer, higher is the binding energy.
Quantum positron acoustic waves
Metref, Hassina; Tribeche, Mouloud
2014-12-15
Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.
Quantum games as quantum types
NASA Astrophysics Data System (ADS)
Delbecque, Yannick
In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other
Quantum crystals: from quantum plasticity to supersolidity
NASA Astrophysics Data System (ADS)
Balibar, S.; Haziot, A.; Rojas, X.
2011-01-01
We have discovered that helium-4 crystals are anomalously soft around one tenth of a Kelvin (100 mK) if totally free of impurities. Their plasticity is large, due to quantum effects. This is because their dislocations can move macroscopic distances (typically 0.1 mm) at high speed (meters per second) under the effect of stresses as small as 1 microbar. In classical crystals all atoms are completely frozen at low temperature. But in quantum crystals such as helium-4, quantum fluctuations are large and atoms can jump by quantum tunneling from site to site, especially at the core of dislocation lines where the packing is not as compact as elsewhere. We have shown that highly mobile dislocations reduce the stiffness of helium-4 crystals by one order of magnitude. However, very tiny traces of helium-3 impurities are sufficient to stop the motion of dislocations when they attach to them below temperatures of order 100 mK. Apparently, this is what drives these crystals to a "supersolid state", an astonishing new state of matter where superfluidity coexists with crystalline order. We think that the core of dislocations becomes superfluid only when the dislocation lines themselves stop moving.
NASA Astrophysics Data System (ADS)
Levy, Amikam; Diósi, Lajos; Kosloff, Ronnie
2016-05-01
In this work we present the concept of a quantum flywheel coupled to a quantum heat engine. The flywheel stores useful work in its energy levels, while additional power is extracted continuously from the device. Generally, the energy exchange between a quantum engine and a quantized work repository is accompanied by heat, which degrades the charging efficiency. Specifically when the quantum harmonic oscillator acts as a work repository, quantum and thermal fluctuations dominate the dynamics. Quantum monitoring and feedback control are applied to the flywheel in order to reach steady state and regulate its operation. To maximize the charging efficiency one needs a balance between the information gained by measuring the system and the information fed back to the system. The dynamics of the flywheel are described by a stochastic master equation that accounts for the engine, the external driving, the measurement, and the feedback operations.
NASA Astrophysics Data System (ADS)
Xu, Ping
We introduce a general notion of quantum universal enveloping algebroids (QUE algebroids), or quantum groupoids, as a unification of quantum groups and star-products. Some basic properties are studied including the twist construction and the classical limits. In particular, we show that a quantum groupoid naturally gives rise to a Lie bialgebroid as a classical limit. Conversely, we formulate a conjecture on the existence of a quantization for any Lie bialgebroid, and prove this conjecture for the special case of regular triangular Lie bialgebroids. As an application of this theory, we study the dynamical quantum groupoid , which gives an interpretation of the quantum dynamical Yang-Baxter equation in terms of Hopf algebroids.
NASA Astrophysics Data System (ADS)
Braun, Daniel; Giraud, Olivier; Braun, Peter A.
2010-03-01
We introduce and study a measure of ``quantumness'' of a quantum state based on its Hilbert-Schmidt distance from the set of classical states. ``Classical states'' were defined earlier as states for which a positive P-function exists, i.e. they are mixtures of coherent states [1]. We study invariance properties of the measure, upper bounds, and its relation to entanglement measures. We evaluate the quantumness of a number of physically interesting states and show that for any physical system in thermal equilibrium there is a finite critical temperature above which quantumness vanishes. We then use the measure for identifying the ``most quantum'' states. Such states are expected to be potentially most useful for quantum information theoretical applications. We find these states explicitly for low-dimensional spin-systems, and show that they possess beautiful, highly symmetric Majorana representations. [4pt] [1] Classicality of spin states, Olivier Giraud, Petr Braun, and Daniel Braun, Phys. Rev. A 78, 042112 (2008)
Coleman, Piers; Schofield, Andrew J
2005-01-20
As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures. PMID:15662409
Quantum Computing's Classical Problem, Classical Computing's Quantum Problem
NASA Astrophysics Data System (ADS)
Van Meter, Rodney
2014-08-01
Tasked with the challenge to build better and better computers, quantum computing and classical computing face the same conundrum: the success of classical computing systems. Small quantum computing systems have been demonstrated, and intermediate-scale systems are on the horizon, capable of calculating numeric results or simulating physical systems far beyond what humans can do by hand. However, to be commercially viable, they must surpass what our wildly successful, highly advanced classical computers can already do. At the same time, those classical computers continue to advance, but those advances are now constrained by thermodynamics, and will soon be limited by the discrete nature of atomic matter and ultimately quantum effects. Technological advances benefit both quantum and classical machinery, altering the competitive landscape. Can we build quantum computing systems that out-compute classical systems capable of some logic gates per month? This article will discuss the interplay in these competing and cooperating technological trends.
Power of one bit of quantum information in quantum metrology
NASA Astrophysics Data System (ADS)
Cable, Hugo; Gu, Mile; Modi, Kavan
2016-04-01
We present a model of quantum metrology inspired by the computational model known as deterministic quantum computation with one quantum bit (DQC1). Using only one pure qubit together with l fully mixed qubits we obtain measurement precision (defined as root-mean-square error for the parameter being estimated) at the standard quantum limit, which is typically obtained using the same number of uncorrelated qubits in fully pure states. In principle, the standard quantum limit can be exceeded using an additional qubit which adds only a small amount of purity. We show that the discord in the final state vanishes only in the limit of attaining infinite precision for the parameter being estimated.
Graphene quantum interference photodetector
Voss, Paul L
2015-01-01
Summary In this work, a graphene quantum interference (QI) photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach–Zehnder interferometer (MZI), which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector), low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency. PMID:25821713
NASA Astrophysics Data System (ADS)
Tartakovskii, Alexander
2012-07-01
Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by
Numerical computation for teaching quantum statistics
NASA Astrophysics Data System (ADS)
Price, Tyson; Swendsen, Robert H.
2013-11-01
The study of ideal quantum gases reveals surprising quantum effects that can be observed in macroscopic systems. The properties of bosons are particularly unusual because a macroscopic number of particles can occupy a single quantum state. We describe a computational approach that supplements the usual analytic derivations applicable in the thermodynamic limit. The approach involves directly summing over the quantum states for finite systems and avoids the need for doing difficult integrals. The results display the unusual behavior of quantum gases even for relatively small systems.
NASA Astrophysics Data System (ADS)
Fried, H. M.; Müller, B.; Gabellini, Y.
2000-11-01
The Table of Contents for the full book PDF is as follows: * Preface * Basic Concepts and Consequences of a Stochastic Vacuum Model * The Role of the QCD Vacuum in the Heavy-Quark Bound State Dynamics * Stochastic Vacuum Model and High Energy Scattering * Variational Approximations for Correlation Functions in Quantum Field Theories * Long-Range Vacuum Correlations? * Unitary Gauge Theories in Singlet Coordinates * SU(2) Gauge Theory in Covariant (Maximal) Abelian Gauges * Dynamics and Topology of the Gauge-Invariant Gauge Field in Two-Color QCD * The Vacuum Wave Function in Supersymmetric Matrix Theory * Analytic Models for the Forward Scattering Amplitude at High Energies * Extending the Frontiers -- Reconciling Accelerator and Cosmic Ray p - p Cross Sections * HERA Results on Elastic Hadronic and Sub-Hadronic Diffraction * Small-x Structure Functions and QCD Pomeron * AdS/CFT Correspondence for QCD and Pomeron Intercept at Strong Coupling * Short Introduction to QGP Dynamics * Effective Theories for Hot Non-Abelian Dynamics * Non-Perturbative Gluodynamics of High Enerry Heavy-Ion Collisions * Deriving Effective Transport Equations for Non-Abelian Plasmas * Ergodic Properties of Non-Abelian Gauge Theories * String from Large Nc Gauge Fields via Graph Summation on a P+ - x+ Lattice * Aspects of Non-Commutativity in ADS/CFT * Eikonal Scattering of Monopoles and Dyons in Dual QED * Gluon Reggeization and Sudakov Suppression via The Fock-Feynman-Schwinger Approach to QCD * Nonperturbative Gluon Radiation and Energy Dependence of Elastic Scattering * Thermal Field Theory in Equilibrium * Puzzling Aspects of Hot Quantum Fields * Color Superconductivity in Cold, Dense Quark Matter * DIS Results from HERA * Electroproduction of Vector Mesons * Probing the QED and QCD Vacua * New Developments in Cosmology * Duality and SU(1,1) coherent states in the Calogero-Moser Model * pp Elastic scattering at LHC and Signature of Chiral Phase Transition at Large |t| * A New Basis
Dissipative quantum computing with open quantum walks
Sinayskiy, Ilya; Petruccione, Francesco
2014-12-04
An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.
Quantum dots: Rethinking the electronics
NASA Astrophysics Data System (ADS)
Bishnoi, Dimple
2016-05-01
In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including "waste heat" from the sun's energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.
Quantum coding with finite resources
NASA Astrophysics Data System (ADS)
Tomamichel, Marco; Berta, Mario; Renes, Joseph M.
2016-05-01
The quantum capacity of a memoryless channel determines the maximal rate at which we can communicate reliably over asymptotically many uses of the channel. Here we illustrate that this asymptotic characterization is insufficient in practical scenarios where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder. In practical settings, we should instead focus on the optimal trade-off between three parameters: the rate of the code, the size of the quantum devices at the encoder and decoder, and the fidelity of the transmission. We find approximate and exact characterizations of this trade-off for various channels of interest, including dephasing, depolarizing and erasure channels. In each case, the trade-off is parameterized by the capacity and a second channel parameter, the quantum channel dispersion. In the process, we develop several bounds that are valid for general quantum channels and can be computed for small instances.
Measurement-based quantum communication
NASA Astrophysics Data System (ADS)
Zwerger, M.; Briegel, H. J.; Dür, W.
2016-03-01
We review and discuss the potential of using measurement-based elements in quantum communication schemes, where certain tasks are realized with the help of entangled resource states that are processed by measurements. We consider long-range quantum communication based on the transmission of encoded quantum states, where encoding, decoding and syndrome readout are implemented using small-scale resource states. We also discuss entanglement-based schemes and consider measurement-based quantum repeaters. An important element in these schemes is entanglement purification, which can also be implemented in a measurement-based way. We analyze the influence of noise and imperfections in these schemes and show that measurement-based implementation allows for very large error thresholds of the order of 10 % noise per qubit and more. We show how to obtain optimal resource states for different tasks and discuss first experimental realizations of measurement-based quantum error correction using trapped ions and photons.
Quantum coding with finite resources
Tomamichel, Marco; Berta, Mario; Renes, Joseph M.
2016-01-01
The quantum capacity of a memoryless channel determines the maximal rate at which we can communicate reliably over asymptotically many uses of the channel. Here we illustrate that this asymptotic characterization is insufficient in practical scenarios where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder. In practical settings, we should instead focus on the optimal trade-off between three parameters: the rate of the code, the size of the quantum devices at the encoder and decoder, and the fidelity of the transmission. We find approximate and exact characterizations of this trade-off for various channels of interest, including dephasing, depolarizing and erasure channels. In each case, the trade-off is parameterized by the capacity and a second channel parameter, the quantum channel dispersion. In the process, we develop several bounds that are valid for general quantum channels and can be computed for small instances. PMID:27156995
Faster than Hermitian quantum mechanics.
Bender, Carl M; Brody, Dorje C; Jones, Hugh F; Meister, Bernhard K
2007-01-26
Given an initial quantum state |psi(I)> and a final quantum state |psi(F)>, there exist Hamiltonians H under which |psi(I)> evolves into |psi(F)>. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time tau? For Hermitian Hamiltonians tau has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, tau can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from |psi(I)> to |psi(F)> can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing. PMID:17358747
A random walk approach to quantum algorithms.
Kendon, Vivien M
2006-12-15
The development of quantum algorithms based on quantum versions of random walks is placed in the context of the emerging field of quantum computing. Constructing a suitable quantum version of a random walk is not trivial; pure quantum dynamics is deterministic, so randomness only enters during the measurement phase, i.e. when converting the quantum information into classical information. The outcome of a quantum random walk is very different from the corresponding classical random walk owing to the interference between the different possible paths. The upshot is that quantum walkers find themselves further from their starting point than a classical walker on average, and this forms the basis of a quantum speed up, which can be exploited to solve problems faster. Surprisingly, the effect of making the walk slightly less than perfectly quantum can optimize the properties of the quantum walk for algorithmic applications. Looking to the future, even with a small quantum computer available, the development of quantum walk algorithms might proceed more rapidly than it has, especially for solving real problems. PMID:17090467
Coupled Quantum Fluctuations and Quantum Annealing
NASA Astrophysics Data System (ADS)
Hormozi, Layla; Kerman, Jamie
We study the relative effectiveness of coupled quantum fluctuations, compared to single spin fluctuations, in the performance of quantum annealing. We focus on problem Hamiltonians resembling the the Sherrington-Kirkpatrick model of Ising spin glass and compare the effectiveness of different types of fluctuations by numerically calculating the relative success probabilities and residual energies in fully-connected spin systems. We find that for a small class of instances coupled fluctuations can provide improvement over single spin fluctuations and analyze the properties of the corresponding class. Disclaimer: This research was funded by ODNI, IARPA via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.
Quantum Cryptography Without Quantum Uncertainties
NASA Astrophysics Data System (ADS)
Durt, Thomas
2002-06-01
Quantum cryptography aims at transmitting a random key in such a way that the presence of a spy eavesdropping the communication would be revealed by disturbances in the transmission of the message. In standard quantum cryptography, this unavoidable disturbance is a consequence of the uncertainty principle of Heisenberg. We propose in this paper to replace quantum uncertainties by generalised, technological uncertainties, and discuss the realisability of such an idea. The proposed protocol can be considered as a simplification, but also as a generalisation of the standard quantum cryptographic protocols.
Quantum computer games: quantum minesweeper
NASA Astrophysics Data System (ADS)
Gordon, Michal; Gordon, Goren
2010-07-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.
NASA Technical Reports Server (NTRS)
Lee, H.; Kok, P.; Dowling, J. P.
2002-01-01
This paper addresses the formal equivalence between the Mach-Zehnder interferometer, the Ramsey spectroscope, and a specific quantum logical gate. Based on this equivalence we introduce the quantum Rosetta Stone, and we describe a projective measurement scheme for generating the desired correlations between the interferometric input states in order to achieve Heisenberg-limited sensitivity.
Trevors, J T; Masson, L
2011-01-01
During his famous 1943 lecture series at Trinity College Dublin, the reknown physicist Erwin Schrodinger discussed the failure and challenges of interpreting life by classical physics alone and that a new approach, rooted in Quantum principles, must be involved. Quantum events are simply a level of organization below the molecular level. This includes the atomic and subatomic makeup of matter in microbial metabolism and structures, as well as the organic, genetic information code of DNA and RNA. Quantum events at this time do not elucidate, for example, how specific genetic instructions were first encoded in an organic genetic code in microbial cells capable of growth and division, and its subsequent evolution over 3.6 to 4 billion years. However, due to recent technological advances, biologists and physicists are starting to demonstrate linkages between various quantum principles like quantum tunneling, entanglement and coherence in biological processes illustrating that nature has exerted some level quantum control to optimize various processes in living organisms. In this article we explore the role of quantum events in microbial processes and endeavor to show that after nearly 67 years, Schrödinger was prophetic and visionary in his view of quantum theory and its connection with some of the fundamental mechanisms of life. PMID:21368338
NASA Astrophysics Data System (ADS)
Coecke, Bob
2010-01-01
Why did it take us 50 years since the birth of the quantum mechanical formalism to discover that unknown quantum states cannot be cloned? Yet, the proof of the 'no-cloning theorem' is easy, and its consequences and potential for applications are immense. Similarly, why did it take us 60 years to discover the conceptually intriguing and easily derivable physical phenomenon of 'quantum teleportation'? We claim that the quantum mechanical formalism doesn't support our intuition, nor does it elucidate the key concepts that govern the behaviour of the entities that are subject to the laws of quantum physics. The arrays of complex numbers are kin to the arrays of 0s and 1s of the early days of computer programming practice. Using a technical term from computer science, the quantum mechanical formalism is 'low-level'. In this review we present steps towards a diagrammatic 'high-level' alternative for the Hilbert space formalism, one which appeals to our intuition. The diagrammatic language as it currently stands allows for intuitive reasoning about interacting quantum systems, and trivialises many otherwise involved and tedious computations. It clearly exposes limitations such as the no-cloning theorem, and phenomena such as quantum teleportation. As a logic, it supports 'automation': it enables a (classical) computer to reason about interacting quantum systems, prove theorems, and design protocols. It allows for a wider variety of underlying theories, and can be easily modified, having the potential to provide the required step-stone towards a deeper conceptual understanding of quantum theory, as well as its unification with other physical theories. Specific applications discussed here are purely diagrammatic proofs of several quantum computational schemes, as well as an analysis of the structural origin of quantum non-locality. The underlying mathematical foundation of this high-level diagrammatic formalism relies on so-called monoidal categories, a product of a fairly
Developing a Quantum Electron Microscope
NASA Astrophysics Data System (ADS)
Kohstall, Christoph; Klopfer, Brannon; Francis, Josh; Skulason, Gunnar; Juffmann, Thomas; Kasevich, Mark; QEM Team
2014-03-01
We develop a new electron microscope based on the interaction-free measurement principle. Such a Quantum Electron Microscope (QEM) may enable imaging of biological samples with radiation doses so small that they are non-lethal. The realization of the QEM will require precise control over the quantum motion of free electrons. On this poster, we discuss our approach to build a QEM including the realization of an electron resonator and an electron amplitude beam-splitter. On top of the QEM application, these developments will advance the electron analogue to photon quantum optics. Funded by the Gordon and Betty Moore Foundation.
NASA Astrophysics Data System (ADS)
Casati, Giulio; Chirikov, Boris
2006-11-01
Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos
NASA Astrophysics Data System (ADS)
Casati, Giulio; Chirikov, Boris
1995-04-01
Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos
Recoverability in quantum information theory
NASA Astrophysics Data System (ADS)
Wilde, Mark
The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information theory, which have to do with providing physically meaningful improvements to many known entropy inequalities. This is based on arXiv:1505.04661, now accepted for publication in Proceedings of the Royal Society A. I acknowledge support from startup funds from the Department of Physics and Astronomy at LSU, the NSF under Award No. CCF-1350397, and the DARPA Quiness Program through US Army Research Office award W31P4Q-12-1-0019.
Towards Quantum Experiments with Human Eye Detectors Based on Cloning via Stimulated Emission ?
NASA Astrophysics Data System (ADS)
De Martini, Francesco
2010-05-01
In a recent theoretical paper published in Physical Review Letters, Sekatsky, Brunner, Branciard, Gisin, Simon report an extended investigation on some properties of the human eye that affect its behavior as a quantum detector. We believe that the content of this work, albeit appealing at fist sight, is highly questionable simply because the human eye cannot be adopted as a sensing device within any quantum measurement apparatus. Furthermore, the criticism raised by these Authors against a real experiment on Micro—Macro entanglement recently published in Physical Review Letters (100, 253601, 2008) is found misleading and misses its target.
Quantum strategies of quantum measurements
NASA Astrophysics Data System (ADS)
Li, Chuan-Feng; Zhang, Yong-Sheng; Huang, Yun-Feng; Guo, Guang-Can
2001-03-01
In the classical Monty Hall problem, one player can always win with probability 2/3. We generalize the problem to the quantum domain and show that a fair two-party zero-sum game can be carried out if the other player is permitted to adopt quantum measurement strategy.
Cyclic universe from Loop Quantum Gravity
NASA Astrophysics Data System (ADS)
Cianfrani, Francesco; Kowalski-Glikman, Jerzy; Rosati, Giacomo
2016-02-01
We discuss how a cyclic model for the flat universe can be constructively derived from Loop Quantum Gravity. This model has a lower bounce, at small values of the scale factor, which shares many similarities with that of Loop Quantum Cosmology. We find that Quantum Gravity corrections can be also relevant at energy densities much smaller than the Planckian one and that they can induce an upper bounce at large values of the scale factor.
Multiple-quantum NMR in solids
NASA Astrophysics Data System (ADS)
Yen, Yu-Sze; Pines, A.
1983-03-01
Multiple-quantum NMR has typically been observed in small groups of spins in isolated molecules. Due to the profusion of spin transitions in a solid, individual lines are unresolved. Excitation of high quantum transitions by normal schemes is thus difficult. To ensure that overlapping lines add constructively and to enhance sensitivity, time-reversal pulse sequences are used to generate all lines in phase. Up to 22-quantum 1H absorption in solid adamantane is observed.
Multiple-quantum NMR in solids
Yen, Y.; Pines, A.
1983-03-15
Multiple-quantum NMR has typically been observed in small groups of spins in isolated molecules. Due to the profusion of spin transitions in a solid, individual lines are unresolved. Excitation of high quantum transitions by normal schemes is thus difficult. To ensure that overlapping lines add constructively and to enhance sensitivity, time-reversal pulse sequences are used to generate all lines in phase. Up to 22-quantum /sup 1/H absorption in solid adamantane is observed.
ERIC Educational Resources Information Center
Aldrovandi, R.: Ferreira, P. Leal
1980-01-01
Discusses the problem of the mathematical pendulum in its classical, semiclassical, and quantum aspects. The energy spectrum and its eigenfunctions are presented under the usual requirement of single valuedness of the solutions. (Author/CS)
NASA Astrophysics Data System (ADS)
Mitin, Vladimir; Kochelap, Viacheslav; Stroscio, Michael A.
1999-07-01
Quantum Heterostructures provides a detailed description of the key physical and engineering principles of quantum semiconductor heterostructures. Blending important concepts from physics, materials science, and electrical engineering, it also explains clearly the behavior and operating features of modern microelectronic and optoelectronic devices. The authors begin by outlining the trends that have driven development in this field, most importantly the need for high-performance devices in computer, information, and communications technologies. They then describe the basics of quantum nanoelectronics, including various transport mechanisms. In the latter part of the book, they cover novel microelectronic devices, and optical devices based on quantum heterostructures. The book contains many homework problems and is suitable as a textbook for undergraduate and graduate courses in electrical engineering, physics, or materials science. It will also be of great interest to those involved in research or development in microelectronic or optoelectronic devices.
NASA Astrophysics Data System (ADS)
Stapp, Henry P.
2012-05-01
Robert Griffiths has recently addressed, within the framework of a `consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are not entailed by the precepts of quantum mechanics. Thus whatever is proved is not a feature of quantum mechanics, but is a property of a theory that tries to combine quantum theory with quasi-classical features that go beyond what is entailed by quantum theory itself. One cannot logically prove properties of a system by establishing, instead, properties of a system modified by adding properties alien to the original system. Hence Griffiths' rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his `consistent quantum theory' shows that the cited proof is valid within that restrictive version of quantum theory. An added section responds to Griffiths' reply, which cites general possibilities of ambiguities that might make what is to be proved ill-defined, and hence render the pertinent `consistent framework' ill defined. But the vagaries that he cites do not upset the proof in question, which, both by its physical formulation and by explicit identification, specify the framework to be used. Griffiths confirms the validity of the proof insofar as that pertinent framework is used. The section also shows
Fonseca dos Santos, S; Balakrishnan, N; Lepp, S; Quéméner, G; Forrey, R C; Hinde, R J; Stancil, P C
2011-06-01
We present a full dimensional quantum mechanical treatment of collisions between two H(2) molecules over a wide range of energies. Elastic and state-to-state inelastic cross sections for ortho-H(2) + para-H(2) and ortho-H(2) + ortho-H(2) collisions have been computed for different initial rovibrational levels of the molecules. For rovibrationally excited molecules, it has been found that state-to-state transitions are highly specific. Inelastic collisions that conserve the total rotational angular momentum of the diatoms and that involve small changes in the internal energy are found to be highly efficient. The effectiveness of these quasiresonant processes increases with decreasing collision energy and they become highly state-selective at ultracold temperatures. They are found to be more dominant for rotational energy exchange than for vibrational transitions. For non-reactive collisions between ortho- and para-H(2) molecules for which rotational energy exchange is forbidden, the quasiresonant mechanism involves a purely vibrational energy transfer albeit with less efficiency. When inelastic collisions are dominated by a quasiresonant transition calculations using a reduced basis set involving only the quasiresonant channels yield nearly identical results as the full basis set calculation leading to dramatic savings in computational cost. PMID:21663358
Quantum correlations and distinguishability of quantum states
Spehner, Dominique
2014-07-15
A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.
Realizing Controllable Quantum States
NASA Astrophysics Data System (ADS)
Takayanagi, Hideaki; Nitta, Junsaku
-- 4. Mesoscopic superconductivity with unconventional superconductor or ferromagnet. Ultraefficient microrefrigerators realized with ferromagnet-superconductor junctions / F. Giazotto et al. Anomalous charge transport in triplet superconductor junctions by the synergy effect of the proximity effect and the mid gap Andreev resonant states / Y. Tanaka and S. Kashiwaya. Paramagnetic and glass states in superconductive YBa[symbol]Cu[symbol]O[symbol] ceramics of sub-micron scale grains / H. Deguchi et al. Quantum properties of single-domain triplet superconductors / A. M. Gulian and K. S. Wood. A numerical study of Josephson current in p wave superconducting junctions / Y. Asano et al. Tilted bi-crystal sapphire substrates improve properties of grain boundary YBa[symbol]Cu[symbol]O[symbol] junctions and extend their Josephson response to THZ frequencies / E. Stepantsov et al. Circuit theory analysis of AB-plane tunnel junctions of unconventional superconductor Bi[symbol]Sr[symbol]Ca[symbol]Cu[symbol]O[symbol] / I. Shigeta et al. Transport properties of normal metal/anisotropic superconductor junctions in the eutectic system Sr[symbol]RuO[symbol]Ru / M. Kawamura et al. Macroscopic quantum tunneling in d-wave superconductor Josephson / S. Kawabata et al. Quasiparticle states of high-T[symbol] oxides observed by a Zeeman magnetic field response / S. Kashiwaya et al. Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors: vortex lenses, vortex diodes and vortex pumps / S. Savel'ev and F. Nori. Stability of vortex-antivortex "molecules" in mesoscopic superconducting triangles / V. R. Misko et al. Superconducting network with magnetic decoration - Hofstadter butterfly in spatially modulated magnetic field / Y. Iye et al. Observation of paramagnetic supercurrent in mesoscopic superconducting rings and disks using multiple-small-tunnel-junction method / A. Kanda et al. Guidance of vortices in high
Non-linear Langmuir waves in a warm quantum plasma
Dubinov, Alexander E. Kitaev, Ilya N.
2014-10-15
A non-linear differential equation describing the Langmuir waves in a warm quantum electron-ion plasma has been derived. Its numerical solutions of the equation show that ordinary electronic oscillations, similar to the classical oscillations, occur along with small-scale quantum Langmuir oscillations induced by the Bohm quantum force.
Student Difficulties in Learning Quantum Mechanics.
ERIC Educational Resources Information Center
Johnston, I. D.; Crawford, K.; Fletcher, P. R.
1998-01-01
Reports on a preliminary project that uses a phenomenographic approach to explore the ways in which a small number of fundamental ideas are conceptualized by students who are judged to have mastered quantum mechanics material. (DDR)
Large & Small: Exploring the Laws of Nature
ERIC Educational Resources Information Center
Creutz, E.
1976-01-01
Illustrates how both large entities (such as stars and galaxies) and small entities (such as fundamental particles) obey the same physical laws. Discusses quantum mechanics, Newton's laws, and general relativity. (MLH)
Transport through graphene quantum dots
NASA Astrophysics Data System (ADS)
Güttinger, J.; Molitor, F.; Stampfer, C.; Schnez, S.; Jacobsen, A.; Dröscher, S.; Ihn, T.; Ensslin, K.
2012-12-01
We review transport experiments on graphene quantum dots and narrow graphene constrictions. In a quantum dot, electrons are confined in all lateral dimensions, offering the possibility for detailed investigation and controlled manipulation of individual quantum systems. The recently isolated two-dimensional carbon allotrope graphene is an interesting host to study quantum phenomena, due to its novel electronic properties and the expected weak interaction of the electron spin with the material. Graphene quantum dots are fabricated by etching mono-layer flakes into small islands (diameter 60-350 nm) with narrow connections to contacts (width 20-75 nm), serving as tunneling barriers for transport spectroscopy. Electron confinement in graphene quantum dots is observed by measuring Coulomb blockade and transport through excited states, a manifestation of quantum confinement. Measurements in a magnetic field perpendicular to the sample plane allowed to identify the regime with only a few charge carriers in the dot (electron-hole transition), and the crossover to the formation of the graphene specific zero-energy Landau level at high fields. After rotation of the sample into parallel magnetic field orientation, Zeeman spin splitting with a g-factor of g ≈ 2 is measured. The filling sequence of subsequent spin states is similar to what was found in GaAs and related to the non-negligible influence of exchange interactions among the electrons.
NASA Astrophysics Data System (ADS)
Abrams, Daniel S.
This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases (commonly found in ab initio physics and chemistry problems) for which all known classical algorithms require exponential time. Fast algorithms for simulating many body Fermi systems are also provided in both first and second quantized descriptions. An efficient quantum algorithm for anti-symmetrization is given as well as a detailed discussion of a simulation of the Hubbard model. In addition, quantum algorithms that calculate numerical integrals and various characteristics of stochastic processes are described. Two techniques are given, both of which obtain an exponential speed increase in comparison to the fastest known classical deterministic algorithms and a quadratic speed increase in comparison to classical Monte Carlo (probabilistic) methods. I derive a simpler and slightly faster version of Grover's mean algorithm, show how to apply quantum counting to the problem, develop some variations of these algorithms, and show how both (apparently distinct) approaches can be understood from the same unified framework. Finally, the relationship between physics and computation is explored in some more depth, and it is shown that computational complexity theory depends very sensitively on physical laws. In particular, it is shown that nonlinear quantum mechanics allows for the polynomial time solution of NP-complete and #P oracle problems. Using the Weinberg model as a simple example, the explicit construction of the necessary gates is derived from the underlying physics. Nonlinear quantum algorithms are also presented using Polchinski type nonlinearities which do not allow for superluminal communication. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Introduction to Quantum Simulation
NASA Technical Reports Server (NTRS)
Williams, Colin P.
2005-01-01
This viewgraph presentation addresses the problem of efficiently simulating the evolution of a quantum system. The contents include: 1) Quantum Simulation; 2) Extracting Answers from Quantum Simulations; 3) Quantum Fourier Transform; 4) Eigenvalue Estimation; 5) Fermionic Simulations.
Quantum Physics for Beginners.
ERIC Educational Resources Information Center
Strand, J.
1981-01-01
Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)
NASA Astrophysics Data System (ADS)
Schieve, William C.; Horwitz, Lawrence P.
2009-04-01
1. Foundations of quantum statistical mechanics; 2. Elementary examples; 3. Quantum statistical master equation; 4. Quantum kinetic equations; 5. Quantum irreversibility; 6. Entropy and dissipation: the microscopic theory; 7. Global equilibrium: thermostatics and the microcanonical ensemble; 8. Bose-Einstein ideal gas condensation; 9. Scaling, renormalization and the Ising model; 10. Relativistic covariant statistical mechanics of many particles; 11. Quantum optics and damping; 12. Entanglements; 13. Quantum measurement and irreversibility; 14. Quantum Langevin equation: quantum Brownian motion; 15. Linear response: fluctuation and dissipation theorems; 16. Time dependent quantum Green's functions; 17. Decay scattering; 18. Quantum statistical mechanics, extended; 19. Quantum transport with tunneling and reservoir ballistic transport; 20. Black hole thermodynamics; Appendix; Index.
Quantum tomography of an electron
NASA Astrophysics Data System (ADS)
Jullien, T.; Roulleau, P.; Roche, B.; Cavanna, A.; Jin, Y.; Glattli, D. C.
2014-10-01
The complete knowledge of a quantum state allows the prediction of the probability of all possible measurement outcomes, a crucial step in quantum mechanics. It can be provided by tomographic methods which have been applied to atomic, molecular, spin and photonic states. For optical or microwave photons, standard tomography is obtained by mixing the unknown state with a large-amplitude coherent photon field. However, for fermions such as electrons in condensed matter, this approach is not applicable because fermionic fields are limited to small amplitudes (at most one particle per state), and so far no determination of an electron wavefunction has been made. Recent proposals involving quantum conductors suggest that the wavefunction can be obtained by measuring the time-dependent current of electronic wave interferometers or the current noise of electronic Hanbury-Brown/Twiss interferometers. Here we show that such measurements are possible despite the extreme noise sensitivity required, and present the reconstructed wavefunction quasi-probability, or Wigner distribution function, of single electrons injected into a ballistic conductor. Many identical electrons are prepared in well-controlled quantum states called levitons by repeatedly applying Lorentzian voltage pulses to a contact on the conductor. After passing through an electron beam splitter, the levitons are mixed with a weak-amplitude fermionic field formed by a coherent superposition of electron-hole pairs generated by a small alternating current with a frequency that is a multiple of the voltage pulse frequency. Antibunching of the electrons and holes with the levitons at the beam splitter changes the leviton partition statistics, and the noise variations provide the energy density matrix elements of the levitons. This demonstration of quantum tomography makes the developing field of electron quantum optics with ballistic conductors a new test-bed for quantum information with fermions. These results may
Free Quantum Field Theory from Quantum Cellular Automata
NASA Astrophysics Data System (ADS)
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro
2015-10-01
After leading to a new axiomatic derivation of quantum theory (see D'Ariano et al. in Found Phys, 2015), the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs. The phenomenology arising from the automata theory in the ultra-relativistic domain and the analysis of corresponding distorted Lorentz covariance is reviewed in Bisio et al. (Found Phys 2015, in this same issue).
The equivalence principle in a quantum world
NASA Astrophysics Data System (ADS)
Bjerrum-Bohr, N. E. J.; Donoghue, John F.; El-Menoufi, Basem Kamal; Holstein, Barry R.; Planté, Ludovic; Vanhove, Pierre
2015-09-01
We show how modern methods can be applied to quantum gravity at low energy. We test how quantum corrections challenge the classical framework behind the equivalence principle (EP), for instance through introduction of nonlocality from quantum physics, embodied in the uncertainty principle. When the energy is small, we now have the tools to address this conflict explicitly. Despite the violation of some classical concepts, the EP continues to provide the core of the quantum gravity framework through the symmetry — general coordinate invariance — that is used to organize the effective field theory (EFT).
Quantum turbulence in trapped atomic Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Tsatsos, Marios C.; Tavares, Pedro E. S.; Cidrim, André; Fritsch, Amilson R.; Caracanhas, Mônica A.; dos Santos, F. Ednilson A.; Barenghi, Carlo F.; Bagnato, Vanderlei S.
2016-03-01
Turbulence, the complicated fluid behavior of nonlinear and statistical nature, arises in many physical systems across various disciplines, from tiny laboratory scales to geophysical and astrophysical ones. The notion of turbulence in the quantum world was conceived long ago by Onsager and Feynman, but the occurrence of turbulence in ultracold gases has been studied in the laboratory only very recently. Albeit new as a field, it already offers new paths and perspectives on the problem of turbulence. Herein we review the general properties of quantum gases at ultralow temperatures paying particular attention to vortices, their dynamics and turbulent behavior. We review the recent advances both from theory and experiment. We highlight, moreover, the difficulties of identifying and characterizing turbulence in gaseous Bose-Einstein condensates compared to ordinary turbulence and turbulence in superfluid liquid helium and spotlight future possible directions.
Quantum Revivals, Quantum Fractals, and Possible Base-N Quantum Registers
NASA Astrophysics Data System (ADS)
Harter, William G.
2001-11-01
Quantum revivals (not to be confused with "spin echoes") were first noticed by Eberly(J. H. Eberly, Phys. Rev. A 23, 236(1981)) in studies of atom-cavity QED and Fermi Golden Rule violation. Fractional revivals have appeared more recently(I. S. Averbukh and N. F. Perelman, Phys. Letters 139, 449 (1989)) in systems with quadratic quantum level structure such as molecular rotors or particles-in-a-box. The latter seem to undergo a quasi-chaotic time dependence which Berry called a quantum fractal.( M. V. Berry, J. Phys, A: Math. Gen. 29, 6617 (1996)) Two complimentary approaches to theory of revivals are described. The first approach is a semi-classical theory(F. Grosmann, J. M. Rost, and W. P. Schleich , J. Phys A. :Math. Gen. 30 L277 (1997)) of phase and group velocity for wave nodes. The second approach is a quantum and group theory(W. G. Harter, Phys. Rev. A64 012312 (2001)) of wave phase at wave peaks. Either approach uses a physical analogy with resonance of multiple coupled pendulums as will be shown by computer simulation. The semi-classical approach uses a Farey sum-tree to catalog quantum revivals. The quantum approach uses group characters of nested Cn groups to analyze revival dynamics. Models of Cn circuits are shown which factor small integers and might serve as quantum computer registers.
Deterministic quantum teleportation of photonic quantum bits by a hybrid technique.
Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; van Loock, Peter; Furusawa, Akira
2013-08-15
Quantum teleportation allows for the transfer of arbitrary unknown quantum states from a sender to a spatially distant receiver, provided that the two parties share an entangled state and can communicate classically. It is the essence of many sophisticated protocols for quantum communication and computation. Photons are an optimal choice for carrying information in the form of 'flying qubits', but the teleportation of photonic quantum bits (qubits) has been limited by experimental inefficiencies and restrictions. Main disadvantages include the fundamentally probabilistic nature of linear-optics Bell measurements, as well as the need either to destroy the teleported qubit or attenuate the input qubit when the detectors do not resolve photon numbers. Here we experimentally realize fully deterministic quantum teleportation of photonic qubits without post-selection. The key step is to make use of a hybrid technique involving continuous-variable teleportation of a discrete-variable, photonic qubit. When the receiver's feedforward gain is optimally tuned, the continuous-variable teleporter acts as a pure loss channel, and the input dual-rail-encoded qubit, based on a single photon, represents a quantum error detection code against photon loss and hence remains completely intact for most teleportation events. This allows for a faithful qubit transfer even with imperfect continuous-variable entangled states: for four qubits the overall transfer fidelities range from 0.79 to 0.82 and all of them exceed the classical limit of teleportation. Furthermore, even for a relatively low level of the entanglement, qubits are teleported much more efficiently than in previous experiments, albeit post-selectively (taking into account only the qubit subspaces), and with a fidelity comparable to the previously reported values. PMID:23955230
Kendon, Viv
2014-12-04
Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer.
Teaching Quantum Nonlocalitya)
NASA Astrophysics Data System (ADS)
Hobson, Art
2012-05-01
Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron.2 In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts (randomly2) with the screen, field quantization requires it to alter its state instantaneously rather than gradually. Thus if the photon is absorbed, it must vanish or "collapse" nonlocally and instantaneously across a macroscopic portion of the screen, even across many kilometers in the case of interference patterns of light from a small distant star. The interaction instantly transfers the photons energy to a single atom of the screen. But a quantized field can contain any whole number of "excitations" (particles such as photons or electrons). If a single field quantum contains, say, two excitations, then generally the unified all-or-nothing character of quanta implies that any interaction of one excitation must also instantaneously affect the other excitation, regardless of the distance between them. The particles are then said to be "entangled" (see the "Background" section for a more precise definition of this term). Particles can become entangled by being created together in a single microscopic process, or by interacting with each other. Quantum entanglement is at least as fundamental as quantum uncertainty but is seldom mentioned in physics courses, although it has received broad attention recently in a wonderful book by Louisa Gilder.3 A recent paper in this journal presents entanglement in a manner that is useful for high school and college physics teachers.4 This paper builds on that presentation and looks at a different, more intuitive entanglement experiment that should be accessible to both scientists and nonscientists.
Small sample Accelerator Mass Spectrometry for biomedical applications
NASA Astrophysics Data System (ADS)
Salehpour, M.; Håkansson, K.; Possnert, G.
2015-10-01
The Accelerator Mass Spectrometry activities at Uppsala University include a group dedicated to the biomedical applications, involving natural level samples, as well as 14C-labeled substances requiring separate handling and preparation. For most applications sufficient sample amounts are available but many applications are limited to samples sizes in the μg-range. We have developed a preparation procedure for small samples biomedical applications, where a few μg C can be analyzed, albeit with compromised precision. The latest results for the small sample AMS method are shown and some of the biomedical activities at our laboratory are presented.
NASA Astrophysics Data System (ADS)
Bruß, D.; Meyer, T.
The Greek words "kryptos" ≡ "hidden" and "logos" ≡ "word" are the etymological sources for "cryptology," the science of secure communication. Within cryptology, one distinguishes cryptography (or "code-making") and cryptanalysis (or "code-breaking"). The aim of cryptography is to ensure secret or "secure" communication between a sender, traditionally called Alice, and a receiver, called Bob. The encryption and decryption of a so-called plain text into a cipher text and back is achieved using a certain key (not necessarily the same for Alice and Bob), as illustrated in Fig. 1. Here, "secure" means that an eavesdropper, called Eve, has no information on the message. In this chapter we will show that in classical cryptography (using classical signals), security relies on the assumed difficulty to solve certain mathematical tasks, whereas in quantum cryptography (using quantum signals), security arises from the laws of quantum physics.
NASA Astrophysics Data System (ADS)
Yoshida, Z.; Mahajan, S. M.
2016-02-01
Quantum systems often exhibit fundamental incapability to entertain vortex. The Meissner effect, a complete expulsion of the magnetic field (the electromagnetic vorticity), for instance, is taken to be the defining attribute of the superconducting state. Superfluidity is another, close-parallel example; fluid vorticity can reside only on topological defects with a limited (quantized) amount. Recent developments in the Bose-Einstein condensates produced by particle traps further emphasize this characteristic. We show that the challenge of imparting vorticity to a quantum fluid can be met through a nonlinear mechanism operating in a hot fluid corresponding to a thermally modified Pauli-Schrödinger spinor field. The thermal baroclinic effect is represented by a nonlinear, non-Hermitian Hamiltonian, which, in conjunction with spin vorticity, leads to new interesting quantum states; a spiral solution is explicitly worked out in a simple field-free model.
Infinite dimensional quantum information geometry
NASA Astrophysics Data System (ADS)
Grasselli, Matheus R.
2001-02-01
We present the construction of an infinite dimensional Banach manifold of quantum mechanical states on a Hilbert space H using different types of small perturbations of a given Hamiltonian H0. We provide the manifold with a flat connection, called the exponential connection, and comment on the possibility of introducing the dual mixture connection
Anderson localization makes adiabatic quantum optimization fail
Altshuler, Boris; Krovi, Hari; Roland, Jérémie
2010-01-01
Understanding NP-complete problems is a central topic in computer science (NP stands for nondeterministic polynomial time). This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the quantum computer’s Hamiltonian. We show that the statistics of the gaps can be analyzed in a novel way, borrowed from the study of quantum disordered systems in statistical mechanics. It turns out that due to a phenomenon similar to Anderson localization, exponentially small gaps appear close to the end of the adiabatic algorithm for large random instances of NP-complete problems. This implies that unfortunately, adiabatic quantum optimization fails: The system gets trapped in one of the numerous local minima. PMID:20616043
Quantum theory of bilayer quantum Hall smectics
NASA Astrophysics Data System (ADS)
Papa, Emiliano; Schliemann, John; MacDonald, A. H.; Fisher, Matthew P.
2003-03-01
Mean-field theory predicts that bilayer quantum Hall systems at odd integer total filling factors can have stripe ground states, in which the top Landau level is occupied alternately by electrons in one of the two layers. We report on an analysis of the properties of these states based on a coupled-Luttinger-liquid description that is able to account for quantum fluctuations of charge-density and position along each stripe edge. The soft modes associated with the broken symmetries of the stripe state lead to an unusual coupled-Luttinger-liquid system with strongly enhanced low-temperature heat capacity and strongly suppressed low-energy tunneling density of states. We assess the importance of the intralayer and interlayer backscattering terms in the microscopic Hamiltonian, which are absent in the Luttinger liquid description, by employing a perturbative renormalization group approach which rescales time and length along but not transverse to the stripes. With interlayer backscattering interactions present the Luttinger-liquid states are unstable either to an incompressible striped state that has spontaneous interlayer phase coherence and a sizable charge gap even at relatively large layer separations, or to Wigner crystal states. Our quantitative estimates of the gaps produced by backscattering interactions are summarized in Fig. 11 by a schematic phase diagram intended to represent predicted experimental findings in very high mobility bilayer systems at dilution refrigerator temperatures as a function of layer separation and bilayer density balance. We predict that the bilayer will form incompressible isotropic interlayer phase-coherent states for small layer separations, say d⩽1.5l. At larger interlayer spacings, however, the bilayer will tend to form one of several different anisotropic states depending on the layer charge balance, which we parametrize by the fractional filling factor ν contributed by one of the two layers. For large charge imbalances (
Habib, S.
1994-10-01
We consider a simple quantum system subjected to a classical random force. Under certain conditions it is shown that the noise-averaged Wigner function of the system follows an integro-differential stochastic Liouville equation. In the simple case of polynomial noise-couplings this equation reduces to a generalized Fokker-Planck form. With nonlinear noise injection new ``quantum diffusion`` terms rise that have no counterpart in the classical case. Two special examples that are not of a Fokker-Planck form are discussed: the first with a localized noise source and the other with a spatially modulated noise source.
NASA Astrophysics Data System (ADS)
Sych, Denis; Leuchs, Gerd
2015-12-01
Classical physics allows for the existence of pairs of absolutely identical systems. Pairwise application of identical measurements to each of those systems always leads to exactly alike results irrespectively of the choice of measurements. Here we ask a question how the picture looks like in the quantum domain. Surprisingly, we get a counterintuitive outcome. Pairwise application of identical (but a priori unknown) measurements cannot always lead to exactly alike results. We interpret this as quantum uniqueness—a feature that has no classical analog.
Lincoln, Don
2014-10-24
The laws of quantum mechanics and relativity are quite perplexing however it is when the two theories are merged that things get really confusing. This combined theory predicts that empty space isn’t empty at all – it’s a seething and bubbling cauldron of matter and antimatter particles springing into existence before disappearing back into nothingness. Scientists call this complicated state of affairs “quantum foam.” In this video, Fermilab’s Dr. Don Lincoln discusses this mind-bending idea and sketches some of the experiments that have convinced scientists that this crazy prediction is actually true.
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.
2007-09-01
Foreword; Preface; Acknowledgements; 1. Synopsis; Part I. Fundamental Concepts of Finance: 2. Introduction to finance; 3. Derivative securities; Part II. Systems with Finite Number of Degrees of Freedom: 4. Hamiltonians and stock options; 5. Path integrals and stock options; 6. Stochastic interest rates' Hamiltonians and path integrals; Part III. Quantum Field Theory of Interest Rates Models: 7. Quantum field theory of forward interest rates; 8. Empirical forward interest rates and field theory models; 9. Field theory of Treasury Bonds' derivatives and hedging; 10. Field theory Hamiltonian of forward interest rates; 11. Conclusions; Appendix A: mathematical background; Brief glossary of financial terms; Brief glossary of physics terms; List of main symbols; References; Index.
NASA Astrophysics Data System (ADS)
Ekert, Artur
1994-08-01
As computers become faster they must become smaller because of the finiteness of the speed of light. The history of computer technology has involved a sequence of changes from one type of physical realisation to another - from gears to relays to valves to transistors to integrated circuits and so on. Quantum mechanics is already important in the design of microelectronic components. Soon it will be necessary to harness quantum mechanics rather than simply take it into account, and at that point it will be possible to give data processing devices new functionality.
Dynamical objectivity in quantum Brownian motion
NASA Astrophysics Data System (ADS)
Tuziemski, J.; Korbicz, J. K.
2015-11-01
Classical objectivity as a property of quantum states —a view proposed to explain the observer-independent character of our world from quantum theory, is an important step in bridging the quantum-classical gap. It was recently derived in terms of spectrum broadcast structures for small objects embedded in noisy photon-like environments. However, two fundamental problems have arisen: a description of objective motion and applicability to other types of environments. Here we derive an example of objective states of motion in quantum mechanics by showing the formation of dynamical spectrum broadcast structures in the celebrated, realistic model of decoherence —Quantum Brownian Motion. We do it for realistic, thermal environments and show their noise-robustness. This opens a potentially new method of studying the quantum-to-classical transition.
Harnessing non-Markovian quantum memory by environmental coupling
NASA Astrophysics Data System (ADS)
Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario
2015-07-01
Controlling the non-Markovian dynamics of open quantum systems is essential in quantum information technology since it plays a crucial role in preserving quantum memory. Albeit in many realistic scenarios the quantum system can simultaneously interact with composite environments, this condition remains little understood, particularly regarding the effect of the coupling between environmental parts. We analyze the non-Markovian behavior of a qubit interacting at the same time with two coupled single-mode cavities which in turn dissipate into memoryless or memory-keeping reservoirs. We show that increasing the control parameter, that is the two-mode coupling, allows for triggering and enhancing a non-Markovian dynamics for the qubit starting from a Markovian one in the absence of coupling. Surprisingly, if the qubit dynamics is non-Markovian for the zero control parameter, increasing the latter enables multiple transitions from non-Markovian to Markovian regimes. These results hold independently on the nature of the reservoirs. This work highlights that suitably engineering the coupling between parts of a compound environment can efficiently harness the quantum memory, stored in a qubit, based on non-Markovianity.
Entropy for quantum pure states and quantum H theorem.
Han, Xizhi; Wu, Biao
2015-06-01
We construct a complete set of Wannier functions that are localized at both given positions and momenta. This allows us to introduce the quantum phase space, onto which a quantum pure state can be mapped unitarily. Using its probability distribution in quantum phase space, we define an entropy for a quantum pure state. We prove an inequality regarding the long-time behavior of our entropy's fluctuation. For a typical initial state, this inequality indicates that our entropy can relax dynamically to a maximized value and stay there most of time with small fluctuations. This result echoes the quantum H theorem proved by von Neumann [Zeitschrift für Physik 57, 30 (1929)]. Our entropy is different from the standard von Neumann entropy, which is always zero for quantum pure states. According to our definition, a system always has bigger entropy than its subsystem even when the system is described by a pure state. As the construction of the Wannier basis can be implemented numerically, the dynamical evolution of our entropy is illustrated with an example. PMID:26172660
Entropy for quantum pure states and quantum H theorem
NASA Astrophysics Data System (ADS)
Han, Xizhi; Wu, Biao
2015-06-01
We construct a complete set of Wannier functions that are localized at both given positions and momenta. This allows us to introduce the quantum phase space, onto which a quantum pure state can be mapped unitarily. Using its probability distribution in quantum phase space, we define an entropy for a quantum pure state. We prove an inequality regarding the long-time behavior of our entropy's fluctuation. For a typical initial state, this inequality indicates that our entropy can relax dynamically to a maximized value and stay there most of time with small fluctuations. This result echoes the quantum H theorem proved by von Neumann [Zeitschrift für Physik 57, 30 (1929), 10.1007/BF01339852]. Our entropy is different from the standard von Neumann entropy, which is always zero for quantum pure states. According to our definition, a system always has bigger entropy than its subsystem even when the system is described by a pure state. As the construction of the Wannier basis can be implemented numerically, the dynamical evolution of our entropy is illustrated with an example.
Quantum learning without quantum memory
Sentís, G.; Calsamiglia, J.; Muñoz-Tapia, R.; Bagan, E.
2012-01-01
A quantum learning machine for binary classification of qubit states that does not require quantum memory is introduced and shown to perform with the minimum error rate allowed by quantum mechanics for any size of the training set. This result is shown to be robust under (an arbitrary amount of) noise and under (statistical) variations in the composition of the training set, provided it is large enough. This machine can be used an arbitrary number of times without retraining. Its required classical memory grows only logarithmically with the number of training qubits, while its excess risk decreases as the inverse of this number, and twice as fast as the excess risk of an “estimate-and-discriminate” machine, which estimates the states of the training qubits and classifies the data qubit with a discrimination protocol tailored to the obtained estimates. PMID:23050092
Transport in small and/or random systems
Lax, M.
1987-05-14
This report discusses: transport in small systems; electron-phonon interactions in quantum wells; noise in small systems; laser propagation in the atmosphere; laser-aerosol interactions; transport properties of carriers in semiconductor quantum wells; light transmission in a particulate medium; and laser generation of shock waves in droplets. (LSP)
NASA Technical Reports Server (NTRS)
Dowling, Jonathan P.
2000-01-01
Recently, several researchers, including yours truly, have been able to demonstrate theoretically that quantum photon entanglement has the potential to also revolutionize the entire field of optical interferometry, by providing many orders of magnitude improvement in interferometer sensitivity. The quantum entangled photon interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like 1/Sqrt[N], where N is the number of particles (photons, electrons, atoms, neutrons) passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of Sqrt[N] (square root of N) to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical (laser) interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. Applications are to tests of General Relativity such as ground and orbiting optical interferometers for gravity wave detection, Laser Interferometer Gravity Observatory (LIGO) and the European Laser Interferometer Space Antenna (LISA), respectively.
NASA Astrophysics Data System (ADS)
Cheon, Taksu; Tsutsui, Izumi; Fülöp, Tamás
2004-09-01
We show that the point interactions on a line can be utilized to provide U(2) family of qubit operations for quantum information processing. Qubits are realized as states localized in either side of the point interaction which represents a controllable gate. The qubit manipulation proceeds in a manner analogous to the operation of an abacus.
Visser, M. )
1991-01-15
This paper presents an application of quantum-mechanical principles to a microscopic variant of the traversable wormholes recently introduced by Morris and Thorne. The analysis, based on the surgical grafting of two Reissner-Nordstroem spacetimes, proceeds by using a minisuperspace model to approximate the geometry of these wormholes. The thin shell'' formalism is applied to this minisuperspace model to extract the effective Lagrangian appropriate to this one-degree-of-freedom system. This effective Lagrangian is then quantized and the wave function for the wormhole is explicitly exhibited. A slightly more general class of wormholes---corresponding to the addition of some dust'' to the wormhole throat---is analyzed by recourse to WKB techniques. In all cases discussed in this paper, the expectation value of the wormhole radius is calculated to be of the order of the Planck length. Accordingly, though these quantum wormholes are of considerable theoretical interest they do not appear to be useful as a means for interstellar travel. The results of this paper may also have a bearing on the question of topological fluctuations in quantum gravity. These calculations serve to suggest that topology-changing effects might in fact be {ital suppressed} by quantum-gravity effects.
NASA Astrophysics Data System (ADS)
2009-01-01
The demonstration in this issue that strong magnetic confinement of electrons can dramatically increase the operating temperature of terahertz quantum cascade lasers is good news for the dream of reaching room temperature. Nature Photonics spoke with Qing Hu about the result and the future prospects.
Sassoli de Bianchi, Massimiliano
2013-09-15
In a letter to Born, Einstein wrote [42]: “Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the ‘old one.’ I, at any rate, am convinced that He does not throw dice.” In this paper we take seriously Einstein’s famous metaphor, and show that we can gain considerable insight into quantum mechanics by doing something as simple as rolling dice. More precisely, we show how to perform measurements on a single die, to create typical quantum interference effects, and how to connect (entangle) two identical dice, to maximally violate Bell’s inequality. -- Highlights: •Rolling a die is a quantum process admitting a Hilbert space representation. •Rolling experiments with a single die can produce interference effects. •Two connected dice can violate Bell’s inequality. •Correlations need to be created by the measurement, to violate Bell’s inequality.
NASA Astrophysics Data System (ADS)
Goldenberg, Lior; Vaidman, Lev; Wiesner, Stephen
1999-04-01
We present a two-party protocol for ``quantum gambling,'' a new task closely related to coin tossing. The protocol allows two remote parties to play a gambling game such that in a certain limit it becomes a fair game. No unconditionally secure classical method is known to accomplish this task.
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco O.; Gomez, Richard B.; Uhlmann, Jeffrey K.
2003-08-01
In recent years, computer graphics has emerged as a critical component of the scientific and engineering process, and it is recognized as an important computer science research area. Computer graphics are extensively used for a variety of aerospace and defense training systems and by Hollywood's special effects companies. All these applications require the computer graphics systems to produce high quality renderings of extremely large data sets in short periods of time. Much research has been done in "classical computing" toward the development of efficient methods and techniques to reduce the rendering time required for large datasets. Quantum Computing's unique algorithmic features offer the possibility of speeding up some of the known rendering algorithms currently used in computer graphics. In this paper we discuss possible implementations of quantum rendering algorithms. In particular, we concentrate on the implementation of Grover's quantum search algorithm for Z-buffering, ray-tracing, radiosity, and scene management techniques. We also compare the theoretical performance between the classical and quantum versions of the algorithms.
Massage induces an immediate, albeit short-term, reduction in muscle stiffness.
Eriksson Crommert, M; Lacourpaille, L; Heales, L J; Tucker, K; Hug, F
2015-10-01
Using ultrasound shear wave elastography, the aims of this study were: (a) to evaluate the effect of massage on stiffness of the medial gastrocnemius (MG) muscle and (b) to determine whether this effect (if any) persists over a short period of rest. A 7-min massage protocol was performed unilaterally on MG in 18 healthy volunteers. Measurements of muscle shear elastic modulus (stiffness) were performed bilaterally (control and massaged leg) in a moderately stretched position at three time points: before massage (baseline), directly after massage (follow-up 1), and following 3 min of rest (follow-up 2). Directly after massage, participants rated pain experienced during the massage. MG shear elastic modulus of the massaged leg decreased significantly at follow-up 1 (-5.2 ± 8.8%, P = 0.019, d = -0.66). There was no difference between follow-up 2 and baseline for the massaged leg (P = 0.83) indicating that muscle stiffness returned to baseline values. Shear elastic modulus was not different between time points in the control leg. There was no association between perceived pain during the massage and stiffness reduction (r = 0.035; P = 0.89). This is the first study to provide evidence that massage reduces muscle stiffness. However, this effect is short lived and returns to baseline values quickly after cessation of the massage. PMID:25487283
Queer (v.) Queer (v.): Biology as Curriculum, Pedagogy, and Being albeit Queer (v.)
ERIC Educational Resources Information Center
Broadway, Francis S.
2011-01-01
In order to advance the purpose of education as creating a sustainable world yet to be imagined, educationally, queer (v.) queer (v.) expounds curriculum, pedagogy and being, which has roots in sexuality--the public face of the private confluence of sexuality, gender, race and class, are a necessary framework for queer. If queer is a complicated…
Nitrofurantoin-induced interstitial pneumonitis: albeit rare, should not be missed.
Syed, Haamid; Bachuwa, Ghassan; Upadhaya, Sunil; Abed, Firas
2016-01-01
Interstitial lung disease (ILD) is a rare adverse effect of nitrofurantoin and can range from benign infiltrates to a fatal condition. Nitrofurantoin acts via inhibiting the protein synthesis in bacteria by helping reactive intermediates and is known to produce primary lung parenchymal injury through an oxidant mechanism. Stopping the drug leads to complete recovery of symptoms. In this report, we present a case of nitrofurantoin-induced ILD with the recovery of symptoms and disease process after stopping the drug. PMID:26912767
Queer (v.) queer (v.): biology as curriculum, pedagogy, and being albeit queer (v.)
NASA Astrophysics Data System (ADS)
Broadway, Francis S.
2011-06-01
In order to advance the purpose of education as creating a sustainable world yet to be imagined, educationally, queer (v.) queer (v.) expounds curriculum, pedagogy and being, which has roots in sexuality—the public face of the private confluence of sexuality, gender, race and class, are a necessary framework for queer. If queer is a complicated conversation of strangers' eros, then queer facilitates the creation of space, revolution and transformation. In other words, queer, for science education, is more than increasing and privileging the heteronormative and non-heteronormative science content that extends capitalism's hegemony, but rather science as the dignity, identity, and loving and caring of and by one's self and fellow human beings as strangers.
ERIC Educational Resources Information Center
Davenport, Ernest C.; Davison, Mark L.; Liou, Pey-Yan; Love, Quintin U.
2015-01-01
This article uses definitions provided by Cronbach in his seminal paper for coefficient a to show the concepts of reliability, dimensionality, and internal consistency are distinct but interrelated. The article begins with a critique of the definition of reliability and then explores mathematical properties of Cronbach's a. Internal consistency…
NASA Astrophysics Data System (ADS)
Toussaint, Kimani Christopher, Jr.
Ellipsometry is a technique in which the polarization of light is used to determine the optical properties of a material (sample) and infer information such as the thickness of a thin film. Traditional ellipsometric measurements are limited in their accuracy because of the use of an external reference sample for calibration, and because of the quantum noise inherent in the source that becomes important at low light levels. A new technique called quantum ellipsometry is investigated, and is shown to circumvent these limitations by using a non-classical source of light, namely, twin photons generated by the process of spontaneous parametric downconversion (SPDC), in conjunction with a novel polarization interferometer and coincidence-counting detection scheme. Quantum ellipsometry comes in two forms: correlated-photon and entangled-photon ellipsometry. Both ellipsometric techniques yield estimated of the sample reflectance/transmittance with accuracy greater than conventional ellipsometry. Specifically, when the quantum efficiencies of the detectors used are above a certain threshold the signal-to-noise ratio of the measured ellipsometric parameters is larger for quantum ellipsometry than for conventional ellipsometry. This is because the photon pairs generated by SPDC have a fully correlated joint photon counting distribution. Furthermore, both correlated-photon and entangled-photon ellipsometry have the added advantage that they do not require calibration by an external reference sample, which is another limitation on the accuracy for most conventional ellipsometry. Quantum ellipsometry exploits the property of photon number correlation and polarization entanglement. The entanglement property, inherent in entangled-photon ellipsometry, is shown to allow for the movement of the optical elements that precede the sample to the sample-free optical channel in the setup. A theoretical and experimental investigation of quantum ellipsometry was conducted. Both correlated
Finite groups and quantum physics
Kornyak, V. V.
2013-02-15
Concepts of quantum theory are considered from the constructive 'finite' point of view. The introduction of a continuum or other actual infinities in physics destroys constructiveness without any need for them in describing empirical observations. It is shown that quantum behavior is a natural consequence of symmetries of dynamical systems. The underlying reason is that it is impossible in principle to trace the identity of indistinguishable objects in their evolution-only information about invariant statements and values concerning such objects is available. General mathematical arguments indicate that any quantum dynamics is reducible to a sequence of permutations. Quantum phenomena, such as interference, arise in invariant subspaces of permutation representations of the symmetry group of a dynamical system. Observable quantities can be expressed in terms of permutation invariants. It is shown that nonconstructive number systems, such as complex numbers, are not needed for describing quantum phenomena. It is sufficient to employ cyclotomic numbers-a minimal extension of natural numbers that is appropriate for quantum mechanics. The use of finite groups in physics, which underlies the present approach, has an additional motivation. Numerous experiments and observations in the particle physics suggest the importance of finite groups of relatively small orders in some fundamental processes. The origin of these groups is unclear within the currently accepted theories-in particular, within the Standard Model.
Quantum phases in intrinsic Josephson junctions: Quantum magnetism analogy
NASA Astrophysics Data System (ADS)
Machida, Masahiko; Kobayashi, Keita; Koyama, Tomio
2013-08-01
We explore quantum phases in intrinsic Josephson junction (IJJ) stacks, whose in-plane area is so small that the capacitive coupling has a dominant role in the superconducting phase dynamics. In such cases, the effective Hamiltonian for the superconducting phase can be mapped onto that of one-dimensional ferromagnetically-interacting spin model, whose spin length S depends on the magnitude of the on-site Coulomb repulsion. The ferromagnetic model for IJJ’s prefers synchronized quantum features in contrast to the antiferromagnetically-interacting model in the conventional Josephson junction arrays.
Quantum state and quantum entanglement protection using quantum measurements
NASA Astrophysics Data System (ADS)
Wang, Shuchao; Li, Ying; Wang, Xiangbin; Kwek, Leong Chuan; Yu, Zongwen; Zou, Wenjie
2015-03-01
The time evolution of some quantum states can be slowed down or even stopped under frequent measurements. This is the usual quantum Zeno effect. Here we report an operator quantum Zeno effect, in which the evolution of some physical observables is slowed down through measurements even though thequantum state changes randomly with time. Based on the operator quantum Zeno effect, we show how we can protect quantum information from decoherence with two-qubit measurements, realizable with noisy two-qubit interactions. Besides, we report the quantum entanglement protection using weak measurement and measurement reversal scheme. Exposed in the nonzero temperature environment, a quantum system can both lose and gain excitations by interacting with the environment. In this work, we show how to optimally protect quantum states and quantum entanglement in such a situation based on measurement reversal from weak measurement. In particular, we present explicit formulas of protection. We find that this scheme can circumvent the entanglement sudden death in certain conditions.
Efficient quantum walk on a quantum processor.
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F
2016-01-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471
Quantum Secure Dialogue with Quantum Encryption
NASA Astrophysics Data System (ADS)
Ye, Tian-Yu
2014-09-01
How to solve the information leakage problem has become the research focus of quantum dialogue. In this paper, in order to overcome the information leakage problem in quantum dialogue, a novel approach for sharing the initial quantum state privately between communicators, i.e., quantum encryption sharing, is proposed by utilizing the idea of quantum encryption. The proposed protocol uses EPR pairs as the private quantum key to encrypt and decrypt the traveling photons, which can be repeatedly used after rotation. Due to quantum encryption sharing, the public announcement on the state of the initial quantum state is omitted, thus the information leakage problem is overcome. The information-theoretical efficiency of the proposed protocol is nearly 100%, much higher than previous information leakage resistant quantum dialogue protocols. Moreover, the proposed protocol only needs single-photon measurements and nearly uses single photons as quantum resource so that it is convenient to implement in practice.
Efficient quantum walk on a quantum processor
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.
2016-01-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471
Efficient quantum walk on a quantum processor
NASA Astrophysics Data System (ADS)
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.
2016-05-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.
Feynman's simple quantum mechanics
NASA Astrophysics Data System (ADS)
Taylor, Edwin F.
1997-03-01
This sample class presents an alternative to the conventional introduction to quantum mechanics and describes its current use in a credit course. This alternative introduction rests on theory presented in professional and popular writings by Richard Feynman. Feynman showed that Nature gives a simple command to the electron: "Explore all paths." All of nonrelativistic quantum mechanics, among other fundamental results, comes from this command. With a desktop computer the student points and clicks to tell a modeled electron which paths to follow. The computer then shows the results, which embody the elemental strangeness and paradoxical behaviors of the world of the very small. Feynman's approach requires few equations and provides a largely non-mathematical introduction to the wave function of conventional quantum mechanics. Draft software and materials already used for two semesters in an e-mail computer conference credit university course show that Feynman's approach works well with a variety of students. The sample class explores computer and written material and describes the next steps in its development.
Quantum Spontaneous Stochasticity
NASA Astrophysics Data System (ADS)
Drivas, Theodore; Eyink, Gregory
Classical Newtonian dynamics is expected to be deterministic, but recent fluid turbulence theory predicts that a particle advected at high Reynolds-numbers by ''nearly rough'' flows moves nondeterministically. Small stochastic perturbations to the flow velocity or to the initial data lead to persistent randomness, even in the limit where the perturbations vanish! Such ``spontaneous stochasticity'' has profound consequences for astrophysics, geophysics, and our daily lives. We show that a similar effect occurs with a quantum particle in a ''nearly rough'' force, for the semi-classical (large-mass) limit, where spreading of the wave-packet is usually expected to be negligible and dynamics to be deterministic Newtonian. Instead, there are non-zero probabilities to observe multiple, non-unique solutions of the classical equations. Although the quantum wave-function remains split, rapid phase oscillations prevent any coherent superposition of the branches. Classical spontaneous stochasticity has not yet been seen in controlled laboratory experiments of fluid turbulence, but the corresponding quantum effects may be observable by current techniques. We suggest possible experiments with neutral atomic-molecular systems in repulsive electric dipole potentials.
NASA Astrophysics Data System (ADS)
Berera, Arjun; Rangarajan, Raghavan
2013-02-01
Inflation models can have an early phase of inflation where the evolution of the inflaton is driven by quantum fluctuations before entering the phase driven by the slope of the scalar field potential. For a Coleman-Weinberg potential this quantum phase lasts 107-8 e-foldings. A long period of fluctuation driven growth of the inflation field can possibly take the inflaton past ϕ*, the value of the field where our current horizon scale crosses the horizon; alternatively, even if the field does not cross ϕ*, the inflaton could have high kinetic energy at the end of this phase. Therefore, we study these issues in the context of different models of inflation. In scenarios where cosmological relevant scales leave during the quantum phase, we obtain large curvature perturbations of O(10). We also apply our results to quadratic curvaton models and to quintessence models. In curvaton models we find that inflation must last longer than required to solve the horizon problem, that the curvaton models are incompatible with small field inflation models, and that there may be too large non-Gaussianity. A new phase of thermal fluctuation driven inflation is proposed, in which during inflation the inflaton evolution is governed by fluctuations from a sustained thermal radiation bath rather than by a scalar field potential.
Quantum walks with encrypted data.
Rohde, Peter P; Fitzsimons, Joseph F; Gilchrist, Alexei
2012-10-12
In the setting of networked computation, data security can be a significant concern. Here we consider the problem of allowing a server to remotely manipulate client supplied data, in such a way that both the information obtained by the client about the server's operation and the information obtained by the server about the client's data are significantly limited. We present a protocol for achieving such functionality in two closely related models of restricted quantum computation-the boson sampling and quantum walk models. Because of the limited technological requirements of the boson scattering model, small scale implementations of this technique are feasible with present-day technology. PMID:23102287
Quantum Walks with Encrypted Data
NASA Astrophysics Data System (ADS)
Rohde, Peter P.; Fitzsimons, Joseph F.; Gilchrist, Alexei
2012-10-01
In the setting of networked computation, data security can be a significant concern. Here we consider the problem of allowing a server to remotely manipulate client supplied data, in such a way that both the information obtained by the client about the server’s operation and the information obtained by the server about the client’s data are significantly limited. We present a protocol for achieving such functionality in two closely related models of restricted quantum computation—the boson sampling and quantum walk models. Because of the limited technological requirements of the boson scattering model, small scale implementations of this technique are feasible with present-day technology.
Stapp, H.P.
1988-04-01
It is argued that the validity of the predictions of quantum theory in certain spin-correlation experiments entails a violation of Einstein's locality idea that no causal influence can act outside the forward light cone. First, two preliminary arguments suggesting such a violation are reviewed. They both depend, in intermediate stages, on the idea that the results of certain unperformed experiments are physically determinate. The second argument is entangled also with the problem of the meaning of physical reality. A new argument having neither of these characteristics is constructed. It is based strictly on the orthodox ideas of Bohr and Heisenberg, and has no realistic elements, or other ingredients, that are alien to orthodox quantum thinking.
NASA Astrophysics Data System (ADS)
Lo, C. F.; Kiang, D.
2003-12-01
Based upon a modification of Li et al.'s "minimal" quantization rules (Phys. Lett. A306(2002) 73), we investigate the quantum version of the Cournot and Bertrand oligopoly. In the Cournot oligopoly, the profit of each of the N firms at the Nash equilibrium point rises monotonically with the measure of the quantum entanglement. Only at maximal entanglement, however, does the Nash equilibrium point coincide with the Pareto optimal point. In the Bertrand case, the Bertrand Paradox remains for finite entanglement (i.e., the perfectly competitive stage is reached for any N>=2), whereas with maximal entanglement each of the N firms will still have a non-zero shared profit. Hence, the Bertrand Paradox is completely resolved. Furthermore, a perfectly competitive market is reached asymptotically for N → ∞ in both the Cournot and Bertrand oligopoly.
Adiabatically implementing quantum gates
Sun, Jie; Lu, Songfeng Liu, Fang
2014-06-14
We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.
NASA Astrophysics Data System (ADS)
Piotrowski, Edward W.; Sładkowski, Jan
2003-02-01
We continue the analysis of quantum-like description of markets and economics. The approach has roots in the recently developed quantum game theory and quantum computing. The present paper is devoted to quantum English auction which we consider as a special class of quantum market games. The approach allows to calculate profit intensities for various possible strategies.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
A development of quantum theory that was initiated in the 1920s by Werner Heisenberg (1901-76) and Erwin Schrödinger (1887-1961). The theory drew on a proposal made in 1925 Prince Louis de Broglie (1892-1987), that particles have wavelike properties (the wave-particle duality) and that an electron, for example, could in some respects be regarded as a wave with a wavelength that depended on its mo...
NASA Astrophysics Data System (ADS)
Rae, Alastair
2012-03-01
Preface to the second edition; Preface to the first edition; 1. Quantum physics; 2. Which way are the photons pointing?; 3. What can be hidden in a pair of photons?; 4. Wonderful Copenhagen?; 5. Is it all in the mind?; 6. Many worlds; 7. Is it a matter of size?; 8. Backwards and forwards; 9. Only one way forward?; 10. Can we be consistent?; 11. Illusion or reality?; Further reading.
Efficient Quantum Information Processing via Quantum Compressions
NASA Astrophysics Data System (ADS)
Deng, Y.; Luo, M. X.; Ma, S. Y.
2016-01-01
Our purpose is to improve the quantum transmission efficiency and reduce the resource cost by quantum compressions. The lossless quantum compression is accomplished using invertible quantum transformations and applied to the quantum teleportation and the simultaneous transmission over quantum butterfly networks. New schemes can greatly reduce the entanglement cost, and partially solve transmission conflictions over common links. Moreover, the local compression scheme is useful for approximate entanglement creations from pre-shared entanglements. This special task has not been addressed because of the quantum no-cloning theorem. Our scheme depends on the local quantum compression and the bipartite entanglement transfer. Simulations show the success probability is greatly dependent of the minimal entanglement coefficient. These results may be useful in general quantum network communication.
Quantum Information Theory for Quantum Communication
NASA Astrophysics Data System (ADS)
Koashi, Masato
This chapter gives a concise description of the fundamental concepts of quantum information and quantum communication, which is pertinent to the discussions in the subsequent chapters. Beginning with the basic set of rules that dictate quantum mechanics, the chapter explains the most general ways to describe quantum states, measurements, and state transformations. Convenient mathematical tools are also presented to provide an intuitive picture of a qubit, which is the simplest unit of quantum information. The chapter then elaborates on the distinction between quantum communication and classical communication, with emphasis on the role of quantum entanglement as a communication resource. Quantum teleportation and dense coding are then explained in the context of optimal resource conversions among quantum channels, classical channels, and entanglement.
Biologically inspired path to quantum computer
NASA Astrophysics Data System (ADS)
Ogryzko, Vasily; Ozhigov, Yuri
2014-12-01
We describe an approach to quantum computer inspired by the information processing at the molecular level in living cells. It is based on the separation of a small ensemble of qubits inside the living system (e.g., a bacterial cell), such that coherent quantum states of this ensemble remain practically unchanged for a long time. We use the notion of a quantum kernel to describe such an ensemble. Quantum kernel is not strictly connected with certain particles; it permanently exchanges atoms and molecules with the environment, which makes quantum kernel a virtual notion. There are many reasons to expect that the state of quantum kernel of a living system can be treated as the stationary state of some Hamiltonian. While the quantum kernel is responsible for the stability of dynamics at the time scale of cellular life, at the longer inter-generation time scale it can change, varying smoothly in the course of biological evolution. To the first level of approximation, quantum kernel can be described in the framework of qubit modification of Jaynes-Cummings-Hubbard model, in which the relaxation corresponds to the exchange of matter between quantum kernel and the rest of the cell and is represented as Lindblad super-operators.
Stapp, Henry
2011-11-10
Robert Griffiths has recently addressed, within the framework of a ‘consistent quantum theory’ (CQT) that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues, on the basis of his examination of certain arguments that claim to demonstrate the existence of such nonlocal influences, that such influences do not exist. However, his examination was restricted mainly to hidden-variable-based arguments that include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. One cannot logically prove properties of a system by attributing to the system properties alien to that system. Hence Griffiths’ rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his ‘consistent quantum theory’ shows that the cited proof is valid within that restrictive framework. This necessary existence, within the ‘consistent’ framework, of long range essentially instantaneous influences refutes the claim made by Griffiths that his ‘consistent’ framework is superior to the orthodox quantum theory of von Neumann because it does not entail instantaneous influences. An added section responds to Griffiths’ reply, which cites a litany of ambiguities that seem to restrict, devastatingly, the scope of his CQT formalism, apparently to buttress his claim that my use of that formalism to validate the nonlocality theorem is flawed. But the
Quantum Stabilization in Anharmonic Crystals
NASA Astrophysics Data System (ADS)
Albeverio, Sergio; Kondratiev, Yuri; Kozitsky, Yuri; Röckner, Michael
2003-04-01
For a model of interacting quantum particles of mass m oscillating in a double-well crystalline field, a mechanism of its stabilization by quantum effects is described. In particular, a stability condition involving m, the interaction intensity, and the parameters of the crystalline field is given. It is independent of the temperature and is satisfied if m is small enough and/or the tunneling frequency is big enough. It is shown that under this condition the infinite-volume free energy density is an analytic function of the external field and the displacement-displacement correlation function decays exponentially; hence, no phase transitions can arise at all temperatures. This gives a complete and rigorous answer to the question about the influence of quantum effects on structural phase transitions, the discussion of which was initiated in [
Quantum probability and quantum decision-making.
Yukalov, V I; Sornette, D
2016-01-13
A rigorous general definition of quantum probability is given, which is valid not only for elementary events but also for composite events, for operationally testable measurements as well as for inconclusive measurements, and also for non-commuting observables in addition to commutative observables. Our proposed definition of quantum probability makes it possible to describe quantum measurements and quantum decision-making on the same common mathematical footing. Conditions are formulated for the case when quantum decision theory reduces to its classical counterpart and for the situation where the use of quantum decision theory is necessary. PMID:26621989
Interpreting quantum discord through quantum state merging
Madhok, Vaibhav; Datta, Animesh
2011-03-15
We present an operational interpretation of quantum discord based on the quantum state merging protocol. Quantum discord is the markup in the cost of quantum communication in the process of quantum state merging, if one discards relevant prior information. Our interpretation has an intuitive explanation based on the strong subadditivity of von Neumann entropy. We use our result to provide operational interpretations of other quantities like the local purity and quantum deficit. Finally, we discuss in brief some instances where our interpretation is valid in the single-copy scenario.
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
NASA Astrophysics Data System (ADS)
Thapliyal, Kishore; Verma, Amit; Pathak, Anirban
2015-12-01
Recently, a large number of protocols for bidirectional controlled state teleportation (BCST) have been proposed using n-qubit entangled states (nin {5,6,7}) as quantum channel. Here, we propose a general method of selecting multiqubit (n>4) quantum channels suitable for BCST and show that all the channels used in the existing protocols of BCST can be obtained using the proposed method. Further, it is shown that the quantum channels used in the existing protocols of BCST form only a negligibly small subset of the set of all the quantum channels that can be constructed using the proposed method to implement BCST. It is also noted that all these quantum channels are also suitable for controlled bidirectional remote state preparation. Following the same logic, methods for selecting quantum channels for other controlled quantum communication tasks, such as controlled bidirectional joint remote state preparation and controlled quantum dialogue, are also provided.
Twisted Quantum Toroidal Algebras
NASA Astrophysics Data System (ADS)
Jing, Naihuan; Liu, Rongjia
2014-09-01
We construct a principally graded quantum loop algebra for the Kac-Moody algebra. As a special case a twisted analog of the quantum toroidal algebra is obtained together with the quantum Serre relations.
The decoupling approach to quantum information theory
NASA Astrophysics Data System (ADS)
Dupuis, Frédéric
2010-04-01
Quantum information theory studies the fundamental limits that physical laws impose on information processing tasks such as data compression and data transmission on noisy channels. This thesis presents general techniques that allow one to solve many fundamental problems of quantum information theory in a unified framework. The central theorem of this thesis proves the existence of a protocol that transmits quantum data that is partially known to the receiver through a single use of an arbitrary noisy quantum channel. In addition to the intrinsic interest of this problem, this theorem has as immediate corollaries several central theorems of quantum information theory. The following chapters use this theorem to prove the existence of new protocols for two other types of quantum channels, namely quantum broadcast channels and quantum channels with side information at the transmitter. These protocols also involve sending quantum information partially known by the receiver with a single use of the channel, and have as corollaries entanglement-assisted and unassisted asymptotic coding theorems. The entanglement-assisted asymptotic versions can, in both cases, be considered as quantum versions of the best coding theorems known for the classical versions of these problems. The last chapter deals with a purely quantum phenomenon called locking. We demonstrate that it is possible to encode a classical message into a quantum state such that, by removing a subsystem of logarithmic size with respect to its total size, no measurement can have significant correlations with the message. The message is therefore "locked" by a logarithmic-size key. This thesis presents the first locking protocol for which the success criterion is that the trace distance between the joint distribution of the message and the measurement result and the product of their marginals be sufficiently small.
Quantum differential cryptanalysis
NASA Astrophysics Data System (ADS)
Zhou, Qing; Lu, Songfeng; Zhang, Zhigang; Sun, Jie
2015-06-01
In this paper, we propose a quantum version of the differential cryptanalysis which offers a quadratic speedup over the existing classical one and show the quantum circuit implementing it. The quantum differential cryptanalysis is based on the quantum minimum/maximum-finding algorithm, where the values to be compared and filtered are obtained by calling the quantum counting algorithm. Any cipher which is vulnerable to the classical differential cryptanalysis based on counting procedures can be cracked more quickly under this quantum differential attack.
Relativistic quantum cryptography
Molotkov, S. N.
2011-03-15
A new protocol of quantum key distribution is proposed to transmit keys through free space. Along with quantum-mechanical restrictions on the discernibility of nonorthogonal quantum states, the protocol uses additional restrictions imposed by special relativity theory. Unlike all existing quantum key distribution protocols, this protocol ensures key secrecy for a not strictly one-photon source of quantum states and an arbitrary length of a quantum communication channel.
ERIC Educational Resources Information Center
Rhatigan, James J.; Schuh, John H.
2003-01-01
Examines how it easy for people to overlook small successes when they are overwhelmed by and preoccupied with large projects and goals. Explores the concept of "small wins" in organizational theory, which have the potential to become a prominent part of institutional culture and impact organizational behavior and change. (GCP)
Phonon-mediated generation of quantum correlations between quantum dot qubits
Krzywda, Jan; Roszak, Katarzyna
2016-01-01
We study the generation of quantum correlations between two excitonic quantum dot qubits due to their interaction with the same phonon environment. Such generation results from the fact that during the pure dephasing process at finite temperatures, each exciton becomes entangled with the phonon environment. We find that for a wide range of temperatures quantum correlations are created due to the interaction. The temperature-dependence of the level of correlations created displays a trade-off type behaviour; for small temperatures the phonon-induced distrubance of the qubit states is too small to lead to a distinct change of the two-qubit state, hence, the level of created correlations is small, while for large temperatures the pure dephasing is not accompanied by the creation of entanglement between the qubits and the environment, so the environment cannot mediate qubit-qubit quantum correlations. PMID:27033973
Phonon-mediated generation of quantum correlations between quantum dot qubits.
Krzywda, Jan; Roszak, Katarzyna
2016-01-01
We study the generation of quantum correlations between two excitonic quantum dot qubits due to their interaction with the same phonon environment. Such generation results from the fact that during the pure dephasing process at finite temperatures, each exciton becomes entangled with the phonon environment. We find that for a wide range of temperatures quantum correlations are created due to the interaction. The temperature-dependence of the level of correlations created displays a trade-off type behaviour; for small temperatures the phonon-induced distrubance of the qubit states is too small to lead to a distinct change of the two-qubit state, hence, the level of created correlations is small, while for large temperatures the pure dephasing is not accompanied by the creation of entanglement between the qubits and the environment, so the environment cannot mediate qubit-qubit quantum correlations. PMID:27033973
Phonon-mediated generation of quantum correlations between quantum dot qubits
NASA Astrophysics Data System (ADS)
Krzywda, Jan; Roszak, Katarzyna
2016-04-01
We study the generation of quantum correlations between two excitonic quantum dot qubits due to their interaction with the same phonon environment. Such generation results from the fact that during the pure dephasing process at finite temperatures, each exciton becomes entangled with the phonon environment. We find that for a wide range of temperatures quantum correlations are created due to the interaction. The temperature-dependence of the level of correlations created displays a trade-off type behaviour; for small temperatures the phonon-induced distrubance of the qubit states is too small to lead to a distinct change of the two-qubit state, hence, the level of created correlations is small, while for large temperatures the pure dephasing is not accompanied by the creation of entanglement between the qubits and the environment, so the environment cannot mediate qubit-qubit quantum correlations.
BOOK REVIEW: Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Antoine, J.-P.
2004-01-01
The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled `Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic
Faster than Hermitian Quantum Mechanics
Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.; Meister, Bernhard K.
2007-01-26
Given an initial quantum state vertical bar {psi}{sub I}> and a final quantum state vertical bar {psi}{sub F}>, there exist Hamiltonians H under which vertical bar {psi}{sub I}> evolves into vertical bar {psi}{sub F}>. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time {tau}? For Hermitian Hamiltonians {tau} has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, {tau} can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from vertical bar {psi}{sub I}> to vertical bar {psi}{sub F}> can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing.
Towards quantum simulation and quantum sensing with strontium and lithium
NASA Astrophysics Data System (ADS)
Senaratne, Ruwan; Rajagopal, Shankari; Geiger, Zachary; Lebedev, Vyacheslav; Weld, David
2013-05-01
In this poster we describe progress towards the construction of two ultracold atomic physics experiments, based on bosonic and fermionic strontium and lithium. Applications of the experiments will include quantum simulation of quasicrystals, the development of novel cooling techniques, and force sensing on small length scales. We discuss hardware design, experimental features, and scientific goals. Work supported in part by AFOSR via a YIP award.
The quantum pinch effect in semiconducting quantum wires: A bird’s-eye view
NASA Astrophysics Data System (ADS)
Kushwaha, Manvir S.
2016-01-01
Those who measure success with culmination do not seem to be aware that life is a journey not a destination. This spirit is best reflected in the unceasing failures in efforts for solving the problem of controlled thermonuclear fusion for even the simplest pinches for over decades; and the nature keeps us challenging with examples. However, these efforts have permitted researchers the obtention of a dense plasma with a lifetime that, albeit short, is sufficient to study the physics of the pinch effect, to create methods of plasma diagnostics, and to develop a modern theory of plasma processes. Most importantly, they have impregnated the solid state plasmas, particularly the electron-hole plasmas in semiconductors, which do not suffer from the issues related with the confinement and which have demonstrated their potential not only for the fundamental physics but also for the device physics. Here, we report on a two-component, cylindrical, quasi-one-dimensional quantum plasma subjected to a radial confining harmonic potential and an applied magnetic field in the symmetric gauge. It is demonstrated that such a system, as can be realized in semiconducting quantum wires, offers an excellent medium for observing the quantum pinch effect at low temperatures. An exact analytical solution of the problem allows us to make significant observations: Surprisingly, in contrast to the classical pinch effect, the particle density as well as the current density display a determinable maximum before attaining a minimum at the surface of the quantum wire. The effect will persist as long as the equilibrium pair density is sustained. Therefore, the technological promise that emerges is the route to the precise electronic devices that will control the particle beams at the nanoscale.
Decoherence can be useful in quantum walks
Kendon, Viv; Tregenna, Ben
2003-04-01
We present a study of the effects of decoherence in the operation of a discrete quantum walk on a line, cycle, and hypercube. We find high sensitivity to decoherence, increasing with the number of steps in the walk, as the particle is becoming more delocalized with each step. However, the effect of a small amount of decoherence is to enhance the properties of the quantum walk that are desirable for the development of quantum algorithms. Specifically, we observe a highly uniform distribution on the line, a very fast mixing time on the cycle, and more reliable hitting times across the hypercube.
Equilibration of quantum systems and subsystems
NASA Astrophysics Data System (ADS)
Short, Anthony J.
2011-05-01
We unify two recent results concerning equilibration in quantum theory. We first generalize a proof of Reimann (2008 Phys. Rev. Lett. 101 190403), that the expectation value of 'realistic' quantum observables will equilibrate under very general conditions, and discuss its implications for the equilibration of quantum systems. We then use this to re-derive an independent result of Linden et al (2009 Phys. Rev. E 79 061103), showing that small subsystems generically evolve to an approximately static equilibrium state. Finally, we consider subspaces in which all initial states effectively equilibrate to the same state.
Quantum Steganography and Quantum Error-Correction
ERIC Educational Resources Information Center
Shaw, Bilal A.
2010-01-01
Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be…
Quantum Hall effect in quantum electrodynamics
Penin, Alexander A.
2009-03-15
We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted.
Compressed Sensing Quantum Process Tomography for Superconducting Quantum Gates
NASA Astrophysics Data System (ADS)
Rodionov, Andrey
An important challenge in quantum information science and quantum computing is the experimental realization of high-fidelity quantum operations on multi-qubit systems. Quantum process tomography (QPT) is a procedure devised to fully characterize a quantum operation. We first present the results of the estimation of the process matrix for superconducting multi-qubit quantum gates using the full data set employing various methods: linear inversion, maximum likelihood, and least-squares. To alleviate the problem of exponential resource scaling needed to characterize a multi-qubit system, we next investigate a compressed sensing (CS) method for QPT of two-qubit and three-qubit quantum gates. Using experimental data for two-qubit controlled-Z gates, taken with both Xmon and superconducting phase qubits, we obtain estimates for the process matrices with reasonably high fidelities compared to full QPT, despite using significantly reduced sets of initial states and measurement configurations. We show that the CS method still works when the amount of data is so small that the standard QPT would have an underdetermined system of equations. We also apply the CS method to the analysis of the three-qubit Toffoli gate with simulated noise, and similarly show that the method works well for a substantially reduced set of data. For the CS calculations we use two different bases in which the process matrix is approximately sparse (the Pauli-error basis and the singular value decomposition basis), and show that the resulting estimates of the process matrices match with reasonably high fidelity. For both two-qubit and three-qubit gates, we characterize the quantum process by its process matrix and average state fidelity, as well as by the corresponding standard deviation defined via the variation of the state fidelity for different initial states. We calculate the standard deviation of the average state fidelity both analytically and numerically, using a Monte Carlo method. Overall
Quantum tomography of an electron.
Jullien, T; Roulleau, P; Roche, B; Cavanna, A; Jin, Y; Glattli, D C
2014-10-30
The complete knowledge of a quantum state allows the prediction of the probability of all possible measurement outcomes, a crucial step in quantum mechanics. It can be provided by tomographic methods which have been applied to atomic, molecular, spin and photonic states. For optical or microwave photons, standard tomography is obtained by mixing the unknown state with a large-amplitude coherent photon field. However, for fermions such as electrons in condensed matter, this approach is not applicable because fermionic fields are limited to small amplitudes (at most one particle per state), and so far no determination of an electron wavefunction has been made. Recent proposals involving quantum conductors suggest that the wavefunction can be obtained by measuring the time-dependent current of electronic wave interferometers or the current noise of electronic Hanbury-Brown/Twiss interferometers. Here we show that such measurements are possible despite the extreme noise sensitivity required, and present the reconstructed wavefunction quasi-probability, or Wigner distribution function, of single electrons injected into a ballistic conductor. Many identical electrons are prepared in well-controlled quantum states called levitons by repeatedly applying Lorentzian voltage pulses to a contact on the conductor. After passing through an electron beam splitter, the levitons are mixed with a weak-amplitude fermionic field formed by a coherent superposition of electron-hole pairs generated by a small alternating current with a frequency that is a multiple of the voltage pulse frequency. Antibunching of the electrons and holes with the levitons at the beam splitter changes the leviton partition statistics, and the noise variations provide the energy density matrix elements of the levitons. This demonstration of quantum tomography makes the developing field of electron quantum optics with ballistic conductors a new test-bed for quantum information with fermions. These results may
Localization and Entanglement in Relativistic Quantum Physics
NASA Astrophysics Data System (ADS)
Yngvason, Jakob
These notes are a slightly expanded version of a lecture presented in February 2012 at the workshop "The Message of Quantum Science—Attempts Towards a Synthesis" held at the ZIF in Bielefeld. The participants were physicists with a wide range of different expertise and interests. The lecture was intended as a survey of a small selection of the insights into the structure of relativistic quantum physics that have accumulated through the efforts of many people over more than 50 years. (Including, among many others, R. Haag, H. Araki, D. Kastler, H.-J. Borchers, A. Wightman, R. Streater, B. Schroer, H. Reeh, S. Schlieder, S. Doplicher, J. Roberts, R. Jost, K. Hepp, J. Fröhlich, J. Glimm, A. Jaffe, J. Bisognano, E. Wichmann, D. Buchholz, K. Fredenhagen, R. Longo, D. Guido, R. Brunetti, J. Mund, S. Summers, R. Werner, H. Narnhofer, R. Verch, G. Lechner, ….) This contribution discusses some facts about relativistic quantum physics, most of which are quite familiar to practitioners of Algebraic Quantum Field Theory (AQFT) [Also known as Local Quantum Physics (Haag, Local quantum physics. Springer, Berlin, 1992).] but less well known outside this community. No claim of originality is made; the goal of this contribution is merely to present these facts in a simple and concise manner, focusing on the following issues: Explaining how quantum mechanics (QM) combined with (special) relativity, in particular an upper bound on the propagation velocity of effects, leads naturally to systems with an infinite number of degrees of freedom (relativistic quantum fields).
Quantum superreplication of states and gates
NASA Astrophysics Data System (ADS)
Chiribella, Giulio; Yang, Yuxiang
2016-06-01
Although the no-cloning theorem forbids perfect replication of quantum information, it is sometimes possible to produce large numbers of replicas with vanishingly small error. This phenomenon, known as quantum superreplication, can occur for both quantum states and quantum gates. The aim of this paper is to review the central features of quantum superreplication and provide a unified view of existing results. The paper also includes new results. In particular, we show that when quantum superreplication can be achieved, it can be achieved through estimation up to an error of size O(M/ N 2), where N and M are the number of input and output copies, respectively. Quantum strategies still offer an advantage for superreplication in that they allow for exponentially faster reduction of the error. Using the relation with estimation, we provide i) an alternative proof of the optimality of Heisenberg scaling in quantum metrology, ii) a strategy for estimating arbitrary unitary gates with a mean square error scaling as log N/ N 2, and iii) a protocol that generates O(N 2) nearly perfect copies of a generic pure state U |0> while using the corresponding gate U only N times. Finally, we point out that superreplication can be achieved using interactions among k systems, provided that k is large compared to M 2/ N 2.
Entanglement and Quantum Optics with Quantum Dots
NASA Astrophysics Data System (ADS)
Burgers, A. P.; Schaibley, J. R.; Steel, D. G.
2015-06-01
Quantum dots (QDs) exhibit many characteristics of simpler two-level (or few level) systems, under optical excitation. This makes atomic coherent optical spectroscopy theory and techniques well suited for understanding the behavior of quantum dots. Furthermore, the combination of the solid state nature of quantum dots and their close approximation to atomic systems makes them an attractive platform for quantum information based technologies. In this chapter, we will discuss recent studies using direct detection of light emitted from a quantum dot to investigate coherence properties and confirm entanglement between the emitted photon and an electron spin qubit confined to the QD.
Quantum algorithms for quantum field theories.
Jordan, Stephen P; Lee, Keith S M; Preskill, John
2012-06-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm. PMID:22654052
NASA Astrophysics Data System (ADS)
Oriti, Daniele
2009-03-01
Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and
Turbulence-free space-time quantum imaging
NASA Astrophysics Data System (ADS)
Meyers, Ronald E.; Deacon, Keith S.; Tunick, Arnold
2013-09-01
We experimentally demonstrate turbulence-free space-time quantum imaging. Quantum images of remote objects are produced with two sensors measuring at different space-time points under turbulent conditions. The quantum images generated move depending on the time delay between the two sensor measurements and the speed of a rotating ground glass that is part of a chaotic laser light source. For small delay times turbulence has virtually no adverse affect on the moving quantum images. The experimental setup and findings contribute to understanding the fundamentals of multi-photon quantum interference in complex media. Furthermore, the space-time memory demonstrated in our research provides important new pathways for investigating quantum imaging, quantum information storage and quantum computing. The turbulence-free space-time quantum imaging procedure greatly increases the information content of each photon measured. The moved quantum images are in fact new images that are stored in a space-time virtual memory process. The images are stored within the same quantum imaging data sets and thus quantum imaging can produce more information per photon measured than was previously realized.
Quantum algorithms for quantum field theories
NASA Astrophysics Data System (ADS)
Jordan, Stephen
2015-03-01
Ever since Feynman's original proposal for quantum computers, one of the primary applications envisioned has been efficient simulation of other quantum systems. In fact, it has been conjectured that quantum computers would be universal simulators, which can simulate all physical systems using computational resources that scale polynomially with the system's number of degrees of freedom. Quantum field theories have posed a challenge in that the set of degrees of freedom is formally infinite. We show how quantum computers, if built, could nevertheless efficiently simulate certain quantum field theories at bounded energy scales. Our algorithm includes a new state preparation technique which we believe may find additional applications in quantum algorithms. Joint work with Keith Lee and John Preskill.
Universal quantum computation by discontinuous quantum walk
Underwood, Michael S.; Feder, David L.
2010-10-15
Quantum walks are the quantum-mechanical analog of random walks, in which a quantum ''walker'' evolves between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous evolution. This ''discontinuous'' quantum walk employs perfect quantum-state transfer between two nodes of specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates. The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one time step apart.
Secure quantum signatures using insecure quantum channels
NASA Astrophysics Data System (ADS)
Amiri, Ryan; Wallden, Petros; Kent, Adrian; Andersson, Erika
2016-03-01
Digital signatures are widely used in modern communication to guarantee authenticity and transferability of messages. The security of currently used classical schemes relies on computational assumptions. We present a quantum signature scheme that does not require trusted quantum channels. We prove that it is unconditionally secure against the most general coherent attacks, and show that it requires the transmission of significantly fewer quantum states than previous schemes. We also show that the quantum channel noise threshold for our scheme is less strict than for distilling a secure key using quantum key distribution. This shows that "direct" quantum signature schemes can be preferable to signature schemes relying on secret shared keys generated using quantum key distribution.
Quantum State Engineering Via Coherent-State Superpositions
NASA Technical Reports Server (NTRS)
Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.
1996-01-01
The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.
NASA Astrophysics Data System (ADS)
Engelsen, Nils; Hosten, Onur; Krishnakumar, Rajiv; Kasevich, Mark
2016-05-01
The standard quantum limit (SQL) for quantum metrology has been surpassed by as much as a factor of 100 using entangled states. However, in order to utilize these states, highly engineered, low-noise state readout is required. Here we present a new method to bypass this requirement in a wide variety of physical systems. We implement the protocol experimentally in a system using the clock states of 5 ×105 87 Rb atoms. Through a nonlinear, optical cavity-mediated interaction we generate spin squeezed states. A small microwave rotation followed by an additional optical cavity interaction stage allow us to exploit the full sensitivity of the squeezed states with a fluorescence detection system. Though the technical noise floor of our fluorescence detection is 15dB above the SQL, we show metrology at 8dB below the SQL. This is the first time squeezed states prepared in a cavity are read out by fluorescence imaging. The method described can be used in any system with a suitable nonlinear interaction.
Quantum circuits for isometries
NASA Astrophysics Data System (ADS)
Iten, Raban; Colbeck, Roger; Kukuljan, Ivan; Home, Jonathan; Christandl, Matthias
2016-03-01
We consider the decomposition of arbitrary isometries into a sequence of single-qubit and controlled-not (cnot) gates. In many experimental architectures, the cnot gate is relatively costly and hence we aim to keep the number of these as low as possible. We derive a theoretical lower bound on the number of cnot gates required to decompose an arbitrary isometry from m to n qubits and give three explicit gate decompositions that achieve this bound up to a factor of about 2 in the leading order. We also perform some further optimizations for certain cases where m and n are small. In addition, we show how to apply our result for isometries to give a decomposition scheme for an arbitrary quantum operation via Stinespring's theorem and derive a lower bound on the number of cnot gates in this case too. These results will have an impact on experimental efforts to build a quantum computer, enabling them to go further with the same resources.
Simulation of n-qubit quantum systems. I. Quantum registers and quantum gates
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.
2005-12-01
with 9.0 and 8.0, too) Memory and time required to execute with typical data:Storage and time requirements critically depend on the number of qubits, n, in the quantum registers due to the exponential increase of the associated Hilbert space. In particular, complex algebraic operations may require large amounts of memory even for small qubit numbers. However, most of the standard commands (see Section 4 for simple examples) react promptly for up to five qubits on a normal single-processor machine ( ⩾1GHz with 512 MB memory) and use less than 10 MB memory. No. of lines in distributed program, including test data, etc.: 8864 No. of bytes in distributed program, including test data, etc.: 493 182 Distribution format: tar.gz Nature of the physical problem:During the last decade, quantum computing has been found to provide a revolutionary new form of computation. The algorithms by Shor [P.W. Shor, SIAM J. Sci. Statist. Comput. 26 (1997) 1484] and Grover [L.K. Grover, Phys. Rev. Lett. 79 (1997) 325. [2
Exciton Dynamics in InSb Colloidal Quantum Dots.
Sills, Andrew; Harrison, Paul; Califano, Marco
2016-01-01
Extraordinarily fast biexciton decay times and unexpectedly large optical gaps are two striking features observed in InSb colloidal quantum dots that have remained so far unexplained. The former, should its origin be identified as an Auger recombination process, would have important implications regarding carrier multiplication efficiency, suggesting these nanostructures as potentially ideal active materials in photovoltaic devices. The latter could offer new insights into the factors that influence the electronic structure and consequently the optical properties of systems with reduced dimensionality and provide additional means to fine-tune them. Using the state-of-the-art atomistic semiempirical pseudopotential method we unveil the surprising origins of these features and show that a comprehensive explanation for these properties requires delving deep into the atomistic detail of these nanostructures and is, therefore, outside the reach of less sophisticated, albeit more popular, theoretical approaches. PMID:26650516
Diagrammatic quantum mechanics
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.; Lomonaco, Samuel J.
2015-05-01
This paper explores how diagrams of quantum processes can be used for modeling and for quantum epistemology. The paper is a continuation of the discussion where we began this formulation. Here we give examples of quantum networks that represent unitary transformations by dint of coherence conditions that constitute a new form of non-locality. Local quantum devices interconnected in space can form a global quantum system when appropriate coherence conditions are maintained.
A colloidal quantum dot spectrometer
NASA Astrophysics Data System (ADS)
Bao, Jie; Bawendi, Moungi G.
2015-07-01
Spectroscopy is carried out in almost every field of science, whenever light interacts with matter. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems. Current microspectrometer designs mostly use interference filters and interferometric optics that limit their photon efficiency, resolution and spectral range. Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle: multiple spectral bands are encoded and detected simultaneously with one filter and one detector, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum. We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical.
Quantum walks on quotient graphs
Krovi, Hari; Brun, Todd A.
2007-06-15
A discrete-time quantum walk on a graph {gamma} is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. If this unitary evolution operator has an associated group of symmetries, then for certain initial states the walk will be confined to a subspace of the original Hilbert space. Symmetries of the original graph, given by its automorphism group, can be inherited by the evolution operator. We show that a quantum walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph. We give an explicit construction of the quotient graph for any subgroup H of the automorphism group and illustrate it with examples. The automorphisms of the quotient graph which are inherited from the original graph are the original automorphism group modulo the subgroup H used to construct it. The quotient graph is constructed by removing the symmetries of the subgroup H from the original graph. We then analyze the behavior of hitting times on quotient graphs. Hitting time is the average time it takes a walk to reach a given final vertex from a given initial vertex. It has been shown in earlier work [Phys. Rev. A 74, 042334 (2006)] that the hitting time for certain initial states of a quantum walks can be infinite, in contrast to classical random walks. We give a condition which determines whether the quotient graph has infinite hitting times given that they exist in the original graph. We apply this condition for the examples discussed and determine which quotient graphs have infinite hitting times. All known examples of quantum walks with hitting times which are short compared to classical random walks correspond to systems with quotient graphs much smaller than the original graph; we conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speedup.
Chambers, David W
2007-01-01
Traditionally, ethics in the professions has focused on big problems that could be found on other peoples' back porches. Small, habitual, frequent, and personal lapses get little attention. In this essay, the literature on opportunism is applied to dentistry with a view toward bringing matters of "near ethics" within reach. Examples of small lapses are discussed under the headings of shirking, free riding, shrinkage, pressing, adverse selection, moral hazard, and risk shifting. The conditions that support opportunism include relationships with small numbers of transactions and uneven access to information. Practical limits on understanding all the consequences of agreements and the costs of supervising others and enforcing corrections of breaches are inescapable aspects of opportunism. Opportunism may not be accepted by all as the subject matter of ethical, but curbing it is a worthy goal and understanding the causes and management of opportunism casts some light on the ethical enterprise. Four suggestions are offered for addressing issue of opportunism. PMID:17691498
Quantum Discord as a Resource in Quantum Communication
NASA Astrophysics Data System (ADS)
Madhok, Vaibhav; Datta, Animesh
2013-01-01
As quantum technologies move from the issues of principle to those of practice, it is important to understand the limitations on attaining tangible quantum advantages. In the realm of quantum communication, quantum discord captures the damaging effects of a decoherent environment. This is a consequence of quantum discord quantifying the advantage of quantum coherence in quantum communication. This establishes quantum discord as a resource for quantum communication processes. We discuss this progress, which derives a quantitative relation between the yield of the fully quantum Slepian-Wolf (FQSW) protocol in the presence of noise and the quantum discord of the state involved. The significance of quantum discord in noisy versions of teleportation, super-dense coding, entanglement distillation and quantum state merging are discussed. These results lead to open questions regarding the tradeoff between quantum entanglement and discord in choosing the optimal quantum states for attaining palpable quantum advantages in noisy quantum protocols.
Quantum Discord as a Resource in Quantum Communication
NASA Astrophysics Data System (ADS)
Madhok, Vaibhav; Datta, Animesh
2012-06-01
As quantum technologies move from the issues of principle to those of practice, it is important to understand the limitations on attaining tangible quantum advantages. In the realm of quantum communication, quantum discord captures the damaging effects of a decoherent environment. This is a consequence of quantum discord quantifying the advantage of quantum coherence in quantum communication. This establishes quantum discord as a resource for quantum communication processes. We discuss this progress, which derives a quantitative relation between the yield of the fully quantum Slepian-Wolf (FQSW) protocol in the presence of noise and the quantum discord of the state involved. The significance of quantum discord in noisy versions of teleportation, super-dense coding, entanglement distillation and quantum state merging are discussed. These results lead to open questions regarding the tradeoff between quantum entanglement and discord in choosing the optimal quantum states for attaining palpable quantum advantages in noisy quantum protocols.
Probabilistic Cloning and Quantum Computation
NASA Astrophysics Data System (ADS)
Gao, Ting; Yan, Feng-Li; Wang, Zhi-Xi
2004-06-01
We discuss the usefulness of quantum cloning and present examples of quantum computation tasks for which the cloning offers an advantage which cannot be matched by any approach that does not resort to quantum cloning. In these quantum computations, we need to distribute quantum information contained in the states about which we have some partial information. To perform quantum computations, we use a state-dependent probabilistic quantum cloning procedure to distribute quantum information in the middle of a quantum computation.
Gravitationally induced quantum transitions
NASA Astrophysics Data System (ADS)
Landry, A.; Paranjape, M. B.
2016-06-01
In this paper, we calculate the probability for resonantly inducing transitions in quantum states due to time-dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We consider a system of ultracold neutrons, which are organized according to the energy levels of the Schrödinger equation in the presence of the Earth's gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency ω . The driving force is created by oscillating a macroscopic mass in the neighborhood of the system of neutrons. The neutron lifetime is approximately 880 sec while the probability of transitions increases as t2. Hence, the optimal strategy is to drive the system for two lifetimes. The transition amplitude then is of the order of 1.06 ×10-5, and hence with a million ultracold neutrons, one should be able to observe transitions.
Open fermionic quantum systems
Artacho, E.; Falicov, L.M. Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 )
1993-01-15
A method to treat a quantum system in interaction with a fermionic reservoir is presented. Its most important feature is that the dynamics of the exchange of particles between the system and the reservoir is explicitly included via an effective interaction term in the Hamiltonian. This feature gives rise to fluctuations in the total number of particles in the system. The system is to be considered in its full structure, whereas the reservoir is described only in an effective way, as a source of particles characterized by a small set of parameters. Possible applications include surfaces, molecular clusters, and defects in solids, in particular in highly correlated electronic materials. Four examples are presented: a tight-binding model for an adsorbate on the surface of a one-dimensional lattice, the Anderson model of a magnetic impurity in a metal, a two-orbital impurity with interorbital hybridization (intermediate-valence center), and a two-orbital impurity with interorbital repulsive interactions.
On the robustness of bucket brigade quantum RAM
NASA Astrophysics Data System (ADS)
Arunachalam, Srinivasan; Gheorghiu, Vlad; Jochym-O'Connor, Tomas; Mosca, Michele; Varshinee Srinivasan, Priyaa
2015-12-01
We study the robustness of the bucket brigade quantum random access memory model introduced by Giovannetti et al (2008 Phys. Rev. Lett.100 160501). Due to a result of Regev and Schiff (ICALP ’08 733), we show that for a class of error models the error rate per gate in the bucket brigade quantum memory has to be of order o({2}-n/2) (where N={2}n is the size of the memory) whenever the memory is used as an oracle for the quantum searching problem. We conjecture that this is the case for any realistic error model that will be encountered in practice, and that for algorithms with super-polynomially many oracle queries the error rate must be super-polynomially small, which further motivates the need for quantum error correction. By contrast, for algorithms such as matrix inversion Harrow et al (2009 Phys. Rev. Lett.103 150502) or quantum machine learning Rebentrost et al (2014 Phys. Rev. Lett.113 130503) that only require a polynomial number of queries, the error rate only needs to be polynomially small and quantum error correction may not be required. We introduce a circuit model for the quantum bucket brigade architecture and argue that quantum error correction for the circuit causes the quantum bucket brigade architecture to lose its primary advantage of a small number of ‘active’ gates, since all components have to be actively error corrected.
Autonomous quantum thermal machines and quantum to classical energy flow
NASA Astrophysics Data System (ADS)
Frenzel, Max; Jennings, David; Rudolph, Terry
We address the issue of autonomous quantum thermal machines that are tailored to achieve some specific thermodynamic primitive, such as work extraction in the presence of a thermal environment, while having minimal or no control from the macroscopic regime. Beyond experimental implementations, this provides an arena in which to address certain foundational aspects such as the role of coherence in thermodynamics, the use of clock degrees of freedom and the simulation of local time-dependent Hamiltonians in a particular quantum subsystem. For small-scale systems additional issues arise. Firstly, it is not clear to what degree genuine ordered thermodynamic work has been extracted, and secondly non-trivial back-actions on the thermal machine must be accounted for. We find that both these aspects can be resolved through a judicious choice of quantum measurements that magnify thermodynamic properties up the ladder of length-scales, while simultaneously stabilizing the quantum thermal machine. Within this framework we show that thermodynamic reversibility is obtained in a particular Zeno limit, and finally illustrate these concepts with a concrete example involving spin-systems.
NASA Astrophysics Data System (ADS)
Bojowald, Martin
The universe, ultimately, is to be described by quantum theory. Quantum aspects of all there is, including space and time, may not be significant for many purposes, but are crucial for some. And so a quantum description of cosmology is required for a complete and consistent worldview. At any rate, even if we were not directly interested in regimes where quantum cosmology plays a role, a complete physical description could not stop at a stage before the whole universe is reached. Quantum theory is essential in the microphysics of particles, atoms, molecules, solids, white dwarfs and neutron stars. Why should one expect this ladder of scales to end at a certain size? If regimes are sufficiently violent and energetic, quantum effects are non-negligible even on scales of the whole cosmos; this is realized at least once in the history of the universe: at the big bang where the classical theory of general relativity would make energy densities diverge.
Quantum optics, cavity QED, and quantum optomechanics
NASA Astrophysics Data System (ADS)
Meystre, Pierre
2013-05-01
Quantum optomechanics provides a universal tool to achieve the quantum control of mechanical motion. It does that in devices spanning a vast range of parameters, with mechanical frequencies from a few Hertz to GHz, and with masses from 10-20 g to several kilos. Its underlying ideas can be traced back to the study of gravitational wave antennas, quantum optics, cavity QED and laser cooling which, when combined with the recent availability of advanced micromechanical and nanomechanical devices, opens a path to the realization of macroscopic mechanical systems that operate deep in the quantum regime. At the fundamental level this development paves the way to experiments that will lead to a more profound understanding of quantum mechanics; and from the point of view of applications, quantum optomechanical techniques will provide motion and force sensing near the fundamental limit imposed by quantum mechanics (quantum metrology) and significantly expand the toolbox of quantum information science. After a brief summary of key historical developments, the talk will give a broad overview of the current state of the art of quantum optomechanics, and comment on future prospects both in applied and in fundamental science. Work supported by NSF, ARO and the DARPA QuASAR and ORCHID programs.
NASA Technical Reports Server (NTRS)
Kuhnke, Falko; Musmann, Gunter; Glassmeier, K. H.; Tsurutani, Bruce
1995-01-01
Small, lightweight, low-power magnetometer measures three-dimensional magnetic field. Includes three toroidal cores - one for each dimension. Exhibits high sensitivity, low zero-point drift, and low noise. Magnetometer circuit includes driver circuit and three analog signal-processing circuits. Output of analog signal-processing circuit proportional to one of components of external magnetic field.
Zhang, Yu Chen, GuanHua; Yam, ChiYung
2015-04-28
A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can be suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.
Geometric Quantum Noise of Spin
NASA Astrophysics Data System (ADS)
Shnirman, Alexander; Gefen, Yuval; Saha, Arijit; Burmistrov, Igor S.; Kiselev, Mikhail N.; Altland, Alexander
2015-05-01
The presence of geometric phases is known to affect the dynamics of the systems involved. Here, we consider a quantum degree of freedom, moving in a dissipative environment, whose dynamics is described by a Langevin equation with quantum noise. We show that geometric phases enter the stochastic noise terms. Specifically, we consider small ferromagnetic particles (nanomagnets) or quantum dots close to Stoner instability, and investigate the dynamics of the total magnetization in the presence of tunneling coupling to the metallic leads. We generalize the Ambegaokar-Eckern-Schön effective action and the corresponding semiclassical equations of motion from the U(1) case of the charge degree of freedom to the SU(2) case of the magnetization. The Langevin forces (torques) in these equations are strongly influenced by the geometric phase. As a first but nontrivial application, we predict low temperature quantum diffusion of the magnetization on the Bloch sphere, which is governed by the geometric phase. We propose a protocol for experimental observation of this phenomenon.
Quantum stress in chaotic billiards.
Berggren, Karl-Fredrik; Maksimov, Dmitrii N; Sadreev, Almas F; Höhmann, Ruven; Kuhl, Ulrich; Stöckmann, Hans-Jürgen
2008-06-01
This paper reports on a joint theoretical and experimental study of the Pauli quantum-mechanical stress tensor T_{alphabeta}(x,y) for open two-dimensional chaotic billiards. In the case of a finite current flow through the system the interior wave function is expressed as psi=u+iv . With the assumption that u and v are Gaussian random fields we derive analytic expressions for the statistical distributions for the quantum stress tensor components T_{alphabeta} . The Gaussian random field model is tested for a Sinai billiard with two opposite leads by analyzing the scattering wave functions obtained numerically from the corresponding Schrödinger equation. Two-dimensional quantum billiards may be emulated from planar microwave analogs. Hence we report on microwave measurements for an open two-dimensional cavity and how the quantum stress tensor analog is extracted from the recorded electric field. The agreement with the theoretical predictions for the distributions for T_{alphabeta}(x,y) is quite satisfactory for small net currents. However, a distinct difference between experiments and theory is observed at higher net flow, which could be explained using a Gaussian random field, where the net current was taken into account by an additional plane wave with a preferential direction and amplitude. PMID:18643352
NASA Astrophysics Data System (ADS)
Alvarez-Rodriguez, U.; Sanz, M.; Lamata, L.; Solano, E.
2015-07-01
Quantum information provides fundamentally different computational resources than classical information. We prove that there is no unitary protocol able to add unknown quantum states belonging to different Hilbert spaces. This is an inherent restriction of quantum physics that is related to the impossibility of copying an arbitrary quantum state, i.e., the no-cloning theorem. Moreover, we demonstrate that a quantum adder, in absence of an ancillary system, is also forbidden for a known orthonormal basis. This allows us to propose an approximate quantum adder that could be implemented in the lab. Finally, we discuss the distinct character of the forbidden quantum adder for quantum states and the allowed quantum adder for density matrices.
Advances in quantum teleportation
NASA Astrophysics Data System (ADS)
Pirandola, S.; Eisert, J.; Weedbrook, C.; Furusawa, A.; Braunstein, S. L.
2015-10-01
Quantum teleportation is one of the most important protocols in quantum information. By exploiting the physical resource of entanglement, quantum teleportation serves as a key primitive across a variety of quantum information tasks and represents an important building block for quantum technologies, with a pivotal role in the continuing progress of quantum communication, quantum computing and quantum networks. Here we summarize the basic theoretical ideas behind quantum teleportation and its variant protocols. We focus on the main experiments, together with the technical advantages and disadvantages associated with the use of the various technologies, from photonic qubits and optical modes to atomic ensembles, trapped atoms and solid-state systems. After analysing the current state-of-the-art, we finish by discussing open issues, challenges and potential future implementations.
Alvarez-Rodriguez, U; Sanz, M; Lamata, L; Solano, E
2015-01-01
Quantum information provides fundamentally different computational resources than classical information. We prove that there is no unitary protocol able to add unknown quantum states belonging to different Hilbert spaces. This is an inherent restriction of quantum physics that is related to the impossibility of copying an arbitrary quantum state, i.e., the no-cloning theorem. Moreover, we demonstrate that a quantum adder, in absence of an ancillary system, is also forbidden for a known orthonormal basis. This allows us to propose an approximate quantum adder that could be implemented in the lab. Finally, we discuss the distinct character of the forbidden quantum adder for quantum states and the allowed quantum adder for density matrices. PMID:26153134
Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H
2012-09-12
Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. PMID:22881834
Reliable quantum communication over a quantum relay channel
Gyongyosi, Laszlo; Imre, Sandor
2014-12-04
We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.
Expected number of quantum channels in quantum networks
Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng
2015-01-01
Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556
Expected number of quantum channels in quantum networks.
Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng
2015-01-01
Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556
Quantum thermodynamics of general quantum processes
NASA Astrophysics Data System (ADS)
Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John
2015-03-01
Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.
Quantum thermodynamics of general quantum processes.
Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John
2015-03-01
Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics. PMID:25871066
A model of quantum communication device for quantum hashing
NASA Astrophysics Data System (ADS)
Vasiliev, A.
2016-02-01
In this paper we consider a model of quantum communications between classical computers aided with quantum processors, connected by a classical and a quantum channel. This type of communications implying both classical and quantum messages with moderate use of quantum processing is implicitly used in many quantum protocols, such as quantum key distribution or quantum digital signature. We show that using the model of a quantum processor on multiatomic ensembles in the common QED cavity we can speed up quantum hashing, which can be the basis of quantum digital signature and other communication protocols.
Controlling charge quantization with quantum fluctuations.
Jezouin, S; Iftikhar, Z; Anthore, A; Parmentier, F D; Gennser, U; Cavanna, A; Ouerghi, A; Levkivskyi, I P; Idrisov, E; Sukhorukov, E V; Glazman, L I; Pierre, F
2016-08-01
In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices. PMID:27488797
Controlling charge quantization with quantum fluctuations
NASA Astrophysics Data System (ADS)
Jezouin, S.; Iftikhar, Z.; Anthore, A.; Parmentier, F. D.; Gennser, U.; Cavanna, A.; Ouerghi, A.; Levkivskyi, I. P.; Idrisov, E.; Sukhorukov, E. V.; Glazman, L. I.; Pierre, F.
2016-08-01
In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal–semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.
Quantum and Classical Electrostatics Among Atoms
NASA Astrophysics Data System (ADS)
Doerr, T. P.; Obolensky, O. I.; Ogurtsov, A. Y.; Yu, Yi-Kuo
Quantum theory has been unquestionably successful at describing physics at the atomic scale. However, it becomes more difficult to apply as the system size grows. On the other hand, classical physics breaks down at sufficiently short length scales but is clearly correct at larger distances. The purpose of methods such as QM/MM is to gain the advantages of both quantum and classical regimes: quantum theory should provide accuracy at the shortest scales, and classical theory, with its somewhat more tractable computational demands, allows results to be computed for systems that would be inaccessible with a purely quantum approach. This strategy will be most effective when one knows with good accuracy the length scale at which quantum calculations are no longer necessary and classical calculations are sufficient. To this end, we have performed both classical and quantum calculations for systems comprising a small number of atoms for which experimental data is also available. The classical calculations are fully exact; the quantum calculations are at the MP4(SDTQ)/aug-cc-pV5Z and CCSD(T)/aug-cc-pV5Z levels. The precision of both sets of calculations along with the existence of experimental results allows us to draw conclusions about the range of utility of the respective calculations. This research was supported by the Intramural Research Program of the NIH, NLM and utilized the computational resources of the NIH HPC Biowulf cluster.
Parallel Quantum Circuit in a Tunnel Junction.
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-01-01
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N(2) power law is preserved for Ωab(N) and for Vab(N). PMID:27453262
Parallel Quantum Circuit in a Tunnel Junction
NASA Astrophysics Data System (ADS)
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-07-01
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N).
Parallel Quantum Circuit in a Tunnel Junction
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-01-01
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N). PMID:27453262
Colloquium: Non-Markovian dynamics in open quantum systems
NASA Astrophysics Data System (ADS)
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Generalized effective description of loop quantum cosmology
NASA Astrophysics Data System (ADS)
Ashtekar, Abhay; Gupt, Brajesh
2015-10-01
The effective description of loop quantum cosmology (LQC) has proved to be a convenient platform to study phenomenological implications of the quantum bounce that resolves the classical big bang singularity. Originally, this description was derived using Gaussian quantum states with small dispersions. In this paper we present a generalization to incorporate states with large dispersions. Specifically, we derive the generalized effective Friedmann and Raychaudhuri equations and propose a generalized effective Hamiltonian which are being used in an ongoing study of the phenomenological consequences of a broad class of quantum geometries. We also discuss an interesting interplay between the physics of states with larger dispersions in standard LQC, and of sharply peaked states in (hypothetical) LQC theories with larger area gap.
Extracting work from quantum states of radiation
NASA Astrophysics Data System (ADS)
Kolář, M.; Ryabov, A.; Filip, R.
2016-06-01
Quantum optomechanics opens a possibility to mediate a physical connection between quantum optics and classical thermodynamics. We propose and theoretically analyze a one-way chain starting from various quantum states of radiation. In the chain, the radiation state is first ideally swapped to a sufficiently large mechanical oscillator (membrane). Then the membrane mechanically pushes a classical almost massless piston, which is pressing a gas in a small container. As a result, we observe strongly nonlinear and nonmonotonic transfer of the energy stored in classical and quantum uncertainty of radiation to mechanical work. The amount of work and even its sign depend strongly on the uncertainty of the radiation state. Our theoretical prediction would stimulate an experimental proposal for such optomechanical connection to thermodynamics.
Superconducting Quantum Arrays for Broadband RF Systems
NASA Astrophysics Data System (ADS)
Kornev, V.; Sharafiev, A.; Soloviev, I.; Kolotinskiy, N.; Mukhanov, O.
2014-05-01
Superconducting Quantum Arrays (SQAs), homogenous arrays of Superconducting Quantum Cells, are developed for implementation of broadband radio frequency (RF) systems capable of providing highly linear magnetic signal to voltage transfer with high dynamic range, including active electrically small antennas (ESAs). Among the proposed quantum cells which are bi-SQUID and Differential Quantum Cell (DQC), the latter delivered better performance for SQAs. A prototype of the transformer-less active ESA based on a 2D SQA with nonsuperconducting electric connection of the DQCs was fabricated using HYPRES niobium process with critical current density 4.5 kA/cm2. The measured voltage response is characterized by a peak-to-peak swing of ~100 mV and steepness of ~6500 μV/μT.
Economical quantum cloning in any dimension
Durt, Thomas; Fiurasek, Jaromir; Cerf, Nicolas J.
2005-11-15
The possibility of cloning a d-dimensional quantum system without an ancilla is explored, extending on the economical phase-covariant cloning machine for qubits found in Phys. Rev. A 60, 2764 (1999). We prove the impossibility of constructing an economical version of the optimal universal 1{yields}2 cloning machine in any dimension. We also show, using an ansatz on the generic form of cloning machines, that the d-dimensional 1{yields}2 phase-covariant cloner, which optimally clones all balanced superpositions with arbitrary phases, can be realized economically only in dimension d=2. The used ansatz is supported by numerical evidence up to d=7. An economical phase-covariant cloner can nevertheless be constructed for d>2, albeit with a slightly lower fidelity than that of the optimal cloner requiring an ancilla. Finally, using again an ansatz on cloning machines, we show that an economical version of the 1{yields}2 Fourier-covariant cloner, which optimally clones the computational basis and its Fourier transform, is also possible only in dimension d=2.
Lan, S-Y; Radnaev, A G; Collins, O A; Matsukevich, D N; Kennedy, T A; Kuzmich, A
2009-08-01
A quantum repeater is a system for long-distance quantum communication that employs quantum memory elements to mitigate optical fiber transmission losses. The multiplexed quantum memory (O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, Phys. Rev. Lett. 98, 060502 (2007)) has been shown theoretically to reduce quantum memory time requirements. We present an initial implementation of a multiplexed quantum memory element in a cold rubidium gas. We show that it is possible to create atomic excitations in arbitrary memory element pairs and demonstrate the violation of Bell's inequality for light fields generated during the write and read processes. PMID:19654771
NASA Astrophysics Data System (ADS)
Viennot, David; Aubourg, Lucile
2016-02-01
We study a theoretical model of closed quasi-hermitian chain of spins which exhibits quantum analogues of chimera states, i.e. long life classical states for which a part of an oscillator chain presents an ordered dynamics whereas another part presents a disordered dynamics. For the quantum analogue, the chimera behaviour deals with the entanglement between the spins of the chain. We discuss the entanglement properties, quantum chaos, quantum disorder and semi-classical similarity of our quantum chimera system. The quantum chimera concept is novel and induces new perspectives concerning the entanglement of multipartite systems.
Vanner, M. R.; Pikovski, I.; Cole, G. D.; Kim, M. S.; Brukner, Č.; Hammerer, K.; Milburn, G. J.; Aspelmeyer, M.
2011-01-01
Studying mechanical resonators via radiation pressure offers a rich avenue for the exploration of quantum mechanical behavior in a macroscopic regime. However, quantum state preparation and especially quantum state reconstruction of mechanical oscillators remains a significant challenge. Here we propose a scheme to realize quantum state tomography, squeezing, and state purification of a mechanical resonator using short optical pulses. The scheme presented allows observation of mechanical quantum features despite preparation from a thermal state and is shown to be experimentally feasible using optical microcavities. Our framework thus provides a promising means to explore the quantum nature of massive mechanical oscillators and can be applied to other systems such as trapped ions. PMID:21900608
Quantum information causality.
Pitalúa-García, Damián
2013-05-24
How much information can a transmitted physical system fundamentally communicate? We introduce the principle of quantum information causality, which states the maximum amount of quantum information that a quantum system can communicate as a function of its dimension, independently of any previously shared quantum physical resources. We present a new quantum information task, whose success probability is upper bounded by the new principle, and show that an optimal strategy to perform it combines the quantum teleportation and superdense coding protocols with a task that has classical inputs. PMID:23745844
NASA Technical Reports Server (NTRS)
Thomas, P.; Veverka, J.; Dermott, S.
1986-01-01
Satellites smaller than Mimas (r = 195 km) are distinguished by irregular overall shapes and by rough limb topography. Material properties and impact cratering dominate the shaping of these objects. Long fragmentation histories can produce a variety of internal structures, but so far there is no direct evidence that any small satellite is an equilibrium ellipsoid made up of noncohesive gravitationally bound rubble. One many bodies that orbit close to their primary the tidal and rotational components of surface gravity strongly affect the directions of local g and thereby affect the redistribution of regolith by mass wasting. Downslope movement of regolith is extensive on Deimos, and is probably effective on many other small satellites. It is shown that in some cases observed patterns of downslope mass wasting cold produce useful constraints on the satellite's mean density. The diversity of features seen in the few high-resolution images of small satellites currently available suggests that these objects have undergone complex histories of cratering, fragmentation, and regolith evolution.
Quantum code for quantum error characterization
NASA Astrophysics Data System (ADS)
Omkar, S.; Srikanth, R.; Banerjee, Subhashish
2015-05-01
A quantum error-correcting code is a subspace C such that allowed errors acting on any state in C can be corrected. A quantum code for which state recovery is only required up to a logical rotation within C can be used for the detection of errors, but not for quantum error correction. Such a code with a stabilizer structure, which we call an "ambiguous stabilizer code" (ASC), can nevertheless be useful for the characterization of quantum dynamics (CQD). The use of ASCs can help lower the size of CQD probe states used, but at the cost of an increased number of operations.
The Quantum Underground: Early quantum theory textbooks
NASA Astrophysics Data System (ADS)
Gearhart, Clayton
2011-04-01
Quantum theory had its beginnings in 1900, when Max Planck derived his famous formula for the energy density of black-body radiation. But the early quantum theory textbooks we remember today--for example, those of Arnold Summerfeld (1919), Fritz Reiche (1921), and a shorter Report by James Jeans (1914), did not appear until some years later, and all were written by physicists who were themselves active participants in early quantum theory. Surprisingly, not all early texts fit this pattern. Reiche himself had written a review article on quantum theory for general readers in Die Naturwissenschaften in 1913, long before his research had shifted to quantum topics. And a year later, textbooks by Hermann Sieveking and Sigfried Valentiner treated quantum theory for students and non-specialists, although neither was active in quantum theoretical research. A third and better known author, Owen Richardson, also treated quantum theory in a 1914 book on electromagnetism. I will describe these early and little-known treatments of quantum theory, all of which were written by physicists whose primary research and professional interests lay elsewhere.
Quantum Kolmogorov complexity and bounded quantum memory
Miyadera, Takayuki
2011-04-15
The effect of bounded quantum memory in a primitive information protocol has been examined using the quantum Kolmogorov complexity as a measure of information. We employed a toy two-party protocol in which Bob, by using a bounded quantum memory and an unbounded classical memory, estimates a message that was encoded in qubits by Alice in one of the bases X or Z. Our theorem gave a nontrivial effect of the memory boundedness. In addition, a generalization of the uncertainty principle in the presence of quantum memory has been obtained.
Quantum optics. Gravity meets quantum physics
Adams, Bernhard W.
2015-02-27
Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.
Work and quantum phase transitions: quantum latency.
Mascarenhas, E; Bragança, H; Dorner, R; França Santos, M; Vedral, V; Modi, K; Goold, J
2014-06-01
We study the physics of quantum phase transitions from the perspective of nonequilibrium thermodynamics. For first-order quantum phase transitions, we find that the average work done per quench in crossing the critical point is discontinuous. This leads us to introduce the quantum latent work in analogy with the classical latent heat of first order classical phase transitions. For second order quantum phase transitions the irreversible work is closely related to the fidelity susceptibility for weak sudden quenches of the system Hamiltonian. We demonstrate our ideas with numerical simulations of first, second, and infinite order phase transitions in various spin chain models. PMID:25019721
Converting Coherence to Quantum Correlations
NASA Astrophysics Data System (ADS)
Ma, Jiajun; Yadin, Benjamin; Girolami, Davide; Vedral, Vlatko; Gu, Mile
2016-04-01
Recent results in quantum information theory characterize quantum coherence in the context of resource theories. Here, we study the relation between quantum coherence and quantum discord, a kind of quantum correlation which appears even in nonentangled states. We prove that the creation of quantum discord with multipartite incoherent operations is bounded by the amount of quantum coherence consumed in its subsystems during the process. We show how the interplay between quantum coherence consumption and creation of quantum discord works in the preparation of multipartite quantum correlated states and in the model of deterministic quantum computation with one qubit.
Quantum gas microscopy of ytterbium: cool me twice
NASA Astrophysics Data System (ADS)
Vengalattore, Mukund
2016-03-01
The site-resolved detection of ultracold atoms in optical lattice potentials is a powerful technique to study lattice models of correlated quantum matter. In their recent paper, Yamamoto et al (2016 New J. Phys. 18 023016) demonstrate a quantum gas microscope for ultracold ytterbium atoms. By simultaneously cooling these atoms on two optical transitions, they show that fluorescent images of the lattice gas can be obtained while keeping the atoms pinned to their lattice sites even for a lattice spacing as small as 266 nm. This promises to be a powerful enabling tool for studies of metrology and quantum magnetism with quantum degenerate gases of ytterbium.
Entanglement, the quantum formalism and the classical world
Matzkin, A.
2011-09-23
75 years after the term 'entanglement' was coined to a peculiar feature inherent to quantum systems, the connection between quantum and classical mechanics remains an open problem. Drawing on recent results obtained in semiclassical systems, we discuss here the fate of entanglement in a closed system as Planck's constant becomes vanishingly small. In that case the generation of entanglement in a quantum system is perfectly reproduced by properly defined correlations of the corresponding classical system. We speculate on what these results could imply regarding the status of entanglement and of the ensuing quantum correlations.
Spectrum of surface plasmons excited by spontaneous quantum dot transitions
Andrianov, E. S. Pukhov, A. A. Dorofeenko, A. V.; Vinogradov, A. P.; Lisyansky, A. A.
2013-08-15
We consider quantum fluctuations of near fields of a quantum emitter (two-level system (TLS) with population inversion sustained by incoherent pumping) in the near-field zone of a plasmon (metallic) nanoparticle. The spectrum of surface plasmons excited by spontaneous transitions in the quantum emitter is obtained below the lasing threshold of such a system (spaser) in the approximation of a small number of plasmons. It is shown that the relaxation rate is the sum of the quantum emitter's rates of relaxation to its thermal reservoir and the plasmon cavity. The resulting dependence of the average number of plasmons on the pump intensity indicates the nonthreshold nature of the process.
Towards photonic quantum simulation of ground states of frustrated Heisenberg spin systems
Ma, Xiao-song; Dakić, Borivoje; Kropatschek, Sebastian; Naylor, William; Chan, Yang-hao; Gong, Zhe-xuan; Duan, Lu-ming; Zeilinger, Anton; Walther, Philip
2014-01-01
Photonic quantum simulators are promising candidates for providing insight into other small- to medium-sized quantum systems. Recent experiments have shown that photonic quantum systems have the advantage to exploit quantum interference for the quantum simulation of the ground state of Heisenberg spin systems. Here we experimentally characterize this quantum interference at a tuneable beam splitter and further investigate the measurement-induced interactions of a simulated four-spin system by comparing the entanglement dynamics using pairwise concurrence. We also study theoretically a four-site square lattice with next-nearest neighbor interactions and a six-site checkerboard lattice, which might be in reach of current technology. PMID:24394808
Fundamental limitations for quantum and nanoscale thermodynamics.
Horodecki, Michał; Oppenheim, Jonathan
2013-01-01
The relationship between thermodynamics and statistical physics is valid in the thermodynamic limit-when the number of particles becomes very large. Here we study thermodynamics in the opposite regime-at both the nanoscale and when quantum effects become important. Applying results from quantum information theory, we construct a theory of thermodynamics in these limits. We derive general criteria for thermodynamical state transitions, and, as special cases, find two free energies: one that quantifies the deterministically extractable work from a small system in contact with a heat bath, and the other that quantifies the reverse process. We find that there are fundamental limitations on work extraction from non-equilibrium states, owing to finite size effects and quantum coherences. This implies that thermodynamical transitions are generically irreversible at this scale. As one application of these methods, we analyse the efficiency of small heat engines and find that they are irreversible during the adiabatic stages of the cycle. PMID:23800725
Fundamental limitations for quantum and nanoscale thermodynamics
NASA Astrophysics Data System (ADS)
Horodecki, Michał; Oppenheim, Jonathan
2013-06-01
The relationship between thermodynamics and statistical physics is valid in the thermodynamic limit—when the number of particles becomes very large. Here we study thermodynamics in the opposite regime—at both the nanoscale and when quantum effects become important. Applying results from quantum information theory, we construct a theory of thermodynamics in these limits. We derive general criteria for thermodynamical state transitions, and, as special cases, find two free energies: one that quantifies the deterministically extractable work from a small system in contact with a heat bath, and the other that quantifies the reverse process. We find that there are fundamental limitations on work extraction from non-equilibrium states, owing to finite size effects and quantum coherences. This implies that thermodynamical transitions are generically irreversible at this scale. As one application of these methods, we analyse the efficiency of small heat engines and find that they are irreversible during the adiabatic stages of the cycle.
NASA Astrophysics Data System (ADS)
Peng, Lucheng; Geng, Jing; Ai, Lisha; Zhang, Ying; Xie, Renguo; Yang, Wensheng
2016-08-01
Phosphor with extremely narrow emission line widths, high brightness, and wide color emission tunability in visible regions is required for display and lighting applications, yet none has been reported in the literature so far. In the present study, single-sized lead halide perovskite (APbX 3; A = CH3NH3 and Cs; X = Cl, Br, and I) nanocrystalline (NC) phosphors were achieved for the first time in a one-pot reaction at room temperature (25 °C). The size-dependent samples, which included four families of CsPbBr3 NCs and exhibited sharp excitonic absorption peaks and pure band gap emission, were directly obtained by simply varying the concentration of ligands. The continuity of the optical spectrum can be successively tuned over the entire UV–visible spectral region (360–610 nm) by preparing CsPbCl3, CsPbI3, and CsPb(Y/Br)3 (Y = Cl and I) NCs with the use of CsPbBr3 NCs as templates by anion exchange while maintaining the size of NCs and high quantum yields of up to 80%. Notably, an emission line width of 10–24 nm, which is completely consistent with that of their single particles, indicates the formation of single-sized NCs. The versatility of the synthetic strategy was validated by extending it to the synthesis of single-sized CH3NH3PbX 3 NCs by simply replacing the cesium precursor by the CH3NH3 X precursor.
Peng, Lucheng; Geng, Jing; Ai, Lisha; Zhang, Ying; Xie, Renguo; Yang, Wensheng
2016-08-19
Phosphor with extremely narrow emission line widths, high brightness, and wide color emission tunability in visible regions is required for display and lighting applications, yet none has been reported in the literature so far. In the present study, single-sized lead halide perovskite (APbX 3; A = CH3NH3 and Cs; X = Cl, Br, and I) nanocrystalline (NC) phosphors were achieved for the first time in a one-pot reaction at room temperature (25 °C). The size-dependent samples, which included four families of CsPbBr3 NCs and exhibited sharp excitonic absorption peaks and pure band gap emission, were directly obtained by simply varying the concentration of ligands. The continuity of the optical spectrum can be successively tuned over the entire UV-visible spectral region (360-610 nm) by preparing CsPbCl3, CsPbI3, and CsPb(Y/Br)3 (Y = Cl and I) NCs with the use of CsPbBr3 NCs as templates by anion exchange while maintaining the size of NCs and high quantum yields of up to 80%. Notably, an emission line width of 10-24 nm, which is completely consistent with that of their single particles, indicates the formation of single-sized NCs. The versatility of the synthetic strategy was validated by extending it to the synthesis of single-sized CH3NH3PbX 3 NCs by simply replacing the cesium precursor by the CH3NH3 X precursor. PMID:27383631
Multistage quantum absorption heat pumps
NASA Astrophysics Data System (ADS)
Correa, Luis A.
2014-04-01
It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N -2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.
Multistage quantum absorption heat pumps.
Correa, Luis A
2014-04-01
It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N-2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration. PMID:24827213
Abrikosov, A.A.
1998-08-01
An explanation is proposed of the unusual magnetoresistance, linear in magnetic field and positive, observed recently in nonstoichiometric silver chalcogenides. The idea is based on the assumption that these substances are basically gapless semiconductors with a linear energy spectrum. Most of the excess silver atoms form metallic clusters which are doping the remaining material to a very small carrier concentration, so that even in a magnetic field as low as 10 Oe, only one Landau band participates in the conductivity. {copyright} {ital 1998} {ital The American Physical Society}
Parametric Quantum Search Algorithm as Quantum Walk: A Quantum Simulation
NASA Astrophysics Data System (ADS)
Ellinas, Demosthenes; Konstandakis, Christos
2016-02-01
Parametric quantum search algorithm (PQSA) is a form of quantum search that results by relaxing the unitarity of the original algorithm. PQSA can naturally be cast in the form of quantum walk, by means of the formalism of oracle algebra. This is due to the fact that the completely positive trace preserving search map used by PQSA, admits a unitarization (unitary dilation) a la quantum walk, at the expense of introducing auxiliary quantum coin-qubit space. The ensuing QW describes a process of spiral motion, chosen to be driven by two unitary Kraus generators, generating planar rotations of Bloch vector around an axis. The quadratic acceleration of quantum search translates into an equivalent quadratic saving of the number of coin qubits in the QW analogue. The associated to QW model Hamiltonian operator is obtained and is shown to represent a multi-particle long-range interacting quantum system that simulates parametric search. Finally, the relation of PQSA-QW simulator to the QW search algorithm is elucidated.
Quantum information and computation
Bennett, C.H.
1995-10-01
A new quantum theory of communication and computation is emerging, in which the stuff transmitted or processed is not classical information, but arbitrary superpositions of quantum states. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}.
NASA Astrophysics Data System (ADS)
Jennewein, Thomas; Higgins, Brendon
2013-03-01
Sending satellites equipped with quantum technologies into space will be the first step towards a global quantum-communication network. As Thomas Jennewein and Brendon Higgins explain, these systems will also enable physicists to test fundamental physics in new regimes.
Spring, William Joseph
2009-04-13
We consider quantum analogues of n-parameter stochastic processes, associated integrals and martingale properties extending classical results obtained in [1, 2, 3], and quantum results in [4, 5, 6, 7, 8, 9, 10].
Efficient Quantum Pseudorandomness
NASA Astrophysics Data System (ADS)
Brandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michał
2016-04-01
Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.
Efficient Quantum Pseudorandomness.
Brandão, Fernando G S L; Harrow, Aram W; Horodecki, Michał
2016-04-29
Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics. PMID:27176509
Quantum Spread Spectrum Communication
Humble, Travis S
2010-01-01
We demonstrate that spectral teleportation can coherently dilate the spectral probability amplitude of a single photon. In preserving the encoded quantum information, this variant of teleportation subsequently enables a form of quantum spread spectrum communication.
NASA Astrophysics Data System (ADS)
Gardner, David E.
This thesis describes qualitative research conducted to understand the problems students have when learning quantum mechanics. It differs from previous studies on educational issues associated with quantum mechanics in that I have examined the difficulties from the students' perspective. Three questions guided this research: What are the experiences of students learning quantum mechanics? What conceptual difficulties do students have with quantum mechanics? and, How do students approach learning quantum mechanics? From these questions, two themes emerged. First, students do not consider the quantum mechanical concepts of wave-particle duality or the uncertainty principle to be important sources of difficulties for them. Second, many of the difficulties students encounter are not related to conceptual understanding of specific topics, but stem from a mindset that is incongruent with the nature and structure of quantum mechanics. The implications for teaching are that the nature and structure of quantum mechanics should be emphasized and be an explicit part of instruction.
Inconstancy-theory/quantum-gravity
NASA Astrophysics Data System (ADS)
Murtaza, Faheem
1999-05-01
Inconstancy-theory is the union of "relativity" and "quantum" theories which rests upon the answers of the simple questions. 1) That if only the simple motion of a particle can not be observed without the "reference-frame" then how the whole universe can be expected to be observable without any "reference-frame". 2) Does not the inter-influence (Unity) of space-time-mass suggest that these are generated by common source and might not there be some invisible "flow" (dynamical-equilibrium) that is the cause of space-time-mass,as time itself is a flow. "Inconstancy" proposes, interalia, the principle that "relativity (generalised) is the universal law of nature in each and every respect". For that "inconstancy" admits only the light, being absolute, a real reference-frame and medium(mirror) for the display of relative "space-time-mass". Light as reference-frame in "Inconstancy" unifies "relativity" and "quantum" theories and establishes the inter-connection between "quantum-gravity" and strong-nuclear interactions, which offers the velocity of light in terms of physical and spatial-temporal components. "Inconstancy" introduces another "constant" operative in "quantum-gravity" and unveils the "graviton" location for its novel range as previously "relativity" escaped detection for v<<
Asymptotic Safety in quantum gravity
NASA Astrophysics Data System (ADS)
Nink, Andreas; Reuter, Martin; Saueressig, Frank
2013-06-01
Asymptotic Safety (sometimes also referred to as nonperturbative renormalizability) is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences. Although originally proposed by Steven Weinberg to find a theory of quantum gravity the idea of a nontrivial fixed point providing a possible UV completion can be applied also to other field theories, in particular to perturbatively nonrenormalizable ones. The essence of Asymptotic Safety is the observation that nontrivial renormalization group fixed points can be used to generalize the procedure of perturbative renormalization. In an asymptotically safe theory the couplings do not need to be small or tend to zero in the high energy limit but rather tend to finite values: they approach a nontrivial UV fixed point. The running of the coupling constants, i.e. their scale dependence described by the renormalization group (RG), is thus special in its UV limit in the sense that all their dimensionless combinations remain finite. This suffices to avoid unphysical divergences, e.g. in scattering amplitudes. The requirement of a UV fixed point restricts the form of the bare action and the values of the bare coupling constants, which become predictions of the Asymptotic Safety program rather than inputs. As for gravity, the standard procedure of perturbative renormalization fails since Newton's constant, the relevant expansion parameter, has negative mass dimension rendering general relativity perturbatively nonrenormalizable. This has driven the search for nonperturbative frameworks describing quantum gravity, including Asymptotic Safety which -- in contrast to other approaches -- is characterized by its use of quantum field theory
Satellite-Based Quantum Communications
Hughes, Richard J; Nordholt, Jane E; McCabe, Kevin P; Newell, Raymond T; Peterson, Charles G
2010-09-20
Single-photon quantum communications (QC) offers the attractive feature of 'future proof', forward security rooted in the laws of quantum physics. Ground based quantum key distribution (QKD) experiments in optical fiber have attained transmission ranges in excess of 200km, but for larger distances we proposed a methodology for satellite-based QC. Over the past decade we have devised solutions to the technical challenges to satellite-to-ground QC, and we now have a clear concept for how space-based QC could be performed and potentially utilized within a trusted QKD network architecture. Functioning as a trusted QKD node, a QC satellite ('QC-sat') could deliver secret keys to the key stores of ground-based trusted QKD network nodes, to each of which multiple users are connected by optical fiber or free-space QC. A QC-sat could thereby extend quantum-secured connectivity to geographically disjoint domains, separated by continental or inter-continental distances. In this paper we describe our system concept that makes QC feasible with low-earth orbit (LEO) QC-sats (200-km-2,000-km altitude orbits), and the results of link modeling of expected performance. Using the architecture that we have developed, LEO satellite-to-ground QKD will be feasible with secret bit yields of several hundred 256-bit AES keys per contact. With multiple ground sites separated by {approx} 100km, mitigation of cloudiness over any single ground site would be possible, potentially allowing multiple contact opportunities each day. The essential next step is an experimental QC-sat. A number of LEO-platforms would be suitable, ranging from a dedicated, three-axis stabilized small satellite, to a secondary experiment on an imaging satellite. to the ISS. With one or more QC-sats, low-latency quantum-secured communications could then be provided to ground-based users on a global scale. Air-to-ground QC would also be possible.
Simulation of chemical isomerization reaction dynamics on a NMR quantum simulator.
Lu, Dawei; Xu, Nanyang; Xu, Ruixue; Chen, Hongwei; Gong, Jiangbin; Peng, Xinhua; Du, Jiangfeng
2011-07-01
Quantum simulation can beat current classical computers with minimally a few tens of qubits. Here we report an experimental demonstration that a small nuclear-magnetic-resonance quantum simulator is already able to simulate the dynamics of a prototype laser-driven isomerization reaction using engineered quantum control pulses. The experimental results agree well with classical simulations. We conclude that the quantum simulation of chemical reaction dynamics not computable on current classical computers is feasible in the near future. PMID:21797586
Nonlinear Quantum Mechanics Implies Polynomial-Time Solution for NP-Complete and # P Problems
NASA Astrophysics Data System (ADS)
Abrams, Daniel S.; Lloyd, Seth
1998-11-01
If quantum states exhibit small nonlinearities during time evolution, then quantum computers can be used to solve NP-complete and # P problems in polynomial time. We provide algorithms that solve NP-complete and # P oracle problems by exploiting nonlinear quantum logic gates. Using the Weinberg model as a simple example, the explicit construction of these gates is derived from the underlying physics. Nonlinear quantum algorithms are also presented using Polchinski type nonlinearities which do not allow for superluminal communication.
ERIC Educational Resources Information Center
Parrikar, Onkar
2010-01-01
The behaviour of a quantum rod, pivoted at its lower end on an impenetrable floor and restricted to moving in the vertical plane under the gravitational potential, is studied analytically under the approximation that the rod is initially localized to a "small-enough" neighbourhood around the point of classical unstable equilibrium. It is shown…
Lectures on Dynamical Models for Quantum Measurements
NASA Astrophysics Data System (ADS)
Nieuwenhuizen, Theo M.; Perarnau-Llobet, Martí Balian, Roger
2015-10-01
In textbooks, ideal quantum measurements are described in terms of the tested system only by the collapse postulate and Born's rule. This level of description offers a rather flexible position for the interpretation of quantum mechanics. Here we analyse an ideal measurement as a process of interaction between the tested system S and an apparatus A, so as to derive the properties postulated in textbooks. We thus consider within standard quantum mechanics the measurement of a quantum spin component ŝz by an apparatus A, being a magnet coupled to a bath. We first consider the evolution of the density operator of S+A describing a large set of runs of the measurement process. The approach describes the disappearance of the off-diagonal terms ("truncation") of the density matrix as a physical effect due to A, while the registration of the outcome has classical features due to the large size of the pointer variable, the magnetisation. A quantum ambiguity implies that the density matrix at the final time can be decomposed on many bases, not only the one of the measurement. This quantum oddity prevents to connect individual outcomes to measurements, a difficulty known as the "measurement problem". It is shown that it is circumvented by the apparatus as well, since the evolution in a small time interval erases all decompositions, except the one on the measurement basis. Once one can derive the outcome of individual events from quantum theory, the so-called "collapse of the wave function" or the "reduction of the state" appears as the result of a selection of runs among the original large set. Hence nothing more than standard quantum mechanics is needed to explain features of measurements. The employed statistical formulation is advocated for the teaching of quantum theory.
Introduction to Quantum Computation
NASA Astrophysics Data System (ADS)
Ekert, A.
A computation is a physical process. It may be performed by a piece of electronics or on an abacus, or in your brain, but it is a process that takes place in nature and as such it is subject to the laws of physics. Quantum computers are machines that rely on characteristically quantum phenomena, such as quantum interference and quantum entanglement in order to perform computation. In this series of lectures I want to elaborate on the computational power of such machines.
NASA Astrophysics Data System (ADS)
Hey, Anthony J. G.; Walters, Patrick
This book provides a descriptive, popular account of quantum physics. The basic topics addressed include: waves and particles, the Heisenberg uncertainty principle, the Schroedinger equation and matter waves, atoms and nuclei, quantum tunneling, the Pauli exclusion principle and the elements, quantum cooperation and superfluids, Feynman rules, weak photons, quarks, and gluons. The applications of quantum physics to astrophyics, nuclear technology, and modern electronics are addressed.
Quantum Computing since Democritus
NASA Astrophysics Data System (ADS)
Aaronson, Scott
2013-03-01
1. Atoms and the void; 2. Sets; 3. Gödel, Turing, and friends; 4. Minds and machines; 5. Paleocomplexity; 6. P, NP, and friends; 7. Randomness; 8. Crypto; 9. Quantum; 10. Quantum computing; 11. Penrose; 12. Decoherence and hidden variables; 13. Proofs; 14. How big are quantum states?; 15. Skepticism of quantum computing; 16. Learning; 17. Interactive proofs and more; 18. Fun with the Anthropic Principle; 19. Free will; 20. Time travel; 21. Cosmology and complexity; 22. Ask me anything.
Huang, Liang; Lai Yingcheng; Ferry, David K.; Goodnick, Stephen M.; Akis, Richard
2009-07-31
The concentrations of wave functions about classical periodic orbits, or quantum scars, are a fundamental phenomenon in physics. An open question is whether scarring can occur in relativistic quantum systems. To address this question, we investigate confinements made of graphene whose classical dynamics are chaotic and find unequivocal evidence of relativistic quantum scars. The scarred states can lead to strong conductance fluctuations in the corresponding open quantum dots via the mechanism of resonant transmission.
NASA Astrophysics Data System (ADS)
Chiara, Maria Luisa Dalla; Giuntini, Roberto
1989-07-01
Paraconsistent quantum logics are weak forms of quantum logic, where the noncontradiction and the excluded-middle laws are violated. These logics find interesting applications in the operational approach to quantum mechanics. In this paper, we present an axiomatization, a Kripke-style, and an algebraic semantical characterization for two forms of paraconsistent quantum logic. Further developments are contained in Giuntini and Greuling's paper in this issue.
Quantum dots as active material for quantum cascade lasers: comparison to quantum wells
NASA Astrophysics Data System (ADS)
Michael, Stephan; Chow, Weng W.; Schneider, Hans Christian
2016-03-01
We review a microscopic laser theory for quantum dots as active material for quantum cascade lasers, in which carrier collisions are treated at the level of quantum kinetic equations. The computed characteristics of such a quantum-dot active material are compared to a state-of-the-art quantum-well quantum cascade laser. We find that the current requirement to achieve a comparable gain-length product is reduced compared to that of the quantum-well quantum cascade laser.
Quantum phenomena in superconductors
Clarke, J.
1987-08-01
This paper contains remarks by the author on aspects of macroscopic quantum phenomena in superconductors. Some topics discussed are: Superconducting low-inductance undulatory galvanometer (SLUGS), charge imbalance, cylindrical dc superconducting quantum interference device (SQUIDS), Geophysics, noise theory, magnetic resonance with SQUIDS, and macroscopic quantum tunneling. 23 refs., 4 figs. (LSP)
NASA Astrophysics Data System (ADS)
Das, Arnab; Suzuki, Sei
2015-02-01
In this article we sketch a broad outline of quantum annealing as a framework for realizing analog quantum computation. We provide a short review of the basic ideas and discuss some issues relevant to the current scenario of condensed matter physics and quantum computation.
NASA Astrophysics Data System (ADS)
Zeh, H. D.
1988-01-01
The intrinsic time concept of quantum gravity allows one to derive thermodynamical and quantum mechanical time arrows correlated with cosmic expansion only. Tube-like standing waves subject to a ``final'' condition may resemble unparametrised orbits of the universe, with ``quantum Poincaré cycles'' coinciding with its durations. A recent criticism by Qadir is answered.
Quantum extended supersymmetries
NASA Astrophysics Data System (ADS)
Grigore, D. R.; Scharf, G.
2004-09-01
We analyse some quantum multiplets associated with extended supersymmetries. We study in detail the general form of the causal (anti)commutation relations. The condition of positivity of the scalar product imposes severe restrictions on the (quantum) model. It is problematic if one can find out quantum extensions of the standard model with extended supersymmetries.
Eavesdropping without quantum memory
Bechmann-Pasquinucci, H.
2006-04-15
In quantum cryptography the optimal eavesdropping strategy requires that the eavesdropper uses ancillas and quantum memories in order to optimize her information. What happens if the eavesdropper has no quantum memory? It is shown that in this case the eavesdropper obtains a better information/disturbance trade-off by adopting the simple intercept/resend strategy.
NASA Astrophysics Data System (ADS)
Salih, Hatim
2016-05-01
The phenomenon of quantum erasure has long intrigued physicists, but has surprisingly found limited practical application. Here, we propose a protocol for quantum key distribution (QKD) based on quantum erasure, promising inherent security against detector attacks. We particularly demonstrate its security against a powerful detector-blinding attack.
Quantum Griffiths Inequalities
NASA Astrophysics Data System (ADS)
Miyao, Tadahiro
2016-07-01
We present a general framework of Griffiths inequalities for quantum systems. Our approach is based on operator inequalities associated with self-dual cones and provides a consistent viewpoint of the Griffiths inequality. As examples, we discuss the quantum Ising model, quantum rotor model, Bose-Hubbard model, and Hubbard model. We present a model-independent structure that governs the correlation inequalities.
Classical versus quantum completeness
NASA Astrophysics Data System (ADS)
Hofmann, Stefan; Schneider, Marc
2015-06-01
The notion of quantum-mechanical completeness is adapted to situations where the only adequate description is in terms of quantum field theory in curved space-times. It is then shown that Schwarzschild black holes, although geodesically incomplete, are quantum complete.
Quantum Griffiths Inequalities
NASA Astrophysics Data System (ADS)
Miyao, Tadahiro
2016-06-01
We present a general framework of Griffiths inequalities for quantum systems. Our approach is based on operator inequalities associated with self-dual cones and provides a consistent viewpoint of the Griffiths inequality. As examples, we discuss the quantum Ising model, quantum rotor model, Bose-Hubbard model, and Hubbard model. We present a model-independent structure that governs the correlation inequalities.
Quantum Bundle Description of Quantum Projective Spaces
NASA Astrophysics Data System (ADS)
Ó Buachalla, Réamonn
2012-12-01
We realise Heckenberger and Kolb's canonical calculus on quantum projective ( N - 1)-space C q [ C p N-1] as the restriction of a distinguished quotient of the standard bicovariant calculus for the quantum special unitary group C q [ SU N ]. We introduce a calculus on the quantum sphere C q [ S 2 N-1] in the same way. With respect to these choices of calculi, we present C q [ C p N-1] as the base space of two different quantum principal bundles, one with total space C q [ SU N ], and the other with total space C q [ S 2 N-1]. We go on to give C q [ C p N-1] the structure of a quantum framed manifold. More specifically, we describe the module of one-forms of Heckenberger and Kolb's calculus as an associated vector bundle to the principal bundle with total space C q [ SU N ]. Finally, we construct strong connections for both bundles.
Quantum dot spectroscopy using a single phosphorus donor
NASA Astrophysics Data System (ADS)
Büch, Holger; Fuechsle, Martin; Baker, William; House, Matthew G.; Simmons, Michelle Y.
2015-12-01
Using a deterministic single P donor placed with atomic precision accuracy next to a nanoscale silicon quantum dot, we present a way to analyze the energy spectrum of small quantum dots in silicon by tunnel-coupled transport measurements. The energy-level structure of the quantum dot is observed as resonance features within the transport bias triangles when the donor chemical potential is aligned with states within the quantum dot as confirmed by a numeric rate equation solver SIMON. This technique allows us to independently extract the quantum dot level structure irrespective of the density of states in the leads. Such a method is useful for the investigation of silicon quantum dots in the few-electron regime where the level structure is governed by an intricate interplay between the spin- and the valley-orbit degrees of freedom.
Disciplines, models, and computers: the path to computational quantum chemistry.
Lenhard, Johannes
2014-12-01
Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990. PMID:25571750
A general transfer-function approach to noise filtering in open-loop quantum control
NASA Astrophysics Data System (ADS)
Viola, Lorenza
2015-03-01
Hamiltonian engineering via unitary open-loop quantum control provides a versatile and experimentally validated framework for manipulating a broad class of non-Markovian open quantum systems of interest, with applications ranging from dynamical decoupling and dynamically corrected quantum gates, to noise spectroscopy and quantum simulation. In this context, transfer-function techniques directly motivated by control engineering have proved invaluable for obtaining a transparent picture of the controlled dynamics in the frequency domain and for quantitatively analyzing performance. In this talk, I will show how to identify a computationally tractable set of ``fundamental filter functions,'' out of which arbitrary filter functions may be assembled up to arbitrary high order in principle. Besides avoiding the infinite recursive hierarchy of filter functions that arises in general control scenarios, this fundamental set suffices to characterize the error suppression capabilities of the control protocol in both the time and frequency domain. I will show, in particular, how the resulting notion of ``filtering order'' reveals conceptually distinct, albeit complementary, features of the controlled dynamics as compared to the ``cancellation order,'' traditionally defined in the Magnus sense. Implications for current quantum control experiments will be discussed. Work supported by the U.S. Army Research Office under Contract No. W911NF-14-1-0682.
NASA Astrophysics Data System (ADS)
Adler, Stephen L.; Bassi, Angelo; Dowker, Fay; Dürr, Detlef
2007-03-01
This special issue of Journal of Physics A: Mathematical and Theoretical entitled 'The Quantum Universe' is dedicated to Professor Giancarlo Ghirardi on the occasion of his 70th birthday. Giancarlo Ghirardi has made many important contributions to the foundations of quantum mechanics including the celebrated Ghirardi Rimini Weber (GRW) model of spontaneous wavefunction collapse. However, although Professor Ghirardi's birthday is the inspiration for this issue, it has a much broader scope than the area traditionally known as Foundations of Quantum Mechanics. All invited authors are experts in areas of physics in which quantum theory is fundamental: non relativistic quantum mechanics, quantum computation and information, quantum field theory, quantum gravity, quantum cosmology and philosophy of science. The issue was conceived as an opportunity for workers in these diverse areas to share with the widest possible readership their views on quantum theory. Authors were encouraged to give their personal assessment of the role of quantum theory in their work particularly as it pertains to a vision of the global aims of their research. The articles are accessible to any physicist with a solid knowledge of quantum mechanics, and many contain an emphasis on conceptual developments, both those achieved and those hoped for. One theme that runs throughout Giancarlo Ghirardi's contributions to science is the unity of physics: the development of the GRW model itself was motivated by the conviction that the same physics should govern microscopic and macroscopic systems. However, readers of this special issue will clearly see that there is no unity as yet in the views of workers on fundamental quantum theories. Indeed the diversity of the articles, ranging from technical developments in well defined approaches, to new proposals for interpretations of quantum mechanics, indicates the state of fundamental physics: healthily active and yet lacking the consensus we seek in science
Transport in small and/or random systems. Progress report, June 1986--May 1987
Lax, M.
1987-05-14
This report discusses: transport in small systems; electron-phonon interactions in quantum wells; noise in small systems; laser propagation in the atmosphere; laser-aerosol interactions; transport properties of carriers in semiconductor quantum wells; light transmission in a particulate medium; and laser generation of shock waves in droplets. (LSP)
Quantum Tomograms and Their Application in Quantum Information Science
NASA Astrophysics Data System (ADS)
Fedorov, Aleksey K.; Yurchenko, Stanislav O.
2013-02-01
This note is devoted to quantum tomograms application in quantum information science. Representation for quantum tomograms of continuous variables via Feynman path integrals is considered. Due to this construction quantum tomograms of harmonic oscillator are obtained. Application tomograms in causal analysis of quantum states is presented. Two qubit maximum entangled and "quantum-classical" states have been analyzed by tomographic causal analysis of quantum states.
NASA Astrophysics Data System (ADS)
Hosten, O.; Krishnakumar, R.; Engelsen, N. J.; Kasevich, M. A.
2016-06-01
Quantum metrology exploits entangled states of particles to improve sensing precision beyond the limit achievable with uncorrelated particles. All previous methods required detection noise levels below this standard quantum limit to realize the benefits of the intrinsic sensitivity provided by these states. We experimentally demonstrate a widely applicable method for entanglement-enhanced measurements without low-noise detection. The method involves an intermediate quantum phase magnification step that eases implementation complexity. We used it to perform squeezed-state metrology 8 decibels below the standard quantum limit with a detection system that has a noise floor 10 decibels above the standard quantum limit.
Scalable optical quantum computer
Manykin, E A; Mel'nichenko, E V
2014-12-31
A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)
Complementarity and quantum walks
Kendon, Viv; Sanders, Barry C.
2005-02-01
We show that quantum walks interpolate between a coherent 'wave walk' and a random walk depending on how strongly the walker's coin state is measured; i.e., the quantum walk exhibits the quintessentially quantum property of complementarity, which is manifested as a tradeoff between knowledge of which path the walker takes vs the sharpness of the interference pattern. A physical implementation of a quantum walk (the quantum quincunx) should thus have an identifiable walker and the capacity to demonstrate the interpolation between wave walk and random walk depending on the strength of measurement.
Hosten, O; Krishnakumar, R; Engelsen, N J; Kasevich, M A
2016-06-24
Quantum metrology exploits entangled states of particles to improve sensing precision beyond the limit achievable with uncorrelated particles. All previous methods required detection noise levels below this standard quantum limit to realize the benefits of the intrinsic sensitivity provided by these states. We experimentally demonstrate a widely applicable method for entanglement-enhanced measurements without low-noise detection. The method involves an intermediate quantum phase magnification step that eases implementation complexity. We used it to perform squeezed-state metrology 8 decibels below the standard quantum limit with a detection system that has a noise floor 10 decibels above the standard quantum limit. PMID:27339982
NASA Astrophysics Data System (ADS)
Tulsi, Avatar
2016-07-01
Quantum spatial search has been widely studied with most of the study focusing on quantum walk algorithms. We show that quantum walk algorithms are extremely sensitive to systematic errors. We present a recursive algorithm which offers significant robustness to certain systematic errors. To search N items, our recursive algorithm can tolerate errors of size O(1{/}√{ln N}) which is exponentially better than quantum walk algorithms for which tolerable error size is only O(ln N{/}√{N}). Also, our algorithm does not need any ancilla qubit. Thus our algorithm is much easier to implement experimentally compared to quantum walk algorithms.
Quantum Operation Time Reversal
Crooks, Gavin E.
2008-03-25
The dynamics of an open quantum system can be described by a quantum operation: A linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes toward equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.
NASA Astrophysics Data System (ADS)
Beveratos, Alexios; Abram, Izo; Gérard, Jean-Michel; Robert-Philip, Isabelle
2014-12-01
For the past fifteen years, single semiconductor quantum dots, often referred to as solid-state artificial atoms, have been at the forefront of various research direction lines for experimental quantum information science, in particular in the development of practical sources of quantum states of light. Here we review the research to date, on the tailoring of the emission properties from single quantum dots producing single photons, indistinguishable single photons and entangled photon pairs. Finally, the progress and future prospects for applications of single dots in quantum information processing is considered.
Quantum multiobservable control
NASA Astrophysics Data System (ADS)
Chakrabarti, Raj; Wu, Rebing; Rabitz, Herschel
2008-06-01
We present deterministic algorithms for the simultaneous control of an arbitrary number of quantum observables. Unlike optimal control approaches based on cost function optimization, quantum multiobservable tracking control (MOTC) is capable of tracking predetermined homotopic trajectories to target expectation values in the space of multiobservables. The convergence of these algorithms is facilitated by the favorable critical topology of quantum control landscapes. Fundamental properties of quantum multiobservable control landscapes, including the MOTC Gramian matrix, are introduced. The effects of multiple control objectives on the structure and complexity of optimal fields are examined. With minor modifications, the techniques described herein can be applied to general quantum multiobjective control problems.
NASA Astrophysics Data System (ADS)
Tulsi, Avatar
2016-04-01
Quantum spatial search has been widely studied with most of the study focusing on quantum walk algorithms. We show that quantum walk algorithms are extremely sensitive to systematic errors. We present a recursive algorithm which offers significant robustness to certain systematic errors. To search N items, our recursive algorithm can tolerate errors of size O(1{/}√{N}) which is exponentially better than quantum walk algorithms for which tolerable error size is only O(ln N{/}√{N}) . Also, our algorithm does not need any ancilla qubit. Thus our algorithm is much easier to implement experimentally compared to quantum walk algorithms.
Dimensional flow in discrete quantum geometries
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes
2015-04-01
In various theories of quantum gravity, one observes a change in the spectral dimension from the topological spatial dimension d at large length scales to some smaller value at small, Planckian scales. While the origin of such a flow is well understood in continuum approaches, in theories built on discrete structures a firm control of the underlying mechanism is still missing. We shed some light on the issue by presenting a particular class of quantum geometries with a flow in the spectral dimension, given by superpositions of states defined on regular complexes. For particular superposition coefficients parametrized by a real number 0 <α
Duality quantum computer and the efficient quantum simulations
NASA Astrophysics Data System (ADS)
Wei, Shi-Jie; Long, Gui-Lu
2016-03-01
Duality quantum computing is a new mode of a quantum computer to simulate a moving quantum computer passing through a multi-slit. It exploits the particle wave duality property for computing. A quantum computer with n qubits and a qudit simulates a moving quantum computer with n qubits passing through a d-slit. Duality quantum computing can realize an arbitrary sum of unitaries and therefore a general quantum operator, which is called a generalized quantum gate. All linear bounded operators can be realized by the generalized quantum gates, and unitary operators are just the extreme points of the set of generalized quantum gates. Duality quantum computing provides flexibility and a clear physical picture in designing quantum algorithms, and serves as a powerful bridge between quantum and classical algorithms. In this paper, after a brief review of the theory of duality quantum computing, we will concentrate on the applications of duality quantum computing in simulations of Hamiltonian systems. We will show that duality quantum computing can efficiently simulate quantum systems by providing descriptions of the recent efficient quantum simulation algorithm of Childs and Wiebe (Quantum Inf Comput 12(11-12):901-924, 2012) for the fast simulation of quantum systems with a sparse Hamiltonian, and the quantum simulation algorithm by Berry et al. (Phys Rev Lett 114:090502, 2015), which provides exponential improvement in precision for simulating systems with a sparse Hamiltonian.
Quantum robots plus environments.
Benioff, P.
1998-07-23
A quantum robot is a mobile quantum system, including an on board quantum computer and needed ancillary systems, that interacts with an environment of quantum systems. Quantum robots carry out tasks whose goals include making specified changes in the state of the environment or carrying out measurements on the environment. The environments considered so far, oracles, data bases, and quantum registers, are seen to be special cases of environments considered here. It is also seen that a quantum robot should include a quantum computer and cannot be simply a multistate head. A model of quantum robots and their interactions is discussed in which each task, as a sequence of alternating computation and action phases,is described by a unitary single time step operator T {approx} T{sub a} + T{sub c} (discrete space and time are assumed). The overall system dynamics is described as a sum over paths of completed computation (T{sub c}) and action (T{sub a}) phases. A simple example of a task, measuring the distance between the quantum robot and a particle on a 1D lattice with quantum phase path dispersion present, is analyzed. A decision diagram for the task is presented and analyzed.
Sorting quantum systems efficiently
NASA Astrophysics Data System (ADS)
Ionicioiu, Radu
2016-05-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation.
Sorting quantum systems efficiently.
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) - which direct photons according to their polarization - and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
Adiabatic topological quantum computing
NASA Astrophysics Data System (ADS)
Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; Flammia, Steven T.; Neels, Alice
2015-07-01
Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev's surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computation size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.
Superradiant Quantum Heat Engine
NASA Astrophysics Data System (ADS)
Hardal, Ali Ü. C.; Müstecaplıoğlu, Özgür E.
2015-08-01
Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.
Superradiant Quantum Heat Engine
Hardal, Ali Ü. C.; Müstecaplıoğlu, Özgür E.
2015-01-01
Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart. PMID:26260797
Sorting quantum systems efficiently
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
NASA Astrophysics Data System (ADS)
Haven, Emmanuel; Khrennikov, Andrei
2013-01-01
Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.
Superradiant Quantum Heat Engine.
Hardal, Ali Ü C; Müstecaplıoğlu, Özgür E
2015-01-01
Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart. PMID:26260797
Proof of the quantum null energy condition
NASA Astrophysics Data System (ADS)
Bousso, Raphael; Fisher, Zachary; Koeller, Jason; Leichenauer, Stefan; Wall, Aron C.
2016-01-01
We prove the quantum null energy condition (QNEC), a lower bound on the stress tensor in terms of the second variation in a null direction of the entropy of a region. The QNEC arose previously as a consequence of the quantum focusing conjecture, a proposal about quantum gravity. The QNEC itself does not involve gravity, so a proof within quantum field theory is possible. Our proof is somewhat nontrivial, suggesting that there may be alternative formulations of quantum field theory that make the QNEC more manifest. Our proof applies to free and super-renormalizable bosonic field theories, and to any points that lie on stationary null surfaces. An example is Minkowski space, where any point p and null vector ka define a null plane N (a Rindler horizon). Given any codimension-2 surface Σ that contains p and lies on N , one can consider the von Neumann entropy Sout of the quantum state restricted to one side of Σ . A second variation Sout'' can be defined by deforming Σ along N , in a small neighborhood of p with area A . The QNEC states that ⟨Tk k(p )⟩≥ℏ/2 π lim A →0 Sout''/A .
Quantum dot quantum cascade infrared photodetector
NASA Astrophysics Data System (ADS)
Wang, Xue-Jiao; Zhai, Shen-Qiang; Zhuo, Ning; Liu, Jun-Qi; Liu, Feng-Qi; Liu, Shu-Man; Wang, Zhan-Guo
2014-04-01
We demonstrate an InAs quantum dot quantum cascade infrared photodetector operating at room temperature with a peak detection wavelength of 4.3 μm. The detector shows sensitive photoresponse for normal-incidence light, which is attributed to an intraband transition of the quantum dots and the following transfer of excited electrons on a cascade of quantum levels. The InAs quantum dots for the infrared absorption were formed by making use of self-assembled quantum dots in the Stranski-Krastanov growth mode and two-step strain-compensation design based on InAs/GaAs/InGaAs/InAlAs heterostructure, while the following extraction quantum stairs formed by LO-phonon energy are based on a strain-compensated InGaAs/InAlAs chirped superlattice. Johnson noise limited detectivities of 3.64 × 1011 and 4.83 × 106 Jones at zero bias were obtained at 80 K and room temperature, respectively. Due to the low dark current and distinct photoresponse up to room temperature, this device can form high temperature imaging.
Quantum dot quantum cascade infrared photodetector
Wang, Xue-Jiao; Zhai, Shen-Qiang; Zhuo, Ning; Liu, Jun-Qi E-mail: fqliu@semi.ac.cn; Liu, Feng-Qi E-mail: fqliu@semi.ac.cn; Liu, Shu-Man; Wang, Zhan-Guo
2014-04-28
We demonstrate an InAs quantum dot quantum cascade infrared photodetector operating at room temperature with a peak detection wavelength of 4.3 μm. The detector shows sensitive photoresponse for normal-incidence light, which is attributed to an intraband transition of the quantum dots and the following transfer of excited electrons on a cascade of quantum levels. The InAs quantum dots for the infrared absorption were formed by making use of self-assembled quantum dots in the Stranski–Krastanov growth mode and two-step strain-compensation design based on InAs/GaAs/InGaAs/InAlAs heterostructure, while the following extraction quantum stairs formed by LO-phonon energy are based on a strain-compensated InGaAs/InAlAs chirped superlattice. Johnson noise limited detectivities of 3.64 × 10{sup 11} and 4.83 × 10{sup 6} Jones at zero bias were obtained at 80 K and room temperature, respectively. Due to the low dark current and distinct photoresponse up to room temperature, this device can form high temperature imaging.
Recent progress of quantum annealing
Suzuki, Sei
2015-03-10
We review the recent progress of quantum annealing. Quantum annealing was proposed as a method to solve generic optimization problems. Recently a Canadian company has drawn a great deal of attention, as it has commercialized a quantum computer based on quantum annealing. Although the performance of quantum annealing is not sufficiently understood, it is likely that quantum annealing will be a practical method both on a conventional computer and on a quantum computer.
Quantum Information and Computing
NASA Astrophysics Data System (ADS)
Accardi, L.; Ohya, Masanori; Watanabe, N.
2006-03-01
Preface -- Coherent quantum control of [symbol]-atoms through the stochastic limit / L. Accardi, S. V. Kozyrev and A. N. Pechen -- Recent advances in quantum white noise calculus / L. Accardi and A. Boukas -- Control of quantum states by decoherence / L. Accardi and K. Imafuku -- Logical operations realized on the Ising chain of N qubits / M. Asano, N. Tateda and C. Ishii -- Joint extension of states of fermion subsystems / H. Araki -- Quantum filtering and optimal feedback control of a Gaussian quantum free particle / S. C. Edwards and V. P. Belavkin -- On existence of quantum zeno dynamics / P. Exner and T. Ichinose -- Invariant subspaces and control of decoherence / P. Facchi, V. L. Lepore and S. Pascazio -- Clauser-Horner inequality for electron counting statistics in multiterminal mesoscopic conductors / L. Faoro, F. Taddei and R. Fazio -- Fidelity of quantum teleportation model using beam splittings / K.-H. Fichtner, T. Miyadera and M. Ohya -- Quantum logical gates realized by beam splittings / W. Freudenberg ... [et al.] -- Information divergence for quantum channels / S. J. Hammersley and V. P. Belavkin -- On the uniqueness theorem in quantum information geometry / H. Hasegawa -- Noncanonical representations of a multi-dimensional Brownian motion / Y. Hibino -- Some of future directions of white noise theory / T. Hida -- Information, innovation and elemental random field / T. Hida -- Generalized quantum turing machine and its application to the SAT chaos algorithm / S. Iriyama, M. Ohya and I. Volovich -- A Stroboscopic approach to quantum tomography / A. Jamiolkowski -- Positive maps and separable states in matrix algebras / A. Kossakowski -- Simulating open quantum systems with trapped ions / S. Maniscalco -- A purification scheme and entanglement distillations / H. Nakazato, M. Unoki and K. Yuasa -- Generalized sectors and adjunctions to control micro-macro transitions / I. Ojima -- Saturation of an entropy bound and quantum Markov states / D. Petz -- An
Quantum coherence and quantum phase transitions
Li, Yan-Chao; Lin, Hai-Qing
2016-01-01
We study the connections between local quantum coherence (LQC) based on Wigner-Yanase skew information and quantum phase transitions (QPTs). When applied on the one-dimensional Hubbard, XY spin chain with three-spin interaction, and Su-Schrieffer-Heeger models, the LQC and its derivatives are used successfully to detect different types of QPTs in these spin and fermionic systems. Furthermore, the LQC is effective as the quantum discord (QD) in detecting QPTs at finite temperatures, where the entanglement has lost its effectiveness. We also demonstrate that the LQC can exhibit different behaviors in many forms compared with the QD. PMID:27193057
Lateral Quantum Dots for Quantum Information Processing
NASA Astrophysics Data System (ADS)
House, Matthew Gregory
The possibility of building a computer that takes advantage of the most subtle nature of quantum physics has been driving a lot of research in atomic and solid state physics for some time. It is still not clear what physical system or systems can be used for this purpose. One possibility that has been attracting significant attention from researchers is to use the spin state of an electron confined in a semiconductor quantum dot. The electron spin is magnetic in nature, so it naturally is well isolated from electrical fluctuations that can a loss of quantum coherence. It can also be manipulated electrically, by taking advantage of the exchange interaction. In this work we describe several experiments we have done to study the electron spin properties of lateral quantum dots. We have developed lateral quantum dot devices based on the silicon metal-oxide-semiconductor transistor, and studied the physics of electrons confined in these quantum dots. We measured the electron spin excited state lifetime, which was found to be as long as 30 ms at the lowest magnetic fields that we could measure. We fabricated and characterized a silicon double quantum dot. Using this double quantum dot design, we fabricated devices which combined a silicon double quantum dot with a superconducting microwave resonator. The microwave resonator was found to be sensitive to two-dimensional electrons in the transistor channel, which we measured and characterized. We developed a new method for extracting information from random telegraph signals, which are produced when we observe thermal fluctuations of electrons in quantum dots. The new statistical method, based on the hidden Markov model, allows us to detect spin-dependent effects in such fluctuations even though we are not able to directly observe the electron spin. We use this analysis technique on data from two experiments involving gallium arsenide quantum dots and use it to measure spin-dependent tunneling rates. Our results advance the
Quantum coherence and quantum phase transitions
NASA Astrophysics Data System (ADS)
Li, Yan-Chao; Lin, Hai-Qing
2016-05-01
We study the connections between local quantum coherence (LQC) based on Wigner-Yanase skew information and quantum phase transitions (QPTs). When applied on the one-dimensional Hubbard, XY spin chain with three-spin interaction, and Su-Schrieffer-Heeger models, the LQC and its derivatives are used successfully to detect different types of QPTs in these spin and fermionic systems. Furthermore, the LQC is effective as the quantum discord (QD) in detecting QPTs at finite temperatures, where the entanglement has lost its effectiveness. We also demonstrate that the LQC can exhibit different behaviors in many forms compared with the QD.
Quantum coherence and quantum phase transitions.
Li, Yan-Chao; Lin, Hai-Qing
2016-01-01
We study the connections between local quantum coherence (LQC) based on Wigner-Yanase skew information and quantum phase transitions (QPTs). When applied on the one-dimensional Hubbard, XY spin chain with three-spin interaction, and Su-Schrieffer-Heeger models, the LQC and its derivatives are used successfully to detect different types of QPTs in these spin and fermionic systems. Furthermore, the LQC is effective as the quantum discord (QD) in detecting QPTs at finite temperatures, where the entanglement has lost its effectiveness. We also demonstrate that the LQC can exhibit different behaviors in many forms compared with the QD. PMID:27193057
Wave turbulence in quantum fluids
Kolmakov, German V.; McClintock, Peter Vaughan Elsmere; Nazarenko, Sergey V.
2014-01-01
Wave turbulence (WT) occurs in systems of strongly interacting nonlinear waves and can lead to energy flows across length and frequency scales much like those that are well known in vortex turbulence. Typically, the energy passes although a nondissipative inertial range until it reaches a small enough scale that viscosity becomes important and terminates the cascade by dissipating the energy as heat. Wave turbulence in quantum fluids is of particular interest, partly because revealing experiments can be performed on a laboratory scale, and partly because WT among the Kelvin waves on quantized vortices is believed to play a crucial role in the final stages of the decay of (vortex) quantum turbulence. In this short review, we provide a perspective on recent work on WT in quantum fluids, setting it in context and discussing the outlook for the next few years. We outline the theory, review briefly the experiments carried out to date using liquid H2 and liquid 4He, and discuss some nonequilibrium excitonic superfluids in which WT has been predicted but not yet observed experimentally. By way of conclusion, we consider the medium- and longer-term outlook for the field. PMID:24704881
Superselection rules and quantum protocols
Kitaev, Alexei; Preskill, John; Mayers, Dominic
2004-05-01
We show that superselection rules do not enhance the information-theoretic security of quantum cryptographic protocols. Our analysis employs two quite different methods. The first method uses the concept of a reference system--in a world subject to a superselection rule, unrestricted operations can be simulated by parties who share access to a reference system with suitable properties. By this method, we prove that if an n-party protocol is secure in a world subject to a superselection rule, then the security is maintained even if the superselection rule is relaxed. However, the proof applies only to a limited class of superselection rules, those in which the superselection sectors are labeled by unitary irreducible representations of a compact symmetry group. The second method uses the concept of the format of a message sent between parties--by verifying the format, the recipient of a message can check whether the message could have been sent by a party who performed charge-conserving operations. By this method, we prove that protocols subject to general superselection rules (including those pertaining to non-Abelian anyons in two dimensions) are no more secure than protocols in the unrestricted world. However, the proof applies only to two-party protocols. Our results show in particular that, if no assumptions are made about the computational power of the cheater, then secure quantum bit commitment and strong quantum coin flipping with arbitrarily small bias are impossible in a world subject to superselection rules.
Quantum Plasma Effects in the Classical Regime
Brodin, G.; Marklund, M.; Manfredi, G.
2008-05-02
For quantum effects to be significant in plasmas it is often assumed that the temperature over density ratio must be small. In this paper we challenge this assumption by considering the contribution to the dynamics from the electron spin properties. As a starting point we consider a multicomponent plasma model, where electrons with spin-up and spin-down are regarded as different fluids. By studying the propagation of Alfven wave solitons we demonstrate that quantum effects can survive in a relatively high-temperature plasma. The consequences of our results are discussed.
NASA Astrophysics Data System (ADS)
Bengtsson, Ingemar; Zyczkowski, Karol
2006-05-01
Quantum information theory is at the frontiers of physics, mathematics and information science, offering a variety of solutions that are impossible using classical theory. This book provides an introduction to the key concepts used in processing quantum information and reveals that quantum mechanics is a generalisation of classical probability theory. After a gentle introduction to the necessary mathematics the authors describe the geometry of quantum state spaces. Focusing on finite dimensional Hilbert spaces, they discuss the statistical distance measures and entropies used in quantum theory. The final part of the book is devoted to quantum entanglement - a non-intuitive phenomenon discovered by Schrödinger, which has become a key resource for quantum computation. This richly-illustrated book is useful to a broad audience of graduates and researchers interested in quantum information theory. Exercises follow each chapter, with hints and answers supplied. The first book to focus on the geometry of quantum states Stresses the similarities and differences between classical and quantum theory Uses a non-technical style and numerous figures to make the book accessible to non-specialists
Quantum Digital Signatures without Quantum Memory
NASA Astrophysics Data System (ADS)
Dunjko, Vedran; Wallden, Petros; Andersson, Erika
2014-01-01
Quantum digital signatures (QDSs) allow the sending of messages from one sender to multiple recipients, with the guarantee that messages cannot be forged or tampered with. Additionally, messages cannot be repudiated—if one recipient accepts a message, she is guaranteed that others will accept the same message as well. While messaging with these types of security guarantees are routinely performed in the modern digital world, current technologies only offer security under computational assumptions. QDSs, on the other hand, offer security guaranteed by quantum mechanics. All thus far proposed variants of QDSs require long-term, high quality quantum memory, making them unfeasible in the foreseeable future. Here, we present a QDS scheme where no quantum memory is required, which also needs just linear optics. This makes QDSs feasible with current technology.
Decoherence in quantum mechanics and quantum cosmology
NASA Technical Reports Server (NTRS)
Hartle, James B.
1992-01-01
A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.
EDITORIAL The 17th Central European Workshop on Quantum Optics
NASA Astrophysics Data System (ADS)
Man'ko, Margarita A.
2011-02-01
Although the origin of quantum optics can be traced back to the beginning of the 20th century, when the fundamental ideas about the quantum nature of the interaction between light and matter were put forward, the splendid blossoming of this part of physics began half a century later, after the invention of masers and lasers. It is remarkable that after another half a century the tree of quantum optics is not only very strong and spreading, but all its branches continue to grow, showing new beautiful blossoms and giving very useful fruits. A reflection of this progress has been the origin and development of the series of annual events called the Central European Workshops on Quantum Optics (CEWQO). They started at the beginning of the 1990s as rather small meetings of physicists from a few countries in central-eastern Europe, but in less than two decades they have transformed into important events, gathering 100 to 200 participants from practically all European countries. Moreover, many specialists from other continents like to attend these meetings, since they provide an excellent chance to hear about the latest results and new directions of research. Regarding this, it seems worth mentioning at least some of the most interesting and important areas of quantum optics that have attracted the attention of researchers for the past two decades. One of these areas is quantum information, which over the course of time has become an almost independent area of quantum physics. But it still maintains very close ties with quantum optics. The specific parts of this area are, in particular, quantum computing, quantum communication and quantum cryptography, and the problem of quantitative description of such genuine quantum phenomena as entanglement is one of the central items in the current stream of publications. Theory and experiment related to quantum tomography have also become important to contemporary quantum optics. They are closely related to the subject of so
Quantum discord and Maxwell's demons
Zurek, Wojciech Hubert
2003-01-01
Quantum discord was proposed as an information-theoretic measure of the 'quantumness' of correlations. I show that discord determines the difference between the efficiency of quantum and classical Maxwell's demons - that is, entities that can or cannot measure nonlocal observables or carry out conditional quantum operations - in extracting work from collections of correlated quantum systems.
NASA Astrophysics Data System (ADS)
Lavička, H.; Potoček, V.; Kiss, T.; Lutz, E.; Jex, I.
2011-09-01
We analyze a special class of 1-D quantum walks (QWs) realized using optical multi-ports. We assume non-perfect multi-ports showing errors in the connectivity, i.e. with a small probability the multi-ports can connect not to their nearest neighbor but to another multi-port at a fixed distance - we call this a jump. We study two cases of QW with jumps where multiple displacements can emerge at one timestep. The first case assumes time-correlated jumps (static disorder). In the second case, we choose the positions of jumps randomly in time (dynamic disorder). The probability distributions of position of the QW walker in both instances differ significantly: dynamic disorder leads to a Gaussian-like distribution, while for static disorder we find two distinct behaviors depending on the parity of jump size. In the case of even-sized jumps, the distribution exhibits a three-peak profile around the position of the initial excitation, whereas the probability distribution in the odd case follows a Laplace-like discrete distribution modulated by additional (exponential) peaks for long times. Finally, our numerical results indicate that by an appropriate mapping a universal functional behavior of the variance of the long-time probability distribution can be revealed with respect to the scaled average of jump size.
Quantum radiation of oscillons
NASA Astrophysics Data System (ADS)
Hertzberg, Mark P.
2010-08-01
Many classical scalar field theories possess remarkable solutions: coherently oscillating, localized clumps, known as oscillons. In many cases, the decay rate of classical small amplitude oscillons is known to be exponentially suppressed and so they are extremely long lived. In this work we compute the decay rate of quantized oscillons. We find it to be a power law in the amplitude and couplings of the theory. Therefore, the quantum decay rate is very different to the classical decay rate and is often dominant. We show that essentially all oscillons eventually decay by producing outgoing radiation. In single field theories the outgoing radiation has typically linear growth, while if the oscillon is coupled to other bosons the outgoing radiation can have exponential growth. The latter is a form of parametric resonance: explosive energy transfer from a localized clump into daughter fields. This may lead to interesting phenomenology in the early universe. Our results are obtained from a perturbative analysis, a nonperturbative Floquet analysis, and numerics.
Local quantum ergodic conjecture
NASA Astrophysics Data System (ADS)
Zambrano, Eduardo; Zapfe, W. P. Karel; Ozorio de Almeida, Alfredo M.
2015-04-01
The quantum ergodic conjecture equates the Wigner function for a typical eigenstate of a classically chaotic Hamiltonian with a δ function on the energy shell. This ensures the evaluation of classical ergodic expectations of simple observables, in agreement with Shnirelman's theorem, but this putative Wigner function violates several important requirements. Consequently, we transfer the conjecture to the Fourier transform of the Wigner function, that is, the chord function. We show that all the relevant consequences of the usual conjecture require only information contained within a small (Planck) volume around the origin of the phase space of chords: translations in ordinary phase space. Loci of complete orthogonality between a given eigenstate and its nearby translation are quite elusive for the Wigner function, but our local conjecture stipulates that their pattern should be universal for ergodic eigenstates of the same Hamiltonian lying within a classically narrow energy range. Our findings are supported by numerical evidence in a Hamiltonian exhibiting soft chaos. Heavily scarred eigenstates are remarkable counter-examples of the ergodic universal pattern.
Varying constants quantum cosmology
Leszczyńska, Katarzyna; Balcerzak, Adam; Dabrowski, Mariusz P. E-mail: abalcerz@wmf.univ.szczecin.pl
2015-02-01
We discuss minisuperspace models within the framework of varying physical constants theories including Λ-term. In particular, we consider the varying speed of light (VSL) theory and varying gravitational constant theory (VG) using the specific ansätze for the variability of constants: c(a) = c{sub 0} a{sup n} and G(a)=G{sub 0} a{sup q}. We find that most of the varying c and G minisuperspace potentials are of the tunneling type which allows to use WKB approximation of quantum mechanics. Using this method we show that the probability of tunneling of the universe ''from nothing'' (a=0) to a Friedmann geometry with the scale factor a{sub t} is large for growing c models and is strongly suppressed for diminishing c models. As for G varying, the probability of tunneling is large for G diminishing, while it is small for G increasing. In general, both varying c and G change the probability of tunneling in comparison to the standard matter content (cosmological term, dust, radiation) universe models.
Quantum Nash Equilibria and Quantum Computing
NASA Astrophysics Data System (ADS)
Fellman, Philip Vos; Post, Jonathan Vos
In 2004, At the Fifth International Conference on Complex Systems, we drew attention to some remarkable findings by researchers at the Santa Fe Institute (Sato, Farmer and Akiyama, 2001) about hitherto unsuspected complexity in the Nash Equilibrium. As we progressed from these findings about heteroclinic Hamiltonians and chaotic transients hidden within the learning patterns of the simple rock-paper-scissors game to some related findings on the theory of quantum computing, one of the arguments we put forward was just as in the late 1990's a number of new Nash equilibria were discovered in simple bi-matrix games (Shubik and Quint, 1996; Von Stengel, 1997, 2000; and McLennan and Park, 1999) we would begin to see new Nash equilibria discovered as the result of quantum computation. While actual quantum computers remain rather primitive (Toibman, 2004), and the theory of quantum computation seems to be advancing perhaps a bit more slowly than originally expected, there have, nonetheless, been a number of advances in computation and some more radical advances in an allied field, quantum game theory (Huberman and Hogg, 2004) which are quite significant. In the course of this paper we will review a few of these discoveries and illustrate some of the characteristics of these new "Quantum Nash Equilibria". The full text of this research can be found at http://necsi.org/events/iccs6/viewpaper.php?id-234
Entangled exciton states in quantum dot molecules
NASA Astrophysics Data System (ADS)
Bayer, Manfred
2002-03-01
Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For
Generalized quantum secret sharing
Singh, Sudhir Kumar; Srikanth, R.
2005-01-01
We explore a generalization of quantum secret sharing (QSS) in which classical shares play a complementary role to quantum shares, exploring further consequences of an idea first studied by Nascimento, Mueller-Quade, and Imai [Phys. Rev. A 64, 042311 (2001)]. We examine three ways, termed inflation, compression, and twin thresholding, by which the proportion of classical shares can be augmented. This has the important application that it reduces quantum (information processing) players by replacing them with their classical counterparts, thereby making quantum secret sharing considerably easier and less expensive to implement in a practical setting. In compression, a QSS scheme is turned into an equivalent scheme with fewer quantum players, compensated for by suitable classical shares. In inflation, a QSS scheme is enlarged by adding only classical shares and players. In a twin-threshold scheme, we invoke two separate thresholds for classical and quantum shares based on the idea of information dilution.
Procedural Quantum Programming
NASA Astrophysics Data System (ADS)
Ömer, Bernhard
2002-09-01
While classical computing science has developed a variety of methods and programming languages around the concept of the universal computer, the typical description of quantum algorithms still uses a purely mathematical, non-constructive formalism which makes no difference between a hydrogen atom and a quantum computer. This paper investigates, how the concept of procedural programming languages, the most widely used classical formalism for describing and implementing algorithms, can be adopted to the field of quantum computing, and how non-classical features like the reversibility of unitary transformations, the non-observability of quantum states or the lack of copy and erase operations can be reflected semantically. It introduces the key concepts of procedural quantum programming (hybrid target architecture, operator hierarchy, quantum data types, memory management, etc.) and presents the experimental language QCL, which implements these principles.
NASA Astrophysics Data System (ADS)
Bousso, Raphael; Fisher, Zachary; Leichenauer, Stefan; Wall, Aron C.
2016-03-01
We propose a universal inequality that unifies the Bousso bound with the classical focusing theorem. Given a surface σ that need not lie on a horizon, we define a finite generalized entropy Sgen as the area of σ in Planck units, plus the von Neumann entropy of its exterior. Given a null congruence N orthogonal to σ , the rate of change of Sgen per unit area defines a quantum expansion. We conjecture that the quantum expansion cannot increase along N . This extends the notion of universal focusing to cases where quantum matter may violate the null energy condition. Integrating the conjecture yields a precise version of the Strominger-Thompson quantum Bousso bound. Applied to locally parallel light-rays, the conjecture implies a novel inequality, the quantum null energy condition, a lower bound on the stress tensor in terms of the second derivative of the von Neumann entropy. We sketch a proof of the latter relation in quantum field theory.
Practical quantum digital signature
NASA Astrophysics Data System (ADS)
Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing
2016-03-01
Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.
Quantum Supergroups III. Twistors
NASA Astrophysics Data System (ADS)
Clark, Sean; Fan, Zhaobing; Li, Yiqiang; Wang, Weiqiang
2014-11-01
We establish direct connections at several levels between quantum groups and supergroups associated to bar-consistent anisotropic super Cartan datum by constructing an automorphism (called twistor) in the setting of covering quantum groups. The canonical bases of the halves of quantum groups and supergroups are shown to match under the twistor up to powers of . We further show that the modified quantum group and supergroup are isomorphic over the rational function field adjoined with , by constructing a twistor on the modified covering quantum group. An equivalence of categories of weight modules for quantum groups and supergroups follows. Le plus court chemin entre deux vérités dans le domaine réel passe par le domaine complexe. —Jacques Hadamard
NASA Astrophysics Data System (ADS)
Buchleitner, Andreas; Burghardt, Irene; Cheng, Yuan-Chung; Scholes, Gregory D.; Schwarz, Ulrich T.; Weber-Bargioni, Alexander; Wellens, Thomas
2014-10-01
Technologies which convert light into energy, and vice versa, rely on complex, microscopic transport processes in the condensed phase, which obey the laws of quantum mechanics, but hitherto lack systematic analysis and modeling. Given our much improved understanding of multicomponent, disordered, highly structured, open quantum systems, this ‘focus on’ collection collects cutting-edge research on theoretical and experimental aspects of quantum transport in truly complex systems as defined, e.g., by the macromolecular functional complexes at the heart of photosynthesis, by organic quantum wires, or even photovoltaic devices. To what extent microscopic quantum coherence effects can (be made to) impact on macroscopic transport behavior is an equally challenging and controversial question, and this ‘focus on’ collection provides a setting for the present state of affairs, as well as for the ‘quantum opportunities’ on the horizon.
Complex quantum network geometries: Evolution and phase transitions
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Simulation of Strongly Correlated Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Bilgin, Ersen
In this thesis, we address the problem of solving for the properties of interacting quantum many-body systems in thermal equilibrium. The complexity of this problem increases exponentially with system size, limiting exact numerical simulations to very small systems. To tackle more complex systems, one needs to use heuristic algorithms that approximate solutions to these systems. Belief propagation is one such algorithm that we discuss in chapters 2 and 3. Using belief propagation, we demonstrate that it is possible to solve for static properties of highly correlated quantum many-body systems for certain geometries at all temperatures. In chapter 4, we generalize the multiscale renormalization ansatz to the anyonic setting to solve for the ground state properties of anyonic quantum many-body systems. The algorithms we present in chapters 2, 3, and 4 are very successful in certain settings, but they are not applicable to the most general quantum mechanical systems. For this, we propose using quantum computers as we discuss in chapter 5. The dimension reduction algorithm we consider in chapter 5 enables us to prepare thermal states of any quantum many-body system on a quantum computer faster than any previously known algorithm. Using these thermal states as the initialization of a quantum computer, one can study both static and dynamic properties of quantum systems without any memory overhead.
Secure quantum key distribution
NASA Astrophysics Data System (ADS)
Lo, Hoi-Kwong; Curty, Marcos; Tamaki, Kiyoshi
2014-08-01
Secure communication is crucial in the Internet Age, and quantum mechanics stands poised to revolutionize cryptography as we know it today. In this Review, we introduce the motivation and the current state of the art of research in quantum cryptography. In particular, we discuss the present security model together with its assumptions, strengths and weaknesses. After briefly introducing recent experimental progress and challenges, we survey the latest developments in quantum hacking and countermeasures against it.
Quantum electromechanical systems
NASA Astrophysics Data System (ADS)
Milburn, Gerard J.; Polkinghorne, Rodney
2001-11-01
We discuss the conditions under which electromechanical systems, fabricated on a sub micron scale, require a quantum description. We illustrate the discussion with the example of a mechanical electroscope for which the resonant frequency of a cantilever changes in response to a local charge. We show how such devices may be used as a quantum noise limited apparatus for detection of a single charge or spin with applications to quantum computing.
Simulation on quantum authentication
NASA Astrophysics Data System (ADS)
Dobšíček, M.
2007-03-01
This paper divides into two main parts. The first one discusses authentication of quantum messages. The protocol proposed in [1] for one qubit message-length case is especially considered. The protocol uses a shared EPR pair as a secret key. In the second part, it is shown how such a protocol can be simulated using the Quantum-Octave package. Quantum-Octave is a set of functions for a Matlab-like numerical environment allowing calculations with general density matrices.
Relating quantum discord with the quantum dense coding capacity
Wang, Xin; Qiu, Liang Li, Song; Zhang, Chi; Ye, Bin
2015-01-15
We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.
Relationship between quantum repeating devices and quantum seals
He Guangping
2009-07-15
It is revealed that quantum repeating devices and quantum seals have a very close relationship, thus the theory in one field can be applied to the other. Consequently, it is shown that the fidelity bounds and optimality of quantum repeating devices for decoding quantum information can be violated when they are used for decoding classical information from quantum states and the security bounds for protocols sealing quantum data exist.
Relating quantum discord with the quantum dense coding capacity
NASA Astrophysics Data System (ADS)
Wang, Xin; Qiu, Liang; Li, Song; Zhang, Chi; Ye, Bin
2015-01-01
We establish the relations between quantum discord and the quantum dense coding capacity in ( n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.
Quantum limited quasiparticle mixers at 100 GHz
Mears, C.A; Hu, Qing; Richards, P.L. ); Worsham, A.H.; Prober, D.E. . Dept. of Applied Physics); Raeisaenen, A.V. . Radio Lab.)
1990-09-01
We have made accurate measurements of the noise and gain of superconducting-insulating-superconducting (SIS) mixers employing small area (1{mu}m{sup 2}) Ta/Ta{sub 2}O{sub 5}/Pb{sub 0.9}Bi{sub 0.1} tunnel junctions. We have measured an added mixer noise of 0.61 +/{minus} 0.31 quanta at 95.0 GHz, which is within 25 percent of the quantum limit of 0.5 quanta. We have carried out a detailed comparison between theoretical predictions of the quantum theory of mixing and experimentally measured noise and gain. We used the shapes of I-V curves pumped at the upper and lower sideband frequencies to deduce values of the embedding admittances at these frequencies. Using these admittances, the mixer noise and gain predicted by quantum theory are in excellent agreement with experiment. 21 refs., 9 figs.
Stark echo modulation for quantum memories
NASA Astrophysics Data System (ADS)
Arcangeli, A.; Ferrier, A.; Goldner, Ph.
2016-06-01
Quantum memories for optical and microwave photons provide key functionalities in quantum processing and communications. Here we propose a protocol well adapted to solid-state ensemble-based memories coupled to cavities. It is called Stark echo modulation memory (SEMM) and allows large storage bandwidths and low noise. This is achieved in an echo-like sequence combined with phase shifts induced by small electric fields through the linear Stark effect. We investigated the protocol for rare-earth nuclear spins and found a high suppression of unwanted collective emissions that is compatible with single-photon-level operation. Broadband storage together with high fidelity for the Stark retrieval process is also demonstrated. SEMM could be used to store optical or microwave photons in ions and/or spins. This includes nitrogen-vacancy centers in diamond and rare-earth-doped crystals, which are among the most promising solid-state quantum memories.
Anomalous quantum criticality in an itinerant ferromagnet.
Huang, C L; Fuchs, D; Wissinger, M; Schneider, R; Ling, M C; Scheurer, M S; Schmalian, J; Löhneysen, H V
2015-01-01
The dynamics of continuous phase transitions is governed by the dynamic scaling exponent relating the correlation length and correlation time. For transitions at finite temperature, thermodynamic critical properties are independent of the dynamic scaling exponent. In contrast, at quantum phase transitions where the transition temperature becomes zero, static and dynamic properties are inherently entangled by virtue of the uncertainty principle. Consequently, thermodynamic scaling equations explicitly contain the dynamic exponent. Here we report on thermodynamic measurements (as a function of temperature and magnetic field) for the itinerant ferromagnet Sr1-xCaxRuO3 where the transition temperature becomes zero for x=0.7. We find dynamic scaling of the magnetization and specific heat with highly unusual quantum critical dynamics. We observe a small dynamic scaling exponent of 1.76 strongly deviating from current models of ferromagnetic quantum criticality and likely being governed by strong disorder in conjunction with strong electron-electron coupling. PMID:26348932
Quantum stability of chameleon field theories.
Upadhye, Amol; Hu, Wayne; Khoury, Justin
2012-07-27
Chameleon scalar fields are dark-energy candidates which suppress fifth forces in high density regions of the Universe by becoming massive. We consider chameleon models as effective field theories and estimate quantum corrections to their potentials. Requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound m<0.0073(ρ/10 g cm(-3))(1/3) eV for gravitational-strength coupling whereas fifth force experiments place a lower bound of m>0.0042 eV. An improvement of less than a factor of two in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential. PMID:23006073
Dynamics of quantum excitations in square ice
NASA Astrophysics Data System (ADS)
Castelnovo, Claudio; Kourtis, Stefanos
The study of emergent excitations in classical spin ice has culminated in the discovery of a condensed-matter realization of magnetic monopoles. In spin-ice materials where quantum fluctuations play an important role, excitations acquire quantum properties that promote them to more complicated and exciting objects. To understand these quantum excitations better in a relatively simple context, we construct a toy model of excited square ice and solve it both exactly by tuning it to a Rokhsar-Kivelson point and numerically for small clusters. We furthermore numerically evaluate the dynamic spin structure factor and compare it to effective free-particle theories. Our results offer a useful point of comparison for further theoretical and experimental work. Supported by ICAM branch contributions, EPSRC Grant No. EP/G049394/1, the Helmholtz Virtual Institute ``New States of Matter and Their Excitations'' and the EPSRC NetworkPlus on ``Emergence and Physics far from Equilibrium''.
Association of scattering matrices in quantum networks
Almeida, F.A.G.; Macêdo, A.M.S.
2013-06-15
Algorithms based on operations that associate scattering matrices in series or in parallel (analogous to impedance association in a classical circuit) are developed here. We exemplify their application by calculating the total scattering matrix of several types of quantum networks, such as star graphs and a chain of chaotic quantum dots, obtaining results with good agreement with the literature. Through a computational-time analysis we compare the efficiency of two algorithms for the simulation of a chain of chaotic quantum dots based on series association operations of (i) two-by-two centers and (ii) three-by-three ones. Empirical results point out that the algorithm (ii) is more efficient than (i) for small number of open scattering channels. A direct counting of floating point operations justifies quantitatively the superiority of the algorithm (i) for large number of open scattering channels.
Multiparty quantum secret sharing
Zhang Zhanjun; Li Yong; Man Zhongxiao
2005-04-01
Based on a quantum secure direct communication (QSDC) protocol [Phys. Rev. A 69 052319 (2004)], we propose a (n,n)-threshold scheme of multiparty quantum secret sharing of classical messages (QSSCM) using only single photons. We take advantage of this multiparty QSSCM scheme to establish a scheme of multiparty secret sharing of quantum information (SSQI), in which only all quantum information receivers collaborate can the original qubit be reconstructed. A general idea is also proposed for constructing multiparty SSQI schemes from any QSSCM scheme.
NASA Astrophysics Data System (ADS)
O'Brien, Jeremy
2013-03-01
Of the approaches to quantum computing, photons are appealing for their low-noise properties and ease of manipulation, and relevance to other quantum technologies, including communication, metrology and measurement. We report an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability [6-10]. We address the challenges of scaling up quantum circuits using new insights into how controlled operations can be efficiently realised, demonstrating Shor's algorithm with consecutive CNOT gates and the iterative phase estimation algorithm. We have shown how quantum circuits can be reconfigured, using thermo-optic phase shifters to realise a highly reconfigurable quantum circuit, and electro-optic phase shifters in lithium niobate to rapidly manipulate the path and polarisation of telecomm wavelength single photons. We have addressed miniaturisation using multimode interference architectures to directly implement NxN Hadamard operations, and by using high refractive index contrast materials such as SiOxNy, in which we have implemented quantum walks of correlated photons, and Si, in which we have demonstrated generation of orbital angular momentum states of light. We have incorporated microfluidic channels for the delivery of samples to measure the concentration of a blood protein with entangled states of light. We have begun to address the integration of superconducting single photon detectors and diamond and non-linear single photon sources. Finally, we give an overview of recent work on fundamental aspects of quantum measurement, including a quantum version of Wheeler's delayed choice experiment.
NASA Astrophysics Data System (ADS)
Chen, Jing-Ling; Kwek, L. C.; Oh, C. H.
2002-05-01
In a recent paper [D. A. Meyer, Phys. Rev. Lett. 82, 1052 (1999)], it has been shown that a classical zero-sum strategic game can become a winning quantum game for the player with a quantum device. Nevertheless, it is well known that quantum systems easily decohere in noisy environments. In this paper, we show that if the handicapped player with classical means can delay his action for a sufficiently long time, the quantum version reverts to the classical zero-sum game under decoherence.
Quantum repeated games revisited
NASA Astrophysics Data System (ADS)
Frąckiewicz, Piotr
2012-03-01
We present a scheme for playing quantum repeated 2 × 2 games based on Marinatto and Weber’s approach to quantum games. As a potential application, we study the twice repeated Prisoner’s Dilemma game. We show that results not available in the classical game can be obtained when the game is played in the quantum way. Before we present our idea, we comment on the previous scheme of playing quantum repeated games proposed by Iqbal and Toor. We point out the drawbacks that make their results unacceptable.
Alonso-Alvarez, D.; Alen, B.; Ripalda, J. M.; Llorens, J. M.; Taboada, A. G.; Briones, F.; Roldan, M. A.; Hernandez-Saz, J.; Hernandez-Maldonado, D.; Herrera, M.; Molina, S. I.
2011-04-25
Quantum posts are assembled by epitaxial growth of closely spaced quantum dot layers, modulating the composition of a semiconductor alloy, typically InGaAs. In contrast with most self-assembled nanostructures, the height of quantum posts can be controlled with nanometer precision, up to a maximum value limited by the accumulated stress due to the lattice mismatch. Here, we present a strain compensation technique based on the controlled incorporation of phosphorous, which substantially increases the maximum attainable quantum post height. The luminescence from the resulting nanostructures presents giant linear polarization anisotropy.
NASA Astrophysics Data System (ADS)
Lance, Andrew M.; Symul, Thomas; Bowen, Warwick P.; Sanders, Barry C.; Lam, Ping Koy
2004-05-01
We demonstrate a multipartite protocol that utilizes entanglement to securely distribute and reconstruct a quantum state. A secret quantum state is encoded into a tripartite entangled state and distributed to three players. By collaborating together, a majority of the players can reconstruct the state, whilst the remaining player obtains nothing. This (2,3) threshold quantum state sharing scheme is characterized in terms of fidelity (F), signal transfer (T) and reconstruction noise (V). We demonstrate a fidelity averaged over all reconstruction permutations of 0.73 +/- 0.04, a level achievable only using quantum resources.
Tripartite quantum state sharing.
Lance, Andrew M; Symul, Thomas; Bowen, Warwick P; Sanders, Barry C; Lam, Ping Koy
2004-04-30
We demonstrate a multipartite protocol to securely distribute and reconstruct a quantum state. A secret quantum state is encoded into a tripartite entangled state and distributed to three players. By collaborating, any two of the three players can reconstruct the state, while individual players obtain nothing. We characterize this (2,3) threshold quantum state sharing scheme in terms of fidelity, signal transfer, and reconstruction noise. We demonstrate a fidelity averaged over all reconstruction permutations of 0.73+/-0.04, a level achievable only using quantum resources. PMID:15169193
Tripartite Quantum State Sharing
NASA Astrophysics Data System (ADS)
Lance, Andrew M.; Symul, Thomas; Bowen, Warwick P.; Sanders, Barry C.; Lam, Ping Koy
2004-04-01
We demonstrate a multipartite protocol to securely distribute and reconstruct a quantum state. A secret quantum state is encoded into a tripartite entangled state and distributed to three players. By collaborating, any two of the three players can reconstruct the state, while individual players obtain nothing. We characterize this (2,3) threshold quantum state sharing scheme in terms of fidelity, signal transfer, and reconstruction noise. We demonstrate a fidelity averaged over all reconstruction permutations of 0.73±0.04, a level achievable only using quantum resources.
NASA Astrophysics Data System (ADS)
Barz, Stefanie
2013-05-01
Quantum physics has revolutionized our understanding of information processing and enables computational speed-ups that are unattainable using classical computers. In this talk I will present a series of experiments in the field of photonic quantum computing. The first experiment is in the field of photonic state engineering and realizes the generation of heralded polarization-entangled photon pairs. It overcomes the limited applicability of photon-based schemes for quantum information processing tasks, which arises from the probabilistic nature of photon generation. The second experiment uses polarization-entangled photonic qubits to implement ``blind quantum computing,'' a new concept in quantum computing. Blind quantum computing enables a nearly-classical client to access the resources of a more computationally-powerful quantum server without divulging the content of the requested computation. Finally, the concept of blind quantum computing is applied to the field of verification. A new method is developed and experimentally demonstrated, which verifies the entangling capabilities of a quantum computer based on a blind Bell test.
ERIC Educational Resources Information Center
Lawrence, I.
1996-01-01
Discusses a teaching strategy for introducing quantum ideas into the school classroom using modern devices. Develops the concepts of quantization, wave-particle duality, nonlocality, and tunneling. (JRH)
NASA Astrophysics Data System (ADS)
Costa, Fabio; Shrapnel, Sally
2016-06-01
Causal modelling provides a powerful set of tools for identifying causal structure from observed correlations. It is well known that such techniques fail for quantum systems, unless one introduces ‘spooky’ hidden mechanisms. Whether one can produce a genuinely quantum framework in order to discover causal structure remains an open question. Here we introduce a new framework for quantum causal modelling that allows for the discovery of causal structure. We define quantum analogues for core features of classical causal modelling techniques, including the causal Markov condition and faithfulness. Based on the process matrix formalism, this framework naturally extends to generalised structures with indefinite causal order.
Threshold quantum cryptography
Tokunaga, Yuuki; Okamoto, Tatsuaki; Imoto, Nobuyuki
2005-01-01
We present the concept of threshold collaborative unitary transformation or threshold quantum cryptography, which is a kind of quantum version of threshold cryptography. Threshold quantum cryptography states that classical shared secrets are distributed to several parties and a subset of them, whose number is greater than a threshold, collaborates to compute a quantum cryptographic function, while keeping each share secretly inside each party. The shared secrets are reusable if no cheating is detected. As a concrete example of this concept, we show a distributed protocol (with threshold) of conjugate coding.
NASA Astrophysics Data System (ADS)
Glick, Aaron; Carr, Lincoln; Calarco, Tommaso; Montangero, Simone
2014-03-01
In order to investigate the emergence of complexity in quantum systems, we present a quantum game of life, inspired by Conway's classic game of life. Through Matrix Product State (MPS) calculations, we simulate the evolution of quantum systems, dictated by a Hamiltonian that defines the rules of our quantum game. We analyze the system through a number of measures which elicit the emergence of complexity in terms of spatial organization, system dynamics, and non-local mutual information within the network. Funded by NSF
The roles of quantum correlations in quantum cloning
NASA Astrophysics Data System (ADS)
Zhang, Jun; xiong Wu, Shao-; Yu, Chang-shui
2014-12-01
In this paper, we study the entanglement and quantum discord of the output modes in the unified 1 → 2 state-dependent cloning and probabilistic quantum cloning. The tripartite entanglement among the output modes and the quantum cloning machine is also considered. We find that the roles of the quantum correlations including the bipartite and tripartite entanglement and quantum discord strongly depend on the quantum cloning machines as well as the cloned state. In particular, it is found that this quantum cloning scheme can be realizable even without any quantum correlation.
Entanglement and adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Ahrensmeier, D.
2006-06-01
Adiabatic quantum computation provides an alternative approach to quantum computation using a time-dependent Hamiltonian. The time evolution of entanglement during the adiabatic quantum search algorithm is studied, and its relevance as a resource is discussed.
Automated Design of Quantum Circuits
NASA Technical Reports Server (NTRS)
Williams, C.; Gray, G.
1998-01-01
In order to design a quantum circuit that performs a desired quantum computation, it is necessary to find a decomposition of the unitary matrix that represents that computation in terms of a sequence of quantum gate operations.
Probing for quantum speedup in spin-glass problems with planted solutions
NASA Astrophysics Data System (ADS)
Hen, Itay; Job, Joshua; Albash, Tameem; Rønnow, Troels F.; Troyer, Matthias; Lidar, Daniel A.
2015-10-01
The availability of quantum annealing devices with hundreds of qubits has made the experimental demonstration of a quantum speedup for optimization problems a coveted, albeit elusive goal. Going beyond earlier studies of random Ising problems, here we introduce a method to construct a set of frustrated Ising-model optimization problems with tunable hardness. We study the performance of a D-Wave Two device (DW2) with up to 503 qubits on these problems and compare it to a suite of classical algorithms, including a highly optimized algorithm designed to compete directly with the DW2. The problems are generated around predetermined ground-state configurations, called planted solutions, which makes them particularly suitable for benchmarking purposes. The problem set exhibits properties familiar from constraint satisfaction (SAT) problems, such as a peak in the typical hardness of the problems, determined by a tunable clause density parameter. We bound the hardness regime where the DW2 device either does not or might exhibit a quantum speedup for our problem set. While we do not find evidence for a speedup for the hardest and most frustrated problems in our problem set, we cannot rule out that a speedup might exist for some of the easier, less frustrated problems. Our empirical findings pertain to the specific D-Wave processor and problem set we studied and leave open the possibility that future processors might exhibit a quantum speedup on the same problem set.
Velocity-dependent quantum phase slips in 1D atomic superfluids.
Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara
2016-01-01
Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips. PMID:27188334
Some analytical and intuitive results in the quantum theory of mixing
NASA Astrophysics Data System (ADS)
Feldman, M. J.
1982-01-01
Tucker's (1980) formulas for the conversion loss are generalized to include an arbitrary source susceptance, and the signal reflection gain and intermediate frequency (IF) output admittance are calculated. Certain relationships between the complex elements of the small-signal admittance matrix are presented. The local oscillator (LO) power required for quantum mixing is calculated and found to be related to the gain denominator; this is thought to have remarkable implications for certain quantum mixers at high gain. A particularly simple expression for the conversion gain of an optimized, practical quantum mixer is then developed. Quantum mixing is discussed intuitively, with particular attention given to the origins and effects of the nonlinear quantum reactance.
Velocity-dependent quantum phase slips in 1D atomic superfluids
Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D’Errico, Chiara
2016-01-01
Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips. PMID:27188334
Predicted Quantum Topological Hall Effect and Noncoplanar Antiferromagnetism in K0.5 RhO2
NASA Astrophysics Data System (ADS)
Zhou, Jian; Liang, Qi-Feng; Weng, Hongming; Chen, Y. B.; Yao, Shu-Hua; Chen, Yan-Feng; Dong, Jinming; Guo, Guang-Yu
2016-06-01
The quantum anomalous Hall (QAH) phase is a two-dimensional bulk ferromagnetic insulator with a nonzero Chern number in the presence of spin-orbit coupling (SOC) but in the absence of applied magnetic fields. Associated metallic chiral edge states host dissipationless current transport in electronic devices. This intriguing QAH phase has recently been observed in magnetic impurity-doped topological insulators, albeit, at extremely low temperatures. Based on first-principles density functional calculations, here we predict that layered rhodium oxide K0.5RhO2 in the noncoplanar chiral antiferromagnetic state is an unconventional three-dimensional QAH insulator with a large band gap and a Néel temperature of a few tens of Kelvins. Furthermore, this unconventional QAH phase is revealed to be the exotic quantum topological Hall effect caused by nonzero scalar spin chirality due to the topological spin structure in the system and without the need of net magnetization and SOC.
Quantum variance: A measure of quantum coherence and quantum correlations for many-body systems
NASA Astrophysics Data System (ADS)
Frérot, Irénée; Roscilde, Tommaso
2016-08-01
Quantum coherence is a fundamental common trait of quantum phenomena, from the interference of matter waves to quantum degeneracy of identical particles. Despite its importance, estimating and measuring quantum coherence in generic, mixed many-body quantum states remains a formidable challenge, with fundamental implications in areas as broad as quantum condensed matter, quantum information, quantum metrology, and quantum biology. Here, we provide a quantitative definition of the variance of quantum coherent fluctuations (the quantum variance) of any observable on generic quantum states. The quantum variance generalizes the concept of thermal de Broglie wavelength (for the position of a free quantum particle) to the space of eigenvalues of any observable, quantifying the degree of coherent delocalization in that space. The quantum variance is generically measurable and computable as the difference between the static fluctuations and the static susceptibility of the observable; despite its simplicity, it is found to provide a tight lower bound to most widely accepted estimators of "quantumness" of observables (both as a feature as well as a resource), such as the Wigner-Yanase skew information and the quantum Fisher information. When considering bipartite fluctuations in an extended quantum system, the quantum variance expresses genuine quantum correlations among the two parts. In the case of many-body systems, it is found to obey an area law at finite temperature, extending therefore area laws of entanglement and quantum fluctuations of pure states to the mixed-state context. Hence the quantum variance paves the way to the measurement of macroscopic quantum coherence and quantum correlations in most complex quantum systems.
Exponential rise of dynamical complexity in quantum computing through projections
Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya
2014-01-01
The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once ‘observed’ as outlined above. Conversely, we show that any complex quantum dynamics can be ‘purified’ into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics. PMID:25300692
Controlling quantum information
NASA Astrophysics Data System (ADS)
Landahl, Andrew John
Quantum information science explores ways in which quantum physical laws can be harnessed to control the acquisition, transmission, protection, and processing of information. This field has seen explosive growth in the past several years from progress on both theoretical and experimental fronts. Essential to this endeavor are methods for controlling quantum information. In this thesis, I present three new approaches for controlling quantum information. First, I present a new protocol for continuously protecting unknown quantum states from noise. This protocol combines and expands ideas from the theories of quantum error correction and quantum feedback control. The result can outperform either approach by itself. I generalize this protocol to all known quantum stabilizer codes, and study its application to the three-qubit repetition code in detail via Monte Carlo simulations. Next, I present several new protocols for controlling quantum information that are fault-tolerant. These protocols require only local quantum processing due to the topological properties of the quantum error correcting codes upon which they are built. I show that each protocol's fault-dependence behavior exhibits an order-disorder phase transition when mapped onto an associated statistical-mechanical model. I review the critical error rates of these protocols found by numerical study of the associated models, and I present new analytic bounds for them using a self-avoiding random walk argument. Moreover, I discuss fault-tolerant procedures for encoding, error-correction, computing, and decoding quantum information using these protocols, and calculate the accuracy threshold of fault-tolerant quantum memory for protocols using them. I end by presenting a new class of quantum algorithms that solve combinatorial optimization problems solely by measurement. I compute the running times of these algorithms by establishing an explicit dynamical model for the measurement process. This model, the
Quantum learning and universal quantum matching machine
NASA Astrophysics Data System (ADS)
Sasaki, Masahide; Carlini, Alberto
2002-08-01
Suppose that three kinds of quantum systems are given in some unknown states |f>⊗N, |g1>⊗K, and |g2>⊗K, and we want to decide which template state |g1> or |g2>, each representing the feature of the pattern class C1 or C2, respectively, is closest to the input feature state |f>. This is an extension of the pattern matching problem into the quantum domain. Assuming that these states are known a priori to belong to a certain parametric family of pure qubit systems, we derive two kinds of matching strategies. The first one is a semiclassical strategy that is obtained by the natural extension of conventional matching strategies and consists of a two-stage procedure: identification (estimation) of the unknown template states to design the classifier (learning process to train the classifier) and classification of the input system into the appropriate pattern class based on the estimated results. The other is a fully quantum strategy without any intermediate measurement, which we might call as the universal quantum matching machine. We present the Bayes optimal solutions for both strategies in the case of K=1, showing that there certainly exists a fully quantum matching procedure that is strictly superior to the straightforward semiclassical extension of the conventional matching strategy based on the learning process.
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
Quantum spectral dimension in quantum field theory
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Modesto, Leonardo; Nardelli, Giuseppe
2016-03-01
We reinterpret the spectral dimension of spacetimes as the scaling of an effective self-energy transition amplitude in quantum field theory (QFT), when the system is probed at a given resolution. This picture has four main advantages: (a) it dispenses with the usual interpretation (unsatisfactory in covariant approaches) where, instead of a transition amplitude, one has a probability density solving a nonrelativistic diffusion equation in an abstract diffusion time; (b) it solves the problem of negative probabilities known for higher-order and nonlocal dispersion relations in classical and quantum gravity; (c) it clarifies the concept of quantum spectral dimension as opposed to the classical one. We then consider a class of logarithmic dispersion relations associated with quantum particles and show that the spectral dimension dS of spacetime as felt by these quantum probes can deviate from its classical value, equal to the topological dimension D. In particular, in the presence of higher momentum powers it changes with the scale, dropping from D in the infrared (IR) to a value dSUV ≤ D in the ultraviolet (UV). We apply this general result to Stelle theory of renormalizable gravity, which attains the universal value dSUV = 2 for any dimension D.
Product-State Approximations to Quantum States
NASA Astrophysics Data System (ADS)
Brandão, Fernando G. S. L.; Harrow, Aram W.
2016-02-01
We show that for any many-body quantum state there exists an unentangled quantum state such that most of the two-body reduced density matrices are close to those of the original state. This is a statement about the monogamy of entanglement, which cannot be shared without limit in the same way as classical correlation. Our main application is to Hamiltonians that are sums of two-body terms. For such Hamiltonians we show that there exist product states with energy that is close to the ground-state energy whenever the interaction graph of the Hamiltonian has high degree. This proves the validity of mean-field theory and gives an explicitly bounded approximation error. If we allow states that are entangled within small clusters of systems but product across clusters then good approximations exist when the Hamiltonian satisfies one or more of the following properties: (1) high degree, (2) small expansion, or (3) a ground state where the blocks in the partition have sublinear entanglement. Previously this was known only in the case of small expansion or in the regime where the entanglement was close to zero. Our approximations allow an extensive error in energy, which is the scale considered by the quantum PCP (probabilistically checkable proof) and NLTS (no low-energy trivial-state) conjectures. Thus our results put restrictions on the possible Hamiltonians that could be used for a possible proof of the qPCP or NLTS conjectures. By contrast the classical PCP constructions are often based on constraint graphs with high degree. Likewise we show that the parallel repetition that is possible with classical constraint satisfaction problems cannot also be possible for quantum Hamiltonians, unless qPCP is false. The main technical tool behind our results is a collection of new classical and quantum de Finetti theorems which do not make any symmetry assumptions on the underlying states.
Trading Classical and Quantum Computational Resources
NASA Astrophysics Data System (ADS)
Bravyi, Sergey; Smith, Graeme; Smolin, John A.
2016-04-01
We propose examples of a hybrid quantum-classical simulation where a classical computer assisted by a small quantum processor can efficiently simulate a larger quantum system. First, we consider sparse quantum circuits such that each qubit participates in O (1 ) two-qubit gates. It is shown that any sparse circuit on n +k qubits can be simulated by sparse circuits on n qubits and a classical processing that takes time 2O (k )poly (n ) . Second, we study Pauli-based computation (PBC), where allowed operations are nondestructive eigenvalue measurements of n -qubit Pauli operators. The computation begins by initializing each qubit in the so-called magic state. This model is known to be equivalent to the universal quantum computer. We show that any PBC on n +k qubits can be simulated by PBCs on n qubits and a classical processing that takes time 2O (k )poly (n ). Finally, we propose a purely classical algorithm that can simulate a PBC on n qubits in a time 2α npoly (n ) , where α ≈0.94 . This improves upon the brute-force simulation method, which takes time 2npoly (n ). Our algorithm exploits the fact that n -fold tensor products of magic states admit a low-rank decomposition into n -qubit stabilizer states.
Mean Field Analysis of Quantum Annealing Correction
NASA Astrophysics Data System (ADS)
Matsuura, Shunji; Nishimori, Hidetoshi; Albash, Tameem; Lidar, Daniel A.
2016-06-01
Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and decoding to suppress and correct errors that degrade the performance of quantum annealers in solving optimization problems. While QAC has been experimentally demonstrated to successfully error correct a range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models using a mean-field analysis, specifically the p -body ferromagnetic infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate that for p =2 , where the phase transition is of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p ≥3 , where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection from excitations that occur near the quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our conclusions hold in the presence of disorder.
Topological phases of shaken quantum Ising lattices
NASA Astrophysics Data System (ADS)
Fernández-Lorenzo, Samuel; José García-Ripoll, Juan; Porras, Diego
2016-02-01
The quantum compass model consists of a two-dimensional square spin lattice where the orientation of the spin-spin interactions depends on the spatial direction of the bonds. It has remarkable symmetry properties and the ground state shows topological degeneracy. The implementation of the quantum compass model in quantum simulation setups like ultracold atoms and trapped ions is far from trivial, since spin interactions in those systems typically are independent of the spatial direction. Ising spin interactions, on the contrary, can be induced and controlled in atomic setups with state-of-the art experimental techniques. In this work, we show how the quantum compass model on a rectangular lattice can be simulated by the use of the photon-assisted tunneling induced by periodic drivings on a quantum Ising spin model. We describe a procedure to adiabatically prepare one of the doubly degenerate ground states of this model by adiabatically ramping down a transverse magnetic field, with surprising differences depending on the parity of the lattice size. Exact diagonalizations confirm the validity of this approach for small lattices. Specific implementations of this scheme are presented with ultracold atoms in optical lattices in the Mott insulator regime, as well as with Rydberg atoms.
Some New Aspects of Degenerate Quantum Plasma
Tsintsadze, Nodar L.
2010-12-14
Answers to some salient questions, which arise in quantum plasmas, are given. Starting from the Schroedinger equation for a single particle it is demonstrated how the Wigner-Moyal equation can be derived. It is shown that the Wigner-Moyal type of equation also exists in the classical field theory. As an example, from the Maxwell equations the Wigner-Moyal type of equation is obtained for a dense photon gas, which is classical, concluding that the Wigner-Moyal type of equation can be derived for any system, classical or quantum. A new type of quantum kinetic equations are presented. These novel kinetic equations allows to obtain a set of quantum hydrodynamic equations, which is impossible to derive by the Wigner-Moyal equation. The propagation of small perturbations and instabilities of these perturbations are then discussed, presenting new modes of quantum plasma waves. In the case of low frequency oscillations with ions, a new Bogolyubov type of spectrum is found. Furthermore, the Korteweg-de Vries (KdV) equation is derived and the contribution of the Madelung term in the formation of the KdV solitons is discussed.
Projected Dipole Model for Quantum Plasmonics
NASA Astrophysics Data System (ADS)
Yan, Wei; Wubs, Martijn; Asger Mortensen, N.
2015-09-01
Quantum effects of plasmonic phenomena have been explored through ab initio studies, but only for exceedingly small metallic nanostructures, leaving most experimentally relevant structures too large to handle. We propose instead an effective description with the computationally appealing features of classical electrodynamics, while quantum properties are described accurately through an infinitely thin layer of dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer—the only introduced parameter—is mapped from the free-electron distribution near the metal surface as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all. The model can be applied in two and three dimensions to any system size that is tractable within classical electrodynamics, while capturing quantum plasmonic aspects of nonlocal response and a finite work function with TDDFT-level accuracy. Applying the theory to dimers, we find quantum corrections to the hybridization even in mesoscopic dimers, as long as the gap itself is subnanometric.
Mean Field Analysis of Quantum Annealing Correction.
Matsuura, Shunji; Nishimori, Hidetoshi; Albash, Tameem; Lidar, Daniel A
2016-06-01
Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and decoding to suppress and correct errors that degrade the performance of quantum annealers in solving optimization problems. While QAC has been experimentally demonstrated to successfully error correct a range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models using a mean-field analysis, specifically the p-body ferromagnetic infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate that for p=2, where the phase transition is of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p≥3, where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection from excitations that occur near the quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our conclusions hold in the presence of disorder. PMID:27314705
Projected Dipole Model for Quantum Plasmonics.
Yan, Wei; Wubs, Martijn; Asger Mortensen, N
2015-09-25
Quantum effects of plasmonic phenomena have been explored through ab initio studies, but only for exceedingly small metallic nanostructures, leaving most experimentally relevant structures too large to handle. We propose instead an effective description with the computationally appealing features of classical electrodynamics, while quantum properties are described accurately through an infinitely thin layer of dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer-the only introduced parameter-is mapped from the free-electron distribution near the metal surface as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all. The model can be applied in two and three dimensions to any system size that is tractable within classical electrodynamics, while capturing quantum plasmonic aspects of nonlocal response and a finite work function with TDDFT-level accuracy. Applying the theory to dimers, we find quantum corrections to the hybridization even in mesoscopic dimers, as long as the gap itself is subnanometric. PMID:26451583
Weyl, Dirac and Maxwell Quantum Cellular Automata
NASA Astrophysics Data System (ADS)
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro
2015-10-01
Recent advances on quantum foundations achieved the derivation of free quantum field theory from general principles, without referring to mechanical notions and relativistic invariance. From the aforementioned principles a quantum cellular automata (QCA) theory follows, whose relativistic limit of small wave-vector provides the free dynamics of quantum field theory. The QCA theory can be regarded as an extended quantum field theory that describes in a unified way all scales ranging from an hypothetical discrete Planck scale up to the usual Fermi scale. The present paper reviews the automaton theory for the Weyl field, and the composite automata for Dirac and Maxwell fields. We then give a simple analysis of the dynamics in the momentum space in terms of a dispersive differential equation for narrowband wave-packets. We then review the phenomenology of the free-field automaton and consider possible visible effects arising from the discreteness of the framework. We conclude introducing the consequences of the automaton dispersion relation, leading to a deformed Lorentz covariance and to possible effects on the thermodynamics of ideal gases.
Quasi-autonomous quantum thermal machines and quantum to classical energy flow
NASA Astrophysics Data System (ADS)
Frenzel, Max F.; Jennings, David; Rudolph, Terry
2016-02-01
There are both practical and foundational motivations to consider the thermodynamics of quantum systems at small scales. Here we address the issue of autonomous quantum thermal machines that are tailored to achieve some specific thermodynamic primitive, such as work extraction in the presence of a thermal environment, while having minimal or no control from the macroscopic regime. Beyond experimental implementations, this provides an arena in which to address certain foundational aspects such as the role of coherence in thermodynamics, the use of clock degrees of freedom and the simulation of local time-dependent Hamiltonians in a particular quantum subsystem. For small-scale systems additional issues arise. Firstly, it is not clear to what degree genuine ordered thermodynamic work has been extracted, and secondly non-trivial back-actions on the thermal machine must be accounted for. We find that both these aspects can be resolved through a judicious choice of quantum measurements that magnify thermodynamic properties up the ladder of length-scales, while simultaneously stabilising the quantum thermal machine. Within this framework we show that thermodynamic reversibility is obtained in a particular Zeno limit, and finally illustrate these concepts with a concrete example involving spin systems.
Quantum cellular automaton theory of light
NASA Astrophysics Data System (ADS)
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo
2016-05-01
We present a quantum theory of light based on the recent derivation of Weyl and Dirac quantum fields from general principles ruling the interactions of a countable set of abstract quantum systems, without using space-time and mechanics (D'Ariano and Perinotti, 2014). In a Planckian interpretation of the discreteness, the usual quantum field theory corresponds to the so-called relativistic regime of small wave-vectors. Within the present framework the photon is a composite particle made of an entangled pair of free Weyl Fermions, and the usual Bosonic statistics is recovered in the low photon density limit, whereas the Maxwell equations describe the relativistic regime. We derive the main phenomenological features of the theory in the ultra-relativistic regime, consisting in a dispersive propagation in vacuum, and in the occurrence of a small longitudinal polarization, along with a saturation effect originated by the Fermionic nature of the photon. We then discuss whether all these effects can be experimentally tested, and observe that only the dispersive effects are accessible to the current technology via observations of gamma-ray bursts.
Biosynthesis of cadmium sulphide quantum semiconductor crystallites
NASA Astrophysics Data System (ADS)
Dameron, C. T.; Reese, R. N.; Mehra, R. K.; Kortan, A. R.; Carroll, P. J.; Steigerwald, M. L.; Brus, L. E.; Winge, D. R.
1989-04-01
NANOMETRE-SCALE semiconductor quantum crystallites exhibit size-dependent and discrete excited electronic states which occur at energies higher than the band gap of the corresponding bulk solid1-4. These crystallites are too small to have continuous energy bands, even though a bulk crystal structure is present. The onset of such quantum properties sets a fundamental limit to device miniaturization in microelectronics5. Structures with either one, two or all three dimensions on the nanometer scale are of particular interest in solid state physics6. We report here our discovery of the biosynthesis of quantum crystallites in yeasts Candida glabrata and Schizosaccharomyces pombe, cultured in the presence of cad-mium salts. Short chelating peptides of general structure (γ-Glu-Cys)n-Gly control the nucleation and growth of CdS crystallites to peptide-capped intracellular particles of diameter 20 Å. These quantum CdS crystallites are more monodisperse than CdS par-ticles synthesized chemically. X-ray data indicate that, at this small size, the CdS structure differs from that of bulk CdS and tends towards a six-coordinate rock-salt structure.
Reconstructing quantum states from local data
NASA Astrophysics Data System (ADS)
Holzaepfel, Milan; Cramer, Marcus; Datta, Nilanjana; Plenio, Martin
Quantum spin chains are systems of extreme complexity, in the sense that the number of parameters that fully characterize the state of a quantum spin chain grows exponentially with the number of spins. Yet, physically relevant subsets of all quantum states can be well-approximated by a small number of parameters using well-known methods such as Matrix Product States (MPS). The structure of such states can guarantee reconstruction of the state from the measurement of a small number of simple observables, merely growing linearly with the number of spins. We compare two classes of quantum states which admit efficient reconstruction from incomplete, local information: States which have vanishing conditional mutual information, and the recently introduced class of states with non-decreasing operator Schmidt rank under partial traces which includes generic Matrix Product Operators (MPO). It is well-known that Rényi entropies can be used to characterize the bond dimension of a pure MPS, i.e. the number of parameters required to describe the state. For mixed MPOs, no similar relation is known. Our comparison provides a first relation between the mutual information and the bond dimension of an MPO representation of a mixed state.
Los Alamos Quantum Dots for Solar, Display Technology
Klimov, Victor
2015-04-13
Quantum dots are ultra-small bits of semiconductor matter that can be synthesized with nearly atomic precision via modern methods of colloidal chemistry. Their emission color can be tuned by simply varying their dimensions. Color tunability is combined with high emission efficiencies approaching 100 percent. These properties have recently become the basis of a new technology – quantum dot displays – employed, for example, in the newest generation of e-readers and video monitors.
Invisibility of quantum systems to tunneling of matter waves
Cordero, Sergio; Garcia-Calderon, Gaston
2009-05-15
We show that an appropriate choice of the potential parameters in one-dimensional quantum systems allows for unity transmission of the tunneling particle at all incident tunneling energies, except at controllable exceedingly small incident energies. The corresponding dwell time and the transmission amplitude are indistinguishable from those of a free particle in the unity-transmission regime. This implies the possibility of designing quantum systems that are invisible to tunneling by a passing wave packet.
Time independent universal computing with spin chains: quantum plinko machine
NASA Astrophysics Data System (ADS)
Thompson, K. F.; Gokler, C.; Lloyd, S.; Shor, P. W.
2016-07-01
We present a scheme for universal quantum computing using XY Heisenberg spin chains. Information is encoded into packets propagating down these chains, and they interact with each other to perform universal quantum computation. A circuit using g gate blocks on m qubits can be encoded into chains of length O({g}3+δ {m}3+δ ) for all δ \\gt 0 with vanishingly small error.
Quantum supersymmetric Bianchi IX cosmology
NASA Astrophysics Data System (ADS)
Damour, Thibault; Spindel, Philippe
2014-11-01
effect" between small-volume universes and large-volume ones, and to a possible reduction of the continuous spectrum to a discrete spectrum of quantum states looking like excited versions of the Planckian-size universes described by the discrete states at fermionic levels NF=0 and 1.