Science.gov

Sample records for albemarle-pamlico estuary watershed

  1. Evaluating Ecosystem Services Provided by the Albemarle-Pamlico (NC) Estuary System in Response to Watershed Nitrogen Management

    EPA Science Inventory

    The Albemarle-Pamlico Watershed and Estuary Study (APWES) is part of the USEPA Ecosystem Services Research Program. The mission of the APWES is to develop ecosystem services science to inform watershed and coastal management decisions in the Albemarle-Pamlico watershed and estuar...

  2. Ecosystem Services Provided by the Albemarle-Pamlico Watershed and Estuarine System

    EPA Science Inventory

    One of the most important water quality issues in the Albemarle-Pamlico watershed and estuary is related to management of reactive nitrogen (Nr). Other important issues include wetland restoration to ameliorate coastal eutrophication, interbasin transfers of water and effects on ...

  3. Ecosystem Services Research Program (ESRP) Albemarle-Pamlico Watershed and Estuary Study (APWES) Research Plan

    EPA Science Inventory

    The APWES is a place-based study for the U.S. EPA Ecosystem Services Research Program conducted through the collaboration across the EPA Office of Research and Development. The mission of the APWES is to develop ecosystem services science to inform watershed and coastal manageme...

  4. MERIS Retrieval of Water Quality Components in the Turbid Albemarle-Pamlico Sound Estuary, USA

    EPA Science Inventory

    Two remote-sensing optical algorithms for the retrieval of the water quality components (WQCs) in the Albemarle-Pamlico Estuarine System (APES) have been developed and validated for chlorophyll a (Chl) concentration. Both algorithms are semiempirical because they incorporate some...

  5. Susceptibility of east coast estuaries to nutrient discharges: Albemarle/Pamlico sound to Biscayne Bay. Summary report

    SciTech Connect

    Quinn, H.; Tolson, J.P.; Klein, C.J.; Orlando, S.P.; Alexander, C.

    1989-06-01

    The report is the first in a series being developed to assist US EPA implement its Near Coastal Waters and National Estuary Programs. It summarizes estimates of the relative susceptibility and status of 17 estuaries on the East Coast from North Carolina through Florida with respect to nutrient-related pollution. The information in the report is intended to increase understanding of coastal environmental problems and to serve as a screening tool for coastal resource decision-making. A 1-page summary is included in the report for each of the 17 estuaries in the East Coast region from Albemarle/Pamlico Sound through Biscayne Bay. Each summary contains data on significant physical and hydrologic features, estimations of nutrient loading, pollution susceptibility, and nutrient concentrations, along with a narrative to assist the reader in interpreting the data.

  6. MERIS Retrieval of Water Quality Components in the Turbid Albemarle-Pamlico Sound Estuary, USA

    EPA Science Inventory

    Biological, geophysical and optical field observations carried out in the Neuse River Estuary, North Carolina, USA were used to develop a semi-empirical optical algorithm for assessing inherent optical properties associated with water quality components (WQCs). Three wavelengths ...

  7. Modeling hydrodynamics of large lagoons: Insights from the Albemarle-Pamlico Estuarine System

    NASA Astrophysics Data System (ADS)

    Clunies, Gregory J.; Mulligan, Ryan P.; Mallinson, David J.; Walsh, J. P.

    2017-04-01

    Large estuaries are influenced by winds over adjacent coastal ocean and land areas causing significant spatial variations in water levels, currents and surface waves. In this study we apply a numerical model to simulate hydrodynamics and waves in the Albemarle-Pamlico Estuarine System, a large and shallow back-barrier basin in eastern North Carolina, over a one-month study period (September 2008) with observations from several storm wind events of differing time scales and directions. Model performance is evaluated for a spatially varying wind field from the North American Regional Reanalysis (NARR) dataset in comparison to spatially uniform forcing from wind observations at offshore, coastal and land-based sites across the region. A spatially uniform wind field from offshore winds observations results in statistically better hydrodynamic simulations of water levels (R = 0.88) in the estuaries than NARR (R = 0.48) after comparison with measurements and indicates the importance of strong marine winds over most of the estuary surface area. The influence of a prominent bathymetric feature on hydrodynamics in Pamlico Sound is also investigated by numerically removing a 30 km long and 2-3 m deep shoal from the model grid and replacing it with an idealized depth of 6 m. The removal of the shoal increases water level setup by 14% at the estuarine shoreline, decreases current magnitudes by up to 40% in the shoal region and increases significant wave heights locally by up to 25% in the sound, indicating the importance of this relict geomorphic feature as a major control on the hydrodynamic response of the system during wind events. The results suggest that increasing the water depth over the shoal can lead to higher storm surges and wave heights with the possibility of increased inundation and erosion of the back-barrier and mainland coastal regions. The complex bathymetry and marine wind influence are critical input conditions for modeling large and shallow lagoonal

  8. National water-quality assessment program : the Albemarle- Pamlico drainage

    USGS Publications Warehouse

    Lloyd, O.B.; Barnes, C.R.; Woodside, M.D.

    1991-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. Long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. In meeting these goals, the program will produce a wealth of water quality information that will be useful to policy makers and managers at the national, State, and local levels. Study-unit investigations constitute a major component of the NAWQA program, forming the principal building blocks on which national-level assessment activities are based. The 60 study-unit investigations that make up the program are hydrologic systems that include parts of most major river basins and aquifer systems. These study units cover areas of 1,200 to more than 65,000 square miles and incorporate about 60 to 70 percent of the Nation's water use and population served by public water supply. In 1991, the Albemarle-Pamlico drainage was among the first 20 NAWQA study units selected for study under the full-scale implementation plan. The Albemarle-Pamlico drainage study will examine the physical, chemical, and biological aspects of water quality issues in a coordinated investigation of surface water and ground water in the Albemarle-Pamlico drainage basin. The quantity and quality of discharge from the Albemarle-Pamlico drainage basin contribute to some water quality problems in the biologically sensitive waters of Albemarle and Pamlico Sounds. A retrospective analysis of existing water quality data will precede a 3-year period of intensive data-collection and analysis activities. The data resulting from this study and the improved understanding of important processes and issues in the upstream part of the study unit will enhance understanding of the quality of

  9. Land use and nutrient concentrations and yields in selected streams in the Albemarle-Pamlico drainage basin, North Carolina and Virginia

    USGS Publications Warehouse

    Woodside, M.D.; Simerl, B.R.

    1995-01-01

    Because nutrients can cause water-quaiity degradation, a major focus of NAWQA is to investigate effects of nutrients on surface- and ground-water quality. This report summarizes surface-water quality study design and land uses in the NAWQA Albemarle-Pamlico Drainage Basin study unit, one of 60 study units nationwide, and shows how nutrient concentrations are related to land uses at selected basins in the study unit. The study area encompasses about 28,000 square miles (mi2) in central and eastern North Carolina and southern Virginia. The major river basins in the Albemarle-Pamlico Drainage Basin are the Chowan, Roanoke, Tar, and Neuse. The barrier islands, estuaries, and the AlbemarIe, Pamlico, and associated sounds are not included in the study-unit area. The Albemarle-Pamlico Drainage Basin covers four physiographic provinces:Valley and Ridge, Blue Ridge, Piedmont, and Coastal Plain. About 50 percent of the land in the study areais forested, 30 percent is cropland, 15 percent is wetland, and 5 percent is developed. The population--of the study unit is about 3 million people.

  10. Nutrient mass balance for the Albemarle-Pamlico Drainage Basin, North Carolina and Virginia, 1990

    USGS Publications Warehouse

    McMahon, G.; Woodside, M.D.

    1997-01-01

    A 1990 nitrogen and phosphorus mass balance calculated for eight National Stream Quality Accounting Network (NASQAN) basins in the Albemarle-Pamlico Drainage Basin indicated the importance of agricultural nonpoint sources of nitrogen and phosphorus and watershed nitrogen retention and processing capabilities. Basin total nitrogen and phosphorus input estimates were calculated for atmospheric deposition (which averaged 27 percent of total nitrogen inputs and 22 percent of total phosphorus inputs); crop fertilizer (27 and 25 percent); animal-waste (22 and 50 percent, respectively); point sources (3 percent each of total nitrogen and total phosphorus inputs); and biological nitrogen fixation (21 percent of total nitrogen inputs). Highest in-stream nitrogen and phosphorus loads were measured in predominantly agricultural drainage areas. Intermediate loads were observed in mixed agricultural/urban drainage areas; the lowest loads were measured in mixed agricultural/forested drainage areas. The difference between the sum of the nutrient input categories and the sum of the instream nutrient loads and crop-harvest nutrient removal was assigned to a residual category for the basin. The residual category averaged 51 percent of total nitrogen inputs and 54 percent of total phosphorus inputs.

  11. Effect of environmental setting on sediment, nitrogen, and phosphorus concentrations in Albemarle-Pamlico drainage basin, North Carolina and Virginia, USA

    USGS Publications Warehouse

    McMahon, G.; Harned, D.A.

    1998-01-01

    Environmental settings were defined, through an overlay process, as areas of coincidence between categories of three mapped variables - land use, surficial geology, and soil drainage characteristics. Expert judgment was used in selecting factors thought to influence sediment and nutrient concentrations in the Albemarle-Pamlico drainage area. This study's findings support the hypothesis that environmental settings defined using these three variables can explain variations in the concentration of certain sediment and nutrient constituents. This finding underscores the importance of developing watershed management plans that account for differences associated with the mosaic of natural and anthropogenic factors that define a basin's environmental setting. At least in the case of sediment and nutrients in the Albemarle-Pamlico region, a watershed management plan that focuses only on anthropogenic factors, such as point-source discharges, and does not account for natural characteristics of a watershed and the influences of these characteristics on water quality, may lead to water-quality goals that are over- or underprotective of key environmental features and to a misallocation of the resources available for environmental protection.

  12. An Integrated Modeling Framework Forcasting Ecosystem Services--Application to the Albemarle Pamlico Basins, NC and VA (USA) and Beyond

    EPA Science Inventory

    We demonstrate an Integrated Modeling Framework that predicts the state of freshwater ecosystem services within the Albemarle-Pamlico Basins. The Framework consists of three facilitating technologies: Data for Environmental Modeling (D4EM) that automates the collection and standa...

  13. An Integrated Modeling Framework Forecasting Ecosystem Services: Application to the Albemarle Pamlico Basins, NC and VA (USA)

    EPA Science Inventory

    We demonstrate an Integrated Modeling Framework that predicts the state of freshwater ecosystem services within the Albemarle-Pamlico Basins. The Framework consists of three facilitating technologies: Data for Environmental Modeling (D4EM) that automates the collection and standa...

  14. Water quality in the Albemarle-Pamlico drainage basin, North Carolina and Virginia, 1992-95

    USGS Publications Warehouse

    Spruill, Timothy B.; Harned, Douglas A.; Ruhl, Peter M.; Eimers, Jo Leslie; McMahon, Gerard; Smith, Kelly E.; Galeone, David R.; Woodside, Michael D.

    1998-01-01

    The NAWQA Program is assessing the water-quality conditions of more than 50 of the Nation's largest river basins and aquifers, known as Study Units. Collectively, these Study Units cover about one-half of the United States and include sources of drinking water used by about 70 percent of the U.S. population. Comprehensive assessments of about one-third of the Study Units are ongoing at a given time. Each Study Unit is scheduled to be revisited every decade to evaluate changes in water-quality conditions. NAWQA assessments rely heavily on existing information collected by the USGS and many other agencies as well as the use of nationally consistent study designs and methods of sampling and analysis. Such consistency simultaneously provides information about the status and trends in water-quality conditions in a particular stream or aquifer and, more importantly, provides the basis to make comparisons among watersheds and improve our understanding of the factors that affect water-quality conditions regionally and nationally. This report is intended to summarize major findings that emerged between 1992 and 1995 from the water-quality assessment of the Albemarle-Pamlico Drainage Study Unit and to relate these findings to water-quality issues of regional and national concern. The information is primarily intended for those who are involved in water-resource management. Indeed, this report addresses many of the concerns raised by regulators, water-utility managers, industry representatives, and other scientists, engineers, public officials, and members of stakeholder groups who provided advice and input to the USGS during this NAWQA Study-Unit investigation. Yet, the information contained here may also interest those who simply wish to know more about the quality of water in the rivers and aquifers in the area where they live.

  15. Shoreline Erosion in the Albemarle-Pamlico Estuarine System, Northeastern North Carolina

    NASA Astrophysics Data System (ADS)

    Murphy, M. A.; Riggs, S. R.

    2002-12-01

    Computer analysis of aerial photographic series demonstrates that the estuarine shorelines within the North Carolina Albemarle-Pamlico coastal system are eroding at 2-3 times greater rates than previous studies reported. Specific rates and amounts of shoreline recession vary tremendously depending upon local variables including: 1) shoreline type, geometry, and composition; 2) geographic location, size, and shape of associated estuary; 3) frequency, intensity, and fetch of storms; 4) type and abundance of associated vegetation; and locally 5) boat wakes. Organic or wetland shorelines (marsh and swamp forest) comprise approximately 62% of the estuarine margins in NE NC, whereas sediment banks (low, high, and bluff) constitute about 38%. The goals of this study were to determine the rates of recession for different shoreline types and the role of local variables in the erosion process. Shorelines were mapped using high precision GPS mapping techniques, digital orthographic quarter quadrangles, and other georeferenced aerial photographs from the early 1950's to 2001. Shoreline change was then calculated for 20 estuarine study sites. Field mapping of each site provided data on shoreline characteristics and erosional processes. Data synthesis suggests mean annual shoreline erosion rates are significantly different for shoreline types as follows: 1) marshes = 7.4 ft/yr (range 2.7-17.0 ft/yr), low sediment banks = 5.0 ft/yr (range 1.0-12.0 ft/yr), bluff sediment banks = 5.0 ft/yr (range = 3.9-6.0 ft/yr), swamp forests = 3.0 ft/yr (range = 1.7-4.0 ft/yr), high sediment banks = 2.8 ft/yr (range = 2.7-2.9 ft/yr). Modified shorelines continue to erode, however at lower mean annual rates that range from 0.9-2.7 ft/yr. Locally, specific marsh shorelines have eroded at rates up to 100 ft/yr during particularly stormy periods. Thus, about 1166 acres of land are lost each year along the 1593 miles of mapped estuarine shoreline in NE NC. If these erosion rates are representative of

  16. Water-quality trends and basin activities and characteristics for the Albemarle-Pamlico estuarine system, North Carolina and Virginia

    USGS Publications Warehouse

    Harned, D.A.; Davenport, M.S.

    1990-01-01

    The Albemarle-Pamlico estuarine system has a total basin area of nearly 31,000 square miles and includes the Neuse, Tar, Pamlico, Roanoke, Chowan, and Alligator Rivers, and the Albemarle, Pamlico, Currituck, Croatan, and Roanoke Sounds. Albemarle Sound receives the greatest freshwater inflow of all the sounds in the estuarine system. Inflow to this sound averages about 13,500 cubic feet per second. Inflow to Pamlico Sound from the Pamlico River averages around 5,400 cubic feet per second, and average inflow into the Neuse River estuary is about 6,100 cubic feet per second. Approximately one-half of the inflow into the system is from ground-water discharge. The Neuse River basin has had the greatest increases in wastewater discharges (650 percent since the 1950's) and had the greatesttotal wastewater discharges of any of the basins in the study area, averaging about 200 million gallons per day in 1988. Wastewater discharges into the Neuse and Tar Rivers were nearly equal to the 7-day, 10-year low flows for these rivers. Land-use data compiled in 1973 for the lower parts of the Neuse River basin and lower part of the Tar-Pamlico River basin indicate that 25 percent of the area was evergreen forest, 25 percent was forested wetlands, 20 percent was cropland and pasture, 12 percent was mixed forest, 10 percent was nonforested wetland, and 4 percent was urban. The amount of nonforested wetland in the part of the study area along the Outer Banks declined 6.5 percent from 1973 to 1983. The numbers of farms and acreage in agricultural use in the study area have declined since the 1920's. A decrease of more than 60 percentin the number of farms was shown between the early 1950's and 1982. Fertilizer sales increased through the 1970's, but declined in the 1980's. Manufacturing employment has increased in the last 30 years, while agricultural employment has decreased. Data from seven stations of the U.S. Geological Survey National Stream Quality Accounting Network were used to

  17. THE INFLUENCE OF ECOLOGICAL AND ANTHROPOGENIC FACTORS ON PATTERNS IN THE FISH COMMUNITIES OF THE ALBEMARLE-PAMLICO BASIN

    EPA Science Inventory

    Data on fish abundance from the EPA, USGS, and states of North Carolina and Virginia were analyzed for patterns in the fish communities of the Albemarle-Pamlico Basin. The basin covers 72,500 square kilometers and five ecoregions in Virginia and North Carolina, including the wat...

  18. The U. S. Geological Survey's Albemarle-Pamlico National Water-Quality Assessment Study; background and design

    USGS Publications Warehouse

    Spruill, T.B.; Harned, Douglas A.; McMahon, Gerard

    1995-01-01

    The Albemarle-Pamlico Study Unit is one of 20 National Water-Quality Assessment (NAWQA) studies begun in 1991 by the U.S. Geological Survey (USGS) to assess the Nation's water quality. One of the missions of the USGS is to assess the quantity and quality of the Nation's water resources. The NAWQA program was established to help accomplish this mission. The Albemarle-Pamlico Study Unit, located in Virginia and North Carolina, drains an area of about 28,000 square miles. Four major rivers, the Chowan, the Roanoke, the Tar-Pamlico and the Neuse, all drain into the Albemarle-Pamlico Sound in North Carolina. Four physiographic regions (areas of homogeneous climatic, geologic, and biological characteristics), the Valley and Ridge, Blue Ridge, Piedmont and Coastal Plain Physiographic Provinces are included within the Albemarle-Pamlico Study Unit. Until 1991, there was no single program that could answer the question, 'Are the Nation's ground and surface waters getting better, worse, or are they staying the same?' A program was needed to evaluate water quality by using standard techniques to allow assessment of water quality at local, regional, and national scales. The NAWQA Program was implemented to answer questions about the Nation's water quality using consistent and comparable methods. A total of 60 basins, or study units, will be in place by 1997 to assess the Nation's water quality.

  19. Creating a Population of 12-Digit Headwater Basins within the Albemarle-Pamlico Estuary System

    EPA Science Inventory

    Ecological research within the US Environmental Protection Agency's Office of Research and Development has recently changed its focus to quantifying and mapping ecosystem services provided to humans. Our local research group has been charged to develop a regional assessment of se...

  20. The Response of Fish Habitat to Environmental Flows in the Albemarle-Pamlico Watershed

    EPA Science Inventory

    The provision of habitat for fish is an important service provided by rivers. Future land development and climate change will likely alter several aspects of habitat, including flow. We have used hierarchical models to predict the presence of 25 fish species within the Albemarle-...

  1. Micropetrographic characteristics of peats from modern coal-forming environments in Okefenokee Swamp, Georgia and Albemarle-Pamlico Peninsular Swamps, North Carolina

    SciTech Connect

    Corvinus, D.A.

    1982-01-01

    The Okefenokee Swamp, over 400,000 acres, is a swamp-marsh complex dominated by Taxodium-swamp vegetaion on its west side and Nymphaea-marsh vegetation onits east side. The Albemarle-Pamlico Peninsular Swamps primarily support a pocosin-bay vegetation. The Taxodium-dominated peats of the Okefenokee are more similar botanically to the Albemarle-Pamlico bay peats than are the Okefenokee Nymphaea-dominated peats. Some petrographic characteristics are common to all three peat types. The majority of cell walls in the peat exhibit colors (yellow to orange to red) which they did not display in their living state. This is believed to be from impregnation by the various cell fillings present in the peats. Unoxidized fragmented (granular) material in all three peat types usually occurs in larger amounts than oxidized (darkened) material. In Taxodium-dominated and bay peats the fragmented matrix is also usually more prevalent than the preserved material (intact cell walls and cell fillings). On the other hand, preserved material is most common in Nymphaea-dominated peats. It is believed that the majority of fragmented material is derived from the surface litter and that swamp vegetation contributes more surface litter than does marsh vegetation.

  2. Water-quality assessment of the Albemarle-Pamlico Basin, North Carolina and Virginia; chemical analyses of organic compounds and inorganic constituents in streambed sediment, 1992-93

    USGS Publications Warehouse

    Woodside, M.D.; Simerl, B.R.

    1996-01-01

    In 1991, the U.S. Geological Survey began full-scale implementation of the National Water-Quality Assessment (NAWQA) program. Long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface-water and ground-water resources and to describe the primary natural and human factors that affect these resources. One of the first assessment phases of the NAWQA program is to examine the occurrence and distribution of organic and inorganic constituents in streambed sediment. Streambed sediment was collected at 22 stations in the Albemarle-Pamlico drainage basin that drains into the Albemarle and Pamlico Sounds, the second largest estuarine system in the United States. Streambed-sediment samples were analyzed for 35 organochlorine and 63 semivolatile compounds; 44 major, minor, and trace elements; and forms of organic carbon.

  3. Water-quality assessment of the Albemarle-Pamlico drainage basin, North Carolina and Virginia; characterization of suspended sediment, nutrients, and pesticides

    USGS Publications Warehouse

    Harned, Douglas; McMahon, Gerard; Spruill, T.B.; Woodside, M.D.

    1995-01-01

    The 28,000-square-mile Albemarle-Pamlico drainage basin includes the Roanoke, Dan, Chowan Tar, and Neuse Rivers. The basin extends through four physiographic provinces in North Carolina and Virginia-Valley and Ridge, Blue Ridge, Piedmont and Coastal Plain. The spatial and temporal trends in ground-water and riverine water quality in the study area were characterized by using readily available data sources The primary data sources that were used included the U.S. Geological Survey's National Water Data Storage and Retrieval System (WATSTORE) database, the U.S. Environmental Protection Agency's Storage and Retrieval System (STORET) database, and results of a few investigations of pesticide occurrence. The principal water-quality constituents examined were suspended sediment, nutrients, and pesticides. The data examined generally spanned the period from 1950 to 1993. The only significant trends in suspended sediment were detected at three Chowan River tributary sites which showed long-term decreases. Suspended- and total-solids concentrations have decreased throughout the Albemarle-Pamlico drainage basin. The decreases are probably a result of (1) construction of new lakes and ponds in the basin, which trap solids, (2) improved agricultural soil management, and (3) improved wastewater treatment. Nutrient point sources are much less than nonpoint nutrient sources at the eight NASQAN basins examined for nutrient loads. The greatest nitrogen inputs are associated with crop fertilizer and biological nitrogen fixation by soybeans and peanuts, whereas atmospheric and animal-related nitrogen inputs are comparable in magnitude. The largest phosphorus inputs are associated with animal wastes. The most commonly detected pesticides in surface water in the STORET database were atrazine and aldrin.Intensive organonitrogen herbicide sampling of Chicod Creek in 1992 showed seasonal variations in pesticide concentration. The most commonly detected herbicides were atrazine, alachlor

  4. Water-quality assessment of the Albemarle-Pamlico drainage basin, North Carolina and Virginia; trace elements in Asiatic clam (Corbicula fluminea) soft tissues and redbreast sunfish (Lepomis auritus) livers, 1992-93

    USGS Publications Warehouse

    Ruhl, P.M.; Smith, K.E.

    1996-01-01

    The analysis of potential contaminants in biological tissues is an important part of many water-quality assessment programs, including the National Water-Quality Assessment (NAWQA) Program. Tissue analyses often are used to provide information about (1) direct threats to ecosystem integrity, and (2) the occurrence and distribution of potential contaminants in the environment. During 1992-93, trace elements in Asiatic clam (Corbicula fluminea) soft tissues and redbreast sunfish (Lepomis auritus) livers were analyzed to obtain information about the occurrence and distribution of trace element contaminants in the Albemarle-Pamlico Drainage Basin of North Carolina and Virginia. The investigation was conducted as part of the NAWQA Program. All but 3 of the 22 trace elements that were analyzed were detected. Although all 10 of the U.S. Environmental Protection Agency (U.S. EPA) priority pollutants were detected in the tissues sampled, they were present in relatively low concentrations. Concentrations of U.S. EPA priority pollutants in Asiatic clams collected in the Albemarle-Pamlico Drainage Basin are similar to concentrations observed in other NAWQA study units in the southeastern United States. Mercury (a U.S. EPA priority pollutant) was widely detected, being present in 29 of 30 tissue samples, but concentrations did not exceed the FDA action level for mercury of a risk-based screening value for the general public. Mercury concentrations in Asiatic clams were similar to concentrations in other NAWQA study areas in the Southeast.

  5. REGIONAL ASSESSMENT OF FISH HEALTH: A PROTOTYPE METHODOLOGY AND CASE STUDY FOR THE ALBEMARLE-PAMLICO RIVER BASIN, NORTH CAROLINA

    EPA Science Inventory

    BASE (Basin-Scale Assessments for Sustainable Ecosystems) is a research program developed by the Ecosystems Research Division of the National Exposure Research Laboratory to explore and formulate approaches for assessing the sustainability of ecological resources within watershed...

  6. Impacts of domestic and and agricultural rainwater harvesting system on watershed hydrology: A case study of Albemarle-Pamlico Watershed basins (NC, VA, USA)

    EPA Science Inventory

    Rainwater harvesting (RWH) is increasingly relevant in the context of growing population and its demands on water quantity. Here, we present a method to better understand the hydrologic impacts of urban domestic and agricultural rainwater harvesting and apply the approach to thre...

  7. Water-quality assessment of the Albemarle-Pamlico Drainage Basin, North Carolina and Virginia; organochlorine compounds in Asiatic clam (Corbicula fluminea) soft tissues and whole redbrest sunfish (Lepomis auritus) 1992-93

    USGS Publications Warehouse

    Smith, K.E.; Ruhl, P.M.

    1996-01-01

    The analysis of potential contaminants in biological tissues is an important part of many water-quality assessment programs, including the National Water-Quality Assessment (NAWQA) Program. Tissue analyses often are used to provide information about (1) direct threats to ecosystem integrity, and (2) the occurrence and distribution of potential contaminants in the environment. During 1992-93, Asiatic clam (Corbicula fluminea) soft tissues and whole redbreast sunfish (Lepomis auritus) samples were collected and analyzed to obtain information about the occurrence and distribution of organochlorine compounds in the Albemarle-Pamlico drainage Basin of North Carolina and Virginia. The investigation was conducted as part of the NAWQA Program. Relatively few organochlorine compounds were detected and of the compounds detected, all were detected in relatively low concentrations. The organochlorine compounds detected were p,p'-DDD, p,p'-DDE, p,p'-DDT, dieldrin, trans-nonachlor, PCB's, and toxaphene. Multiple compounds were detected at 16 of 19 sites sampled. Compared to Asiatic clams, redbreast sunfish appear to be better bioindicators of organochlorine contamination in aquatic systems. Except for one detection of toxaphene, pesticide concentrations are well below the National Academy of Sciences and National Academy of Engineering (NAS/NAE) guidelines for the protection of fish-eating wildlife.

  8. ESTIMATION OF INHERENT OPTICAL PROPERTIES AND WATER CONSTITUENT CONCENTRATIONS FROM THE REMOTE-SENSING REFLECTANCE SPECTRA IN THE ALBEMARLE-PAMLICO ESTUARY, USA

    EPA Science Inventory

    The decomposition of remote sensing reflectance (RSR) spectra into absorption, scattering and backscattering coefficients, and scattering phase function is an important issue for estimating water quality (WQ) components. For Case 1 waters RSR decomposition can be easily accompli...

  9. Estuary 2100 Project, Phase 2: Building Partnerships for Resilient Watersheds

    EPA Pesticide Factsheets

    Information about the SFBWQP Estuary 2100 Project, Phase 2: Building Partnerships for Resilient Watersheds, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquat

  10. Estuary 2100 Project, Phase 1: Resilient Watersheds for a Changing Climate

    EPA Pesticide Factsheets

    Information about the SFBWQP Estuary 2100 Project, Phase 1: Resilient Watersheds for a Changing Climate , part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  11. WestuRe: U.S. Pacific Coast estuary/watershed data and R tools

    EPA Science Inventory

    There are about 350 estuaries along the U.S. Pacific Coast. Basic descriptive data for these estuaries, such as their size and watershed area, are important for coastal-scale research and conservation planning. However, this information is spread among many sources and can be dif...

  12. The watershed depositon tool : a tool for incorporating atmospheric deposition in water-quality analyses {sup 1}.

    SciTech Connect

    Schwede, D. B.; Dennis, R. L.; Bitz, M. A.; Decision and Information Sciences; NOAA; EPA

    2009-08-01

    A tool for providing the linkage between air and water-quality modeling needed for determining the Total Maximum Daily Load (TMDL) and for analyzing related nonpoint-source impacts on watersheds has been developed. Using gridded output of atmospheric deposition from the Community Multiscale Air Quality (CMAQ) model, the Watershed Deposition Tool (WDT) calculates average per unit area and total deposition to selected watersheds and subwatersheds. CMAQ estimates the wet and dry deposition for all of its gaseous and particulate chemical species, including ozone, sulfur species, nitrogen species, secondary organic aerosols, and hazardous air pollutants at grid scale sizes ranging from 4 to 36 km. An overview of the CMAQ model is provided. The somewhat specialized format of the CMAQ files is not easily imported into standard spatial analysis tools. The WDT provides a graphical user interface that allows users to visualize CMAQ gridded data and perform further analyses on selected watersheds or simply convert CMAQ gridded data to a shapefile for use in other programs. Shapefiles for the 8-digit (cataloging unit) hydrologic unit code polygons for the United States are provided with the WDT; however, other user-supplied closed polygons may be used. An example application of the WDT for assessing the contributions of different source categories to deposition estimates, the contributions of wet and dry deposition to total deposition, and the potential reductions in total nitrogen deposition to the Albemarle-Pamlico basin stemming from future air emissions reductions is used to illustrate the WDT capabilities.

  13. Estuary Data Mapper: A Stand-Alone Tool for Geospatial Data Access, Visualization and Download for Estuaries and Coastal Watersheds of the United States

    EPA Science Inventory

    The US EPA Estuary Data Mapper (EDM; http://badger.epa.gov/rsig/edm/index.html) has been designed as a free stand-alone tool for geospatial data discovery, visualization, and data download for estuaries and their associated watersheds in the conterminous United States. EDM requi...

  14. Estuary Data Mapper: A Stand-Alone Tool for Geospatial Data Access, Visualization and Download for Estuaries and Coastal Watersheds of the United States. (UNH)

    EPA Science Inventory

    The US EPA Estuary Data Mapper (EDM; http://badger.epa.gov/rsig/edm/index.html) has been designed as a free stand-alone tool for geospatial data discovery, visualization, and data download for estuaries and their associated watersheds in the conterminous United States. EDM requi...

  15. EstuRe Project: U.S. Pacific Coast Estuary/Watershed Data and R Tools

    EPA Science Inventory

    The EstuRe Project is a collaborative effort of the U.S. EPA and USGS to standardize and improve the accessibility of data for U.S. Pacific Coast estuaries and their corresponding watersheds. We are presenting a preview of the datasets and tools that will soon be available from ...

  16. Adjustment of the San Francisco estuary and watershed to decreasing sediment supply in the 20th century

    USGS Publications Warehouse

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2013-01-01

    The general progression of human land use is an initial disturbance (e.g., deforestation, mining, agricultural expansion, overgrazing, and urbanization) that creates a sediment pulse to an estuary followed by dams that reduce sediment supply. We present a conceptual model of the effects of increasing followed by decreasing sediment supply that includes four sequential regimes, which propagate downstream: a stationary natural regime, transient increasing sediment supply, transient decreasing sediment supply, and a stationary altered regime. The model features characteristic lines that separate the four regimes. Previous studies of the San Francisco Estuary and watershed are synthesized in the context of this conceptual model. Hydraulic mining for gold in the watershed increased sediment supply to the estuary in the late 1800s. Adjustment to decreasing sediment supply began in the watershed and upper estuary around 1900 and in the lower estuary in the 1950s. Large freshwater flow in the late 1990s caused a step adjustment throughout the estuary and watershed. It is likely that the estuary and watershed are still capable of adjusting but further adjustment will be as steps that occur only during greater floods than previously experienced during the adjustment period. Humans are actively managing the system to try to prevent greater floods. If this hypothesis of step changes occurring for larger flows is true, then the return interval of step changes will increase or, if humans successfully control floods in perpetuity, there will be no more step changes.

  17. Holocene climates and connections between the San Francisco Bay Estuary and its watershed: A review

    USGS Publications Warehouse

    Malamud-Roam, F.; Dettinger, M.; Ingram, B. Lynn; Hughes, Malcolm K.; Florsheim, Joan

    2007-01-01

    This review of paleoclimate records reveals a gradual warming and drying in California from about 10,000 years to about 4,000 years before present. During this period, the current Bay and Delta were inundated by rising sea level so that by 4,000 years ago the Bay and Delta had taken on much of their present shape and extent. Between about 4,000 and 2,000 years ago, cooler and wetter conditions prevailed in the watershed, lowering salinity in the Estuary and altering local ecosystems. Those wetter conditions gave way to increasing aridity during the past 2,000 years, a general trend punctuated by occasional prolonged and severe droughts and occasional unusually wet, cool periods. California’s climate since A.D. 1850 has been unusually stable and benign, compared to climate variations during the previous 2,000 or more years. Thus, climate variations in California’s future may be even more (perhaps much more) challenging than those of the past 100 years. To improve our understanding of these past examples of climate variability in California, and of the linkages between watershed climate and estuarine responses, greater emphases on paleoclimate records in and around the Estuary, improved temporal resolutions in several record types, and linked watershed-estuary paleo-modeling capabilities are needed. 

  18. Elevational dependence of projected hydrologic changes in the San Francisco Estuary and watershed

    USGS Publications Warehouse

    Knowles, N.; Cayan, D.R.

    2004-01-01

    California's primary hydrologic system, the San Francisco Estuary and its upstream watershed, is vulnerable to the regional hydrologic consequences of projected global climate change. Previous work has shown that a projected warming would result in a reduction of snowpack storage leading to higher winter and lower spring-summer streamflows and increased spring-summer salinities in the estuary. The present work shows that these hydrologic changes exhibit a strong dependence on elevation, with the greatest loss of snowpack volume in the 1300-2700 m elevation range. Exploiting hydrologic and estuarine modeling capabilities to trace water as it moves through the system reveals that the shift of water in mid-elevations of the Sacramento river basin from snowmelt to rainfall runoff is the dominant cause of projected changes in estuarine inflows and salinity. Additionally, although spring-summer losses of estuarine inflows are balanced by winter gains, the losses have a stronger influence on salinity since longer spring-summer residence times allow the inflow changes to accumulate in the estuary. The changes in inflows sourced in the Sacramento River basin in approximately the 1300-2200 m elevation range thereby lead to a net increase in estuarine salinity under the projected warming. Such changes would impact ecosystems throughout the watershed and threaten to contaminate much of California's freshwater supply.

  19. Processing watershed-derived nitrogen in a well-flushed New England estuary

    USGS Publications Warehouse

    Tobias, C.R.; Cieri, M.; Peterson, B.J.; Deegan, Linda A.; Vallino, J.; Hughes, J.

    2003-01-01

    Isotopically labeled nitrate (15NO3-) was added continuously to the Rowley estuary, Massachusetts, for 22 d to assess the transport, uptake, and cycling of terrestrially derived nitrogen during a period of high river discharge and low phytoplankton activity. Isotopic enrichment of the 3.5-km tidal prism (150,000 m3) was achieved for the 3 weeks and allowed us to construct a nitrogen mass balance model for the upper estuary. Mean ??15NO3- in the estuary ranged from 300??? to 600???, and approximately 75%-80% of the 15N was exported conservatively as 15NO 3- to the coastal ocean. Essentially all of the 20%-25% of the 15N processed in the estuary occurred in the benthos and was evenly split between direct denitrification and autotrophic assimilation. The lack of water-column 15N uptake was attributed to low phytoplankton stocks and short water residence times (1.2-1.4 d). Uptake of water-column NO3- by benthic autotrophs (enriched in excess of 100???) was a function of NO3- concentration and satisfied up to 15% and 25% of the total nitrogen demand for benthic microalgae and macroalgae, respectively. Approximately 10% of tracer assimilated by benthic autotrophs was mineralized and released back to the water column as 15NH4+. By the end of the study, 15N storage in sediments and marsh macrophytes accounted for 50%-70% of the 15N assimilated in the estuary. These compartments may sequester watershed-derived nitrogen in the estuary for time scales of months to years.

  20. Coupling watersheds, estuaries and regional ocean through numerical modelling for Western Iberia: a novel methodology

    NASA Astrophysics Data System (ADS)

    Campuzano, Francisco; Brito, David; Juliano, Manuela; Fernandes, Rodrigo; de Pablo, Hilda; Neves, Ramiro

    2016-12-01

    An original methodology for integrating the water cycle from the rain water to the open ocean by numerical models was set up using an offline coupling technique. The different components of the water continuum, including watersheds, estuaries and ocean, for Western Iberia were reproduced using numerical components of the MOHID Water Modelling System (http://www.mohid.com). This set of models, when combined through this novel methodology, is able to fill information gaps, and to include, in a realistic mode, the fresh water inputs in terms of volume and composition, into a regional ocean model. The designed methodology is illustrated using the Tagus River, estuary and its region of fresh water influence as case study, and its performance is evaluated by means of river flow and salinity observations.

  1. A conceptual model for ecological risk assessment in the watershed of a small estuary

    SciTech Connect

    Gerritsen, J.; Bowman, M.; Dow, D.; Geist, M.; Marcy, S.; Tyler, P.

    1995-12-31

    Waquoit Bay, a small estuary on the south shore of Cape Cod, Massachusetts, is subject to several stressors resulting from population growth and suburbanization of the area; and groundwater contamination from spilled solvents and fuels at an old military base. Population in the watershed increased approximately 15-fold in the past 50 years, and residential land use has increased from 2 percent of the watershed in 1950 to 20 percent in 1990. Management goals for the watershed were identified by stakeholders. Endpoints of the risk assessment followed from the management goals and included anadromous fish, freshwater benthic invertebrates, water-dependent wildlife, trophic state of freshwater ponds, pond fish, estuarine eelgrass beds, estuarine benthic invertebrates, and estuarine fish. A conceptual model was developed to illustrate all potential pathways of effects on the endpoints from known, identified sources and stressors in the watershed. The conceptual model served as the basis for a comparative risk analysis, using fuzzy-set logic, that identified nutrient enrichment and habitat alteration as the principal stressors.

  2. High frequency measurements using in situ sensors in a coupled watershed-estuary reveal factors driving DOC variability

    NASA Astrophysics Data System (ADS)

    Mulukutla, G. K.; Carey, R. O.; Wollheim, W. M.; Salisbury, J.

    2012-12-01

    Estuaries are recipients of large inputs of organic matter and nutrients from coastal river systems and together form a vital link between two of the largest pools of carbon, the terrestrial and ocean environment, at the same time actively cycling carbon. The Great Bay situated in New Hampshire/Maine is a nitrogen(N)-impaired estuary with a suburbanizing watershed of the Lamprey River its largest source of DOC. Long term deployment of continuously monitoring sensors are changing the way biogeochemical studies of rivers, streams and estuaries are conducted. We linked simultaneous and continuous in situ measurements of CDOM and associated measures of DOC quality (e.g. absorption coefficient, spectral slope ) in both the Great Bay estuary and its largest source of DOC the Lamprey River between April and December 2011. These sensors allowed us to examine the continuous dynamics of CDOM from inland to the coastal waters not only in short-term hydrologically varying (storm pulses) conditions, but also the longer term seasonal variability. We also collected a suite of other relevant parameters in both the watershed and estuary, including NO3, PO4, Turbidity, Chlorophyll, Conductivity/Salinity to help understand the dynamics of DOC in the river and estuary. Preliminary time series analysis indicates that DOC in the Great Bay estuary co-varies with discharge of the Lamprey River, especially in spring and fall. Freshwater discharges and its variations explained the variability in estuarine DOC. UV- absorbance at 254 nm (the precursor to SUVA) co-varies in periods of high flow during spring and fall, consistent with the bulk DOC results This suggests that hydrology is the more important driver of variability of coastal CDOM. In light of climate change, suburbanization and changing land use patterns this emphasizes the need to examine continuous measurements of DOC quantity and quality in coupled watershed-estuarine systems.

  3. A COMPARATIVE ANALYSIS OF NUTRIENT LOADING, NUTRIENT RETENTION AND NET ECOSYSTEM METABOLISM IN THREE TIDAL RIVER ESTUARIES DIFFERING PREDOMINATELY BY THEIR WATERSHED LAND USE TYPES.

    EPA Science Inventory

    Abstract and oral presentation for the Estuarine Research Federation Conference.

    Estuarine retention of watershed nutrient loads, system-wide nutrient biogeochemical fluxes, and net ecosystem metabolism (NEM) were determined in three estuaries exhibiting differing magnitud...

  4. Collection and analysis of remotely sensed data from the Rhode River Estuary Watershed. [ecological parameters of Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.

    1972-01-01

    NASA chose the watershed of Rhode River, a small sub-estuary of the Bay, as a representative test area for intensive studies of remote sensing, the results of which could be extrapolated to other estuarine watersheds around the Bay. A broad program of ecological research was already underway within the watershed, conducted by the Smithsonian Institution's Chesapeake Bay Center for Environmental Studies (CBCES) and cooperating universities. This research program offered a unique opportunity to explore potential applications for remote sensing techniques. This led to a joint NASA-CBCES project with two basic objectives: to evaluate remote sensing data for the interpretation of ecological parameters, and to provide essential data for ongoing research at the CBCES. A third objective, dependent upon realization of the first two, was to extrapolate photointerpretive expertise gained at the Rhode River watershed to other portions of the Chesapeake Bay.

  5. Modeling land-based nitrogen loads from groundwater-dominated agricultural watersheds to estuaries to inform nutrient reduction planning

    NASA Astrophysics Data System (ADS)

    Jiang, Yefang; Nishimura, Peter; van den Heuvel, Michael R.; MacQuarrie, Kerry T. B.; Crane, Cindy S.; Xing, Zisheng; Raymond, Bruce G.; Thompson, Barry L.

    2015-10-01

    Excessive nitrate loads from intensive potato production have been linked to the reoccurring anoxic events in many estuaries in Prince Edward Island (PEI), Canada. Community-led watershed-based nutrient reduction planning has been promoted as a strategy for water quality restoration and initial nitrate load criteria have been proposed for the impacted estuaries. An integrated modeling approach was developed to predict base flow nitrate loads to inform the planning activities in the groundwater-dominated agricultural watersheds. Nitrate load is calculated as base flow multiplied by the average of nitrate concentration at the receiving watershed outlet. The average of nitrate concentration is estimated as the integration of nitrate leaching concentration over the watershed area minus a nitrate loss coefficient that accounts for long-term nitrate storage in the aquifer and losses from the recharge to the discharge zones. Nitrate leaching concentrations from potato rotation systems were estimated with a LEACHN model and the land use areas were determined from satellite image data (2006-2009) using GIS. The simulated average nitrate concentrations are compared with the arithmetic average of nitrate concentration measurements in each of the 27 watersheds for model calibration and in 138 watersheds for model verifications during 2006-2009. Sensitivity of the model to the variations of land use mapping errors, nitrate leaching concentrations from key sources, and nitrate loss coefficient was tested. The calibration and verification statistics and sensitivity analysis show that the model can provide accurate nitrate concentration predictions for watersheds with drainage areas more than 5 km2 and nitrate concentration over 2 mg N L-1, while the model resolution for watersheds with drainage areas below 5 km2 and/or nitrate concentration below 2 mg N L-1 may not be sufficient for nitrate load management purposes. Comparisons of normalized daily stream discharges among the

  6. Isotopic studies in Pacific Panama mangrove estuaries reveal lack of effect of watershed deforestation on food webs.

    PubMed

    Viana, Inés G; Valiela, Ivan; Martinetto, Paulina; Monteiro Pierce, Rita; Fox, Sophia E

    2015-02-01

    Stable isotopic N, C, and S in food webs of 8 mangrove estuaries on the Pacific coast of Panama were measured to 1) determine whether the degree of deforestation of tropical forests on the contributing watersheds was detectable within the estuarine food web, and 2) define external sources of the food webs within the mangrove estuaries. Even though terrestrial rain forest cover on the contributing watersheds differed between 23 and 92%, the effect of deforestation was not detectable on stable isotopic values in food webs present at the mouth of the receiving estuaries. We used stable isotopic measures to identify producers or organic sources that supported the estuarine food web. N isotopic values of consumers spanned a broad range, from about 2.7 to 12.3‰. Mean δ(15)N of primary producers and organic matter varied from 3.3 for macroalgae to 4.7‰ for suspended particulate matter and large particulate matter. The δ(13)C consumer data varied between -26 and -9‰, but isotopic values of the major apparent producers or organic matter sampled could not account for this range variability. The structure of the food web was clarified when we added literature isotopic values of microphytobenthos and coralline algae, suggesting that these, or other producers with similar isotopic signature, may be part of the food webs.

  7. Downscaling future climate projections to the watershed scale: a north San Francisco Bay estuary case study

    USGS Publications Warehouse

    Micheli, Elisabeth; Flint, Lorraine; Flint, Alan; Weiss, Stuart; Kennedy, Morgan

    2012-01-01

    We modeled the hydrology of basins draining into the northern portion of the San Francisco Bay Estuary (North San Pablo Bay) using a regional water balance model (Basin Characterization Model; BCM) to estimate potential effects of climate change at the watershed scale. The BCM calculates water balance components, including runoff, recharge, evapotranspiration, soil moisture, and stream flow, based on climate, topography, soils and underlying geology, and the solar-driven energy balance. We downscaled historical and projected precipitation and air temperature values derived from weather stations and global General Circulation Models (GCMs) to a spatial scale of 270 m. We then used the BCM to estimate hydrologic response to climate change for four scenarios spanning this century (2000–2100). Historical climate patterns show that Marin’s coastal regions are typically on the order of 2 °C cooler and receive five percent more precipitation compared to the inland valleys of Sonoma and Napa because of marine influences and local topography. By the last 30 years of this century, North Bay scenarios project average minimum temperatures to increase by 1.0 °C to 3.1 °C and average maximum temperatures to increase by 2.1 °C to 3.4 °C (in comparison to conditions experienced over the last 30 years, 1981–2010). Precipitation projections for the 21st century vary between GCMs (ranging from 2 to 15% wetter than the 20th-century average). Temperature forcing increases the variability of modeled runoff, recharge, and stream discharge, and shifts hydrologic cycle timing. For both high- and low-rainfall scenarios, by the close of this century warming is projected to amplify late-season climatic water deficit (a measure of drought stress on soils) by 8% to 21%. Hydrologic variability within a single river basin demonstrated at the scale of subwatersheds may prove an important consideration for water managers in the face of climate change. Our results suggest that in arid

  8. Semi-diurnal seiching in a shallow, micro-tidal lagoonal estuary

    NASA Astrophysics Data System (ADS)

    Luettich, Richard A.; Carr, Sarah D.; Reynolds-Fleming, Janelle V.; Fulcher, Crystal W.; McNinch, Jesse E.

    2002-07-01

    Analysis of current meter data in the Neuse River Estuary (NRE) associates over half of the along channel velocity variance with roughly the semi-diurnal frequency band. Velocity in this frequency range is episodic, has a typical magnitude of 10 cm s-1 and often reaches twice this speed. The NRE is a sub-estuary of the Albemarle-Pamlico Estuarine System (APES), which is the second largest estuarine complex and the largest lagoonal estuary in the United States. The astronomical tide in the NRE is negligible, owing to the APES's virtual isolation from the coastal ocean by the North Carolina Outer Banks barrier island chain. The episodic nature of the velocity signal together with the lack of an astronomical tide suggest that the semi-diurnal signal in the NRE is generated within the APES/NRE, presumably due to meteorological forcing. In the absence of a tidal current, this motion plays a significant role in determining the position and strength of the salt wedge, the thickness of the diffusive bottom boundary layer and the overall dispersion characteristics of the system. The episodic nature of the semi-diurnal signal encouraged us to pursue the use of nonstationary timeseries analysis techniques in the present study. We found wavelet analysis to be a highly effective technique for discriminating times when the semi-diurnal motion was strong and for identifying a predominant 13.2 h period in the along channel component of both 10-week wintertime and 10-week summertime current meter records. Model runs using idealized wind forcing to excite the vertically integrated version of the ADCIRC finite element circulation model indicated that the APES has a natural mode oscillation period of 13.2 h, an average "seiche depth" of 3.5 m and a "seiche length" of 139 km. This length is close to that of the long axis of Pamlico Sound, although the depth is approximately 25 percent less than the sound's 4.5 m mean bathymetric depth. Model runs using observed winds from Cape Hatteras

  9. Potential effects of global warming on the Sacramento/San Joaquin watershed and the San Francisco estuary

    USGS Publications Warehouse

    Knowles, Noah; Cayan, Daniel R.

    2002-01-01

    California's primary hydrologic system, the San Francisco estuary and its upstream watershed, is vulnerable to the regional hydrologic consequences of projected global climate change. Projected temperature anomalies from a global climate model are used to drive a combined model of watershed hydrology and estuarine dynamics. By 2090, a projected temperature increase of 2.1°C results in a loss of about half of the average April snowpack storage, with greatest losses in the northern headwaters. Consequently, spring runoff is reduced by 5.6 km3(∼20% of historical annual runoff), with associated increases in winter flood peaks. The smaller spring flows yield spring/summer salinity increases of up to 9 psu, with larger increases in wet years.

  10. Estuary Data Mapper (EDM)

    EPA Pesticide Factsheets

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions

  11. Land use, land cover, and drainage on the Albemarle-Pamlico Peninsula, Eastern North Carolina, 1974

    USGS Publications Warehouse

    Daniel, C.C.

    1978-01-01

    A land use, land cover, and drainage map of the 2,000-square-mile Albermarle-Pamlico peninsula of eastern North Carolina has been prepared, at a scale of 1:125,000, as part of a larger study of the effects of large-scale land clearing on regional hydrology. The peninsula includes the most extensive area of wetland in North Carolina and one of the largest in the country. In recent years the pace of land clearing on the peninsula has accelerated as land is being converted from forest, swamp, and brushland to agricultural use. Conversion of swamps to intensive farming operations requires profound changes in the landscape. Vegetation is uprooted and burned and ditches and canals are dug to remove excess water. What is the impact of these changes on ground-water supplies and on the streams and surrounding coastal waters which receive the runoff This map will aid in answering these and similar questions that have arisen about the patterns of land use and the artificial drainage system that removes excess water from the land. By showing both land use and drainage, this map can be used to identify those areas where water-related problems may occur and help assess the nature and causes of these problems. The map covers the entire area east of the Suffolk Scarp, an area of about 2,000 square miles, for the year 1974 using data from 1974-76. Land use and land cover were compiled and modified from the U.S. Geological Survey 's Rocky Mount and Manteo LUDA maps. Additional information came from U.S. Geological Survey orthophotoquads, Landsat imagery, and field checking. Drainage was mapped from orthophotoquads, some field inspection, and 7-1/2 minute topographic quadrangle maps.

  12. Identification and Prediction of Fish Assemblages in Streams of the Albemarle-Pamlico Basin, USA

    EPA Science Inventory

    Set within the Ecological Services Research Program (ESRP) of USEPA’s Office of Research and Development, a multi-disciplinary research collaborative (MEERT –Multimedia Ecological Exposure Research Team) has taken on a challenge to develop a regional assessment of several ecosyst...

  13. Land Conservation Plan from the New Hampshire’s Coastal Watersheds (Piscataqua Region Estuaries Partnership)

    EPA Pesticide Factsheets

    The overarching goal of this land conservation plan is to focus conservation on those lands and waters that are most important for conserving living resources - native plants, animals and natural communities - and water quality in the coastal watersheds.

  14. Use of the USEPA Estuary Nitrogen Model to Estimate Concentrations of Total Nitrogen in Estuaries Using Loads Calculated by Watershed Models and Monitoring Data

    EPA Science Inventory

    We use USEPA’s Estuary Nitrogen Model (ENM) to calculate annual average concentrations of total nitrogen (TN) in ten estuaries or sub-estuaries along the Atlantic coast from New Hampshire to Florida. These include a variety of systems, ranging from strongly-flushed bays to weakly...

  15. EVALUATING THE INTEGRITY OF SALT MARSHES IN NARRAGANSETT BAY SUB-ESTUARIES USING A WATERSHED APPROACH

    EPA Science Inventory

    A watershed approach to examine measures of structure and function in salt marshes of similar geomorphology and hydrology in Narragansett Bay is being used to develop a reference system for evaluating salt marsh integrity. We describe integrity as the capability of a salt marsh t...

  16. Collection and analysis of remotely sensed data from the Rhode River Estuary Watershed

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.; Williamson, F. S. L.

    1973-01-01

    The remote sensing study to survey the Rhode River watershed for spray irrigation with secondarily treated sewage is reported. The standardization of Autumn coloration changes with Munsell color chips is described along with the mapping of old field vegetation for the spray irrigation project. The interpretation and verification of salt marsh vegetation by remote sensing of the water shed is discussed.

  17. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries

    USGS Publications Warehouse

    Ensign, Scott H.; Noe, Gregory; Hupp, Cliff R.; Skalak, Katherine

    2015-01-01

    We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.

  18. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries

    NASA Astrophysics Data System (ADS)

    Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.; Skalak, Katherine J.

    2015-12-01

    We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.

  19. Spatiotemporal change of phosphorous speciation and concentration in stormwater in the St. Lucie Estuary watershed, South Florida.

    PubMed

    Li, Liguang; He, Zhenli; Li, Zhigang; Li, Suli; Wan, Yongshan; Stoffella, Peter J

    2017-04-01

    Phosphorous (P) concentration in stormwater runoff varies at different spatial and temporal scales. Excessive P loading from agriculture system into the St. Lucie Estuary (SLE) contributed to water quality deterioration in southern Indian River Lagoon. This study examines the spatial and temporal shifts of different P forms in runoff and storm water under different land use, water management, and rainfall conditions. Storm water samplings were conducted monthly between April 2013 and December 2014 in typical farmland and along the waterway (Canal C-24) that connects lands to the SLE. Concentrations of different P forms and related water quality variables were measured. Approximately 89% of the collected water samples contained total P (TP) concentrations exceeding the total maximum daily load (TMDL) level (0.081 mg L(-1)). Concentrations of different P forms declined from agricultural field furrows to the canal and then increased from the upstream to the downstream in the canal where urban activities dominated land use. Total dissolved P (TDP) was the predominant form of TP, followed by PO4-P. Speciation and concentrations of P varied with sites and sampling times, but were significantly higher in the summer months (from June to September) than in the winter. Water pH explained ∼20% of TP variation. Spatiotemporal variations of P concentrations and compositions provide a data-based guide for development of best management practices (BMPs) to minimize P export from the SLE watershed.

  20. Social-ecological network analysis of scale mismatches in estuary watershed restoration.

    PubMed

    Sayles, Jesse S; Baggio, Jacopo A

    2017-03-07

    Resource management boundaries seldom align with environmental systems, which can lead to social and ecological problems. Mapping and analyzing how resource management organizations in different areas collaborate can provide vital information to help overcome such misalignment. Few quantitative approaches exist, however, to analyze social collaborations alongside environmental patterns, especially among local and regional organizations (i.e., in multilevel governance settings). This paper develops and applies such an approach using social-ecological network analysis (SENA), which considers relationships among and between social and ecological units. The framework and methods are shown using an estuary restoration case from Puget Sound, United States. Collaboration patterns and quality are analyzed among local and regional organizations working in hydrologically connected areas. These patterns are correlated with restoration practitioners' assessments of the productivity of their collaborations to inform network theories for natural resource governance. The SENA is also combined with existing ecological data to jointly consider social and ecological restoration concerns. Results show potentially problematic areas in nearshore environments, where collaboration networks measured by density (percentage of possible network connections) and productivity are weakest. Many areas also have high centralization (a few nodes hold the network together), making network cohesion dependent on key organizations. Although centralization and productivity are inversely related, no clear relationship between density and productivity is observed. This research can help practitioners to identify where governance capacity needs strengthening and jointly consider social and ecological concerns. It advances SENA by developing a multilevel approach to assess social-ecological (or social-environmental) misalignments, also known as scale mismatches.

  1. Estuary Data Mapper

    EPA Science Inventory

    The U.S. Environmental Protection Agency (US EPA) is developing e-Estuary, a decision-support system for coastal management. E-Estuary has three elements: an estuarine geo-referenced relational database, watershed GIS coverages, and tools to support decision-making. To facilita...

  2. Downloading and Installing Estuary Data Mapper (EDM)

    EPA Pesticide Factsheets

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions

  3. Frequent Questions about Estuary Data Mapper (EDM)

    EPA Pesticide Factsheets

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions

  4. Nitrogen Inputs to Seventy-four Southern New England Estuaries: Application of a Watershed Nitrogen Loading Model

    EPA Science Inventory

    Excess nitrogen inputs to estuaries have been linked to deteriorating water quality and habitat conditions which in turn have direct and indirect impacts on both commercial and recreational fish and shellfish. This paper is the first of a two-part series that applies a previously...

  5. WATERSHED LANDSCAPE INDICATORS OF ESTUARINE BENTHIC CONDITION

    EPA Science Inventory

    Do land use/cover characteristics of watersheds associated with small estuaries exhibit a strong enough signal to make landscape metrics useful for identifying degraded bottom communities? We tested this idea with 58 pairs of small estuaries (<260 km2) and watersheds in the U.S. ...

  6. Water-quality and physical characteristics of streams in the Treyburn development area of Falls Lake watershed, North Carolina, 1994-98

    USGS Publications Warehouse

    Oblinger, C.J.; Cuffney, T.F.; Meador, M.R.; Garrett, R.G.

    2002-01-01

    converted to urban land use. At all sites, ammonia concentrations ranged from less than 0.02 to 0.36 milligram per liter, and median concentrations were near the reporting level. Nitrate concentrations ranged from less than 0.05 to 0.80 milligram per liter. Phosphorus concentrations at all of the Treyburn study sites were low compared to phosphorus concentrations that typically exceed 0.1 milligram per liter at sites sampled nationally for the U.S. Geological Survey National Water-Quality Assessment Program, including the Albemarle-Pamlico study area in North Carolina. Total phosphorus concentrations ranged from less than 0.01 to 0.87 milligram per liter, and orthophosphorus concentrations ranged from less than 0.01 to 0.76 milligram per liter as phosphorus. The maximum concentrations of total phosphorus and orthophosphorus occurred at the Treyburn residential and golf-course site, likely as a result of the fertilizer applications associated with these two types of land use. Of the 119 different pesticides tested, 11 were detected in concentrations that exceeded the laboratory reporting levels, though in very low concentrations. Water samples from the residential and golf-course site contained the greatest number of pesticides (10). Five of six samples collected at this site had detectable concentrations of simazine, atrazine, and pendimethalin-all herbicides used to control weeds in crops or turf. Channel geometry was assessed at eight sites in the study area in February 1997. These sites were separated into three groups based on mean bank angle and mean channel width-to-depth ratios. Channel gradient ranged from 0.04 to 1.63 percent, and mean cross sectional area ranged from 31 to 1,227 square feet. Three macroinvertebrate samples were collected from each of 10 sites. These three samples were from areas designated as richest targeted habitats, depositional targeted habitats, and qualitative multitargeted habitats. Over 230 taxa were identified from th

  7. Simulation of streamflow and suspended-sediment concentrations and loads in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary, South Texas, 1958-2008

    USGS Publications Warehouse

    Ockerman, Darwin J.; Heitmuller, Franklin T.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers-Fort Worth District, City of Corpus Christi, Guadalupe-Blanco River Authority, San Antonio River Authority, and San Antonio Water System, developed, calibrated, and tested a Hydrological Simulation Program ? FORTRAN (HSPF) watershed model to simulate streamflow and suspended-sediment concentrations and loads during 1958-2008 in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary in South Texas. Data available to simulate suspended-sediment concentrations and loads consisted of historical sediment data collected during 1942-82 in the study area and suspended-sediment concentration data collected periodically by the USGS during 2006-07 at three USGS streamflow-gaging stations, Nueces River near Mathis, Nueces River at Bluntzer, and Nueces River at Calallen. The Nueces River near Mathis station is downstream from Wesley E. Seale Dam, completed in 1958 to impound Lake Corpus Christi. Suspended-sediment data collected before and after completion of Wesley E. Seale Dam provide insights to the effects of the dam and reservoir on suspended-sediment loads transported by the lower Nueces River from downstream of the dam to the Nueces Estuary. Annual suspended-sediment loads at a site near the Nueces River at Mathis station were considerably lower, for a given annual mean discharge, after the dam was completed than before the dam was completed. Most of the suspended sediment transported by the Nueces River downstream from Wesley E. Seale Dam occurred during high-flow releases from the dam or during floods. During October 1964-September 1971, about 532,000 tons of suspended sediment were transported by the Nueces River near Mathis. Of this amount, about 473,000 tons, or about 89 percent, were transported by large runoff events (mean streamflow exceeding 1,000 cubic feet per second). To develop the watershed model to simulate suspended

  8. An Integrated Modeling Framework for Performing Environmental Assessments: Application to Ecosystem Services in the Albemarle-Pamlico Basins (NC and VA,USA)

    EPA Science Inventory

    The U.S. Environmental Protection Agency uses environmental models to inform rulemaking and policy decisions at multiple spatial and temporal scales. As decision-making has moved towards integrated thinking and assessment (e.g. media, site, region, services), the increasing compl...

  9. LEAF AREA INDEX CHANGE DETECTION OF UNDERSTORY VEGETATION IN THE ALBEMARLE-PAMLICO BASIN USING IKOMOS AND LANDSAT ETM+ SATELLITE DATA

    EPA Science Inventory

    The advent of remotely sensed data from satellite platforms has enabled the research community to examine vegetative spatial distributions over regional and global scales. This assessment of ecosystem condition through the synoptic monitoring of terrestrial vegetation extent, bio...

  10. LEAF AREA INDEX (LAI) CHANGES DETECTION OF UNDERSTORY VEGETATION IN THE ALBEMARLE-PAMLICO BASIN IKONOS AND LANDSAT ETM+ SATELLITE DATA

    EPA Science Inventory

    The advent of remotely sensed data from satellite platforms has enabled the research community to examine vegetative spatial distributions over regional and global scales. This assessment of ecosystem condition through the synoptic monitoring of terrestrial vegetation extent, bio...

  11. CAN LANDSCAPE CHARACTERISTICS OF WATERSHEDS HELP FIND IMPAIRED ESTUARINE BOTTOM COMMUNITIES

    EPA Science Inventory

    Human alteration of watersheds and their landscapes often leads to undesirable effects in estuaries, such as excess nutrients, organic matter, and sediments, as well as increased levels of contaminants and pathogens. We hypothesized that alterations in watersheds associated wit...

  12. Nitrogen Source and Loading Data for EPA Estuary Data Mapper

    EPA Science Inventory

    Nitrogen source and loading data have been compiled and aggregated at the scale of estuaries and associated watersheds of the conterminous United States, using the spatial framework in EPA's Estuary Data Mapper (EDM) to provide system boundaries. Original sources of data include...

  13. Sources and Loading of Nitrogen to U.S. Estuaries

    EPA Science Inventory

    Previous assessments of land-based nitrogen loading and sources to U.S. estuaries have been limited to estimates for larger systems with watersheds at the scale of 8-digit HUCs and larger, in part due to the coarse resolution of available data, including estuarine watershed bound...

  14. Sources of suspended-sediment loads in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary, south Texas, 1958–2010

    USGS Publications Warehouse

    Ockerman, Darwin J.; Heitmuller, Franklin T.; Wehmeyer, Loren L.

    2013-01-01

    During 2010, additional suspended-sediment data were collected during selected runoff events to provide new data for model testing and to help better understand the sources of suspended-sediment loads. The model was updated and used to estimate and compare sediment yields from each of 64 subwatersheds comprising the lower Nueces River watershed study area for three selected runoff events: November 20-21, 2009, September 7-8, 2010, and September 20-21, 2010. These three runoff events were characterized by heavy rainfall centered near the study area and during which minimal streamflow and suspended-sediment load entered the lower Nueces River upstream from Wesley E. Seale Dam. During all three runoff events, model simulations showed that the greatest sediment yields originated from the subwatersheds, which were largely cropland. In particular, the Bayou Creek subwatersheds were major contributors of suspended-sediment load to the lower Nueces River during the selected runoff events. During the November 2009 runoff event, high suspended-sediment concentrations in the Nueces River water withdrawn for the City of Corpus Christi public-water supply caused problems during the water-treatment process, resulting in failure to meet State water-treatment standards for turbidity in drinking water. Model simulations of the November 2009 runoff event showed that the Bayou Creek subwatersheds were the primary source of suspended-sediment loads during that runoff event.

  15. Land use and nitrogen loading in seven estuaries along the southern Gulf of St. Lawrence, Canada

    NASA Astrophysics Data System (ADS)

    McIver, Reba; Milewski, Inka; Lotze, Heike K.

    2015-11-01

    Nitrogen loading from coastal watersheds is a principal factor associated with the decline in eelgrass bed health and cover in estuaries worldwide. We apply the Nitrogen Loading Model (NLM) framework developed in Waquoit Bay, Massachusetts to 7 estuaries in eastern New Brunswick. Using watershed-specific information on human population, wastewater production, atmospheric deposition, and land use in each watershed we estimate annual input of Total Dissolved Nitrogen (TDN) from point and non-point sources. We also estimate flushing time of each estuary using available hydrodynamic and bathymetric data incorporated in a tidal prism model. Finally, we validate the NLM results by testing the link between estimated nitrogen loading, flushing time and nitrogen signals in eelgrass tissue including nitrogen content and stable isotopes. Overall, total nitrogen load (kg TDN yr-1) was strongly dependent on watershed and estuary size, while loading rate per unit watershed area (yield) was linked to watershed population density. Atmospheric deposition was the largest contributor of nitrogen to all estuaries except one, where seafood processing effluent was the greatest source. Stable isotope analysis of eelgrass tissue reflected this distinction, with high δ15N values of 8-10‰ related to high wastewater loading, compared to 2-6.5‰ in the other estuaries that receive proportionally more atmospheric deposition. Tissue nitrogen content was positively related to nitrogen yields and loading rate per volume of estuary, highlighting the influence of variable watershed:estuary size ratio. Multiple regression analysis identified a significant interaction between nitrogen yield and flushing time on eelgrass tissue nitrogen content and isotopes, pointing to the mitigating effect an estuary's quick flushing time can have on the expression of nitrogen enrichment in primary producers. The compilation of new information on nitrogen loading to east Canadian estuaries is a novel

  16. Collaborative Potential between National Estuary Programs ...

    EPA Pesticide Factsheets

    Estuaries are among the most productive ecosystems in the world, providing unique habitat for freshwater and marine species as well as valuable social and economic benefits. The wealth of ecosystem goods and services from estuaries has led to growth and development of human communities in adjacent areas and an increase in human activities that can adversely affect water quality and critical habitat. Managing for sustainable estuaries requires a balance of environmental concerns with community social and economic values. This has created an opportunity to leverage Environmental Protection Agency (EPA) scientific knowledge and tools with National Estuary Program (NEP) planning and management expertise to address environmental challenges in important estuarine ecosystems. The non-regulatory National Estuary Program (NEP) was outlined in the Clean Water Act to provide stakeholders an opportunity to monitor and manage ‘nationally significant’ estuaries. Currently there are 28 estuaries in the NEP, broadly distributed across the Atlantic, Pacific and Gulf Coasts, and in Puerto Rico. The local NEP management conferences must address a variety of environmental issues, from water quality and natural resources to coastal and watershed development. While the underlying objectives of each NEP are quite similar, each has unique landscapes, land uses, waterbodies, habitats, biological resources, economies and social culture. Consequently, the effects and severity of anthr

  17. Approaches for Development of Nutrient Criteria in Oregon Estuaries With a Focus on Tillamook Estuary

    EPA Science Inventory

    Development of nutrient criteria for all water body types of the US remains a top priority for EPA. Estuaries in the Pacific Northwest receive nutrients from both the watershed and the coastal ocean, and thus are particularly complex systems in which to establish water quality c...

  18. Long-term Watershed Database for the Ridge and Valley Physiographic Province: Mahantango Creek Watershed, Pennsylvania, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding agricultural effects on water quality in rivers and estuaries requires understanding of hydrometeorology and geochemical cycling at various scales over time. The USDA-ARS initiated a hydrologic research program at the Mahantango Creek Watershed (MCW) in 1968, a research watershed at t...

  19. SUSPENDED AND BENTHIC SEDIMENT RELATIONSHIPS IN THE YAQUINA ESTUARY, OREGON: NUTRIENT PROCESSING

    EPA Science Inventory

    Measurements of nutrient loading and subsequent nutrient processing are fundamental for determining biogeochemical processes in rivers and estuaries. In Oregon coastal watersheds, nutrient transport is strongly seasonal with up to 94% of the riverine dissolved nitrate and silic...

  20. What’s Upstream? GIS’s critical role in developing nutrient reference conditions for estuaries

    EPA Science Inventory

    Eutrophication due to excess levels of nitrogen and phosphorus can seriously impair ecological function in estuaries. Protective criteria for nutrients are difficult to establish because the source can vary spatially and seasonally, originate either from the watershed or the oce...

  1. Selected Pharmaceuticals Entering an Estuary: Concentrations, Temporal Trends, Partitioning and Fluxes

    EPA Science Inventory

    In many coastal watersheds and ecosystems, rivers discharging to estuaries receive waters from domestic wastewater-treatment plants resulting in the release and distribution of pharmaceuticals to the marine environment. In the present study, 15 active pharmaceutical ingredients w...

  2. National estuary program guidance: Technical characterization in the National Estuary Program

    SciTech Connect

    Not Available

    1994-06-01

    Estuaries are waterways, such as bays and sounds, where fresh water drained from the surrounding watershed mixes with salt water from the ocean. Section 320 of the Clean Water Act established the National Estuary Program (NEP) to identify nationally significant estuaries threatened by pollution, development, or overuse and to promote the preparation of comprehensive management plans to ensure their ecological integrity. The program's goals are protection and improvement of water quality and enhancement of living resources. To reach these goals, the Administrator of the U.S. Environmental Protection Agency (EPA) convenes management conferences for each estuary in the NEP to provide a forum for consensus building and problem solving among interested agencies and user groups.

  3. WATERSHED-ESTUARY SUSTAINABILITY: WHAT STAKEHOLDERS VALUE

    EPA Science Inventory

    Sustainable development is defined as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs"1. To evaluate the present attributes valued versus the potential effects of development and other land use chang...

  4. Linking Data Access to Data Models to Applications: The Estuary Data Mapper

    EPA Science Inventory

    The U.S. Environmental Protection Agency (US EPA) is developing e-Estuary, a decision-support system for coastal management. E-Estuary has three elements: an estuarine geo-referenced relational database, watershed GIS coverages, and tools to support decision-making. To facilita...

  5. Demonstration and Hands-on Exercises with the Estuary Data Mapper

    EPA Science Inventory

    The U.S. Environmental Protection Agency (US EPA) is developing e-Estuary, a decision-support system for applications of the Clean Water Act in coastal management. E-Estuary has three elements: an estuarine geo-referenced relational database, watershed GIS coverages, and tools t...

  6. Transport of fallout and reactor radionuclides in the drainage basin of the Hudson River estuary

    SciTech Connect

    Simpson, H.J.; Linsalata, P.; Olsen, C.R.

    1982-01-01

    The transport and fate of Strontium 90, Cesium 137 and Plutonium 239, 240 in the Hudson River Estuary is discussed. Rates of radionuclide deposition and accumulation over time and space are calculated for the Hudson River watershed, estuary, and continental shelf offshore. 37 references, 7 figures, 15 tables. (ACR)

  7. Watershed Seasons

    ERIC Educational Resources Information Center

    Endreny, Anna

    2007-01-01

    All schools are located in "watersheds," land that drains into bodies of water. Some watersheds, like the one which encompasses the school discussed in this article, include bodies of water that are walking distance from the school. The watershed cited in this article has a brook and wetland within a several-block walk from the school. This…

  8. Importance of Watershed Land Use in Predicting Benthic Invertebrate Condition in the Virginian Biogeographic Province, USA.

    EPA Science Inventory

    Estuaries are dynamic transition zones linking freshwater and oceanic habitats. These productive ecosystems are threatened by a variety of stressors including human modification of coastal watersheds. In this study we examined potential linkages between estuarine condition and...

  9. Approaches for Development of Nutrient Criteria in Oregon Estuaries

    EPA Science Inventory

    Development of nutrient criteria for all water body types of the US remains a top priority for EPA. Estuaries in the Pacific Northwest receive nutrients from both the watershed and the coastal ocean, and thus are particularly complex systems in which to establish water quality c...

  10. Reference Condition Approach for Numeric Nutrient Criteria for Oregon Estuaries

    EPA Science Inventory

    Development of nutrient criteria for all water body types of the US remains a top priority for EPA. Estuaries in the Pacific Northwest receive nutrients from both the watershed and the coastal ocean, and thus are particularly complex systems in which to establish water quality c...

  11. What’s Upstream? GIS’s critical role in developing nutrient reference conditions for estuaries - April 2, 2015

    EPA Science Inventory

    Eutrophication due to excess levels of nitrogen and phosphorus can seriously impair ecological function in estuaries. Protective criteria for nutrients are difficult to establish because the source can vary spatially and seasonally, originate either from the watershed or the oce...

  12. Estuarine environments as rearing habitats for juvenile Coho Salmon in contrasting south-central Alaska watersheds

    USGS Publications Warehouse

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2013-01-01

    For Pacific salmon, estuaries are typically considered transitional staging areas between freshwater and marine environments, but their potential as rearing habitat has only recently been recognized. The objectives of this study were two-fold: (1) to determine if Coho Salmon Oncorhynchus kisutch were rearing in estuarine habitats, and (2) to characterize and compare the body length, age, condition, and duration and timing of estuarine occupancy of juvenile Coho Salmon between the two contrasting estuaries. We examined use of estuary habitats with analysis of microchemistry and microstructure of sagittal otoliths in two watersheds of south-central Alaska. Juvenile Coho Salmon were classified as estuary residents or nonresidents (recent estuary immigrants) based on otolith Sr : Ca ratios and counts of daily growth increments on otoliths. The estuaries differed in water source (glacial versus snowmelt hydrographs) and in relative estuarine and watershed area. Juvenile Coho Salmon with evidence of estuary rearing were greater in body length and condition than individuals lacking evidence of estuarine rearing. Coho Salmon captured in the glacial estuary had greater variability in body length and condition, and younger age-classes predominated the catch compared with the nearby snowmelt-fed, smaller estuary. Estuary-rearing fish in the glacial estuary arrived later and remained longer (39 versus 24 d of summer growth) during the summer than did fish using the snowmelt estuary. Finally, we observed definitive patterns of overwintering in estuarine and near shore environments in both estuaries. Evidence of estuary rearing and overwintering with differences in fish traits among contrasting estuary types refute the notion that estuaries function as only staging or transitional habitats in the early life history of Coho Salmon.

  13. Introduction to Estuaries

    EPA Science Inventory

    Estuaries, although minor geographical features at the global scale, have major importance for society and the world’s economies. This chapter introduces estuaries by presenting an overview of definitions, origins, physical, chemical and ecological attributes, and the interaction...

  14. Climate Ready Estuaries

    EPA Pesticide Factsheets

    Information on climate change impacts to different estuary regions, tools and resources to monitor changes, and information to help managers develop adaptation plans for risk management of estuaries and coastal communities.

  15. A Comparative Ecological Approach to Assess the Role of Watersheds in Estuarine Condition

    EPA Science Inventory

    Estuarine condition is a function of the geophysical nature of the estuary, the ocean (and atmospheric) system, and the upstream watershed. To fully understand and predict how an estuary will respond to a mixture of natural and anthropogenic drivers and pressures each compartment...

  16. The Role of Watershed Characteristics in Estuarine Condition: An Empirical Approach

    EPA Science Inventory

    Estuarine condition is a function of the nature of the estuary, ocean, and atmospheric systems, and the upstream watershed. To fully understand and predict how an estuary will respond to drivers and pressures, each compartment must be characterized. For example, eutrophication ef...

  17. Comparative Ecological Approach to Assess the Role of Watersheds in Estuarine Condition

    EPA Science Inventory

    Estuarine condition is a function of the nature of the estuary, ocean, and atmospheric systems, and the upstream watershed. To fully understand and predict how an estuary will respond to drivers and pressures, each compartment must be characterized. For example, eutrophication ef...

  18. Linking Data Access to Geospatial Data Models to Applications at Local to National Scales: The Estuary Data Mapper

    EPA Science Inventory

    The U.S. Environmental Protection Agency (US EPA) is developing e-Estuary, a decision-support system for Clean Water Act applications in coastal management. E-Estuary has three elements: an estuarine geo-referenced relational database, watershed GIS coverages, and tools to suppo...

  19. Watershed Investigations

    ERIC Educational Resources Information Center

    Bodzin, Alec; Shive, Louise

    2004-01-01

    Investigating local watersheds presents middle school students with authentic opportunities to engage in inquiry and address questions about their immediate environment. Investigation activities promote learning in an investigations interdisciplinary context as students explore relationships among chemical, biological, physical, geological, and…

  20. THE EFFECTS OF LAND-USE/LAND-COVER, GEOMORPHOLOGY AND CLIMATE ON MAGNITUDE AND TIMING OF NUTRIENT EXPORT AND LOADING RATES IN THREE COASTAL PLAIN WATERSHEDS

    EPA Science Inventory

    Watershed nitrogen (N), phosphorus (P), organic carbon (OC), and total suspended sediment (TSS) export rates were determined in 18 sub-basins of three watershed-estuarine systems over two annual cycles (2000 and 2001). The three watersheds all drain to the Mobile Bay estuary and ...

  1. Impacts of pesticides in a Central California estuary.

    PubMed

    Anderson, Brian; Phillips, Bryn; Hunt, John; Siegler, Katie; Voorhees, Jennifer; Smalling, Kelly; Kuivila, Kathy; Hamilton, Mary; Ranasinghe, J Ananda; Tjeerdema, Ron

    2014-03-01

    Recent and past studies have documented the prevalence of pyrethroid and organophosphate pesticides in urban and agricultural watersheds in California. While toxic concentrations of these pesticides have been found in freshwater systems, there has been little research into their impacts in marine receiving waters. Our study investigated pesticide impacts in the Santa Maria River estuary, which provides critical habitat to numerous aquatic, terrestrial, and avian species on the central California coast. Runoff from irrigated agriculture constitutes a significant portion of Santa Maria River flow during most of the year, and a number of studies have documented pesticide occurrence and biological impacts in this watershed. Our study extended into the Santa Maria watershed coastal zone and measured pesticide concentrations throughout the estuary, including the water column and sediments. Biological effects were measured at the organism and community levels. Results of this study suggest the Santa Maria River estuary is impacted by current-use pesticides. The majority of water samples were highly toxic to invertebrates (Ceriodaphnia dubia and Hyalella azteca), and chemistry evidence suggests toxicity was associated with the organophosphate pesticide chlorpyrifos, pyrethroid pesticides, or mixtures of both classes of pesticides. A high percentage of sediment samples were also toxic in this estuary, and sediment toxicity occurred when mixtures of chlorpyrifos and pyrethroid pesticides exceeded established toxicity thresholds. Based on a Relative Benthic Index, Santa Maria estuary stations where benthic macroinvertebrate communities were assessed were degraded. Impacts in the Santa Maria River estuary were likely due to the proximity of this system to Orcutt Creek, the tributary which accounts for most of the flow to the lower Santa Maria River. Water and sediment samples from Orcutt Creek were highly toxic to invertebrates due to mixtures of the same pesticides measured

  2. Learning Lessons from Estuaries

    ERIC Educational Resources Information Center

    Schnittka, Christine

    2006-01-01

    There is something that draws all people to the sea and especially to the fertile estuaries that nuzzle up to its shores. An estuary serves as both a nursery and a grave for sea creatures. If life evolved from some primordial sea, it may well have been an estuary--a place where ocean and rivers meet and fresh and salty waters mingle in the…

  3. Milwaukee Estuary AOC

    EPA Pesticide Factsheets

    The rivers in the Milwaukee estuary in Wisconsin drain into Lake Michigan. Wastewater treatment plants and combined sewer overflows contribute pollution which affects fish and wildlife and recreation.

  4. Local Estuary Programs

    EPA Pesticide Factsheets

    This page provides information about Local Individual Estuary Programs including links to their NEP homepages, social media, Comprehensive Conservation and Management Plans, and state of the bay reports.

  5. Watershed Science.

    ERIC Educational Resources Information Center

    Green, Tom

    1996-01-01

    Presents activities from an interdisciplinary project studying local watersheds that incorporate a broad spectrum of disciplines including science, math, geography, English, computer science, and political science. Enables students to understand how precipitation changes chemically as it interacts with the soils and human-altered landscape as it…

  6. A Hydrological Model of the Mobile River Watershed, Southeastern USA

    NASA Astrophysics Data System (ADS)

    Alarcon, Vladimir J.; McAnally, William; Diaz-Ramirez, Jairo; Martin, James; Cartwright, John

    2009-08-01

    A hydrological model of the Mobile Bay watershed located in the northern Gulf of Mexico, (Alabama, USA) is presented. The modeling of hydrological processes is performed using the Hydrological Simulation Program Fortran (HSPF). The project region was divided into two sectors for simplifying the modeling task: an upland watershed (that included streams not draining directly to the Mobile Estuary), and several watersheds of selected streams that drain directly to the Mobile estuary (namely: Fish River, Magnolia River, and Chickasaw Creek). The Better Assessment Science Integrating Point & Nonpoint Sources (BASINS) GIS system was used to perform most of the geospatial operations, although ArcGis and ArcInfo were also used to complement geospatial processing that was not available in BASINS.

  7. Nutrient load summaries for major lakes and estuaries of the Eastern United States, 2002

    USGS Publications Warehouse

    Moorman, Michelle C.; Hoos, Anne B.; Bricker, Suzanne B.; Moore, Richard B.; García, Ana María; Ator, Scott W.

    2014-01-01

    Nutrient enrichment of lakes and estuaries across the Nation is widespread. Nutrient enrichment can stimulate excessive plant and algal growth and cause a number of undesirable effects that impair aquatic life and recreational activities and can also result in economic effects. Understanding the amount of nutrients entering lakes and estuaries, the physical characteristics affecting the nutrient processing within these receiving waterbodies, and the natural and manmade sources of nutrients is fundamental to the development of effective nutrient reduction strategies. To improve this understanding, sources and stream transport of nutrients to 255 major lakes and 64 estuaries in the Eastern United States were estimated using Spatially Referenced Regression on Watershed attributes (SPARROW) nutrient models.

  8. Circulation and physical processes within the San Gabriel River Estuary during summer 2005

    USGS Publications Warehouse

    Rosenberger, Kurt J.; Xu, Jingping; Stein, Eric D.; Noble, Marlene A.; Gartner, Anne L.

    2007-01-01

    The Southern California Coastal Water Research Project (SCCWRP) is developing a hydrodynamic model of the SGR estuary, which is part of the comprehensive water-quality model of the SGR estuary and watershed investigated by SCCWRP and other local agencies. The hydrodynamic model will help understanding of 1) the exchange processes between the estuary and coastal ocean; 2) the circulation patterns in the estuary; 3) upstream natural runoff and the cooling discharge from PGS. Like all models, the SGR hydrodynamic model is only useful after it is fully calibrated and validated. In May 2005, SCCWRP requested the assistance of the U.S. geological Survey (USGS) Coastal and Marine Geology team (CMG) in collecting data on the hydrodynamic conditions in the estuary during the summer dry season. The summer was chosen for field data collection as this was assumed to be the season with the greatest potential for chronic degraded water quality due to low river flow and high thermal stratification within the estuary (due to both higher average air temperature and PGS output). Water quality can be degraded in winter as well, when higher river discharge events bring large volumes of water from the Los Angeles basin into the estuary. The objectives of this project were to 1) collect hydrodynamic data along the SGR estuary; 2) study exchange processes within the estuary through analysis of the hydrodynamic data; and 3) provide field data for model calibration and validation. As the data only exist for the summer season, the results herein only apply to summer conditions.

  9. Juvenile Salmon Usage of the Skeena River Estuary

    PubMed Central

    Carr-Harris, Charmaine; Gottesfeld, Allen S.; Moore, Jonathan W.

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2–8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations

  10. Juvenile salmon usage of the Skeena River estuary.

    PubMed

    Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that

  11. Effects of watershed land-cover on the biogeochemical properties of estuarine tidal flat sediments: A test in a densely-populated subtropical island

    NASA Astrophysics Data System (ADS)

    Morita, Akiko; Touyama, Shouji; Kuwae, Tomohiro; Nishimura, Osamu; Sakamaki, Takashi

    2017-01-01

    The effects of watershed land cover on the biogeochemical properties of estuarine tidal flat sediment were examined in estuarine tidal flats of 16 watersheds in a densely populated, subtropical island of Japan. Despite the small sizes of the watersheds (<16.5 km2), a redundancy analysis showed that river water quality explained 62% of the cross-estuary variation in the biogeochemical properties of estuarine tidal flat sediment by the first two ordination axes. We also found that the dissolved nutrient concentrations of river water and pheophytin a content of tidal flat sediment were positively related to agricultural and urbanized land cover in the watersheds. These results indicate that human nutrient inputs significantly increase algae-derived deposits in estuaries with relatively more developed watersheds. The δ13C of particulate organic matter (POM) was negatively related to watershed forest cover. This suggests that terrestrially derived-origin POM deposits are substantial in the estuaries connected to watersheds with relatively high forest cover. However, the chemical properties of tidal flat sediment were not related to chemical indicators of POM in the base flow. We hypothesize that substantial terrestrially derived POM is discharged to estuaries of high-forest-cover watersheds during high flow, and this partially controls the chemical properties of estuarine sediments. Our results demonstrate that the chemical properties of estuarine tidal flats are associated with watershed land cover, and that the dominant processes controlling estuarine sediment properties differ among watersheds depending on land cover composition.

  12. Spring climate and salinity in the San Francisco Bay Estuary

    USGS Publications Warehouse

    Cayan, Daniel R.; Peterson, David H.

    1993-01-01

    Salinity in the San Francisco Bay Estuary almost always experiences its yearly maximum during late summer, but climate variability produces marked interannual variations. The atmospheric circulation pattern impacts the estuary primarily through variations of runoff from rainfall and snowmelt from the Sierra Nevada and, secondarily, through variations in the near-surface salinity in the coastal ocean. While winter precipitation is the primary influence upon salinity in the estuary, spring climate variations also contribute importantly to salinity fluctuations. Spring atmospheric circulation influences both the magnitude and the timing of freshwater flows, through anomalies of precipitation and temperature. To help discriminate between the effects of these two influences, the record is divided into subsets according to whether spring conditions in the region are cool and wet, warm and wet, cool and dry, or warm and dry. Warm springs promote early snowmelt-driven flows, and cool springs result in delayed flows. In addition to effects of winter and spring climate variability operating on the watershed, there are more subtle effects that are transmitted into the estuary from the coastal ocean. These influences are most pronounced in cool and dry springs with high surface salinity (SS) in the coastal ocean versus cool and wet springs with low SS in the coastal ocean. A transect of SS records at stations from the mouth to the head of the bay suggests that the coastal ocean anomaly signal is attenuated from the mouth to the interior of the estuary. In contrast, a delayed, postsummer signal caused by winter and spring runoff variations from the upstream watershed are most pronounced at the head of the estuary and attenuate toward the mouth.

  13. Nitrogen Saturation in Highly Retentive Watersheds?

    NASA Astrophysics Data System (ADS)

    Daley, M. L.; McDowell, W. H.

    2009-12-01

    Watershed managers are often concerned with minimizing the amount of N delivered to N-limited estuaries and coastal zones. A major concern is that watersheds might reach N saturation, in which N delivered to coastal zones increases due to declines in the efficiency of N retention despite constant or even reduced N inputs. We have quantified long-term changes in N inputs (atmospheric deposition, imported food and agricultural fertilizers), outputs (N concentration and export) and retention in the urbanizing Lamprey River watershed in coastal NH. Overall, the Lamprey watershed is 70% forested, receives about 13.5 kg N/ha/yr and has a high rate of annual N retention (85%). Atmospheric deposition (8.7 kg/ha/yr) is the largest N input to the watershed. Of the 2.2 kg N/ha/yr exported in the Lamprey River, dissolved organic N (DON) is the dominant form (50% of total) and it varies spatially throughout the watershed with wetland cover. Nitrate accounts for 30% of the N exported, shows a statistically significant increase from 1999 to 2009, and its spatial variability in both concentration and export is related to human population density. In sub-basins throughout the Lamprey, inorganic N retention is high (85-99%), but the efficiency of N retention declines sharply with increased human population density and associated anthropogenic N inputs. N assimilation in the vegetation, denitrification to the atmosphere and storage in the groundwater pool could all be important contributors to the current high rates of N retention. The temporal and spatial patterns that we have observed in nitrate concentration and export are driven by increases in N inputs and impervious surfaces over time, but the declining efficiency of N retention suggests that the watershed may also be reaching N saturation. The downstream receiving estuary, Great Bay, already suffers from low dissolved oxygen levels and eelgrass loss in part due to N loading from the Lamprey watershed. Targeting and reducing

  14. Watersheds: Where We Live.

    ERIC Educational Resources Information Center

    Vandas, Steve

    1997-01-01

    Presents information about watersheds including water quantity, water quality, floods and floodplains. Lists resources for learning more about watersheds as well as Internet resources. Includes a foldout that can be used to teach children about watersheds and floodplains. (JRH)

  15. Cross-system comparison of factors influencing chlorophyll-a concentration in Oregon estuaries

    EPA Science Inventory

    Water column chlorophyll-a (chla) is a proxy for phytoplankton biomass and is often used as a biological response indicator of eutrophication. Although watershed nutrient loading may influence chla concentration in estuaries, factors such as freshwater inflow, residence time, and...

  16. Application of advanced remote sensing techniques to improve modeling estuary water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estuaries, the interface between terrestrial and coastal waters are an important component of complex and dynamic coastal watersheds. They are usually characterized by abrupt chemical gradients and complex dynamics, which can result in major transformations in the amount, chemical nature and timing ...

  17. CHARACTERIZING THE ORGANIC MATTER IN SURFACE SEDIMENTS FROM THE SAN JUAN BAY ESTUARY.

    EPA Science Inventory

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest...

  18. CHARACTERIZING THE ORGANIC MATTER IN SURFACE SEDIMENTS FROM THE SAN JUAN BAY ESTUARY

    EPA Science Inventory

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest...

  19. Relation between inherent optical properties and land use and land cover across Gulf Coast estuaries

    EPA Science Inventory

    Land use and land cover (LULC) can affect the watershed exports of optically active constituents such as suspended particulate matter and colored dissolved organic matter, and in turn affect estuarine optical properties. We collected optical data from six estuaries in the northea...

  20. Retrospective Review of Watershed Characteristics and a Framework for Future Research in the Sarasota Bay Watershed, Florida

    USGS Publications Warehouse

    Kish, George R.; Harrison, Arnell S.; Alderson, Mark

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Sarasota Bay Estuary Program conducted a retrospective review of characteristics of the Sarasota Bay watershed in west-central Florida. This report describes watershed characteristics, surface- and ground-water processes, and the environmental setting of the Sarasota Bay watershed. Population growth during the last 50 years is transforming the Sarasota Bay watershed from rural and agriculture to urban and suburban. The transition has resulted in land-use changes that influence surface- and ground-water processes in the watershed. Increased impervious cover decreases recharge to ground water and increases overland runoff and the pollutants carried in the runoff. Soil compaction resulting from agriculture, construction, and recreation activities also decreases recharge to ground water. Conventional approaches to stormwater runoff have involved conveyances and large storage areas. Low-impact development approaches, designed to provide recharge near the precipitation point-of-contact, are being used increasingly in the watershed. Simple pollutant loading models applied to the Sarasota Bay watershed have focused on large-scale processes and pollutant loads determined from empirical values and mean event concentrations. Complex watershed models and more intensive data-collection programs can provide the level of information needed to quantify (1) the effects of lot-scale land practices on runoff, storage, and ground-water recharge, (2) dry and wet season flux of nutrients through atmospheric deposition, (3) changes in partitioning of water and contaminants as urbanization alters predevelopment rainfall-runoff relations, and (4) linkages between watershed models and lot-scale models to evaluate the effect of small-scale changes over the entire Sarasota Bay watershed. As urbanization in the Sarasota Bay watershed continues, focused research on water-resources issues can provide information needed by water

  1. Climate Ready Estuaries Progress Reports

    EPA Pesticide Factsheets

    Climate Ready Estuaries has supported adaptation activities in National Estuary Programs since 2008. In 2012, the program partnered with 23 NEPs, completed a pilot project with water utilities, and held workshops. Download annual reports from 2009-2012.

  2. The relative importance of oceanic nutrient inputs for Bass Harbor Marsh Estuary at Acadia National Park, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Fuller, Christopher; Glibert, Patricia; Sturtevant, Luke

    2014-01-01

    The U.S. Geological Survey and Acadia National Park (ANP) collaborated on a study of nutrient inputs into Bass Harbor Marsh Estuary on Mount Desert Island, Maine, to better understand ongoing eutrophication, oceanic nutrient inputs, and potential management solutions. This report includes the estimation of loads of nitrate, ammonia, total dissolved nitrogen, and total dissolved phosphorus to the estuary derived from runoff within the watershed and oceanic inputs during summers 2011 and 2012. Nutrient outputs from the estuary were also monitored, and nutrient inputs in direct precipitation to the estuary were calculated. Specific conductance, water temperature, and turbidity were monitored at the estuary outlet. This report presents a first-order analysis of the potential effects of projected sea-level rise on the inundated area and estuary volume. Historical aerial photographs were used to investigate the possibility of widening of the estuary channel over time. The scope of this report also includes analysis of sediment cores collected from the estuary and fringing marsh surfaces to assess the sediment mass accumulation rate. Median concentrations of nitrate, ammonium, and total dissolved phosphorus on the flood tide were approximately 25 percent higher than on the ebb tide during the 2011 and 2012 summer seasons. Higher concentrations on the flood tide suggest net assimilation of these nutrients in biota within the estuary. The dissolved organic nitrogen fraction dominated the dissolved nitrogen fraction in all tributaries. The median concentration of dissolved organic nitrogen was about twice as high on the on the ebb tide than the flood tide, indicating net export of dissolved organic nitrogen from the estuary. The weekly total oceanic inputs of nitrate, ammonium, and total dissolved phosphorus to the estuary were usually much larger than inputs from runoff or direct precipitation. The estuary was a net sink for nitrate and ammonium in most weeks during both

  3. Sustainable Watersheds: Integrating Ecosystem Services and Public Health

    PubMed Central

    Jordan, Stephen J; Benson, William H

    2015-01-01

    Sustainable management of aquatic ecosystems is a worldwide priority; the integrity of these systems depends, in turn, on the integrity of the watersheds (catchments) in which they are embedded. In this article, we present the concepts, background, and scientific foundations for assessing, both nationally and at finer scales, the relationships between ecosystem services, human health, and socioeconomic values in the context of water quality, water quantity, landscapes, the condition of watersheds, and the connectivity of waters, from headwaters to estuaries and the coastal ocean. These assessments will be a foundation for what we have termed “watershed epidemiology,” through which the connections between ecosystems and human health can be explored over broad spatial and temporal scales. Understanding and communicating these relationships should lead to greater awareness of the roles watersheds play in human well-being, and hence to better management and stewardship of water resources. The U.S. Environmental Protection Agency is developing the research, models, and planning tools to support operational national assessments of watershed sustainability, building upon ongoing assessments of aquatic resources in streams, rivers, lakes, wetlands and estuaries. PMID:25987844

  4. From headwaters to coast: Influence of human activities on water quality of the Potomac River Estuary

    USGS Publications Warehouse

    Bricker, Suzanne B.; Rice, Karen C.; Bricker, Owen P.

    2014-01-01

    The natural aging process of Chesapeake Bay and its tributary estuaries has been accelerated by human activities around the shoreline and within the watershed, increasing sediment and nutrient loads delivered to the bay. Riverine nutrients cause algal growth in the bay leading to reductions in light penetration with consequent declines in sea grass growth, smothering of bottom-dwelling organisms, and decreases in bottom-water dissolved oxygen as algal blooms decay. Historically, bay waters were filtered by oysters, but declines in oyster populations from overfishing and disease have led to higher concentrations of fine-sediment particles and phytoplankton in the water column. Assessments of water and biological resource quality in Chesapeake Bay and tributaries, such as the Potomac River, show a continual degraded state. In this paper, we pay tribute to Owen Bricker’s comprehensive, holistic scientific perspective using an approach that examines the connection between watershed and estuary. We evaluated nitrogen inputs from Potomac River headwaters, nutrient-related conditions within the estuary, and considered the use of shellfish aquaculture as an in-the-water nutrient management measure. Data from headwaters, nontidal, and estuarine portions of the Potomac River watershed and estuary were analyzed to examine the contribution from different parts of the watershed to total nitrogen loads to the estuary. An eutrophication model was applied to these data to evaluate eutrophication status and changes since the early 1990s and for comparison to regional and national conditions. A farm-scale aquaculture model was applied and results scaled to the estuary to determine the potential for shellfish (oyster) aquaculture to mediate eutrophication impacts. Results showed that (1) the contribution to nitrogen loads from headwater streams is small (about 2 %) of total inputs to the Potomac River Estuary; (2) eutrophic conditions in the Potomac River Estuary have improved in

  5. Estuary-ocean connectivity: fast physics, slow biology.

    PubMed

    Raimonet, Mélanie; Cloern, James E

    2016-11-01

    Estuaries are connected to both land and ocean so their physical, chemical, and biological dynamics are influenced by climate patterns over watersheds and ocean basins. We explored climate-driven oceanic variability as a source of estuarine variability by comparing monthly time series of temperature and chlorophyll-a inside San Francisco Bay with those in adjacent shelf waters of the California Current System (CCS) that are strongly responsive to wind-driven upwelling. Monthly temperature fluctuations inside and outside the Bay were synchronous, but their correlations weakened with distance from the ocean. These results illustrate how variability of coastal water temperature (and associated properties such as nitrate and oxygen) propagates into estuaries through fast water exchanges that dissipate along the estuary. Unexpectedly, there was no correlation between monthly chlorophyll-a variability inside and outside the Bay. However, at the annual scale Bay chlorophyll-a was significantly correlated with the Spring Transition Index (STI) that sets biological production supporting fish recruitment in the CCS. Wind forcing of the CCS shifted in the late 1990s when the STI advanced 40 days. This shift was followed, with lags of 1-3 years, by 3- to 19-fold increased abundances of five ocean-produced demersal fish and crustaceans and 2.5-fold increase of summer chlorophyll-a in the Bay. These changes reflect a slow biological process of estuary-ocean connectivity operating through the immigration of fish and crustaceans that prey on bivalves, reduce their grazing pressure, and allow phytoplankton biomass to build. We identified clear signals of climate-mediated oceanic variability in this estuary and discovered that the response patterns vary with the process of connectivity and the timescale of ocean variability. This result has important implications for managing nutrient inputs to estuaries connected to upwelling systems, and for assessing their responses to changing

  6. Socio-Economic Spatial for the Sustainability of the Estuary Ecosystem in Pelabuhanratu Coastal West Java

    NASA Astrophysics Data System (ADS)

    Supriatna, L.; Supriatna, J.; Harmantyo, D.

    2017-02-01

    An estuary area is a typical ecosystem where a vast array of fish breed to enlarge populations. These regions are made productive by organic material in the form of foodstuff, while receiving sunlight sufficient enough to illuminate the brackish waters. These zones must be protected due to their fertile waters and surrounding fertile land. Estuary areas are threatened by nearby landfill and waste debris along and upstream of the river, which consequently contaminate the estuary zone. Socio-economic conditions of the community also affect the sustainability of the estuary. In this case, the Socio-Economic Spatial Model, based on Geographical Information System (GIS) and trade off analysis, were used to elaborate the ecosystem sustainability in the Cimandiri estuary, West Java. This research also uses the temporal analysis of land use change upstream and monitors the community activity around the estuary. The research showed a change in the spatial and temporal land use consequently altering the watershed and the socio-economic analysis showed the community use of the estuary as unsustainable for the region and ecosystems within.

  7. Bibliography of hydrologic and water-quality investigations conducted in or near the Albermarle-Pamlico Sounds Region, North Carolina

    USGS Publications Warehouse

    Bales, Jerad D.; Nelson, Thomas M.

    1988-01-01

    A bibliography containing 1,100 citations is presented. The cited works are primarily reports of investigations of the effects of land use and land-use change on water quality, artificial drainage, hydrology and hydrodynamics, and water quality in the Albemarle-Pamlico Sounds region, North Carolina. The bibliography is indexed according to research topic and geographic location of the investigation. the bibliography is also computerized and has been transferred to the Albemarle-Pamlico Estuarine Study data-management system.

  8. Managing Watersheds with WMOST

    EPA Pesticide Factsheets

    The Watershed Management Optimization Support Tool (WMOST) allows water-resource managers and planners to screen a wide range of practices for cost-effectiveness in achieving watershed or water utilities management goals.

  9. Healthy Watersheds Protection

    MedlinePlus

    ... habitat loss from warmer water temperatures associated with climate change already has been observed in the southern ... altered water flow and availability, invasive species and climate change. Healthy Watersheds EPA Awards Healthy Watersheds Consortium ...

  10. Island Watershed Activity.

    ERIC Educational Resources Information Center

    Benson, Rod

    2003-01-01

    Describes a 90-minute "Island Watershed" activity to help earth science students understand the concept of the water cycle. Introduces a surface waters unit appropriate for students in grades 7-10. Includes watershed project guidelines. (Author/KHR)

  11. Ecology of estuaries

    SciTech Connect

    Kennish, M.J. )

    1992-01-01

    Ecology of Estuaries: Anthropogenic Effects represents the most definitive and comprehensive source of reference information available on the human impact on estuarine ecosystems. The book discusses both acute and insidious pollution problems plaguing these coastal ecotones. It also provides a detailed examination of the deleterious and pervasive effects of human activities on biotic communities and sensitive habitat areas in estuaries. Specific areas covered include organic loading, oil pollution, polynuclear aromatic hydrocarbons, chlorinated hydrocarbons, heavy metals, dredging and dredge-spoil disposal, radionuclides, as well as other contaminants and processes. The diverse components of these anthropogenic influences are assembled in an organized framework and presented in a clear and concise style that will facilitate their understanding.

  12. Ecology of estuaries

    SciTech Connect

    Kennish, M.J.

    1986-01-01

    This book is a summary of information available on estuarine ecology, that reviews concepts and problems of estuaries and assesses the value of these coastal systems. It investigates such topics as water circulation and mixing, trace elements, nutrients, organic matter, and sedimentary processes, with reviews on more than two decades of intense study. Chapters reflect contributions from a variety of interdisciplinary sciences including botany, chemistry, ecology, geology, physics, and zoology.

  13. Watershed nutrient inputs, phytoplankton accumulation, and C stocks in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Fisher, T. R.; Boynton, W. R.; Hagy, J. D.

    2002-12-01

    Inputs of N and P to Chesapeake Bay have been enhanced by anthropogenic activities. Fertilizers, urbanization, N emissions, and industrial effluents contribute to point and diffuse sources currently 2-7X higher for P and 5-20X higher for N than those from undisturbed watersheds. Enhanced nutrient inputs cause phytoplankton blooms which obscure visibility, eliminate submerged grasses, and influence the distribution of C within the Bay. Accumulations of dissolved organic and particulate organic C lead to enhanced microbial respiration in isolated bottom waters, and dissolved oxygen is seasonally reduced to trace levels during summer. Cultural eutrophication is not unique to Chesapeake Bay. Although some estuaries such as the Delaware, Hudson, and San Francisco Bay also have high anthropogenic inputs, these estuaries have much shorter residence times, and much of the N and P may be exported to the coastal ocean. However, in Chesapeake Bay, with residence times >2 months, internal processing of watershed inputs results in local algal blooms within the estuary. Watershed restoration strategies for Chesapeake watersheds have had limited success to date. Groundwaters are enriched with nitrate, and the long residence times of groundwaters mean slow responses to watershed improvements. The few successes in the Chesapeake have been associated with point source reductions, although continued human population growth can easily override restoration efforts. Widespread improvement in water quality has yet to occur, but the limited successes show that the Bay responds to load changes.

  14. A classification of U.S. estuaries based on physical and hydrologic attributes.

    PubMed

    Engle, Virginia D; Kurtz, Janis C; Smith, Lisa M; Chancy, Cynthia; Bourgeois, Pete

    2007-06-01

    A classification of U.S. estuaries is presented based on estuarine characteristics that have been identified as important for quantifying stressor-response relationships in coastal systems. Estuaries within a class have similar physical and hydrologic characteristics and would be expected to demonstrate similar biological responses to stressor loads from the adjacent watersheds. Nine classes of estuaries were identified by applying cluster analysis to a database for 138 U.S. estuarine drainage areas. The database included physical measures of estuarine areas, depth and volume, as well as hydrologic parameters (i.e., tide height, tidal prism volume, freshwater inflow rates, salinity, and temperature). The ability of an estuary to dilute or flush pollutants can be estimated using physical and hydrologic properties such as volume, bathymetry, freshwater inflow and tidal exchange rates which influence residence time and affect pollutant loading rates. Thus, physical and hydrologic characteristics can be used to estimate the susceptibility of estuaries to pollutant effects. This classification of estuaries can be used by natural resource managers to describe and inventory coastal systems, understand stressor impacts, predict which systems are most sensitive to stressors, and manage and protect coastal resources.

  15. A classification of U.S. estuaries based on physical and hydrologic attributes

    USGS Publications Warehouse

    Engle, V.D.; Kurtz, J.C.; Smith, L.M.; Chancy, C.; Bourgeois, P.

    2007-01-01

    A classification of U.S. estuaries is presented based on estuarine characteristics that have been identified as important for quantifying stressor-response relationships in coastal systems. Estuaries within a class have similar physical and hydrologic characteristics and would be expected to demonstrate similar biological responses to stressor loads from the adjacent watersheds. Nine classes of estuaries were identified by applying cluster analysis to a database for 138 U.S. estuarine drainage areas. The database included physical measures of estuarine areas, depth and volume, as well as hydrologic parameters (i.e., tide height, tidal prism volume, freshwater inflow rates, salinity, and temperature). The ability of an estuary to dilute or flush pollutants can be estimated using physical and hydrologic properties such as volume, bathymetry, freshwater inflow and tidal exchange rates which influence residence time and affect pollutant loading rates. Thus, physical and hydrologic characteristics can be used to estimate the susceptibility of estuaries to pollutant effects. This classification of estuaries can be used by natural resource managers to describe and inventory coastal systems, understand stressor impacts, predict which systems are most sensitive to stressors, and manage and protect coastal resources. ?? Springer Science+Business Media B.V. 2007.

  16. Application of Watershed Ecological Risk Assessment Methods to Watershed Management

    EPA Science Inventory

    Watersheds are frequently used to study and manage environmental resources because hydrologic boundaries define the flow of contaminants and other stressors. Ecological assessments of watersheds are complex because watersheds typically overlap multiple jurisdictional boundaries,...

  17. Watersheds: where we live

    USGS Publications Warehouse

    Vandas, Stephen; Farrar, Frank

    1996-01-01

    We all live in a watershed. Animals and plants all live there with us. Everyone affects what happens in a watershed by how we treat the natural resources. So what is a watershed? It is the land area that drains water to a stream, river, lake, or ocean. Water travels over the Earth's surface across forest land, farm fields, pastures, suburban lawns, and city streets, or it seeps into the soil and makes its way to a stream as local ground water. Watersheds come in many different shapes and sizes. Some contain mountains and hills, and others are nearly flat. A watershed can be affected by many different activities and events. Construction of cities and towns, farming, logging, and the application and disposal of many garden and household chemicals can affect the quantity and quality of water flowing from a watershed.

  18. Sediment transport due to extreme events: The Hudson River estuary after tropical storms Irene and Lee

    USGS Publications Warehouse

    Ralston, David K.; Warner, John C.; Geyer, W. Rockwell; Wall, Gary R.

    2013-01-01

    Tropical Storms Irene and Lee in 2011 produced intense precipitation and flooding in the U.S. Northeast, including the Hudson River watershed. Sediment input to the Hudson River was approximately 2.7 megaton, about 5 times the long-term annual average. Rather than the common assumption that sediment is predominantly trapped in the estuary, observations and model results indicate that approximately two thirds of the new sediment remained trapped in the tidal freshwater river more than 1 month after the storms and only about one fifth of the new sediment reached the saline estuary. High sediment concentrations were observed in the estuary, but the model results suggest that this was predominantly due to remobilization of bed sediment. Spatially localized deposits of new and remobilized sediment were consistent with longer term depositional records. The results indicate that tidal rivers can intercept (at least temporarily) delivery of terrigenous sediment to the marine environment during major flow events.

  19. The Mattole River Estuary: Restoration Efforts in a Dynamic System

    NASA Astrophysics Data System (ADS)

    Barber, D.; Liquori, M.

    2010-12-01

    Despite extensive scientific advancement integrating our understanding of hydrology, geomorphology, and ecology in recent decades, the application of restoration in the field has been slow to evolve. This presentation will highlight 20 years of restoration practices in the Mattole River Estuary and how these practices have informed our understanding of this complex system. The Mattole River Watershed is a 304 square-mile basin located near the Mendocino Triple Junction in a remote region of California known as the “The Lost Coast” for its rugged mountains and undeveloped coastline. In addition to numerous species of fish, mammals, and over 250 bird species, the Mattole Watershed is home to three Federally-listed Threatened salmonids: California Coastal Chinook salmon, Southern Oregon/Northern California Coasts coho salmon, and Northern California steelhead trout. The 64 mile-long river meets the Pacific Ocean at the northern end of the 64,000 acre King Range National Conservation Area (KRNCA), managed by the Bureau of Land Management (BLM). The watershed is dynamic, with some of the nation’s highest annual rainfall (mean = 158 cm/yr), naturally occurring steep slopes, erosive sedimentary geology, and frequent earthquakes. All of these factors have amplified the negative effects of extensive logging and associated road building between 1945 and 1970, which left a legacy of increased sediment loads and high water temperatures that have yet to recover to pre-disturbance levels, severely impairing riparian and aquatic habitats. Prior to major land disturbances, the Mattole estuary/lagoon was notable for its deep, thermally-stratified pools and numerous functioning north and south bank slough channels that flushed sediments from the river and received marine water. As flows decline in late spring, a sandbar closes off surface flow from the river to the Pacific Ocean, forming a lagoon, which persists until flows increase in the fall. Today, the estuary is poor

  20. Modelling the water exchanges between an estuary and its underlying aquifer units

    NASA Astrophysics Data System (ADS)

    Baratelli, Fulvia; Flipo, Nicolas; David, Pierre-Yann; Pennequin, Didier; Lemoine, Jean Philippe; Bacq, Nicolas; Dupont, Jean-Paul

    2016-04-01

    This work aims at developing a coupled hydrological surface-subsurface model of estuarine processes. The exchanges between surface water and subsurface water affect the hydro-sedimentary and biogeochemical processes in estuarine environments. The thickness and the hydrodynamic properties of the sediments in an estuary are often characterized by significant spatial variations which influence the exchanges with the subsurface water. A methodology based on the conductance approach is proposed to quantify the water exchanges between an estuary and its underlying aquifer units. An application to the case of the Seine estuary (France) is presented. To this aim, an integrated distributed physically-based hydrological-hydrogeological model (CAWAQS) is used to simulate the surface and groundwater flows in a 9 500 km2 watershed representing the downstream part of the regional Seine River basin (80 000 km2) including its estuary. At the bottom of the estuary, a layer of low-permeability Holocene sediments overlays the aquifer formations (mainly Pleistocene alluvial sediments and Cretaceous chalk). The conductance coefficient is estimated by assuming a vertical flow in series through the low-permeability sediments and the aquifer. Moreover, the low-permeability sediments have been partially dredged to create a navigation channel, were the estuary water is in direct contact with the aquifer. These specificities are taken into account in the model. The water fluxes in the estuary are simulated at a resolution ranging from 100 m to 800 m and daily time step. As a preliminary result, the distribution of the average water fluxes over a 17 year period (1997-2014) has been calculated using an average distribution of water elevation in the estuary. The navigation channel is shown to drain the aquifer system as a consequence of the removal of the low-permeability sediments.

  1. Ecological risk assessments for watersheds: Lessons learned from case studies

    SciTech Connect

    Marcy, S.K.M.

    1994-12-31

    The USEPA Office of Water and Risk Assessment Forum are co-sponsoring the development of watershed level ecological risk assessments in Big Darby Creek, OH, Clinch River, VA, Middle Platte River Wetlands, NE, Snake River, ID, and Waquoit Bay Estuary, MA. The case studies are testing the Agency`s Framework for Ecological Risk Assessment at a watershed scale for multiple stressors. During case study development much has been learned about how to apply and modify the principles in the Framework to landscape scale risk assessments. Insights include how to select appropriate assessment endpoints to drive the risk assessment, how to effectively increase involvement by risk management teams, and provide decision opportunities for managers throughout development. The case studies demonstrate diverse ways to conduct watershed risk assessments, and illustrate the importance of multiple risk hypotheses in conceptual models addressing the combined and relative risk of chemical, physical and biological stressors. Issues the case studies highlight include the need for a process to determine when watershed risk assessments are appropriate and at what level of complexity they should be performed, how to increase the use of the ecological risk assessments in management decision-making and how to determine the best risk reduction strategy. An update on the watershed case studies will be provided and the insights and issues stated above, discussed.

  2. A COMPREHENSIVE NONPOINT SOURCE FIELD STUDY FOR SEDIMENT, NUTRIENTS AND PATHOGENS IN THE SOUTH FORK BROAD RIVER WATERSHED, GEORGIA

    EPA Science Inventory

    There is an urgent need for EPA to develop protocols for establishing Total Maximum Daily Loads (TMDLs) in streams, lakes and estuaries. A cooperative TMDL field data collection project between ORD and Region 4 is ongoing in the South Fork Broad River Watershed (SFBR), a 245.18 ...

  3. Developing a Watershed Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    This article presents a watershed challenge that gives students an opportunity to investigate the challenge of using a watershed area as a site for development, examining the many aspects of this multifaceted problem. This design challenge could work well in a team-based format, with students taking on specific aspects of the challenges and…

  4. Master Watershed Stewards.

    ERIC Educational Resources Information Center

    Comer, Gary L.

    The Master Watershed Stewards (MWS) Program is a pilot project (developed through the cooperation of the Ohio State University Extension Logan and Hardin County Offices and the Indian Lake Watershed Project) offering the opportunity for communities to get involved at the local level to protect their water quality. The program grew out of the…

  5. Geochemistry of the Amazon Estuary

    USGS Publications Warehouse

    Smoak, Joseph M.; Krest, James M.; Swarzenski, Peter W

    2006-01-01

    The Amazon River supplies more freshwater to the ocean than any other river in the world. This enormous volume of freshwater forces the estuarine mixing out of the river channel and onto the continental shelf. On the continental shelf, the estuarine mixing occurs in a very dynamic environment unlike that of a typical estuary. The tides, the wind, and the boundary current that sweeps the continental shelf have a pronounced influence on the chemical and biological processes occurring within the estuary. The dynamic environment, along with the enormous supply of water, solutes and particles makes the Amazon estuary unique. This chapter describes the unique features of the Amazon estuary and how these features influence the processes occurring within the estuary. Examined are the supply and cycling of major and minor elements, and the use of naturally occurring radionuclides to trace processes including water movement, scavenging, sediment-water interaction, and sediment accumulation rates. The biogeochemical cycling of carbon, nitrogen, and phosphorus, and the significances of the Amazon estuary in the global mass balance of these elements are examined.

  6. Dispersion in alluvial convergent estuaries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2016-04-01

    The Van der Burgh's equation for longitudinal effective dispersion is a purely empirical method with practical implications. Its application to the effective tidal average dispersion under equilibrium conditions appears to have excellent performance in a wide range of alluvial estuaries. In this research, we try to find out the physical meaning of Van der Burgh's coefficient. Researchers like MacCready, Fischer, Kuijper, Hansen and Rattray have tried to split up dispersion into its constituents which did not do much to explain overall behaviour. In addition, traditional literature on dispersion is mostly related to flumes with constant cross-section. This research is about understanding the Van der Burgh's coefficient facing the fact that natural estuaries have exponentially varying cross-section. The objective is to derive a simple 1-D model considering both longitudinal and lateral mixing processes based on field observations (theoretical derivation). To that effect, we connect dispersion with salinity using the salt balance equation. Then we calculate the salinity along the longitudinal direction and compare it to the observed salinity. Calibrated dispersion coefficients in a range of estuaries are then compared with new expressions for the Van der Burgh's coefficient K and it is analysed if K varies from estuary to estuary. The set of reliable data used will be from estuaries: Kurau, Perak, Bernam, Selangor, Muar, Endau, Maputo, Thames, Corantijn, Sinnamary, Mae Klong, Lalang, Limpopo, Tha Chin, Chao Phraya, Edisto and Elbe.

  7. Influence of Watershed Runoff on Nutrient Dynamics in a Southern California Salt Marsh

    NASA Astrophysics Data System (ADS)

    Page, Henry M.; Petty, Robert L.; Meade, Daniel E.

    1995-08-01

    The effect of freshwater runoff on nutrient loading and dynamics was studied in Carpinteria Salt Marsh, a typically small (93 ha) southern California, U.S.A., estuary adjoining a watershed supporting extensive agricultural and urban development. Concentrations of dissolved nitrate, but not ammonium or phosphate, were elevated in stream flow and perched groundwater in the watershed, relative to marsh surface waters. Loading of nitrate and particulate organic nitrogen (PON) from the watershed, but not ammonium or phosphate, increased as a function of stream discharge. Estimates of net nutrient exchange over selected tidal cycles suggested that the marsh exported nitrate, ammonium and PON to the Santa Barbara Channel. Nitrate and PON were advected from the watershed through the marsh while ammonium was produced within the marsh and exported. The availability of imported nitrogen for primary production may be limited by marsh tidal elevation as most nitrogen inputs are throughput to the Santa Barbara Channel.

  8. INVESTIGATIONS INTO THE EFFECTS OF SEASON AND WATER QUALITY ON OYSTERS (CRASSOSTREA VIRGINICA) AND ASSOCIATED FISH ASSEMBLAGES IN THE CALOOSAHATCHEE RIVER ESTUARY, FLORIDA: IMPLICATIONS OF ALTERED FRESHWATER INFLOW

    EPA Science Inventory

    A suite of biological and ecological responses of a Valued Ecosystem Component species, Crassostrea virginica, was used to investigate ecosystem-wide health effects of watershed alterations in the Caloosahatchee River estuary, Florida. The influence of water quality and season on...

  9. Watersheds in disordered media

    NASA Astrophysics Data System (ADS)

    Andrade, Joséi, Jr.; Araújo, Nuno; Herrmann, Hans; Schrenk, Julian

    2015-02-01

    What is the best way to divide a rugged landscape? Since ancient times, watersheds separating adjacent water systems that flow, for example, toward different seas, have been used to delimit boundaries. Interestingly, serious and even tense border disputes between countries have relied on the subtle geometrical properties of these tortuous lines. For instance, slight and even anthropogenic modifications of landscapes can produce large changes in a watershed, and the effects can be highly nonlocal. Although the watershed concept arises naturally in geomorphology, where it plays a fundamental role in water management, landslide, and flood prevention, it also has important applications in seemingly unrelated fields such as image processing and medicine. Despite the far-reaching consequences of the scaling properties on watershed-related hydrological and political issues, it was only recently that a more profound and revealing connection has been disclosed between the concept of watershed and statistical physics of disordered systems. This review initially surveys the origin and definition of a watershed line in a geomorphological framework to subsequently introduce its basic geometrical and physical properties. Results on statistical properties of watersheds obtained from artificial model landscapes generated with long-range correlations are presented and shown to be in good qualitative and quantitative agreement with real landscapes.

  10. Pollutant fate and spatio-temporal variability in the choptank river estuary: Factors influencing water quality

    USGS Publications Warehouse

    Whitall, D.; Hively, W.D.; Leight, A.K.; Hapeman, C.J.; McConnell, L.L.; Fisher, T.; Rice, C.P.; Codling, E.; McCarty, G.W.; Sadeghi, A.M.; Gustafson, A.; Bialek, K.

    2010-01-01

    Restoration of the Chesapeake Bay, the largest estuary in the United States, is a national priority. Documentation of progress of this restoration effort is needed. A study was conducted to examine water quality in the Choptank River estuary, a tributary of the Chesapeake Bay that since 1998 has been classified as impaired waters under the Federal Clean Water Act. Multiple water quality parameters (salinity, temperature, dissolved oxygen, chlorophyll a) and analyte concentrations (nutrients, herbicide and herbicide degradation products, arsenic, and copper) were measured at seven sampling stations in the Choptank River estuary. Samples were collected under base flow conditions in the basin on thirteen dates between March 2005 and April 2008. As commonly observed, results indicate that agriculture is a primary source of nitrate in the estuary and that both agriculture and wastewater treatment plants are important sources of phosphorus. Concentrations of copper in the lower estuary consistently exceeded both chronic and acute water quality criteria, possibly due to use of copper in antifouling boat paint. Concentrations of copper in the upstream watersheds were low, indicating that agriculture is not a significant source of copper loading to the estuary. Concentrations of herbicides (atrazine, simazine, and metolachlor) peaked during early-summer, indicating a rapid surface-transport delivery pathway from agricultural areas, while their degradation products (CIAT, CEAT, MESA, and MOA) appeared to be delivered via groundwater transport. Some in-river processing of CEAT occurred, whereas MESA was conservative. Observed concentrations of herbicide residues did not approach established levels of concern for aquatic organisms. Results of this study highlight the importance of continued implementation of best management practices to improve water quality in the estuary. This work provides a baseline against which to compare future changes in water quality and may be used

  11. Seasonal dissolved inorganic nitrogen and phosphorus budgets for two sub-tropical estuaries in south Florida, USA

    NASA Astrophysics Data System (ADS)

    Buzzelli, C.; Wan, Y.; Doering, P. H.; Boyer, J. N.

    2013-02-01

    Interactions among watershed nutrient loading, circulation, and biogeochemical cycling determine the capacity of estuaries to accommodate introduced nutrients. Baseline quantification of loading, flushing time, export, and internal processes is essential to understand responses of sub-tropical estuaries to variable climate and nutrient loading. The goal of this study was to develop seasonal dissolved inorganic nitrogen (DIN) and phosphorus (DIP) budgets for the two estuaries in south Florida, the Caloosahatchee River Estuary (CRE) and the St. Lucie Estuary (SLE), from 2002-2008 spanning various climatic conditions. The Land Ocean Interactions in the Coastal Zone (LOICZ) Biogeochemical Model was used to generate water, salt, and (DIN and DIP) budgets. The predicted increase in internal DIN production for the CRE vs. the SLE was associated with increased external DIN loading. Water column DIN concentrations decreased and stabilized in both estuaries as flushing time increased to > 10 d. The CRE demonstrated heterotrophy or balanced metabolism across all seasonal budgets. Although the SLE was also sensitive to DIN loading, system autotrophy and net ecosystem metabolism increased with DIP loading to this estuary. This included a huge DIP consumption and bloom of a cyanobacterium (Microcystis aeruginosa) following hurricane-induced discharge in 2005. Additionally, while denitrification offered a loss pathway for inorganic nitrogen in the CRE, this potential was not evident for the smaller and more anthropogenically altered St. Lucie Estuary. Disparities between total and inorganic loading ratios suggested that management actions should examine the role of dissolved organic nitrogen (DON) in attempts to reduce both nitrogen and phosphorus inputs to the SLE. Establishment of quantitative loading limits for anthropogenically impacted estuaries requires an understanding of the inter-seasonal and inter-annual relationships for both N and P, circulation and flushing

  12. Factors controlling aquatic dissolved inorganic nitrogen removal and export in suburban watersheds

    NASA Astrophysics Data System (ADS)

    Mineau, M.; Wollheim, W. M.; Stewart, R.; Daley, M.; McDowell, W. H.

    2013-12-01

    Human activity has accelerated the nitrogen (N) cycle and enriched the landscape with N which can result in eutrophication, especially in coastal zones where N is typically limiting. N exported to coastal zones is a function of both N loading to aquatic systems and N removal in transit through the river network. To determine drivers of dissolved inorganic nitrogen (DIN) removal and export from suburban river networks, we compared 2 well-studied suburban New-England watersheds. The Lamprey River watershed (474 km2) in NH has a mean population density of 53 inhabitants per km2 and feeds into the Great Bay estuary which is designated as N impaired. The Ipswich River (400 km2) in MA has a much higher population density with 302 inhabitants per km2 and feeds into the Plum Island estuary, which is not N impaired. Median (2000 - 2009) watershed DIN export was 171 kg km-2 y-1 for the Ipswich and 77 kg km-2 y-1 for the Lamprey. We used the Framework for Aquatic Modeling in the Earth System (FrAMES) to evaluate the relative importance of anthropogenic N loading and river network DIN processing in determining N export from these watersheds. FrAMES is a spatially distributed and time varying coupled hydrologic and biogeochemical model for river networks. We hypothesized that greater N export relative to population density in the Lamprey watershed was due in part to less aquatic N processing caused by interactions among: 1. The distribution of development/sources in the watershed (i.e. mean flow path length N has to travel), and 2. The area and distribution of intact fluvial wetlands in the watershed. We conducted a sensitivity analysis to determine the relative importance of these factors in limiting aquatic N removal in the Lamprey river watershed. Our results suggest that the distribution of loading within a river system has important influence on nutrient export to coastal zones.

  13. Dissolved oxygen in two Oregon estuaries: The importance of the ocean-estuary connection

    EPA Science Inventory

    We examined the role of the ocean –estuary connection in influencing periodic reductions in dissolved oxygen (DO) levels in Yaquina and Yachats estuaries, Oregon, USA. In the Yaquina Estuary, there is close coupling between the coastal ocean and the estuary. As a result, low DO ...

  14. Dissolved oxygen in two Oregon estuaries: Importance of the ocean-estuary connection - March 2011

    EPA Science Inventory

    We examined the role of the ocean–estuary connection in influencing periodic reductions in dissolved oxygen (DO) levels in Yaquina and Yachats estuaries, Oregon, USA. In the Yaquina Estuary, there is close coupling between the coastal ocean and the estuary. As a result, low DO w...

  15. Dissolved oxygen in two Oregon estuaries: Importance of the ocean-estuary connection

    EPA Science Inventory

    We examined the role of the ocean –estuary connection in influencing periodic reductions in dissolved oxygen (DO) levels in Yaquina and Yachats estuaries, Oregon, USA. In the Yaquina Estuary, there is close coupling between the coastal ocean and the estuary. As a result, low DO ...

  16. About the Climate Ready Estuaries Program

    EPA Pesticide Factsheets

    The Climate Ready Estuaries program is a partnership between EPA and the National Estuary Programs to address climate change in coastal areas. It has helped coastal communities prepare for climate change since 2008.

  17. Hydrologic Data Collected in Small Watersheds on Mount Desert Island, Maine, 1999-2000

    USGS Publications Warehouse

    Nielsen, Martha G.; Caldwell, James M.; Culbertson, Charles W.; Handley, Michael

    2002-01-01

    The US Geological Survey, in cooperation with Acadia National Park, began collecting data for two projects related to nutrient loading to coastal estuaries on Mount Desert Island in 1999. Streamflow data from 16 sites and chemical concentration data from 14 sites in 13 small watersheds on the island are presented in this report. Data were collected from January 1999 to September 2000. Continuous streamflow data from April 1, 1999 to September 30, 2000 at 3 gages in these watersheds are presented. Graphs and tables of 264 monthly streamflow and waterquality analyses from January 1999 to September 2000 at 14 monitoring stations also are presented.

  18. An Adaptive Watershed Management Assessment Based on Watershed Investigation Data

    NASA Astrophysics Data System (ADS)

    Kang, Min Goo; Park, Seung Woo

    2015-05-01

    The aim of this study was to assess the states of watersheds in South Korea and to formulate new measures to improve identified inadequacies. The study focused on the watersheds of the Han River basin and adopted an adaptive watershed management framework. Using data collected during watershed investigation projects, we analyzed the management context of the study basin and identified weaknesses in water use management, flood management, and environmental and ecosystems management in the watersheds. In addition, we conducted an interview survey to obtain experts' opinions on the possible management of watersheds in the future. The results of the assessment show that effective management of the Han River basin requires adaptive watershed management, which includes stakeholders' participation and social learning. Urbanization was the key variable in watershed management of the study basin. The results provide strong guidance for future watershed management and suggest that nonstructural measures are preferred to improve the states of the watersheds and that consistent implementation of the measures can lead to successful watershed management. The results also reveal that governance is essential for adaptive watershed management in the study basin. A special ordinance is necessary to establish governance and aid social learning. Based on the findings, a management process is proposed to support new watershed management practices. The results will be of use to policy makers and practitioners who can implement the measures recommended here in the early stages of adaptive watershed management in the Han River basin. The measures can also be applied to other river basins.

  19. An adaptive watershed management assessment based on watershed investigation data.

    PubMed

    Kang, Min Goo; Park, Seung Woo

    2015-05-01

    The aim of this study was to assess the states of watersheds in South Korea and to formulate new measures to improve identified inadequacies. The study focused on the watersheds of the Han River basin and adopted an adaptive watershed management framework. Using data collected during watershed investigation projects, we analyzed the management context of the study basin and identified weaknesses in water use management, flood management, and environmental and ecosystems management in the watersheds. In addition, we conducted an interview survey to obtain experts' opinions on the possible management of watersheds in the future. The results of the assessment show that effective management of the Han River basin requires adaptive watershed management, which includes stakeholders' participation and social learning. Urbanization was the key variable in watershed management of the study basin. The results provide strong guidance for future watershed management and suggest that nonstructural measures are preferred to improve the states of the watersheds and that consistent implementation of the measures can lead to successful watershed management. The results also reveal that governance is essential for adaptive watershed management in the study basin. A special ordinance is necessary to establish governance and aid social learning. Based on the findings, a management process is proposed to support new watershed management practices. The results will be of use to policy makers and practitioners who can implement the measures recommended here in the early stages of adaptive watershed management in the Han River basin. The measures can also be applied to other river basins.

  20. Clean Watersheds Needs Survey

    EPA Pesticide Factsheets

    The Clean Watershed Needs Survey is a national assessment of the future capital cost for publicly owned wastewater collection and treatment facilities to meet the Clean Water Act's water quality goals.

  1. Merrimack River Watershed Communities

    EPA Pesticide Factsheets

    Listing of all communities included in each of the hydrologic unit code (HUC) 8, 10, and 12 boundaries for the Merrimack River Watershed and city locations for the EPA water quality monitoring stations.

  2. Mystic River Watershed

    EPA Pesticide Factsheets

    Information on the efforts of the US EPA, the Commonwealth of Massachusetts, the municipalities within the Mystic River Watershed and nongovernmental organizations to improve the water quality of the Mystic River.

  3. Watershed Restoration Project

    SciTech Connect

    Julie Thompson; Betsy Macfarlan

    2007-09-27

    In 2003, the U.S. Department of Energy issued the Eastern Nevada Landscape Coalition (ENLC) funding to implement ecological restoration in Gleason Creek and Smith Valley Watersheds. This project was made possible by congressionally directed funding that was provided through the US Department of Energy, Energy Efficiency and Renewable Energy, Office of the Biomass Program. The Ely District Bureau of Land Management (Ely BLM) manages these watersheds and considers them priority areas within the Ely BLM district. These three entities collaborated to address the issues and concerns of Gleason Creek and Smith Valley and prepared a restoration plan to improve the watersheds’ ecological health and resiliency. The restoration process began with watershed-scale vegetation assessments and state and transition models to focus on restoration sites. Design and implementation of restoration treatments ensued and were completed in January 2007. This report describes the restoration process ENLC undertook from planning to implementation of two watersheds in semi-arid Eastern Nevada.

  4. Healthy Watersheds Protection

    MedlinePlus

    ... habitat loss from warmer water temperatures associated with climate change already has been observed in the southern Appalachians ( ... altered water flow and availability, invasive species, and climate change. Top of Page How is a Healthy Watershed ...

  5. KNOW YOUR ESTUARY: THE WATER THROUGH TIME

    EPA Science Inventory

    This presentation will focus on historical changes in water quality in the Yaquina Estuary, Oregon, and factors which influence water quality within this estuary. Topics presented will include the importance of ocean conditions on water quality in the estuary; historical changes...

  6. Charlotte Harbor initiative: assessing the ecological health of southwest Florida's Charlotte Harbor estuary.

    PubMed

    Pierce, Richard H; Wetzel, Dana L; Estevez, Ernest D

    2004-04-01

    Charlotte Harbor is the largest and one of the least impacted estuaries on the southwest Florida coast, encompassing about 270 square miles (700 km2) with a watershed of 4400 square miles (11,400 km2). The Harbor is distinguished by extensive phosphate mining in its watershed and declining freshwater inflows, more protected submerged and intertidal areas than most Gulf ecosystems, and is part of the National Estuary Program. A hypoxic event occurs annually in the Harbor for possibly natural rather than anthropogenic reasons providing an opportunity for the study of hypoxic effects on the ecology of a large subtropical ecosystem. A 5-year, multimillion dollar study was begun in 2001 to enable scientists of Mote Marine Laboratory (MML, Sarasota, Florida) to collaborate on ecological characterization of the estuary and provide data necessary for resource managers to predict consequences of future population growth in the region. Initial studies were organized around themes of preservation, conservation and restoration while subsequent years of work are organized around a core program of physical, chemical and biological studies that track the ecological consequences of freshwater inflow, hypoxia and anthropogenic-derived contaminants. Along with MML, scientists in federal and state agencies along with a number of colleges and universities are cooperating in the project.

  7. Use of retrospective data to assess ecotoxicological monitoring needs for terrestrial vertebrates residing in Atlantic coast estuaries.

    PubMed

    Cohen, Jonathan B; Rattner, Barnett A; Golden, Nancy H

    2003-01-01

    The "Contaminant Exposure and Effects-Terrestrial Vertebrates" (CEE-TV) database contains 4,336 records of ecotoxicological information for free-ranging amphibians, reptiles, birds, and mammals residing in Atlantic and Florida Gulf coast estuaries and their drainages. To identify spatial data gaps, those CEE-TV records for which the specific study location were known (n = 2,740) were combined with watershed and wildlife management unit boundaries using Geographic Information Systems software. The US Environmental Protection Agency's Index of Watershed Indicators (IWI), which classifies watersheds based on water quality and their vulnerability to pollution, was used to prioritize these data gaps. Of 136 watersheds in the study area, 15 that are classified by the IWI as having water quality problems or high vulnerability to pollution lacked terrestrial vertebrate ecotoxicological monitoring or research in the past decade. Older studies within some of these watersheds documented high levels of contaminants in wildlife tissues. Of 90 National Wildlife Refuge units, 42 without current data fall within watersheds of concern. Of 40 National Park units larger than 1 km2, 17 without current data fall within watersheds of concern. Issues encountered in this analysis highlighted the need for spatially and temporally replicated field monitoring programs that utilize random sampling. Without data from such studies, it will be difficult to perform unbiased assessments of regional trends in contaminant exposure and effects in terrestrial vertebrates.

  8. Use of retrospective data to assess ecotoxicological monitoring needs for terrestrial vertebrates residing in Atlantic coast estuaries

    USGS Publications Warehouse

    Cohen, J.B.; Rattner, B.A.; Golden, N.H.

    2003-01-01

    The 'Contaminant Exposure and Effects--Terrestrial Vertebrates' (CEE-TV) database contains 4,336 records of ecotoxicological information for free-ranging amphibians, reptiles, birds, and mammals residing in Atlantic and Florida Gulf coast estuaries and their drainages. To identify spatial data gaps, those CEE-TV records for which the specific study location were known (n=2,740) were combined with watershed and wildlife management unit boundaries using Geographic Information Systems software. The U.S. Environmental Protection Agency's Index of Watershed Indicators (IWI), which classifies watersheds based on water quality and their vulnerability to pollution, was used to prioritize these data gaps. Of 136 watersheds in the study area, 15 that are classified by the IWI as having water quality problems or high vulnerability to pollution lacked terrestrial vertebrate ecotoxicological monitoring or research in the past decade. Older studies within some of these watersheds documented high levels of contaminants in wildlife tissues. Of 90 National Wildlife Refuge units, 42 without current data fall within watersheds of concern. Of 40 National Park units larger than 1 km2, 17 without current data fall within watersheds of concern. Issues encountered in this analysis highlighted the need for spatially and temporally replicated field monitoring programs that utilize random sampling. Without data from such studies, it will be difficult to perform unbiased assessments of regional trends in contaminant exposure and effects in terrestrial vertebrates.

  9. Carbon and nitrogen tracers of land use effects on net ecosystem metabolism in mangrove estuaries, southwest Florida

    NASA Astrophysics Data System (ADS)

    Dvorak, Matthew; Mora, Germán; Graniero, Lauren; Surge, Donna

    2016-11-01

    Four estuaries in southwest Florida with different land-use characteristics in their watersheds were chosen to investigate the effects of anthropogenic land use on estuarine biogeochemical cycling. We compared C:N ratios, concentrations of dissolved inorganic carbon (DIC), chlorophyll-a (chl-a) and particulate organic carbon (POC), stable isotope ratios of DIC (δ13CDIC) and POC (δ13CPOC), and nitrogen isotope ratios of particulate organic nitrogen (δ15NPON) among these estuaries. Values of δ13CDIC ranged from -14.1 to +0.9‰. The more negative values occurred upstream, resulting from DIC inputs derived from both the degradation of organic carbon and dissolution of carbonates. Upstream DIC concentrations were as high as 8066 μmol L-1, suggesting high respiration rates. Further, a comparison of DIC values to a conservative mixing model indicates net heterotrophic metabolic state in all four estuaries. Supporting this interpretation, low δ13CPOC values suggest that terrestrial plants were the main source of POC in the upstream sampling points. However, C:N ratios ranged from 7.2 to 13.4, and were consistent with the decomposition of both terrestrial and aquatic sources. Chl-a concentrations were variable and typically below 20 μg L-1, indicating moderate to low levels of autotrophy in all estuaries. Elevated chl-a concentrations indicative of increased primary productivity occurred at intermediate salinities, and were possibly caused by the mixing front at mid-estuary locations. There were no apparent differences in δ15NPON among estuaries, suggesting that the N sources to these estuaries are comparable. The combined results show no differences between near-natural and anthropogenically influenced estuaries, indicating a minimal effect of anthropogenic activities on the parameters measured, possibly as a result of the filtering capacity of the extensive surrounding mangrove vegetation.

  10. Quantifying nitrogen inputs to the Choptank River estuary

    NASA Astrophysics Data System (ADS)

    Mccarty, G.; Hapeman, C. J.; Sadeghi, A. M.; Hively, W. D.; Denver, J. M.; Lang, M. W.; Downey, P. M.; Rice, C. P.

    2015-12-01

    The Chesapeake Bay is the largest estuary in the US, and over 50% of its streams have been rated as poor or very poor, based on the biological integrity yearly index. The Choptank River, a Bay tributary on the Delmarva Peninsula, is dominated by intensive corn and soybean farming associated with poultry and some dairy production. The Choptank River is under Environmental Protection Agency (USEPA) total maximum daily load restrictions. However, reducing nonpoint source pollution contributions from agriculture requires that source predictions be improved and that mitigation and conservation measures be properly targeted. Therefore, new measurement strategies have been implemented. In-situ sensors have been deployed adjacent to US Geological Survey gauging stations in the Tuckahoe and Greensboro sub-basins of the Choptank River watershed. These sensors measure stream water concentrations of nitrate along and water quality parameters every 30 min. Initial results indicate that ~40% less nitrate is exported from the Greensboro sub-basin, even though the total amount of agricultural land use is similar to that in the Tuckahoe sub-basin. This is most likely due to more efficient nitrate processing in the Greensboro sub-basin where the amount of cropland on poorly-drained soils is much larger. Another potential nitrogen source to the Choptank River estuary is atmospheric deposition of ammonia. Over 550 million broilers are produced yearly on the Delmarva Peninsula potentially leading to the release of 20,000 Mtons of ammonia. USEPA recently estimated that as much as 22% of nitrogen in the Bay is due to ammonia deposition. We have initiated a collaborative effort within the LTAR network to increase coverage of ammonia sampling and to explore the spatial and temporal variability of ammonia, particularly in the Choptank River watershed. All these measurements will be useful in improving the handling of nitrogen sources and its fate and transport in the Chesapeake Bay model.

  11. Watershed Central: A New Gateway to Watershed Information

    EPA Science Inventory

    Many communities across the country struggle to find the right approaches, tools and data to in their watershed plans. EPA recently posted a new Web site called "Watershed Central, a “onestop" tool, to help watershed organizations and others find key resources to protect their ...

  12. Watershed Central: Dynamic Collaboration for Improving Watershed Management (Philadelphia)

    EPA Science Inventory

    The Watershed Central web and wiki pages will be presented and demonstrated real-time as part of the overview of Web 2.0 collaboration tools for watershed management. The presentation portion will discuss how EPA worked with watershed practitioners and within the Agency to deter...

  13. Spatial distribution of trace elements in the surface sediments of a major European estuary (Loire Estuary, France): Source identification and evaluation of anthropogenic contribution

    NASA Astrophysics Data System (ADS)

    Coynel, Alexandra; Gorse, Laureline; Curti, Cécile; Schafer, Jörg; Grosbois, Cécile; Morelli, Guia; Ducassou, Emmanuelle; Blanc, Gérard; Maillet, Grégoire M.; Mojtahid, Meryem

    2016-12-01

    Assessing the extent of metal contamination in estuarine surface sediments is hampered by the high heterogeneity of sediment characteristics, the spatial variability of trace element sources, sedimentary dynamics and geochemical processes in addition to the need of accurate reference values for deciphering natural to anthropogenic contribution. Based on 285 surface sediment samples from the Loire Estuary, the first high-resolution spatial distributions are presented for grain-size, particulate organic carbon (POC) and the eight metals/metalloids identified as priority contaminants (Cd, Zn, Pb, Cu, As, Cr, Ni, Hg) plus Ag (an urban tracer). Grain-size and/or POC are major factors controlling the spatial distribution of trace element concentrations. The V-normalized trace metal concentrations divided by the V-normalized concentrations in the basin geochemical background showed the highest Enrichment Factors for Ag and Hg (EF; up to 34 and 140, respectively). These results suggest a severe contamination in the Loire Estuary for both elements. Intra-estuarine Ag and Hg anomalies were identified by comparison between respective normalized concentrations in the Loire Estuary surface sediments and those measured in the surface sediments at the outlet of the Loire River System (watershed-derived). Anthropogenic intra-estuarine Ag and Hg stocks in the uppermost centimetre of the sediment compared with rough annual fluvial flux estimates suggest that the overall strong Enrichment Factors for Ag (EFAg) and and Hg (EFHg) in the Loire Estuary sediments are mainly due to watershed-derived inputs, highlighting the need of high temporal hydro-geochemical monitoring to establish reliable incoming fluxes. Significant correlations obtained between EFCd and EFAg, EFCu and POC and EFHg and POC revealed common behavior and/or sources. Comparison of trace element concentrations with ecotoxicological indices (Sediment Quality Guidelines) provides first standardized information on the

  14. Contrasting patterns of phytoplankton community pigment composition in two salt marsh estuaries in southeastern United States.

    PubMed

    Noble, Peter A; Tymowski, Raphael G; Fletcher, Madilyn; Morris, James T; Lewitus, Alan J

    2003-07-01

    Phytoplankton community pigment composition and water quality were measured seasonally along salinity gradients in two minimally urbanized salt marsh estuaries in South Carolina in order to examine their spatial and temporal distributions. The North Inlet estuary has a relatively small watershed with minimal fresh water input, while the Ashepoo, Combahee, and Edisto (ACE) Basin is characterized by a relatively greater influence of riverine drainage. Sampling stations were located in regions of the estuaries experiencing frequent diurnal tidal mixing and had similar salinity and temperature regimens. Phytoplankton community pigment composition was assessed by using high-performance liquid chromatography (HPLC) and multivariate statistical analyses. Shannon diversity index, principal-component, and cluster analyses revealed that phytoplankton community pigments in both estuaries were seasonally variable, with similar diversities but different compositions. The temporal pigment patterns indicated that there was a relatively weak correlation between the pigments in ACE Basin and the relative persistence of photopigment groups in North Inlet. The differences were presumably a consequence of the unpredictability and relatively greater influence of river discharge in the ACE Basin, in contrast to the greater environmental predictability of the more tidally influenced North Inlet. Furthermore, the timing, magnitude, and pigment composition of the annual phytoplankton bloom were different in the two estuaries. The bloom properties in North Inlet reflected the predominance of autochthonous ecological control (e.g., regenerated nutrients, grazing), and those in ACE Basin suggested that there was greater influence of allochthonous environmental factors (e.g., nutrient loading, changes in turbidity). These interestuarine differences in phytoplankton community structure and control provide insight into the organization of phytoplankton in estuaries.

  15. Contrasting Patterns of Phytoplankton Community Pigment Composition in Two Salt Marsh Estuaries in Southeastern United States

    PubMed Central

    Noble, Peter A.; Tymowski, Raphael G.; Fletcher, Madilyn; Morris, James T.; Lewitus, Alan J.

    2003-01-01

    Phytoplankton community pigment composition and water quality were measured seasonally along salinity gradients in two minimally urbanized salt marsh estuaries in South Carolina in order to examine their spatial and temporal distributions. The North Inlet estuary has a relatively small watershed with minimal fresh water input, while the Ashepoo, Combahee, and Edisto (ACE) Basin is characterized by a relatively greater influence of riverine drainage. Sampling stations were located in regions of the estuaries experiencing frequent diurnal tidal mixing and had similar salinity and temperature regimens. Phytoplankton community pigment composition was assessed by using high-performance liquid chromatography (HPLC) and multivariate statistical analyses. Shannon diversity index, principal-component, and cluster analyses revealed that phytoplankton community pigments in both estuaries were seasonally variable, with similar diversities but different compositions. The temporal pigment patterns indicated that there was a relatively weak correlation between the pigments in ACE Basin and the relative persistence of photopigment groups in North Inlet. The differences were presumably a consequence of the unpredictability and relatively greater influence of river discharge in the ACE Basin, in contrast to the greater environmental predictability of the more tidally influenced North Inlet. Furthermore, the timing, magnitude, and pigment composition of the annual phytoplankton bloom were different in the two estuaries. The bloom properties in North Inlet reflected the predominance of autochthonous ecological control (e.g., regenerated nutrients, grazing), and those in ACE Basin suggested that there was greater influence of allochthonous environmental factors (e.g., nutrient loading, changes in turbidity). These interestuarine differences in phytoplankton community structure and control provide insight into the organization of phytoplankton in estuaries. PMID:12839791

  16. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2005

    SciTech Connect

    Diefenderfer, Heida L.; Thom, Ronald M.; Borde, Amy B.; Roegner, G. C.; Whiting, Allan H.; Johnson, Gary E.; Dawley, Earl; Skalski, John R.; Vavrinec, John; Ebberts, Blaine D.

    2006-12-20

    This report is the second annual report of a six-year project to evaluate the cumulative effects of habitat restoration projects in the Columbia River Estuary, conducted by Pacific Northwest National Laboratory's Marine Sciences Laboratory, NOAA's National Marine Fisheries Service Pt. Adams Biological Field Station, and the Columbia River Estuary Study Taskforce for the US Army Corps of Engineers. In 2005, baseline data were collected on two restoration sites and two associated reference sites in the Columbia River estuary. The sites represent two habitat types of the estuary--brackish marsh and freshwater swamp--that have sustained substantial losses in area and that may play important roles for salmonids. Baseline data collected included vegetation and elevation surveys, above and below-ground biomass, water depth and temperature, nutrient flux, fish species composition, and channel geometry. Following baseline data collection, three kinds of restoration actions for hydrological reconnection were implemented in several locations on the sites: tidegate replacements (2) at Vera Slough, near the city of Astoria in Oregon State, and culvert replacements (2) and dike breaches (3) at Kandoll Farm in the Grays River watershed in Washington State. Limited post-restoration data were collected: photo points, nutrient flux, water depth and temperature, and channel cross-sections. In subsequent work, this and additional post-restoration data will be used in conjunction with data from other sites to estimate net effects of hydrological reconnection restoration projects throughout the estuary. This project is establishing methods for evaluating the effectiveness of individual projects and a framework for assessing estuary-wide cumulative effects including a protocol manual for monitoring restoration and reference sites.

  17. Suspended sediment transport in the freshwater reach of the Hudson river estuary in eastern New York

    USGS Publications Warehouse

    Wall, G.R.; Nystrom, E.A.; Litten, S.

    2008-01-01

    Deposition of Hudson River sediment into New York Harbor interferes with navigation lanes and requires continuous dredging. Sediment dynamics at the Hudson estuary turbidity maximum (ETM) have received considerable study, but delivery of sediment to the ETM through the freshwater reach of the estuary has received relatively little attention and few direct measurements. An acoustic Doppler current profiler was positioned at the approximate limit of continuous freshwater to develop a 4-year time series of water velocity, discharge, suspended sediment concentration, and suspended sediment discharge. This data set was compared with suspended sediment discharge data collected during the same period at two sites just above the Hudson head-of-tide (the Federal Dam at Troy) that together represent the single largest source of sediment entering the estuary. The mean annual suspended sediment-discharge from the freshwater reach of the estuary was 737,000 metric tons. Unexpectedly, the total suspended sediment discharge at the study site in November and December slightly exceeded that observed during March and April, the months during which rain and snowmelt typically result in the largest sediment discharge to the estuary. Suspended sediment discharge at the study site exceeded that from the Federal Dam, even though the intervening reach appears to store significant amounts of sediment, suggesting that 30-40% of sediment discharge observed at the study site is derived from tributaries to the estuary between the Federal Dam and study site. A simple model of sediment entering and passing through the freshwater reach on a timescale of weeks appears reasonable during normal hydrologic conditions in adjoining watersheds; however, this simple model may dramatically overestimate sediment delivery during extreme tributary high flows, especially those at the end of, or after, the "flushing season" (October through April). Previous estimates of annual or seasonal sediment delivery

  18. Geospatial Habitat Analysis in Pacific Northwest Coastal Estuaries

    SciTech Connect

    Borde, Amy B. ); Thom, Ronald M. ); Rumrill, Steven; Miller, L M.

    2003-08-01

    We assessed historical changes in the location and amount of estuarine habitat in three of the four largest coastal estuaries in the Pacific Northwest (Grays Harbor, Willapa Bay, and Coos Bay) as part of the Pacific Northwest Coastal Ecosystem Regional Study (PNCERS). To accomplish this, navigation charts, hydrographic survey data, maps, and published descriptions were used to gain information on the location of the shoreline, bathymetry, and vegetated habitats, which was then digitized and subjected to geospatial analysis using a geographic information system. In addition, we used present-day elevational boundaries for marshes, flats, and eelgrass meadows to help define habitat areas where they were not indicated on historical maps. The analysis showed that tidal flats have decreased in all study areas; potential eelgrass habitat has increased in Grays Harbor and Willapa Bay and decreased slightly in Coos Bay; tidal wetland area has declined in all three coastal estuaries, with increases in localized areas due to filling and sedimentation; and dramatic changes have occurred at the mouths of Grays Harbor and Willapa Bay. As has been shown before, these data illustrate that direct physical alteration (filling and diking) has resulted in large changes to habitats. However, indirect impacts from forest practices in the watershed, as well as variation in climatic factors and oceanographic processes, may also have contributed to changes. The information provides more evidence for managing estuarine habitats in the region and a employing a historical template to plan habitat restoration in the future.

  19. Seasonal dissolved inorganic nitrogen and phosphorus budgets for two sub-tropical estuaries in south Florida, USA

    NASA Astrophysics Data System (ADS)

    Buzzelli, C.; Wan, Y.; Doering, P. H.; Boyer, J. N.

    2013-10-01

    Interactions among geomorphology, circulation, and biogeochemical cycling determine estuary responses to external nutrient loading. In order to better manage watershed nutrient inputs, the goal of this study was to develop seasonal dissolved inorganic nitrogen (DIN) and phosphorus (DIP) budgets for the two estuaries in south Florida, the Caloosahatchee River estuary (CRE) and the St. Lucie Estuary (SLE), from 2002 to 2008. The Land-Ocean Interactions in the Coastal Zone (LOICZ) approach was used to generate water, salt, and DIN and DIP budgets. Results suggested that internal DIN production increases with increased DIN loading to the CRE in the wet season. There were hydrodynamic effects as water column concentrations and ecosystem nutrient processing stabilized in both estuaries as flushing time increased to >10 d. The CRE demonstrated heterotrophy (net ecosystem metabolism or NEM < 0.0) across all wet and dry season budgets. While the SLE was sensitive to DIN loading, system autotrophy (NEM > 0.0) increased significantly with external DIP loading. This included DIP consumption and a bloom of a cyanobacterium (Microcystis aeruginosa) following hurricane-induced discharge to the SLE in 2005. Additionally, while denitrification provided a microbially-mediated N loss pathway for the CRE, this potential was not evident for the SLE where N2 fixation was favored. Disparities between total and inorganic loading ratios suggested that the role of dissolved organic nitrogen (DON) should be assessed for both estuaries. Nutrient budgets indicated that net internal production or consumption of DIN and DIP fluctuated with inter- and intra-annual variations in freshwater inflow, hydrodynamic flushing, and primary production. The results of this study should be included in watershed management plans in order to maintain favorable conditions of external loading relative to internal material cycling in both dry and wet seasons.

  20. Effect of climate change on water temperature and attainment of water temperature criteria in the Yaquina Estuary, Oregon (USA)

    NASA Astrophysics Data System (ADS)

    Brown, Cheryl A.; Sharp, Darrin; Mochon Collura, T. Chris

    2016-02-01

    There is increasing evidence that our planet is warming and this warming is also resulting in rising sea levels. Estuaries which are located at the interface between land and ocean are impacted by these changes. We used CE-QUAL-W2 water quality model to predict changes in water temperature as a function of increasing air temperatures and rising sea level for the Yaquina Estuary, Oregon (USA). Annual average air temperature in the Yaquina watershed is expected to increase about 0.3 °C per decade by 2040-2069. An air temperature increase of 3 °C in the Yaquina watershed is likely to result in estuarine water temperature increasing by 0.7-1.6 °C. Largest water temperature increases are expected in the upper portion of the estuary, while sea level rise may mitigate some of the warming in the lower portion of the estuary. Smallest changes in water temperature are predicted to occur in the summer, and maximum changes during the winter and spring. Increases in air temperature may result in an increase in the number of days per year that the 7-day maximum average temperature exceeds 18 °C (criterion for protection of rearing and migration of salmonids and trout) as well as other water quality concerns. In the upstream portion of the estuary, a 4 °C increase in air temperature is predicted to cause an increase of 40 days not meeting the temperature criterion, while in the lower estuary the increase will depend upon rate of sea level rise (ranging from 31 to 19 days).

  1. Food Webs in an Estuary.

    ERIC Educational Resources Information Center

    Dunne, Barbara B.

    The Maryland Marine Science Education Project has produced a series of mini-units in marine science education for the junior high/middle school classroom. This unit focuses on food chains in an estuary. Although the unit specifically treats the Chesapeake Bay, it may be adapted for use with similar estuarine systems. In addition, the unit may be…

  2. Simulated Sampling of Estuary Plankton

    ERIC Educational Resources Information Center

    Fortner, Rosanne W.; Jenkins, Deborah Bainer

    2009-01-01

    To find out about the microscopic life in the valuable estuary environment, it is usually necessary to be near the water. This dry lab offers an alternative, using authentic data and a simulation of plankton sampling. From the types of organisms found in the sample, middle school students can infer relationships in the biological and physical…

  3. A COMPREHENISVE NONPOINT SOURCE FIELD STUDY FOR SEDIMENT, NUTRIENTS AND PATHOGENS IN THE SOUTH FORK BROAD RIVER WATERSHED IN NORTHEAST GEORGIA

    EPA Science Inventory

    There is an urgent need for EPA to develop protocols for establishing Total Maximum Daily Loads (TMDLs) in streams, lakes and estuaries. A cooperative TMDL field data collection project between ORD and Region 4 is ongoing in the South Fork Broad River Watershed (SFBR), a 245.18 ...

  4. Entering the watershed

    SciTech Connect

    Doppelt, B.; Scurlock, M.; Frissell, C.; Karr, J.

    1993-01-01

    The ecological integrity of a river is a direct function of the health of its watershed. Riverine pollution, habitat degradation, and extinction of aquatic biodiversity are all issues that must be addressed at the ecosystem level. The product of a two-year project established by The Pacific Rivers Council to develop new federal riverine protection and restoration policy alternatives, this book recommends a comprehensive new approach to river protection: a nationwide, strategic community- and ecosystem-based watershed restoration initiative founded upon principles of watershed dynamics, ecosystem function, and conservation biology. The book describes in detail the existing level of damage of rivers and species. A new, intensified national emphasis on rivers is presented. The flaws and gaps in existing policy are analyzed. The scientific underpinnings and management strategies needed in new policy are outlined. Specific policy proposals are made.

  5. MANAGING URBAN WATERSHED PATHOGEN CONTAMINATION

    EPA Science Inventory

    This document is written as a resource for state and local watershed managers who have the responsibility of managing pathogen contamination in urban watersheds. In addition it can be an information source for members of the public interested in watershed mitigation efforts aime...

  6. Assessing the effects of nutrient management in an estuary experiencing climatic change: the Neuse River Estuary, North Carolina.

    PubMed

    Paerl, Hans W; Valdes, Lexia M; Piehler, Michael F; Stow, Craig A

    2006-03-01

    Eutrophication is a serious water quality problem in estuaries receiving increasing anthropogenic nutrient loads. Managers undertaking nutrient-reduction strategies aimed at controlling estuarine eutrophication are faced with the challenge that upstream freshwater segments often are phosphorus (P)-limited, whereas more saline downstream segments are nitrogen (N)-limited. Management also must consider climatic (hydrologic) variability, which affects nutrient delivery and processing. The interactive effects of selective nutrient input reductions and climatic perturbations were examined in the Neuse River Estuary (NRE), North Carolina, a shallow estuary with more than a 30-year history of accelerated nutrient loading and water quality decline. The NRE also has experienced a recent increase in Atlantic hurricanes and record flooding, which has affected hydrology and nutrient loadings. The authors examined the water quality consequences of selective nutrient (P but not N) reductions in the 1980s, followed by N reductions in the 1990s and an increase in hurricane frequency since the mid-1990s. Selective P reductions decreased upstream phytoplankton blooms, but increased downstream phytoplankton biomass. Storms modified these trends. In particular, upstream annual N and P concentrations have decreased during the elevated hurricane period. Increased flushing and scouring from storms and flooding appear to have enhanced nutrient retention capabilities of the NRE watershed. From a management perspective, one cannot rely on largely unpredictable changes in storm frequency and intensity to negate anthropogenic nutrient enrichment and eutrophication. To control eutrophication along the hydrologically variable freshwater-marine continuum, N and P reductions should be applied adaptively to reflect point-source-dominated drought and non-point-source-dominated flood conditions.

  7. Watershed geomorphological characteristics

    USGS Publications Warehouse

    Fitzpatrick, Faith

    2016-01-01

    This chapter describes commonly used geomorphological characteristics that are useful for analyzing watershed-scale hydrology and sediment dynamics. It includes calculations and measurements for stream network features and areal basin characteristics that cover a range of spatial and temporal scales and dimensions of watersheds. Construction and application of longitudinal profiles are described in terms of understanding the three-dimensional development of stream networks. A brief discussion of outstanding problems and directions for future work, particularly as they relate to water-resources management, is provided. Notations with preferred units are given.

  8. Baseline sediment trace metals investigation: Steinhatchee River estuary, Florida, Northeast Gulf of Mexico

    USGS Publications Warehouse

    Trimble, C.A.; Hoenstine, R.W.; Highley, A.B.; Donoghue, J.F.; Ragland, P.C.

    1999-01-01

    This Florida Geological Survey/U.S. Department of the Interior, Minerals Management Service Cooperative Study provides baseline data for major and trace metal concentrations in the sediments of the Steinhatchee River estuary. These data are intended to provide a benchmark for comparison with future metal concentration data measurements. The Steinhatchee River estuary is a relatively pristine bay located within the Big Bend Wildlife Management Area on the North Central Florida Gulf of Mexico coastline. The river flows 55 km through woodlands and planted pines before emptying into the Gulf at Deadman Harbor. Water quality in the estuary is excellent at present. There is minimal development within the watershed. The estuary is part of an extensive system of marshes that formed along the Florida Gulf coast during the Holocene marine transgression. Sediment accretion rate measurements range from 1.4 to 4.1 mm/yr on the basis of lead-210 measurements. Seventy-nine short cores were collected from 66 sample locations, representing four lithofacies: clay- and organic-rich sands, organic-rich sands, clean quartz sands, and oyster bioherms. Samples were analyzed for texture, total organic matter, total carbon, total nitrogen, clay mineralogy, and major and trace-metal content. Following these analyses, metal concentrations were normalized against geochemical reference elements (aluminum and iron) and against total weight percent organic matter. Metals were also normalized granulometrically against total weight percent fines (<0.062 mm). Concentrations were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES) for all metals except mercury. Mercury concentrations were determined by cold-flameless atomic absorption spectrometry (AAS). Granulometric measurements were made by sieve and pipette analyses. Organic matter was determined by two methods: weight loss upon ignition and elemental analysis (by Carlo-Erba Furnace) of carbon and nitrogen. X

  9. 75 FR 34975 - Notice of Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ...: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice; request for comments. SUMMARY: NOAA, on behalf of the interagency Estuary Habitat... received by July 21, 2010. ADDRESSES: Send comments to Estuary Habitat Restoration Strategy, NOAA...

  10. Integrating operational watershed and coastal models for the Iberian Coast: Watershed model implementation - A first approach

    NASA Astrophysics Data System (ADS)

    Brito, David; Campuzano, F. J.; Sobrinho, J.; Fernandes, R.; Neves, R.

    2015-12-01

    River discharges and loads are essential inputs to coastal seas, and thus for coastal seas modelling, and their properties are the result of all activities and policies carried inland. For these reasons main rivers were object of intense monitoring programs having been generated some important amount of historical data. Due to the decline in the Portuguese hydrometric network and in order to quantify and forecast surface water streamflow and nutrients to coastal areas, the MOHID Land model was applied to the Western Iberia Region with a 2 km horizontal resolution and to the Iberian Peninsula with 10 km horizontal resolution. The domains were populated with land use and soil properties and forced with existing meteorological models. This approach also permits to understand how the flows and loads are generated and to forecast their values which are of utmost importance to perform coastal ocean and estuarine forecasts. The final purpose of the implementation is to obtain fresh water quantity and quality that could be used to support management decisions in the watershed, reservoirs and also to estuaries and coastal areas. A process oriented model as MOHID Land is essential to perform this type of simulations, as the model is independent of the number of river catchments. In this work, the Mohid Land model equations and parameterisations were described and an innovative methodology for watershed modelling is presented and validated for a large international river, the Tagus River, and the largest national river of Portugal, the Mondego River. Precipitation, streamflow and nutrients modelling results for these two rivers were compared with observations near their coastal outlet in order to evaluate the model capacity to represent the main watershed trends. Finally, an annual budget of fresh water and nutrient transported by the main twenty five rivers discharging in the Portuguese coast is presented.

  11. MAPPING BATHYMETRY AND BOTTOM TYPE IN A SHALLOW ESTUARY

    EPA Science Inventory

    Bathymetry and bottom type are important in characterizing estuaries and their ecology but hard to map, especially in shallow estuaries. Acoustic backscattering was used to remotely sense these properties in the shallow Slocums River Estuary of Massachusetts. Acoustic pulses were...

  12. Comparison of Nutrient Drivers and Response Metrics in Oregon Estuaries

    EPA Science Inventory

    With the goal of assessing sensitivity to nutrient enrichment, we present a cross-estuary comparison of nutrient sources, levels, and biological responses (phytoplankton and macroalgae) for thirteen Oregon estuaries. Nitrogen levels in the upstream portions of the estuaries are ...

  13. USEPA WATERSHED APPROACH

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Office of Research and Development has developed a well defined research plan to evaluate pollutants within watersheds. This plan is defined by long term goals and annual performance measures. The first goal is to provide the approache...

  14. Retrofitting for watershed drainage

    SciTech Connect

    Bennett, D.B. ); Heaney, J.P. )

    1991-09-01

    Over the past 8 years, degradation in Florida's Indian River Lagoon has taken the form of fish kills, reduced viable recreational and commercial fisheries, and loss of seagrass beds. Stormwater drainage practices in the watershed have been identified as the primary culprit in the slow demise of the lagoon. Specific drainage problems include an increased volume of freshwater runoff to the estuarine receiving water and deposition of organic sediments, reduced water clarity because of increased discharge of suspended solids and tea colored' groundwater - a result of drainage-canal-induced land dewatering, and eutrophication caused by nutrient loadings. In addition, poor flushing in lagoon segments makes runoff impacts even more damaging to the ecosystem. Recently, the lagoon has received national, regional, state, and local attention over its degradation and citizens' action and multi-agency efforts to restore it. To mitigate damage to the Indian River lagoon, agencies are considering alternatives such as retrofitting to reduce pollutant loads and implementing a more comprehensive watershed approach to stormwater management instead of individual controls on new development currently widely practiced. A comprehensive, long-term watershed control approach avoids unnecessary construction expenses, encourages cost-effective tradeoffs based on specific objectives, facilities performance monitoring, and accounts for cumulative impacts of continued growth in the watershed.

  15. WATERSHED BASED SURVEY DESIGNS

    EPA Science Inventory

    The development of watershed-based design and assessment tools will help to serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional condition to meet Section 305(b), identification of impaired water bodies or wate...

  16. Designing for Watershed Inquiry

    ERIC Educational Resources Information Center

    Bodzin, Alec; Shive, Louise

    2004-01-01

    In this article, we describe a collaborative design initiative with three secondary school teachers to promote the use of Web-based inquiry in the context of a watershed investigation. Design interviews that focus on instructional goals and pedagogical beliefs of classroom teachers were conducted. The interview protocol used a curricular framework…

  17. Nutrient budgets, marsh inundation under sea-level rise scenarios, and sediment chronologies for the Bass Harbor Marsh estuary at Acadia National Park

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Fuller, Christopher C.; Glibert, Patricia; Sturtevant, Luke

    2014-01-01

    Eutrophication in the Bass Harbor Marsh estuary on Mount Desert Island, Maine, is an ongoing problem manifested by recurring annual blooms of green macroalgae species, principally Enteromorpha prolifera and Enteromorpha flexuosa, blooms that appear in the spring and summer. These blooms are unsightly and impair the otherwise natural beauty of this estuarine ecosystem. The macroalgae also threaten the integrity of the estuary and its inherent functions. The U.S. Geological Survey and Acadia National Park have collaborated for several years to better understand the factors related to this eutrophication problem with support from the U.S. Geological Survey and National Park Service Water Quality Assessment and Monitoring Program. The current study involved the collection of hydrologic and water-quality data necessary to investigate the relative contribution of nutrients from oceanic and terrestrial sources during summer 2011 and summer 2012. This report provides data on nutrient budgets for this estuary, sedimentation chronologies for the estuary and fringing marsh, and estuary bathymetry. The report also includes data, based on aerial photographs, on historical changes from 1944 to 2010 in estuary surface area and data, based on surface-elevation details, on changes in marsh area that may accompany sea-level rise. The LOADEST regression model was used to calculate nutrient loads into and out of the estuary during summer 2011 and summer 2012. During these summers, tidal inputs of ammonium to the estuary were more than seven times greater than the combined inputs in watershed runoff and precipitation. In 2011 tidal inputs of nitrate were about four times greater than watershed plus precipitation inputs, and in 2012 tidal inputs were only slightly larger than watershed plus precipitation inputs. In 2011, tidal inputs of total organic nitrogen were larger than watershed input by a factor of 1.6. By contrast, in 2012 inputs of total organic nitrogen in watershed runoff

  18. Potential climate-induced runoff changes and associated uncertainty in four Pacific Northwest estuaries

    USGS Publications Warehouse

    Steele, Madeline O.; Chang, Heejun; Reusser, Deborah A.; Brown, Cheryl A.; Jung, Il-Won

    2012-01-01

    As part of a larger investigation into potential effects of climate change on estuarine habitats in the Pacific Northwest, we estimated changes in freshwater inputs into four estuaries: Coquille River estuary, South Slough of Coos Bay, and Yaquina Bay in Oregon, and Willapa Bay in Washington. We used the U.S. Geological Survey's Precipitation Runoff Modeling System (PRMS) to model watershed hydrological processes under current and future climatic conditions. This model allowed us to explore possible shifts in coastal hydrologic regimes at a range of spatial scales. All modeled watersheds are located in rainfall-dominated coastal areas with relatively insignificant base flow inputs, and their areas vary from 74.3 to 2,747.6 square kilometers. The watersheds also vary in mean elevation, ranging from 147 meters in the Willapa to 1,179 meters in the Coquille. The latitudes of watershed centroids range from 43.037 degrees north latitude in the Coquille River estuary to 46.629 degrees north latitude in Willapa Bay. We calibrated model parameters using historical climate grid data downscaled to one-sixteenth of a degree by the Climate Impacts Group, and historical runoff from sub-watersheds or neighboring watersheds. Nash Sutcliffe efficiency values for daily flows in calibration sub-watersheds ranged from 0.71 to 0.89. After calibration, we forced the PRMS models with four North American Regional Climate Change Assessment Program climate models: Canadian Regional Climate Model-(National Center for Atmospheric Research) Community Climate System Model version 3, Canadian Regional Climate Model-Canadian Global Climate Model version 3, Hadley Regional Model version 3-Hadley Centre Climate Model version 3, and Regional Climate Model-Canadian Global Climate Model version 3. These are global climate models (GCMs) downscaled with regional climate models that are embedded within the GCMs, and all use the A2 carbon emission scenario developed by the Intergovernmental Panel on

  19. Sediment transport and decadal morphodynamic changes in the Tang Estuary with a Re-Migrating inlet, Iranian Coastline of the Oman Sea

    NASA Astrophysics Data System (ADS)

    Nosratpour, Behrouz; Amjadi, Soma; Haghshenas, S. Abbas

    2016-04-01

    The Tang Estuary located on the Iranian Coastline of the Oman Sea, The estuary's inlet is a rare re-migrating one which connects the Tang bay/estuary to the Oman Sea. The estuary experiences considerable floods and sediment load during occasional intense rainy periods. The upstream watershed supplies the narrow inlet channel with heavy sediment load twice a year on average. Moreover, a reef acts as a headland/natural offshore breakwater, which results in the formation of a tombolo in front of the estuary inlet. The most important feature of the system is the migration of the channel and the inlet which has occurred at least three times during the past 50 years. Considering the importance of this dynamic system and corresponding sediment discharge, physiography and watershed analysis of the Tang Estuary is investigated and sediment discharge from the channel and its sand content are estimated in the first step. A numerical model has been utilized to investigate cases of flow and sediment transport behaviour in the coastal Tang area and future migration patterns of the re-migrating inlet is estimated. The morphodynamic changes are investigated by analysing two sets of aerial photos taken in 1967 and 1993, a series of high resolution satellite images from 2008 and 33 series of lower resolution data in the period of 1966 to 2015 in a GIS framework to investigate decadal evolution of the Tang Estuary the past five decades. Eventually, numerical results are compared with field observations and comprehensive GIS based analysis of historic shoreline changes from aerial photos and satellite imagery. Management guidelines and suggestions are deducted and drawn from the calibration and verification of the results with field observations and satellite image analysis.

  20. A summary report of sediment processes in Chesapeake Bay and watershed

    USGS Publications Warehouse

    Langland, Michael; Cronin, Thomas

    2003-01-01

    The Chesapeake Bay, the Nation's largest estuary, has been degraded because of diminished water quality, loss of habitat, and over-harvesting of living resources. Consequently, the bay was listed as an impaired water body due to excess nutrients and sediment. The Chesapeake Bay Program (CBP), a multi-jurisdictional partnership, completed an agreement called ?Chesapeake 2000? that revises and establishes new restoration goals through 2010 in the bay and its watershed. The goal of this commitment is the removal of the bay from the list of impaired waterbodies by the year 2010. The CBP is committed to developing sediment and nutrient allocations for major basins within the bay watershed and to the process of examining new and innovative management plans in the estuary itself and along the coastal zones of the bay. However, additional information is required on the sources, transport, and deposition of sediment that affect water clarity. Because the information and data on sediment processes in the bay were not readily accessible to the CBP or to state, and local managers, a Sediment Workgroup (SWGP) was created in 2001. The primary objective of this report, therefore, is to provide a review of the literature on the sources, transport, and delivery of sediment in Chesapeake Bay and its watershed with discussion of potential implications for various management alternatives. The authors of the report have extracted, discussed, and summarized the important aspects of sediment and sedimentation that are most relevant to the CBP and other sediment related-issues with which resources managers are involved. This report summarizes the most relevant studies concerning sediment sources, transport and deposition in the watershed and estuary, sediments and relation to water clarity, and provides an extensive list of references for those wanting more information.

  1. Changes in nitrogen loading to the Northeast Creek Estuary, Bar Harbor, Maine, 2000 to 2010

    USGS Publications Warehouse

    Nielsen, Martha G.

    2013-01-01

    Since 1999, the U.S. Geological Survey and the National Park Service have been monitoring land use and nitrogen loading in a 26.3-square-kilometer (10-square-mile) estuarine watershed at Acadia National Park, Mount Desert Island, Maine. The initial study linking land use and nitrogen loads entering the Northeast Creek estuary was completed in 2000, and findings were used to develop simulations of nitrogen loading to the estuary, thereby helping to inform local land-use planning decisions. At that time, the amount of nitrogen entering the Northeast Creek estuary was relatively small, and no evidence of nutrient-related degradation was observed in the Ruppia-dominated estuarine ecosystem. A new round of water-quality monitoring and streamflow measurements was conducted to determine nitrogen loading from 2008 to 2011 as a means to evaluate the effects of increased rural residential housing within the watershed since 2000. On the basis of a 2.6-percent increase in residential-housing land use in the watershed from 2000 to 2010, simulations of nitrogen export predicted a 7-percent increase in nitrogen loading to Northeast Creek. The measurement-based loads estimated for the Northeast Creek tributaries, however, increased much more than predicted, from 1.89 kilograms per hectare per year (kg/ha/yr) in 2000 to 3.12 kg/ha/yr in the time period centered on 2010—a 66-percent increase. This increase is likely primarily a result of the prevalence of much wetter conditions during the 2008–11 sampling period than during the earlier sampling period. In addition to increasing the physical transport of nitrogen in the watershed, wet climatic conditions have been shown in other studies to increase the rates of biotic and abiotic processes that control nitrogen export from northern-latitude forested watersheds. The new loading estimates, however, also support the possibility that some portion of the increase in nitrogen loading results from the observed land-use changes, and that

  2. Origins of sediment-associated contaminants to the Marais Vernier, the Seine Estuary, France

    USGS Publications Warehouse

    Van Metre, P.C.; Mesnage, V.; Laignel, B.; Motelay, A.; Deloffre, J.

    2008-01-01

    The Marais Vernier is the largest freshwater wetland in the Seine Estuary in northern France. It is in a heavily urbanized and industrialized region and could be affected by atmospheric deposition and by fluvial input of contaminants in water diverted from the Seine River. To evaluate contaminant histories in the wetland and the region, sediment cores were collected from two open-water ponds in the Marais Vernier: the Grand-Mare, which was connected to the Seine by a canal from 1950 to 1996, and the Petite Mare, which has a small rural watershed. Diversions from the Seine to the Grand-Mare increased sedimentation rates but mostly resulted in low contaminant concentrations and loading rates, indicating that the sediment from the Seine was predominantly brought upstream by tidal currents from the estuary and was not from the watershed. Atmospheric sources of metals dominate inputs to the Petite Mare; however, runoff of metals from vehicle-related sources in the watershed might contribute to the upward trends in concentrations of Cr, Cu, and Zn. Estimates of atmospheric deposition using the Petite Mare core are consistent with measured deposition in the region and are mixed (similar for Hg and Pb; larger for Cd, Cu, and Zn) compared with deposition estimated from sediment cores in the northeastern United States. A local source of PAHs in the watershed of the Petite Mare is indicated by higher concentrations, higher accumulation rates, and a different, more petrogenic, PAH assemblage than in the Grand-Mare. The study illustrates how diverse sources and transport pathways can affect wetlands in industrial regions and can be evaluated using sediment cores from the wetland ponds. ?? 2008 Springer Science+Business Media B.V.

  3. Development of a preliminary relative risk model for evaluating regional ecological conditions in the Delaware River Estuary, USA.

    PubMed

    Iannuzzi, Timothy J; Durda, Judi L; Preziosi, Damian V; Ludwig, David F; Stahl, Ralph G; DeSantis, Amanda A; Hoke, Robert A

    2010-01-01

    Effective environmental management and restoration of urbanized systems such as the Delaware River Estuary requires a holistic understanding of the relative importance of various stressor-related impacts throughout the watershed, both historical and ongoing. To that end, it is important to involve as many stakeholders as possible in the management process and to develop a system for sharing of scientific data and information, as well as effective technical tools for evaluating and disseminating the data needed to make management decisions. In this study, we describe a preliminary assessment that was undertaken to evaluate the relative risks for the variety of stressors currently operating within the Delaware Estuary using a relative risk model (RRM) framework. This model was constructed using existing data and information on the ecological conditions and stressors in the main-stem Delaware River below the head of tide at Trenton, New Jersey, USA. A large database was developed with pertinent data from a variety of library, scientific, and regulatory sources. Data were compiled, reviewed, and characterized before development of the Estuary-specific RRM. Our primary goals and objectives in developing this preliminary RRM for the Estuary were to 1) determine if the RRM framework can be adapted to a large complex estuarine system such as the Delaware River, 2) identify the issues associated with adapting the model framework to the various management issues and regional areas/habitats of the River, 3) help identify data needs and potential refinements that might be needed to more specifically quantify relative stressor risks in various areas and habitats of the Estuary to better inform future management goals/actions by Stakeholders. The key conclusions of our preliminary assessment are 1) a diverse suite of stressors is likely affecting the ecological conditions of the Delaware Estuary, 2) chemical (toxicants/contaminants) and physical (sedimentation, habitat loss

  4. Carbon dioxide emissions from Indian monsoonal estuaries

    NASA Astrophysics Data System (ADS)

    Sarma Vedula, VSS

    2012-07-01

    The oceans act as a net sink for atmospheric CO2, however, the role of coastal bodies on global CO2 fluxes remains unclear due to lack of data. The estimated absorption of CO2 from the continental shelves, with limited data, is 0.22 to 1.0 PgC/y, and of CO2 emission by estuaries to the atmosphere is 0.27 PgC/y. The estimates from the estuaries suffer from large uncertainties due to large variability and lack of systematic data collection. It is especially true for Southeast Asian estuaries as the biogeochemical cycling of material are different due to high atmospheric temperature, seasonality driven by monsoons, seasonal discharge etc. In order to quantify CO2 emissions from the Indian estuaries, samples were collected at 27 estuaries all along the Indian coast during discharge wet and dry periods. The emissions of CO2 to the atmosphere from Indian estuaries were 4-5 times higher during wet than dry period. The pCO2 ranged between ~300 and 18492 microatm which were within the range of world estuaries. The mean pCO2 and particulate organic carbon (POC) showed positive relation with rate of discharge suggesting availability of high quantities of organic matter that led to enhanced microbial decomposition. The annual CO2 fluxes from the Indian estuaries, together with dry period data available in the literature, amounts to 1.92 TgC which is >10 times less than that from the European estuaries. The low CO2 fluxes from the Indian estuaries are attributed to low flushing rates and less human settlements along the banks of the Indian estuaries.

  5. Modelling phytoplankton succession and nutrient transfer along the Scheldt estuary (Belgium, The Netherlands)

    NASA Astrophysics Data System (ADS)

    Gypens, N.; Delhez, E.; Vanhoutte-Brunier, A.; Burton, S.; Thieu, V.; Passy, P.; Liu, Y.; Callens, J.; Rousseau, V.; Lancelot, C.

    2013-12-01

    The freshwater (RIVE) and the marine (MIRO) biogeochemical models were coupled to a 1D hydro-sedimentary model to describe contemporary phytoplankton succession and nutrient transfers in the macrotidal Scheldt estuary (BE/NL) affected by anthropogenic nutrient loads. The 1D-RIVE-MIRO model simulations are performed between Ghent and Vlissingen and the longitudinal estuarine profiles are validated by visual and statistical comparison with physico-chemical and phytoplankton observations available for the year 2006. Results show the occurrence of two distinct spatial phytoplankton blooms in the upper and lower estuary, suggesting that neither the freshwater nor the marine phytoplankton gets over the maximum turbidity zone (MTZ) at the saline transition. Sensitivity tests performed to understand how changing conditions (salinity, turbidity and nutrients) along the estuary are controlling this bimodal spatial phytoplankton distribution identify salinity and light availability as the key drivers while the grazing pressure and nutrient limitation play a negligible role. Additional tests with varying salinity-resistant (euryhaline) species in the freshwater assemblage conclude that the presence (or absence) of euryhalines determines the magnitude and the spreading of freshwater and marine phytoplankton blooms in the estuary. Annual nutrient budgets estimated from 1D-RIVE-MIRO simulations show that biological activities have a negligible impact on nutrient export but modify the speciation of nutrients exported to the coastal zone towards inorganic forms, thus directly available to phytoplankton. The implementation of nutrient reduction options (upgrading of waste water treatment plants, conversion to organic farming) on the Scheldt watershed influences the whole estuary and affects both the magnitude and the speciation of nutrients exported to the coastal zone with expected impact on coastal phytoplankton dynamic.

  6. Cadmium and manganese distributions in the Hudson River estuary: interannual and seasonal variability

    NASA Astrophysics Data System (ADS)

    Yang, Min; Sañudo-Wilhelmy, Sergio A.

    1998-08-01

    Surface waters collected along the salinity gradient of the Hudson River estuary in four cruises between 1995 and 1997 were size-fractionated into particulate (>0.45 μm), `dissolved' (<0.45 μm), colloidal (10 kDa, 0.45 μm) and low molecular weight (<10 kDa) phases. Dissolved Cd concentrations (range: 0.11-1.19 nM) in surface waters of the estuary appear to have decreased fourfold (from an average of 2.36 to 0.61 nM) over a 23-year period, since the initial analysis of samples collected in the 1970s by Klinkhammer and Bender [Estuar. Coastal Shelf Sci. 12 (1981) 629-643]. This interannual decline reflects improvement in sewage treatment and the elimination of industrial Cd sources to the Hudson River estuary. In contrast, dissolved Mn levels (range: 0.033-1.46 μM) have remained relatively constant over the same period of time, suggesting that anthropogenic sources have very limited impact on Mn concentrations in the estuary. The concentrations of both Cd and Mn appeared to strongly depend on the season and/or river discharge. The highest concentrations were detected under low freshwater discharge, implying that limited hydraulic flushing allows a build-up of metals in the water column. Although the decline in Cd levels within the estuary reflects a reduction in the magnitude of anthropogenic inputs, mass balance estimates indicated that current sources of Cd to the estuary include sewage discharges (in the lower estuary around Manhattan) and diagenetic remobilization from industrial Cd deposited in sediments nearly 2 decades ago (in the upper estuary near Foundry Cove). Moreover, under low river discharge, the sources considered in our model (sewage, riverine input, atmospheric deposition, and benthic fluxes) could account for no more than 60% of the Cd exported from the lower estuary to the ocean. This suggests that undefined sources such as ground water and inputs from other watersheds (e.g., Long Island Sound and Newark Bay) may potentially influence the

  7. Simulation of potential oyster density with variable freshwater inflow (1965-2000) to the Caloosahatchee River Estuary, southwest Florida, USA.

    PubMed

    Buzzelli, Christopher; Doering, Peter H; Wan, Yongshan; Gorman, Patricia; Volety, Aswani

    2013-10-01

    Oyster beds are disappearing worldwide through a combination of over-harvesting, diseases, and salinity alterations in the coastal zone. Sensitivity of oysters to variable discharge and salinity is particularly acute in small sub-tropical estuaries subject to regulated freshwater releases. South Florida has sub-tropical estuaries where watershed flood control sometimes results in excessive freshwater inflow to estuaries during the wet season (May-Oct) and reduced discharge and increased salinities in the dry season (Nov-Apr). The potential to reserve freshwater accumulated during the wet season could offer the capacity to regulate freshwater at different temporal scales, thus optimizing salinity conditions for estuarine biota. The goal of this study was to use simulation modeling to explore the effects of freshwater inflows and salinity on adult oyster survival in the Caloosahatchee River Estuary (CRE) in southwest Florida. Water managers derived three different freshwater inflow scenarios for the CRE based on historical and modified watershed attributes for the time period of 1965-2000. Three different salinity time series were generated from the inflow scenarios at each of three sites in the lower CRE and used to conduct nine different oyster simulations. Overall, the predicted densities of adult oysters in the upstream site were 3-4 times greater in seasons that experienced reduced freshwater inflow (e.g., increased salinity) with oyster density in the lower estuary much less influenced by the inflows. Potential storage of freshwater reduced the frequency of extreme flows in the wet season and helped to maintain minimum inflow in the dry season near the estuarine mouth. Analyses of inflows indicated that discharges ranging from 0 to 1,500 cfs could promote favorable salinities of 10-25 in the lower CRE depending on wet versus dry season climatic conditions. This range of inflows is similar to that derived in other studies of the CRE and emphasizes the value of

  8. Simulation of Potential Oyster Density with Variable Freshwater Inflow (1965-2000) to the Caloosahatchee River Estuary, Southwest Florida, USA

    NASA Astrophysics Data System (ADS)

    Buzzelli, Christopher; Doering, Peter H.; Wan, Yongshan; Gorman, Patricia; Volety, Aswani

    2013-10-01

    Oyster beds are disappearing worldwide through a combination of over-harvesting, diseases, and salinity alterations in the coastal zone. Sensitivity of oysters to variable discharge and salinity is particularly acute in small sub-tropical estuaries subject to regulated freshwater releases. South Florida has sub-tropical estuaries where watershed flood control sometimes results in excessive freshwater inflow to estuaries during the wet season (May-Oct) and reduced discharge and increased salinities in the dry season (Nov-Apr). The potential to reserve freshwater accumulated during the wet season could offer the capacity to regulate freshwater at different temporal scales, thus optimizing salinity conditions for estuarine biota. The goal of this study was to use simulation modeling to explore the effects of freshwater inflows and salinity on adult oyster survival in the Caloosahatchee River Estuary (CRE) in southwest Florida. Water managers derived three different freshwater inflow scenarios for the CRE based on historical and modified watershed attributes for the time period of 1965-2000. Three different salinity time series were generated from the inflow scenarios at each of three sites in the lower CRE and used to conduct nine different oyster simulations. Overall, the predicted densities of adult oysters in the upstream site were 3-4 times greater in seasons that experienced reduced freshwater inflow (e.g., increased salinity) with oyster density in the lower estuary much less influenced by the inflows. Potential storage of freshwater reduced the frequency of extreme flows in the wet season and helped to maintain minimum inflow in the dry season near the estuarine mouth. Analyses of inflows indicated that discharges ranging from 0 to 1,500 cfs could promote favorable salinities of 10-25 in the lower CRE depending on wet versus dry season climatic conditions. This range of inflows is similar to that derived in other studies of the CRE and emphasizes the value of

  9. Ghana Watershed Prototype Products

    USGS Publications Warehouse

    ,

    2007-01-01

    Introduction/Background A number of satellite data sets are available through the U.S. Geological Survey (USGS) for monitoring land surface features. Representative data sets include Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Shuttle Radar Topography Mission (SRTM). The Ghana Watershed Prototype Products cover an area within southern Ghana, Africa, and include examples of the aforementioned data sets along with sample SRTM derivative data sets.

  10. Ghana watershed prototype products

    USGS Publications Warehouse

    ,

    2007-01-01

    A number of satellite data sets are available through the U.S. Geological Survey (USGS) for monitoring land surface features. Representative data sets include Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Shuttle Radar Topography Mission (SRTM). The Ghana Watershed Prototype Products cover an area within southern Ghana, Africa, and include examples of the aforementioned data sets along with sample SRTM derivative data sets.

  11. Comparison of sediment supply to San Francisco Bay from watersheds draining the Bay Area and the Central Valley of California

    USGS Publications Warehouse

    McKee, L.J.; Lewicki, M.; Schoellhamer, D.H.; Ganju, N.K.

    2013-01-01

    Quantifying suspended sediment loads is important for managing the world's estuaries in the context of navigation, pollutant transport, wetland restoration, and coastal erosion. To address these needs, a comprehensive analysis was completed on sediment supply to San Francisco Bay from fluvial sources. Suspended sediment, optical backscatter, velocity data near the head of the estuary, and discharge data obtained from the output of a water balance model were used to generate continuous suspended sediment concentration records and compute loads to the Bay from the large Central Valley watershed. Sediment loads from small tributary watersheds around the Bay were determined using 235 station-years of suspended sediment data from 38 watershed locations, regression analysis, and simple modeling. Over 16 years, net annual suspended sediment load to the head of the estuary from its 154,000 km2 Central Valley watershed varied from 0.13 to 2.58 (mean = 0.89) million metric t of suspended sediment, or an average yield of 11 metric t/km2/yr. Small tributaries, totaling 8145 km2, in the nine-county Bay Area discharged between 0.081 and 4.27 (mean = 1.39) million metric t with a mean yield of 212 metric t/km2/yr. The results indicate that the hundreds of urbanized and tectonically active tributaries adjacent to the Bay, which together account for just 5% of the total watershed area draining to the Bay and provide just 7% of the annual average fluvial flow, supply 61% of the suspended sediment. The small tributary loads are more variable (53-fold between years compared to 21-fold for the inland Central Valley rivers) and dominated fluvial sediment supply to the Bay during 10 out of 16 yr. If San Francisco Bay is typical of other estuaries in active tectonic or climatically variable coastal regimes, managers responsible for water quality, dredging and reusing sediment accumulating in shipping channels, or restoring wetlands in the world's estuaries may need to more carefully

  12. Loads of suspended sediment and nutrients from local nonpoint sources to the tidal Potomac River and Estuary, Maryland and Virginia, 1979-81 water years

    USGS Publications Warehouse

    Hickman, R. Edward

    1987-01-01

    Loads of suspended sediment, phosphorus, nitrogen, biochemical oxygen demand, and dissolved silica discharged to the tidal Potomac River and Estuary during the !979-81 water years from three local nonpoint sources have been calculated. The loads in rain falling directly upon the tidal water surface and from overflows of the combined sewer system of the District of Columbia were determined from available information. Loads of materials in the streamflow from local watersheds draining directly to the tidal Potomac River and Estuary downstream from Chain Bridge in Washington, D.C., were calculated from samples of streamflow leaving five monitored watersheds. Average annual yields of substances leaving three urban watersheds (Rock Creek and the Northwest and Northeast Branches of the Anacostia River) and the rural Saint Clements Creek watershed were calculated either by developing relationships between concentration and streamflow or by using the mean of measured concentrations. Yields calculated for the 1979-81 water years are up to 2.3 times period-of-record yields because of greater than average streamflow and stormflow during this 3-year period. Period-of-record yields of suspended sediment from the three urban watersheds and the Saint Clements Creek watershed do not agree with yields reported by other studies. The yields from the urban watersheds are 17 to 51 percent of yields calculated using sediment-concentration data collected during the 1960-62 water years. Previous studies suggest that this decrease is at least partly due to the imposition of effective sediment controls at construction sites and to the construction of two multipurpose reservoirs. The yield calculated for the rural Saint Clements Creek watershed is at least twice the yields calculated for other rural watersheds, a result that may be due to most of the samples of this stream being taken during the summer of the 1981 water year, a very dry period. Loads discharged from all local tributary

  13. AFS Estuaries Section - A Successful Partnership

    EPA Science Inventory

    The Estuaries Section of the American Fisheries Society offers travel awards to students in support of their attendance and presentations at the AFS meeting. Since 2007, the Southern Association of Marine Laboratories has partnered with the Estuaries Section to sponsor two stude...

  14. Dissolved Oxygen Data for Coos Estuary (Oregon)

    EPA Science Inventory

    The purpose of this product is the transmittal of dissolved oxygen data collected in the Coos Estuary, Oregon to Ms. Molly O'Neill (University of Oregon), for use in her studies on the factors influencing spatial and temporal patterns in dissolved oxygen in this estuary. These d...

  15. EPA'S WATERSHED MANAGEMENT AND MODELING RESEARCH PROGRAM

    EPA Science Inventory

    Watershed management presumes that community groups can best solve many water quality and ecosystem problems at the watershed level rather than at the individual site, receiving waterbody, or discharger level. After assessing and ranking watershed problems, and setting environ...

  16. RESEARCH NEEDS FOR EFFECTIVE WATERSHED PLANNING

    EPA Science Inventory

    Watershed research has historically focused on physical and biological processes, stressor-response, and effects research, providing valuable understanding of the effects of human activity and natural disturbances on watershed ecosystems. Continued research to support watershed ...

  17. [Assessment system for watershed ecological health in the United States: development and application].

    PubMed

    Zhang, Hua; Luo, Yong-Ming

    2013-07-01

    To meet the water quality goals of the Clean Water Act, the environmental agencies in the United States (U.S.) have developed a comprehensive ecological assessment system of watershed health in the last two decades. The system employs a watershed approach, and includes a large set of hydrological, chemical, and biological indices, having become an essential part of the watershed water quality management system in the U.S. and provided strong support for the protection of water environment and the restoration of aquatic system. In this paper, the development and application of the ecological assessment system of watershed health by the U.S. environmental regulators, especially the U.S. Environmental Protection Agency (US EPA), were overviewed from the aspects of related laws and regulations, ecosystem function analysis, ecological health indicators, comprehensive assessment system, and monitoring and data management systems, and the health assessment systems for the rivers, lakes, estuaries, coasts, and wetlands adopted by the National$t1-1-1 Aquatic Resource Surveys (NARS) were introduced. Some suggestions for the future development of the scientific ecological assessment system of watershed health in China were put forward based on the understanding of the protection and remediation practices of our water environment.

  18. Sediment accumulation in the Siletz River estuary in response to changes in hydroclimate and land use.

    NASA Astrophysics Data System (ADS)

    Pakenham, A.; Wheatcroft, R.

    2008-12-01

    The transfer of sediment from source to sink involves a complex set of processes that vary over multiple time and space scales. In the Pacific Northwest, there is anecdotal evidence that many estuaries are filling rapidly with sediment due to changes in hydroclimatology coupled with land-use changes. Because both factors may co-exist, the relative contribution of each, the mechanisms of sediment delivery (event vs. steady), and the role of larger scale processes, such as sea level rise, are important issues to disentangle. To address these issues we are studying the Siletz River, a small (<1000 km2), mountainous river system in the Oregon Coast Range. Precipitation and stream flow patterns in this region are forced by the PDO-ENSO, with a cool, wet period from 1945 to 1975. In addition, the Siletz watershed was extensively logged following WWII, thereby exacerbating sediment erosion from the watershed. A variety of evidence (e.g., x-radiographs, grain size, C-14, Pb-210 and Cs-137 geochronology) collected within the estuary indicates, however, that there has not been a clear acceleration of sediment accumulation during the latter half of the 20-th century, and suggests extrabasinal effects (e.g., sea level rise, neotectonics) may control accumulation.

  19. Dissolved oxygen in two Oregon estuaries: The importance of the ocean-estuary connection - May 16, 2011

    EPA Science Inventory

    We examined the role of the ocean –estuary connection in influencing periodic reductions in dissolved oxygen (DO) levels in Yaquina and Yachats estuaries, Oregon, USA. In the Yaquina Estuary, there is close coupling between the coastal ocean and the estuary. As a result, low DO ...

  20. Inter and intra-estuary variability in ingress, condition and settlement of the American eel Anguilla rostrata: implications for estimating and understanding recruitment.

    PubMed

    Sullivan, M C; Wuenschel, M J; Able, K W

    2009-06-01

    The objective of this study was to quantify spatial and temporal variability of anguillid glass eel ingress within and between adjacent watersheds in order to help illuminate the mechanisms moderating annual recruitment. Because single fixed locations are often used to assess annual recruitment, the intra-annual dynamics of ingress across multiple sites often remains unresolved. To address this question, plankton nets and eel collectors were deployed weekly to synoptically quantify early stage Anguilla rostrata abundance at 12 sites across two New Jersey estuaries over an ingress season. Numbers of early-stage glass eels collected at the inlet mouths were moderately variable within and between estuaries over time and showed evidence for weak lunar phase and water temperature correlations. The relative condition of glass eels, although highly variable, declined significantly over the ingress season and indicated a tendency for lower condition A. rostrata to colonize sites in the lower estuary. Accumulations of glass eels and early-stage elvers retrieved from collectors (one to >1500 A. rostrata per collector) at lower estuary sites were highly variable over time, producing only weak correlations between estuaries. By way of contrast, development into late-stage elvers, coupled with the large-scale colonization of up-river sites, was highly synchronized between and within estuaries and contingent on water temperatures reaching c. 10-12 degrees C. Averaged over the ingress season, abundance estimates were remarkably consistent between paired sites across estuaries, indicating a low degree of interestuary variability. Within an estuary, however, abundance estimates varied considerably depending on location. These results and methodology have important implications for the planning and interpretation of early-stage anguillid eel surveys as well as the understanding of the dynamic nature of ingress and the spatial scales over which recruitment varies.

  1. INTEGRATIVE CONSIDERATIONS IN WATERSHED PLANNING

    EPA Science Inventory

    Understanding the filters through which society views the values produced by watersheds is key to developing effective and adaptable watershed plans, and ultimately a measure of how well policy makers are likely to meet a sustainability, or any other, intent. Many natural resour...

  2. Watershed Education for Sustainable Development.

    ERIC Educational Resources Information Center

    Stapp, William B.

    2000-01-01

    Presents information on the Global Rivers Environmental Education Network (GREEN), which is a global communication system for analyzing watershed usage and monitoring the quality and quantity of river water. Describes GREEN's watershed educational model and strategies and international development. (Contains 67 references.) (Author/YDS)

  3. DEVELOP Chesapeake Bay Watershed Hydrology - UAV Sensor Web

    NASA Astrophysics Data System (ADS)

    Holley, S. D.; Baruah, A.

    2008-12-01

    The Chesapeake Bay is the largest estuary in the United States, with a watershed extending through six states and the nation's capital. Urbanization and agriculture practices have led to an excess runoff of nutrients and sediment into the bay. Nutrients and sediment loading stimulate the growth of algal blooms associated with various problems including localized dissolved oxygen deficiencies, toxic algal blooms and death of marine life. The Chesapeake Bay Program, among other stakeholder organizations, contributes greatly to the restoration efforts of the Chesapeake Bay. These stakeholders contribute in many ways such as monitoring the water quality, leading clean-up projects, and actively restoring native habitats. The first stage of the DEVELOP Chesapeake Bay Coastal Management project, relating to water quality, contributed to the restoration efforts by introducing NASA satellite-based water quality data products to the stakeholders as a complement to their current monitoring methods. The second stage, to be initiated in the fall 2008 internship term, will focus on the impacts of land cover variability within the Chesapeake Bay Watershed. Multiple student led discussions with members of the Land Cover team at the Chesapeake Bay Program Office in the DEVELOP GSFC 2008 summer term uncovered the need for remote sensing data for hydrological mapping in the watershed. The Chesapeake Bay Program expressed in repeated discussions on Land Cover mapping that significant portions of upper river areas, streams, and the land directly interfacing those waters are not accurately depicted in the watershed model. Without such hydrological mapping correlated with land cover data the model will not be useful in depicting source areas of nutrient loading which has an ecological and economic impact in and around the Chesapeake Bay. The fall 2008 DEVELOP team will examine the use of UAV flown sensors in connection with in-situ and Earth Observation satellite data. To maximize the

  4. Improving lakebed sediment quality in an urban estuary, Presque Isle Bay, Lake Erie, USA

    NASA Astrophysics Data System (ADS)

    Foyle, A. M.; Norton, K. P.

    2007-12-01

    Presque Isle Bay, Lake Erie, is a microtidal freshwater estuary on the North American Great Lakes. It is one of 40 remaining environmental Areas of Concern (AoCs) on the Great Lakes that have one or more water, habitat, or sediment quality impairments as defined by the International Joint Commission. In-situ natural capping using sediment from to-be-remediated watersheds and other sources is being considered as the most feasible means of remediating contaminated sediments in the estuary. A multi-decade sediment budget shows that, when localized anthropogenic effects are accounted for, the estuary net-accumulated sediment over time from three major sources: the Lake Erie littoral system (20%), streams (25%), and bank erosion and bluff recession (41%). The non-stream sources supply environmentally clean sediment from ancient coastal deposits along the shoreline, and from the modern littoral system. However, organic and metallic contaminants are supplied by streams and run-off and remain a remediation challenge. From a geological perspective, natural capping of contaminated sediment over the next several decades is a viable solution for the majority of the bay. The mechanism may not work effectively in all areas because approximately 25% of the bay floor is moderately net- erosional or accumulates sediments very slowly.

  5. Fluidization of mud in estuaries

    NASA Astrophysics Data System (ADS)

    Wolanski, Eric; Chappell, John; Ridd, Peter; Vertessy, Rob

    1988-03-01

    The South Alligator River, located in the Northern Territory, Australia, is a macrotidal estuary with suspended sediment concentration values reaching 10 g 1-1 In September 1986, in the dry season, the estuary was well mixed in temperature and salinity. While the vertical gradients in suspended sediment concentration were small at flood tides, for most of the ebb tide duration a lutocline separated a clear upper layer from an extremely turbid bottom layer, both layers being of comparable thickness. The tidal evolution of the suspended sediment concentration is consistent with that computed by a numerical model based on the equation of conservation of mass of suspended sediment. In this model, sediment is entrained from the bottom and mixed vertically upward by eddy diffusion, but through a Richardson number dependence, sediment-induced buoyancy effects inhibit vertical mixing. The final depth of the turbid layer can be readily estimated analytically as a result of a balance between the rate of kinetic energy input and the buoyancy flux determined by the particle fall velocity. The presence of a lutocline helps form mud banks on the inner side of a meander.

  6. Trace Elemental Analyses of Suspended Sediments in the San Francisco Estuary and its Tidal Marshes

    NASA Astrophysics Data System (ADS)

    Malamud-Roam, F. P.; Ingram, B. L.; Yang, W.; Collins, J.

    2004-12-01

    This research evaluates the trace elemental compositions of inorganic sediments in the San Francisco Bay estuary marshes over space and time. These sediments create and maintain the tidal marshes that surround the Sand Francisco Bay, yet a thorough analysis of the sources of these sediments remains understudied. Determining the sources of sediments is of interest because current mitigation and restoration projects around the Bay must consider whether the sediment supply will be sufficient for projects, or if opening diked wetlands to tidal flow will result in salt water intrusion further up-estuary (into the Delta). Results of trace element analyses of suspended sediments that pass through the Sacramento-San Joaquin Delta (the Delta) are compared with those of local watershed tributaries. Differences in bedrock lithology can be seen in the varying trace elemental concentrations; for example, K, Nd, Sm, Rb and Sr concentrations are significantly lower in the Sacramento river sediments than those of the San Joaquin river and can be used to differentiate further the Delta input. Results from marsh surface samples throughout the North Bay and preliminary results from 4 1-m long sediment cores collected along a transect of the Novato creek marsh (NCM) reflect local versus Delta sediment source patterns. The suspended sediment samples from the Sacramento and San Joaquin rivers and from local creeks reflect the end members of the sediment supply for local marshes. The marsh surface samples represent the most recent period (last few years or so) and reflect the extent of Delta influence into the estuary. Finally, the cores collected from the Novato creek marsh provide details on the gradient of dominant source supply (i.e., are the sediments well inland predominantly from the local watershed and how far does that influence extend downstream), as well as a history of how the sediment supply conditions have changed, comparing pre-Gold Rush and agriculture era (before about

  7. Attributes of successful actions to restore lakes and estuaries degraded by nutrient pollution.

    PubMed

    Gross, Catharine; Hagy, James D

    2017-02-01

    As more success is achieved in restoring lakes and estuaries from the impacts of nutrient pollution, there is increased opportunity to evaluate the scientific, social, and policy factors associated with achieving restoration goals. We examined case studies where deliberate actions to reduce nutrient pollution and restore ecosystems resulted in ecological recovery. Prospective cases were identified from scientific literature and technical documents for lakes and estuaries with: (1) scientific evidence of nutrient pollution; (2) restoration actions taken to mitigate nutrient pollution; and (3) documented ecological improvement. Using these criteria, we identified 9 estuaries and 7 lakes spanning countries, climatic regions, physical types, depths, and watershed areas. Among 16 case studies ultimately included, 8 achieved improvements short of stated restoration goals. Five more were successful initially, but condition subsequently declined. Three of the case studies achieved their goals fully and are currently managing to maintain the restored condition. We examined each case to identify both common attributes of nutrient management, grouped into 'themes', and variations on those attributes, which were coded into categorical variables based on thorough review of documents associated with each case. The themes and variables were organized into a broad conceptual model illustrating how they relate to each other and to nutrient management outcomes. We then explored relationships among the themes and variables using multiple correspondence analysis (MCA). Results of the MCA suggested that the attributes most associated with achieving restoration goals include: (1) leadership by a dedicated watershed management agency; (2) governance through a bottom-up collaborative process; (3) a strategy that set numeric targets based on a specific ecological goal; and (4) actions to reduce nutrient loads from all sources. While our study did not provide a comprehensive road map to

  8. pyLIDEM: A Python-Based Tool to Delineate Coastal Watersheds Using LIDAR Data

    NASA Astrophysics Data System (ADS)

    O'Banion, R.; Alameddine, I.; Gronewold, A.; Reckhow, K.

    2008-12-01

    -resolution Light Detection and Ranging (LIDAR) data, generates fine scale DEMs, and delineates watershed boundaries for a given pour point. Because LIDAR data are typically distributed in large sets of predefined tiles, our tool is capable of combining only the minimum number of bare earth LIDAR tiles required to delineate a watershed of interest. Our tool then processes the LIDAR data into Triangulated Irregular Networks, generates DEMs at user- specified cell sizes, and creates the required files needed to delineate watersheds within ArcGIS. To make pyLIDEM more accessible to the modeling community, we have bundled it within an ArcGIS toolbox, which also allows users to run it directly from an ArcGIS platform. We assess pyLIDEM functionality and accuracy by delineating several impaired small coastal watersheds in the Newport River Estuary in Eastern North Carolina using LIDAR data collected for the North Carolina Flood Mapping Program. We then compare the pyLIDAR-based watershed boundaries with those generated manually and with those generated using the 30-meter DEMs, and find that the pyLIDAR-based boundaries are more accurate than the 30-meter DEMs, and provide a significant time savings compared to manual delineation, particularly in cases where multiple watersheds need to be delineated for a single project.

  9. Watershed-based survey designs

    USGS Publications Warehouse

    Detenbeck, N.E.; Cincotta, D.; Denver, J.M.; Greenlee, S.K.; Olsen, A.R.; Pitchford, A.M.

    2005-01-01

    Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream–downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.

  10. Watershed-based survey designs.

    PubMed

    Detenbeck, Naomi E; Cincotta, Dan; Denver, Judith M; Greenlee, Susan K; Olsen, Anthony R; Pitchford, Ann M

    2005-04-01

    Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream-downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.

  11. The Peel Inlet-Harvey Estuary Study.

    ERIC Educational Resources Information Center

    Walker, Warren; Black, Ronald

    1979-01-01

    Describes how the department of physics of the Western Australian Institute of Technology (WAIT) has been involved in the Peel Inlet-Harvey Estuary study. An appendix which presents the departmental approach to curriculum matters is also included. (HM)

  12. Microplastic in three urban estuaries, China.

    PubMed

    Zhao, Shiye; Zhu, Lixin; Li, Daoji

    2015-11-01

    Estuarine Microplastics (MPs) are limited to know globally. By filtering subsurface water through 330 μm nets, MPs in Jiaojiang, Oujiang Estuaries were quantified, as well as that in Minjiang Estuary responding to Typhoon Soulik. Polymer matrix was analyzed by Raman spectroscopy. MP (<5 mm) comprised more than 90% of total number plastics. The highest MPs density was found in Minjiang, following Jiaojiang and Oujiang. Fibers and granules were the primary shapes, with no pellets found. Colored MPs were the majority. The concentrations of suspended microplastics determine their bioavailability to low trophic organisms, and then possibly promoting the transfer of microplastic to higher trophic levels. Polypropylene and polyethylene were the prevalent types of MPs analyzed. Economic structures in urban estuaries influenced on MPs contamination levels. Typhoon didn't influence the suspended MP densities significantly. Our results provide basic information for better understanding suspended microplastics within urban estuaries and for managerial actions.

  13. EPA'S BENTHIC HABITAT DATA FOR YAQUINA ESTUARY

    EPA Science Inventory

    Scientists at EPA's National Health and Environmental Effects Research Laboratory, Western Ecology Division (WED) have been studying seafloor (benthic) habitats in Yaquina estuary for several years. Those studies were conducted as parts of several research projects, including: e...

  14. Using opportunistic green macroalgae as indicators of nitrogen supply and sources to estuaries.

    PubMed

    Cohen, Risa A; Fong, Peggy

    2006-08-01

    Nutrient inputs to estuaries are increasing worldwide, and anthropogenic contributions are increasingly complex and difficult to distinguish. Measurement of integrated effects of salinity and nutrient changes simultaneously can help ascertain whether N sources of similar magnitude and stable isotope (sigma15N) signatures are river dominated. We used Enteromorpha spp., an opportunistic macroalga, to obtain integrated measures of salinity, nutrient supply, and nutrient source in estuaries. We outplanted cultured algae in the field along spatial gradients within three southern California estuaries for 24 hours in wet and dry seasons. Tissue was analyzed for potassium (K+) to measure osmoregulatory changes, total nitrogen to examine changes in nutrient supply, and sigma15N to assess nutrient sources. Discrete measures of water salinity correlated with tissue K+ content; however, there was significant variability in the relationship, suggesting that the algae were subject to considerable variation in salinity over a tidal cycle. Tissue total N was not always related to snapshot measures of water column dissolved inorganic nitrogen (DIN), suggesting that integrated measures may be better at capturing the temporal and spatial complexity of nutrient availability. The combination of tissue K+, total N, and sigma15N measures revealed that inflowing rivers delivered N from watershed sources to Mugu Lagoon and Carpinteria Salt Marsh, while both the inflowing river and a mid estuary source were important sources of high sigma15N N in Upper Newport Bay. These experiments revealed complex patterns of supply and sources of N and demonstrate the usefulness of macroalgal indicators over water sampling to detect these patterns.

  15. Detection of Changes in Sediment Distribution in the Hudson River Estuary with Repeated Subbottom Profiling

    NASA Astrophysics Data System (ADS)

    Nitsche, F. O.; Kenna, T. C.

    2014-12-01

    During the last decade, several major storms have impacted the US Atlantic coast, including tropical storm Sandy in 2013 and tropical storms Irene and Lee in 2012. These storms, in particular, had major impacts on the watershed of the Hudson River Estuary, resulting in changes in the delivery and distribution of sediments. While Sandy generated a large storm surge that mostly effected the lower estuary, Irene and Lee caused significant flooding in the upper estuary that delivered ~2.7 million tons of sediment to the Hudson River Estuary, which according to USGS estimates is an amount equal to three times the annual load of ~700,000-800,000 metric? tons (Wall et al. 2008; Ralston et al., 2013). Here we report results from high-resolution Chirp subbottom surveys conducted in selected areas of the Hudson River in 2014. Areas were selected with the goal of investigating changes in the sediment deposition and storage in the Hudson River as a result of these events. The new survey lines were acquired following the tracks of earlier subbottom profiles that were collected as part of the Hudson River Benthic Mapping Project in the early 2000s, i.e. before the storms of 2012 and 2013, in a dense grid of subbottom profiles. We then compared these co-located profiles to determine changes between the profiles and to map out the spatial distribution of increased deposition in the selected areas. In several places, the data show clear increases of the thickness of depositional layers of over 0.25 m while in other areas these changes are less clear. Changes based on sub-bottom data will be compared to results obtained on sediment cores taken from the same areas. Preliminary analysis of the sediment cores indicates clear layers of recent sediments in some areas that correspond to the results of the subbottom analysis.

  16. Estuaries.

    ERIC Educational Resources Information Center

    Awkerman, Gary L.

    This publication is designed for use in standard science curricula to develop oceanologic manifestations of certain science topics. Included are teacher guides, student activities, and demonstrations designed to impart ocean understanding to high school students. When the student has completed this unit, he should be able to: (1) define an…

  17. Seasonal and Spatial Distribution of Freshwater Flow and Salinity in the Ten Thousand Islands Estuary, Florida, 2007-2009

    USGS Publications Warehouse

    Soderqvist, Lars E.; Patino, Eduardo

    2010-01-01

    The watershed of the Ten Thousand Islands (TTI) estuary has been substantially altered through the construction of canals and roads for the Southern Golden Gate Estates (SGGE), Barron River Canal, and U.S. 41 (Tamiami Trail). Two restoration projects designed to improve freshwater delivery to the estuary are the Picayune Strand Restoration Project, which includes the Southern Golden Gate Estates, and the Tamiami Trail Culverts Project; both are part of the Comprehensive Everglades Restoration Plan. To address hydrologic information needs critical for monitoring the effects of these restoration projects, the U.S. Geological Survey initiated a study in October 2006 to characterize freshwater outflows from the rivers, internal circulation and mixing within the estuary, and surface-water exchange between the estuary and Gulf of Mexico. The effort is conducted in cooperation with the South Florida Water Management District and complemented by monitoring performed by the Rookery Bay National Estuarine Research Reserve. Surface salinity was measured during moving boat surveys using a flow-through system that operated at planing speeds averaging 20 miles per hour. The data were logged every 10 seconds by a data recorder that simultaneously logged location information from a Global Positioning System. The major rivers, bays, and nearshore Gulf of Mexico region of the TTI area were surveyed in approximately 5 hours by two boats traversing about 200 total miles. Salinity and coordinate data were processed using inverse distance weighted interpolation to create salinity contour maps of the entire TTI region. Ten maps were created from salinity surveys performed between May 2007 and May 2009 and illustrate the dry season, transitional, and wet season salinity patterns of the estuarine rivers, inner bays, mangrove islands, and Gulf of Mexico boundary. The effects of anthropogenic activities are indicated by exceptionally low salinities associated with point discharge into the

  18. Biogeochemical transport in the Loxahatchee River estuary, Florida: The role of submarine groundwater discharge

    USGS Publications Warehouse

    Swarzenski, P.W.; Orem, W.H.; McPherson, B.F.; Baskaran, M.; Wan, Y.

    2006-01-01

    The distributions of dissolved organic carbon (DOC), Ba, U, and a suite of naturally occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra) were studied during high- and low-discharge conditions in the Loxahatchee River estuary, Florida to examine the role of submarine groundwater discharge in estuarine transport. The fresh water endmember of this still relatively pristine estuary may reflect not only river-borne constituents, but also those advected during active groundwater/surface water (hyporheic) exchange. During both discharge conditions, Ba concentrations indicated slight non-conservative mixing. Such Ba excesses could be attributed either to submarine groundwater discharge or particle desorption processes. Estuarine dissolved organic carbon concentrations were highest at salinities closest to zero. Uranium distributions were lowest in the fresh water sites and mixed mostly conservatively with an increase in salinity. Suspended particulate matter (SPM) concentrations were generally lowest ( 28??dpm L- 1) at the freshwater endmember of the estuary and appear to identify regions of the river most influenced by the discharge of fresh groundwater. Activities of four naturally occurring isotopes of Ra (223,224,226,228Ra) in this estuary and select adjacent shallow groundwater wells yield mean estuarine water-mass transit times of less than 1 day; these values are in close agreement to those calculated by tidal prism and tidal frequency. Submarine groundwater discharge rates to the Loxahatchee River estuary were calculated using a tidal prism approach, an excess 226Ra mass balance, and an electromagnetic seepage meter. Average SGD rates ranged from 1.0 to 3.8 ?? 105??m3 d- 1 (20-74??L m- 2 d- 1), depending on river-discharge stage. Such calculated SGD estimates, which must include both a recirculated as well as fresh water component, are in close agreement with results obtained from a first-order watershed mass balance. Average submarine

  19. Watersheds and Explosive percolation

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans J.; Araujo, Nuno A. M.

    The recent work by Achlioptas, D'Souza, and Spencer opened up the possibility of obtaining a discontinuous (explosive) percolation transition by changing the stochastic rule of bond occupation. Despite the active research on this subject, several questions still remain open about the leading mechanism and the properties of the system. We review the largest cluster and the Gaussian models recently introduced. We show that, to obtain a discontinuous transition it is solely necessary to control the size of the largest cluster, suppressing the growth of a cluster di_ering significantly, in size, from the average one. As expected for a discontinuous transition, a Gaussian cluster-size distribution and compact clusters are obtained. The surface of the clusters is fractal, with the same fractal dimension of the watershed line.

  20. Estuary Data Mapper: A coastal information system to propel ...

    EPA Pesticide Factsheets

    The Estuary Data Mapper (EDM) is a free, interactive virtual gateway to coastal data aimed to promote research and aid in environmental management. The graphical user interface allows users to custom select and subset data based on their spatial and temporal interests giving them easy access to visualize, retrieve, and save data for further analysis. Data are accessible across estuarine systems of the Atlantic, Gulf of Mexico and Pacific regions of the United States and includes: (1) time series data including tidal, hydrologic, and weather, (2) water and sediment quality, (3) atmospheric deposition, (4) habitat, (5) coastal exposure indices, (6) historic and projected land-use and population, (7) historic and projected nitrogen and phosphorous sources and load summaries. EDM issues Web Coverage Service Interface Standard queries (WCS; simple, standard one-line text strings) to a public web service to quickly obtain data subsets by variable, for a date-time range and area selected by user. EDM is continuously being enhanced with updated data and new options. Recent additions include a comprehensive suite of nitrogen source and loading data, and inputs for supporting a modeling approach of seagrass habitat. Additions planned for the near future include 1) support for Integrated Water Resources Management cost-benefit analysis, specifically the Watershed Management Optimization Support Tool and 2) visualization of the combined effects of climate change, land-use a

  1. Contributions of atmospheric nitrogen deposition to U.S. estuaries: Summary and conclusions: Chapter 8

    USGS Publications Warehouse

    Stacey, Paul E.; Greening, Holly; Kremer, James N.; Peterson, David; Tomasko, David A.; Valigura, Richard A.; Alexander, Richard B.; Castro, Mark S.; Meyers, Tilden P.; Paerl, Hans W.; Stacey, Paul E.; Turner, R. Eugene

    2001-01-01

    A NOAA project was initiated in 1998, with support from the U.S. EPA, to develop state-of-the-art estimates of atmospheric N deposition to estuarine watersheds and water surfaces and its delivery to the estuaries. Work groups were formed to address N deposition rates, indirect (from the watershed) yields from atmospheric and other anthropogenic sources, and direct deposition on the estuarine waterbodies, and to evaluate the levels of uncertainty within the estimates. Watershed N yields were estimated using both a land-use based process approach and a national (SPARROW) model, compared to each other, and compared to estimates of N yield from the literature. The total N yields predicted by the national model were similar to values found in the literature and the land-use derived estimates were consistently higher. Atmospheric N yield estimates were within a similar range for the two approaches, but tended to be higher in the land-use based estimates and were not wellcorrelated. Median atmospheric N yields were around 15% of the total N yield for both groups, but ranged as high as 60% when both direct and indirect deposition were considered. Although not the dominant source of anthropogenic N, atmospheric N is, and will undoubtedly continue to be, an important factor in culturally eutrophied estuarine systems, warranting additional research and management attention.

  2. The Estuary Book: A Guide to Promoting Understanding and Regional Management of Maine's Estuaries and Embayments.

    ERIC Educational Resources Information Center

    Ruffing, Jenny

    The objective of this document is to provide information about estuaries, the impact of uses on the environmental health of an estuary, and what communities and concerned individuals can do to manage and protect their local estuarine resources successfully. Much of the information presented here pertains to other embayments along the Maine coast…

  3. A trophic model for the Danshuei River Estuary, a hypoxic estuary in northern Taiwan.

    PubMed

    Lin, Hsing-Juh; Shao, Kwang-Tsao; Jan, Rong-Quen; Hsieh, Hwey-Lian; Chen, Chang-Po; Hsieh, Li-Yung; Hsiao, Yi-Ting

    2007-11-01

    The estuary of the Danshuei River, a hypoxic subtropical estuary, receives a high rate of untreated sewage effluent. The Ecopath with Ecosim software system was used to construct a mass-balanced trophic model for the estuary, and network analysis was used to characterize the structure and matter flow in the food web. The estuary model was comprised of 16 compartments, and the trophic levels varied from 1.0 for primary producers and detritus to 3.0 for carnivorous and piscivorous fishes. The large organic nutrient loading from the upper reaches has resulted in detritivory being more important than herbivory in the food web. The food-chain length of the estuary was relatively short when compared with other tropical/subtropical coastal systems. The shortness of food-chain length in the estuary could be attributed to the low biomass of the top predators. Consequently, the trophic efficiencies declined sharply for higher trophic levels due to low fractions of flows to the top predators and then high fractions to detritus. The low biomass of the top predators in the estuary was likely subject to over-exploitation and/or hypoxic water. Summation of individual rate measurements for primary production and respiration yielded an estimate of -1791 g WW m(-2) year(-1), or -95 g C m(-2) year(-1), suggesting a heterotrophic ecosystem, which implies that more organic matter was consumed than was produced in the estuary.

  4. ESTIMATING THE CONDITION OF GULF OF MEXICO ESTUARIES: NATIONAL COASTAL ASSESSMENT AND NATIONAL ESTUARY PROGRAM

    EPA Science Inventory

    Estuaries in the Gulf of Mexico have been monitored since 1991 to determine the condition of water, sediment, and biota. More recently, through the National Coastal Assessment (NCA), U.S. EPA has provided a comprehensive estimate of the condition of U.S. estuaries, including a re...

  5. Modeling and sediment study in the watershed Medjerda, Tunisia

    NASA Astrophysics Data System (ADS)

    Kotti, Fatma; Mahé, Gil; Habaieb, Hamadi; Dieulin, Claudine; Hermassi, Taoufik

    2015-04-01

    series than should be about one century. The cores' analysis results show a succession of sedimentary layers that likely correspond to different flood deposits that succeeded on this site, and especially the datation of the cores shows that the selected area is a very important deposition area. This sedimentary study will help estimate the sediment dynamics to major estuaries, which is poorly known for most of the rivers of Maghreb. The reduction of the sediment supply to the sea is tipped as a major factor to be taken into account for a better understanding of the dynamics of coastal areas in the context of global climate change and sea level rise. Keywords: sediment core, Medjerda watershed, dam, hydrology, modeling, Tunisia

  6. STEWARDS: A watershed data system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comprehensive, long-term data from watersheds across diverse environments are needed for hydrologic and ecosystem analysis and for model development, calibration and validation. To support the Agricultural Research Service's Conservation Effects Assessment Project (CEAP) in assessing impacts of USDA...

  7. Alameda Creeks Healthy Watersheds Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Alameda Creeks Healthy Watersheds Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resour

  8. Accomplishments of South Platte Watershed

    EPA Pesticide Factsheets

    Accomplishments of the South Platte Watershed of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  9. Watershed Simulation of Nutrient Processes

    EPA Science Inventory

    In this presentation, nitrogen processes simulated in watershed models were reviewed and compared. Furthermore, current researches on nitrogen losses from agricultural fields were also reviewed. Finally, applications with those models were reviewed and selected successful and u...

  10. COMPLEMENTARY APPROACHES TO WATERSHED ASSESSMENT

    EPA Science Inventory

    Anthropogenic activities in watersheds affect aquatic organisms, riparian vegetation, and their ability to support avian populations. Our objective was to compare indicators of stream and riparian condition with the composition of breeding bird populations in six Rhode Island s...

  11. Asotin Creek Model Watershed Plan

    SciTech Connect

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  12. Working at a Watershed Level

    EPA Pesticide Factsheets

    A short course that provides a basic, but very broad foundation for the use of ecological, social and organizational management principles to guide activities to restore and sustain watershed conditions.

  13. Watershed Boundary Dataset for Mississippi

    USGS Publications Warehouse

    Wilson, K. Van; Clair, Michael G.; Turnipseed, D. Phil; Rebich, Richard A.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Mississippi Department of Environmental Quality, U.S. Department of Agriculture-Natural Resources Conservation Service, Mississippi Department of Transportation, U.S. Department of Agriculture-Forest Service, and the Mississippi Automated Resource Information System developed a 1:24,000-scale Watershed Boundary Dataset for Mississippi including watershed and subwatershed boundaries, codes, names, and areas. The Watershed Boundary Dataset for Mississippi provides a standard geographical framework for water-resources and selected land-resources planning. The original 8-digit subbasins (Hydrologic Unit Codes) were further subdivided into 10-digit watersheds (62.5 to 391 square miles (mi2)) and 12-digit subwatersheds (15.6 to 62.5 mi2) - the exceptions being the Delta part of Mississippi and the Mississippi River inside levees, which were subdivided into 10-digit watersheds only. Also, large water bodies in the Mississippi Sound along the coast were not delineated as small as a typical 12-digit subwatershed. All of the data - including watershed and subwatershed boundaries, subdivision codes and names, and drainage-area data - are stored in a Geographic Information System database, which are available at: http://ms.water.usgs.gov/. This map shows information on drainage and hydrography in the form of U.S. Geological Survey hydrologic unit boundaries for water-resource 2-digit regions, 4-digit subregions, 6-digit basins (formerly called accounting units), 8-digit subbasins (formerly called cataloging units), 10-digit watershed, and 12-digit subwatersheds in Mississippi. A description of the project study area, methods used in the development of watershed and subwatershed boundaries for Mississippi, and results are presented in Wilson and others (2008). The data presented in this map and by Wilson and others (2008) supersede the data presented for Mississippi by Seaber and others (1987) and U.S. Geological Survey (1977).

  14. Walker Branch Watershed Ecosystems Data

    DOE Data Explorer

    Walker Branch Watershed is located on the U. S. Department of Energy's Oak Ridge Reservation near Oak Ridge, in Anderson County, Tennessee. The Walker Branch Watershed Project began in 1967 under sponsorship of the U. S. Atomic Energy Commission (now the U. S. Department of Energy). Initially, the project centered primarily on the geologic and hydrologic processes that control the amounts and chemistry of water moving through the watershed. Past projects have included: • U. S. Department of Energy funded studies of watershed hydrology and forest nutrient dynamics • National Oceanic and Atmospheric Administration funded studies of forest micrometeorology • Studies of atmospheric deposition under the National Atmospheric Deposition Program • The International Biological Program Eastern Deciduous Forest Biome Project • National Science Foundation sponsored studies of trace element cycling and stream nutrient spiraling • Electric Power Research Institute funded studies of the effects of acidic deposition on canopy processes and soil chemistry. These projects have all contributed to a more complete understanding of how forest watersheds function and have provided insights into the solution of energy-related problems associated with air pollution, contaminant transport, and forest nutrient dynamics. This is one of a few sites in the world characterized by long-term, intensive environmental studies. The Walker Branch Watershed website at http://walkerbranch.ornl.gov/ provides maps, photographs, and data on climate, precipitation, atmospheric deposition, stream discharge and runoff, stream chemistry, and vegetation. [Taken from http://walkerbranch.ornl.gov/ABOUTAAA.HTM

  15. Long-Term Effects of Changing Land Use Practices on Surface Water Quality in a Coastal River and Lagoonal Estuary

    NASA Astrophysics Data System (ADS)

    Rothenberger, Meghan B.; Burkholder, Joann M.; Brownie, Cavell

    2009-09-01

    The watershed of the Neuse River, a major tributary of the largest lagoonal estuary on the U.S. mainland, has sustained rapid growth of human and swine populations. This study integrated a decade of available land cover and water quality data to examine relationships between land use changes and surface water quality. Geographic Information Systems (GIS) analysis was used to characterize 26 subbasins throughout the watershed for changes in land use during 1992-2001, considering urban, agricultural (cropland, animal as pasture, and densities of confined animal feed operations [CAFOs]), forested, grassland, and wetland categories and numbers of wastewater treatment plants (WWTPs). GIS was also used together with longitudinal regression analysis to identify specific land use characteristics that influenced surface water quality. Total phosphorus concentrations were significantly higher during summer in subbasins with high densities of WWTPs and CAFOs. Nitrate was significantly higher during winter in subbasins with high numbers of WWTPs, and organic nitrogen was higher in subbasins with higher agricultural coverage, especially with high coverage of pastures fertilized with animal manure. Ammonium concentrations were elevated after high precipitation. Overall, wastewater discharges in the upper, increasingly urbanized Neuse basin and intensive swine agriculture in the lower basin have been the highest contributors of nitrogen and phosphorus to receiving surface waters. Although nonpoint sources have been emphasized in the eutrophication of rivers and estuaries such as the Neuse, point sources continue to be major nutrient contributors in watersheds sustaining increasing human population growth. The described correlation and regression analyses represent a rapid, reliable method to relate land use patterns to water quality, and they can be adapted to watersheds in any region.

  16. Evaluating the sources and fate of anthropogenic dissolved inorganic nitrogen (DIN) in two contrasting North Sea estuaries.

    PubMed

    Ahad, Jason M E; Ganeshram, Raja S; Spencer, Robert G M; Uher, Günther; Upstill-Goddard, Robert C; Cowie, Greg L

    2006-12-15

    Nitrogen isotope ratios (delta(15)N) were used to help elucidate the sources and fate of ammonium (NH(4)(+)) and nitrate (NO(3)(-)) in two northeastern English estuaries. The dominant feature of NH(4)(+) in the heavily urbanised Tyne estuary was a plume arising from a single point source; a large sewage works. Although NH(4)(+) concentrations (ranging from 30-150 microM) near the sewage outfall varied considerably between surveys, the sewage-derived delta(15)N-NH(4)(+) signature was remarkably constant (+10.6+/-0.5 per thousand) and could be tracked across the estuary. As indirectly supported by (15)N-depleted delta(15)N-NO(3)(-) values observed close to the mouth of the Tyne, this sewage-derived NH(4)(+) was thought to initiate lower estuarine and coastal zone nitrification. In the more rural Tweed, NH(4)(+) concentrations were low (<7 microM) compared to those in the Tyne and delta(15)N-NH(4)(+) values were consistent with mixing between riverine and marine sources. The dominant form of dissolved inorganic nitrogen (DIN) in the Tweed was agricultural soil-derived NO(3)(-). A decrease in riverine NO(3)(-) flux during the summer coinciding with an increase in delta(15)N-NO(3)(-) values was mainly attributed to enhanced watershed nutrient processing. In the Tyne, where agricultural inputs are less important compared to the Tweed, light delta(15)N-NO(3)(-) (ca. 0 per thousand) detected in the estuary during one winter survey pointed to a larger contribution from precipitation-derived NO(3)(-) during high river discharge. Regardless of the dominant sources, in both estuaries most of the variability in DIN concentrations and delta(15)N values was explained by simple end-member mixing models, implying very little estuarine processing.

  17. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    NASA Technical Reports Server (NTRS)

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the

  18. Denitrification rates in marsh soils and hydrologic and water quality data for Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2011-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in estuaries. Water-quality degradation has been observed at the park's Bass Harbor Marsh estuary but minimal degradation is observed in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential nutrient source. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in situ denitrification rates in marsh soils in Northeast Creek and Bass Harbor Marsh watersheds during the summer seasons of 2008 and 2009. Denitrification was measured under ambient conditions and following inorganic nitrogen and glucose additions. Laboratory incubations of marsh soils with and without acetylene were conducted to determine average ratios of nitrous oxide (N2O) to nitrogen (N2) produced during denitrification. Surface water and groundwater samples were analyzed for nutrients, specific conductance, temperature, and dissolved oxygen. Water level was recorded continuously during the growing season in Fresh Meadow Marsh in the Northeast Creek Watershed.

  19. Linking the watershed to the schoolshed: teaching sustainable development in K-12 with the Chester RIver Watershed Observatory

    NASA Astrophysics Data System (ADS)

    Trembanis, A. C.; Levin, D.; Seidel, J.

    2012-12-01

    (developed by Levin) engage students in the building and testing of buoys to monitor the environment. Additional hands on science activities include the Levin developed ROVs-in-a-bucket project that Trembanis has incorporated into the University of Delaware high school summer science camp TIDE (Teaching an Interest in Delaware's Estuary) http://www.ceoe.udel.edu/tide/ in which 12-15 high school students annually participate in groups working to design, build, and operate a simple remotely operated vehicle in a series of real work simulation activities such as responding to an oil spill. The new CRW network will be the focus for formal and informal learning partnerships between schools in the watershed. Professional development opportunities for Chester River watershed teachers focus on the use of sensors, utilization of GIS in the classroom, and other resources that become available as shared teaching resources. Federal, state, regional, and local users in government, private industry, and educational venues from grades k-16 will be able to observe the trends and learn together the most prudent ways to sustain and conserve natural resources.

  20. Environmental flow assessments for transformed estuaries

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Zhang, Heyue; Yang, Zhifeng; Yang, Wei

    2015-01-01

    Here, we propose an approach to environmental flow assessment that considers spatial pattern variations in potential habitats affected by river discharges and tidal currents in estuaries. The approach comprises four steps: identifying and simulating the distributions of critical environmental factors for habitats of typical species in an estuary; mapping of suitable habitats based on spatial distributions of the Habitat Suitability Index (HSI) and adopting the habitat aggregation index to understand fragmentation of potential suitable habitats; defining variations in water requirements for a certain species using trade-off analysis for different protection objectives; and recommending environmental flows in the estuary considering the compatibility and conflict of freshwater requirements for different species. This approach was tested using a case study in the Yellow River Estuary. Recommended environmental flows were determined by incorporating the requirements of four types of species into the assessments. Greater variability in freshwater inflows could be incorporated into the recommended environmental flows considering the adaptation of potential suitable habitats with variations in the flow regime. Environmental flow allocations should be conducted in conjunction with land use conflict management in estuaries. Based on the results presented here, the proposed approach offers flexible assessment of environmental flow for aquatic ecosystems that may be subject to future change.

  1. Estuaries and coastal waters need help

    SciTech Connect

    Levenson, H.

    1987-11-01

    For years, our marine environments-estuaries, coastal waters, and the open ocean-have been used extensively by coastal communities and industries for the disposal of various wastes. Historically, marine waste disposal has been relatively cheap and has solved some short-term waste-management problems; however, its consequences include a general trend toward environmental degradation, particularly in estuaries and coastal waters. Thus, without protective measures, the next few decades will witness degradation in many estuaries and some coastal waters around the country. The extent of current degradation varies greatly around the country. Although it is difficult to ascertain cause and effect relationships, enough evidence exists to conclude that the pollutants in question include disease-causing microorganisms, oxygen-demanding substances, particulate material, metals, and organic chemicals. Two statutes form the basis of most federal regulatory efforts to combat marine pollution: the Marine Protection, Research, and Sanctuaries Act (MPRSA) and the Clean Water Act (CWA). The MPRSA regulates the dumping of wastes in coastal and open-ocean waters, whereas the CWA has jurisdiction over pipeline discharges in all marine waters, wastes dumped in estuaries, and runoff. Many people consider that the passage and implementation of these two acts and their ensuing amendments established a statutory structure sufficient to protect the nation's waters from pollution. However, these provisions have not protected some estuaries and coastal waters from degradation.

  2. Tampa Bay Estuary Program and Restore Americas Estuaries to Receive Third Place Gulf Guardian Award in the Partnerships Category

    EPA Pesticide Factsheets

    ATLANTA - Today the Gulf of Mexico Program announced that Tampa Bay Estuary Program & Restore America's Estuaries will receive a Third Place 2015 Gulf Guardian Award in the Partnerships Category. The award will be given tonight at an awards ceremony at

  3. The Estuary Guide. Level 3: High School. Draft.

    ERIC Educational Resources Information Center

    Alexander, Glen; And Others

    Estuaries are marine systems that serve as nurseries for animals, links in the migratory pathways, and habitat for a complex community of organisms. This curriculum guide intended for use at the high school level seeks to teach what estuaries are; provide opportunities to practice decision-making that affects estuaries; and encourage students to…

  4. Understanding Sediment Processes of Los Laureles Canyon in the Binational Tijuana River Watershed

    NASA Astrophysics Data System (ADS)

    Yuan, Yongping; Biggs, Trent; Liden, Douglas

    2015-04-01

    Tijuana River Basin originates in Mexico and drains 4465 km2 into the Tijuana River Estuary National Research Reserve, a protected coastal wetland in California that supports 400 species of birds. Excessive erosion in Tijuana during storms produces sediment loads that bury native vegetation and block the tidal channels. Erosion also threatens human life, causing roads and houses in Mexico to collapse and the Tijuana River Valley in the U.S. to flood. Government agencies in US and Mexico spend millions annually to remove sediment. The EPA-SEMARNAT Border 2020 program identified the reduction of sediment to the Tijuana Estuary as a high priority. Gully formation on unpaved roads, channel erosion, and sheetwash and rill erosion from vacant lots in Tijuana are the primary sources of sediment (Biggs et al, 2009). Because 73% of the watershed is located in Mexico, the problem is likely to worsen as Tijuana continues to urbanize. EPA, with support from USDA, San Diego State University, and CICESE, is developing a model to estimate the sediment loss from a sub-basin of the watershed (Los Laureles Canyon) under existing conditions and under future development. This study will evaluate the reduction/prevention of sediment loss from green infrastructure projects, sediment basins, road paving, and conservation easements.

  5. Dissolved Trace Metals in the Tay Estuary

    NASA Astrophysics Data System (ADS)

    Owens, R. E.; Balls, P. W.

    1997-04-01

    Dissolved trace metals have been studied over an annual cycle in the relatively pristine Tay estuary (Scotland). The absence of a major anthropogenic signal has enabled some of the more subtle natural processes controlling trace metal distributions to be identified. Concentration ranges of dissolved metals in the Tay are similar to, or lower than, those observed in more industrialized estuaries. All metals behave non-conservatively in the Tay. Interactions with biogenic and detrital particulate phases are important in controlling dissolved trace metal concentrations. The degradation of organic matter appears to be particularly important for Cu. Removal of dissolved metals was observed in the turbidity maximum zone; a simple model was used to demonstrate that this could be accounted for by adsorption onto suspended particulate matter. At high salinity, coincident peaks of all six metals with ammonia and phosphate are attributed to sewage inputs from Dundee at the mouth of the estuary.

  6. Managing landscape disturbances to increase watershed infiltration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural land undergoing conversion to conventional urban development can drastically increase runoff and degrade water quality. A study of landscape management for improving watershed infiltration was conducted using readily available runoff data from experimental watersheds. This article focus...

  7. GROUND WATER AND WATERSHEDS AND ENVIRONMENTAL PROTECTION

    EPA Science Inventory

    Effective watershed management has the potential to achieve both drinking water and ecological protection goals. However, it is important that the watershed perspective be three- dimensional and include the hidden subsurface. The subsurface catchment, or groundwatershed, is geohy...

  8. ASSESSMENT AND MANAGEMENT OF WATERSHED MICROBIAL CONTAMINANTS

    EPA Science Inventory

    Numerous sources of infectious disease causing microorganisms exist in watersheds and can impact recreational and drinking water quality. Organisms of concern include bacteria, viruses, and parasites. The watershed manager is challenged to limit human contact with pathogens, limi...

  9. Watershed Management in the United States

    EPA Science Inventory

    A watershed approach provides an effective framework for dealing with water resources challenges. Watersheds provide drinking water, recreation, and ecological habitat, as well as a place for waste disposal, a source of industrial cooling water, and navigable inland water transpo...

  10. Sediment Dynamics and Fate of Heavy Metals, Carbon, and Inorganic Matter in the Hudson Estuary, New York

    NASA Astrophysics Data System (ADS)

    Sritrairat, S.; Kenna, T. C.; Peteet, D. M.; Nguyen, K.; Perez, M.; Huang, Z.; Miller, A.

    2010-12-01

    The Hudson River Estuary is typical of a large, intensively used and modified estuary. Its watershed is an important resource for small communities along the river as well as large population centers such as the Metropolitan area of New York City. In addition to past industrial activities within the region that have resulted in many instances of environmental contamination, the estuary is at high risk for climatic and other anthropogenic changes. This study focuses on sediment dynamics and the fate of heavy metals, inorganic matter, and carbon in 27 sediment cores and 15 surface samples taken from wetlands and tributaries of the Hudson Estuary along a north-south transect from Troy, NY to New York harbor. Each site experiences different salinity, vegetation, landscape, and flow pattern. 1) We quantified and mapped the distribution of toxic heavy metals, including Pb, Cu, and Zn, in the estuary to examine the fate of these contaminants. Jamaica Bay and the East River sediments from New York City are the most contaminated with heavy metals among the sites analyzed. 2) We examined the sedimentation rate and sedimentation pattern, using pollution chronology along with radiometric methods. Sedimentation rates at 17 sites range from 0.26 - 2.63 cm/yr during the last century. Cores taken from high-energy or non-vegetated area are more likely to have a disturbed sedimentation pattern, and thus there is a higher risk of contaminant resuspension at those locations. 3) We quantified Ti and K concentration as a measure of the fluctuation of inorganic matter input and the fate of inorganic matter in the estuary. We quantified organic matter content with the Loss-on-Ignition (LOI) method at selected sites to identify carbon sequestration rate in the estuary. Inorganic matter content during the last century at most sites is significantly higher than that found prior to the European Settlements at the same location, suggesting increasing erosion and disturbances. However, more

  11. Grays River Watershed Geomorphic Analysis

    SciTech Connect

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  12. Meaningful Watershed Experiences for Middle and High School Students

    NASA Astrophysics Data System (ADS)

    Landry, Melinda; Smith, Cynthia; Greene, Joy

    2014-05-01

    Prince William County Public Schools and George Mason University in Virginia, USA, partnered to provide Meaningful Watershed Educational Experiences (MWEEs) for over 25,000 middle and high school students (11-18 year olds) across 34 schools. This school district, situated in a rapidly growing region 55 km southwest of Washington DC, has over 82,000 K-12 students. As native forest cover has been replaced with farming and urbanization, water quality has significantly degraded in the 166,534 km2 Chesapeake Bay watershed. This project was designed to increase student awareness of their impact on the land and waters of the largest estuary in the United States. MWEE is a long-term comprehensive project that incorporates a classroom preparation phase, a hands-on outdoor field investigation, and a reflection and data-sharing component. Training and technical assistance enhances the capacity of teachers of 6th grade, high school Earth Science and Environmental Science to deliver MWEEs which includes schoolyard stewardship, inquiry driven field study, use of hand-held technology and computer based mapping and analysis, project sharing and outreach. George Mason University researchers worked closely with K-12 science educators to create a comprehensive watershed-focused curriculum. Graduate and undergraduate students with strong interests in environmental science and education were trained to deliver the field investigation component of the MWEE. Representative teachers from each school were provided 3 days of professional development and were responsible for the training of their school's science education team. A comprehensive curriculum provided teachers with activities and tools designed to enhance students' mastery of state science objectives. Watershed concepts were used as the unifying theme to support student understanding of curriculum and STEM objectives including: scientific investigation, data collection and communication, chemistry, energy, erosion, human

  13. Metolachlor metabolite (MESA) reveals agricultural nitrate-N fate and transport in Choptank River watershed

    USGS Publications Warehouse

    McCarty, Gregory W.; Hapeman, Cathleen J.; Rice, Clifford P.; Hively, W. Dean; McConnell, Laura L.; Sadeghi, Ali M.; Lang, Megan W.; Whitall, David R.; Bialek, Krystyna; Downey, Peter

    2014-01-01

    Over 50% of streams in the Chesapeake Bay watershed have been rated as poor or very poor based on the index of biological integrity. The Choptank River estuary, a Bay tributary on the eastern shore, is one such waterway, where corn and soybean production in upland areas of the watershed contribute significant loads of nutrients and sediment to streams. We adopted a novel approach utilizing the relationship between the concentration of nitrate-N and the stable, water-soluble herbicide degradation product MESA {2-[2-ethyl-N-(1-methoxypropan-2-yl)-6-methylanilino]-2-oxoethanesulfonic acid} to distinguish between dilution and denitrification effects on the stream concentration of nitrate-N in agricultural subwatersheds. The ratio of mean nitrate-N concentration/(mean MESA concentration * 1000) for 15 subwatersheds was examined as a function of percent cropland on hydric soil. This inverse relationship (R2 = 0.65, p 2 ≤ 0.99) for all eight sampling dates except one where R2 = 0.90. This very strong correlation indicates that nitrate-N was conserved in much of the Choptank River estuary, that dilution alone is responsible for the changes in nitrate-N and MESA concentrations, and more importantly nitrate-N loads are not reduced in the estuary prior to entering the Chesapeake Bay. Thus, a critical need exists to minimize nutrient export from agricultural production fields and to identify specific conservation practices to address the hydrologic conditions within each subwatershed. In well drained areas, removal of residual N within the cropland is most critical, and practices such as cover crops which sequester the residual N should be strongly encouraged. In poorly drained areas where denitrification can occur, wetland restoration and controlled drained structures that minimize ditch flow should be used to maximize denitrification.

  14. Establishing nursery estuary otolith geochemical tags for Sea Bass (Dicentrarchus labrax): Is temporal stability estuary dependent?

    NASA Astrophysics Data System (ADS)

    Ryan, Diarmuid; Wögerbauer, Ciara; Roche, William

    2016-12-01

    The ability to determine connectivity between juveniles in nursery estuaries and adult populations is an important tool for fisheries management. Otoliths of juvenile fish contain geochemical tags, which reflect the variation in estuarine elemental chemistry, and allow discrimination of their natal and/or nursery estuaries. These tags can be used to investigate connectivity patterns between juveniles and adults. However, inter-annual variability of geochemical tags may limit the accuracy of nursery origin determinations. Otolith elemental composition was used to assign a single cohort of 0-group sea bass Dicentrarchus labrax to their nursery estuary thus establishing an initial baseline for stocks in waters around Ireland. Using a standard LDFA model, high classification accuracies to nursery sites (80-88%) were obtained. Temporal stability of otolith geochemical tags was also investigated to assess if annual sampling is required for connectivity studies. Geochemical tag stability was found to be strongly estuary dependent.

  15. PECONIC ESTUARY: AN ASSESSMENT OF SHELLFISH RESOURCES IN THE TRIBUTARIES AND EMBAYMENTS OF THE PECONIC ESTUARY

    EPA Science Inventory

    Executive Summary Historically, the Peconic Estuary's shellfish resources have supported significant fisheries for a number of species including hard clams, oysters and bay scallops. However, distribution and abundance data for the tributaries and embayments within the Peconic Es...

  16. Watershed Education for Broadcast Meteorologists

    NASA Astrophysics Data System (ADS)

    Lamos, J. P.; Sliter, D.; Espinoza, S.; Spangler, T. C.

    2006-12-01

    The National Environmental Education and Training Organization (NEETF) published a report in 2005 that summarized the findings of ten years of NEETF and Roper Research. The report stated, "Our years of data from Roper surveys show a persistent pattern of environmental ignorance even among the most educated and influential members of society." Market research has also shown that 80% of television viewers list the weather as the primary reason for watching the local news. Broadcast meteorologists, with a broader understanding of environmental and related sciences have an opportunity to use their weathercasts to inform the public about the environment and the factors that influence environmental health. As "station scientists," broadcast meteorologists can use the weather, and people's connection to it, to broaden their understanding of the environment they live in. Weather and watershed conditions associated with flooding and drought have major human and environmental impacts. Increasing the awareness of the general public about basic aspects of the hydrologic landscape can be an important part of mitigating the adverse effects of too much or too little precipitation, and of protecting the environment as well. The concept of a watershed as a person's natural neighborhood is a very important one for understanding hydrologic and environmental issues. Everyone lives in a watershed, and the health of a watershed is the result of the interplay between weather and human activity. This paper describes an online course to give broadcast meteorologists a basic understanding of watersheds and how watersheds are impacted by weather. It discusses how to convey watershed science to a media- savvy audience as well as how to model the communication of watershed and hydrologic concepts to the public. The course uses a narrative, story-like style to present its content. It is organized into six short units of instruction, each approximately 20 minutes in duration. Each unit is

  17. Sources and fate of bioavailable dissolved organic nitrogen in the Neuse River Estuary, North Carolina

    NASA Astrophysics Data System (ADS)

    Paerl, H. W.; Peierls, B. L.; Hounshell, A.; Osburn, C. L.

    2015-12-01

    Eutrophication is a widespread problem affecting the structure and function of estuaries and is often linked to anthropogenic nitrogen (N) enrichment, since N is the primary nutrient limiting algal production. Watershed management actions typically have ignored dissolved organic nitrogen (DON) loading because of its perceived refractory nature and instead focused on inorganic N as targets for loading reductions. A fluorescence-based model indicated that anthropogenic sources of DON near the head of the microtidal Neuse River Estuary (NRE), NC were dominated by septic systems and poultry waste. A series of bioassays were used to determine the bioavailability of river DON and DON-rich sources to primary producers and whether those additions promoted the growth of certain phytoplankton taxa, particularly harmful species. Overall, at time scales up to two to three weeks, estuarine phytoplankton and bacteria only showed limited responses to additions of high molecular weight (HMW, >1 kDa) river DON. When increases in productivity and biomass did occur, they were quite small compared with the response to inorganic N. Low molecular weight (LMW) river DON, waste water treatment plant effluent, and poultry litter extract did have a positive effect on phytoplankton and bacterial production, indicating a bioavailable fraction. High variability of bulk DON concentration suggested that bioavailable compounds added in the experimental treatments were low in concentration and turned over quite rapidly. Some phytoplankton taxa, as measured by diagnostic photopigments, appeared to be selectively enhanced by the HMW and specific source DON additions, although the taxa could not be positively identified as harmful species. Preliminary tests show that labile autochthonous organic matter may act as a primer for the mineralization of the HMW DON. These and other, longer-term bioavailability studies will be needed to adequately address the fate of watershed DON in estuarine ecosystems.

  18. High-resolution remote sensing of water quality in the San Francisco Bay-Delta Estuary

    USGS Publications Warehouse

    Fichot, Cédric G.; Downing, Bryan D.; Bergamaschi, Brian; Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Thompson, David R.; Gierach, Michelle M.

    2015-01-01

    The San Francisco Bay–Delta Estuary watershed is a major source of freshwater for California and a profoundly human-impacted environment. The water quality monitoring that is critical to the management of this important water resource and ecosystem relies primarily on a system of fixed water-quality monitoring stations, but the limited spatial coverage often hinders understanding. Here, we show how the latest technology in visible/near-infrared imaging spectroscopy can facilitate water quality monitoring in this highly dynamic and heterogeneous system by enabling simultaneous depictions of several water quality indicators at very high spatial resolution. The airborne portable remote imaging spectrometer (PRISM) was used to derive high-spatial-resolution (2.6 × 2.6 m) distributions of turbidity, and dissolved organic carbon (DOC) and chlorophyll-a concentrations in a wetland-influenced region of this estuary. A filter-passing methylmercury vs DOC relationship was also developed using in situ samples and enabled the high-spatial-resolution depiction of surface methylmercury concentrations in this area. The results illustrate how high-resolution imaging spectroscopy can inform management and policy development in important inland and estuarine water bodies by facilitating the detection of point- and nonpoint-source pollution, and by providing data to help assess the complex impacts of wetland restoration and climate change on water quality and ecosystem productivity.

  19. A History of Vegetation, Sediment and Nutrient Dynamics at Tivoli North Bay, Hudson Estuary, New York

    NASA Technical Reports Server (NTRS)

    Sritrairat, Sanpisa; Peteet, Dorothy M.; Kenna, Timothy C.; Sambrotto, Ray; Kurdyla, Dorothy; Guilderson, Tom

    2012-01-01

    We conduct a stratigraphic paleoecological investigation at a Hudson River National Estuarine Research Reserve (HRNERR) site, Tivoli Bays, spanning the past 1100 years. Marsh sediment cores were analyzed for ecosystem changes using multiple proxies, including pollen, spores, macrofossils, charcoal, sediment bulk chemistry, and stable carbon and nitrogen isotopes. The results reveal climatic shifts such as the warm and dry Medieval Warm Period (MWP) followed by the cooler Little Ice Age (LIA), along with significant anthropogenic influence on the watershed ecosystem. A five-fold expansion of invasive species, including Typha angustifolia and Phragmites australis, is documented along with marked changes in sediment composition and nutrient input. During the last century, a ten-fold sedimentation rate increase due to land-use changes is observed. The large magnitude of shifts in vegetation, sedimentation, and nutrients during the last few centuries suggest that human activities have made the greatest impact to the marshes of the Hudson Estuary during the last millennium. Climate variability and ecosystem changes similar to those observed at other marshes in northeastern and mid-Atlantic estuaries, attest to the widespread regional signature recorded at Tivoli Bays.

  20. Radioactive cesium dynamics derived from hydrographic observations in the Abukuma River Estuary, Japan.

    PubMed

    Kakehi, Shigeho; Kaeriyama, Hideki; Ambe, Daisuke; Ono, Tsuneo; Ito, Shin-ichi; Shimizu, Yugo; Watanabe, Tomowo

    2016-03-01

    Large quantities of radioactive materials were released into the air and the ocean as a result of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, caused by the 2011 Tohoku earthquake and the subsequent major tsunami off the Pacific coast. There is much concern about radioactive contamination in both the watershed of the Abukuma River, which flows through Fukushima Prefecture, and its estuary, where it discharges into the sea in Miyagi Prefecture. We investigated radioactive cesium dynamics using mixing diagrams obtained from hydrographic observations of the Abukuma River Estuary. Particulate radioactive cesium dominates the cesium load in the river, whereas the dissolved form dominates in the sea. As the salinity increased from <0.1 to 0.1-2.3, the mixing diagram showed that dissolved radioactive cesium concentrations increased, because of desorption. Desorption from suspended particles explained 36% of dissolved radioactive cesium in estuarine water. However, the dissolved and particulate radioactive cesium concentrations in the sea decreased sharply because of dilution. It is thought that more than 80% of the discharged particulate radioactive cesium was deposited off the river mouth, where the radioactive cesium concentrations in sediment were relatively high (217-2440 Bq kg(-1)). Radioactive cesium that was discharged to the sea was transported southward by currents driven by the density distribution.

  1. Impacts of timber harvesting on historic sediment accumulation rates in the Coos Bay estuary, Oregon

    NASA Astrophysics Data System (ADS)

    Mathabane, N.; Roering, J. J.

    2014-12-01

    The expansion and development of human infrastructure along the coastline of the Pacific Northwest has profound consequences for the habitability and general ecological health of coastal ecosystems. Coos County, one of the most economically critical regions of the Oregon Coast, experienced vigorous timber harvest activity in the aftermath of WWII that declined in the last several decades. This period of extractive land use may have drastically altered the sediment supply in the major catchments of the Coos and Millicoma Rivers and lead to variations in sediment flux into the Coos Bay estuary. Accurate sediment flux histories are critical data for deciphering the relative importance of climate and land use factors such as logging and road construction on sediment production. Reduction of root reinforcement following timber harvest increases the likelihood of shallow landsliding and debris flows. In addition, forest roads increase sediment production due to overland flow and entrainment of fine sediments on hydrologically connected roads. Although these processes have been documented in small watersheds, their compounded effect on estuaries and coastal settings has not been well documented. We use Pb-210 activities derived from sediment cores taken at various locations in the Coos Bay estuary to establish temporal variations in sediment accumulation rates (SARs). Our cores will also be analyzed to assess dissolved oxygen and other proxies for ecosystem functioning. By correlating these SARs with quantitative metrics for timber extraction rate such as board feet per year and qualitative evaluations from historical photos, we propose to document the cumulative effect of historic forest practices. The temporal resolution provided by this technique should allow us to link changes in estuarine sedimentation to changes in land use as well as climatic triggers such as storms. The conclusions of this study will add valuable information regarding the ultimate impact of

  2. Climate change and its impacts on estuaries

    EPA Science Inventory

    Past, present, and future research by WED scientists in the TEP region will be described to lay the foundation for examination of potential climate change effects on estuaries and the broader coastal zone in the Pacific Northwest (PNW). Results from National Coastal Assessments,...

  3. Kaua'i: Streams and Estuaries.

    ERIC Educational Resources Information Center

    Hawkins, John, Ed.; Murakami, Colleen, Ed.

    Designed to help teachers develop students' awareness and understanding of some of Hawaii's endangered aquatic resources, this module contains activities and instructional suggestions for use with intermediate as well as high school students. The module is divided into two sections which explore the streams and estuaries of Kauai. Activities in…

  4. Estuaries and Tidal Marshes. Habitat Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    This educational packet consists of an overview, three lesson plans, student data sheets, and a poster. The overview examines estuaries and tidal or salt marshes by discussing the plants and animals in these habitats, marsh productivity, benefits and management of the habitats, historical aspects, and development and pollution. A glossary and list…

  5. BCG Approaches for Improved Management of Estuaries

    EPA Science Inventory

    Estuaries and other complex aquatic systems are exposed to a variety of stressors that act at several scales, but are managed piecemeal - - often resulting in a “death by 1000 cuts” caused by cumulative impacts to these valued resources. To address this, managers need tools that...

  6. INDICATORS OF ECOSYSTEM INTEGRITY FOR ESTUARIES

    EPA Science Inventory

    Jordan, Stephen J. and Lisa M. Smith. In press. Indicators of Ecosystem Integrity for Estuaries. In: Proceedings of the Estuarine Indicators Workshop, 29-31 October 2003, Sanibel Island, FL. Sanibel-Captiva Conservation Foundation, Sanibel, FL. 23 p. (ERL,GB 1194).

    Ideal ...

  7. Restoration of the Golden Horn Estuary (Halic).

    PubMed

    Coleman, Heather M; Kanat, Gurdal; Aydinol Turkdogan, F Ilter

    2009-12-01

    Restoration of the iconic Golden Horn Estuary in Istanbul, Turkey was a substantial political, logistical, ecological, and social challenge. Forty years of uncontrolled industrial and urban growth resulted in thick layers of anoxic sediment, toxic bacteria, strong hydrogen sulfide odor, and ecologically unlivable conditions. The major components of restoration, spanning two decades, have included (1) demolition and relocation of industries and homes along the shore, (2) creation of wastewater infrastructure, (3) removal of anoxic sludge from the estuary, (4) removal of a floating bridge that impeded circulation, and (5) creation of cultural and social facilities. Although Turkey is not known as an environmental leader in pollution control, the sum of these efforts was largely successful in revitalizing the area through dramatic water quality improvement. Consequently, the estuary is once again inhabitable for aquatic life as well as amenable to local resource users and foreign visitors, and Istanbul has regained a lost sense of cultural identity. This paper focuses on literature review and personal interviews to discuss the causes of degradation, solutions employed to rehabilitate the estuary, and subsequent physicochemical, ecological, and social changes.

  8. Padilla Bay: The Estuary Guide. Level 2.

    ERIC Educational Resources Information Center

    Friesem, Judy; Lynn, Valerie, Ed.

    Estuaries are marine systems that serve as nurseries for animals, links in the migratory pathways, and habitat for a complex community of organisms. This curriculum guide intended for use at the middle school level is designed for use with the on-site program developed by the Padilla Bay National Esturine Research Reserve (Washington). The guide…

  9. Listening to Estuary English in Singapore

    ERIC Educational Resources Information Center

    Deterding, David

    2005-01-01

    In Singapore, many people are not familiar with Estuary English (EE), the variety of English becoming popular in much of southern England. In the current study, when students listened to interviews with EE speakers and were asked to transcribe orthographically what they heard, most of them had severe problems. Features of pronunciation that…

  10. Spectral Analysis of Columbia River Estuary Currents.

    DTIC Science & Technology

    1985-09-01

    D-A1i6i 689 SPECTRAL ANALYSIS OF COLUMBIA RIVER ESTUARY CURRENTS 1/2 (U) ARMY E GINEER VATERWAYS EXPERIMENT STATION VICKCSBURG MS HYDRAULICS LAB B...26 PART IV: ANALYSIS PROCEDURES. .................... 29 *PART V: RESULTS AND DISCUSSION .. ................. 32 Astoria Winds...45 eStation T11B..........................46 Station T12. .......................... 46 Summary of Results

  11. MARYLAND AGRICULTURE AND YOUR WATERSHED

    EPA Science Inventory



    Using primarily 1995 State of Maryland agricultural statistics data, a new methodology was demonstrated with which State natural resource managers can analyze the areal extent of agricultural lands and production data on a watershed basis. The report organized major crop ...

  12. WATERSHED-BASED SURVEY DESIGNS

    EPA Science Inventory

    Water-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification if impaired water bodies or watersheds to meet Sectio...

  13. MANAGING URBAN WATERSHED PATHOGEN CONTAMINATION

    EPA Science Inventory

    This presentation is a summary of the EPA National Risk Management Research Laboratory (NRMRL) publication entitled Managing Urban Watershed Pathogen Contamination, EPA/600/R-03/111 (September 2003). It is available on the internet at http://www.epa.gov/ednnrmrl/repository/water...

  14. Discover a Watershed: The Everglades.

    ERIC Educational Resources Information Center

    Robinson, George B.; And Others

    This publication is designed for both classroom teachers and nonformal educators of young people in grades 6 through 12. It can provide a 6- to 8-week course of study on the watershed with students participating in activities as they are ordered in the guide, or activities may be used in any order with educators selecting those appropriate for the…

  15. A Hydrologic and Geomorphic Model of Estuary Breaching and Closure

    NASA Astrophysics Data System (ADS)

    Rich, A.; Keller, E. A.

    2012-12-01

    Many coastal estuaries are separated seasonally from the ocean by a swash-deposited beach berm. The opening of the inlet may occur by fluvial erosion of the beach berm and closure occurs when sand deposition outpaces erosion of the inlet. To better understand how the hydrology of estuaries affects breaching and closing patterns, a model is developed that incorporates an estuary hydrologic budget with a geormorphic model of the inlet system. When calibrated, the model is able to reproduce the initial seasonal breaching, seasonal closure, intermittent closures and breaches, and the low-streamflow estuary hydrology of the Carmel Lagoon, located in Central California. For two years when the estuary inlet drains directly across the beach-berm in accordance with model assumptions, the calibrated model predicts the observed 48-hour estuary stage amplitude with correlation coefficients of 0.77 and 0.65. For the calibrated model, streamflow is the predominant control on whether the estuary inlet is open or closed. In a series of sensitivity analyses, it is seen that the function of bar-built, coastal estuaries are sensitive to morphologic and hydrologic variations of the beach berm, and changes to the estuary storage itself. By varying individual components of the berm-system and estuary storage, the amount of the time the estuary is open changes -43 - 28% for the 18.2 model period. The morphology of the berm affects barrier groundwater flow, inlet hydraulics, and estuary storage. Importantly, the elevation of the berm determines the volume of water that must enter the estuary in order to breach, and it modulates the wave-overtopping flux. A high berm renders streamflow the predominant control on function and decreases the amount of time that the estuary is open by 4%, whereas a lower berm allows wave-overtopping to contribute to function and increases time open by 24%. By excavating an estuary, it will breach less frequently (-32% change in open) and store water up to 3

  16. Gulf of Mexico Integrated Science - Tampa Bay Study: Watershed and Estuary Mapping

    USGS Publications Warehouse

    Hansen, Mark

    2005-01-01

    Tampa Bay, Florida, and its environs have experienced phenomenal urban growth and significant changes in land-use practices over the past 50 years. This trend is expected to continue, with human activity intensifying and affecting a wider geographic region. Urbanization creates impervious surfaces, which increase stormwater runoff and contribute to greater amounts of chemicals flowing into coastal waters. Man-made structures including bridges, a gas pipeline, desalination plant, ports, navigation channels, and extensive sea walls have been built and will continue to be maintained and modified. This task of the Tampa Bay Study aims to provide a better understanding of these and other man-made impacts on the Tampa Bay region.

  17. Evaluating the effect of land use land cover change in a rapidly urbanizing semi-arid watershed on estuarine freshwater inflows

    NASA Astrophysics Data System (ADS)

    Sahoo, D.; Smith, P.; Popescu, S.

    2006-12-01

    Estuarine freshwater inflows along with their associated nutrient and metal delivery are influenced by the land use/land cover (LULC) and water management practices in the contributing watershed. This study evaluates the effect of rapid urbanization in the San Antonio River Watershed on the amount of freshwater inflow reaching the San Antonio-Guadalupe estuary on the Gulf Coast of Texas. Remotely sensed data from satellite imagery provided a source of reliable data for land use classification and land cover change analysis; while long time series of the geophysical signals of stream flow and precipitation provided the data needed to assess change in flow in the watershed. LULC was determined using LANDSAT (5 TM and 7 ETM) satellite images over 20 years (1985-2003). The LANDSAT images were classified using an ENVI. ISODATA classification scheme. Changes were quantified in terms of the urban expansion that had occurred in past 20 years using an urban index. Streamflow was analyzed using 20 years (1985-2004) of average daily discharge obtained from the USGS gauging station (08188500) closest to the headwaters of the estuary. Baseflow and storm flow were partitioned from total flow using a universally used baseflow separation technique. Precipitation data was obtained from an NCDC station in the watershed. Preliminary results indicate that the most significant change in land use over the 20 year period was an increase in the total amount of impervious area in the watershed. This increase in impervious area was accompanied by an increase in both total streamflow and in baseflow over the same period. The investigation did not show a significant change in total annual precipitation from 1990 to 2004. This suggests that the increase in streamflow was more influenced by LULC than climate change. One explanation for the increase in baseflow may be an increase in return flows resulting from an increase in the total number of wastewater treatment plants in the watershed.

  18. Behavior of natural radionuclides in surficial sediments from an estuary impacted by acid mine discharge and industrial effluents in Southwest Spain.

    PubMed

    Hierro, A; Bolivar, J P; Vaca, F; Borrego, J

    2012-08-01

    The environmental degradation resulting from the acid mine drainage (AMD) and discharge from effluents of phosphogypsum (PG) piles in the watershed of Tinto and Odiel Rivers estuary over long periods of time has resulted in significant impact on the ecosystem of this estuary, resulting that the sediments are highly polluted by heavy metals and radionuclides from the discharge AMD and leachates from the PG. During resuspension of benthic sediments some of the radionuclides are desorbed making them bioavailable. In the present study, we investigate the spatial distribution of radionuclides U, Th and Ra and assess the factors and processes that caused the spatial distribution of these nuclides in this estuarine system. This study has global significance for other polluted environmental systems that are impacted by AMD and PG.

  19. Relating watershed nutrient loads to satellite derived estuarine water quality

    NASA Astrophysics Data System (ADS)

    Lehrter, J. C.; Le, C.

    2015-12-01

    Nutrient enhanced phytoplankton production is a cause of degraded estuarine water quality. Yet, relationships between watershed nutrient loads and the spatial and temporal scales of phytoplankton blooms and subsequent water quality impairments remain unquantified for most systems. This is partially due to a lack of observations. In many systems, satellite remote sensing of water quality variables may be used to supplement limited field observations and improve understanding of linkages to nutrients. Here, we present the results from a field and satellite ocean color study that quantitatively links nutrients to variations in estuarine water quality endpoints. The study was conducted in Pensacola Bay, Florida, an estuary in the northern Gulf of Mexico that is impacted by watershed nutrients. We developed new empirical band ratio algorithms to retrieve phytoplankton biomass as chlorophyll a (chla), colored dissolved organic matter (CDOM), and suspended particulate matter (SPM) from the MEdium Resolution Imaging Spectrometer (MERIS). MERIS had suitable spatial resolution (300-m) for the scale of Pensacola Bay (area = 370 km2, mean depth = 3.4 m) and a spectral band centered at wavelength 709 nm that was used to minimize the effect of organic matter on chla retrieval. The algorithms were applied to daily MERIS remote sensing reflectance (level 2) data acquired from 2003 to 2011 to calculate nine-year time-series of mean monthly chla, CDOM, and SPM concentrations. The MERIS derived time-series were then analyzed for statistical relations with time-series of mean monthly river discharge and river loads of nitrogen, phosphorus, dissolved organic carbon, and SPM. Regression analyses revealed significant relationships between river loads and MERIS water quality variables. The simple regression models provide quantitative predictions about how much chla, CDOM, and SPM concentrations in Pensacola Bay will increase with increased river loading, which is necessary information

  20. Evaluating cumulative effects of anthropogenic inputs in Prince Edward Island estuaries using the mummichog (Fundulus heteroclitus).

    PubMed

    Finley, Megan A; Courtenay, Simon C; Teather, Kevin L; Hewitt, L Mark; Holdway, D A; Hogan, Natacha S; van den Heuvel, Michael R

    2013-07-01

    Estuarine eutrophication as a result of agricultural land use, including the use of chemical fertilizers, is increasing worldwide. Prince Edward Island (PEI), Canada has very high agricultural intensity by international standards with approximately 44% of the land area under production, and some watersheds in excess of 75% agricultural land-use. The type of agriculture is also intensive with primarily row crops that have high chemical fertilizer and pesticide usage. In light of these stressors, the hypothesis of this study was that mummichog (Fundulus heteroclitus) population parameters would change with point and nonpoint source pollution, and that multivariate statistics could be used to draw associations with specific stressors. Fish were sampled on a monthly basis from May through August at 7 estuaries spanning a range of land use, nutrient, and contaminant loadings. A suite of environmental variables were simplified into 3 principal components: PC1 representing agricultural land use, N loading, and plant habitat, PC2 being dominated by sediment sand and silt distribution, and PC3 largely reflecting P loading and sediment organic matter. There were significant differences in abundance of both adult and young-of-the-year mummichog, and these changes associated most strongly with PC1, the largely N-driven agricultural influences. In contrast, somatic variables such as liver and gonad size did not show strong association with the environmental quality principal component scores. The sand and silt PC2 appeared to have the opposite association with the biological data, with siltier environments correlating to older, larger, less dense populations of mummichog. Although pesticide residues were detected in estuarine sediment, there was no clear relationship between these and watershed agricultural intensity or biochemical indicators. There was, however, a strong relationship between agricultural environmental variables (PC1) and in vitro steroid production that is

  1. Hydrologic description of the Braden River watershed, west-central Florida

    USGS Publications Warehouse

    DelCharco, M.J.; Lewelling, B.R.

    1997-01-01

    The Braden River watershed drains an 83-square mile area in west-central Florida and is the largest tributary to the Manatee River. The hydrology of the Braden River was altered in 1936 when the city of Bradenton created Ward Lake, a reservoir with an 838-foot broad-crested weir 6 miles upstream from the mouth. In 1985 the reservoir, which is the sole source of drinking water for the city of Bradenton, was expanded and supplies an annual average of 5.7 million gallons of water per day. The Braden River can be hydrologically divided into three distinct sections that include an 8.6-mile reach of naturally incised, free-flowing channel; a 6.4-mile reach of impounded river created by the Ward Lake reservoir and weir; and a 6-mile reach of tidal estuary. Ten first-order and two second-order tributaries that flow into the Braden River were examined in this report. The Braden River watershed is dominated by low topographic relief. The two physiographic zones that contain the Braden River watershed, the Gulf Coast Lowlands and De Soto Plain, are both poorly drained and have numerous depressional features. The climate is subtropical with an annual average rainfall of 56 inches, annual average temperatures of 72 degrees Fahrenheit, and estimated annual lake evaporation of 52 inches. The soil series in the watershed are predominantly Myakka-Cassia and the EauGallie-Floridana; these series are characterized as nearly level and poorly drained soils. Land use within the watershed is the fastest changing characteristic that affects the hydrology of the system. The western half of the watershed is typically urban and includes parts of the city of Bradenton. Land use in the eastern half of the watershed is predominantly agricultural, but the explosive population growth of the area is driving the development of medium to high-density residential communities. The three major aquifers underlying the Braden River watershed are the surficial, intermediate, and Floridan aquifer systems

  2. Effects of watershed land use on nitrogen concentrations and δ15 nitrogen in groundwater

    USGS Publications Warehouse

    Cole, Marci L.; Kroeger, Kevin D.; McClelland, J.W.; Valiela, I.

    2006-01-01

    Eutrophication is a major agent of change affecting freshwater, estuarine, and marine systems. It is largely driven by transportation of nitrogen from natural and anthropogenic sources. Research is needed to quantify this nitrogen delivery and to link the delivery to specific land-derived sources. In this study we measured nitrogen concentrations and δ 15N values in seepage water entering three freshwater ponds and six estuaries on Cape Cod, Massachusetts and assessed how they varied with different types of land use. Nitrate concentrations and δ 15N values in groundwater reflected land use in developed and pristine watersheds. In particular, watersheds with larger populations delivered larger nitrate loads with higher δ 15N values to receiving waters. The enriched δ 15N values confirmed nitrogen loading model results identifying wastewater contributions from septic tanks as the major N source. Furthermore, it was apparent that N coastal sources had a relatively larger impact on the N loads and isotopic signatures than did inland N sources further upstream in the watersheds. This finding suggests that management priorities could focus on coastal sources as a first course of action. This would require management constraints on a much smaller population.

  3. Fish composition and assemblage structure in three Eastern English Channel macrotidal estuaries: A comparison with other French estuaries

    NASA Astrophysics Data System (ADS)

    Selleslagh, Jonathan; Amara, Rachid; Laffargue, Pascal; Lesourd, Sandric; Lepage, Mario; Girardin, Michel

    2009-01-01

    This study has analysed for the first time fish composition and assemblage structures of three small macrotidal estuaries of the Eastern English Channel (EEC) and has explored the influences of 19 biotic and abiotic variables on the fish assemblages. Fish from Canche, Authie and Somme estuaries were collected during spring (June 2006 and May 2007) and autumn (September 2006) along the estuarine gradients using a 1.5 m beam trawl. Using identical sampling protocols, the study also analysed and compared for the first time taxonomic and functional aspects of the fish assemblages in 15 estuaries located along the Atlantic and English Channel coasts. SIMPER analysis showed high similarities in fish assemblages in the three EEC estuaries and during either spring or autumn periods. However, intra-estuary similarities were relatively low, indicating that fish assemblage structures (species richnesses or abundances) were more variable within the estuary (salinity gradient) than between estuaries and/or seasons (spring vs autumn). Although numerous environmental variables were included in the study, only 47% of the variability observed in the fish distribution was explained. Fish spatial variations in the EEC estuaries are mostly driven by abiotic variables as opposed to biological interactions. As indicated by CCA, salinity and muddy sediments were the two most important factors structuring the fish assemblages. The macrobenthos being very abundant in the EEC estuaries (580-1121 ind. m -2), the availability of potential prey is probably not a limiting factor in the utilization of estuaries by fish. Contrary to the majority of French estuaries dominated by estuarine species (ES), the fish assemblages of the EEC estuaries are clearly dominated by marine migrant (MM) species (65% on average) with high abundance of juveniles (mostly young-of-the-year). Cluster and SIMPROF's analyses distinguished the functional structure of the 15 estuarine fish assemblages into different

  4. Exceptionally high organic nitrogen concentrations in a semi-arid South Texas estuary susceptible to brown tide blooms

    NASA Astrophysics Data System (ADS)

    Wetz, Michael S.; Cira, Emily K.; Sterba-Boatwright, Blair; Montagna, Paul A.; Palmer, Terence A.; Hayes, Kenneth C.

    2017-03-01

    Studies of estuarine eutrophication have tended to focus on systems with continually flowing rivers, while little is known about estuaries from semi-arid/arid regions. Here we report results from an assessment of water quality conditions in Baffin Bay, Texas, a shallow (<2-3 m) subtropical estuary located in a semi-arid region that has agriculture as the dominant (44%) watershed land use. Chlorophyll a averaged 28-30 μg/l in Baffin Bay from 2003 to 2013 and total Kjeldahl nitrogen (TKN) concentrations were also very high (116-120 μM), with concentrations of both variables exceeding those of most other Texas estuaries by 2-5 fold. More recent field sampling (2013-2015) showed that dissolved organic nitrogen concentrations in Baffin Bay (62 ± 14 μM) were >2 fold higher than in three other Texas estuaries. In contrast, inorganic nitrogen (ammonium, nitrate) and phosphate concentrations were relatively low. Statistically significant long-term annual increases in chlorophyll a and salinity were observed in Baffin Bay, while long-term seasonal increases were observed for water temperature and TKN. Overall, Baffin Bay is displaying multiple symptoms of eutrophication, namely very high organic carbon, organic nitrogen and chlorophyll concentrations, as well as symptoms not quantified here such as fish kills and episodic hypoxia. Much of the increase in chlorophyll in Baffin Bay, at least since ∼1990, have coincided with blooms of the mixotrophic phytoplankton species, Aureoumbra lagunensis, which is thought to be favored under high proportions of organic to inorganic nitrogen. Thus the high and possibly increasing organic nitrogen concentrations, coupled with a long-term annual increase in salinity and a long-term seasonal increase in water temperature are likely to promote additional brown tide blooms in this system in the future.

  5. 78 FR 9887 - Proposed Information Collection; Comment Request; National Estuaries Restoration Inventory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... Estuaries Restoration Inventory AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce... extension of a currently approved information collection. Collection of estuary habitat restoration project... to populate a restoration project database mandated by the Estuary Restoration Act of 2000....

  6. 78 FR 46332 - Proposed Information Collection Request; Comment Request; National Estuary Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... AGENCY Proposed Information Collection Request; Comment Request; National Estuary Program AGENCY... to submit an information collection request (ICR), ``National Estuary Program'' (EPA ICR No. 1500.08... opportunity to submit additional comments to OMB. Abstract: The National Estuary Program (NEP)...

  7. Second International Symposium on the Biogeochemistry of Model Estuaries: Estuarine processes in global change. Final report

    SciTech Connect

    Windom, H.L.

    1991-12-31

    This report summarizes estuary events discussed at the symposium on biogeochemistry. Topics include; sedimentation, salinity, inputs and outputs of the estuary, effects of global change, and the need for effective sampling and modeling of estuaries.

  8. Interpreting the colour of an estuary

    NASA Astrophysics Data System (ADS)

    Bowers, D. G.; Evans, D.; Thomas, D. N.; Ellis, K.; Williams, P. J. le B.

    2004-01-01

    This paper explores the possibility of using water colour to quantify the concentration of coloured dissolved organic matter (CDOM), and through it, dissolved organic carbon (DOC) and salinity in a turbid estuary in which suspended sediments also influence water colour. The motivation of the work is that the method could be applied to water colour measurements made remotely from an aircraft (or, in larger estuaries, a satellite) enabling near-synoptic mapping of surface salinity and DOC distributions. The paper describes observations at 29 stations distributed along the salinity gradient of the Conwy estuary in North Wales. At each station, surface water samples were collected and analysed for salinity, concentrations of DOC, chlorophyll and suspended particles and absorption spectra of CDOM, or yellow substance. Profiles were made of both upwelling and downwelling irradiance in four narrow band channels, and these were used to calculate irradiance reflection and attenuation coefficients. Results show that spectrally averaged light absorption in the estuary is caused principally and equally by mineral suspended solids and yellow substance, with water and chlorophyll in third and fourth place. The CDOM is strongly correlated ( R2=0.99) in a negative sense with salinity, and more weakly correlated with DOC. There is a linear relationship between CDOM and the ratio of reflection coefficients in the red (670 nm) and blue-green (490 nm) parts of the spectrum, which could be applied to remote sensing; the slope and intercept of the relationship are however different to those found in less turbid water bodies. It is shown that the change in slope and intercept are consistent with the presence, in the Conwy estuary, of suspended particles which influence the water colour. A method is described and tested for inverting water colour measurements in a turbid estuary to give estimates of CDOM in the presence of suspended particles. The solution, which has not been adjusted to

  9. Mesozooplankton affinities in a recovering freshwater estuary

    NASA Astrophysics Data System (ADS)

    Chambord, Sophie; Maris, Tom; Colas, Fanny; Van Engeland, Tom; Sossou, Akoko-C.; Azémar, Frédéric; Le Coz, Maïwen; Cox, Tom; Buisson, Laetitia; Souissi, Sami; Meire, Patrick; Tackx, Michèle

    2016-08-01

    Water quality of the Scheldt estuary (Belgium/The Netherlands) has considerably improved in recent years, especially in the upstream, freshwater reaches. Within the zooplankton community, the copepod Eurytemora affinis, typically abundant in brackish water and quasi-absent from freshwater before 2007, has since substantially developed in the latter, where it now represents 90% of the crustacean mesozooplankton community. Simultaneously, cyclopoid copepod abundance has greatly decreased, while cladoceran abundance did not change. The study aim was: 1) to verify if the zooplankton community described for the period 2007-2009 by Mialet et al. (2011) has stabilized until present, and 2) to look for the environmental conditions favouring E. affinis development and causing changes in the upstream freshwater zooplankton community. The 2002-2012 temporal evolution of the zooplankton distribution at three stations in the upstream freshwater Scheldt estuary was analyzed. Water quality remained better after 2007 than before, and some factors revealed continuous improvement in annual mean concentrations (e.g. increase in O2, decrease in BOD5 and NH4sbnd N concentration). The increase in oxygen and the decrease in NH4sbnd N concentration, together with low discharge during summer were the main environmental factors explaining the development and timing of E. affinis in the upstream freshwater reach. In this reach, E. affinis maximal abundance is shifted to higher temperatures (summer) compared to its typical maximum spring abundance peak in the brackish zone of the Scheldt estuary and in most temperate estuaries. The changes in zooplankton community followed a temporal and spatial gradient induced by the spatio-temporal evolution of water quality improvement. The most downstream station (3) allowed E. affinis development (oxygen concentration > 4 mg L-1; NH4sbnd N concentration < 2 mg L-1, discharge (Q) < 50 m3 s-1) from 2007 onwards, and this station showed the highest E

  10. Determining Water Quality Trends in the Sacramento-San Joaquin Delta Watershed in the Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Kynett, K.; Azimi-Gaylon, S.; Doidic, C.

    2014-12-01

    The Sacramento-San Joaquin Delta and Suisun Marsh (Delta) is the largest estuary on the West Coast of the Americas and is a resource of local, State, and national significance. The Delta is simultaneously the most critical component of California's water supply, a primary focus of the state's ecological conservation measures, and a vital resource deeply imperiled by degraded water quality. Delta waterbodies are identified as impaired by salinity, excess nutrients, low dissolved oxygen, pathogens, pesticides, heavy metals, and other contaminants. Climate change is expected to exacerbate the impacts of existing stressors in the Delta and magnify the challenges of managing this natural resource. A clear understanding of the current state of the watershed is needed to better inform scientists, decision makers, and the public about potential impacts from climate change. The Delta Watershed Initiative Network (Delta WIN) leverages the ecological benefits of healthy watersheds, and enhances, expands and creates opportunities for greater watershed health by coordinating with agencies, established programs, and local organizations. At this critical junction, Delta WIN is coordinating data integration and analysis to develop better understanding of the existing and emerging water quality concerns. As first steps, Delta WIN is integrating existing water quality data, analyzing trends, and monitoring to fill data gaps and to evaluate indicators of climate change impacts. Available data will be used for trend analysis; Delta WIN will continue to monitor where data is incomplete and new questions arise. Understanding how climate change conditions may affect water quality will be used to inform efforts to build resilience and maintain water quality levels which sustain aquatic life and human needs. Assessments of historical and new data will aid in recognition of potential climate change impacts and in initiating implementation of best management practices in collaboration with

  11. Sustainable watershed management: an international multi-watershed case study.

    PubMed

    Wagner, Walter; Gawel, James; Furuma, Hiroak; De Souza, Marcelo Pereira; Teixeira, Denilson; Rios, Leonardo; Ohgaki, Shinichiro; Zehnder, Alexander J B; Hemond, Harold F

    2002-02-01

    Global freshwater resources are being increasingly polluted and depleted, threatening sustainable development and human and ecosystem health. Utilizing case studies from 4 different watersheds in the United States, Japan, Switzerland, and Brazil, this paper identifies the most relevant sustainability deficits and derives general vectors for more sustainable water management. As a consequence of the demographic and economic developments experienced in the last few decades, each watershed has suffered declines in water quality, streamflow and biotic resources. However, the extent and the cultural perception of these water-related problems vary substantially in the different watersheds, leading to specific water-management strategies. In industrialized countries, exemplified by the US, Switzerland, and Japan, these strategies have primarily consisted of finance- and energy-intensive technologies, allowing these countries to meet water requirements while minimizing human health risks. But, from a sustainability point of view, such strategies, relying on limited natural resources, are not long-term solutions. For newly industrialized countries such as Brazil, expensive technologies for water management are often not economically feasible, thus limiting the extent to which newly industrialized and developing countries can utilize the expertise offered by the industrialized world. Sustainable water management has to be achieved by a common learning process involving industrialized, newly industrialized, and developing countries, following general sustainability guidelines as exemplified in this paper.

  12. N2O Flux from Salt Marshes in Estuaries along the Gulf of St. Lawrence

    NASA Astrophysics Data System (ADS)

    Roughan, B.; Kellman, L. M.; Chmura, G. L.

    2013-12-01

    Wetlands are widely noted as filters for nutrient-laden waters. However, soils in tidal salt marshes emit nitrous oxide (N2O) when experimentally fertilized, which suggests that improved water quality comes at the expense of increased atmospheric concentrations of this potent greenhouse gas. Here we report on N2O emissions from four salt marshes located in estuaries along the Gulf of St. Lawrence. Our control site is located in a National Park on the coast of New Brunswick, which is in a region of low population density and limited agriculture, whereas the other estuaries have watersheds characterized by intensive agriculture activities on Prince Edward Island (PEI). N2O gas was collected during low tide, using opaque, static-chambers (17 L, 25 cm diameter) placed over marsh vegetation in the Spartina patens-dominated high marsh, which is typical of salt marshes along the northwest Atlantic coast, from New York north to Atlantic Canada. Preliminary analysis of gas samples collected in June revealed that the average N2O flux from the marshes located in agriculturally intensive watersheds (6.17 ×1.82 μg N2O m-2 hr-1) was significantly higher than the flux from the control marsh, which was negligible (-2.63 ×2.22 μg N2O m-2 hr-1). Assuming this elevated N2O flux is typical of the growing season (May-October), these marshes emit an average of 27 ×8 mg N2O m-2 yr-1 (or 8 g CO2e m-2 yr-1), 8.4% of the annual soil C accumulation rate reported for PEI. These results suggest that unintentional N fertilization of salt marshes located in agriculturally dominated watersheds may be fueling significant anthropogenic greenhouse gas emissions in some marshes. Further work during the 2013 growing season will provide insight into the environmental variables that affect the flux of N2O from these tidal salt marshes.

  13. Small estuary, big port - progress in the management of the Stour-Orwell Estuary system

    NASA Astrophysics Data System (ADS)

    Spearman, Jeremy; Baugh, John; Feates, Nigel; Dearnaley, Mike; Eccles, Dan

    2014-10-01

    Management of port development is increasingly challenging because of the competitive requirement for deeper channels and because of the need to preserve important coastal wetlands which function as both habitat and flood defence. This paper describes the management of the Stour/Orwell Estuary system, Eastern England, an estuary system which has experienced considerable development and morphological change. The estuary is internationally important for its wetland bird populations and the intertidal areas of the estuary system are protected under European legislation. It is also the location of the Port of Felixstowe. In 1998/2000 the approach channel to the Port of Felixstowe was deepened from -12.5 mCD to -14.5 mCD. This paper describes the effects of the approach channel deepening, the approach taken to identifying the potential impact to intertidal habitat resulting from the deepening, the sediment recycling implemented as mitigation to prevent increased loss of habitat and the subsequent response of the estuary system to this intervention.

  14. Insights into microbial communities involved in mercury methylation in the San Francisco Bay estuary

    NASA Astrophysics Data System (ADS)

    Machak, C.; Francis, C. A.

    2013-12-01

    San Francisco Bay (SFB) estuary is the largest estuary on the western coast of the United States, draining a watershed covering more than one third of the state of California. Mercury (Hg) contamination in SFB, as a result of gold and mercury mining in the Coast Range and Sierra Nevada region, has been observed for at least 150 years. Additional sources of Hg contamination to SFB come from active oil refineries, manufacturing, and wastewater treatment plants in the area. Concentrations of methylmercury in the sediment at the time of sample collection for the present study ranged from 0.011-3.88 μg/kg (dry weight). At some sites, the concentration exceeds wetland toxicity limits, posing a threat to the health of the ecosystem and potentially endangering humans that use the estuary for food and recreation. This study attempts to understand the factors that control the transformation of Hg to methylmercury by microorganisms in aquatic sediments, where the majority of Hg methylation is known to occur. Under anoxic conditions, some sulfate- and iron-reducing bacteria have the capacity to transform Hg into methylmercury. To better understand the microbial communities involved in Hg methylation, an extensive library of 16S rRNA sequences was generated (via Illumina sequencing) from sediment samples at 20 sites throughout the SFB estuary. In addition to genomic data, we have access to a massive database of geochemical measurements made by the SFB Regional Monitoring Program at the sampling locations. These measurements show that our sediment samples have varying methylmercury concentrations and span gradients in porewater sulfate and Fe(III), which are the two known alternative electron acceptors for mercury-methylating anaerobic bacteria. The sampling sites also span gradients in other geochemical factors known to influence microbial community composition (and potentially Hg mercury methylation), such as available organic carbon, pH, and salinity. We will present the

  15. Constraints on the Pattern of Hydraulic Properties, Groundwater Flow, and Transport at Upland-Estuary Margins

    NASA Astrophysics Data System (ADS)

    Schultz, G.; Ruppel, C.

    2001-05-01

    The patterns of groundwater flux from uplands to adjacent water bodies in the coastal zone depend on both the spatial and temporal characteristics of coastal aquifer systems. In this study, we integrate hydrologic measurements and non-invasive environmental geophysics in an effort to constrain the groundwater flux from terrestrial uplands into adjacent tidal creeks and salt marshes near an island-estuary margin in the South Atlantic Bight. Aquifer testing and parameter estimation conducted at both the laboratory (grain size analyses and falling-head permeameter tests) and field (pumping tests and analyses of natural tidal pumping) scales provide independent constraints on hydraulic properties of the unconfined surficial aquifer systems at two focus sites. The analyses reveal a decrease in hydraulic conductivity of 3 to 4 orders of magnitude ( ~10-8 to ~10-4 m s-1) across the upland-estuary margin. The extent and variability of reduced permeability at the aquifer boundary may lead to localized areas of focused groundwater flux into the adjacent estuary and a variable distribution of subsurface salinity. Geophysical surveys (e.g., two-dimensional DC resistivity, terrain conductivity), borehole conductivity measurements, and geochemical analyses of groundwater samples confirm the existence of variable subsurface salinity regimes between the two different sites in the same tidal watershed. Based on the observed distribution of hydraulic properties and subsurface salinity near the island-estuary interface, we suggest that the combined effects of a low permeability clogging layer and tidal fluctuations may lead to a more diffuse region of freshwater discharge into the adjacent tidal creek-salt marsh complex. Using water level fluctuations monitored over a 32-day period, we calculate the frequency-dependent admittance between well levels and observed forcing functions. The results show that the aquifer acts as a low-pass filter for tidally forced perturbations and

  16. Restoration of Hydrodynamic and Hydrologic Processes in the Chinook River Estuary, Washington – Feasibility Assessment

    SciTech Connect

    Khangaonkar, Tarang P.; Breithaupt, Stephen A.; Kristanovich, Felix C.

    2006-01-01

    A hydrodynamic and hydrologic modeling analysis was conducted to evaluate the feasibility of restoring natural estuarine functions and tidal marine wetlands habitat in the Chinook River estuary, located near the mouth of the Columbia River in Washington. The reduction in salmonid populations is attributable primarily to the construction of a Highway 101 overpass across the mouth of the Chinook River in the early 1920s with a tide gate under the overpass. This construction, which was designed to eliminate tidal action in the estuary, has impeded the upstream passage of salmonids. The goal of the Chinook River Restoration Project is to restore tidal functions through the estuary, by removing the tide gate at the mouth of the river, filling drainage ditches, restoring tidal swales, and reforesting riparian areas. The hydrologic model (HEC-HMS) was used to compute Chinook River and tributary inflows for use as input to the hydrodynamic model at the project area boundary. The hydrodynamic model (RMA-10) was used to generate information on water levels, velocities, salinity, and inundation during both normal tides and 100-year storm conditions under existing conditions and under the restoration alternatives. The RMA-10 model was extended well upstream of the normal tidal flats into the watershed domain to correctly simulate flooding anddrainage with tidal effects included, using the wetting and drying schemes. The major conclusion of the hydrologic and hydrodynamic modeling study was that restoration of the tidal functions in the Chinook River estuary would be feasible through opening or removal of the tide gate. Implementation of the preferred alternative (removal of the tide gate, restoration of the channel under Hwy 101 to a 200-foot width, and construction of an internal levee inside the project area) would provide the required restorations benefits (inundation, habitat, velocities, and salinity penetration, etc.) and meet flood protection requirements. The

  17. Restoration of Hydrodynamic and Hydrologic Processes in the Chinook River Estuary, Washington – Feasibility Assessment

    SciTech Connect

    Khangaonkar, Tarang P.; Breithaupt, Stephen A.; Kristanovich, Felix C.

    2006-08-03

    A hydrodynamic and hydrologic modeling analysis was conducted to evaluate the feasibility of restoring natural estuarine functions and tidal marine wetlands habitat in the Chinook River estuary, located near the mouth of the Columbia River in Washington. The reduction in salmonid populations is attributable primarily to the construction of a Highway 101 overpass across the mouth of the Chinook River in the early 1920s with a tide gate under the overpass. This construction, which was designed to eliminate tidal action in the estuary, has impeded the upstream passage of salmonids. The goal of the Chinook River Restoration Project is to restore tidal functions through the estuary, by removing the tide gate at the mouth of the river, filling drainage ditches, restoring tidal swales, and reforesting riparian areas. The hydrologic model (HEC-HMS) was used to compute Chinook River and tributary inflows for use as input to the hydrodynamic model at the project area boundary. The hydrodynamic model (RMA-10) was used to generate information on water levels, velocities, salinity, and inundation during both normal tides and 100-year storm conditions under existing conditions and under the restoration alternatives. The RMA-10 model was extended well upstream of the normal tidal flats into the watershed domain to correctly simulate flooding and drainage with tidal effects included, using the wetting and drying schemes. The major conclusion of the hydrologic and hydrodynamic modeling study was that restoration of the tidal functions in the Chinook River estuary would be feasible through opening or removal of the tide gate. Implementation of the preferred alternative (removal of the tide gate, restoration of the channel under Hwy 101 to a 200-foot width, and construction of an internal levee inside the project area) would provide the required restorations benefits (inundation, habitat, velocities, and salinity penetration, etc.) and meet flood protection requirements. The

  18. Soils of Walker Branch Watershed

    SciTech Connect

    Lietzke, D.A.

    1994-01-01

    The soil survey of Walker Branch Watershed (WBW) utilized the most up-to-date knowledge of soils, geology, and geohydrology in building the soils data base needed to reinterpret past research and to begin new research in the watershed. The soils of WBW were also compared with soils mapped elsewhere along Chestnut Ridge on the Oak Ridge Reservation to (1) establish whether knowledge obtained elsewhere could be used within the watershed, (2) determine whether there were any soils restricted to the watershed, and (3) evaluate geologic formation lateral variability. Soils, surficial geology, and geomorphology were mapped at a scale of 1:1200 using a paper base map having 2-ft contour intervals. Most of the contours seemed to reasonably represent actual landform configurations, except for dense wooded areas. For example, the very large dolines or sinkholes were shown on the contour base map, but numerous smaller ones were not. In addition, small drainageways and gullies were often not shown. These often small but important features were located approximately as soil mapping progressed. WBW is underlain by dolostones of the Knox Group, but only a very small part of the surface area contains outcroppings of rock and most outcrops were located in the lower part. Soil mapping revealed the presence of both ancient alluvium and ancient colluvium deposits, not recognized in previous soil surveys, that have been preserved in high-elevation stable portions of present-day landforms. An erosional geomorphic process of topographic inversion requiring several millions of years within the Pleistocene is necessary to bring about the degree of inversion that is expressed in the watershed. Indeed, some of these ancient alluvial and colluvial remnants may date back into the Tertiary. Also evident in the watershed, and preserved in the broad, nearly level bottoms of dolines, are multiple deposits of silty material either devoid or nearly devoid of coarse fragments. Recent research

  19. Restore McComas Watershed; Meadow Creek Watershed, 2002-2003 Annual Report.

    SciTech Connect

    McRoberts, Heidi

    2004-01-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing. During years 2000-2003, trees were planted in riparian areas within the meadow and its tributaries. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed. Designs for replacement are being coordinated with the Nez Perce National Forest. Twenty miles of road were contracted for decommissioning. Tribal crews completed maintenance to the previously built fence.

  20. A Watershed Integrity Definition and Assessment Approach to Support Strategic Management of Watersheds

    EPA Science Inventory

    Although defined hydrologically as a drainage basin, watersheds are systems that physically link the individual social and ecological attributes that comprise them. Hence the structure, function, and feedback systems of watersheds are dependent on interactions between these soci...

  1. HYDRODYNAMIC SIMULATION OF THE UPPER POTOMAC ESTUARY.

    USGS Publications Warehouse

    Schaffranck, Raymond W.

    1986-01-01

    Hydrodynamics of the upper extent of the Potomac Estuary between Indian Head and Morgantown, Md. , are simulated using a two-dimensional model. The model computes water-surface elevations and depth-averaged velocities by numerically integrating finite-difference forms of the equations of mass and momentum conservation using the alternating direction implicit method. The fundamental, non-linear, unsteady-flow equations, upon which the model is formulated, include additional terms to account for Coriolis acceleration and meteorological influences. Preliminary model/prototype data comparisons show agreement to within 9% for tidal flow volumes and phase differences within the measured-data-recording interval. Use of the model to investigate the hydrodynamics and certain aspects of transport within this Potomac Estuary reach is demonstrated. Refs.

  2. Modelling the Physical System of Belawan Estuary

    NASA Astrophysics Data System (ADS)

    Tarigan, A. P. M.; Swandana, D.; Isma, F.

    2017-03-01

    Belawan estuary represents one of the most complex and fascinating mixed environments of sea and land, where not only habitat of rich biodiversity but also international seaport infrastructure are at stake. It is therefore a matter of considerable importance to understand the physical system which characterizes the dynamics of the estuarine water. The purpose of this study is to model the changing water depths, tidal currents, salt, temperature and sediment concentration over a long stretch of Belawan estuary on an hourly basis. The first essential step is to define the bathymetry based on which other physical parameters are simulated. The study is accomplished by building working computer modules which simplify and model the systems complexities. It should be noted that model validation and improvement is the subject of the next study.

  3. Differences in the structure of copepod assemblages in four tropical estuaries: Importance of pollution and the estuary hydrodynamics.

    PubMed

    Araujo, Adriana V; Dias, Cristina O; Bonecker, Sérgio L C

    2017-02-15

    We examined the relationship between pollution and structure of copepod assemblages in estuaries, using sampling standardization of salinity range to reduce the effects of "Estuarine Quality Paradox". Copepod assemblages were analyzed in four Southeast Brazilian estuaries with different water quality levels and different hydrodynamic characteristics. The pollution negatively impacted the descriptors of the assemblage structure. The distribution of structure of copepod assemblages also showed a main separation trend between the most polluted estuaries and those less polluted. Temperature was the main factor affecting the assemblage structuring in the four estuaries. This factor acted in synergism with the effects of pollution impact and physical characteristics of the estuaries on the structure of copepod assemblages, supporting the potential vulnerability of coastal environments due to nutrient enrichment associated with climate change. Our study demonstrated the importance of sampling standardization of the salinity range in estuaries for reliable analysis of pollution effects on biota.

  4. Anthropogenic Carbon Pump in an Urbanized Estuary

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Yoon, T. K.; Jin, H.; Begum, M. S.

    2015-12-01

    The importance of estuaries as a carbon source has been increasingly recognized over the recent decades. However, constraining sources of CO2 evasion from urbanized estuaries remains incomplete, particularly in densely populated river systems receiving high loads of organic carbon from anthropogenic sources. To account for major factors regulating carbon fluxes the tidal reach of the Han River estuary along the metropolitan Seoul, characterization of organic carbon in the main stem and major urban tributaries were combined with continuous, submersible sensor measurements of pCO2 at a mid-channel location over a year and continuous underway measurements using a submersible sensor and two equilibrator sytems across the estuarine section receiving urban streams. Single-site continuous measurements exhibited large seasonal and diurnal variations in pCO2, ranging from sub-ambient air levels to exceptionally high values approaching 10,000 ppm. Diurnal variations of pCO2 were pronounced in summer and had an inverse relationship with dissolved oxygen, pointing to a potential role of day-time algal consumption of CO2. Cruise measurements displayed sharp pCO2 pulses along the confluences of urban streams as compared with relatively low values along the upper estuary receiving low-CO2 outflows from upstream dams. Large downstream increases in pCO2, concurrent with increases in DOC concentrations and fluorescence intensities indicative of microbially processed organic components, imply a translocation and subsequent dilution of CO2 carried by urban streams and/or fast transformations of labile C during transit along downstream reaches. The unique combination of spatial and temporal continuous measurements of pCO2 provide insights on estuarine CO2 pulses that might have resulted from the interplay between high loads of CO2 and organic C of anthropogenic origin and their priming effects on estuarine microbial processing of terrigenous and algal organic matter.

  5. Introduction to the Watershed Central Web Site and Watershed Wiki Mini-Workshop

    EPA Science Inventory

    Many communities across the country struggle to find the right approaches, tools and data to include in their watershed plans. EPA recently posted a new web site called "Watershed Central,” a “one-stop" tool, to help watershed organizations and others find key resources to protec...

  6. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    ERIC Educational Resources Information Center

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development…

  7. Watershed Stewardship Education Program--A Multidisciplinary Extension Education Program for Oregon's Watershed Councils.

    ERIC Educational Resources Information Center

    Conway, Flaxen D. L.; Godwin, Derek; Cloughesy, Mike; Nierenberg, Tara

    2003-01-01

    The Watershed Stewardship Education Program (WSEP) is a multidisciplinary Oregon Extension designed to help watershed councils, landowners, and others work effectively together on water management. Components include practical, easy-to-use educational materials, training in effective collaboration, a Master Watershed Stewards program, and advanced…

  8. Volunteer Watershed Health Monitoring by Local Stakeholders: New Mexico Watershed Watch

    ERIC Educational Resources Information Center

    Fleming, William

    2003-01-01

    Volunteers monitor watershed health in more than 700 programs in the US, involving over 400,000 local stakeholders. New Mexico Watershed Watch is a student-based watershed monitoring program sponsored by the state's Department of Game and Fish which provides high school teachers and students with instruction on methods for water quality…

  9. A TEST OF WATERSHED CLASSIFICATION SYSTEMS FOR ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    To facilitate extrapolation among watersheds, ecological risk assessments should be based on a model of underlying factors influencing watershed response, particularly vulnerability. We propose a conceptual model of landscape vulnerability to serve as a basis for watershed classi...

  10. AN INTEGRATED COASTAL-WATERSHED MONITORING FRAMEWORK FOR ASSESSMENT

    EPA Science Inventory

    An approach for watershed classification in support of assessments, disgnosis of biological impairment, and prioritization of watershed restorations has been tested in coastal watersheds surrounding the western arm of Lake Superior and is currently being assessed for a series of ...

  11. Applications of remote sensing to watershed management

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1975-01-01

    Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.

  12. Mercury in sediments of Ulhas estuary.

    PubMed

    Ram, Anirudh; Rokade, M A; Borole, D V; Zingde, M D

    2003-07-01

    Hg levels in water, suspended particulate matter and sediment of the Ulhas estuary are under considerable environmental stress due to the indiscriminate release of effluents from a variety of industries including chlor-alkali plants. Concentration ranges of dissolved (0.04-0.61 micro gl(-1)) and particulate (1.13-6.43 micro gg(-1)) Hg reveal a definite enhancement of levels in the estuary. The Hg burden in sediment upstream of the weir that limits the tidal influence is low (0.08-0.19 micro gg(-1)) with low C(org) content (1.8-2.9%). The high Hg content of the sediment just below the weir varies seasonally (highest concentration recorded being 38.45 micro gg(-1)) due to incremental accretion of sediment as the fresh water flow over the weir progressively decreases. The 30 km segment of the estuary sustains markedly high levels of Hg in the sediment with an exponential decrease in the seaward direction from the weir. Higher concentrations than the expected background prevail in all the estuarine cores up to the bottom, though the overall concentration decreases from about 20 micro gg(-1) in core 7 (inner estuary) to 1 micro gg(-1) in core 31 (outer estuary). The Hg in sediment is associated with C(org), while its correlation with Al, Fe and Mn is poor. The Hg profiles in cores from the Arabian Sea (stations 34, 35 and 37) have a distinct horizon of enhanced concentration in the 5-60 cm segment. Based on 210Pb dating of core 37, the sediment at the bottom of this core is inferred to have been deposited in the year 1949, roughly two year prior to the establishment of the first chlor-alkali plant and represents the background (0.06-0.10 micro gg(-1)). The Hg profiles in the offshore cores indicate a marked increase in transfer of Hg to sediment subsequent to 1980, with a peak around 1990-1992. Based on the index of geoaccumulation it is considered that the estuarine segment between stations 4 and 23 is extremely polluted, while the sediment from the open coast is

  13. Freshwater, tidal and wave influences on a small estuary

    NASA Astrophysics Data System (ADS)

    Uncles, R. J.; Stephens, J. A.; Harris, C.

    2014-10-01

    Observations are presented of water levels, currents, salinity, turbidity, sediment grain sizes and sediment transport in the Devonshire Avon Estuary, UK, in order to improve knowledge of freshwater, wave and tidal influences on small, strongly tidal ría estuaries. A large reduction in tidal range occurred progressing from the coastal zone to the upper estuary that was mainly a consequence of rising bed and river water levels. The spring-neap cycle also had an influence on the reduction in tidal range along the length of the estuary. Surface gravity waves were completely dissipated propagating into the estuarine channel from the coastal zone, and despite strong wave-induced resuspension, suspended sediment was not transported into the lower estuary in observable amounts during the ensuing flood tide, indicating that the wave-suspended material was too coarse to remain in suspension once transported away from the surf zone. Turbidity in the lower estuary was relatively low during low runoff summer conditions and had largest values over low water, when turbid waters from farther up-estuary had been transported there. Strong resuspension events occurred at peak currents in the upper estuary during summer, reflecting the presence of finer-grained sediment sources. Turbidity was similar but greater in the lower estuary during high runoff winter conditions and strong resuspension occurred at peak currents, indicating an easily erodible, nearby sediment source, due to down-estuary movement and relocation of finer sediment over the winter. A large shoal in the lower estuary exhibited a consistent pattern of accretion/erosion during the high runoff months of late autumn and winter to spring that also was qualitatively consistent with sediment transport modelling and implied: (a), erosion from the up-estuary limit of the shoal with (b), down-estuary bed-load and suspended-load transport that accreted the centre and down-estuary limit of the shoal until (c), a diminished

  14. Modelling the migration opportunities of diadromous fish species along a gradient of dissolved oxygen concentration in a European tidal watershed

    NASA Astrophysics Data System (ADS)

    Maes, J.; Stevens, M.; Breine, J.

    2007-10-01

    The relationship between poor water quality and migration opportunities for fish remains poorly documented, although it is an essential research step in implementing EU water legislation. In this paper, we model the environmental constraints that control the movements of anadromous and catadromous fish populations that migrate through the tidal watershed of River Scheldt, a heavily impacted river basin in Western Europe. Local populations of sturgeon, sea lamprey, sea trout, Atlantic salmon, houting and allis shad were essentially extirpated around 1900. For remaining populations (flounder, three-spined stickleback, twaite shad, thinlip mullet, European eel and European smelt), a data driven logistic model was parameterized. The presence or absence of fish species in samples taken between 1995 and 2004 was modelled as a function of temperature, dissolved oxygen concentration, river flow and season. Probabilities to catch individuals from all diadromous species but three-spined stickleback increased as a function of the interaction between temperature and dissolved oxygen. The hypoxic zone situated in the freshwater tidal part of the estuary was an effective barrier for upstream migrating anadromous spawners since it blocked the entrance to historical spawning sites upstream. Similarly, habitat availability for catadromous fish was greatly reduced and restricted to lower brackish water parts of the estuary. The model was applied to infer preliminary dissolved oxygen criteria for diadromous fish, to make qualitative predictions about future changes in fish distribution given anticipated changes in water quality and to suggest necessary measures with respect to watershed management.

  15. Different seasonality of nitrate export from an agricultural watershed and an urbanized watershed in Midwestern USA

    NASA Astrophysics Data System (ADS)

    Tian, S.; Youssef, M. A.; Richards, R. P.; Liu, J.; Baker, D. B.; Liu, Y.

    2016-10-01

    Land use/land cover is a critical factor affecting temporal dynamics of nitrate export from watersheds. Based on a long-term (>30 years) water quality monitoring program in the Western Lake Erie area, United States, this study compared seasonal variation of nitrate export from an agricultural watershed and an urbanized watershed. A seasonality index was adapted to quantitatively characterize seasonal variation of nitrate export from the two watersheds. Results showed that monthly nitrate concentrations from the two watersheds exhibited different seasonal variation. Seasonality index of monthly nitrate loading for the agricultural watershed is approximately 3 times of that from the urbanized watershed and the difference is statistically significant (p < 0.0001). Meanwhile, calculated historical seasonality indexes of monthly nitrate loading for both watersheds exhibited significant (p < 0.05) decreasing trends according to the non-seasonal Mann-Kendall test. The identified differences in seasonal nitrate export from the two watersheds were mainly attributed to their distinct nitrogen sources, physical and biogeochemical settings. The declining seasonality index of monthly nitrate loading from the agricultural watershed could be partially caused by historical climate change in the study region, especially increased temperature during winter. Urbanization could be one key factor contributing to the declining seasonality index of monthly nitrate loading from the urbanized watershed. Information derived from this study have practical implications for developing proper management practices to mitigate nitrate pollution in Midwestern United States.

  16. Trace metal concentrations in estuaries and coastal regions

    SciTech Connect

    Hunt, C.D.

    1994-12-31

    Estuaries and coastal regions are highly variable in the physical and hydrographic conditions. As a result of heavy urbanization and industrialization of the head waters of most estuaries, there are substantial localized inputs of contaminants to the estuary. These factors combined with the flushing characteristics of individual estuaries to create relatively unique features that result in variation in the typical levels of trace metals for these systems. This makes intercomparison of the estuaries difficult. Comparability among estuaries becomes even more difficult when metals analyses are conducted without proper control of field and laboratory contamination, now firmly established in the trace metal analytical literature as a prerequisite for reliable marine trace metals analysis. This paper compares the concentrations of selected trace metal (Ag, Cd, Cu, Ni, Pb, and Zn) concentrations in the waters of several major estuaries of the United States. The basis of comparison is that all samples war collected under rigid trace metal clean collection and analysis procedures. Generally, metal concentrations within the estuaries are similar. Metal concentrations in the higher salinity coastal regions are more similar in concentration. The comparison provides a baseline of typical concentrations of these trace metals in the coastal waters against which future analytical results can be compared.

  17. Collaborative Potential between National Estuary Programs and Coastal EPA Laboratories

    EPA Science Inventory

    Estuaries are among the most productive ecosystems in the world, providing unique habitat for freshwater and marine species as well as valuable social and economic benefits. The wealth of ecosystem goods and services from estuaries has led to growth and development of human commu...

  18. Identifying and organizing objectives across the 28 National Estuary Programs

    EPA Science Inventory

    The National Estuary Program (NEP), established in 1987 by amendments to the Clean Water Act, is intended to support local communities to restore, protect and manage estuaries of national significance. Currently there a 28 NEPs spread widely across the U.S. and its territories. E...

  19. Macroalgae, pore water sulfides and eelgrass in Yaquina estuary, Oregon

    EPA Science Inventory

    The hypothesis that relatively high nutrients in estuaries of the Pacific Northwest (PNW) can lead to eutrophication and degradation of critical eelgrass habitat was examined. Yaquina estuary was surveyed for cover and above-ground biomass of benthic macroalgae (Ulva spp.) and n...

  20. INDEX OF ESTUARINE BENTHIC INTEGRITY FOR GULF OF MEXICO ESTUARIES

    EPA Science Inventory

    A benthic index for northern Gulf of Mexico estuaries has been developed and successfully validated by the Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) in the Louisianian Province. The benthic index is a useful indicator of estuarine condition that provi...

  1. ASSESSING THE ECOLOGICAL CONDITION OF SOUTHEAST U. S. ESTUARIES

    EPA Science Inventory

    As a means to assess ecological condition, 151 stations located in southeastern estuaries from Cape Henry, Virginia to Biscayne Bay, Florida were sampled by state agencies during the summer of 2000 using a probabilistic design. The design used 8 size classes of estuaries ranging ...

  2. Fortnightly Variability At The Transition Between Two Sub-Estuaries

    NASA Astrophysics Data System (ADS)

    Riveron-Enzastiga, M. L.; Valle-Levinson, A.

    2007-05-01

    Profiles of current velocity from an Acoustic Doppler Current Profiler (ADCP) and of water salinity, temperature and density from a Conductivity-Temperature-Depth (CTD) recorder, were combined with surface salinity, temperature and density from a Conductivity-Temperature (CT) recorder to elucidate the fortnightly variability at the Lafayette River entrance. The Lafayette River connects at its mouth with the Elizabeth River, which is a tributary to the James River in the Chesapeake Bay. Data were collected in four experiments during consecutive spring and neap tides in the autumn of 2000, and in the spring of 2001. Each experiment was carried out for ~25 hours and consisted of three across-estuary transects: one at the mouth, where the Elizabeth River estuary influences the Lafayette River estuary, and two more toward the head of the estuary. The maximum depth of the transects was <5 m, and despite the shallowness, the mean flow showed two-layer exchange during neap tides. During spring tides there was an evident recirculation where the two sub-estuaries interact and a marked lateral density structure. During neap tides, there was a recirculation consisting of inflow in the northern half of the estuary and net outflow at the surface and net inflow at the bottom in the southern half of the estuary. The recirculation at the mouth is intensified during wet periods due to intense river discharge. The along-estuary dynamics is that proposed by the theory, between pressure gradient and friction.

  3. YAQUINA BAY AND BEYOND: WHAT SHAPE ARE OUR ESTUARIES IN?

    EPA Science Inventory

    The great natural beauty of Oregon's estuaries gives an impression of systems that are far less altered than those in other areas of the US. However, over the years, Yaquina Bay and other western estuaries have been variously affected by habitat loss and alteration, over harvest...

  4. WATER QUALITY MODELING IN THE RIO CHONE ESTUARY

    EPA Science Inventory

    Water quality in the Rio Chone Estuary, a seasonally inverse, tropical estuary, in Ecuador was characterized by modeling the distribution of biochemical oxygen demand (BOD) and dissolved inorganic nitrogen (DIN) within the water column. These two variables are modeled using modif...

  5. Policy development and the estuary environment: a Severn Estuary case study.

    PubMed

    Ballinger, R; Stojanovic, T

    2010-01-01

    The paper reviews the development of key policy relating to estuary management, highlighting the trends and drivers in policy development which have shaped the management and protection of the estuary environment. Focusing on policy developments over the last three decades, the paper draws attention to the significant influence of European policy and new approaches to environmental governance in stimulating wider and more integrated approaches to the environmental management of the estuary, as well as highlighting considerable environmental improvements associated with increased environmental regulation. The paper discusses how 'fit for purpose' the policy framework is to address current challenges, including those identified by recent stakeholder consultations. Significant issues include limited understanding and information related to the cause-effect relationships between policy and environmental quality as well as ongoing institutional and policy fragmentation associated with devolutionary processes. Such fragmentation, alongside under-investment in integrated estuary planning, is likely to prove a particular challenge to balanced and informed decision-making. Whilst the paper focuses on the Severn experience, the approach adopted will be of interest to all assessing policy-environment linkages.

  6. Conditions for tidal bore formation in convergent alluvial estuaries

    NASA Astrophysics Data System (ADS)

    Bonneton, Philippe; Filippini, Andrea Gilberto; Arpaia, Luca; Bonneton, Natalie; Ricchiuto, Mario

    2016-04-01

    Over the last decade there has been an increasing interest in tidal bore dynamics. However most studies have been focused on small-scale bore processes. The present paper describes the first quantitative study, at the estuary scale, of the conditions for tidal bore formation in convergent alluvial estuaries. When freshwater discharge and large-scale spatial variations of the estuary water depth can be neglected, tide propagation in such estuaries is controlled by three main dimensionless parameters: the nonlinearity parameter ε0 , the convergence ratio δ0 and the friction parameter ϕ0. In this paper we explore this dimensionless parameter space, in terms of tidal bore occurrence, from a database of 21 estuaries (8 tidal-bore estuaries and 13 non tidal-bore estuaries). The field data point out that tidal bores occur for convergence ratios close to the critical convergence δc. A new proposed definition of the friction parameter highlights a clear separation on the parameter plane (ϕ0,ε0) between tidal-bore estuaries and non tidal-bore estuaries. More specifically, we have established that tidal bores occur in convergent estuaries when the nonlinearity parameter is greater than a critical value, εc , which is an increasing function of the friction parameter ϕ0. This result has been confirmed by numerical simulations of the two-dimensional Saint Venant equations. The real-estuary observations and the numerical simulations also show that, contrary to what is generally assumed, tide amplification is not a necessary condition for tidal bore formation. The effect of freshwater discharge on tidal bore occurrence has been analyzed from the database acquired during three long-term campaigns carried out on the Gironde/Garonne estuary. We have shown that in the upper estuary the tidal bore intensity is mainly governed by the local dimensionless tide amplitude ε. The bore intensity is an increasing function of ε and this relationship does not depend on freshwater

  7. Elk River Watershed - Flood Study

    NASA Astrophysics Data System (ADS)

    Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.

  8. ANALYZING CORRELATIONS BETWEEN STREAM AND WATERSHED ATTRIBUTES

    EPA Science Inventory

    Bivariate correlation analysis has been widely used to explore relationships between stream and watershed attributes that have all been measured on the same set of watersheds or sampling locations. Researchers routinely test H0: =0 for each correlation in a large table and then ...

  9. EFFECTS OF WATERSHED DISTURBANCE ON SMALL STREAMS

    EPA Science Inventory

    This presentation presents the effects of watershed disturbance on small streams. The South Fork Broad River Watershed was studied to evaluate the use of landscape indicators to predict pollutant loading at small spatial scales and to develop indicators of pollutants. Also studie...

  10. Upper Washita River experimental watersheds: Sediment Database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving the scientific understanding of the effectiveness of watershed conservation practices and floodwater-retardation structures to control floods and soil erosion is one of the primary objectives for sediment studies in the upper Washita River Experimental Watersheds. This paper summarizes se...

  11. Watershed: A Successful Voyage into Integrative Learning.

    ERIC Educational Resources Information Center

    Springer, Mark

    This book describes a "whole learning" approach to education called the Watershed Program, which stresses integrated curriculum and experiential learning. Each chapter begins with an episode from the history of eastern Pennsylvania along the Brandywine River, used as an analogy to problems faced by the teachers in the Watershed program.…

  12. Healthy Watersheds Integrated Assessments Workshop Synthesis

    EPA Science Inventory

    The U.S. Environmental Protection Agency, in partnership with others, is embarking on the new Healthy Watersheds Initiative to protect our remaining healthy watersheds, prevent them from becoming impaired, and accelerate our restoration successes. In November 2010, a Healthy Wate...

  13. Draft Maumee River Watershed Restoration Plan

    EPA Pesticide Factsheets

    A draft of the Maumee River AOC Watershed Restoration Plan was completed in January 2006. The plan was created to meet requirements for the stage II RAP as well as Ohio EPA’s and ODNR’s Watershed Coordinator Program.

  14. Watershed Deposition Tool for air quality impacts

    EPA Pesticide Factsheets

    The WDT is a software tool for mapping deposition estimates from the CMAQ model to watersheds. It provides users with the linkage of air and water needed for the total maximum daily load (TMDL) and related nonpoint-source watershed analyses.

  15. Watershed Scale Impacts of Stormwater Green Infrastructure ...

    EPA Pesticide Factsheets

    Despite the increasing use of urban stormwater green infrastructure (SGI), including detention ponds and rain gardens, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, Baltimore County, MD, Montgomery County, MD, and Washington, DC, were selected based on the availability of data on SGI, water quality, and stream flow. The watershed scale impact of SGI was evaluated by assessing how increased spatial density of SGI correlates with stream hydrology and nitrogen exports over space and time. The most common SGI types were detention ponds (58%), followed by marshes (12%), sand filters (9%), wet ponds (7%), infiltration trenches (4%), and rain gardens (2%). When controlling for watersheds size and percent impervious surface cover, watersheds with greater amounts of SGI (>10% SGI) have 44% lower peak runoff, 26% less frequent runoff events, and 26% less variable runoff than watersheds with lower SGI. Watersheds with more SGI also show 44% less NO3− and 48% less total nitrogen exports compared to watersheds with minimal SGI. There was no significant reduction in combined sewer overflows in watersheds with greater SGI. Based on specific SGI types, infiltration trenches (R2 = 0.35) showed the strongest correlation with hydrologic metrics, likely due to their ability to attenuate flow, while bioretention (R2 = 0.19) and wet ponds (R2 = 0.12) showed stronger

  16. Uncertainty Consideration in Watershed Scale Models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watershed scale hydrologic and water quality models have been used with increasing frequency to devise alternative pollution control strategies. With recent reenactment of the 1972 Clean Water Act’s TMDL (total maximum daily load) component, some of the watershed scale models are being recommended ...

  17. Role of adaptive management for watershed councils.

    PubMed

    Habron, Geoffrey

    2003-01-01

    Recent findings in the Umpqua River Basin in southwestern Oregon illustrate a tension in the rise of both community-based and watershed-based approaches to aquatic resource management. While community-based institutions such as watershed councils offer relief from the government control landowners dislike, community-based approaches impinge on landowners' strong belief in independence and private property rights. Watershed councils do offer the local control landowners advocate; however, institutional success hinges on watershed councils' ability to reduce bureaucracy, foster productive discussion and understanding among stakeholders, and provide financial, technical, and coordination support. Yet, to accomplish these tasks current watershed councils rely on the fiscal and technical capital of the very governmental entities that landowners distrust. Adaptive management provides a basis for addressing the apparent tension by incorporating landowners' belief in environmental resilience and acceptance of experimentation that rejects "one size fits all solutions." Therefore community-based adaptive watershed management provides watershed councils a framework that balances landowners' independence and fear of government intrusion, acknowledges the benefits of community cooperation through watershed councils, and enables ecological assessment of landowner-preferred practices. Community-based adaptive management integrates social and ecological suitability to achieve conservation outcomes by providing landowners the flexibility to use a diverse set of conservation practices to achieve desired ecological outcomes, instead of imposing regulations or specific practices.

  18. Watershed modeling applications in south Texas

    USGS Publications Warehouse

    Pedraza, Diana E.; Ockerman, Darwin J.

    2012-01-01

    This fact sheet presents an overview of six selected watershed modeling studies by the USGS and partners that address a variety of water-resource issues in south Texas. These studies provide examples of modeling applications and demonstrate the usefulness and versatility of watershed models in aiding the understanding of hydrologic systems.

  19. Understanding Urban Watersheds through Digital Interactive Maps, San Francisco Bay Area, California

    NASA Astrophysics Data System (ADS)

    Sowers, J. M.; Ticci, M. G.; Mulvey, P.

    2014-12-01

    Dense urbanization has resulted in the "disappearance" of many local creeks in urbanized areas surrounding the San Francisco Bay. Long reaches of creeks now flow in underground pipes. Municipalities and water agencies trying to reduce non-point-source pollution are faced with a public that cannot see and therefore does not understand the interconnected nature of the drainage system or its ultimate discharge to the bay. Since 1993, we have collaborated with the Oakland Museum, the San Francisco Estuary Institute, public agencies, and municipalities to create creek and watershed maps to address the need for public understanding of watershed concepts. Fifteen paper maps are now published (www.museumca.org/creeks), which have become a standard reference for educators and anyone working on local creek-related issues. We now present digital interactive creek and watershed maps in Google Earth. Four maps are completed covering urbanized areas of Santa Clara and Alameda Counties. The maps provide a 3D visualization of the watersheds, with cartography draped over the landscape in transparent colors. Each mapped area includes both Present and Past (circa 1800s) layers which can be clicked on or off by the user. The Present layers include the modern drainage network, watershed boundaries, and reservoirs. The Past layers include the 1800s-era creek systems, tidal marshes, lagoons, and other habitats. All data are developed in ArcGIS software and converted to Google Earth format. To ensure the maps are interesting and engaging, clickable icons pop-up provide information on places to visit, restoration projects, history, plants, and animals. Maps of Santa Clara Valley are available at http://www.valleywater.org/WOW.aspx. Maps of western Alameda County will soon be available at http://acfloodcontrol.org/. Digital interactive maps provide several advantages over paper maps. They are seamless within each map area, and the user can zoom in or out, and tilt, and fly over to explore

  20. Causes and consequences of ecosystem service regionalization in a coastal suburban watershed

    USGS Publications Warehouse

    Wollheim, Wilfred M.; Mark B. Green,; Pellerin, Brian A.; Morse, Nathaniel B.; Hopkinson, Charles S.

    2015-01-01

    The demand for ecosystem services and the ability of natural ecosystems to provide those services evolve over time as population, land use, and management practices change. Regionalization of ecosystem service activity, or the expansion of the area providing ecosystem services to a population, is a common response in densely populated coastal regions, with important consequences for watershed water and nitrogen (N) fluxes to the coastal zone. We link biophysical and historical information to explore the causes and consequences of change in ecosystem service activity—focusing on water provisioning and N regulation—from 1850 to 2010 in a coastal suburban watershed, the Ipswich River watershed in northeastern Massachusetts, USA. Net interbasin water transfers started in the late 1800s due to regionalization of water supply for use by larger populations living outside the Ipswich watershed boundaries, reaching a peak in the mid-1980s. Over much of the twentieth century, about 20 % of river runoff was diverted from reaching the estuary, with greater proportions during drought years. Ongoing regionalization of water supply has contributed to recent declines in diversions, influenced by socioecological feedbacks resulting from the river drying and fish kills. Similarly, the N budget has been greatly perturbed since the suburban era began in the 1950s due to food and lawn fertilizer imports and human waste release. However, natural ecosystems are able to remove most of this anthropogenic N, mitigating impacts on the coastal zone. We propose a conceptual model whereby the amount and type of ecosystem services provided by coastal watersheds in urban regions expand and contract over time as regional population expands and ecosystem services are regionalized. We hypothesize that suburban watersheds can be hotspots of ecosystem service sources because they retain sufficient ecosystem function to still produce services that meet increasing demand from the local population

  1. The Suwannee River Hydrologic Observatory: A Subtropical Coastal Plain Watershed in Transition

    NASA Astrophysics Data System (ADS)

    Graham, W. D.

    2004-12-01

    . In addition, population growth is fueling increased groundwater withdrawals from the Floridan aquifer for local consumption affecting water supply. Inter-basin transfers from the lower Suwannee River to south Florida have been suggested as one solution to south Florida's growing water crisis. Three Distinct Hydrologic Regimes - The Suwannee River watershed comprises three distinct but linked hydrologic landscape units. The upper Suwannee River interacts with the surficial aquifer but is largely separated from the Floridan aquifer by a confining unit. The middle Suwannee River interacts with both surficial aquifers and the unconfined karstic Floridan aquifer. The lower Suwannee River discharges to a deltaic estuary as surface water along with diffuse submarine groundwater discharge. Extensive Existing Data Infrastructure - Some discharge data exists from the turn of the 19th century to the present. More recently, the USDA Agricultural Research Service through the Southeast Watershed Research Laboratory (SEWRL) has monitored the Little River watershed in Georgia at the headwaters of the Suwannee River since 1965, and the Suwannee River Water Management District (SRWMD) has monitored the Suwannee River watershed in Florida since 1972. Other groups (USGS, Suwannee River Partnership, and individual university investigators) have long worked on specific, local geological, hydrological, and biological problems within the watershed. Contributing Organizations: University of Florida, Florida State University, University of South Florida, University of Central Florida, University of Georgia, USGS, USDA, and SRWMD

  2. Evaluating Local and Regional Sources of Trace Element Contamination in a Rural Sub Estuary of the Upper Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Krahforst, C.; Hartman, S.; Sherman, L.; Kehm, K.

    2014-12-01

    The distribution of trace elements (V, Cr, Co, Ni, Cu, Zn, As, Ag, Cd, Sn, Ba, W, Pb and U) along with Al and Fe and other sediment characteristics in surface sediment and sediment cores from the Chester River - a sub estuary of the Chesapeake Bay located in a predominantly agricultural watershed of Maryland's upper Eastern Shore, USA - have been determined in order to add to the understanding of contaminant transport and fate and inform management strategies designed to maintain or improve the ecological condition of estuaries. These analyses coupled with the comparison of elemental analysis of 210Pb - dated sediment cores, main stem water quality surveys, and a review of recent EPA National Coastal Condition Assessment sediment data from Chesapeake Bay provide added information about the roles of local and region scale processes on ecosystem condition. The high amount of suspended sediment in the Chester River (5-20 mg L-1) is an important factor controlling water quality conditions of the Chester River and a prime focus for environmental management of this system. Sources of suspended matter include local runoff, atmospheric deposition, local resuspension, and exchange with the Chesapeake Bay. In principle, each of these sources could be distinguished on the basis of chemical composition of surface sediment. Preliminary results from multivariate analytic models indicate that many of the elements investigated display significant covariance with Al (and other predominantly crustal signatures) which may indicate limited exogenic sources of contamination for sediments of this watershed. For example total Pb concentrations are mostly below the NOAA's low toxic effects level and lower than the median value of NCCA data for the upper Chesapeake suggesting that sediments have significant sources from within the watershed. Further, significant higher concentrations of Sn and Cu coincide with sediment collected in or near marinas and point to localized anthropogenic

  3. Measuring environmental sustainability of water in watersheds.

    PubMed

    Hester, Erich T; Little, John C

    2013-08-06

    Environmental sustainability assessment is a rapidly growing field where measures of sustainability are used within an assessment framework to evaluate and compare alternative actions. Here we argue for the importance of evaluating environmental sustainability of water at the watershed scale. We review existing frameworks in brief before reviewing watershed-relevant measures in more detail. While existing measures are diverse, overlapping, and interdependent, certain attributes that are important for watersheds are poorly represented, including spatial explicitness and the effect of natural watershed components, such as rivers. Most studies focus on one or a few measures, but a complete assessment will require use of many existing measures, as well as, perhaps, new ones. Increased awareness of the broad dimensions of environmental sustainability as applied to water management should encourage integration of existing approaches into a unified assessment framework appropriate for watersheds.

  4. Protecting water quality in the watershed

    SciTech Connect

    James, C.R.; Johnson, K.E. ); Stewart, E.H. )

    1994-08-01

    This article highlights the water quality component of a watershed management plan being developed for the San Francisco (CA) Water Department. The physical characteristics of the 63,000-acre watersheds were analyzed for source and transport vulnerability for five groups of water quality parameters--particulates, THM precursors, microorganisms (Giardia and cryptosporidium), nutrients (nitrogen and phosphorus), and synthetic organic chemicals--and vulnerability zones were mapped. Mapping was achieved through the use of an extensive geographic information system (GIS) database. Each water quality vulnerability zone map was developed based on five watershed physical characteristics--soils, slope, vegetation, wildlife concentration, and proximity to water bodies--and their relationships to each of the five groups of water quality parameters. An approach to incorporate the watershed physical characteristics information into the five water quality vulnerability zone maps was defined and verified. The composite approach was based in part on information gathered from existing watershed management plans.

  5. Global patterns and predictors of fish species richness in estuaries.

    PubMed

    Vasconcelos, Rita P; Henriques, Sofia; França, Susana; Pasquaud, Stéphanie; Cardoso, Inês; Laborde, Marina; Cabral, Henrique N

    2015-09-01

    1. Knowledge of global patterns of biodiversity and regulating variables is indispensable to develop predictive models. 2. The present study used predictive modelling approaches to investigate hypotheses that explain the variation in fish species richness between estuaries over a worldwide spatial extent. Ultimately, such models will allow assessment of future changes in ecosystem structure and function as a result of environmental changes. 3. A comprehensive worldwide data base was compiled of the fish assemblage composition and environmental characteristics of estuaries. Generalized Linear Models were used to quantify how variation in species richness among estuaries is related to historical events, energy dynamics and ecosystem characteristics, while controlling for sampling effects. 4. At the global extent, species richness differed among marine biogeographic realms and continents and increased with mean sea surface temperature, terrestrial net primary productivity and the stability of connectivity with a marine ecosystem (open vs. temporarily open estuaries). At a smaller extent (within a marine biogeographic realm or continent), other characteristics were also important in predicting variation in species richness, with species richness increasing with estuary area and continental shelf width. 5. The results suggest that species richness in an estuary is defined by predictors that are spatially hierarchical. Over the largest spatial extents, species richness is influenced by the broader distributions and habitat use patterns of marine and freshwater species that can colonize estuaries, which are in turn governed by history contingency, energy dynamics and productivity variables. Species richness is also influenced by more regional and local parameters that can further affect the process of community colonization in an estuary including the connectivity of the estuary with the adjacent marine habitat, and, over smaller spatial extents, the size of these

  6. AN APPROACH TO DEVELOPING NUTRIENT CRITERIA FOR PACIFIC NORTHWEST ESTUARIES: A CASE STUDY OF YAQUINA ESTUARY, OREGON

    EPA Science Inventory

    NHEERL scientists have developed an approach that could be used by the State of Oregon for development of nutrient and other water quality criteria for the Yaquina Estuary, Oregon. The principle objective in setting protective criteria is to prevent future degradation of estuari...

  7. Phosphorous dynamics in a temperate intertidal estuary

    NASA Astrophysics Data System (ADS)

    Lillebø, A. I.; Neto, J. M.; Flindt, M. R.; Marques, J. C.; Pardal, M. A.

    2004-09-01

    Conservation and management of aquatic systems require detailed information of the processes that affect their functioning and development. The objectives of the present work were to describe the phosphorus dynamics during a complete tidal cycle and to quantify the relative contribution of the most common estuarine areas (e.g. seagrass beds, salt marshes, mud- and sand-flats without vegetation) to phosphorus net internal loading in a temperate intertidal estuary. Results show that phosphate efflux rates were higher during the first hours of tidal flood, and that phosphate concentrations were lowest at high tide. During tidal ebbing, ephemeral tide pools may cover a considerable percentage of the intertidal area. In these tide pools, water shallowness combined with enhanced temperatures stimulate the occurrence of high phosphate effluxes. The effluxes to the main water body during high tide contributed 57% of dissolved inorganic phosphorus and efflux during low tide contributed 43% to the net internal loading. Calculations of the phosphate net effluxes (kg P) indicate a strong contribution of the bare bottom mud-flats to the whole system internal phosphate loading, especially during the warmer periods. As a consequence of eutrophication, perennial benthic macrophytes are commonly replaced by fast-growing epiphytic macroalgae. Calculations showed that for a hypothetical intertidal estuary in a temperate region, management programs considering an eventual re-colonization of mud-flats by seagrasses or salt marsh plants may reduce the P-efflux by 13-16 kg ha -1. For example, in the small Mondego estuary, eutrophication has contributed to a reduction of the Zostera noltii meadows, leading to an increase in 190 kg of phosphorus net internal loading.

  8. Near coastal program plan for 1991: Estuaries

    SciTech Connect

    Not Available

    1990-11-01

    Environmental regulatory programs in the United States have been estimated to cost more than $70 billion annually. The Environmental Monitoring and Assessment Program (EMAP) is a nationwide initiative being implemented by EPA's Office of Research and Development (ORD). It was developed in response to the demand for information on the condition of the nation's ecological resources. The goal of EMAP is to assess and document the status and trends in the condition of the nation's forests, wetlands, estuaries, coastal waters, lakes, rivers, and streams, Great Lakes, agricultural lands, and arid lands on an integrated and continuing basis.

  9. Concentrations and sources of PAHs in surface sediments of the Fenhe reservoir and watershed, China.

    PubMed

    Li, Wei-Hong; Tian, Ying-Ze; Shi, Guo-Liang; Guo, Chang-Sheng; Li, Xiang; Feng, Yin-Chang

    2012-01-01

    Sixteen PAHs in surface sediments at 28 sites throughout Fenhe reservoir and watershed were measured. The ∑PAHs concentrations ranged from 539.0 to 6281.7 with the mean of 2214.8ng/g. The 2-3 rings PAHs, contributing 55 percent to ∑PAHs, were the dominant species. Twenty-eight sites were grouped into three segments: Fenhe principal stream, estuaries of main branch streams, and Fenhe reservoir. ∑PAHs was highest in the estuaries of main branch streams. The ecological risk assessment was studied by biological thresholds. The results showed levels of PAHs might cause mild but not acute adverse biological effects. In addition, PAHs ratios, PCA/MLR and hierarchical clustering analysis were applied to evaluate the possible sources. Coal combustion (35 percent), diesel and gasoline emissions (29 percent and 16 percent, respectively) might be the important sources. For sites in Fenhe reservoir, the major sources were complex, while other two segments were mainly influenced by coal combustion source.

  10. Hydrologic research on instrumented watersheds

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1970-01-01

    The successful research man is the one who asks himself the right question. Research must go on primarily in the mind and only secondarily in the physical and biological world. It is only too easy to confuse the choice of a proper tool and the choice of a proper question. Some tools are quite unsuited to certain questions and some questions cannot be answered without the appropriate tool.There has been in recent years a large amount of discussion about whether the high costs and the extensive time period required for experimental watershed* research is really worth the investment. Recent discussions of this matter have cited as major criticisms of the instrumented basin that they are expensive, they leak water, they are unrepresentative, they produce changes too small for detection, and it is difficult to transfer the results. (See Hewlett, Lull, and Reinhart, 1969.) These are all questions worth talking about, but in one sense they tend to obscure the main issue. The main issue is what do we want to learn? If we can decide what it is we want to know, then we can logically ask ourselves what is the best way of going about obtaining that knowledge. It is in this context that we are most likely to place the experimental watershed in a useful and logical position in a classification of research methods.

  11. Model Calibration in Watershed Hydrology

    NASA Technical Reports Server (NTRS)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  12. Mercury cycling in terrestrial watersheds

    USGS Publications Warehouse

    Shanley, James B.; Bishop, Kevin; Banks, Michael S.

    2012-01-01

    This chapter discusses mercury cycling in the terrestrial landscape, including inputs from the atmosphere, accumulation in soils and vegetation, outputs in streamflow and volatilization, and effects of land disturbance. Mercury mobility in the terrestrial landscape is strongly controlled by organic matter. About 90% of the atmospheric mercury input is retained in vegetation and organic matter in soils, causing a buildup of legacy mercury. Some mercury is volatilized back to the atmosphere, but most export of mercury from watersheds occurs by streamflow. Stream mercury export is episodic, in association with dissolved and particulate organic carbon, as stormflow and snowmelt flush organic-rich shallow soil horizons. The terrestrial landscape is thus a major source of mercury to downstream aquatic environments, where mercury is methylated and enters the aquatic food web. With ample organic matter and sulfur, methylmercury forms in uplands as well—in wetlands, riparian zones, and other anoxic sites. Watershed features (topography, land cover type, and soil drainage class) are often more important than atmospheric mercury deposition in controlling the amount of stream mercury and methylmercury export. While reductions in atmospheric mercury deposition may rapidly benefit lakes, the terrestrial landscape will respond only over decades, because of the large stock and slow turnover of legacy mercury. We conclude with a discussion of future scenarios and the challenge of managing terrestrial mercury.

  13. Using Remotely Sensed Data and Watershed and Hydrodynamic Models to Evaluate the Effects of Land Cover Land Use Change on Aquatic Ecosystems in Mobile Bay, AL

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.; Judd, Chaeli; Thom, Ron; Woodruff, Dana; Ellis, Jean T.; Quattrochi, Dale; Watson, Brian; Rodriquez, Hugo; Johnson, Hoyt

    2012-01-01

    Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land cover land use (LCLU) change in the two counties surrounding Mobile Bay (Mobile and Baldwin) on SAV stressors and controlling factors (temperature, salinity, and sediment) in the Mobile Bay estuary. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for LCLU scenarios in 1948, 1992, 2001, and 2030. Remotely sensed Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 LCLU scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the estuary. These results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid throughout Mobile Bay and adjacent estuaries. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to LCLU driven flow changes with the restoration potential of SAVs. Data products and results are being integrated into NOAA s EcoWatch and Gulf of Mexico Data Atlas online systems for

  14. MAPPING WATERSHED INTEGRITY FOR THE CONTERMINOUS UNITED STATES.

    EPA Science Inventory

    Watersheds provide a variety of ecosystem services valued by society. Production of these services is sensitive to watershed alteration by human activities. Flotemersch and others (2015), defined watershed integrity (WI) as the “capacity of a watershed to support and maint...

  15. A proposed international watershed research network

    USGS Publications Warehouse

    Osterkamp, W.R.; Gray, J.R.

    2003-01-01

    An “International Watershed Research Network” is to be an initial project of the Sino-U. S. Centers for Soil and Water Conservation and Environmental Protection. The Network will provide a fundamental database for research personnel of the Centers, as well as of the global research community, and is viewed as an important resource for their successful operation. Efforts are under way to (a) identify and select candidate watersheds, (b) develop standards and protocols for data collection and dissemination, and (c) specify other data sources on erosion, sediment transport, hydrology, and ancillary information of probable interest and use to participants of the Centers. The initial focus of the Network will be on water-deficient areas. Candidate watersheds for the Network are yet to be determined although likely selections include the Ansai Research Station, northern China, and the Walnut Gulch Experimental Watershed, Arizona, USA. The Network is to be patterned after the Vigil Network, an open-ended group of global sites and small drainage basins for which Internet-accessible geomorphic, hydrologic, and biological data are periodically collected or updated. Some types of data, using similar instruments and observation methods, will be collected at all watersheds selected for the Network. Other data from the watersheds that may reflect individual watershed characteristics and research objectives will be collected as well.

  16. Geographic signatures of North American West Coast estuaries

    USGS Publications Warehouse

    Emmett, Robert; Llansó, Roberto; Newton, Jan; Thom, Ron; Hornberger, Michelle; Morgan, Cheryl; Levings, Colin; Copping, Andrea; Fishman, Paul

    2000-01-01

    West Coast estuaries are geologically young and composed of a variety of geomorphological types. These estuaries range from large fjords to shallow lagoons; from large to low freshwater flows. Natural hazards include E1 Niños, strong Pacific storms, and active tectonic activity. West Coast estuaries support a wide range of living resources: five salmon species, harvestable shellfish, waterfowl and marine birds, marine mammals, and a variety of algae and plants. Although populations of many of these living resources have declined (salmonids), others have increased (marine mammals). West Coast estuaries are also centers of commerce and increasingly large shipping traffic. The West Coast human population is rising faster than most other areas of the U.S. and Canada, and is distributed heavily in southern California, the San Francisco Bay area, around Puget Sound, and the Fraser River estuary. While water pollution is a problem in many of the urbanized estuaries, most estuaries do not suffer from poor water quality. Primary estuarine problems include habitat alterations, degradation, and loss; diverted freshwater flows; marine sediment contamination; and exotic species introductions. The growing West Coast economy and population are in part related to the quality of life, which is dependent on the use and enjoyment of abundant coastal natural resources.

  17. Scavenging Rate Ecoassay: A Potential Indicator of Estuary Condition

    PubMed Central

    Porter, Augustine G.; Scanes, Peter R.

    2015-01-01

    Monitoring of estuary condition is essential due to the highly productive and often intensely impacted nature of these ecosystems. Assessment of the physico-chemical condition of estuaries is expensive and difficult due to naturally fluctuating water quality and biota. Assessing the vigour of ecosystem processes is an alternative method with potential to overcome much of the variability associated with physico-chemical measures. Indicators of estuary condition should have small spatial and temporal variability, have a predictable response to perturbation and be ecologically relevant. Here, we present tests of the first criterion, the spatio-temporal variability of a potential ecoassay measuring the rate of scavenging in estuaries. We hypothesised that the proposed scavenging ecoassay would not vary significantly among A) sites in an estuary, B) trips separated by weeks, or C) days in a trip. Because not all habitats are present in all estuaries, this test was undertaken in two habitats. When conducted over bare substrate there were occasional significant differences, but no discernible patterns, within levels of the experiment. When conducted over vegetated substrate, days within a trip did not vary significantly, but later trips experienced greater scavenging. This scavenging ecoassay shows potential as a tool for assessing the condition of estuarine ecosystems, and further exploration of this protocol is warranted by implementation in estuaries across a gradient of anthropogenic stress. PMID:26024225

  18. Scavenging rate ecoassay: a potential indicator of estuary condition.

    PubMed

    Porter, Augustine G; Scanes, Peter R

    2015-01-01

    Monitoring of estuary condition is essential due to the highly productive and often intensely impacted nature of these ecosystems. Assessment of the physico-chemical condition of estuaries is expensive and difficult due to naturally fluctuating water quality and biota. Assessing the vigour of ecosystem processes is an alternative method with potential to overcome much of the variability associated with physico-chemical measures. Indicators of estuary condition should have small spatial and temporal variability, have a predictable response to perturbation and be ecologically relevant. Here, we present tests of the first criterion, the spatio-temporal variability of a potential ecoassay measuring the rate of scavenging in estuaries. We hypothesised that the proposed scavenging ecoassay would not vary significantly among A) sites in an estuary, B) trips separated by weeks, or C) days in a trip. Because not all habitats are present in all estuaries, this test was undertaken in two habitats. When conducted over bare substrate there were occasional significant differences, but no discernible patterns, within levels of the experiment. When conducted over vegetated substrate, days within a trip did not vary significantly, but later trips experienced greater scavenging. This scavenging ecoassay shows potential as a tool for assessing the condition of estuarine ecosystems, and further exploration of this protocol is warranted by implementation in estuaries across a gradient of anthropogenic stress.

  19. Ecosystem impacts of three sequential hurricanes (Dennis, Floyd, and Irene) on the United States' largest lagoonal estuary, Pamlico Sound, NC

    PubMed Central

    Paerl, Hans W.; Bales, Jerad D.; Ausley, Larry W.; Buzzelli, Christopher P.; Crowder, Larry B.; Eby, Lisa A.; Fear, John M.; Go, Malia; Peierls, Benjamin L.; Richardson, Tammi L.; Ramus, Joseph S.

    2001-01-01

    Three sequential hurricanes, Dennis, Floyd, and Irene, affected coastal North Carolina in September and October 1999. These hurricanes inundated the region with up to 1 m of rainfall, causing 50- to 500-year flooding in the watershed of the Pamlico Sound, the largest lagoonal estuary in the United States and a key West Atlantic fisheries nursery. We investigated the ecosystem-level impacts on and responses of the Sound to the floodwater discharge. Floodwaters displaced three-fourths of the volume of the Sound, depressed salinity by a similar amount, and delivered at least half of the typical annual nitrogen load to this nitrogen-sensitive ecosystem. Organic carbon concentrations in floodwaters entering Pamlico Sound via a major tributary (the Neuse River Estuary) were at least 2-fold higher than concentrations under prefloodwater conditions. A cascading set of physical, chemical, and ecological impacts followed, including strong vertical stratification, bottom water hypoxia, a sustained increase in algal biomass, displacement of many marine organisms, and a rise in fish disease. Because of the Sound's long residence time (≈1 year), we hypothesize that the effects of the short-term nutrient enrichment could prove to be multiannual. A predicted increase in the frequency of hurricane activity over the next few decades may cause longer-term biogeochemical and trophic changes in this and other estuarine and coastal habitats. PMID:11344306

  20. Ecosystem impacts of three sequential hurricanes (Dennis, Floyd, and Irene) on the United States' largest lagoonal estuary, Pamlico Sound, NC

    USGS Publications Warehouse

    Paerl, H.W.; Bales, J.D.; Ausley, L.W.; Buzzelli, C.P.; Crowder, L.B.; Eby, L.A.; Fear, J.M.; Go, M.; Peierls, B.L.; Richardson, T.L.; Ramus, J.S.

    2001-01-01

    Three sequential hurricanes, Dennis, Floyd, and Irene, affected coastal North Carolina in September and October 1999. These hurricanes inundated the region with up to 1 m of rainfall, causing 50- to 500-year flooding in the watershed of the Pamlico Sound, the largest lagoonal estuary in the United States and a key West Atlantic fisheries nursery. We investigated the ecosystem-level impacts on and responses of the Sound to the floodwater discharge. Floodwaters displaced three-fourths of the volume of the Sound, depressed salinity by a similar amount, and delivered at least half of the typical annual nitrogen load to this nitrogen-sensitive ecosystem. Organic carbon concentrations in floodwaters entering Pamlico Sound via a major tributary (the Neuse River Estuary) were at least 2-fold higher than concentrations under prefloodwater conditions. A cascading set of physical, chemical, and ecological impacts followed, including strong vertical stratification, bottom water hypoxia, a sustained increase in algal biomass, displacement of many marine organisms, and a rise in fish disease. Because of the Sound's long residence time (???1 year), we hypothesize that the effects of the short-term nutrient enrichment could prove to be multiannual. A predicted increase in the frequency of hurricane activity over the next few decades may cause longer-term biogeochemical and trophic changes in this and other estuarine and coastal habitats.

  1. Structure and Function of South-east Australian Estuaries

    NASA Astrophysics Data System (ADS)

    Roy, P. S.; Williams, R. J.; Jones, A. R.; Yassini, I.; Gibbs, P. J.; Coates, B.; West, R. J.; Scanes, P. R.; Hudson, J. P.; Nichol, S.

    2001-09-01

    An attempt is made to synthesize the geological properties, water quality attributes and aspects of the ecology of south-east Australian estuaries so as to provide a framework for addressing coastal management issues. The approach is based on the underlying causal factors of geology and morphology and more immediate environmental factors (e.g. salinity and sediments) which are associated with ecological distributions, species richness and fisheries catch. This ' broad brush ' approach seeks to maximize reality and generality, albeit at the expense of precision and local variability in individual circumstances. It disregards small-scale ecological patterns as noise. Unlike in the Northern Hemisphere, conditions in temperate Australia are characterized by irregular flood and fire regimes that strongly influence estuary hydrology and nutrient inputs. Three main types of estuary (tide-dominated, wave-dominated and intermittently closed) are recognized based on geological criteria and having particular entrance conditions that control tidal exchange. Four zones (marine flood-tidal delta, central mud basin, fluvial delta and riverine channel/alluvial plain) are also recognized common to each type of estuary. These zones correspond to mappable sedimentary environments in all estuaries and have characteristic water quality, nutrient cycling/primary productivity signatures and ecosystems. The ecology of a zone is modified by (a) estuary type which determines the salinity regime; (b) stage of sediment filling (evolutionary maturity) which controls the spatial distribution/size of the zones; and (c) impacts of various forms of development. By using the zones/habitats as a common currency among all estuaries, it is possible to link ecological aspects such as species richness and commercial fisheries production so as to compare different estuaries or within-estuary zones.

  2. Hydro-ecological degradation due to human impacts in the Twin Streams Watershed, Auckland, New Zealand

    NASA Astrophysics Data System (ADS)

    Torrecillas Nunez, C.; Miguel-rodriguez, A.

    2012-12-01

    wide range of impacts due to human actions which will exacerbated by future development as the population in the watershed is forecast to increase by at least 65% and the likely impacts of global warming. The rural watershed generates sediment which smothers the streams and harbor, while the urban watershed is the source of point and diffuse contamination with heavy metals which damage ecosystems. Evidence of impacts is given by the extent of flooding, reduced ecological flows and sampling results showing that more than 50% of the sites do not comply with environmental guidelines for: water clarity, turbidity, suspended solids, nitrogen, phosphorus, copper, zinc, conductivity, Dieldrin, DDT, Dissolved Oxygen, E.Coli, macroinvertebrates ,etc. , with water quality deteriorating progressively downstream where there is greater urbanization. But perhaps the most stunning evidence of the impacts was established by comparing aerial photographs of the 1940s and 2006 and seeing the build-up of sediments in the estuaries, the change in vegetation cover and discolored water. It is highly likely that the tipping point was reached before urbanization started but there is no doubt that urban development has accelerated the impacts, which has been corroborated by studies in other watersheds in Auckland.

  3. Effect of climate change on watershed runoff

    USGS Publications Warehouse

    Wolock, D.M.; Ayers, M.A.; Hay, L.E.; McCabe, G.J.

    1989-01-01

    This paper examines forecasts of changes in watershed runoff in the Delaware River basin that result from a range of predicted effects of increased atmospheric carbon dioxide (CO2) on future precipitation, temperature, and stomatal resistance of plants. A deterministic hydrologic model, TOPMODEL, was driven with stochastic inputs of temperature and precipitation to derive the forecasts. Results indicate that the direction and magnitude of the changes in watershed runoff are dependent on the relative magnitudes of the induced changes in precipitation, temperature, and stomatal resistance. Natural variability in temperature and precipitation obscured the changes in watershed runoff even when the simulated changes in precipitation, temperature, and stomatal resistance were substantial.

  4. Assessing the condition of bayous and estuaries: Bayou Chico Gulf of Mexico demonstration study

    SciTech Connect

    Dickson, K.; Acevedo, M.; Waller, T.; Kennedy, J.; Simons, J.; Mayer, F.; Lewis, M.; Walker, W.; Ammann, L.

    1995-12-31

    A demonstration study was conducted in May 1994 on Bayou Chico to assess the utility of various assessment and measurement endpoints in determining the condition of bayous and estuaries. Bayou Chico has water quality problems attributed to its low flushing rate and urban/industrial land use in its watershed. The sampling scheme assessed the within-sampling station and spatial variability of measurement endpoints. Fourteen sampling stations in Bayou Chico and 3 stations in Pensacola Bay were selected based on an intensified EMAP sampling grid. Time and space coordinated sampling was conducted for: sediment contaminants and properties, sediment toxicity, water quality, benthic infauna, zooplankton and phytoplankton populations. Fish and crabs were also collected and analyzed for a suite of biomarkers and organic chemical residues. Primary productivity was measured via the light bottle dark bottle oxygen method and via diurnal oxygen measurements made with continuous recording data sondes. Stream sites were evaluated for water and sediment quality, water and sediment toxicity, benthic invertebrates and fish. Watershed analyses included assessment of land use/landcover (via SPOT and TM images), soils, pollution sources (point and non-point) and hydrography. These data were coordinated via an Arc/Info GIS system for display and spatial analysis. 1994 survey data were used to parameterize environmental fate models such as SWMM (Storm Water Management Model), DYNHYD5 (WASP5 hydrodynamics model) and WASP5 (Water Quality Analysis Simulation Program) to make predictions about the dynamics and fate of chemical contaminants in Bayou Chico. This paper will present an overview, and report on the results in regards to within-site and spatial variability in Bayou Chico. Conclusions on the efficacy of the assessment and measurement endpoints in evaluating the condition (health) of Bayou Chico will be presented.

  5. Estuary/ocean exchange and tidal mixing in a Gulf of Maine Estuary: A Lagrangian modeling study

    NASA Astrophysics Data System (ADS)

    Bilgili, Ata; Proehl, Jeffrey A.; Lynch, Daniel R.; Smith, Keston W.; Swift, M. Robinson

    2005-12-01

    A Lagrangian particle method embedded within a 2-D finite element code, is used to study the transport and ocean-estuary exchange processes in the well-mixed Great Bay Estuarine System in New Hampshire, USA. The 2-D finite element model, driven by residual, semi-diurnal and diurnal tidal constituents, includes the effects of wetting and drying of estuarine mud flats through the use of a porous medium transport module. The particle method includes tidal advection, plus a random walk model in the horizontal that simulates sub-grid scale turbulent transport processes. Our approach involves instantaneous, massive [O(500,000)] particle releases that enable the quantification of ocean-estuary and inter-bay exchanges in a Markovian framework. The effects of the release time, spring-neap cycle, riverine discharge and diffusion strength on the intra-estuary and estuary-ocean exchange are also investigated. The results show a rather dynamic interaction between the ocean and the estuary with a fraction of the exiting particles being caught up in the Gulf of Maine Coastal Current and swept away. Three somewhat different estimates of estuarine residence time are calculated to provide complementary views of estuary flushing. Maps of residence time versus release location uncover a strong spatial dependency of residence time within the estuary that has very important ramifications for local water quality. Simulations with and without the turbulent random walk show that the combined effect of advective shear and turbulent diffusion is very effective at spreading particles throughout the estuary relatively quickly, even at low (1 m 2/s) diffusivity. The results presented here show that a first-order Markov Chain approach has applicability and a high potential for improving our understanding of the mixing processes in estuaries.

  6. Hydro-sedimentary processes of a shallow tropical estuary under Amazon influence. The Mahury Estuary, French Guiana

    NASA Astrophysics Data System (ADS)

    Orseau, Sylvain; Lesourd, Sandric; Huybrechts, Nicolas; Gardel, Antoine

    2017-04-01

    Along the Guianas coast, coastal dynamic is characterized by the migration of mud banks originating from the Amazon. This singular feature affects the dynamic and the morphology of local estuaries and can induce rapid bathymetric evolution in lower estuaries. Since 2012, the navigation channel of the Mahury Estuary (French Guiana) is enduring a severe siltation whose origin comes from a mud bank crossing the estuary mouth. This study aims to determine how the migration of a mud bank through an estuary mouth could influence the transport and fluxes in the estuary. Field measurements were performed over a year with the monitoring of the salt intrusion length, mooring surveys during spring-neap cycles and shipboard profiling surveys during semi-diurnal cycles. Salt intrusion lengths underline a significant seasonal variation characterized by the transition from a steady-state length during high river discharge and a wide range of lengths with the tidal range during low to moderate river discharge. During the rainy season, measurements indicate a fluvial-dominated condition with low suspended-sediment concentrations most of the semi-diurnal cycle. Residual sediment fluxes are usually seaward excepted when river discharge is below seasonal average. During the dry season, maximum suspended-sediment concentrations are higher in the middle part of the estuary. Residual sediment fluxes are landward along the estuary and stronger during neap tides in the estuary mouth and few kilometers upstream. In this area, a persistent density stratification traps sediments in the bottom layer and generates a gravitational circulation during neap tides, which enhances landward transports up to 2.56 t m-1 over a semi-diurnal cycle. In the middle estuary, landward fluxes are most significant during the dry season and also during the rainy season when the river discharge is below the seasonal average. Although this study includes temporal and spatial limitations, it underlines significant

  7. Water budget and water quality of Ward Lake, flow and water-quality characteristics of the Braden River estuary, and the effects of Ward Lake on the hydrologic system, west-central Florida

    USGS Publications Warehouse

    Trommer, J.T.; DelCharco, M.J.; Lewelling, B.R.

    1999-01-01

    The Braden River is the largest tributary to the Manatee River. The river was dammed in 1936 to provide the city of Bradenton a source of freshwater supply. The resulting impoundment was called Ward Lake and had a storage capacity of about 585 million gallons. Reconstruction in 1985 increased the size of the reservoir to about 1,400 million gallons. The lake has been renamed the Bill Evers Reservoir and drains about 59 square miles. The Braden River watershed can be subdivided into three hydrologic reaches. The upper reach consists of a naturally incised free-flowing channel. The middle reach consists of a meandering channel affected by backwater as a result of the dam. The lower reach is a tidal estuary. Water budgets were calculated for the 1993 through 1997 water years. Mean surface-water inflow to Ward Lake for the 5-year period was 1,645 inches per year (equivalent depth over the surface of the lake), or about 81.8 percent of total inflow. Mean ground-water inflow was 311 inches per year, or about 15.5 percent. A mean of 55 inches of rain fell directly on the lake and accounted for only 2.7 percent. Mean surface-water outflow was 1,736 inches, or about 86.4 percent of total water leaving the lake. There was no net ground-water outflow from the lake. Mean surface-water withdrawal for public supply was 229 inches per year, or about 11.4 percent. Mean evaporation was 45 inches and accounted for only 2.2 percent of the mean outflow. Change in lake storage on the budget was negligible. Most chemical constituents contained in water flowing to Ward Lake meet the standards specified by the Florida Department of Environmental Protection and the U.S. Environmental Protection Agency. Phosphorus is the exception, exceeding the U.S. Environmental Protection Agency limits of 0.10 milligram per liter in most samples. However, the source of the phosphorus is naturally occurring phosphate deposits underlying the watershed. Organic nitrogen and orthophosphate are the dominant

  8. Patapsco Watershed/Baltimore Region (Maryland)

    EPA Pesticide Factsheets

    Patapsco Watershed / Baltimore Area of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  9. Chesapeake Bay Watershed Implementation Plans (WIPs)

    EPA Pesticide Factsheets

    This page provides an overview of Watershed Implementation Plans (WIP) and how they play an important role in restoring the Chesapeake Bay. The page also provides links to each jurisdiction's Phase I, II, and III WIP.

  10. Clean Watersheds for a Clean Bay Project

    EPA Pesticide Factsheets

    Information about the SFBWQPClean Watersheds for a Clean Bay Project: Implementing the PCB TMDL, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  11. Meetings and Events about South Platte Watershed

    EPA Pesticide Factsheets

    South Platte Watershed from the Headwaters to the Denver Metropolitan Area (Colorado) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating.

  12. Photo Gallery for South Platte Watershed

    EPA Pesticide Factsheets

    South Platte Watershed from the Headwaters to the Denver Metropolitan Area (Colorado) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating

  13. Stream Tables and Watershed Geomorphology Education.

    ERIC Educational Resources Information Center

    Lillquist, Karl D.; Kinner, Patricia W.

    2002-01-01

    Reviews copious stream tables and provides a watershed approach to stream table exercises. Results suggest that this approach to learning the concepts of fluvial geomorphology is effective. (Contains 39 references.) (DDR)

  14. Monitoring and Evaluating Nonpoint Source Watershed Projects

    EPA Pesticide Factsheets

    This guide is written primarily for those who develop and implement monitoring plans for watershed management projects. it can also be used evaluate the technical merits of monitoring proposals they might sponsor. It is an update to the 1997 Guide.

  15. MANAGING MICROBIAL CONTAMINATION IN URBAN WATERSHEDS

    EPA Science Inventory

    This paper presents different approaches for controlling pathogen contamination in urban watersheds for contamination resulting from point and diffuses sources. Point sources of pathogens can be treated by a disinfection technology of known effectiveness, and a desired reduction ...

  16. MANAGING MICROBIAL CONTAMINATION IN URBAN WATERSHEDS

    EPA Science Inventory

    This paper presents different approaches for controlling pathogen contamination in urban watersheds for contamination resulting from point and diffuse sources. Point sources of pathogens can be treated by a disinfection technology of known effectiveness, and a desired reduction ...

  17. Proctor Creek Watershed/Atlanta (Georgia)

    EPA Pesticide Factsheets

    Proctor Creek Watershed/Atlanta (Georgia) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  18. Preserving Flow Variability in Watershed Model Calibrations

    EPA Science Inventory

    Background/Question/Methods Although watershed modeling flow calibration techniques often emphasize a specific flow mode, ecological conditions that depend on flow-ecology relationships often emphasize a range of flow conditions. We used informal likelihood methods to investig...

  19. Educating the Community: A Watershed Model Project.

    ERIC Educational Resources Information Center

    Perryess, C. S.

    2001-01-01

    Focuses on the construction and use of a schoolyard model of the Morrow Bay watershed in California. Describes the design and use of materials that include styrofoam insulation, crushed granite, cement, and stucco. (DDR)

  20. Watersheds: Connecting Weather to the Environment

    EPA Pesticide Factsheets

    This course provides broadcast meteorologists with information to help them understand watersheds as our environmental home and to help their viewers understand the relationship between the weather and the environment.

  1. National Interest Shown in Watershed Mapping Tool

    EPA Pesticide Factsheets

    The State of Maryland is able to identify prime locations for watershed restoration and preservation using an interactive mapping tool developed by a partnership of agencies led by EPA’s Mid-Atlantic Water Protection Division.

  2. Links from South Platte Watershed Partners

    EPA Pesticide Factsheets

    South Platte Watershed from the Headwaters to the Denver Metropolitan Area (Colorado) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating.

  3. A WATERSHED APPROACH TO DRINKING WATER QUALITY

    EPA Science Inventory

    The purpose of this presentation is to describe emerging technologies and strategies managing watersheds with the goal of protecting drinking water sources. Included are discussions on decentralized wastewater treatment, whole organism biomonitor detection systems, treatment of...

  4. APPLICATIONS OF ENVIRONMENTAL ISOTOPES FOR WATERSHED INVESTIGATIONS

    EPA Science Inventory

    Environmental isotopes include naturally-occurring nuclides that can be applied as tracers within watersheds (Sidle, 1998). Recent advances in mass spectroscopy may supplant many traditional and costly hydrometric techniques. It is now possible, for example, to utilize isotopes a...

  5. Watershed modeling tools and data for prognostic and diagnostic

    NASA Astrophysics Data System (ADS)

    Chambel-Leitao, P.; Brito, D.; Neves, R.

    2009-04-01

    's widely used in the world. Watershed models can be characterized by the high number of processes associated simulated. The estimation of these processes is also data intensive, requiring data on topography, land use / land cover, agriculture practices, soil type, precipitation, temperature, relative humidity, wind and radiation. Every year new data is being made available namely by satellite, that has allow to improve the quality of model input and also the calibration of the models (Galvão et. al, 2004b). Tools to cope with the vast amount of data have been developed: data formatting, data retrieving, data bases, metadata bases. The high number of processes simulated in watershed models makes them very wide in terms of output. The SWAT model outputs were modified to produce MOHID compliant result files (time series and HDF). These changes maintained the integrity of the original model, thus guarantying that results remain equal to the original version of SWAT. This allowed to output results in MOHID format, thus making it possible to immediately process it with MOHID visualization and data analysis tools (Chambel-Leitão et. al 2007; Trancoso et. al, 2009). Besides SWAT was modified to produce results files in HDF5 format, this allows the visualization of watershed properties (modeled by SWAT) in animated maps using MOHID GIS. The modified version of SWAT described here has been applied to various national and European projects. Results of the application of this modified version of SWAT to estimate hydrology and nutrients loads to estuaries and water bodies will be shown (Chambel-Leitão, 2008; Yarrow & Chambel-Leitão 2008; Chambel-Leitão et. al 2008; Yarrow & P. Chambel-Leitão, 2007; Yarrow & P. Chambel-Leitão, 2007; Coelho et. al., 2008). Keywords: Watershed models, SWAT, MOHID LAND, Hydrology, Nutrient Loads Arnold, J. G. and Fohrer, N. (2005). SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrol. Process. 19, 563

  6. Monitoring Phenology as Indicator for Timing of Nutrient Inputs in Northern Gulf Watersheds

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; Spiering, Bruce A.; Kalcic, Maria T.

    2009-01-01

    Nutrient over-enrichment defined by the U.S. Environmental Protection Agency as the anthropogenic addition of nutrients, in addition to any natural processes, causing adverse effects or impairments to the beneficial uses of a water body has been identified as one of the most significant environmental problems facing sensitive estuaries and coastal waters. Understanding the timing of nutrient inputs into those waters through remote sensing observables helps define monitoring and mitigation strategies. Remotely sensed data products can trace both forcings and effects of the nutrient system from landscape to estuary. This project is focused on extracting nutrient information from the landscape. The timing of nutrients entering coastal waters from the land boundary is greatly influenced by hydrologic processes, but can also be affected by the timing of nutrient additions across the landscape through natural or anthropogenic means. Non-point source nutrient additions to watersheds are often associated with specific seasonal cycles, such as decomposition of organic materials in fall and winter or addition of fertilizers to crop lands in the spring. These seasonal cycles or phenology may in turn be observed through the use of satellite sensors. Characterization of the phenology of various land cover types may be of particular interest in Gulf of Mexico estuarine systems with relatively short pathways between intensively managed systems and the land/estuarine boundary. The objective of this study is to demonstrate the capability of monitoring phenology of specific classes of land, such as agriculture and managed timberlands, at a refined watershed level. The extraction of phenological information from the Moderate Resolution Imaging Spectroradiometer (MODIS) data record is accomplished using analytical tools developed for NASA at Stennis Space Center: the Time Series Product Tool and the Phenological Parameters Estimation Tool. MODIS reflectance data (product MOD09) were

  7. Paleo-Reconstruction of Carbon Cycling in Large-River Delta-Front Estuaries: Use of Molecular Biomarkers

    NASA Astrophysics Data System (ADS)

    Bianchi, T. S.

    2014-12-01

    The burial of organic carbon (OC) in river deltas and continental margins worldwide account for approximately 90% of the carbon burial in the ocean. In particular, sediments in large-river delta-front estuaries have been shown to be repositories and integrators of land-use change across expansive watersheds that drain the continents to the ocean. Thus, separating natural and human-driven changes in the transport of terrestrial organic carbon (TOC) to ocean is important in understanding the effects of climate change on TOC fluxes. Molecular biomarkers of TOC (e.g., lignin phenols, fatty acids, sterols) in LDE sediments have been used extensively to reconstruct of carbon cycling changes that are reflective of land-use change in the watersheds. However, due to the highly variable hydrologic regimes across continents, continental margins (e.g., active versus passive), and coastal dynamics in LDEs, the fate and transport of these molecular biomarkers varies considerably. Here I will discuss some of the key molecular biomarkers that have been used to date in such historical reconstruction exercises in LDEs (e.g., Mississippi/Atchafalaya, Yangtze, Yellow, Ganges-Brahmaputra, Colville Rivers), and explore how margin-type, residence time of transport, redox, and molecular stability, to name a few, impact the utility of using different biomarkers in paleo-reconstruction studies.

  8. Pairing high-frequency data with a link-node model to manage dissolved oxygen impairment in a dredged estuary.

    PubMed

    Camarillo, Mary Kay; Weissmann, Gregory A; Gulati, Shelly; Herr, Joel; Sheeder, Scott; Stringfellow, William T

    2016-08-01

    High-frequency data and a link-node model were used to investigate the relative importance of mass loads of oxygen-demanding substances and channel geometry on recurrent low dissolved oxygen (DO) in the San Joaquin River Estuary in California. The model was calibrated using 6 years of data. The calibrated model was then used to determine the significance of the following factors on low DO: excavation of the river to allow navigation of large vessels, non-point source pollution from the agricultural watershed, effluent from a wastewater treatment plant, and non-point source pollution from an urban area. An alternative metric for low DO, excess net oxygen demand (ENOD), was applied to better characterize DO impairment. Model results indicate that the dredged ship channel had the most significant effect on DO (62 % fewer predicted hourly DO violations), followed by mass load inputs from the watershed (52 % fewer predicted hourly DO violations). Model results suggest that elimination of any one factor will not completely resolve DO impairment and that continued use of supplemental aeration is warranted. Calculation of ENOD proved more informative than the sole use of DO. Application of the simple model allowed for interpretation of the extensive data collected. The current monitoring program could be enhanced by additional monitoring stations that would provide better volumetric estimates of low DO.

  9. Late Holocene Environmental History of the Los Osos Watershed, Morro Bay, CA

    NASA Astrophysics Data System (ADS)

    Broadman, E.; Reidy, L. M.; Wahl, D.

    2014-12-01

    A comprehensive understanding of past changes in wetland ecosystems is integral for creating policies for modern land use practices. The Morro Bay salt marsh is home to a large wetland that has experienced significant environmental impacts in the last few centuries. In this study, sediment cores from the Morro Bay salt marsh were analyzed to discern changes in environment since the time of European contact, which occurred in 1772. The marsh is fed by two creeks (Chorro and Los Osos) and their associated watersheds. Sediment cores taken from a portion of the marsh fed by Los Osos creek were analyzed and the results compared to those from previous studies on cores taken from the Chorro and Los Osos portions of the marsh. Magnetic susceptibility, loss on ignition, pollen, radiocarbon, and X-ray fluorescence (XRF) analyses were conducted. An age-depth model was established for the Los Osos cores using two radiocarbon dates, as well as Erodium cicutarium as a chronological marker. Preliminary pollen analysis from Chorro marsh cores indicates vegetation shifts at the time of contact, when the salt marsh formed. Magnetic susceptibility and XRF data indicate dramatically increased rates of erosion from the time of contact consistently until the present. Influx of non-carbonate inorganic material also indicates a rapid increase in sedimentation in the marsh starting at the time of contact. Comparison of sedimentation rates between the two creeks suggests that differences in watershed geomorphology and land use practices have had pronounced impacts on erosional processes. Over the last decade, the Morro Bay National Estuary Program (MBNEP) has taken more measures to reduce erosion and sedimentation rates in the Chorro watershed, as is reflected by reduced sedimentation rates in MBNEP data collected within the last few years. Our study helps to elucidate the impacts of anthropogenic land use change on wetland systems, and provides much needed data to policy makers seeking to

  10. Understanding nutrients in the Chesapeake Bay watershed and implications for management and restoration: the Eastern Shore

    USGS Publications Warehouse

    Ator, Scott W.; Denver, Judith M.

    2015-03-12

    The Eastern Shore includes only a small part of the Chesapeake Bay watershed, but contributes disproportionately large loads of the excess nitrogen and phosphorus that have contributed to ecological and economic degradation of the bay in recent decades. Chesapeake Bay is the largest estuary in the United States and a vital ecological and economic resource. The bay and its tributaries have been degraded in recent decades by excessive nitrogen and phosphorus in the water column, however, which cause harmful algal blooms and decreased water clarity, submerged aquatic vegetation, and dissolved oxygen. The disproportionately large nitrogen and phosphorus yields from the Eastern Shore to Chesapeake Bay are attributable to human land-use practices as well as natural hydrogeologic and soil conditions. Applications of nitrogen and phosphorus compounds to the Eastern Shore from human activities are intensive. More than 90 percent of nitrogen and phosphorus reaching the land in the Eastern Shore is applied as part of inorganic fertilizers or manure, or (for nitrogen) fixed directly from the atmosphere in cropland. Also, hydrogeologic and soil conditions promote the movement of these compounds from application areas on the landscape to groundwater and (or) surface waters, and the proximity of much of the Eastern Shore to tidal waters limits opportunities for natural removal of these compounds in the landscape. The Eastern Shore only includes 7 percent of the Chesapeake Bay watershed, but receives nearly twice as much nitrogen and phosphorus applications (per area) as the remainder of the watershed and yields greater nitrogen and phosphorus, on average, to the bay. Nitrogen and phosphorus commonly occur in streams at concentrations that may adversely affect aquatic ecosystems and have increased in recent decades.

  11. Occurrence of pesticides in surface water and sediments from three central California coastal watersheds, 2008-2009

    USGS Publications Warehouse

    Smalling, Kelly L.; Orlando, James L.

    2011-01-01

    Water and sediment (bed and suspended) were collected from January 2008 through October 2009 from 12 sites in 3 of the largest watersheds along California's Central Coast (Pajaro, Salinas, and Santa Maria Rivers) and analyzed for a suite of pesticides by the U.S. Geological Survey. Water samples were collected in each watershed from the estuaries and major tributaries during 4 storm events and 11 dry season sampling events in 2008 and 2009. Bed sediments were collected from depositional zones at the tributary sampling sites three times over the course of the study. Suspended sediment samples were collected from the major tributaries during the four storm events and in the tributaries and estuaries during three dry season sampling events in 2009. Water samples were analyzed for 68 pesticides using gas chromatography/mass spectrometry. A total of 38 pesticides were detected in 144 water samples, and 13 pesticides were detected in more than half the samples collected over the course of the study. Dissolved pesticide concentrations ranged from below their method detection limits to 36,000 nanograms per liter (boscalid). The most frequently detected pesticides in water from all the watersheds were azoxystrobin, boscalid, chlorpyrifos, DCPA, diazinon, oxyfluorfen, prometryn, and propyzamide, which were found in more than 80 percent of the samples. On average, detection frequencies and concentrations were higher in samples collected during winter storm events compared to the summer dry season. With the exception of the fungicide, myclobutanil, the Santa Maria estuary watershed exhibited higher pesticide detection frequencies than the Pajaro and Salinas watersheds. Bed and suspended sediment samples were analyzed for 55 pesticides using accelerated solvent extraction, gel permeation chromatography for sulfur removal, and carbon/alumina stacked solid-phase extraction cartridges to remove interfering sediment matrices. In bed sediment samples, 17 pesticides were detected

  12. Assessing the impact of human activities on British Columbia's estuaries.

    PubMed

    Robb, Carolyn K

    2014-01-01

    The world's marine and coastal ecosystems are under threat and single-sector management efforts have failed to address those threats. Scientific consensus suggests that management should evolve to focus on ecosystems and their human, ecological, and physical components. Estuaries are recognized globally as one of the world's most productive and most threatened ecosystems and many estuarine areas in British Columbia (BC) have been lost or degraded. To help prioritize activities and areas for regional management efforts, spatial information on human activities that adversely affect BC's estuaries was compiled. Using statistical analyses, estuaries were assigned to groups facing related threats that could benefit from similar management. The results show that estuaries in the most populated marine ecosections have the highest biological importance but also the highest impacts and the lowest levels of protection. This research is timely, as it will inform ongoing marine planning, land acquisition, and stewardship efforts in BC.

  13. MODIS water quality algorithms for northwest Florida estuaries

    EPA Science Inventory

    Synoptic and frequent monitoring of water quality parameters from satellite is useful for determining the health of aquatic ecosystems and development of effective management strategies. Northwest Florida estuaries are classified as optically-complex, or waters influenced by chlo...

  14. Evaluating Causes of Ecological Impairments in the Estuaries of Ukraine

    EPA Science Inventory

    Ukrainian estuaries have not undergone a systematic evaluation of the causes of ecological impairments caused by anthropogenic contamination. The objective of this evaluation is to use recently developed diagnostic tools to determine the causes of benthic ecological impairments. ...

  15. A PROBABILISTIC SURVEY OF SEDIMENT TOXICITY IN WEST COAST ESTUARIES

    EPA Science Inventory

    A probabalistic survey of coastal condition assessment was conducted in 1999 by participants in US EPA's Environmental Monitoring and Assessment Program (EMAP). The survey targeted estuaries along the outer coasts of Washington, Oregon and California, including the lower Columbi...

  16. BACTERIOPLANKTON DYNAMICS IN A SUBTROPICAL ESTUARY: EVIDENCE FOR SUBSTRATE LIMITATION

    EPA Science Inventory

    Bacterioplankton abundance and metabolic characteristics were measured along a transect in Pensacola Bay, Florida, USA, to examine the factors that control microbial water column processes in this subtropical estuary. The microbial measures included 3 H-L-leucine incorporation, e...

  17. MAPPING BURROWING SHRIMP AND SEAGRASS IN YAQUINA ESTUARY

    EPA Science Inventory

    Burrowing shrimp and seagrasses create extensive intertidal and shallow subtidal habitats within Pacific NW estuaries. Maps of their populations are useful to inform estuarine managers of locations that deserve special consideration for conservation, and to inform oyster farmers...

  18. DOWNSTREAM MIGRATION OF SALMONID SMOLTS IN OREGON RIVERS AND ESTUARIES

    EPA Science Inventory

    Migratory fish passage is an important designated use for many Oregon estuaries. Acoustic transmitters were implanted in coho smolts in 2004 and 2006 to evaluate how estuarine habitat, and habitat loss, might affect population health. Acoustic receivers that identified individu...

  19. How the National Estuary Programs Address Environmental Issues

    EPA Pesticide Factsheets

    Estuaries face many challenges including, alteration of natural hydrologic flows, aquatic nuisance species, climate change, declines in fish and wildlife populations, habitat loss and degradation, nutrient loads, pathogens, stormwater and toxics.

  20. HIGH CYANOBACTERIAL ABUNDANCE IN GULF OF MEXICO ESTUARIES

    EPA Science Inventory

    Aquatic phytoplankton comprise a wide variety of taxa spanning more than 2 orders of magnitude in size, yet studies of estuarine phytoplankton often overlook the picoplankton, particularly chroococcoid cyanobacteria (c.f. Synechocococcus). Three Gulf of Mexico estuaries (Apalachi...

  1. NEKTON-HABITAT ASSOCIATIONS IN A PACIFIC NORTHWEST (USA) ESTUARY

    EPA Science Inventory

    Nekton−habitat associations were determined in Yaquina Bay, Oregon, United States, using a stratified-by-habitat, random, estuary-wide sampling design. Three habitats (intertidal eelgrass [Zostera marina], mud shrimp [Upogebia pugettensis], and ghost shrimp [Neotrypaea californie...

  2. Environmental forcing on jellyfish communities in a small temperate estuary.

    PubMed

    Primo, Ana Lígia; Marques, Sónia C; Falcão, Joana; Crespo, Daniel; Pardal, Miguel A; Azeiteiro, Ulisses M

    2012-08-01

    The impact of biological, hydrodynamic and large scale climatic variables on the jellyfish community of Mondego estuary was evaluated from 2003 to 2010. Plankton samples were collected at the downstream part of the estuary. Siphonophora Muggiaea atlantica and Diphyes spp. were the main jellyfish species. Jellyfish density was generally higher in summer and since 2005 densities had increased. Summer community analysis pointed out Acartia clausi, estuarine temperature and salinity as the main driven forces for the assemblage's structure. Also, Chl a, estuarine salinity, runoff and SST were identified as the major environmental factors influencing the siphonophores summer interannual variability. Temperature influenced directly and indirectly the community and fluctuation of jellyfish blooms in the Mondego estuary. This study represents a contribution to a better knowledge of the gelatinous plankton communities in small temperate estuaries.

  3. Fish and Salinity in the San Francisco Estuary

    EPA Pesticide Factsheets

    This page provides access to a set of time-series maps for six fishes that live in the SF Estuary. Maps were produced to strengthen best available science that inform actions needed to improve protection for aquatic life.

  4. Monitoring Rehabilitation in Temperate North American Estuaries

    SciTech Connect

    Rice, Casimir A.; Hood, W Gregory; Tear, Lucinda M.; Simenstad, Charles; Williams, Gregory D.; Johnson, L. L.; Feist, B. E.; Roni, P.

    2005-02-01

    In this chapter, we propose that monitoring rehabilitation in estuarine ecosystems by necessity requires quantifying relationships between dynamic estuarine processes and sensitive indicators of ecosystem function. While we do discuss temperate systems in general, emphasis is placed on anadromous salmon habitats in the Pacific Northwest because anadromous fishes are such a major focus of rehabilitation efforts, and present some of the greater challenges in linking function of one segment of their life history to conditions in a specific habitat. We begin with a basic overview of the ecological and socioeconomic significance of, as well as anthropogenic effects on, estuaries. Next, we briefly summarize the various kinds of estuarine rehabilitation historically practiced in temperate regions, and review estuarine rehabilitation monitoring design and methods, highlighting the unique challenges involved in monitoring estuarine systems. We then close with a summary and conclusions.

  5. Columbia Bay, Alaska: an 'upside down' estuary

    USGS Publications Warehouse

    Walters, R.A.; Josberger, E.G.; Driedger, C.L.

    1988-01-01

    Circulation and water properties within Columbia Bay, Alaska, are dominated by the effects of Columbia Glacier at the head of the Bay. The basin between the glacier terminus and the terminal moraine (sill depth of about 22 m) responds as an 'upside down' estuary with the subglacial discharge of freshwater entering at the bottom of the basin. The intense vertical mixing caused by the bouyant plume of freshwater creates a homogeneous water mass that exchanges with the far-field water through either a two- or a three-layer flow. In general, the glacier acts as a large heat sink and creates a water mass which is cooler than that in fjords without tidewater glaciers. The predicted retreat of Columbia Glacier would create a 40 km long fjord that has characteristics in common with other fjords in Prince William Sound. ?? 1988.

  6. Yeast community survey in the Tagus estuary.

    PubMed

    de Almeida, João M G C F

    2005-07-01

    The yeast community in the waters of the Tagus estuary, Portugal, was followed for over a year in order to assess its dynamics. Yeast occurrence and incidence were measured and this information was related to relevant environmental data. Yeast occurrence did not seem to depend upon tides, but river discharge had a dramatic impact both on the density and diversity of the community. The occurrence of some yeasts was partially correlated with faecal pollution indicators. Yeast isolates were characterized by microsatellite primed PCR (MSP-PCR) fingerprinting and rRNA gene sequencing. The principal species found were Candida catenulata, C. intermedia, C. parapsilosis, Clavispora lusitaniae, Debaryomyces hansenii, Pichia guilliermondii, Rhodotorula mucilaginosa and Rhodosporidium diobovatum. The incidence of these species was evaluated against the environmental context of the samples and the current knowledge about the substrates from which they are usually isolated.

  7. Tide- and rainfall-induced variations of physical and chemical parameters in a mangrove-depleted estuary of East Hainan (South China Sea).

    PubMed

    Krumme, Uwe; Herbeck, Lucia S; Wang, Tianci

    2012-12-01

    The estuarine dynamics favoring the coexistence of mangroves, seagrass and corals at small river mouths are often poorly understood. We characterize the tidal, day/night and rainfall-induced short-term dynamics in salinity, pH, dissolved oxygen (DO), chlorophyll a (chl a), total suspended matter (TSM), water transparency, surface currents and dissolved nutrients (NO(x)(-), NH(4)(+), PO(4)(3)(-), Si(OH)(4)) of the Wenchang/Wenjiao Estuary (East Hainan, tropical China). Samples were taken at three fixed sites along the estuary during 24 h spring tide cycles in different seasons. Salinity, DO, water transparency and pH generally increased seawards while nutrients decreased. All parameters varied with the tidal cycle, partially in interaction with the diel cycle. Nutrients, chl a and TSM usually fluctuated inversely with water level. Stratification was strong. Inflowing bottom water was of higher salinity, DO and pH and lower temperature and nutrient concentrations than the surface water. Tidal mixing provided regular ventilation of the estuary and limited eutrophication effects of nutrients from aquaculture, agriculture and urban effluents. Under dry weather conditions, the brackish-water lagoon functioned as a sink of nutrients due to efficient uptake by phytoplankton. Presently, the runoff from common intense rains in the watershed affects the estuary with little time delay due to terrestrial deforestation, channelization and loss of mangrove area. The frequency, strength and duration of intermittent estuarization of the back-reef areas have likely increased in the past and deteriorate present seagrass and coral health.

  8. Modeling ecosystem processes with variable freshwater inflow to the Caloosahatchee River Estuary, southwest Florida. II. Nutrient loading, submarine light, and seagrasses

    NASA Astrophysics Data System (ADS)

    Buzzelli, Christopher; Doering, Peter; Wan, Yongshan; Sun, Detong

    2014-12-01

    Short- and long-term changes in estuarine biogeochemical and biological attributes are consequences of variations in both the magnitude and composition of freshwater inputs. A common conceptualization of estuaries depicts nutrient loading from coastal watersheds as the stressor that promotes algal biomass, decreases submarine light penetration, and degrades seagrass habitats. Freshwater inflow depresses salinity while simultaneously introducing colored dissolved organic matter (color or CDOM) which greatly reduces estuarine light penetration. This is especially true for sub-tropical estuaries. This study applied a model of the Caloosahatchee River Estuary (CRE) in southwest Florida to explore the relationships between freshwater inflow, nutrient loading, submarine light, and seagrass survival. In two independent model series, the loading of dissolved inorganic nitrogen and phosphorus (DIN and DIP) was reduced by 10%, 20%, 30%, and 50% relative to the base model case from 2002 to 2009 (2922 days). While external nutrient loads were reduced by lowering inflow (Q0) in the first series (Q0 series), reductions were accomplished by decreasing the incoming concentrations of DIN and DIP in the second series (NP Series). The model also was used to explore the partitioning of submarine light extinction due to chlorophyll a, CDOM, and turbidity. Results suggested that attempting to control nutrient loading by decreasing freshwater inflow could have minor effects on water column concentrations but greatly influence submarine light and seagrass biomass. This is because of the relative importance of Q0 to salinity and submarine light. In general, light penetration and seagrass biomass decreased with increased inflow and CDOM. Increased chlorophyll a did account for more submarine light extinction in the lower estuary. The model output was used to help identify desirable levels of inflow, nutrient loading, water quality, salinity, and submarine light for seagrass in the lower CRE

  9. Using four capitals to assess watershed sustainability.

    PubMed

    Pérez-Maqueo, Octavio; Martinez, M Luisa; Vázquez, Gabriela; Equihua, Miguel

    2013-03-01

    The La Antigua watershed drains into the Gulf of Mexico and can be considered as one of the most important areas in Mexico because of its high productivity, history, and biodiversity, although poverty remains high in the area in spite of these positive attributes. In this study, we performed an integrated assessment of the watershed to recommend a better direction toward a sustainable management in which the four capitals (natural, human, social, and built) are balanced. We contrasted these four capitals in the municipalities of the upper, middle and lower watershed and found that natural capital (natural ecosystems and ecosystem services) was higher in the upper and middle watershed, while human and social capitals (literacy, health, education and income) were generally higher downstream. Overall, Human Development Index was negatively correlated with the percentage of natural ecosystems in the watershed, especially in the upper and lower watershed regions. Our results indicate that natural capital must be fully considered in projections for increasing human development, so that natural resources can be preserved and managed adequately while sustaining intergenerational well-being.

  10. Using Four Capitals to Assess Watershed Sustainability

    NASA Astrophysics Data System (ADS)

    Pérez-Maqueo, Octavio; Martinez, M. Luisa; Vázquez, Gabriela; Equihua, Miguel

    2013-03-01

    The La Antigua watershed drains into the Gulf of Mexico and can be considered as one of the most important areas in Mexico because of its high productivity, history, and biodiversity, although poverty remains high in the area in spite of these positive attributes. In this study, we performed an integrated assessment of the watershed to recommend a better direction toward a sustainable management in which the four capitals (natural, human, social, and built) are balanced. We contrasted these four capitals in the municipalities of the upper, middle and lower watershed and found that natural capital (natural ecosystems and ecosystem services) was higher in the upper and middle watershed, while human and social capitals (literacy, health, education and income) were generally higher downstream. Overall, Human Development Index was negatively correlated with the percentage of natural ecosystems in the watershed, especially in the upper and lower watershed regions. Our results indicate that natural capital must be fully considered in projections for increasing human development, so that natural resources can be preserved and managed adequately while sustaining intergenerational well-being.

  11. Environmental setting of Maple Creek watershed, Nebraska

    USGS Publications Warehouse

    Fredrick, Brian S.; Linard, Joshua I.; Carpenter, Jennifer L.

    2006-01-01

    The Maple Creek watershed covers a 955-square-kilometer area in eastern Nebraska, which is a region dominated by agricultural land use. The Maple Creek watershed is one of seven areas currently included in a nationwide study of the sources, transport, and fate of water and chemicals in agricultural watersheds. This study, known as the topical study of 'Agricultural Chemicals: Sources, Transport, and Fate' is part of the National Water-Quality Assessment Program being conducted by the U.S. Geological Survey. The Program is designed to describe water-quality conditions and trends based on representative surface- and ground-water resources across the Nation. The objective of the Agricultural Chemicals topical study is to investigate the sources, transport, and fate of selected agricultural chemicals in a variety of agriculturally diverse environmental settings. The Maple Creek watershed was selected for the Agricultural Chemicals topical study because its watershed represents the agricultural setting that characterizes eastern Nebraska. This report describes the environmental setting of the Maple Creek watershed in the context of how agricultural practices, including agricultural chemical applications and irrigation methods, interface with natural settings and hydrologic processes. A description of the environmental setting of a subwatershed within the drainage area of Maple Creek is included to improve the understanding of the variability of hydrologic and chemical cycles at two different scales.

  12. Modeling flocculation in a hypertidal estuary

    NASA Astrophysics Data System (ADS)

    Ramírez-Mendoza, Rafael; Souza, Alejandro J.; Amoudry, Laurent O.

    2014-01-01

    When fine particles are involved, cohesive properties of sediment can result in flocculation and significantly complicate sediment process studies. We combine data from field observations and state-of-the-art modeling to investigate and predict flocculation processes within a hypertidal estuary. The study site is the Welsh Channel located at the entrance of the Dee Estuary in Liverpool Bay. Field data consist of measurements from a fixed site deployment during 12-22 February 2008. Grain size, suspended sediment volume concentration, and current velocity were obtained hourly from moored instruments at 1.5 m above bed. Near-bottom water samples taken every hour from a research vessel are used to convert volume concentrations to mass concentrations for the moored measurements. We use the hydrodynamic model Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) coupled with the turbulence model General Ocean Turbulence Model (GOTM) and a sediment module to obtain three-dimensional distributions of suspended particulate matter (SPM). Flocculation is identified by changes in grain size. Small flocs were found during flood and ebb periods—and correlate with strong currents—due to breakup, while coarse flocs were present during slack waters because of aggregation. A fractal number of 2.4 is found for the study site. Turbulent stresses and particle settling velocities are estimated and are found to be related via an exponential function. The result is a simple semiempirical formulation for the fall velocity of the particles solely depending on turbulent stresses. The formula is implemented in the full three-dimensional model to represent changes in particle size due to flocculation processes. Predictions from the model are in agreement with observations for both settling velocity and SPM. The SPM fortnight variability was reproduced by the model and the concentration peaks are almost in phase with those from field data.

  13. Continuous resistivity profiling data from the Corsica River Estuary, Maryland

    USGS Publications Warehouse

    Cross, V.A.; Bratton, J.F.; Worley, C.R.; Crusius, J.; Kroeger, K.D.

    2011-01-01

    Submarine groundwater discharge (SGD) into Maryland's Corsica River Estuary was investigated as part of a larger study to determine its importance in nutrient delivery to the Chesapeake Bay. The Corsica River Estuary represents a coastal lowland setting typical of much of the eastern bay. An interdisciplinary U.S. Geological Survey (USGS) science team conducted field operations in the lower estuary in April and May 2007. Resource managers are concerned about nutrients that are entering the estuary via SGD that may be contributing to eutrophication, harmful algal blooms, and fish kills. Techniques employed in the study included continuous resistivity profiling (CRP), piezometer sampling of submarine groundwater, and collection of a time series of radon tracer activity in surface water. A CRP system measures electrical resistivity of saturated subestuarine sediments to distinguish those bearing fresh water (high resistivity) from those with saline or brackish pore water (low resistivity). This report describes the collection and processing of CRP data and summarizes the results. Based on a grid of 67.6 kilometers of CRP data, low-salinity (high-resistivity) groundwater extended approximately 50-400 meters offshore from estuary shorelines at depths of 5 to >12 meters below the sediment surface, likely beneath a confining unit. A band of low-resistivity sediment detected along the axis of the estuary indicated the presence of a filled paleochannel containing brackish groundwater. The meandering paleochannel likely incised through the confining unit during periods of lower sea level, allowing the low-salinity groundwater plumes originating from land to mix with brackish subestuarine groundwater along the channel margins and to discharge. A better understanding of the spatial variability and geological controls of submarine groundwater flow beneath the Corsica River Estuary could lead to improved models and mitigation strategies for nutrient over-enrichment in the

  14. Contamination and restoration of an estuary affected by phosphogypsum releases.

    PubMed

    Villa, M; Mosqueda, F; Hurtado, S; Mantero, J; Manjón, G; Periañez, R; Vaca, F; García-Tenorio, R

    2009-12-15

    The Huelva Estuary in Huelva, Spain, has been one of the most studied environmental compartments in the past years from the point of view of naturally occurring radioactive material (NORM) releases. It has been historically affected by waste releases, enriched in radionuclides from the U-decay series, from factories located in the area devoted to the production of phosphoric acid and phosphate fertilizers. Nevertheless, changes in national regulations forced a new waste management practice in 1998, prohibiting releases of phosphogypsum into the rivers. The input of natural radionuclides from phosphate factories to rivers was drastically reduced. Because of this there was a unique opportunity for the study of the response of a contaminated environmental compartment, specifically an estuary affected by tidal influences, after the cessation of the contaminant releases to, in this case, the Huelva Estuary (henceforth referred to as the Estuary). To investigate the environmental response to this new discharge regime, the specific activities of radionuclides 226Ra and 210Pb in water and sediment samples collected in four campaigns (from 1999 to 2005) were determined and compared with pre-1998 values. From this study it is possible to infer the most effective mechanisms of decontamination for the Estuary. Decontamination rates of 210Pb and 226Ra in the sediments and water have been calculated using exponential fittings and corresponding half-lives have been deduced from them. The cleaning half-life in the whole area of the Estuary is about 6 and 3.5 years for 226Ra and 210Pb respectively. The observed trend clearly shows that contamination of the Estuary by natural radionuclides is now decreasing and radioactive levels in waters and sediments are approaching the natural background references. This work attempts to evaluate whether it can be expected that the decontamination of the enhanced levels of natural radioactivity in the Estuary can be performed via natural

  15. Snohomish Estuary Wetlands Study. Volume I. Summary Report

    DTIC Science & Technology

    1979-05-01

    and provides a detailed identification and evaluation of all wetlands in the Snohomish River Estuary. The study recognizes that in consideration and...Jurisdiction in the Study Area IV. THE PERMIT PROCESS 23 V. FINDINGS IN THE SNOHOMISH ESTUARY 27 A. The Importance and Identification of Wetlands 29 SB. Areas...District is described in Section IV. 3. The major findings of the study are sunimuarized in Section V. The first major finding is an identification and

  16. Biological effects of anthropogenic contaminants in the San Francisco Estuary

    USGS Publications Warehouse

    Thompson, B.; Adelsbach, T.; Brown, C.; Hunt, J.; Kuwabara, J.; Neale, J.; Ohlendorf, H.; Schwarzbach, S.; Spies, R.; Taberski, K.

    2007-01-01

    Concentrations of many anthropogenic contaminants in the San Francisco Estuary exist at levels that have been associated with biological effects elsewhere, so there is a potential for them to cause biological effects in the Estuary. The purpose of this paper is to summarize information about biological effects on the Estuary's plankton, benthos, fish, birds, and mammals, gathered since the early 1990s, focusing on key accomplishments. These studies have been conducted at all levels of biological organization (sub-cellular through communities), but have included only a small fraction of the organisms and contaminants of concern in the region. The studies summarized provide a body of evidence that some contaminants are causing biological impacts in some biological resources in the Estuary. However, no general patterns of effects were apparent in space and time, and no single contaminant was consistently related to effects among the biota considered. These conclusions reflect the difficulty in demonstrating biological effects due specifically to contamination because there is a wide range of sensitivity to contaminants among the Estuary's many organisms. Additionally, the spatial and temporal distribution of contamination in the Estuary is highly variable, and levels of contamination covary with other environmental factors, such as freshwater inflow or sediment-type. Federal and State regulatory agencies desire to develop biological criteria to protect the Estuary's biological resources. Future studies of biological effects in San Francisco Estuary should focus on the development of meaningful indicators of biological effects, and on key organism and contaminants of concern in long-term, multifaceted studies that include laboratory and field experiments to determine cause and effect to adequately inform management and regulatory decisions. ?? 2006 Elsevier Inc. All rights reserved.

  17. Nutrients, hypoxia and Mass Fishkill events in Tapi Estuary, India

    NASA Astrophysics Data System (ADS)

    Ram, Anirudh; Jaiswar, Jiyalal Ram M.; Rokade, M. A.; Bharti, S.; Vishwasrao, C.; Majithiya, D.

    2014-07-01

    From 1983 to 2011, dissolved oxygen (DO) conditions in the Tapi Estuary changed from normoxic to hypoxic due to increased and untreated discharge of sewage. Both tidal and day-night variations of DO were best explained by hydrographic factors, sewage pollution and phytoplankton dynamics in upper, middle, lower estuary and the coastal water. Hypoxia/anoxia was associated with low-flow periods due to riverine restrictions and changing in climatic condition. The upper Tapi Estuary becomes anoxic during summer irrespective of tide while the middle estuary was anoxic (<0.2 mg O2 l-1) during post and premonsoon seasons and hypoxic (<2.0 mg O2 l-1) during monsoon season. Differences in the degree of stratification, sewage discharge and flushing accounted for differences in DO. Because of high nutrient concentrations (maximum NO3--N 103.1, NO2--N 26.0, NH4+-N 104.0 and PO43--P 99.0 μmol l-1), the lower estuary remains DO deficient between 2.0 and 5.0 mg O2 l-1, most of the time. The environmental condition of Tapi Estuary has impacted the coastal water of the Arabian Sea in recent years with fish kills attributed to its hypoxic/anoxic condition. Enhanced concentrations of nutrients and organic matter from indiscriminate discharge of sewage into the Tapi Estuary and restricted flushing as a result of construction of a series of dams in the catchment area of the estuary are the primary factors that have lead to the development of hypoxia.

  18. Attenuation of rare earth elements in a boreal estuary

    NASA Astrophysics Data System (ADS)

    Åström, Mats E.; Österholm, Peter; Gustafsson, Jon Petter; Nystrand, Miriam; Peltola, Pasi; Nordmyr, Linda; Boman, Anton

    2012-11-01

    This study focuses on attenuation of rare earth elements (REE) when a boreal creek, acidified and loaded with REE and other metals as a result of wetland drainage, empties into a brackish-water estuary (salinity < 6‰). Surface water was collected in a transect from the creek mouth to the outer estuary, and settling (particulate) material in sediment traps moored at selected locations in the estuary. Ultrafiltration, high-resolution ICP-MS and modeling were applied on the waters, and a variety of chemical reagents were used to extract metals from the settling material. Aluminium, Fe and REE transported by the acidic creek were extensively removed in the inner/central estuary where the acidic water was neutralised, whereas Mn was relatively persistent in solution and thus redistributed to particles and deposited further down the estuary. The REE removal was caused by several contemporary mechanisms: co-precipitation with oxyhydroxides (mainly Al but also Fe), complexation with flocculating humic substances and sorption to suspended particles. Down estuary the dissolved REE pool, remaining after removal, was fractionated: the <1 kDa pool became depleted in the middle REE and the colloidal (0.45 μm-1 kDa) pool depleted in the middle and heavy REE. This fractionation was controlled by the removal process, such that those REE with highest affinity for the settling particles became most depleted in the remaining dissolved pool. Modeling, based on Visual MINTEQ version 3.0 and the Stockholm Humic Model after revision and updating, predicted that the dissolved (<0.45 μm) REE pool in the estuary is bound almost entirely to humic substances. Acid sulphate soils, the source of the REE and other metals in the creek water, are widespread on coastal plains worldwide and therefore the REE attenuation patterns and mechanisms identified in the studied estuary are relevant for recognition of similar geochemical processes and conditions in a variety of coastal locations.

  19. Ambient and potential denitrification rates in marsh soils of Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2012-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park on Mount Desert Island, Maine, because of the potential problems of degradation of water quality and eutrophication in estuaries. Degradation of water quality has been observed at Bass Harbor Marsh estuary in the park but only minimally in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential source of nutrients. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in-place denitrification rates in marsh soils in Northeast Creek and in Bass Harbor Marsh watersheds during summer 2008 and summer 2009. Denitrification was measured under ambient conditions as well as after additions of inorganic nitrogen and glucose. In-place denitrification rates under ambient conditions were similar to those reported for other coastal wetlands, although they were generally lower than those reported for salt marshes having high ambient concentrations of nitrate (NO3). Denitrification rates generally increased by at least an order of magnitude following NO3 additions, with or without glucose (as the carbohydrate) additions, compared with the ambient treatments that received no nutrient additions. The treatment that added both glucose and NO3 resulted in a variety of denitrification responses when compared with the addition of NO3 alone. In most cases, the addition of glucose to a given rate of NO3 addition resulted in higher rates of denitrification. These variable responses indicate that the amount of

  20. Wind Wave Behavior in Fetch and Depth Limited Estuaries

    NASA Astrophysics Data System (ADS)

    Karimpour, Arash; Chen, Qin; Twilley, Robert R.

    2017-01-01

    Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design.

  1. [The benthic fauna of Sabancuy Estuary, Campeche, Mexico].

    PubMed

    González Solís, A; Torruco Gómez, D

    2001-03-01

    The fish and invertebrates community structure in the Sabancuy estuary was analyzed in two seasons and 14 sampling stations (13 along the estuary and one in the marine adjacent coast). No significant differences were found between seasons. The environmental frame defines two zones within the estuary, the first extends from the access highway to Sabancuy town until the Pujo mouth in the west; the second from the bridge to the estuary head in the east. The most abundant invertebrates were mollusks (51.8% of the total), in biomass the crustaceans dominated. The fish included 21 families and 33 species; the most abundant were Gerridae, Scianidae, Sparidae, Lutjanidae and Ciprinodontidae. The highest diversities of both communities correspond to the central part of the estuary. These communities include three sections with notable differences in faunal distribution: one is influenced by the exit to Terminos lagoon, the secondary in the estuary head and a third is in a transition zone defined by the proximity of the town access bridge. The ecological organization suggests a strong division caused by the bridge, both sides are scarce in habitats and nutrient resources and this is reflected in the low species counts.

  2. Sources, Ages, and Alteration of Organic Matter in Estuaries.

    PubMed

    Canuel, Elizabeth A; Hardison, Amber K

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters.

  3. PCBs in the fish assemblage of a southern European estuary

    NASA Astrophysics Data System (ADS)

    Baptista, Joana; Pato, Pedro; Pereira, Eduarda; Duarte, Armando C.; Pardal, Miguel A.

    2013-02-01

    The Mondego estuary fish assemblage was studied for the accumulation of PCBs. Three sampling stations were visited along an estuarine salinity gradient, and, in total, 15 species were collected. Analysis of PCBs revealed no significant differences among the sampling stations, although differences were observed among the fish assemblages. Fish assemblages could be divided into three groups. The first group comprised those with higher concentration (more than 10 ng g- 1, dw), included the species Gobius niger, Sardina pilchardus, Anguilla anguilla, Pomatoschistus microps, Chelidonichthys lucerna and Liza ramada; the second group with medium concentration (5-10 ng g- 1, dw), included the species Pomatoschistus minutus, Dicentrarchus labrax, Atherina presbyter, Chelon labrosus, Diplodus vulgaris, Platichthys flesus and Cilata mustela; and a third group with low concentration (less than 5 ng g- 1, dw), included the species Solea solea and Callionymus lyra. A positive correlation was found between lipid content and PCB concentrations. To evaluate the influence of the residence time of species on the accumulation of PCBs, species were divided into two groups: species that spend more than 3 years in the estuary, and species that spend less than 3 years in the estuary. Species that spend more than 3 years in the estuary presented higher concentrations than species that spend less than 3 years in the estuary. CBs 138 and 153 had higher concentration, and tended to increase with time spent in the estuary.

  4. Wind Wave Behavior in Fetch and Depth Limited Estuaries.

    PubMed

    Karimpour, Arash; Chen, Qin; Twilley, Robert R

    2017-01-18

    Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design.

  5. Conservation of Thane Creek and Ulhas River Estuary, India.

    PubMed

    Nikam, Vinay S; Kumar, Arun; Lalla, Kamal; Gupta, Kapil

    2009-07-01

    There has been a steady decrease in the area occupied by wetlands in creeks and estuaries adjacent urban areas due to unprecedented urban growth in coastal cities, for example, Thane Creek and Ulhas River Estuary near Mumbai, India. Urban cities serve as centres of employment and attract a large number of migrants from other places. In case of coastal cities, due to inadequate infrastructure, wastewater and solid waste are disposed of into wetlands and estuary. Discharge of sediments and solid waste into the creeks from drains and construction activities has resulted in decreased flow depth in the coastal waters of Thane Creek and Ulhas River Estuary. Various researchers have studied individual elements of Thane Creek and Ulhas River Estuary at micro level. However, a holistic approach for restoration and conservation of the creek and estuary is required. This paper presents the details of an integrated approach incorporating different conservation measures such as sewerage and sewage treatment, urban drainage management, solid waste management, mangrove plantation and dredging.

  6. Sources, Ages, and Alteration of Organic Matter in Estuaries

    NASA Astrophysics Data System (ADS)

    Canuel, Elizabeth A.; Hardison, Amber K.

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters.

  7. Wind Wave Behavior in Fetch and Depth Limited Estuaries

    PubMed Central

    Karimpour, Arash; Chen, Qin; Twilley, Robert R.

    2017-01-01

    Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design. PMID:28098236

  8. Watershed Central: Harnessing a social media tool to organize local technical knowledge and find the right watershed resources for your watershed

    EPA Science Inventory

    Watershed Central was developed to be a bridge between sharing and searching for information relating to watershed issues. This is dependent upon active user support through additions and updates to the Watershed Central Wiki. Since the wiki is user driven, the content and applic...

  9. A novel approach for direct estimation of fresh groundwater discharge to an estuary

    USGS Publications Warehouse

    Ganju, Neil K.

    2011-01-01

    Coastal groundwater discharge is an important source of freshwater and nutrients to coastal and estuarine systems. Directly quantifying the spatially integrated discharge of fresh groundwater over a coastline is difficult due to spatial variability and limited observational methods. In this study, I applied a novel approach to estimate net freshwater discharge from a groundwater-fed tidal creek over a spring-neap cycle, with high temporal resolution. Acoustic velocity instruments measured tidal water fluxes while other sensors measured vertical and lateral salinity to estimate cross-sectionally averaged salinity. These measurements were used in a time-dependent version of Knudsen's salt balance calculation to estimate the fresh groundwater contribution to the tidal creek. The time-series of fresh groundwater discharge shows the dependence of fresh groundwater discharge on tidal pumping, and the large difference between monthly mean discharge and instantaneous discharge over shorter timescales. The approach developed here can be implemented over timescales from days to years, in any size estuary with dominant groundwater inputs and well-defined cross-sections. The approach also directly links delivery of groundwater from the watershed with fluxes to the coastal environment. Copyright. Published in 2011 by the American Geophysical Union.

  10. The Caloosahatchee River Estuary: a monitoring partnership between Federal, State, and local governments, 2007-13

    USGS Publications Warehouse

    Patino, Eduardo

    2014-01-01

    From 2007 to 2013, the U.S. Geological Survey (USGS), in cooperation with the Florida Department of Environmental Protection (FDEP) and the South Florida Water Management District (SFWMD), operated a flow and salinity monitoring network at tributaries flowing into and at key locations within the tidal Caloosahatchee River. This network was designed to supplement existing long-term monitoring stations, such as W.P. Franklin Lock, also known as S–79, which are operated by the USGS in cooperation with the U.S. Army Corps of Engineers, Lee County, and the City of Cape Coral. Additionally, a monitoring station was operated on Sanibel Island from 2010 to 2013 as part of the USGS Greater Everglades Priority Ecosystem Science initiative and in partnership with U.S. Fish and Wildlife Service (J.N. Ding Darling National Wildlife Refuge). Moving boat water-quality surveys throughout the tidal Caloosahatchee River and downstream estuaries began in 2011 and are ongoing. Information generated by these monitoring networks has proved valuable to the FDEP for developing total maximum daily load criteria, and to the SFWMD for calibrating and verifying a hydrodynamic model. The information also supports the Caloosahatchee River Watershed Protection Plan.

  11. Large-river delta-front estuaries as natural "recorders" of global environmental change.

    PubMed

    Bianchi, Thomas S; Allison, Mead A

    2009-05-19

    Large-river delta-front estuaries (LDE) are important interfaces between continents and the oceans for material fluxes that have a global impact on marine biogeochemistry. In this article, we propose that more emphasis should be placed on LDE in future global climate change research. We will use some of the most anthropogenically altered LDE systems in the world, the Mississippi/Atchafalaya River and the Chinese rivers that enter the Yellow Sea (e.g., Huanghe and Changjiang) as case-studies, to posit that these systems are both "drivers" and "recorders" of natural and anthropogenic environmental change. Specifically, the processes in the LDE can influence ("drive") the flux of particulate and dissolved materials from the continents to the global ocean that can have profound impact on issues such as coastal eutrophication and the development of hypoxic zones. LDE also record in their rapidly accumulating subaerial and subaqueous deltaic sediment deposits environmental changes such as continental-scale trends in climate and land-use in watersheds, frequency and magnitude of cyclonic storms, and sea-level change. The processes that control the transport and transformation of carbon in the active LDE and in the deltaic sediment deposit are also essential to our understanding of carbon sequestration and exchange with the world ocean--an important objective in global change research. U.S. efforts in global change science including the vital role of deltaic systems are emphasized in the North American Carbon Plan (www.carboncyclescience.gov).

  12. Polycyclic aromatic hydrocarbons in a highly industrialized urban estuary: inventories and trends.

    PubMed

    Walker, Shelby E; Dickhut, Rebecca M; Chisholm-Brause, Catherine

    2004-11-01

    The abundance and composition of polycyclic aromatic hydrocarbons (PAHs) in sediments of the main stem and southern branch of the Elizabeth River (VA, USA), a highly industrialized urban estuary in the Chesapeake Bay (USA) watershed, were examined relative to historical and toxic effects levels. Total PAH concentrations in Elizabeth River sediments exceeded those observed in Baltimore Harbor and the Anacostia River, two other regions of concern in the Chesapeake Bay. The sigmaPAH concentrations from samples collected in the vicinity of two former wood-treatment facilities in the Elizabeth River had the highest sigmaPAH when compared to coastal and estuarine systems around the world. Using a linearized diffusion model equation, as much as 69% of the variability in channel sediment sigmaPAH distribution could be ascribed to inputs associated with former wood-treatment facilities along the southern branch of the Elizabeth River. Comparison of PAH levels measured in channel samples to data collected during the early 1980s demonstrated a general trend toward reduction in contaminant concentrations for most regions of the Elizabeth River channel; however, steady-state and increased sediment PAH concentrations in the vicinity of the former wood-treatment facilities were observed. Based on examination of the contaminant levels in Elizabeth River sediments using established sediment-quality criteria, the southern branch of the river remains a clear hazard to benthic and pelagic organisms.

  13. East Fork Watershed Cooperative: Toward better system-scale watershed management

    EPA Science Inventory

    The East Fork Watershed Cooperative is a group intent on understanding how to best manage water quality in a large mixed-use Midwestern watershed system. The system contains a reservoir that serves as a source of drinking water and is popular for water recreation. The reservoir i...

  14. Macroalgae δ15N values in well-mixed estuaries: Indicator of anthropogenic nitrogen input or macroalgae metabolism?

    NASA Astrophysics Data System (ADS)

    Raimonet, Mélanie; Guillou, Gaël; Mornet, Françoise; Richard, Pierre

    2013-03-01

    Although nitrogen stable isotope ratio (δ15N) in macroalgae is widely used as a bioindicator of anthropogenic nitrogen inputs to the coastal zone, recent studies suggest the possible role of macroalgae metabolism in δ15N variability. Simultaneous determinations of δ15N of dissolved inorganic nitrogen (DIN) along the land-sea continuum, inter-species variability of δ15N and its sensitivity to environmental factors are necessary to confirm the efficiency of macroalgae δ15N in monitoring nitrogen origin in mixed-use watersheds. In this study, δ15N of annual and perennial macroalgae (Ulva sp., Enteromorpha sp., Fucus vesiculosus and Fucus serratus) are compared to δ15N-DIN along the Charente Estuary, after characterizing δ15N of the three main DIN sources (i.e. cultivated area, pasture, sewage treatment plant outlet). During late winter and spring, when human activities produce high DIN inputs, DIN sources exhibit distinct δ15N signals in nitrate (NO) and ammonium (NH): cultivated area (+6.5 ± 0.6‰ and +9.0 ± 11.0‰), pasture (+9.2 ± 1.8‰ and +12.4‰) and sewage treatment plant discharge (+16.9 ± 8.7‰ and +25.4 ± 5.9‰). While sources show distinct δN- in this multiple source catchment, the overall mixture of NO sources - generally >95% DIN - leads to low variations of δN-NO at the mouth of the estuary (+7.7 to +8.4‰). Even if estuarine δN-NO values are not significantly different from pristine continental and oceanic site (+7.3‰ and +7.4‰), macroalgae δ15N values are generally higher at the mouth of the estuary. This highlights high anthropogenic DIN inputs in the estuary, and enhanced contribution of 15N-depleted NH in oceanic waters. Although seasonal variations in δN-NO are low, the same temporal trends in macroalgae δ15N values at estuarine and oceanic sites, and inter-species differences in δ15N values, suggest that macroalgae δ15N values might be modified by the metabolic response of macroalgae to environmental parameters (e

  15. Modeling ecosystem processes with variable freshwater inflow to the Caloosahatchee River Estuary, southwest Florida. I. Model development

    NASA Astrophysics Data System (ADS)

    Buzzelli, Christopher; Doering, Peter H.; Wan, Yongshan; Sun, Detong; Fugate, David

    2014-12-01

    Variations in freshwater inflow have ecological consequences for estuaries ranging among eutrophication, flushing and transport, and high and low salinity impacts on biota. Predicting the potential effects of the magnitude and composition of inflow on estuaries over a range of spatial and temporal scales requires reliable mathematical models. The goal of this study was to develop and test a model of ecosystem processes with variable freshwater inflow to the sub-tropical Caloosahatchee River Estuary (CRE) in southwest Florida from 2002 to 2009. The modeling framework combined empirically derived inputs of freshwater and materials from the watershed, daily predictions of salinity, a box model for physical transport, and simulation models of biogeochemical and seagrass dynamics. The CRE was split into 3 segments to estimate advective and dispersive transport of water column constituents. Each segment contained a sub-model to simulate changes in the concentrations of organic nitrogen and phosphorus (ON and OP), ammonium (NH4+), nitrate-nitrite (NOx-), ortho-phosphate (PO4-3), phytoplankton chlorophyll a (CHL), and sediment microalgae (SM). The seaward segment also had sub-models for seagrasses (Halodule wrightii and Thalassia testudinum). The model provided realistic predictions of ON in the upper estuary during wet conditions since organic nitrogen is associated with freshwater inflow and low salinity. Although simulated CHL concentrations were variable, the model proved to be a reliable predictor in time and space. While predicted NOx- concentrations were proportional to freshwater inflow, NH4+ was less predictable due to the complexity of internal cycling during times of reduced freshwater inflow. Overall, the model provided a representation of seagrass biomass changes despite the absence of epiphytes, nutrient effects, or sophisticated translocation in the formulation. The model is being used to investigate the relative importance of colored dissolved organic

  16. Advances in Watershed Models and Modeling

    NASA Astrophysics Data System (ADS)

    Yeh, G. T.; Zhang, F.

    2015-12-01

    The development of watershed models and their applications to real-world problems has evolved significantly since 1960's. Watershed models can be classified based on what media are included, what processes are dealt with, and what approaches are taken. In term of media, a watershed may include segregated overland regime, river-canal-open channel networks, ponds-reservoirs-small lakes, and subsurface media. It may also include integrated media of all these or a partial set of these as well as man-made control structures. In term of processes, a watershed model may deal with coupled or decoupled hydrological and biogeochemical cycles. These processes include fluid flow, thermal transport, salinity transport, sediment transport, reactive transport, and biota and microbe kinetics. In terms of approaches, either parametric or physics-based approach can be taken. This talk discusses the evolution of watershed models in the past sixty years. The advances of watershed models center around their increasing design capability to foster these segregated or integrated media and coupled or decoupled processes. Widely used models developed by academia, research institutes, government agencies, and private industries will be reviewed in terms of the media and processes included as well as approaches taken. Many types of potential benchmark problems in general can be proposed and will be discussed. This presentation will focus on three benchmark problems of biogeochemical cycles. These three problems, dealing with water quality transport, will be formulated in terms of reactive transport. Simulation results will be illustrated using WASH123D, a watershed model developed and continuously updated by the author and his PhD graduates. Keywords: Hydrological Cycles, Biogeochemical Cycles, Biota Kinetics, Parametric Approach, Physics-based Approach, Reactive Transport.

  17. A hydrologic and geomorphic model of estuary breaching and closure

    NASA Astrophysics Data System (ADS)

    Rich, Andrew; Keller, Edward A.

    2013-06-01

    To better understand how the hydrology of bar-built estuaries affects breaching and closing patterns, a model is developed that incorporates an estuary hydrologic budget with a geomorphic model of the inlet system. Erosion of the inlet is caused by inlet flow, whereas the only morphologic effect of waves is the deposition of sand into the inlet. When calibrated, the model is able to reproduce the initial seasonal breaching, seasonal closure, intermittent closures and breaches, and the low-streamflow (closed state) estuary hydrology of the Carmel Lagoon, located in Central California. Model performance was tested against three separate years of water-level observations. When open during these years, the inlet was visually observed to drain directly across the beach berm, in accordance with model assumptions. The calibrated model predicts the observed 48-h estuary stage amplitude with root mean square errors of 0.45 m, 0.39 m and 0.42 m for the three separate years. For the calibrated model, the probability that the estuary inlet is closed decreases exponentially with increasing inflow (streamflow plus wave overtopping), decreasing 10-fold in probability as mean daily inflow increases from 0.2 to 1.0 m3/s. Seasonal patterns of inlet state reflect the seasonal pattern of streamflow, though wave overtopping may become the main hydrologic flux during low streamflow conditions, infrequently causing short-lived breaches. In a series of sensitivity analyses it is seen that the status of the inlet and storage of water are sensitive to factors that control the storage, transmission, and inflow of water. By varying individual components of the berm system and estuary storage, the amount of the time the estuary is open may increase by 57%, or decrease by 44%, compared to the amount of time the estuary is open during calibrated model conditions for the 18.2-year model period. The individual components tested are: berm height, width, length, and hydraulic conductivity; estuary

  18. Methane and nitrous oxide emissions from a subtropical estuary (the Brisbane River estuary, Australia).

    PubMed

    Musenze, Ronald S; Werner, Ursula; Grinham, Alistair; Udy, James; Yuan, Zhiguo

    2014-02-15

    Methane (CH4) and nitrous oxide (N2O) are two key greenhouse gases. Their global atmospheric budgeting is, however, flout with challenges partly due to lack of adequate field studies determining the source strengths. Knowledge and data limitations exist for subtropical and tropical regions especially in the southern latitudes. Surface water methane and nitrous oxide concentrations were measured in a subtropical estuarine system in the southern latitudes in an extensive field study from 2010 to 2012 and water-air fluxes estimated using models considering the effects of both wind and flow induced turbulence. The estuary was found to be a strong net source of both CH4 and N2O all-year-round. Dissolved N2O concentrations ranged between 9.1 ± 0.4 to 45.3 ± 1.3 nM or 135 to 435% of atmospheric saturation level, while CH4 concentrations varied between 31.1 ± 3.7 to 578.4 ± 58.8 nM or 1210 to 26,430% of atmospheric saturation level. These results compare well with measurements from tropical estuarine systems. There was strong spatial variability with both CH4 and N2O concentrations increasing upstream the estuary. Strong temporal variability was also observed but there were no clear seasonal patterns. The degree of N2O saturation significantly increased with NOx concentrations (r(2)=0.55). The estimated water-air fluxes varied between 0.1 and 3.4 mg N2O m(-2)d(-1) and 0.3 to 27.9 mg CH4 m(-2)d(-1). Total emissions (CO2-e) were N2O (64%) dominated, highlighting the need for reduced nitrogen inputs into the estuary. Choice of the model(s) for estimation of the gas transfer velocity had a big bearing on the estimated total emissions.

  19. Columbia River Estuary Ecosystem Classification Hydrogeomorphic Reach

    USGS Publications Warehouse

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub

  20. Columbia River Estuary Ecosystem Classification Geomorphic Catena

    USGS Publications Warehouse

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub

  1. Columbia River Estuary Ecosystem Classification Ecosystem Complex

    USGS Publications Warehouse

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith Marcoe

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub

  2. Biogeography of dinoflagellate cysts in northwest Atlantic estuaries.

    PubMed

    Price, Andrea M; Pospelova, Vera; Coffin, Michael R S; Latimer, James S; Chmura, Gail L

    2016-08-01

    Few biogeographic studies of dinoflagellate cysts include the near-shore estuarine environment. We determine the effect of estuary type, biogeography, and water quality on the spatial distribution of organic-walled dinoflagellate cysts from the Northeast USA (Maine to Delaware) and Canada (Prince Edward Island). A total of 69 surface sediment samples were collected from 27 estuaries, from sites with surface salinities >20. Dinoflagellate cysts were examined microscopically and compared to environmental parameters using multivariate ordination techniques. The spatial distribution of cyst taxa reflects biogeographic provinces established by other marine organisms, with Cape Cod separating the northern Acadian Province from the southern Virginian Province. Species such as Lingulodinium machaerophorum and Polysphaeridinium zoharyi were found almost exclusively in the Virginian Province, while others such as Dubridinium spp. and Islandinium? cezare were more abundant in the Acadian Province. Tidal range, sea surface temperature (SST), and sea surface salinity (SSS) are statistically significant parameters influencing cyst assemblages. Samples from the same type of estuary cluster together in canonical correspondence analysis when the estuaries are within the same biogeographic province. The large geographic extent of this study, encompassing four main estuary types (riverine, lagoon, coastal embayment, and fjord), allowed us to determine that the type of estuary has an important influence on cyst assemblages. Due to greater seasonal variations in SSTs and SSSs in estuaries compared to the open ocean, cyst assemblages show distinct latitudinal trends. The estuarine context is important for understanding present-day species distribution, the factors controlling them, and to better predict how they may change in the future.

  3. Recovery simulations of grossly polluted sediments in the Bilbao Estuary.

    PubMed

    Antonio González Oreja, José; Ignacio Saiz Salinas, José

    2003-01-01

    The Bilbao Estuary is one of the most contaminated estuaries on the north coast of Spain, and vast efforts have been made to abate pollution there. In fact, the local water authority has forecast a biological recovery of the native fauna after a substantial increase in dissolved oxygen to normoxic levels. In order to assess this prediction by evaluating the extent of natural regeneration of these polluted sediments, two long-term bioassays (t=90 d) were performed. In both of them, lethal (differences in survival) and sublethal (differences in length and weight growth) effects were measured by using juvenile individuals of the autochthonous clam, Scrobicularia plana (Da Costa, 1778). The sediments tested differed in pollution levels, as measured by a set of indicators including PAHs, PCBs, heavy metals, volatile organic matter and coprostanol. All sediments were finally exposed to normoxic conditions in situ in the Bilbao Estuary (DO approximately 6.3 mg l(-1)). In the first experiment, concerning moderately polluted sediments from the Bilbao Estuary and reference sediments from the "pristine" Plentzia Estuary, no significant differences (P>0.05) were found regarding animal survival (approximately 94.5%) or growth in length or weight between the sediments tested. In the second experiment, also involving grossly polluted sediments (GPS) from the Bilbao Estuary, survival (24.5%) was statistically lower (P<0.05) than in the other sediments (approximately 93%). No significant differences were found in growth (length, weight) between animals exposed to moderately polluted or reference sediments. We interpret this dramatic difference in survival as the lethal effect on the animals tested of the GPS of the Bilbao Estuary, indicating a situation where biological recovery is not possible due to the adverse consequences of contaminants sorbed into sediments. The extensive use of this inexpensive bioassay could help to distinguish sediments in which homeostatic recovery is

  4. Urban microbial ecology of a freshwater estuary of Lake Michigan

    PubMed Central

    Fisher, Jenny C.; Newton, Ryan J.; Dila, Deborah K.

    2015-01-01

    Freshwater estuaries throughout the Great Lakes region receive stormwater runoff and riverine inputs from heavily urbanized population centers. While human and animal feces contained in this runoff are often the focus of source tracking investigations, non-fecal bacterial loads from soil, aerosols, urban infrastructure, and other sources are also transported to estuaries and lakes. We quantified and characterized this non-fecal urban microbial component using bacterial 16S rRNA gene sequences from sewage, stormwater, rivers, harbor/estuary, and the lake surrounding Milwaukee, WI, USA. Bacterial communities from each of these environments had a distinctive composition, but some community members were shared among environments. We used a statistical biomarker discovery tool to identify the components of the microbial community that were most strongly associated with stormwater and sewage to describe an “urban microbial signature,” and measured the presence and relative abundance of these organisms in the rivers, estuary, and lake. This urban signature increased in magnitude in the estuary and harbor with increasing rainfall levels, and was more apparent in lake samples with closest proximity to the Milwaukee estuary. The dominant bacterial taxa in the urban signature were Acinetobacter, Aeromonas, and Pseudomonas, which are organisms associated with pipe infrastructure and soil and not typically found in pelagic freshwater environments. These taxa were highly abundant in stormwater and sewage, but sewage also contained a high abundance of Arcobacter and Trichococcus that appeared in lower abundance in stormwater outfalls and in trace amounts in aquatic environments. Urban signature organisms comprised 1.7% of estuary and harbor communities under baseflow conditions, 3.5% after rain, and >10% after a combined sewer overflow. With predicted increases in urbanization across the Great Lakes, further alteration of freshwater communities is likely to occur with

  5. The status of fish conservation in South African estuaries.

    PubMed

    Whitfield, A K; Cowley, P D

    2010-06-01

    Estuary-dependent fish species are defined as those taxa whose populations would be adversely affected by the loss of estuarine habitats. Of the 155 species regularly recorded in South African estuaries, only 32 (21%) are completely dependent on these systems, but this figure increases to 103 species (66%) if partially dependent taxa are included in the analysis. The conservation of fishes in estuaries on the subcontinent is threatened by a number of factors, including habitat degradation, disruption of essential ecological processes, hydrological manipulations, environmental pollution, overexploitation due to fishing activities and, more recently, climate change and the effects of introduced aquatic animals. Although major threats to fishes are usually linked to environmental degradation, there is increasing evidence that the stocks of certain fish species are overexploited or collapsed. Fish conservation and fisheries management does not depend on the implementation of a single action, but rather the co-ordination of a detailed plan, often in a multidisciplinary context. Some examples of innovative means of contributing to estuarine fish conservation in a South African context include the determination and implementation of the ecological freshwater requirements for estuaries, the zoning of estuaries for different uses and the recognition that the maintenance of ecological processes are vital to aquatic ecosystem health. Apart from the designation of protected areas, the main direct means of conserving fish species and stocks include habitat conservation, controls over fishing methods, effort, efficiency and seasonality, pollution control and the prevention of artificial manipulation of estuary mouths. Since becoming a democracy in 1994, environmental legislation, policy and institutional arrangements in South Africa have undergone some major changes, which, if fully implemented, will be very positive for fish conservation in estuaries on the subcontinent.

  6. Urban microbial ecology of a freshwater estuary of Lake Michigan.

    PubMed

    Fisher, Jenny C; Newton, Ryan J; Dila, Deborah K; McLellan, Sandra L

    Freshwater estuaries throughout the Great Lakes region receive stormwater runoff and riverine inputs from heavily urbanized population centers. While human and animal feces contained in this runoff are often the focus of source tracking investigations, non-fecal bacterial loads from soil, aerosols, urban infrastructure, and other sources are also transported to estuaries and lakes. We quantified and characterized this non-fecal urban microbial component using bacterial 16S rRNA gene sequences from sewage, stormwater, rivers, harbor/estuary, and the lake surrounding Milwaukee, WI, USA. Bacterial communities from each of these environments had a distinctive composition, but some community members were shared among environments. We used a statistical biomarker discovery tool to identify the components of the microbial community that were most strongly associated with stormwater and sewage to describe an "urban microbial signature," and measured the presence and relative abundance of these organisms in the rivers, estuary, and lake. This urban signature increased in magnitude in the estuary and harbor with increasing rainfall levels, and was more apparent in lake samples with closest proximity to the Milwaukee estuary. The dominant bacterial taxa in the urban signature were Acinetobacter, Aeromonas, and Pseudomonas, which are organisms associated with pipe infrastructure and soil and not typically found in pelagic freshwater environments. These taxa were highly abundant in stormwater and sewage, but sewage also contained a high abundance of Arcobacter and Trichococcus that appeared in lower abundance in stormwater outfalls and in trace amounts in aquatic environments. Urban signature organisms comprised 1.7% of estuary and harbor communities under baseflow conditions, 3.5% after rain, and >10% after a combined sewer overflow. With predicted increases in urbanization across the Great Lakes, further alteration of freshwater communities is likely to occur with potential

  7. Climate variability in an estuary: Effects of riverflow on San Francisco Bay

    USGS Publications Warehouse

    Peterson, David H.; Cayan, Daniel R.; Festa, John F.; Nichols, Frederic H.; Walters, Roy A.; Slack, James V.; Hager, Stephen E.; Schemel, Laurence E.; Peterson, David H.

    1989-01-01

    A simple conceptual model of estuarine variability in the context of climate forcing has been formulated using up to 65 years of estimated mean-monthly delta flow, the cumulative freshwater flow to San Francisco Bay from the Sacramento-San Joaquin River, and salinity observations near the mouth, head, mid-estuary, and coastal ocean. Variations in delta flow, the principal source of variability in the bay, originate from anomalous changes in northern and central California streamflow, much of which is linked to anomalous winter sea level pressure (“CPA”) in the eastern Pacific. In years when CPA is strongly negative, precipitation in the watershed is heavy, delta flow is high, and the bay's salinity is low; similarly, when CPA is strongly positive, precipitation is light, delta flow is low, and the bay's salinity is high. Thus the pattern of temporal variability in atmospheric pressure anomalies is reflected in the streamflow, then in delta flow, then in estuarine variability. Estuarine salinity can be characterized by river to ocean patterns in annual cycles of salinity in relation to delta flow. Salinity (total dissolved solids) data from the relatively pristine mountain streams of the Sierra Nevada show that for a given flow, one observes higher salinities during the rise in winter flow than on the decline. Salinity at locations throughout San Francisco Bay estuary are also higher during the rise in winter flow than the decline (because it takes a finite time for salinity to fully respond to changes in freshwater flow). In the coastal ocean, however, the annual pattern of sea surface salinity is reversed: lower salinities during the rise in winter flow than on the decline due to effects associated with spring upwelling. Delta flow in spring masks these effects of coastal upwelling on estuarine salinity, including near the mouth of the estuary and, in fact, explains in a statistical sense 86 percent of the variance in salinity at the mouth of the estuary. Some

  8. Model investigation overthrows assumptions of watershed research

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-04-01

    A 2009 study revealed serious flaws in a standard technique used by hydrological researchers to understand how changes in watershed land use affect stream flow behaviors, such as peak flows. The study caused academics and government agencies alike to rethink decades of watershed research and prompted Kuraś et al. to reinvestigate a number of long-standing assumptions in watershed research using a complex and well-validated computer model that accounts for a range of internal watershed dynamics and hydrologic processes. For the test site at 241 Creek in British Columbia, Canada, the authors found not only that deforestation increased the severity of floods but also that it had a scaling influence on both the magnitudes and frequencies of the floods. The model showed that the larger the flood, the more its magnitude was amplified by deforestation, with 10-to 100-year-return-period floods increasing in size by 9%-25%. Following a simulated removal of half of the watershed's trees, the authors found that 10-year-return-period floods occurred twice as often, while 100-year-return-period events became 5-6.7 times more frequent. This proportional relationship between the increase in flood magnitudes and frequencies following deforestation and the size of the flood runs counter to the prevailing wisdom in hydrological science.

  9. Community DECISIONS: stakeholder focused watershed planning.

    PubMed

    Bosch, Darrell; Pease, James; Wolfe, Mary Leigh; Zobel, Christopher; Osorio, Javier; Cobb, Tanya Denckla; Evanylo, Greg

    2012-12-15

    Successful watershed planning can be enhanced by stakeholder involvement in developing and implementing plans that reflect community goals and resource limitations. Community DECISIONS (Community Decision Support for Integrated, On-the-ground Nutrient Reduction Strategies) is a structured decision process to help stakeholders evaluate strategies that reduce watershed nutrient imbalances. A nutrient accounting algorithm and nutrient treatment database provide information on nutrient loadings and costs of alternative strategies to reduce loadings. Stakeholders were asked to formulate goals for the North Fork Shenandoah River Watershed in Virginia and select among strategies to achieve those goals. The Vector Analytic Hierarchy Process was used to rank strategies. Stakeholders preferred a Maximum strategy that included point source upgrades, riparian buffers, no-till corn silage, wheat cover, and bioretention filters in developed areas. Participants generally agreed that the process helped improve communication among stakeholders, was helpful for watershed planning, and should be used for TMDL (Total Maximum Daily Load) planning. Participants suggested more attention be paid to ensuring that all relevant issues are addressed and all information needed to make decisions is available. Watershed planning should provide stakeholders with clear scientific information about physical and socioeconomic processes. However, planning processes must give stakeholders adequate time to consider issues that may not have been addressed by existing scientific models and datasets.

  10. 76 FR 14924 - Takes of Marine Mammals Incidental to Specified Activities; Russian River Estuary Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... Specified Activities; Russian River Estuary Management Activities AGENCY: National Marine Fisheries Service... incidental to Russian River estuary management activities. Pursuant to the Marine Mammal Protection Act (MMPA... Channel Adaptive Management Plan. NMFS' Environmental Assessment (2010) and associated Finding of...

  11. CLASSIFYING OREGON ESTUARIES BY HABITAT: ANALYSIS OF EXISTING DATA AND A PROPOSAL FOR A PILOT STUDY

    EPA Science Inventory

    Because many estuarine resources are linked to benthic habitats, classification of estuaries by habitat types may prove a relevant approach for grouping estuaries with similar ecological values and vulnerability to landscape alterations. As a first step, we evaluated whether pub...

  12. Protect and Restore Mill Creek Watershed : Annual Report CY 2005.

    SciTech Connect

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

  13. Information Management for the Watershed Approach in the Pacific Northwest

    EPA Pesticide Factsheets

    A collection of interviews with leaders and key participants in the statewide watershed approach activities in the State of Washington. Additionally, there are reviews of Washington’s statewide watershed activities in a case study fashion.

  14. RESTORING SUBURBAN WATERSHEDS USING A MULTIDISCIPLINARY APPROACH TO STORMWATER MANAGEMENT

    EPA Science Inventory

    In mixed-use, suburban watersheds, stormwater runoff from impervious surfaces on both public and private property impairs stream ecosystems. Decentralized stormwater management, which distributes stormwater infiltration and retention devices throughout watersheds, is more effect...

  15. Watershed Modeling Recommendation Report for Lake Champlain TMDL

    EPA Pesticide Factsheets

    This report describes the recommended modeling approach for watershed modeling component of the Lake Champlain TMDL project. The report was prepared by Tetra Tech, with input from the Lake Champlain watershed analysis workgroup. (TetraTech, 2012a)

  16. An Environmental Assessment of United States Drinking Water Watersheds

    EPA Science Inventory

    There is an emerging recognition that natural lands and their conservation are important elements of a sustainable drinking water infrastructure. We conducted a national, watershed-level environmental assessment of drinking water watersheds using data on land cover, hydrography a...

  17. Watershed characterization and analysis using the VELMA model

    EPA Science Inventory

    We developed a broadly applicable watershed simulator – VELMA (Visualizing Ecosystem and Land Management Assessments) – to characterize hydrological and ecological processes essential to the healthy functioning of watersheds, and to identify best management practices ...

  18. SFA 2.0- Watershed Structure and Controls

    SciTech Connect

    Williams, Ken

    2015-01-23

    Berkeley Lab Earth Scientist Ken Williams explains the watershed research within the Sustainable Systems SFA 2.0 project—including identification and monitoring of primary factors that control watershed biogeochemical functioning.

  19. SFA 2.0- Watershed Structure and Controls

    ScienceCinema

    Williams, Ken

    2016-07-12

    Berkeley Lab Earth Scientist Ken Williams explains the watershed research within the Sustainable Systems SFA 2.0 project—including identification and monitoring of primary factors that control watershed biogeochemical functioning.

  20. Identifying and Classifying Pollution Hotspots to Guide Watershed Management in a Large Multiuse Watershed.

    PubMed

    Su, Fangli; Kaplan, David; Li, Lifeng; Li, Haifu; Song, Fei; Liu, Haisheng

    2017-03-03

    In many locations around the globe, large reservoir sustainability is threatened by land use change and direct pollution loading from the upstream watershed. However, the size and complexity of upstream basins makes the planning and implementation of watershed-scale pollution management a challenge. In this study, we established an evaluation system based on 17 factors, representing the potential point and non-point source pollutants and the environmental carrying capacity which are likely to affect the water quality in the Dahuofang Reservoir and watershed in northeastern China. We used entropy methods to rank 118 subwatersheds by their potential pollution threat and clustered subwatersheds according to the potential pollution type. Combining ranking and clustering analyses allowed us to suggest specific areas for prioritized watershed management (in particular, two subwatersheds with the greatest pollution potential) and to recommend the conservation of current practices in other less vulnerable locations (91 small watersheds with low pollution potential). Finally, we identified the factors most likely to influence the water quality of each of the 118 subwatersheds and suggested adaptive control measures for each location. These results provide a scientific basis for improving the watershed management and sustainability of the Dahuofang reservoir and a framework for identifying threats and prioritizing the management of watersheds of large reservoirs around the world.

  1. Identifying and Classifying Pollution Hotspots to Guide Watershed Management in a Large Multiuse Watershed

    PubMed Central

    Su, Fangli; Kaplan, David; Li, Lifeng; Li, Haifu; Song, Fei; Liu, Haisheng

    2017-01-01

    In many locations around the globe, large reservoir sustainability is threatened by land use change and direct pollution loading from the upstream watershed. However, the size and complexity of upstream basins makes the planning and implementation of watershed-scale pollution management a challenge. In this study, we established an evaluation system based on 17 factors, representing the potential point and non-point source pollutants and the environmental carrying capacity which are likely to affect the water quality in the Dahuofang Reservoir and watershed in northeastern China. We used entropy methods to rank 118 subwatersheds by their potential pollution threat and clustered subwatersheds according to the potential pollution type. Combining ranking and clustering analyses allowed us to suggest specific areas for prioritized watershed management (in particular, two subwatersheds with the greatest pollution potential) and to recommend the conservation of current practices in other less vulnerable locations (91 small watersheds with low pollution potential). Finally, we identified the factors most likely to influence the water quality of each of the 118 subwatersheds and suggested adaptive control measures for each location. These results provide a scientific basis for improving the watershed management and sustainability of the Dahuofang reservoir and a framework for identifying threats and prioritizing the management of watersheds of large reservoirs around the world. PMID:28273834

  2. Anguillicola crassus infection in Anguilla rostrata from small tributaries of the Hudson River watershed, New York, USA.

    PubMed

    Machut, L S; Limburg, K E

    2008-03-03

    We studied the invasion of the exotic nematode parasite Anguillicola crassus in the American eel Anguilla rostrata using tributaries of the Hudson River estuary. Yellow-phase American eels were sampled from 6 tributaries, and their swim bladders were examined for nematode infection. Prevalence averaged 39% with an intensity of 2.4 nematodes per eel. Parasite distribution was not significant along a latitudinal gradient; on the other hand, physical barriers (dams and natural waterfalls) significantly reduced infections upstream. Urbanization may increase the susceptibility of eels to infection; we found significantly elevated infection rates when urbanized lands exceeded 15% of the tributary catchment area. Yellow-phase eel condition was not affected by parasite infection. The invasion of the entire Hudson River watershed is ongoing and therefore will continue to be a management concern. Further analysis of the parasite-host interaction in North America is warranted.

  3. Dynamics of intertidal flats in the Loire estuary

    NASA Astrophysics Data System (ADS)

    Kervella, Stephane; Sottolichio, Aldo; Bertier, Christine

    2014-05-01

    Tidal flats form at the edges of many tidal estuaries, and are found in broad climatic regions. Their evolution plays a fundamental role in maintaining the morphodynamic equilibrium of an estuary. The Loire estuary is one of the largest macrotidal systems of the french atlantic coast. Since 200 years, its geometry has been drastically modified through channeling, deepening, embanking, infilling of secondary channels, etc. These works altered many intertidal areas. In the recent years, efforts for the rectification of the morphology have been made in order to restore the ecology of the estuary. In this context, it is crucial to better understand the dynamics of intertidal flats, still poorly understood in this estuary. The aim of this work is to analyse a series of original observations conducted for the first time in two intertidal flats of the central Lore estuary between 2008 and 2010. The tidal flats are situated in the northern bank, at 12 and 17 km upstream from the mouth respectively. Six Altus altimeters were deployed at two cross shore transects, measuring continuously and at a high-frequency bed altimetry and water level, providing information on tide and waves. At the semi-diurnal tidal scale, the surficial sediment of intertidal flats is permanently mobilized. Altimetry variations are low, and their amplitude varies as a function of tides and river flow. At the scale of several months, the sedimentation is controlled by the position of the turbidity maximum (and therefore by the river flow) and also by the tidal amplitude. During low river flow periods, altimetry variations are only due to tidal cycles. During decaying tides, suspended sediment settle mainly on the lower part of the tidal flats, forming fluid mud layers of several cm thick, which can consolidate rapidly; under rising tides, the increasing of tidal currents promotes erosion. During periods of high river flow, the turbidity maximum shifts to the lower estuary. The higher suspended sediment

  4. NYC Reservoirs Watershed Areas (HUC 12)

    EPA Pesticide Factsheets

    This NYC Reservoirs Watershed Areas (HUC 12) GIS layer was derived from the 12-Digit National Watershed Boundary Database (WBD) at 1:24,000 for EPA Region 2 and Surrounding States. HUC 12 polygons were selected from the source based on interactively comparing these HUC 12s in our GIS with images of the New York City's Water Supply System Map found at http://www.nyc.gov/html/dep/html/drinking_water/wsmaps_wide.shtml. The 12 digit Hydrologic Units (HUCs) for EPA Region 2 and surrounding states (Northeastern states, parts of the Great Lakes, Puerto Rico and the USVI) are a subset of the National Watershed Boundary Database (WBD), downloaded from the Natural Resources Conservation Service (NRCS) Geospatial Gateway and imported into the EPA Region 2 Oracle/SDE database. This layer reflects 2009 updates to the WBD that included new boundary data for New York and New Jersey.

  5. Watershed modeling and monitoring for assessing nutrient ...

    EPA Pesticide Factsheets

    Presentation for the American Water Works Association Water Sustainability Conference. The presentation highlights latest results from water quality trading research conducted by ORD using the East Fork Watershed in Southwestern Ohio as a case study. The watershed has a nutrient enrichment problem that is creating harmful algal blooms in a reservoir used for drinking water and recreation. Innovative modeling and monitoring is combined to understand how to best manage this water quality problem and costs associated with this endeavor. The presentation will provide an overview of the water quality trading feasibility research. The research includes the development and evaluation of innovative modeling and monitoring approaches to manage watersheds for nutrient pollution using a whole systems approach.

  6. Potential intertidal habitat restoration sites in the Duwamish River estuary

    SciTech Connect

    Tanner, C.D.

    1991-12-01

    Restoration of wetland habitats in highly urbanized areas is generally constrained by scarcity of opportunity, adverse impacts of surrounding land use, and cost. Although areal wetland losses approach 98% in Seattle's Duwamish River estuary, the system continues to support important salmonid runs, as well as a variety of bird and mammal species. Estuarine-dependent organisms are likely limited by quality and quantity of intertidal habitat in the system. Because the long-range, estuary-wide benefit of site-specific mitigation and restoration projects is limited, it is imperative to develop estuary-wide restoration plans. Towards this end, an inventory and analysis of potential intertidal habitat restoration sites has been completed for the Duwamish River estuary. Twenty-four sites, ranging in size from 0.8 to 25 acres were identified and comparative functional potential assessed. The majority of these sites (18) occur in the upper estuary. Two sites are located in Elliott Bay, and four are located near the historic mouth of the river in the vicinity of Harbor Island. Spatial data have been developed in geographic information system (GIS) format. Other site-specific data relative to habitat restoration has also been assembled.

  7. Antibiotic Resistance of Escherichia coli Serotypes from Cochin Estuary

    PubMed Central

    Sukumaran, Divya P.; Durairaj, Srinivasan; Abdulla, Mohamed Hatha

    2012-01-01

    This study aimed at detecting the prevalence of antibiotic-resistant serotypes of Escherichia coli in Cochin estuary, India. E. coli strains were isolated during the period January 2010–December 2011 from five different stations set at Cochin estuary. Water samples from five different stations in Cochin estuary were collected on a monthly basis for a period of two years. Isolates were serotyped, antibiogram-phenotyped for twelve antimicrobial agents, and genotyped by polymerase chain reaction for uid gene that codes for β-D-glucuronidase. These E. coli strains from Cochin estuary were tested against twelve antibiotics to determine the prevalence of multiple antibiotic resistance among them. The results revealed that more than 53.33% of the isolates were multiple antibiotic resistant. Thirteen isolates showed resistance to sulphonamides and two of them contained the sul 1 gene. Class 1 integrons were detected in two E. coli strains which were resistant to more than seven antibiotics. In the present study, O serotyping, antibiotic sensitivity, and polymerase chain reaction were employed with the purpose of establishing the present distribution of multiple antibiotic-resistant serotypes, associated with E. coli isolated from different parts of Cochin estuary. PMID:23008708

  8. Metals in sediments and benthic organisms in the Mersey estuary

    NASA Astrophysics Data System (ADS)

    Langston, W. J.

    1986-08-01

    Concentrations of twelve metals were determined in sediments, seaweed ( Fucus vesiculosus), winkles ( Littorina littorea), polychaetes ( Nereis diversicolor), suspension feeding bivalves ( Mytilus edulis, Cerastoderma edule) and deposit feeding bivalves ( Macoma balthica, Scrobicularia plana) collected from the Mersey estuary between April 1980 and June 1984. Sediments and organisms in the Mersey are moderately contaminated with most of the metals measured, but mercury concentrations are consistently higher than in other United Kingdom estuaries. Comparisons with other sites in the North West of England indicate that mercury residues in organisms, though primarily dependent on sediment concentrations, are also influenced by complexation with particulate organic matter which reduces the availability of mercury. The biological availability of arsenic in Mersey sediments is similarly influenced by complexation with iron oxyhydroxides. Nereis diversicolor and Macoma balthica are the most suitable indicator species in terms of abundance and widespread distribution along the estuary, and, for the majority of metals, tissue concentrations increase upstream, reflecting corresponding gradients in sediment contamination. However mid-estuarine peaks for tin, chromium copper and nickel in Nereis indicate more localised inputs to the estuary. Correlations between lead in sediments and organisms are poor; it is suggested that hydrophilic alkyl lead compounds may be the predominant biologically available forms. Progressive reductions in mercury contamination in sediments and mercury and lead in organisms have occurred in recent years, which coincide with efforts to reduce inputs of these metals to teh Mersey estuary.

  9. The behavior of dissolved inorganic selenium in the Changjiang Estuary

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Jing; Qu, Jianguo; Zhang, Guosen; Zhang, Anyu; Zhang, Ruifeng

    2016-02-01

    To investigate the behavior of inorganic selenium species in the Changjiang Estuary, samples were taken during summer (July 2011) and winter (March 2012). Dissolved inorganic selenium (DISe) concentrations averaged 1.79 nmol/L in summer and 1.24 nmol/L in winter; the average selenite [Se(IV)] to selenate [Se(VI)] ratio [Se(IV)/Se(VI)] was 0.42 in summer and 0.61 in winter. The data show that Se(IV) and Se(VI) concentrations in the estuary behaved strictly conservatively during winter but non-conservatively during summer due to adsorption by suspended particulate matter (SPM) and assimilation by phytoplankton. In addition, the Se concentration distributions in the Changjiang Estuary were controlled by three water masses, each with a specific Se(IV)/Se(VI) ratio "signature": the Changjiang Water input, the Taiwan Warm Current, and the Yellow Sea Coastal Current. The Se(IV) concentrations were related to the nitrate, silicate, and phosphate concentrations in the estuary. The DISe and Se(IV) concentrations were comparable to those found in other coastal regions and estuaries, which were considered to be natural levels.

  10. Grays River Watershed Restoration Status Report 2007, May 1, 2007 - October 30, 2008.

    SciTech Connect

    Hanrahan, Tim

    2008-10-20

    The Bonneville Power Administration (BPA) Project 2003-013-00, 'Grays River Watershed Restoration', began in FY04 and continues into FY09. This status report is intended to summarize accomplishments during the period 1 May 2007 through 30 October 2008. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). The Pacific Northwest National Laboratory (PNNL) is collaborating with the Columbia River Estuary Task Force (CREST) on implementation of the Grays River Restoration Project. The Grays River is vitally important to the recovery of Lower Columbia River (LCR) chum salmon because it currently has the most viable population remaining in the LCR region. The Grays River watershed is also important to the recovery of salmon and steelhead in the LCR ecosystem. Today, numbers of naturally spawning salmon and steelhead have declined to levels far below historical numbers because of habitat limiting factors that include but are not limited to the lack of habitat connectivity, diversity, channel stability, riparian function and altered stream flow conditions. The objective of this project is to restore habitat-forming processes to enhance salmon and steelhead populations in the Grays River, following recommendations developed during the FY04-06 BPA-sponsored Grays River Watershed Assessment (BPA Project No. 2003-013-00). Specifically, this project will be the first step in restoring channel structure and function that will increase instream habitat diversity, channel stability, and riparian integrity in the critical response reach upstream and adjacent to critical salmon spawning areas of the Grays River. The major component of this strategy is the planning, design, installation, and monitoring of engineered logjams (ELJ) that will rejuvenate historic channel and floodplain processes. Additional restoration measures include reforesting the riparian corridor to enhance future large woody debris

  11. DEVELOPMENT OF A WATERSHED-BASED MERCURY POLLUTION CHARACTERIZATION SYSTEM

    EPA Science Inventory

    To investigate total mercury loadings to streams in a watershed, we have developed a watershed-based source quantification model ? Watershed Mercury Characterization System. The system uses the grid-based GIS modeling technology to calculate total soil mercury concentrations and ...

  12. Understanding Human Impact: Second Graders Explore Watershed Dynamics

    ERIC Educational Resources Information Center

    Magruder, Robin; Rosenauer, Julia

    2016-01-01

    This article describes a second grade science enrichment unit with a focus on human impact, both positive and negative, on the living and nonliving components of the local watershed. Investigating the local watershed gave the unit a personal and pragmatic connection to students' lives because they depend on the local watershed for what they need…

  13. Upper Washita River Experimental Watersheds: Nutrient Water Quality Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water quality datasets were acquired by the USDA-ARS in three large research watersheds in Oklahoma: the Southern Great Plains Research Watershed (SGPRW), and the Little Washita River and Fort Cobb Reservoir Experimental Watersheds (LWREW and FCREW, respectively). Water quality data in the SGPRW we...

  14. Watershed Management Optimization Support Tool (WMOST) v2: Theoretical Documentation

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that evaluates the relative cost-effectiveness of management practices at the local or watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed c...

  15. Mapping Watershed Integrity for the Conterminous United States

    EPA Science Inventory

    Watersheds provide a variety of ecosystem services valued by society. Production of these services is partially a function of the degree to which watersheds are altered by human activities. In a recent manuscript, Flotemersch and others (in preparation), defined watershed integr...

  16. Wind River Watershed Restoration: 1999 Annual Report.

    SciTech Connect

    Connolly, Patrick J.

    2001-09-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  17. Understanding the watershed hydrology of tropical islands

    NASA Astrophysics Data System (ADS)

    Tsang, Y. P.; Strauch, A. M.

    2015-12-01

    Streams systems in Hawaii is unique comparing to systems in other places in the worlds. Besides its volcanic geology, its steep topography contributes to the flashiness of stream flow. The prevalent trade wind results in wet (windward) and dry (leeward) sides of island, which receive unequal amount of moisture for cloud formation. To better understand and describe the mechanism of forming stream flow in Hawaii, a series of hydrologic model, from simple to complex, were used to simulate stream flow on two pilot watershed. We first used a lumped-model, Thornthwaite Monthly Water Balance Model, to describe water budget of each watershed. Second, we used a non-spatial explicit model, topographic index model (TOPMODEL), to describe the surface and subsurface components that contribute to stream flow. Finally, we used a semi-distributed model, Soil and Water Assessment Tool (SWAT), to understand the different land use effect on stream flow. In particular, rainfall coverage was obtained from dynamic downscaling model and validated with observation. The spatial distribution of rainfall data were served as input for all models. Through these processes, we strategically dissected the components in contributing to stream flow within a watershed, and revealed the dominate mechanism and drivers of stream flow in the watersheds. We then compared the processes in forming stream flow in watersheds of windward and leeward side. The difference in the two watershed were presented and described. Ultimately, the successful building of flow models allows us to further describe the nutrient and sediment transport that affects both instream habitats and downstream estuarine and coastal system.

  18. A Simple Model of Nitrogen Concentration, Throughput, and Denitrification in Estuaries

    EPA Science Inventory

    The Estuary Nitrogen Model (ENM) is a mass balance model that includes calculation of nitrogen losses within bays and estuaries using system flushing time. The model has been used to demonstrate the dependence of throughput and denitrification of nitrogen in bays and estuaries on...

  19. An historical perspective on eutrophication in the Pensacola Bay Estuary, FL, USA

    EPA Science Inventory

    In this chapter, we provide a brief description of the Pensacola Bay estuary, examining the available historical data for evidence of trends in eutrophication within the estuary. Common to many industrialized estuaries, Pensacola Bay has been subjected to unregulated point source...

  20. A comparison of CO2 dynamics and air-water fluxes in a river-dominated estuary and a mangrove-dominated marine estuary

    NASA Astrophysics Data System (ADS)

    Akhand, Anirban; Chanda, Abhra; Manna, Sudip; Das, Sourav; Hazra, Sugata; Roy, Rajdeep; Choudhury, S. B.; Rao, K. H.; Dadhwal, V. K.; Chakraborty, Kunal; Mostofa, K. M. G.; Tokoro, T.; Kuwae, Tomohiro; Wanninkhof, Rik

    2016-11-01

    The fugacity of CO2 (fCO2 (water)) and air-water CO2 flux were compared between a river-dominated anthropogenically disturbed open estuary, the Hugli, and a comparatively pristine mangrove-dominated semiclosed marine estuary, the Matla, on the east coast of India. Annual mean salinity of the Hugli Estuary (≈7.1) was much less compared to the Matla Estuary (≈20.0). All the stations of the Hugli Estuary were highly supersaturated with CO2 (annual mean 2200 µatm), whereas the Matla was marginally oversaturated (annual mean 530 µatm). During the postmonsoon season, the outer station of the Matla Estuary was under saturated with respect to CO2 and acted as a sink. The annual mean CO2 emission from the Hugli Estuary (32.4 mol C m-2 yr-1) was 14 times higher than the Matla Estuary (2.3 mol C m-2 yr-1). CO2 efflux rate from the Hugli Estuary has increased drastically in the last decade, which is attributed to increased runoff from the river-dominated estuary.