Albert Einstein:. Opportunity and Perception
NASA Astrophysics Data System (ADS)
Yang, Chen Ning
2013-05-01
The year 1905 has been called Albert Einstein's "Annus Mirabilis." It was during that year that he caused revolutionary changes in man's primordial concepts about the physical world: space, time, energy, light and matter. How could a 26-year-old clerk, previously unknown, cause such profound conceptual changes, and thereby open the door to the era of modern scientific technological world? No one, of course, can answer that question. But one can, perhaps, analyze some factors that were essential to his stepping into such a historic role...
ERIC Educational Resources Information Center
Physics Today, 1979
1979-01-01
Celebrates the centennial of Einstein's birth with an eight-page pictorial biography and two special articles: (1) Einstein the catalyst; and (2) Unitary field theories. His special and general theories of relativity and his contributions to quantum physics and other topics are also presented. (HM)
Albert Einstein's Magic Mountain: An Aarau Education*
NASA Astrophysics Data System (ADS)
Hunziker, Herbert
2015-03-01
For economic reasons, the electrotechnical factory J. Einstein & Cie. (co-owned by Albert Einstein's father Hermann) had to be closed in the summer of 1894. While Albert's parents emigrated to Italy to build a new existence, he remained in Munich to complete his studies at the Gymnasium. Left behind, however, he had a difficult time with what he considered the rigid educational practices at the Munich Luitpold-Gymnasium and quit without a diploma. The present article discusses Einstein's richly winding path to the Aargau Cantonal School (Switzerland), especially its history and educational philosophy during the time of his stay in Aarau. There, Einstein met some outstanding teachers, who could serve him as models of scholars and human beings. In spite of Einstein's distinct independence of mind, these personalities may well have had a significant influence on the alignment of his inner compass.
Conversations With Albert Einstein. II
ERIC Educational Resources Information Center
Shankland, R. S.
1973-01-01
Discusses Einstein's views on the role of Michelson-Morley, Fizeau, and Miller experiments in the development of relativity and his attitude toward the theories of new quantum mechanics. Indicates that Einstein's opposition to quantum mechanics is beyond dispute. (CC)
[Albert Einstein and his abdominal aortic aneurysm].
Cervantes Castro, Jorge
2011-01-01
The interesting case of Albert Einstein's abdominal aortic aneurysm is presented. He was operated on at age 69 and, finding that the large aneurysm could not be removed, the surgeon elected to wrap it with cellophane to prevent its growth. However, seven years later the aneurysm ruptured and caused the death of the famous scientist.
Albert Einstein, Cosmos and Religion
NASA Astrophysics Data System (ADS)
Djokovic, V.; Grujic, P.
2007-06-01
We consider Einstein's attitude regarding religious as such, from both cosmological and epistemological points of view. An attempt to put it into a wider socio-historical perspective was made, with the emphasis on ethnic and religious background. It turns out that the great scientist was neither atheist nor believer in the orthodox sense and the closest labels one might stick to him in this respect would be pantheism/cosmism (ontological aspect) and agnosticism (epistemological aspect). His ideas on divine could be considered as a continuation of line traced by Philo of Alexandria, who himself followed Greek Stoics and (Neo-) Platonists and especially Baruch Spinoza. It turns out that Einstein's both scientific (rational aspects) and religious (intuitive aspects) thinking were deeply rooted in the Hellenic culture. His striving to unravel the secrets of the universe and the roots of cosmological order resembles much the ancient ideas of the role of knowledge in fathoming the divine as such, as ascribed to Gnostics.
Albert Einstein - And the Frontiers of Physics
NASA Astrophysics Data System (ADS)
Bernstein, Jeremy
1997-11-01
Albert Einstein did not impress his first teachers. They found him a dreamy child without an especially promising future. But some time in his early years he developed what he called "wonder" about the world. Later in life, he remembered two instances from his childhood--his fascination at age five with a compass and his introduction to the lucidity and certainty of geometry--that may have been the first signs of what was to come. From these ordinary beginnings, Einstein became one of the greatest scientific thinkers of all time. This illuminating biography describes in understandable language the experiments and revolutionary theories that flowed from Einstein's imagination and intellect--from his theory of relativity, which changed our conception of the universe and our place in it, to his search for a unified field theory that would explain all of the forces in the universe.
New Information about Albert Einstein's Brain.
Falk, Dean
2009-01-01
In order to glean information about hominin (or other) brains that no longer exist, details of external neuroanatomy that are reproduced on endocranial casts (endocasts) from fossilized braincases may be described and interpreted. Despite being, of necessity, speculative, such studies can be very informative when conducted in light of the literature on comparative neuroanatomy, paleontology, and functional imaging studies. Albert Einstein's brain no longer exists in an intact state, but there are photographs of it in various views. Applying techniques developed from paleoanthropology, previously unrecognized details of external neuroanatomy are identified on these photographs. This information should be of interest to paleoneurologists, comparative neuroanatomists, historians of science, and cognitive neuroscientists. The new identifications of cortical features should also be archived for future scholars who will have access to additional information from improved functional imaging technology. Meanwhile, to the extent possible, Einstein's cerebral cortex is investigated in light of available data about variation in human sulcal patterns. Although much of his cortical surface was unremarkable, regions in and near Einstein's primary somatosensory and motor cortices were unusual. It is possible that these atypical aspects of Einstein's cerebral cortex were related to the difficulty with which he acquired language, his preference for thinking in sensory impressions including visual images rather than words, and his early training on the violin.
General Motors sued for 'denigrating' Einstein's image
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2010-07-01
The US car giant General Motors (GM) has played down the consequences of a lawsuit against it for using the likeness of Albert Einstein in an advertisement for its Terrain sports utility vehicle (SUV).
Albert Einstein and LD: An Evaluation of the Evidence.
ERIC Educational Resources Information Center
Thomas, Marlin
2000-01-01
This article refutes claims that Albert Einstein had a learning disability and argues the claim derives its force not from evidence but from belief that the greatest among us suffer from some impairment and from desire to enhance the status of a marginalized group by including exceptional individuals. (Contains references.) (Author/CR)
Albert Einstein: Radical Pacifist and Democrat
NASA Astrophysics Data System (ADS)
Jayaraman, T.
We draw attention here to the radical political grounding of Einstein's pacifism. We also drescribe some less commonly known aspects of his commitment to civil liberties, particularly in the context of the anti-l hysteria and anti-racism current in the United States of the late 1940s and 1950s. We also examine briefly his views on socialism.
Albert Einstein and the Quantum Riddle
ERIC Educational Resources Information Center
Lande, Alfred
1974-01-01
Derives a systematic structure contributing to the solution of the quantum riddle in Einstein's sense by deducing quantum mechanics from the postulates of symmetry, correspondence, and covariance. Indicates that the systematic presentation is in agreement with quantum mechanics established by Schroedinger, Born, and Heisenberg. (CC)
Albert Einstein and LD: an evaluation of the evidence.
Thomas, M
2000-01-01
Historical figures suspected of having learning disabilities are often subjected to retrospective diagnoses. One such figure is Albert Einstein. Several organizations that promote the interests of individuals with learning disabilities claim that Einstein had a learning disability. A review of biographical sources, however, provides little or no evidence to support this claim. The claim derives its force not from evidence but from a powerful belief--that the greatest among us suffer from some impairment--and from an equally powerful desire to enhance the status of a marginalized group by including within it exceptional individuals.
Albert Einstein and Friedrich Dessauer: Political Views and Political Practice
NASA Astrophysics Data System (ADS)
Goenner, Hubert
In this case study I compare the political views of the physicists Albert Einstein and Friedrich Dessauer between the first and second world wars, and I investigate their translation into concrete political practice. Both departed from their roles as experts in physics in favor of political engagement. The essence of Einstein's political practice seems to have been a form of political participation in exerting moral influence on people and organizations through public declarations and appeals in isolation from political mass movements. Dessauer exerted political influence both through public office (as a member of Parliament for the Catholic Center Party) and by acquiring a newspaper. The different political practice of both Einstein and Dessauer were unsuccessful in thwarting the Nazi takeover.
Paul Ehrenfest, Niels Bohr, and Albert Einstein: Colleagues and Friends
NASA Astrophysics Data System (ADS)
Klein, Martin J.
2010-09-01
In May 1918 Paul Ehrenfest received a monograph from Niels Bohr in which Bohr had used Ehrenfest's adiabatic principle as an essential assumption for understanding atomic structure. Ehrenfest responded by inviting Bohr, whom he had never met, to give a talk at a meeting in Leiden in late April 1919, which Bohr accepted; he lived with Ehrenfest, his mathematician wife Tatyana, and their young family for two weeks. Albert Einstein was unable to attend this meeting, but in October 1919 he visited his old friend Ehrenfest and his family in Leiden, where Ehrenfest told him how much he had enjoyed and profited from Bohr's visit. Einstein first met Bohr when Bohr gave a lecture in Berlin at the end of April 1920, and the two immediately proclaimed unbounded admiration for each other as physicists and as human beings. Ehrenfest hoped that he and they would meet at the Third Solvay Conference in Brussels in early April 1921, but his hope was unfulfilled. Einstein, the only physicist from Germany who was invited to it in this bitter postwar atmosphere, decided instead to accompany Chaim Weizmann on a trip to the United States to help raise money for the new Hebrew University in Jerusalem. Bohr became so overworked with the planning and construction of his new Institute for Theoretical Physics in Copenhagen that he could only draft the first part of his Solvay report and ask Ehrenfest to present it, which Ehrenfest agreed to do following the presentation of his own report. After recovering his strength, Bohr invited Ehrenfest to give a lecture in Copenhagen that fall, and Ehrenfest, battling his deep-seated self-doubts, spent three weeks in Copenhagen in December 1921 accompanied by his daughter Tanya and her future husband, the two Ehrenfests staying with the Bohrs in their apartment in Bohr's new Institute for Theoretical Physics. Immediately after leaving Copenhagen, Ehrenfest wrote to Einstein, telling him once again that Bohr was a prodigious physicist, and again
Albert Einstein and his mentor Max Talmey. The seventh Charles B. Snyder Lecture.
Ravin, J G
1997-01-01
While he was a student at the Munich medical school, Max Talmey strongly influenced the education of Albert Einstein. Their association occurred during five years of Einstein's second decade. They lost contact for many years after each left Munich. Talmey emigrated to the United States and practiced medicine, mainly ophthalmology, in New York City. He made significant contributions to medicine, to the popularization of Einstein's work, and to the development of international languages. The relationship of Talmey and Einstein was rekindled when Einstein visited and later moved to the United States.
Coherence, Abstraction, and Personal Involvement: Albert Einstein, Physicist and Humanist.
ERIC Educational Resources Information Center
Ne'eman, Yuval
1979-01-01
Reviews Einstein's main contributions to physics, and analyzes the importance of a coherent body of theory. Einstein's involvement in nonscientific issues such as nuclear disarmament is also included. (HM)
NASA Astrophysics Data System (ADS)
van Dongen, Jeroen
2012-06-01
Albert Einstein accepted a "special" visiting professorship at the University of Leiden in the Netherlands in February 1920. Although his appointment should have been a mere formality, it took until October of that year before Einstein could occupy his special chair. Why the delay? The explanation involves a case of mistaken identity with Carl Einstein, Dadaist art, and a particular Dutch fear of revolutions. But what revolutions was one afraid of? The story of Einstein's Leiden chair throws new light on the reception of relativity and its creator in the Netherlands and in Germany.
Kapon, Shulamit
2014-11-01
This article presents an analysis of a scientific article written by Albert Einstein in 1946 for the general public that explains the equivalence of mass and energy and discusses the implications of this principle. It is argued that an intelligent popularization of many advanced ideas in physics requires more than the simple elimination of mathematical formalisms and complicated scientific conceptions. Rather, it is shown that Einstein developed an alternative argument for the general public that bypasses the core of the formal derivation of the equivalence of mass and energy to provide a sense of derivation based on the history of science and the nature of scientific inquiry. This alternative argument is supported and enhanced by variety of explanatory devices orchestrated to coherently support and promote the reader's understanding. The discussion centers on comparisons to other scientific expositions written by Einstein for the general public.
[ISO 9002 at the Center of Pediatric Intensive Care at the Albert Einstein Israeli Hospital].
Gé Lacerda, D P; Rocha, M L; Santos, R P
2000-01-01
This study shows the process of implementation of a quality program in Pediatric Intensive Therapy Center of "Hospital Israelita Albert Einstein" which resulted in the certification of this service for the Standards ISO 9002/94. It points out the nurse's role as a leader in this process.
The Gendering of Albert Einstein and Marie Curie in Children's Biographies: Some Tensions
ERIC Educational Resources Information Center
Wilson, Rachel E.; Jarrard, Amber R.; Tippins, Deborah J.
2009-01-01
Few twentieth century scientists have generated as much interest as Albert Einstein and Marie Currie. Their lives are centrally depicted in numerous children's biographies of famous scientists. Yet their stories reflect interesting paradoxes and tacit sets of unexplored sociocultural assumptions about gender in science education and the larger…
Alterations in cortical thickness and neuronal density in the frontal cortex of Albert Einstein.
Anderson, B; Harvey, T
1996-06-07
Neuronal density, neuron size, and the number of neurons under 1 mm2 of cerebral cortical surface area were measured in the right pre-frontal cortex of Albert Einstein and five elderly control subjects. Measurement of neuronal density used the optical dissector technique on celloidin-embedded cresyl violet-stained sections. The neurons counted provided a systematic random sample for the measurement of cell body cross-sectional area. Einstein's cortex did not differ from the control subjects in the number of neurons under 1 mm2 of cerebral cortex or in mean neuronal size. Because Einstein's cortex was thinner than the controls he had a greater neuronal density.
What about Albert Einstein? Using Biographies to Promote Students' Scientific Thinking
ERIC Educational Resources Information Center
Fingon, Joan C.; Fingon, Shallon D.
2009-01-01
Who hasn't heard of Einstein? Science educators everywhere are familiar with Einstein's genius and general theory of relativity. Students easily recognize Einstein's image by his white flyaway hair and bushy mustache. It is well known that Einstein was a brilliant physicist and an abstract thinker who often used his creativity and imagination in…
Albert Einstein's Personal Papers: A Physics Teaching Resource.
ERIC Educational Resources Information Center
Derman, Samuel
2000-01-01
Presents the concept of using Einstein the man as a way of generating interest in the study of physics among students. Finds that it provides an instantly recognizable face for science, thus a gateway to the subject through the discussion of the man. (Author/CCM)
Implementing competency based admissions at the Albert Einstein College of Medicine.
Kerrigan, Noreen; Akabas, Myles H; Betzler, Thomas F; Castaldi, Maria; Kelly, Mary S; Levy, Adam S; Reichgott, Michael J; Ruberman, Louise; Dolan, Siobhan M
2016-01-01
The Albert Einstein College of Medicine (Einstein) was founded in 1955 during an era of limited access to medical school for women, racial minorities, and many religious and ethnic groups. Located in the Bronx, NY, Einstein seeks to educate physicians in an environment of state-of-the-art scientific inquiry while simultaneously fulfilling a deep commitment to serve its community by providing the highest quality clinical care. A founding principle of Einstein, the basis upon which Professor Einstein agreed to allow the use of his name, was that admission to the student body would be based entirely on merit. To accomplish this, Einstein has long used a 'holistic' approach to the evaluation of its applicants, actively seeking a diverse student body. More recently, in order to improve its ability to identify students with the potential to be outstanding physicians, who will both advance medical knowledge and serve the pressing health needs of a diverse community, the Committee on Admissions reexamined and restructured the requirements for admission. These have now been categorized as four 'Admissions Competencies' that an applicant must demonstrate. They include: 1) cocurricular activities and relevant experiences; 2) communication skills; 3) personal and professional development; and 4) knowledge. The purpose of this article is to describe the process that resulted in the introduction and implementation of this competency based approach to the admission process.
Implementing competency based admissions at the Albert Einstein College of Medicine
Kerrigan, Noreen; Akabas, Myles H.; Betzler, Thomas F.; Castaldi, Maria; Kelly, Mary S.; Levy, Adam S.; Reichgott, Michael J.; Ruberman, Louise; Dolan, Siobhan M.
2016-01-01
The Albert Einstein College of Medicine (Einstein) was founded in 1955 during an era of limited access to medical school for women, racial minorities, and many religious and ethnic groups. Located in the Bronx, NY, Einstein seeks to educate physicians in an environment of state-of-the-art scientific inquiry while simultaneously fulfilling a deep commitment to serve its community by providing the highest quality clinical care. A founding principle of Einstein, the basis upon which Professor Einstein agreed to allow the use of his name, was that admission to the student body would be based entirely on merit. To accomplish this, Einstein has long used a ‘holistic’ approach to the evaluation of its applicants, actively seeking a diverse student body. More recently, in order to improve its ability to identify students with the potential to be outstanding physicians, who will both advance medical knowledge and serve the pressing health needs of a diverse community, the Committee on Admissions reexamined and restructured the requirements for admission. These have now been categorized as four ‘Admissions Competencies’ that an applicant must demonstrate. They include: 1) cocurricular activities and relevant experiences; 2) communication skills; 3) personal and professional development; and 4) knowledge. The purpose of this article is to describe the process that resulted in the introduction and implementation of this competency based approach to the admission process. PMID:26847852
Falk, Dean; Lepore, Frederick E; Noe, Adrianne
2013-04-01
Upon his death in 1955, Albert Einstein's brain was removed, fixed and photographed from multiple angles. It was then sectioned into 240 blocks, and histological slides were prepared. At the time, a roadmap was drawn that illustrates the location within the brain of each block and its associated slides. Here we describe the external gross neuroanatomy of Einstein's entire cerebral cortex from 14 recently discovered photographs, most of which were taken from unconventional angles. Two of the photographs reveal sulcal patterns of the medial surfaces of the hemispheres, and another shows the neuroanatomy of the right (exposed) insula. Most of Einstein's sulci are identified, and sulcal patterns in various parts of the brain are compared with those of 85 human brains that have been described in the literature. To the extent currently possible, unusual features of Einstein's brain are tentatively interpreted in light of what is known about the evolution of higher cognitive processes in humans. As an aid to future investigators, these (and other) features are correlated with blocks on the roadmap (and therefore histological slides). Einstein's brain has an extraordinary prefrontal cortex, which may have contributed to the neurological substrates for some of his remarkable cognitive abilities. The primary somatosensory and motor cortices near the regions that typically represent face and tongue are greatly expanded in the left hemisphere. Einstein's parietal lobes are also unusual and may have provided some of the neurological underpinnings for his visuospatial and mathematical skills, as others have hypothesized. Einstein's brain has typical frontal and occipital shape asymmetries (petalias) and grossly asymmetrical inferior and superior parietal lobules. Contrary to the literature, Einstein's brain is not spherical, does not lack parietal opercula and has non-confluent Sylvian and inferior postcentral sulci.
NASA Astrophysics Data System (ADS)
Straumann, Norbert
2007-10-01
During the 'World Year of Physics' much has been written on the epoch-making 1905 papers of Albert Einstein and his later great contributions to physics. Why another book on the enormous impact of Einstein's work on 20th-century physics? The short answer is that the present collection of 13 relatively short essays on the legacy of Einstein by outstanding scientists is very pleasant to read and should be of interest to physicists of all branches. Beside looking back, most articles present later and topical developments, whose initiation began with the work of Einstein. During the year 2005, the growing recognition among physicists, historians, and philosophers of Einstein's revolutionary role in quantum theory was often emphasized. It is truly astonishing that most active physicists were largely unaware of this before. Fortunately, the article 'Einstein and the quantum' by V Singh puts the subject in perspective and describes all the main steps, beginning with the truly revolutionary 1905 paper on the light-quantum hypothesis and ending with Einstein's extension of the particle-wave duality to atoms and other particles in 1924 1925. The only point which, in my opinion, is not sufficiently emphasized in the discussion of the 1916 1917 papers on absorption and emission of radiation is the part on the momentum transfer in each elementary process. Einstein's result that there is a directed recoil hν/c—also for spontaneous emission—in complete contrast to classical theory, was particularly important to him. I enjoyed reading the articles on Brownian motion (S Majumdar), Bose Einstein condensation (N Kumar) and strongly correlated electrons (T Ramakrishnan), which are all written for non-experts. Connected with Einstein's most lasting work—general relativity—there are two articles on cosmology. The one by J Narlikar gives a brief historical account of the development that was initiated by the 1917 paper of Einstein. S Sarkar's essay emphasizes the remarkable
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Energy and Natural Resources.
This document contains the text of the "Albert Einstein Distinguished Educators Fellowship Act of 1994" (S. 2104) along with related analysis. The bill establishes a Department of Energy (DOE) fellowship program for math and science teachers that provides them opportunities to work at DOE labs in order to enhance coordination and…
Brunner, A
2009-03-01
Albert Einstein, the genius--this aspect often has been noted. A neglected aspect is Einstein's role as student and teacher. For this reason, Einstein's notes have been looked at once again. The selected original quotes are composed into the format of a fictive dialogue. The original context and coherence of his comments have thereby been respected carefully.
Beyond Einstein's General Relativity
NASA Astrophysics Data System (ADS)
Lobo, Francisco S. N.
2015-04-01
Modern astrophysical and cosmological models are plagued with two severe theoretical difficulties, namely, the dark energy and the dark matter problems. Relative to the former, high-precision observational data have confirmed with startling evidence that the Universe is undergoing a phase of accelerated expansion. This phase, one of the most important and challenging current problems in cosmology, represents a new imbalance in the governing gravitational equations. Several candidates, responsible for this expansion, have been proposed in the literature, in particular, dark energy models and modified gravity, amongst others. Outstanding questions are related to the nature of this so-called “dark energy” that is driving the acceleration of the universe, and whether it is due to the vacuum energy or a dynamical field. On the other hand, the late-time cosmic acceleration may be due to modifications of General Relativity, which introduce new degrees of freedom to the gravitational sector itself. We analyze some of the modified theories of gravity that address these intriguing and exciting problems facing modern physics, and explore the foundations of gravitation theory, essential for the construction of modified theories of gravity.
NASA Astrophysics Data System (ADS)
Winterberg, Friedwardt
2008-04-01
It was Albert Einstein who for the first time changed our view of the universe to be a non-euclidean curved space-time. And it was Wernher von Braun who blazed the trail to take us into this universe, leaving for the first time the gravitational field of our planet earth, with the landing a man on the moon the greatest event in human history. Both these great physicists did this on the shoulders of giants. Albert Einstein on the shoulders of his landsman, the mathematician Bernhard Riemann, and Wernher von Braun on the shoulders of Goddard and Oberth. Both Einstein and von Braun made a Faustian pact with the devil, von Braun by accepting research funds from Hitler, and Einstein by urging Roosvelt to build the atom bomb (against Hitler). Both of these great men later regretted the use of their work for the killing of innocent bystanders, even though in the end the invention of nuclear energy and space flight is for the benefit of man. Their example serves as a warning for all of us. It can be formulated as follows: ``Can I in good conscience accept research funds from the military to advance scientific knowledge, for weapons developed against an abstract enemy I never have met in person?'' Weapons if used do not differentiate between the scientist, who invented these weapons, and the non-scientist.
NASA Astrophysics Data System (ADS)
Grundmann, Siegfried
Referring to the Straus-Herrmann correspondence, we deal only with one aspect of the ``political Einstein'': his attitude towards Marx, Engels, Lenin and Stalin (who were in the past sometimes called the ``classics of Marxism-Leninism''). Einstein revered Marx, but condemned Stalin as a criminal. He also resisted attempts to be misused by representatives of ``dialectic materialism''.
Anderson, Belinda J; Herron, Patrick D; Downie, Sherry A; Myers, Daniel C; Milan, Felise B; Olson, Todd R; Kligler, Ben E; Sierpina, Victor S; Kreitzer, Mary Jo
2012-01-01
The growing popularity of complementary and alternative medicine (CAM), of which estimated 38% of adults in the United States used in 2007, has engendered changes in medical school curricula to increase students' awareness of it. Exchange programs between conventional medical schools and CAM institutions are recognized as an effective method of interprofessional education. The exchange program between Albert Einstein College of Medicine (Einstein, Yeshiva University) and Pacific College of Oriental Medicine, New York campus (PCOM-NY) is in its fifth year and is part of a broader relationship between the schools encompassing research, clinical training, interinstitutional faculty and board appointments, and several educational activities. The Einstein/PCOM-NY student education exchange program is part of the Einstein Introduction to Clinical Medicine Program and involves students from Einstein learning about Chinese medicine through a lecture, the experience of having acupuncture, and a four-hour preceptorship at the PCOM outpatient clinic. The students from PCOM learn about allopathic medicine training through an orientation lecture, a two-and-a-half-hour dissection laboratory session along side Einstein student hosts, and a tour of the clinical skills center at the Einstein campus. In the 2011/2012 offering of the exchange program, the participating Einstein and PCOM students were surveyed to assess the educational outcomes. The data indicate that the exchange program was highly valued by all students and provided a unique learning experience. Survey responses from the Einstein students indicated the need for greater emphasis on referral information, which has been highlighted in the literature as an important medical curriculum integrative medicine competency.
Einstein and General Relativity: Historical Perspectives.
ERIC Educational Resources Information Center
Chandrasekhar, S.
1979-01-01
This paper presented in the 1978 Oppenheimer Memorial Lecture at Los Alamos Scientific Laboratories on August 17, 1978, discusses Einstein's contributions to physics, in particular, his discovery of the general theory of relativity. (HM)
The Creative Power of Formal Analogies in Physics: The Case of Albert Einstein
NASA Astrophysics Data System (ADS)
Gingras, Yves
2015-07-01
In order to show how formal analogies between different physical systems play an important conceptual work in physics, this paper analyzes the evolution of Einstein's thoughts on the structure of radiation from the point of view of the formal analogies he used as "lenses" to "see" through the "black box" of Planck's blackbody radiation law. A comparison is also made with his 1925 paper on the quantum gas where he used the same formal methods. Changes of formal points of view are most of the time taken for granted or passed over in silence in studies on the mathematization of physics as if they had no special significance. Revisiting Einstein's classic papers on the nature of light and matter from the angle of the various theoretical tools he used, namely entropy and energy fluctuation calculations, helps explain why he was in a unique position to make visible the particle structure of radiation and the dual (particle and wave) nature of light and matter. Finally, this case study calls attention to the more general question of the surprising creative power of formal analogies and their frequent use in theoretical physics. This aspect of intellectual creation can be useful in the teaching of physics.
Walter C. Williams with Brig. General Albert Boyd
NASA Technical Reports Server (NTRS)
1950-01-01
Walter C. Williams, (behind airplane model) Head of the National Advisory Committee for Aeronautics High-Speed Flight Research Station at Edwards Air Force Base in California is examining a Northrop X-4 research airplane with Brig. Gen. Albert Boyd, Commander of Edwards Air Force Base. At Edwards, the Air Force Air Material Command ran a brief program on the X-4 during the summer of 1950 before delivering it to the NACA. Data was collected on these 14 flights, so they were logged as NACA test flights. General Boyd made flight number 13. Air Force and NACA pilots completed a total of 82 flights on X-4 #2 (46-677) between August 1950 and September 1953. There are three things that made the Mojave Desert, where Edwards Air Force Base is located, so well suited for flight research. The first was the area's flying conditions--clear skies with great visibility almost every day of the year. The second was the 44-square-mile Rogers Dry Lake, a natural landing site that General Boyd referred to as 'God's gift to the Air Force.' The third was the unpopulated area surrounding the lakebed, which led to fewer complaints about aircraft noise (including sonic booms) than would have occurred in more populated areas. There was also less chance of injury to the surrounding population in the event of an aircraft accident.
Martínez-Frías, Jesús; Hochberg, David; Rull, Fernando
2006-02-01
The World Year of Physics (2005) is an international celebration to commemorate the 100th anniversary of Einstein's "Annus Mirabilis." The United Nations has officially declared 2005 as the International Year of Physics. However, the impact of Einstein's ideas was not restricted to physics. Among numerous other disciplines, Einstein also made significant and specific contributions to Earth Sciences. His geosciences-related letters, comments, and scientific articles are dispersed, not easily accessible, and are poorly known. The present review attempts to integrate them as a tribute to Einstein in commemoration of this centenary. These contributions can be classified into three basic areas: geodynamics, geological (planetary) catastrophism, and fluvial geomorphology. Regarding geodynamics, Einstein essentially supported Hapgood's very controversial theory called Earth Crust Displacement. With respect to geological (planetary) catastrophism, it is shown how the ideas of Einstein about Velikovsky's proposals evolved from 1946 to 1955. Finally, in relation to fluvial geodynamics, the review incorporates the elegant work in which Einstein explains the formation of meandering rivers. A general analysis of his contributions is also carried out from today's perspective. Given the interdisciplinarity and implications of Einstein's achievements to multiple fields of knowledge, we propose that the year 2005 serve, rather than to confine his universal figure within a specific scientific area, to broaden it for a better appreciation of this brilliant scientist in all of his dimensions.
Hypermass generalization of Einstein's gravitation theory
NASA Technical Reports Server (NTRS)
Edmonds, J. D., Jr.
1973-01-01
The curvilinear invariant quaternion formalism is examined for curved space time. Einstein's gravitation equation is shown to have a simple and natural form in this notation. The hypermass generalization of particle mass, which was generated in our studies of the Dirac equation, is incorporated in gravitation by generalizing Einstein's equation. Covariance requires that the gravitational constant be generalized to an invariant quaternion when the mass is. The modification appears minor and of no importance cosmologically, unless one begins considering time and mass dependence of G.
Albert Ellis Revisited: Vague, General or Mild Religion.
ERIC Educational Resources Information Center
Floyd, William A.
1984-01-01
Discusses the writings of Albert Ellis dealing with religion and psychotherapy. Advocates a liberal form of theism in which (1) the use of symbolism and ritual are stressed; (2) faith is taken seriously but not as history or science; and (3) the importance of theology is affirmed. (JAC)
Mehra, J.
1987-05-01
In this paper, the main outlines of the discussions between Niels Bohr with Albert Einstein, Werner Heisenberg, and Erwin Schroedinger during 1920-1927 are treated. From the formulation of quantum mechanics in 1925-1926 and wave mechanics in 1926, there emerged Born's statistical interpretation of the wave function in summer 1926, and on the basis of the quantum mechanical transformation theory - formulated in fall 1926 by Dirac, London, and Jordan - Heisenberg formulated the uncertainty principle in early 1927. At the Volta Conference in Como in September 1927 and at the fifth Solvay Conference in Brussels the following month, Bohr publicly enunciated his complementarity principle, which had been developing in his mind for several years. The Bohr-Einstein discussions about the consistency and completeness of quantum mechanics and of physical theory as such - formally begun in October 1927 at the fifth Solvay Conference and carried on at the sixth Solvay Conference in October 1930 - were continued during the next decades. All these aspects are briefly summarized.
NASA Astrophysics Data System (ADS)
Wielen, Roland; Wielen, Ute
August Kopff (1882-1960) was one of the most eminent German astronomers of his time with a high international reputation. He started his career at the Heidelberg Observatory. In addition to carrying out observations he worked on the theory of relativity. From 1919 to 1924 he gave lectures on special and general relativity at the University of Heidelberg. In 1921 and 1923 he published a scientific textbook on the theory of relativity, which was also translated into English, Italian and Russian. He also wrote many related journal articles. In 1922 he was a member of a solar-eclipse expedition for measuring the light deflection by the Sun. In 1928, a large textbook article by him on relativity theory was published. From 1924 to 1954 Kopff was director of the Astronomisches Rechen-Institut, first at Berlin and since 1945 in Heidelberg. There he worked mainly on astrometry, especially on the fundamental catalogues FK3 and FK4. From 1947 to 1950 Kopff was also director of the observatory in Heidelberg. An exchange of letters between Kopff and Einstein from the year 1930 is documented in the Albert Einstein Archives. Two original letters by Einstein survived in the archives of the Astronomisches Rechen-Institut. We edit here this correspondence, which concerns the dynamical evolution of the Earth-Moon system and of the planetary system due to tidal friction.
The Creative Power of Formal Analogies in Physics: The Case of Albert Einstein
ERIC Educational Resources Information Center
Gingras, Yves
2015-01-01
In order to show how formal analogies between different physical systems play an important conceptual work in physics, this paper analyzes the evolution of Einstein's thoughts on the structure of radiation from the point of view of the formal analogies he used as "lenses" to "see" through the "black box" of Planck's…
Walther Nernst, Albert Einstein, Otto Stern, and the Specific Heat of Hydrogen.
NASA Astrophysics Data System (ADS)
Gearhart, Clayton
2007-04-01
In 1911, the German physical chemist Walther Nernst observed that the new quantum theory might both clarify unresolved problems in the specific heats of gases and shed new light on quantum theory itself. He noted that measurements of the specific heat of hydrogen gas at low temperatures might be particularly informative. Arnold Euken, working in Nernst's laboratory in Berlin, published the first measurements in 1912. They showed a sharp drop, corresponding to the rotational degrees of freedom ``freezing out.'' Nernst also developed a theory in his 1911 paper, in which, remarkably, rotational energies were not quantized. Instead, the specific heat fell off because the gas was in equilibrium with quantized Planck oscillators. Nernst's theory was flawed But Einstein adopted an improved version at the 1911 Solvay Conference, and in 1913, he and Otto Stern published a more detailed treatment, in which they suggested tentatively that Planck's recently introduced zero-point energy might reduce or even eliminate the need to quantize physical systems. This episode points out just how mysterious quantum phenomena seemed early in the 20th century.
NASA Astrophysics Data System (ADS)
Singer, Georg
Einstein's treatment of the cosmological problem as well as his unshakeable adherence to his own static solution of the complete field equations was throughout determined by Ernst Mach's idea of relativity of inertia. Friedmann, however, like Eddington, Weyl and others did not consider Mach's principle to be a part of general relativity, and so he regarded a time dependent developing spatial geometry as being consistent with world matter at relative rest. In his final statement to the controversy, Einstein acknowledged just formal correctness of Friedmann's results. Actually his criticism was not due ``to a miscalculation'', as he was ready to admit, but was owed to a fundamental fixed idea which continued to exist and which was the cause of his disavowal of physical significance of dynamical solutions.
Einstein for Schools and the General Public
ERIC Educational Resources Information Center
Johansson, K. E.; Kozma, C; Nilsson, Ch
2006-01-01
In April 2005 the World Year of Physics (Einstein Year in the UK and Ireland) was celebrated with an Einstein week in Stockholm House of Science. Seven experiments illustrated Einstein's remarkable work in 1905 on Brownian motion, the photoelectric effect and special relativity. Thirteen school classes with 260 pupils, 30 teachers and 25 members…
Einstein: A Historical Perspective
NASA Astrophysics Data System (ADS)
Kormos-Buchwald, Diana
2015-04-01
In late 1915, Albert Einstein (1879-1955) completed as series of papers on a generalized theory of gravitation that were to constitute a major conceptual change in the history of modern physics and the crowning achievement of his scientific career. But this accomplishment came after a decade of intense intellectual struggle and was received with muted enthusiasm. Einstein's previously unpublished writings and massive correspondence, edited by the Einstein Papers Project, provide vivid insights into the historical, personal, and scientific context of the formulation, completion, and reception of GR during the first decades of the 20th century.
NASA Astrophysics Data System (ADS)
Mehra, Jagdish
1987-05-01
In this paper, the main outlines of the discussions between Niels Bohr with Albert Einstein, Werner Heisenberg, and Erwin Schrödinger during 1920 1927 are treated. From the formulation of quantum mechanics in 1925 1926 and wave mechanics in 1926, there emerged Born's statistical interpretation of the wave function in summer 1926, and on the basis of the quantum mechanical transformation theory—formulated in fall 1926 by Dirac, London, and Jordan—Heisenberg formulated the uncertainty principle in early 1927. At the Volta Conference in Como in September 1927 and at the fifth Solvay Conference in Brussels the following month, Bohr publicly enunciated his complementarity principle, which had been developing in his mind for several years. The Bohr-Einstein discussions about the consistency and completeness of qnautum mechanics and of physical theory as such—formally begun in October 1927 at the fifth Solvay Conference and carried on at the sixth Solvay Conference in October 1930—were continued during the next decades. All these aspects are briefly summarized.
NASA Astrophysics Data System (ADS)
Campanelli, M.; Rezzolla, L.
2007-06-01
Traditionally, frontiers represent a treacherous terrain to venture into, where hidden obstacles are present and uncharted territories lie ahead. At the same time, frontiers are also a place where new perspectives can be appreciated and have often been the cradle of new and thriving developments. With this in mind and inspired by this spirit, the Numerical Relativity Group at the Albert Einstein Institute (AEI) organized a `New Frontiers in Numerical Relativity' meeting on 17 21 July 2006 at the AEI campus in Potsdam, Germany. It is an interesting historical remark that the suggestion of the meeting was first made in the late summer of 2005 and thus at a time that for many reasons has been a turning point in the recent history of numerical relativity. A few months earlier (April 2005) in fact, F Pretorius had announced the first multi-orbit simulations of binary black holes and computed the waveforms from the inspiral, merger and ring-down (`Numerical Relativity', Banff International Research Station, Banff, Canada, 16 21 April 2005). At that time, the work of Pretorius served as an important boost to the research in this field and although no other group has yet adopted the techniques he employed, his results provided the numerical relativity community with clear evidence that the binary black hole problem could be solved. A few months later (November 2005), equally striking results were presented by the NASA Goddard and Texas/Brownsville groups, who also reported, independently, multi-orbit evolutions of binary black holes using numerical techniques and formulations of the Einstein equations which were markedly distinct from those suggested by Pretorius (`Numerical Relativity 2005', Goddard Space Flight Centre, Greenbelt, MD, USA, 2 4 November 2005). A few months later other groups were able to repeat the same simulations and obtain equivalent results, testifying that the community as a whole had reached comparable levels of maturity in both the numerical
Dutch museum marks Einstein anniversary
NASA Astrophysics Data System (ADS)
van Calmthout, Matijn
2016-01-01
A new painting of Albert Einstein's field equation from his 1915 general theory of relativity was unveiled in a ceremony in November 2015 by the Dutch physicist Robbert Dijkgraaf, who is director of the Princeton Institute for Advanced Study in the US.
ERIC Educational Resources Information Center
Erickson, Ann R.
2008-01-01
In this article, the author describes how she introduced a lesson called Albert's Alphabet to her kindergarten students. This lesson introduces the design thinking process to kindergartners in a developmentally appropriate way. She began the lesson by reading Leslie Tyron's book "Albert's Alphabet," which tells the story of Albert Goose,…
General relativistic magneto-hydrodynamics with the Einstein Toolkit
NASA Astrophysics Data System (ADS)
Moesta, Philipp; Mundim, Bruno; Faber, Joshua; Noble, Scott; Bode, Tanja; Haas, Roland; Loeffler, Frank; Ott, Christian; Reisswig, Christian; Schnetter, Erik
2013-04-01
The Einstein Toolkit Consortium is developing and supporting open software for relativistic astrophysics. Its aim is to provide the core computational tools that can enable new science, broaden our community, facilitate interdisciplinary research and take advantage of petascale computers and advanced cyberinfrastructure. The Einstein Toolkit currently consists of an open set of over 100 modules for the Cactus framework, primarily for computational relativity along with associated tools for simulation management and visualization. The toolkit includes solvers for vacuum spacetimes as well as relativistic magneto-hydrodynamics. This talk will present the current capabilities of the Einstein Toolkit with a particular focus on recent improvements made to the general relativistic magneto-hydrodynamics modeling and will point to information how to leverage it for future research.
General relativity at 75: how right was einstein?
Will, C M
1990-11-09
The status of experimental tests of general relativity is reviewed on the occasion of its 75th anniversary. Einstein's equivalence principle is well supported by experiments such as the Eötvös experiment, tests of special relativity, and the gravitational redshift experiment. Tests of general relativity have reached high precision, including the light deflection and the perihelion advance of Mercury, proposed by Einstein 75 years ago, and new tests such as the Shapiro time delay and the Nordtvedt effect in lunar motion. Gravitational wave damping has been detected to an accuracy of 1 percent on the basis of measurements of the binary pulsar. The status of the "fifth force" is discussed, along with the frontiers of experimental relativity, including proposals for testing relativistic gravity with advanced technology and spacecraft.
NASA Astrophysics Data System (ADS)
Erwin, Charlotte
2005-03-01
Albert Einstein traveled to America by boat during the great depression to consult with scientists at the California Institute of Technology. He was a theoretical physicist, a Nobel Prize winner, and a 20th century folk hero. Few members of the general public understood his theories, but they idolized him all the same. The invitation came from physicist Robert Millikan, who had initiated a visiting-scholars program at Caltech shortly after he became head of the school in 1921. Einstein's visits to the campus in 1931, 1932, and 1933 capped Millikan's campaign to make Caltech one of the physics capitals of the world. Mount Wilson astronomer Edwin Hubble's discovery that redshifts are proportional to their distances from the observer challenged Einstein's cosmological picture of a static universe. The big question at Caltech in 1931 was whether Einstein would give up his cosmological constant and accept the idea of an expanding universe. By day, Einstein discussed his theory and its interpretation at length with Richard Tolman, Hubble, and the other scientists on the campus. By night, Einstein filled his travel diary with his personal impressions. During his third visit, Einstein sidestepped as long as possible the question of whether conditions in Germany might prevent his return there. After the January 30 announcement that Hitler had become chancellor of Germany, the question could no longer be evaded. He postponed his return trip for a few weeks and then went to Belgium for several months instead of to Berlin. In the fall of 1933, Albert Einstein returned to the United States as an emigre and became a charter member of Abraham Flexner's new Institute for Advanced Study in Princeton, New Jersey. Why did Einstein go to Princeton and not Pasadena?
ERIC Educational Resources Information Center
Science Scope, 2006
2006-01-01
This article deals with a pale blue sculpture entitled "A New World View", as an homage to the most famous scientist in modern history, Albert Einstein. It has 32 bas-relief squares composed of glass and steel that represent one aspect of the life and legacy of Albert Einstein. Images of children's faces peer out from behind the glass squares,…
Scheinberg, Morton; Goldenberg, José; Feldman, Daniel P; Nóbrega, João Luiz
2008-08-01
We determined, in our surrounding environment, the proportion of patients being treated with infliximab who required a therapeutic scheme escalation (an infliximab dose increase surpassing the level of 3 mg/kg every 8 weeks and/or a decrease on the current between infusions' interval). This was a study of the retrospective analysis of data from the 41 rheumatoid arthritis (RA) patients receiving an infliximab therapy at the Albert Einstein Israelita Hospital, from January 2001 up to December 2005. A questionnaire was applied to these patients, assessing their clinical and laboratory data, adverse events, and individual information regarding the infliximab administration. Therapeutic dose information was available in 68% (28/41) of the RA patients, with 46% of these (13/28) receiving a dose increase, and 30% (8/27) experiencing a shortening of the between infusions' interval. The average final infliximab dose (4.21 mg/kg) was significantly greater than their average initial dose (3.29 mg/kg). The average time intervals between the initial and final infusions, though shortened, were not significantly different. A proportion of 73% (30/41) of these patients demonstrated improvement in at least one of the assessed clinical parameters, and 50% of these patients (15/30) experienced a dose increase, while 20% (6/30) experienced shortening of the between treatments' interval. A total of 20% (8/41) of the original patients experienced adverse events. Although infliximab is effective in the control of RA, dose adjustment and/or shortening of the between treatments' interval is frequently required.
Generalized absorber theory and the Einstein-Podolsky-Rosen paradox
NASA Astrophysics Data System (ADS)
Cramer, John G.
1980-07-01
A generalized form of Wheeler-Feynman absorber theory is used to explain the quantum-mechanical paradox proposed by Einstein, Podolsky, and Rosen (EPR). The advanced solutions of the electromagnetic wave equation and of relativistic quantum-mechanical wave equations are shown to play the role of "verifier" in quantum-mechanical "transactions," providing microscopic communication paths between detectors across spacelike intervals in violation of the EPR locality postulate. The principle of causality is discussed in the context of this approach, and possibilities for experimental tests of the theory are examined.
About the origins of the general theory of relativity: Einstein's search for the truth
NASA Astrophysics Data System (ADS)
Trainer, Matthew
2005-11-01
On the 20th June 1933 Professor Einstein addressed a large and enthusiastic audience in the Victorian Gothic Bute Hall of the University of Glasgow. Einstein spoke 'About the Origins of the General Theory of Relativity'. In 1905 Einstein had changed the face of physics forever with the publication of his radical new ideas on special relativity. His general theory of relativity was introduced to the world in 1915. However in 1933, Einstein faced another challenge—survival in a world of change. This paper explores Einstein's fascinating address to the Glasgow audience in that year.
Krajniak, Wiktor
2014-01-01
The purpose of this article is the analyses of discussion between Albert Einstein and Werner Heisenberg in the period 1925-1927. Their disputes, relating to the sources of scientific knowledge, its methods and the value of knowledge acquired in this way, are part of the characteristic for the European science discourse between rationalism and empirism. On the basis of some sources and literature on the subject, the epistemological positions of both scholars in the period were reconstructed. This episode, yet poorly known, is a unique example of scientific disputes, whose range covers a broad spectrum of methodological problems associated with the historical development of science. The conducted analysis sheds some light on the source of popularity of logical empirism in the first half of the 20th century. A particular emphasis is placed on the impact of the neopositivist ideas which reflect Heisenberg's research program, being the starting point for the Copenhagen interpretation of quantum mechanics. The main assumption of logical empirism, concerning acquisition of scientific knowledge only by means of empirical procedures and logical analysis of the language of science, in view of the voiced by Einstein arguments, bears little relationship with actual testing practices in the historical aspect of the development of science. The criticism of Heisenberg's program, carried out by Einstein, provided arguments for the main critics of the neopositivist ideal and contributed to the bankruptcy of the idea of logical empirism, thereby starting a period of critical rationalism prosperity, arising from criticism of neopositivism and alluding to Einstein's ideas.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Physicist born in Ulm, Württemberg, Germany, described the photoelectric effect (for which he received the Nobel prize in 1921) and created the theory of special relativity in 1905 in his spare time, while an employee of the Swiss patent office. The theory of relativity was based on two hypotheses, that the laws of physics had to have the same form in any frame of reference and that the speed of ...
ERIC Educational Resources Information Center
Caulley, Darrel N.
1982-01-01
Like any other person, Albert Einstein was an informal evaluator, engaged in placing value on various aspects of his life, work, and the world. Based on Einstein's own statements, this paper speculates about what Einstein would have been like as a connoisseur evaluator, a conceptual evaluator, or a responsive evaluator. (Author/BW)
A Generalization of the Einstein-Maxwell Equations
NASA Astrophysics Data System (ADS)
Cotton, Fredrick
2016-03-01
The proposed modifications of the Einstein-Maxwell equations include: (1) the addition of a scalar term to the electromagnetic side of the equation rather than to the gravitational side, (2) the introduction of a 4-dimensional, nonlinear electromagnetic constitutive tensor and (3) the addition of curvature terms arising from the non-metric components of a general symmetric connection. The scalar term is defined by the condition that a spherically symmetric particle be force-free and mathematically well-behaved everywhere. The constitutive tensor introduces two auxiliary fields which describe the particle structure. The additional curvature terms couple both to particle solutions and to electromagnetic and gravitational wave solutions. http://sites.google.com/site/fwcotton/em-30.pdf
ERIC Educational Resources Information Center
Fine, Leonard
2005-01-01
A brief description on the work and life of the great physicist scientist Albert Einstein is presented. The photoelectric paper written by him in 1905 led him to the study of fluctuations in the energy density of radiation and from there to the incomplete nature of the equipartition theorem of classical mechanics, which failed to account for…
Oberheim, Eric
2016-06-01
Thomas Kuhn and Paul Feyerabend promote incommensurability as a central component of their conflicting accounts of the nature of science. This paper argues that in so doing, they both develop Albert Einstein's views, albeit in different directions. Einstein describes scientific revolutions as conceptual replacements, not mere revisions, endorsing 'Kant-on-wheels' metaphysics in light of 'world change'. Einstein emphasizes underdetermination of theory by evidence, rational disagreement in theory choice, and the non-neutrality of empirical evidence. Einstein even uses the term 'incommensurable' specifically to apply to challenges posed to comparatively evaluating scientific theories in 1949, more than a decade before Kuhn and Feyerabend. This analysis shows how Einstein anticipates substantial components of Kuhn and Feyerabend's views, and suggests that there are strong reasons to suspect that Kuhn and Feyerabend were directly inspired by Einstein's use of the term 'incommensurable', as well as his more general methodological and philosophical reflections.
Posing Einstein's Question: Questioning Einstein's Pose.
ERIC Educational Resources Information Center
Topper, David; Vincent, Dwight E.
2000-01-01
Discusses the events surrounding a famous picture of Albert Einstein in which he poses near a blackboard containing a tensor form of his 10 field equations for pure gravity with a question mark after it. Speculates as to the content of Einstein's lecture and the questions he might have had about the equation. (Contains over 30 references.) (WRM)
Einstein Session of the Pontifical Academy.
ERIC Educational Resources Information Center
Science, 1980
1980-01-01
The texts of four speeches, given at the 1979 Einstein Session of the Pontifical Academy held in Rome, are presented. Each address relates to some aspect of the life and times of Albert Einstein. (SA)
NASA Astrophysics Data System (ADS)
Lisle, John
2016-01-01
Albert Einstein's biographers have not explained why he developed the abdominal aortic aneurysm that led to his death. Early conjectures proposed that it was caused by syphilis, without accurate evidence. The present article gives evidence to the contrary, and argues that the principal cause of Einstein's death was smoking.
Generalized Bose-Einstein condensation in superconductivity and superfluidity
Llano, M. de
2008-03-20
Unification of the Bardeen, Cooper and Schrieffer (BCS) and the Bose-Einstein condensation (BEC) theories is surveyed in terms of a generalized BEC (GBEC) finite-temperature statistical formalism. A vital distinction is that Cooper pairs (CPs) are true bosons that may suffer a BEC since they obey BE statistics, in contrast with BCS pairs that are 'hard-core bosons' at best. A second crucial ingredient is the explicit presence of hole-pairs (2h) alongside the usual electron-pairs (2e). A third critical element (particularly in 2D where ordinary BEC does not occur) is the linear dispersion relation of CPs in leading order in the center-of-mass momentum (CMM) power-series expansion of the CP energy. The GBEC theory reduces in limiting cases to all five continuum (as opposed to 'spin') statistical theories of superconductivity, from BCS on one extreme to the BEC theory on the other, as well as to the BCS-Bose 'crossover' picture and the 1989 Friedberg-Lee BEC theory. It accounts for 2e- and 2h-CPs in arbitrary proportions while BCS theory can be deduced from the GBEC theory but allows only equal (50%-50%) BE condensed-mixtures of both kinds of CPs. As it yields the precise BCS gap equation for all temperatures as well as the precise BCS zero-temperature condensation energy for all couplings, it suggests that the BCS condensate is a BE condensate of a ternary mixture of kinematically independent unpaired electrons coexisting with equally proportioned weakly-bound zero-CMM 2e- and 2h-CPs. Without abandoning the electron-phonon mechanism in moderately weak coupling, and fortuituously insensitive to the BF interactions, the GBEC theory suffices to reproduce the unusually high values of T{sub c} (in units of the Fermi temperature T{sub F}) of 0.01-0.05 empirically found in the so-called 'exotic' superconductors of the Uemura plot, including cuprates, in contrast to the low values of T{sub c}/T{sub F}{<=}10{sup -3} roughly reproduced by BCS theory for conventional (mostly
Generalized Bose-Einstein condensation in superconductivity and superfluidity
NASA Astrophysics Data System (ADS)
Llano, M. de
2008-03-01
Unification of the Bardeen, Cooper and Schrieffer (BCS) and the Bose-Einstein condensation (BEC) theories is surveyed in terms of a generalized BEC (GBEC) finite-temperature statistical formalism. A vital distinction is that Cooper pairs (CPs) are true bosons that may suffer a BEC since they obey BE statistics, in contrast with BCS pairs that are "hard-core bosons" at best. A second crucial ingredient is the explicit presence of hole-pairs (2h) alongside the usual electron-pairs (2e). A third critical element (particularly in 2D where ordinary BEC does not occur) is the linear dispersion relation of CPs in leading order in the center-of-mass momentum (CMM) power-series expansion of the CP energy. The GBEC theory reduces in limiting cases to all five continuum (as opposed to "spin") statistical theories of superconductivity, from BCS on one extreme to the BEC theory on the other, as well as to the BCS-Bose "crossover" picture and the 1989 Friedberg-Lee BEC theory. It accounts for 2e- and 2h-CPs in arbitrary proportions while BCS theory can be deduced from the GBEC theory but allows only equal (50%-50%) BE condensed-mixtures of both kinds of CPs. As it yields the precise BCS gap equation for all temperatures as well as the precise BCS zero-temperature condensation energy for all couplings, it suggests that the BCS condensate is a BE condensate of a ternary mixture of kinematically independent unpaired electrons coexisting with equally proportioned weakly-bound zero-CMM 2e- and 2h-CPs. Without abandoning the electron-phonon mechanism in moderately weak coupling, and fortuituously insensitive to the BF interactions, the GBEC theory suffices to reproduce the unusually high values of Tc (in units of the Fermi temperature TF) of 0.01-0.05 empirically found in the so-called "exotic" superconductors of the Uemura plot, including cuprates, in contrast to the low values of Tc/TF⩽10-3 roughly reproduced by BCS theory for conventional (mostly elemental) superconductors.
Bose-Einstein condensation of light: general theory.
Sob'yanin, Denis Nikolaevich
2013-08-01
A theory of Bose-Einstein condensation of light in a dye-filled optical microcavity is presented. The theory is based on the hierarchical maximum entropy principle and allows one to investigate the fluctuating behavior of the photon gas in the microcavity for all numbers of photons, dye molecules, and excitations at all temperatures, including the whole critical region. The master equation describing the interaction between photons and dye molecules in the microcavity is derived and the equivalence between the hierarchical maximum entropy principle and the master equation approach is shown. The cases of a fixed mean total photon number and a fixed total excitation number are considered, and a much sharper, nonparabolic onset of a macroscopic Bose-Einstein condensation of light in the latter case is demonstrated. The theory does not use the grand canonical approximation, takes into account the photon polarization degeneracy, and exactly describes the microscopic, mesoscopic, and macroscopic Bose-Einstein condensation of light. Under certain conditions, it predicts sub-Poissonian statistics of the photon condensate and the polarized photon condensate, and a universal relation takes place between the degrees of second-order coherence for these condensates. In the macroscopic case, there appear a sharp jump in the degrees of second-order coherence, a sharp jump and kink in the reduced standard deviations of the fluctuating numbers of photons in the polarized and whole condensates, and a sharp peak, a cusp, of the Mandel parameter for the whole condensate in the critical region. The possibility of nonclassical light generation in the microcavity with the photon Bose-Einstein condensate is predicted.
How History Helped Einstein in Special Relativity
NASA Astrophysics Data System (ADS)
Martinez, Alberto
2013-04-01
I will discuss how the German intellectual movement known as ``critical history'' motivated several physicists in the late 1900s to radically analyze the fundamental principles of mechanics, leading eventually to Einstein's special theory of relativity. Eugen Karl Dühring, Johann Bernhard Stallo, Ludwig Lange, and Ernst Mach wrote critical histories of mechanics, some of which emphasized notions of relativity and observation, in opposition to old metaphysical concepts that seemed to infect the foundations of physics. This strand of critical history included the ``genetic method'' of analyzing how concepts develop over time, in our minds, by way of ordinary experiences, which by 1904 was young Albert Einstein's favorite approach for examining fundamental notions. Thus I will discuss how history contributed in Einstein's path to relativity, as well as comment more generally on Einstein's views on history.
NASA Astrophysics Data System (ADS)
Lake, Kayll
2010-12-01
, Hoenselaers C and Herlt E 2003 Exact Solutions of Einstein's Field Equations (Second Edition) (Cambridge: Cambridge University Press) [2] Pretorius F and Israel W 1998 Class. Quantum Grav.15 2289 [3] Wiltshire D, Visser M and Scott S (ed) 2008 The Kerr Spacetime: Rotating Black Holes in General Relativity (Cambridge: Cambridge University Press) [4] Coley A, Hervik S and Pelavas N 2009 Class. Quantum Grav. 26 025013 [5] Plebański J and Krasiński A 2006 An Introduction to General Relativity and Cosmology (Cambridge: Cambridge University Press)
ERIC Educational Resources Information Center
Range, Shannon K'doah; Mullins, Jennifer
This teaching guide introduces a relativity gyroscope experiment aiming to test two unverified predictions of Albert Einstein's general theory of relativity. An introduction to the theory includes the following sections: (1) "Spacetime, Curved Spacetime, and Frame-Dragging"; (2) "'Seeing' Spacetime with Gyroscopes"; (3)…
Einstein-aether theory with a Maxwell field: General formalism
Balakin, Alexander B.; Lemos, José P.S.
2014-11-15
We extend the Einstein-aether theory to include the Maxwell field in a nontrivial manner by taking into account its interaction with the time-like unit vector field characterizing the aether. We also include a generic matter term. We present a model with a Lagrangian that includes cross-terms linear and quadratic in the Maxwell tensor, linear and quadratic in the covariant derivative of the aether velocity four-vector, linear in its second covariant derivative and in the Riemann tensor. We decompose these terms with respect to the irreducible parts of the covariant derivative of the aether velocity, namely, the acceleration four-vector, the shear and vorticity tensors, and the expansion scalar. Furthermore, we discuss the influence of an aether non-uniform motion on the polarization and magnetization of the matter in such an aether environment, as well as on its dielectric and magnetic properties. The total self-consistent system of equations for the electromagnetic and the gravitational fields, and the dynamic equations for the unit vector aether field are obtained. Possible applications of this system are discussed. Based on the principles of effective field theories, we display in an appendix all the terms up to fourth order in derivative operators that can be considered in a Lagrangian that includes the metric, the electromagnetic and the aether fields.
Einstein, Mach, and the Fortunes of Gravity
NASA Astrophysics Data System (ADS)
Kaiser, David
2005-04-01
Early in his life, Albert Einstein considered himself a devoted student of the physicist and philosopher Ernst Mach. Mach's famous critiques of Newton's absolute space and time -- most notably Mach's explanation of Newton's bucket experiment -- held a strong sway over Einstein as he struggled to formulate general relativity. Einstein was convinced that his emerging theory of gravity should be consistent with Mach's principle, which states that local inertial effects arise due to gravitational interactions with distant matter. Once completed, Einstein's general relativity enjoyed two decades of worldwide attention, only to fall out of physicists' interest during the 1930s and 1940s, when topics like nuclear physics claimed center stage. Gravity began to return to the limelight during the 1950s and especially the 1960s, and once again Mach proved to be a major spur: Princeton physicists Carl Brans and Robert Dicke introduced a rival theory of gravity in 1961 which they argued satisfied Mach's principle better than Einstein's general relativity did. The Brans-Dicke theory, and the new generation of experiments designed to test its predictions against those of general relativity, played a major role in bringing Einstein's beloved topic back to the center of physics.
NASA Astrophysics Data System (ADS)
Miller, Arthur I.
2004-11-01
How the 20th century’s most important scientist—Albert Einstein—and its most important artist—Pablo Picasso—made their greatest discoveries at almost the same time is a remarkable story: Einstein's relativity theory in 1905 and Picasso's Les Demoiselles d'Avignon two years later. A scientist and an artist confronted the same problem—the nature of time and simultaneity—and resolved it after realizing a new aesthetic. At the nascent moment of creativity boundaries dissolve between disciplines. This article explores the similarities in the early work of two of the greatest icons of Art and Science of the last century.
Bose-Einstein condensation in microgravity.
van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J
2010-06-18
Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.
A superconducting gyroscope to test Einstein's general theory of relativity
NASA Technical Reports Server (NTRS)
Everitt, C. W. F.
1978-01-01
Schiff (1960) proposed a new test of general relativity based on measuring the precessions of the spin axes of gyroscopes in earth orbit. Since 1963 a Stanford research team has been developing an experiment to measure the two effects calculated by Schiff. The gyroscope consists of a uniform sphere of fused quartz 38 mm in diameter, coated with superconductor, electrically suspended and spinning at about 170 Hz in vacuum. The paper describes the proposed flight apparatus and the current state of development of the gyroscope, including techniques for manufacturing and measuring the gyro rotor and housing, generating ultralow magnetic fields, and mechanizing the readout.
Generalized Mean Fields for Trapped Atomic Bose-Einstein Condensates
Proukakis, N. P.; Burnett, K.
1996-01-01
We describe generalized time-dependent mean-field equations for partially condensed samples of trapped and evaporatively cooled atoms. These equations give a way of investigating the various order parameters that may be present as well as the existence of a mean value of the field due to condensed atoms. Our approach provides us with a closed system of self-consistent equations for the order parameters present. The equations we derive are shown to reduce to other treatments in the literature in various limits. We also show how the equation of motion method allows us to construct a formalism that can handle the evolution of these mean fields due to two-loop kinetics. PMID:27805101
Examining the Enigmatic Einstein
ERIC Educational Resources Information Center
Khoon, Koh Aik
2007-01-01
Albert Einstein is the icon of scientific genius. His is one the most recognizable faces in the history of mankind. This paper takes a cursory look at the man who is commonly perceived to be the epitome of eccentricity. We manage to sum up his salient traits which are associated with his name. The traits are based on anecdotal evidence. This…
ERIC Educational Resources Information Center
Ryder, L. H.
1987-01-01
Discusses the history of scientific thought in terms of the theories of inertia and absolute space, relativity and gravitation. Describes how Sir Isaac Newton used the work of earlier scholars in his theories and how Albert Einstein used Newton's theories in his. (CW)
Schwinger's Approach to Einstein's Gravity
NASA Astrophysics Data System (ADS)
Milton, Kim
2012-05-01
Albert Einstein was one of Julian Schwinger's heroes, and Schwinger was greatly honored when he received the first Einstein Prize (together with Kurt Godel) for his work on quantum electrodynamics. Schwinger contributed greatly to the development of a quantum version of gravitational theory, and his work led directly to the important work of (his students) Arnowitt, Deser, and DeWitt on the subject. Later in the 1960's and 1970's Schwinger developed a new formulation of quantum field theory, which he dubbed Source Theory, in an attempt to get closer contact to phenomena. In this formulation, he revisited gravity, and in books and papers showed how Einstein's theory of General Relativity emerged naturally from one physical assumption: that the carrier of the gravitational force is a massless, helicity-2 particle, the graviton. (There has been a minor dispute whether gravitational theory can be considered as the massless limit of a massive spin-2 theory; Schwinger believed that was the case, while Van Dam and Veltman concluded the opposite.) In the process, he showed how all of the tests of General Relativity could be explained simply, without using the full machinery of the theory and without the extraneous concept of curved space, including such effects as geodetic precession and the Lense-Thirring effect. (These effects have now been verified by the Gravity Probe B experiment.) This did not mean that he did not accept Einstein's equations, and in his book and full article on the subject, he showed how those emerge essentially uniquely from the assumption of the graviton. So to speak of Schwinger versus Einstein is misleading, although it is true that Schwinger saw no necessity to talk of curved spacetime. In this talk I will lay out Schwinger's approach, and the connection to Einstein's theory.
Einstein's conversion from his static to an expanding universe
NASA Astrophysics Data System (ADS)
Nussbaumer, Harry
2014-02-01
In 1917 Einstein initiated modern cosmology by postulating, based on general relativity, a homogenous, static, spatially curved universe. To counteract gravitational contraction he introduced the cosmological constant. In 1922 Alexander Friedman showed that Albert Einstein's fundamental equations also allow dynamical worlds, and in 1927 Georges Lemaître, backed by observational evidence, concluded that our universe was expanding. Einstein impetuously rejected Friedman's as well as Lemaître's findings. However, in 1931 he retracted his former static model in favour of a dynamic solution. This investigation follows Einstein on his hesitating path from a static to the expanding universe. Contrary to an often advocated belief the primary motive for his switch was not observational evidence, but the realisation that his static model was unstable.
Cerebral cortex astroglia and the brain of a genius: A propos of A. Einstein's
Colombo, Jorge A.; Reisin, Hernán D.; Miguel-Hidalgo, José J.; Rajkowska, Grazyna
2010-01-01
The glial fibrillary acidic protein immunoreactive astroglial layout of the cerebral cortex from Albert Einstein and other four age-matched human cases lacking any known neurological disease was analyzed using quantification of geometrical features mathematically defined. Several parameters (parallelism, relative depth, tortuosity) describing the primate-specific interlaminar glial processes did not show individually distinctive characteristics in any of the samples analyzed. However, A. Einstein's astrocytic processes showed larger sizes and higher numbers of interlaminar terminal masses, reaching sizes of 15 μm in diameter. These bulbous endings are of unknown significance and they have been described occurring in Alzheimer's disease. These observations are placed in the context of the general discussion regarding the proposal – by other authors – that structural, postmortem characteristics of the aged brain of Albert Einstein may serve as markers of his cognitive performance, a proposal to which the authors of this paper do not subscribe, and argue against. PMID:16675021
Unified Einstein-Virasoro Master Equation in the General Non-Linear Sigma Model
Boer, J. de; Halpern, M.B.
1996-06-05
The Virasoro master equation (VME) describes the general affine-Virasoro construction $T=L^abJ_aJ_b+iD^a \\dif J_a$ in the operator algebra of the WZW model, where $L^ab$ is the inverse inertia tensor and $D^a $ is the improvement vector. In this paper, we generalize this construction to find the general (one-loop) Virasoro construction in the operator algebra of the general non-linear sigma model. The result is a unified Einstein-Virasoro master equation which couples the spacetime spin-two field $L^ab$ to the background fields of the sigma model. For a particular solution $L_G^ab$, the unified system reduces to the canonical stress tensors and conventional Einstein equations of the sigma model, and the system reduces to the general affine-Virasoro construction and the VME when the sigma model is taken to be the WZW action. More generally, the unified system describes a space of conformal field theories which is presumably much larger than the sum of the general affine-Virasoro construction and the sigma model with its canonical stress tensors. We also discuss a number of algebraic and geometrical properties of the system, including its relation to an unsolved problem in the theory of $G$-structures on manifolds with torsion.
Einstein/Roosevelt Letters: A Unit.
ERIC Educational Resources Information Center
Bodle, Walter S.
1985-01-01
The letters in this unit of study intended for secondary students are facsimile reproductions of the correspondence between Albert Einstein and President Roosevelt on the possibility of constructing an atomic bomb. Classroom activities are also suggested. (RM)
ERIC Educational Resources Information Center
Nishimoto, Warren
2007-01-01
This article presents an interview with Albert Nawahi Like, Hawai'i Department of Education teacher from 1927 to 1965. Albert Nawahi Like was born 1900 in Honolulu's Chinatown. When Like was eight years old, his family moved to Kalihi. After the death in 1912 of his father, Edward Like, who was editor of the Hawaiian-language newspaper "Ke…
15. Historic American Buildings Survey Albert S. Burns, Photographer October ...
15. Historic American Buildings Survey Albert S. Burns, Photographer October 1, 1935. GENERAL VIEW, SOUTH ELEVATION - The Maples, 630 South Carolina Avenue Southeast, Washington, District of Columbia, DC
Scalar-tensor cosmology at the general relativity limit: Jordan versus Einstein frame
Jaerv, Laur; Kuusk, Piret; Saal, Margus
2007-11-15
We consider the correspondence between the Jordan frame and the Einstein frame descriptions of scalar-tensor theory of gravitation. We argue that since the redefinition of the scalar field is not differentiable at the limit of general relativity the correspondence between the two frames is lost at this limit. To clarify the situation we analyze the dynamics of the scalar field in different frames for two distinct scalar-tensor cosmologies with specific coupling functions and demonstrate that the corresponding scalar field phase portraits are not equivalent for regions containing the general relativity limit. Therefore the answer to the question of whether general relativity is an attractor for the theory depends on the choice of the frame.
Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun
2014-12-07
Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.
Einstein's Annalen Papers: The Complete Collection 1901 - 1922
NASA Astrophysics Data System (ADS)
Renn, Jürgen
2005-05-01
In 1905, Einstein's Annus Mirabilis, Albert Einstein made three discoveries concerning the foundations of nature which form the basis of his fame as a physicist. These revolutionary papers on the light-quantum hypothesis, Brownian motion, and special relativity, were published in the journal "Annalen der Physik". All three are now established as pillars of modern science and its applications in technology and are an indispensable part of the modern world. This volume presents some of the most significant original papers which Albert Einstein ever wrote. It includes the facsimiles of the three revolutionary papers of 1905. In addition it contains papers which show the consequences of the ground-breaking ideas of these seminal papers from E=mcÂ² to the quantum theory of specific heats. It also features Einstein's first exposition of his new general theory of relativity. Introducing the original German papers the science historians Jürgen Renn (MPI for the History of Science, Berlin), David C. Cassidy (Hofstra University, Hempstead), Michel Janssen (University of Minnesota), and Robert Rynasiewicz (John Hopkins University) complement and comment the collection with topical articles.
On the stability of Einstein static universe in doubly general relativity scenario
NASA Astrophysics Data System (ADS)
Khodadi, M.; Heydarzade, Y.; Nozari, K.; Darabi, F.
2015-12-01
By presenting a relation between the average energy of the ensemble of probe photons and the energy density of the universe, in the context of gravity's rainbow or the doubly general relativity scenario, we introduce a rainbow FRW universe model. By analyzing the fixed points in the flat FRW model modified by two well-known rainbow functions, we find that the finite time singularity avoidance (i.e. Big Bang) may still remain as a problem. Then we follow the "emergent universe" scenario in which there is no beginning of time and consequently there is no Big-Bang singularity. Moreover, we study the impact of high energy quantum gravity modifications related to the gravity's rainbow on the stability conditions of an "Einstein static universe" (ESU). We find that independent of the particular rainbow function, the positive energy condition dictates a positive spatial curvature for the universe. In fact, without raising a nonphysical energy condition in the quantum gravity regimes, we can observe agreement between gravity's rainbow scenario and the basic assumption of the modern version of the "emergent universe". We show that in the absence and presence of an energy-dependent cosmological constant Λ (ɛ ), a stable Einstein static solution is available versus the homogeneous and linear scalar perturbations under the variety of the obtained conditions. Also, we explore the stability of ESU against the vector and tensor perturbations.
Einstein's Revolutionary Light-Quantum Hypothesis
NASA Astrophysics Data System (ADS)
Stuewer, Roger H.
2005-05-01
The paper in which Albert Einstein proposed his light-quantum hypothesis was the only one of his great papers of 1905 that he himself termed ``revolutionary.'' Contrary to widespread belief, Einstein did not propose his light-quantum hypothesis ``to explain the photoelectric effect.'' Instead, he based his argument for light quanta on the statistical interpretation of the second law of thermodynamics, with the photoelectric effect being only one of three phenomena that he offered as possible experimental support for it. I will discuss Einstein's light-quantum hypothesis of 1905 and his introduction of the wave-particle duality in 1909 and then turn to the reception of his work on light quanta by his contemporaries. We will examine the reasons that prominent physicists advanced to reject Einstein's light-quantum hypothesis in succeeding years. Those physicists included Robert A. Millikan, even though he provided convincing experimental proof of the validity of Einstein's equation of the photoelectric effect in 1915. The turning point came after Arthur Holly Compton discovered the Compton effect in late 1922, but even then Compton's discovery was contested both on experimental and on theoretical grounds. Niels Bohr, in particular, had never accepted the reality of light quanta and now, in 1924, proposed a theory, the Bohr-Kramers-Slater theory, which assumed that energy and momentum were conserved only statistically in microscopic interactions. Only after that theory was disproved experimentally in 1925 was Einstein's revolutionary light-quantum hypothesis generally accepted by physicists---a full two decades after Einstein had proposed it.
NASA Technical Reports Server (NTRS)
Hoots, F. R.; Fitzpatrick, P. M.
1979-01-01
The classical Poisson equations of rotational motion are used to study the attitude motions of an earth orbiting, rapidly spinning gyroscope perturbed by the effects of general relativity (Einstein theory). The center of mass of the gyroscope is assumed to move about a rotating oblate earth in an evolving elliptic orbit which includes all first-order oblateness effects produced by the earth. A method of averaging is used to obtain a transformation of variables, for the nonresonance case, which significantly simplifies the Poisson differential equations of motion of the gyroscope. Long-term solutions are obtained by an exact analytical integration of the simplified transformed equations. These solutions may be used to predict both the orientation of the gyroscope and the motion of its rotational angular momentum vector as viewed from its center of mass. The results are valid for all eccentricities and all inclinations not near the critical inclination.
BOOK REVIEW: Einstein's General Theory of Relativity—with Modern Applications in Cosmology
NASA Astrophysics Data System (ADS)
Barrabès, C.
2008-09-01
composed of vacuum energy. There one finds, after the description of the Einstein static universe and the de Sitter solution, sections on inflation, on the Friedman Lemaître model and on models with quintessence and dark energy. This chapter ends with sections on cosmic density perturbations, temperature fluctations in the cosmic microwave background and on the history of our universe. With an additional chapter on anisotropic and homogeneous universes, part IV appears to be a very good and complete introduction to the basic and classical (i.e. non-quantum) elements of cosmology. In part V some advanced tools, such as Lie groups and the Lagrangian and Hamiltonian formalism are introduced and applied to cosmology. Also part V contains a chapter on the extrinsic curvature formalism for surface layers and its application to the recently introduced braneworld models. Finally it is a pleasant surprise to find an introduction to the Kaluza Klein theory as the last chapter of part V. This book by Gron and Hervik certainly has its place in any good library. It covers most of the classical aspects of the theory of general relativity. The authors have made the effort to discuss many observational aspects and to illustrate the different chapters with many problems. One might regret that the authors' style is generally rather terse and not enough space is always reserved for explanation of physical concepts and for motivations of the theory (for instance, why curvature is so fundamental). This book would be most appropriate for graduate students and I will definitely recommend it as a reference textbook as well as a useful complement to other textbooks on general relativity.
Generalized Friedmann-Robertson-Walker metric and redundancy in the generalized Einstein equations
Kao, W.F.; Pen, U. )
1991-12-15
A nontrivial redundancy relation, due to the differential structure of the gravitational Bianchi identity as well as the symmetry of the Friedmann-Robertson-Walker metric, in the gravitational field equation is clarified. A generalized Friedmann-Robertson-Walker metric is introduced in order to properly define a one-dimensional reduced problem which offers an alternative approach to obtain the gravitational field equations on Friedmann-Robertson-Walker spaces.
Einstein's Years in Switzerland
NASA Astrophysics Data System (ADS)
Plendl, Hans S.
2005-11-01
Albert Einstein left Germany, the country of his birth, in 1894 and moved to Switzerland in 1895. He studied, worked and taught there, except for a year's stay in Prague, until1914. That year he returned to Germany, where he lived until his emigration to the United States in 1933. In 1905, while living with his wife Mileva and their first son Hans Albert in Bern and working as a technical expert at the Swiss Patent Office, he published his dissertation on the determination of molecular dimensions, his papers on Brownian Motion that helped to establish the Kinetic Theory of Heat and on the Photo-Electric Effect that validated the Quantum Theory of Light, and the two papers introducing the Special Theory of Relativity. How the young Einstein could help to lay the foundations of these theories while still working on his dissertation, holding a full-time job and helping to raise a family has evoked much discussion among his biographers. In this contribution, the extent to which living within Swiss society and culture could have made this feat possible will be examined. Old and recent photos of places in Switzerland where Einstein has lived and worked will be shown.
Einstein's Revolutionary Light--Quantum Hypothesis
NASA Astrophysics Data System (ADS)
Stuewer, R. H.
2006-03-01
Albert Einstein's light-quantum paper was the only one of his great papers of 1905 that he himself called ``very revolutionary''. I sketch his arguments for light quanta, his analysis of the photoelectric effect, and his introduction of the wave-particle duality into physics in 1909. I show that Robert Andrews Millikan, in common with almost all physicists at the time, rejected Einstein's light-quantum hypothesis as an interpretation of his photoelectric-effect experiments of 1915. I then trace the complex experimental and theoretical route that Arthur Holly Compton followed between 1916 and 1922 that led to his discovery of the Compton effect, a discovery that Peter Debye also made virtually simultaneously and independently. Compton's discovery, however, was challenged on experimental grounds by William Duane and on theoretical grounds by Niels Bohr in the Bohr--Kramers--Slater theory of 1924, and only after that theory was disproved experimentally the following year by Walther Bothe and Hans Geiger in Berlin and by Compton and Alfred W. Simon in Chicago was Einstein's light-quantum hypothesis generally accepted by physicists.
Brustein, Ram; Hadad, Merav
2009-09-04
We show that the equations of motion of generalized theories of gravity are equivalent to the thermodynamic relation deltaQ=TdeltaS. Our proof relies on extending previous arguments by using a more general definition of the Noether charge entropy. We have thus completed the implementation of Jacobson's proposal to express Einstein's equations as a thermodynamic equation of state. Additionally, we find that the Noether charge entropy obeys the second law of thermodynamics if the energy-momentum tensor obeys the null energy condition. Our results support the idea that gravitation on a macroscopic scale is a manifestation of the thermodynamics of the vacuum.
From the Classroom to Washington: Einsteins on Education Reform
ERIC Educational Resources Information Center
Hughes, Kent H., Ed.; Byers, Elizabeth A., Ed.
2010-01-01
The Woodrow Wilson International Center for Scholars was delighted to host a group of current and former Albert Einstein Distinguished Educator Fellows as they celebrated the 20th anniversary of the fellowship program. Outstanding math and science teachers in America's K-12 schools, the Einstein Fellows spend a year (or sometimes two) working on…
Treska, V
2003-02-01
Untreated rupture of an aneurysm of the abdominal aorta is fatal in almost 100% of the patients. In the majority of cases the assessment of a correct, early diagnosis is simple (hypotension, backache, abdominal pain, pulsating resistance in the abdomen) and makes a prompt surgical or endovascular operation possible. In some instances however rupture of aneurysms of the abdominal aorta simulates other clinical conditions (acute cholecystitis, acute diverculitis of the sigmoid) which may delay the correct diagnosis and reduce the patient's chance of survival. The author describes, based on historical documents, the treacherous course of the disease in the scientific genius Albert Einstein where rupture of an aneurysm simulated acute cholecystitis, and in the world literature this symptomatology was subsequently described as Einstein's sign.
Albert Behnke: nitrogen narcosis.
Grover, Casey A; Grover, David H
2014-02-01
As early as 1826, divers diving to great depths noted that descent often resulted in a phenomenon of intoxication and euphoria. In 1935, Albert Behnke discovered nitrogen as the cause of this clinical syndrome, a condition now known as nitrogen narcosis. Nitrogen narcosis consists of the development of euphoria, a false sense of security, and impaired judgment upon underwater descent using compressed air below 3-4 atmospheres (99 to 132 feet). At greater depths, symptoms can progress to loss of consciousness. The syndrome remains relatively unchanged in modern diving when compressed air is used. Behnke's use of non-nitrogen-containing gas mixtures subsequent to his discovery during the 1939 rescue of the wrecked submarine USS Squalus pioneered the use of non-nitrogen-containing gas mixtures, which are used by modern divers when working at great depth to avoid the effects of nitrogen narcosis.
Professor Joel Primack
2007-10-08
The National Academy of Sciences was commissioned in 2006 to report on how to restart the Beyond Einstein program, which includes missions to understand dark energy, test general relativity, and observe gravity waves from merging supermassive black holes. This colloquium by one of the members of the recently released Academy study will explain the research strategy that the report proposes and its implications for continued U.S. participation in the exploration of the universe.
ERIC Educational Resources Information Center
Manthey, George
2005-01-01
The author of this paper discusses the significance of Albert Einstein's concept of learning about "service of our fellow man" into the discussions about student achievement. Albert Einstein wrote in 1954 of what he considered an evil of modern life--that the "individual feels more than ever dependent on society, but it is not felt in the positive…
[Albert Bandura and his work].
Guerrin, Brigitte
2012-03-01
The Canadian psychologist Albert Bandura (1925) author of the concept of self-efficacy is still not much known of nurses. This article offers an outline of his biography and his work. Theories of Albert Bandura provide a positive, dynamic relationship with the agentivity human control over events that affect their existence. The concept of vicarious learning, self-efficacy and agency can enrich nursing research.
Multiple Intelligences and the Artistic Imagination: A Case Study of Einstein and Picasso.
ERIC Educational Resources Information Center
Newbold, Clair T.
1999-01-01
Argues that Albert Einstein and Pablo Picasso possessed similar artistic thought processes, maintaining that their influential discoveries (relativity theory and cubist painting), which launched 20th-century modernism, were amazingly similar in concept. (SR)
Decoherence effects in Bose-Einstein condensate interferometry I. General theory
Dalton, B.J.
2011-03-15
Research Highlights: > Theory of dephasing, decoherence effects for Bose-Einstein condensate interferometry. > Applies to single component, two mode condensate in double potential well. > Phase space theory using Wigner, positive P representations for condensate, non-condensate fields. > Stochastic condensate, non-condensate field equations and properties of noise fields derived. > Based on mean field theory with condensate modes given by generalised Gross-Pitaevskii equations. - Abstract: The present paper outlines a basic theoretical treatment of decoherence and dephasing effects in interferometry based on single component Bose-Einstein condensates in double potential wells, where two condensate modes may be involved. Results for both two mode condensates and the simpler single mode condensate case are presented. The approach involves a hybrid phase space distribution functional method where the condensate modes are described via a truncated Wigner representation, whilst the basically unoccupied non-condensate modes are described via a positive P representation. The Hamiltonian for the system is described in terms of quantum field operators for the condensate and non-condensate modes. The functional Fokker-Planck equation for the double phase space distribution functional is derived. Equivalent Ito stochastic equations for the condensate and non-condensate fields that replace the field operators are obtained, and stochastic averages of products of these fields give the quantum correlation functions that can be used to interpret interferometry experiments. The stochastic field equations are the sum of a deterministic term obtained from the drift vector in the functional Fokker-Planck equation, and a noise field whose stochastic properties are determined from the diffusion matrix in the functional Fokker-Planck equation. The stochastic properties of the noise field terms are similar to those for Gaussian-Markov processes in that the stochastic averages of odd
Witthaut, D.; Graefe, E. M.; Korsch, H. J.
2006-06-15
We consider the Landau-Zener problem for a Bose-Einstein condensate in a linearly varying two-level system, for the full many-particle system as well as in the mean-field approximation. Novel nonlinear eigenstates emerge in the mean-field description, which leads to a breakdown of adiabaticity: The Landau-Zener transition probability does not vanish even in the adiabatic limit. It is shown that the emergence of nonlinear eigenstates and thus the breakdown of adiabaticity corresponds to quasi-degenerate avoided crossings of the many-particle levels. The many-particle problem can be solved approximately within an independent crossings approximation, which yields an explicit generalized Landau-Zener formula. A comparison to numerical results for the many-particle system and the mean-field approximation shows an excellent agreement.
NASA Astrophysics Data System (ADS)
Murad, Mohammad Hassan; Pant, Neeraj
2014-03-01
In this paper we have studied a particular class of exact solutions of Einstein's gravitational field equations for spherically symmetric and static perfect fluid distribution in isotropic coordinates. The Schwarzschild compactness parameter, GM/ c 2 R, can attain the maximum value 0.1956 up to which the solution satisfies the elementary tests of physical relevance. The solution also found to have monotonic decreasing adiabatic sound speed from the centre to the boundary of the fluid sphere. A wide range of fluid spheres of different mass and radius for a given compactness is possible. The maximum mass of the fluid distribution is calculated by using stellar surface density as parameter. The values of different physical variables obtained for some potential strange star candidates like Her X-1, 4U 1538-52, LMC X-4, SAX J1808.4-3658 given by our analytical model demonstrate the astrophysical significance of our class of relativistic stellar models in the study of internal structure of compact star such as self-bound strange quark star.
Sylvanus Albert Reed Award: Eastman N. Jacobs
NASA Technical Reports Server (NTRS)
1937-01-01
Sylvanus Albert Reed Award - Eastman N. Jacobs: In 1937, Eastman N. Jacobs, one of Langley's most adventurous researchers, received the Sylvanus Albert Reed Award for his contributions to the aerodynamic improvement of airfoils.
Finding Little Albert: A Journey to John B. Watson's Infant Laboratory
ERIC Educational Resources Information Center
Beck, Hall P.; Levinson, Sharman; Irons, Gary
2009-01-01
In 1920, John Watson and Rosalie Rayner claimed to have conditioned a baby boy, Albert, to fear a laboratory rat. In subsequent tests, they reported that the child's fear generalized to other furry objects. After the last testing session, Albert disappeared, creating one of the greatest mysteries in the history of psychology. This article…
NASA Astrophysics Data System (ADS)
Suárez, Abril; Chavanis, Pierre-Henri
2015-07-01
Using a generalization of the Madelung transformation, we derive the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit. We consider a complex self-interacting scalar field with a λ |φ |4 potential. We study the evolution of the spatially homogeneous background in the fluid representation and derive the linearized equations describing the evolution of small perturbations in a static and in an expanding Universe. We compare the results with simplified models in which the gravitational potential is introduced by hand in the Klein-Gordon equation, and assumed to satisfy a (generalized) Poisson equation. Nonrelativistic hydrodynamic equations based on the Schrödinger-Poisson equations or on the Gross-Pitaevskii-Poisson equations are recovered in the limit c →+∞. We study the evolution of the perturbations in the matter era using the nonrelativistic limit of our formalism. Perturbations whose wavelength is below the Jeans length oscillate in time while perturbations whose wavelength is above the Jeans length grow linearly with the scale factor as in the cold dark matter model. The growth of perturbations in the scalar field model is substantially faster than in the cold dark matter model. When the wavelength of the perturbations approaches the cosmological horizon (Hubble length), a relativistic treatment is mandatory. In that case, we find that relativistic effects attenuate or even prevent the growth of perturbations. This paper exposes the general formalism and provides illustrations in simple cases. Other applications of our formalism will be considered in companion papers.
Decoherence effects in Bose-Einstein condensate interferometry I. General theory
NASA Astrophysics Data System (ADS)
Dalton, B. J.
2011-03-01
The present paper outlines a basic theoretical treatment of decoherence and dephasing effects in interferometry based on single component Bose-Einstein condensates in double potential wells, where two condensate modes may be involved. Results for both two mode condensates and the simpler single mode condensate case are presented. The approach involves a hybrid phase space distribution functional method where the condensate modes are described via a truncated Wigner representation, whilst the basically unoccupied non-condensate modes are described via a positive P representation. The Hamiltonian for the system is described in terms of quantum field operators for the condensate and non-condensate modes. The functional Fokker-Planck equation for the double phase space distribution functional is derived. Equivalent Ito stochastic equations for the condensate and non-condensate fields that replace the field operators are obtained, and stochastic averages of products of these fields give the quantum correlation functions that can be used to interpret interferometry experiments. The stochastic field equations are the sum of a deterministic term obtained from the drift vector in the functional Fokker-Planck equation, and a noise field whose stochastic properties are determined from the diffusion matrix in the functional Fokker-Planck equation. The stochastic properties of the noise field terms are similar to those for Gaussian-Markov processes in that the stochastic averages of odd numbers of noise fields are zero and those for even numbers of noise field terms are the sums of products of stochastic averages associated with pairs of noise fields. However each pair is represented by an element of the diffusion matrix rather than products of the noise fields themselves, as in the case of Gaussian-Markov processes. The treatment starts from a generalised mean field theory for two condensate modes, where generalised coupled Gross-Pitaevskii equations are obtained for the modes
Einstein Prize Talk: The Anatomy of a Test of General Relativity
NASA Astrophysics Data System (ADS)
Shapiro, Irwin
2013-04-01
I will review the conceptual underpinnings of the time-delay test of general relativity (``the Shapiro Effect''), the difficulties in carrying it out, and some recent results of applying the effect in astrophysics.
The Continuing Saga of Little Albert in Introductory Psychology Textbooks
ERIC Educational Resources Information Center
Griggs, Richard A.
2014-01-01
Inaccuracies, especially concerning the stimulus generalization findings, in textbook descriptions of the Little Albert study have been well documented since the 1970s. However, there has not been a systematic examination of introductory psychology textbooks since the 1980s to determine whether such inaccuracies still persist. This study filled…
Human dynamics: Darwin and Einstein correspondence patterns.
Oliveira, João Gama; Barabási, Albert-László
2005-10-27
In an era when letters were the main means of exchanging scientific ideas and results, Charles Darwin (1809-82) and Albert Einstein (1879-1955) were notably prolific correspondents. But did their patterns of communication differ from those associated with the instant-access e-mail of modern times? Here we show that, although the means have changed, the communication dynamics have not: Darwin's and Einstein's patterns of correspondence and today's electronic exchanges follow the same scaling laws. However, the response times of their surface-mail communication is described by a different scaling exponent from e-mail communication, providing evidence for a new class of phenomena in human dynamics.
NASA Astrophysics Data System (ADS)
Singh, K. N.; Pant, N.
2016-07-01
In this paper, we present generalization of anisotropic analogue of charged Heintzmann's solution of the general relativistic field equations in curvature coordinates. These exact solutions are stable and well behaved in all respect for a wide range of anisotropy parameter and charge parameter. We have found that these new solutions are suitable for the modeling of super dense stars like neutron stars and quark stars because they yield a wide range of masses and radii with simple mathematical expressions. By tuning different values of the few parameters, we can model various neutron stars and quark stars which are compatible with the experimentally observed values of masses and radii. Therefore, we have synchronized our solution with the observed values of some of the compact stars XTE J1739 - 217, EXO 0748 - 676, PSR J1614 - 2230, PSR J0348 + 0432 and PSR B0943 + 10.
A comparative analysis of perspectives of Mileva Maric Einstein
NASA Astrophysics Data System (ADS)
Barnett, Carol C.
This dissertation examines the controversy surrounding Mileva Maric Einstein and the allegations subsequent to the publication of love letters during the time that Mileva Maric and Albert Einstein were students and during the early years of their marriage. It also examines the role of women in science from a historical perspective. Chapter One surveys the history of women in science from antiquity to the late nineteenth century and the patterns of gender related and restricting practices such as education, publication, the problem of mentoring and the issue of the lack of historical recognition. Chapter Two provides a comparative analyses between the lives of Mileva Maric Einstein and Marie Sklodowska Curie. Both had very similar social and educational backgrounds yet Marie Curie was able to work and publish jointly with her husband and received (although belatedly) international recognition for her work. On the other hand, Mileva Maric Einstein was never able to complete her degree and lived a life of obscurity and unfulfilled professional dreams. Both highly educated and intelligent women, but with drastically different outcomes in their professional and personal lives. Chapter Three examines the one book devoted to the life of Mileva Maric Einstein, Im Schatten Albert Einsteins: Das Tragische Leben der Mileva Einstein-Maric (In The Shadow of Albert Einstein: The Tragic Life of Mileva Maric), by Desanka Trbuhovic-Gjuric, Paul Haupt Publishers, 1985. It addresses the subjective as well as constructive and destructive criticisms of the various critical camps and provides examples of the statements made by the author which prompted a controversy within the academic and scientific communities. Appropriate responses are provided from various members of the scientific community to reflect the diversity of opinion and the intensity of the debate. Chapter Four addresses the problem of historicity and various interpretations of evidence which might suggest that the role
Einstein Toolkit for Relativistic Astrophysics
NASA Astrophysics Data System (ADS)
Collaborative Effort
2011-02-01
The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.
Einstein on Race and Racism, presented by Fred Jerome and Rodger Taylor
NASA Astrophysics Data System (ADS)
Jerome, Fred; Taylor, Rodger
2007-10-01
It is little-known that physicist Albert Einstein strongly held the view that ``Racism is America's worst disease.'' Einstein was active in the fight against racism from the 1930's until his death in 1955. Included among his friends were a number of important Afro-American figures, including the educator W.E.B. DuBois, the actor and basso profundo singer Paul Robeson, and the soprano Marian Anderson. Based on the authors' work ``Einstein on Race and Racism.''
NASA Astrophysics Data System (ADS)
Tatum, Brian Shane
This thesis investigates the similarities in the study of time and space in literature and science during the modern period. Specifically, it focuses on the portrayal of time and space within Bram Stoker's Dracula (1897) and Joseph Conrad's Lord Jim (1899-1900), and compares the ideas presented with those later scientifically formulated by Albert Einstein in his special and general theories of relativity (1905-1915). Although both novels precede Einstein's theories, they reveal advanced complex ideas of time and space very similar to those later argued by the iconic physicist. These ideas follow a linear progression including a sense of temporal dissonance, the search for a communal sense of the present, the awareness and expansion of the individual's sense of the present, and the effect of mass on surrounding space. This approach enhances readings of Dracula and Lord Jim, illuminating the fascination with highly refined notions of time and space within modern European culture.
Tribute: Remembering Albert Greve (1938-2011)
NASA Astrophysics Data System (ADS)
Baars, Jaap
2012-02-01
With the sudden death of Albert Greve on 13 June 2011, caused by a massive heart attack, the radio astronomy community lost a remarkable member, and many of us a very good friend. The career of Albert was characterized by a broad array of activities, all performed at a high level of professionalism and an enduring wit.
NASA Astrophysics Data System (ADS)
Key, Joey; Yunes, Nicolas
2013-04-01
The Gravity Group at Montana State University (MSU) hosted Celebrating Einstein, a free public arts and multimedia event celebrating Einstein and his ideas in Bozeman, Montana April 2-6, 2013. The products of our efforts are now available to any party interested in hosting a similar event. Celebrating Einstein is a truly interdisciplinary effort including art, film, dance, music, physics, history, and education. Events included a black hole immersive art installation, a series of public talks by physicists, and Einstein lessons in the public schools leading up to a live free public multimedia performance including a professional dance company, a live interview with a renowned physicist, and an original score composed for the MSU student symphony to be performed with an original film produced by the Science and Natural History film program at MSU. This project is funded by the Montana Space Grant Consortium, Montana State University, and the National Science Foundation.
NASA Astrophysics Data System (ADS)
Kinney, Anne; White, Nicholas; Wanjek, Christopher
2005-10-01
NASA plans a scientific journey to answer three pressing questions raised yet unanswered by Einstein's theories: What is dark energy? What happens at the edge of a black hole? What powered the Big Bang?
None
2016-07-12
CommÃ©moration de A.Einstein avec 4 orateurs pour honnorer sa mÃ©moire: le prof.Weisskopf parlera de l'homme de science engagÃ©, Daniel Amati du climat de la physique aux annÃ©es 1920, Sergio Fubini de l'heure scientifique d'A.Einstein et le prof.Berob(?)
Einstein, Ethics and the Atomic Bomb
NASA Astrophysics Data System (ADS)
Rife, Patricia
2005-03-01
Einstein voiced his ethical views against war as well as fascism via venues and alliances with a variety of organizations still debated today. In 1939, he signed a letter to President Roosevelt (drafted by younger colleagues Szilard, Wigner and others) warning the U.S.government about the danger of Nazi Germany gaining control of uranium in the Belgian-controlled Congo in order to develop atomic weapons, based on the discovery of fission by Otto Hahn and Lise Meitner. In 1945, he became a member of the Princeton-based ``Emergency Committee for Atomic Scientists'' organized by Bethe, Condon, Bacher, Urey, Szilard and Weisskopf. Rare Einstein slides will illustrate Dr.Rife's presentation on Albert Einstein's philosophic and ethical convictions about peace, and public stance against war (1914-1950).
Rau, Stefan; Main, Joerg; Wunner, Guenter
2010-08-15
The variational method of coupled Gaussian functions is applied to Bose-Einstein condensates with long-range interactions. The time dependence of the condensate is described by dynamical equations for the variational parameters. We present the method and analytically derive the dynamical equations from the time-dependent Gross-Pitaevskii equation. The stability of the solutions is investigated using methods of nonlinear dynamics. The concept presented in this article will be applied to Bose-Einstein condensates with monopolar 1/r and dipolar 1/r{sup 3} interaction in the subsequent article [S. Rau et al., Phys. Rev. A 82, 023611 (2010)], where we will present a wealth of phenomena obtained using the ansatz with coupled Gaussian functions.
Powell, Russell A; Digdon, Nancy; Harris, Ben; Smithson, Christopher
2014-09-01
In 1920, John B. Watson and Rosalie Rayner attempted to condition a phobia in a young infant named "Albert B." In 2009, Beck, Levinson, and Irons proposed that Little Albert, as he is now known, was actually an infant named Douglas Merritte. More recently, Fridlund, Beck, Goldie, and Irons (2012) claimed that Little Albert (Douglas) was neurologically impaired at the time of the experiment. They also alleged that Watson, in a severe breach of ethics, probably knew of Little Albert's condition when selecting him for the study and then fraudulently hid this fact in his published accounts of the case. In this article, we present the discovery of another individual, Albert Barger, who appears to match the characteristics of Little Albert better than Douglas Merritte does. We examine the evidence for Albert Barger as having been Little Albert and, where relevant, contrast it with the evidence for Douglas Merritte. As for the allegations of fraudulent activity by Watson, we offer comments at the end of this article. We also present evidence concerning whether Little Albert (Albert Barger) grew up with the fear of furry animals, as Watson and Rayner speculated he might.
NASA Astrophysics Data System (ADS)
Lomnitz, C.
2007-05-01
What does Einstein have to do with subduction? Good question. Peaceful Lake Budi, lying at the heart of an Indian reservation in the Deep South of Chile, had subsided by two meters in the 1960 mega-thrust earthquake. This unique South American salt lake was hiding an awful secret: it was actually an oxbow, not a lake. But Einstein had realized in 1926 that meanders are natural freaks. Rivers will not flow uphill, yet - he claimed - they don't flow down the path of steepest descent either. This anomaly was put at the doorstep of a weak Coriolis Force. Thus Einstein problematized the dilemma of the earth sciences. How can a non-force produce margin-parallel compression in a convergent margin where extension is expected? In fact, where does the energy for meander formation come from? Good question . . . Even Wikipedia knows that Coriolis is not a “force” but an “effect”. So is the obliquity of plate convergence in subduction. Where did Einstein err, and where was he a pioneer? Coastal ablation plus alternating subsidence and emergence in giant earthquakes may yield an answer. Einstein, A. (1926). Die Ursache der Maeanderbildung der Flusslaeufe und das sogenannte Baersche Gesetz, Naturwissenschaften, 14, fascicle II.
Einstein's cosmology review of 1933: a new perspective on the Einstein-de Sitter model of the cosmos
NASA Astrophysics Data System (ADS)
O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon
2015-09-01
We present a first English translation and analysis of a little-known review of relativistic cosmology written by Albert Einstein in late 1932. The article, which was published in 1933 in a book of Einstein papers translated into French, contains a substantial review of static and dynamic relativistic models of the cosmos, culminating in a discussion of the Einstein-de Sitter model. The article offers a valuable contemporaneous insight into Einstein's cosmology in the early 1930s and confirms that his interest lay in the development of the simplest model of the cosmos that could account for observation. The article also confirms that Einstein did not believe that simplified relativistic models could give an accurate description of the early universe.
Einstein Ring in Distant Universe
NASA Astrophysics Data System (ADS)
2005-06-01
population. The far away lensed galaxy, however, is extremely active, having recently experienced bursts of star formation. It is a compact galaxy, 7,000 light-years across. "Because the gravitational pull of matter bends the path of light rays, astronomical objects - stars, galaxies and galaxy clusters - can act like lenses, which magnify and severely distort the images of galaxies behind them, producing weird pictures as in a hall of mirrors", explains Chris Lidman (ESO), co-discover of the new cosmic mirage. In the most extreme case, where the foreground lensing galaxy and the background galaxy are perfectly lined up, the image of the background galaxy is stretched into a ring. Such an image is known as an Einstein ring, because the formula for the bending of light, first described in the early twentieth century by Chwolson and Link, uses Albert Einstein's theory of General Relativity. Gravitational lensing provides a very useful tool with which to study the Universe. As "weighing scales", it provides a measure of the mass within the lensing body, and as a "magnifying glass", it allows us to see details in objects which would otherwise be beyond the reach of current telescopes. From the image, co-worker David Valls-Gabaud (CFHT), using state-of-the-art modelling algorithms, could deduce the mass of the galaxy acting as a lens - it is almost one million million suns. More information The paper describing this research has been published as a Letter to the Editor in Astronomy and Astrophysics, volume 436, L21-L25 ("Discovery of a high-redshift Einstein ring", by R.A. Cabanac, D. Valls-Gabaud, A.O. Jaunsen, C. Lidman, and H. Jerjen). The paper is available for download in PDF format from the A&A web site.
Obituary: Albert G. Petschek, 1928-2004
NASA Astrophysics Data System (ADS)
Colgate, Stirling A.; Petschek, Rolfe G.; Libersky, Larry D.
2005-12-01
Albert G. Petschek died suddenly 8 July 2004. He enjoyed good health and was very active professionally and personally until his death. He was highly respected, particularly in theoretical physics, for his deep, broad-ranging analytical powers, which resulted in contributions to nuclear physics, astrophysics, atmospheric physics, quantum mechanics, and quantum computing. Albert was born in Prague, Czechoslovakia in 1928. His extended family left Czechoslovakia when its sovereignty was threatened by Germany in 1938 and settled throughout the Western Hemisphere. Albert's father, a banker, settled in Scarsdale, near New York City. Albert graduated from White Plains High School and obtained his BS from MIT in a program accelerated during World War II. While getting his masters degree at the University of Michigan, Albert met his wife, Marilyn, also a physics masters student. In 1953, Albert obtained his PhD from the University of Rochester working with Robert Marshak on aspects of nuclear theory, and joined Los Alamos National Laboratory (LANL), then Los Alamos Scientific Laboratory. Soon thereafter, Albert's younger brother, Harry, also became a PhD physicist. Harry is now well known in plasma physics for reconnection theory. At Los Alamos, Albert worked closely with Carson Mark, Marshall Rosenbluth, and Conrad Longmire designing the first thermonuclear weapons. His derivation of several radiation diffusion solutions, later published as LAMS 2421, remains a classic in its field, as does work on nuclear theory done with Baird Brandow and Hans Bethe during a sabbatical at Cornell in 1961. Bethe was a frequent visitor to Los Alamos and a close friend. A devoted family man, Albert also valued Los Alamos as a safe, stimulating environment for raising an active family. Like many of the scientists at Los Alamos, Albert enjoyed its ready access to outdoor activities such as hiking and skiing. Albert often combined his passions for intellectual activity and the outdoors
Einstein: The Gourmet of Creativity.
ERIC Educational Resources Information Center
Greenberg, Joel
1979-01-01
Reports a psychiatrist's analysis of Einstein's personal account of how he developed the theory of relativity. The psychiatrist cites Janusian thinking, actively conceiving two or more opposite concepts simultaneously, as a characteristic of much creative thought in general. (MA)
Einstein: His Impact on Accelerators; His Impact on theWorld
Sessler, A.
2005-07-30
The impact of the work of Albert Einstein on accelerator physics is described. Because of the limit of time, and also because the audience knows the details, the impact is described in broad strokes. Nevertheless, it is seen how his work has affected many different aspects of accelerator physics. In the second half of the talk, Albert Einstein's impact on the world will be discussed; namely his work on world peace (including his role as a pacifist, in the atomic bomb, and in arms control) and his efforts as a humanitarian (including his efforts on social justice, anti-racism, and civil rights).
Wer entdeckte die Allgemeine Relativitätstheorie? Prioritätsstreit zwischen Hilbert und Einstein
NASA Astrophysics Data System (ADS)
Sommer, Klaus P.
2005-09-01
Im November 1915 arbeiteten Albert Einstein und David Hilbert an den Feldgleichungen der Gravitationstheorie. Im Jahre 1997 behaupteten die Wissenschaftshistoriker Corry, Renn und Stachel in einer viel beachteten Arbeit, Hilbert habe die entscheidenden Formeln von Einstein gestohlen. Grundlage ihrer Argumentation war eine wieder gefundene Korrekturfahne von Hilberts entscheidender Arbeit. Die Physikhistorikerin Daniela Wuensch bringt jedoch detaillierte Argumente dafür vor, dass die entscheidende Quelle, nämlich die Korrekturfahne, in neuerer Zeit manipuliert worden ist, um Einsteins Priorität unangetastet zu lassen. Einstein bleibt aber der Entdecker der Allgemeinen Relativitätstheorie.
ERIC Educational Resources Information Center
Gjurchinovski, Aleksandar; Skeparovski, Aleksandar
2008-01-01
Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…
NASA Astrophysics Data System (ADS)
Earman, John; Eisenstaedt, Jean
Except for a few brief periods, Einstein was uninterested in analysing the nature of the spacetime singularities that appeared in solutions to his gravitational field equations for general relativity. The existence of such monstrosities reinforced his conviction that general relativity was an incomplete theory which would be superseded by a singularity-free unified field theory. Nevertheless, on a number of occasions between 1916 and the end of his life, Einstein was forced to confront singularities. His reactions show a strange asymmetry: he tended to be more disturbed by (what today we would call) merely apparent singularities and less disturbed by (what we would call) real singularities. Einstein had strong a priori ideas about what results a correct physical theory should deliver. In the process of searching through theoretical possibilities, he tended to push aside technical problems and jump over essential difficulties. Sometimes this method of working produced brilliant new ideas-such as the Einstein-Rosen bridge-and sometimes it lead him to miss important implications of his theory of gravity-such as gravitational collapse.
NASA Astrophysics Data System (ADS)
Gjurchinovski, Aleksandar; Skeparovski, Aleksandar
2008-10-01
Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity.1-4 The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a constant velocity.5 Einstein showed an intriguing fact that the usual law of reflection would not hold in the case of a uniformly moving mirror, that is, the angles of incidence and reflection of the light would not equal each other. Later on, it has been shown that the law of reflection at a moving mirror can be obtained in various alternative ways,6-10 but none of them seems suitable for bringing this interesting subject into the high school classroom.
Von Humboldt bis Einstein. Berlin als Weltzentrum der exakten Wissenschaften.
NASA Astrophysics Data System (ADS)
Meschkowski, H.
Contents: 1. Die Anfänge. 2. Die Ära Dirichlet-Jacobi. 3. Der Ausbau der experimentellen Naturwissenschaften. 4. Alexander von Humboldt. 5. Berlin wird "Weltzentrum" der Mathematik. 6. Die Ära Helmholtz. 7. Neue Arbeitsweisen der Astronomie. 8. Chemie: Forschung und Industrie. 9. Max Planck. 10. Ins technische Zeitalter. 11. Zur Mathematik der zwanziger Jahre. 12. Albert Einstein. 13. Fortschritte der Grundlagenforschung. 14. Erwin Schrödinger: Physiker, Philosoph und Poet. 15. Zum Schluß.
NASA Astrophysics Data System (ADS)
Foster, Brian
2008-09-01
This is a remarkable and, at times, bewilderingly diverse volume. Consisting of 20 essays that represent the proceedings of a conference held in 2005 in Berlin, Germany, during the International Year of Physics, it offers insights into Einstein's influence on a swathe of human activity. In the introduction the distinguished editors make some remarkable claims for the book, calling it "an unique attempt" and saying that "there is no better introduction to...string theory", while the first essay states "Not since Newton's Principia..." Clearly this is a volume that aspires to high standards.
Going to School with Madame Curie and Mr. Einstein: Gender Roles in Children's Science Biographies
ERIC Educational Resources Information Center
Owens, Trevor
2009-01-01
One of the first places children encounter science and scientists is children's literature. Children's books about science and scientists have, however, received limited scholarly attention. By exploring the history of children's biographies of Marie Curie and Albert Einstein, the two most written about scientist in children's literature, this…
76 FR 11789 - Albert Poet: Debarment Order
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-03
... of TRI- Toxin, a Botulinum Toxin Type A drug manufactured by Toxin Research International, Inc. TRI... HUMAN SERVICES Food and Drug Administration Albert Poet: Debarment Order AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is issuing an order...
Albert Shanker's Legacy: A Critical Perspective.
ERIC Educational Resources Information Center
Weiner, Lois
Albert Shanker headed the American Federation of Teachers for 22 years and was president of the New York City teachers union. Both organizations were transformed by his presence. Shanker altered the politics of education and teacher unionism. During his tenure, American political life encountered the birth of social movements challenging the…
Capital Punishment for Juveniles: Albert French's "Billy."
ERIC Educational Resources Information Center
Darlington, Sonja
1998-01-01
Analyzes Albert French's novel "Billy" and its exploration of the United States' use of capital punishment for young criminals. Addresses the underlying causes of Billy's execution. Discusses specific themes and issues that teachers can use for classroom discussions of capital punishment. (RS)
The NASA Beyond Einstein Program
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2006-01-01
Einstein's legacy is incomplete, his theory of General relativity raises -- but cannot answer --three profound questions: What powered the big bang? What happens to space, time, and matter at the edge of a black hole? and What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's Office of Space Science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches towards shared science goals. The Beyond Einstein program has three linked elements which advance science and technology towards two visions; to detect directly gravitational wave signals from the earliest possible moments of the BIg Bang, and to image the event horizon of a black hole. The central element is a pair of Einstein Great Observatories, Constellation-X and LISA. Constellation-X is a powerful new X-ray observatory dedicated to X-Ray Spectroscopy. LISA is the first spaced based gravitational wave detector. These powerful facilities will blaze new paths to the questions about black holes, the Big Bang and dark energy. The second element is a series of competitively selected Einstein Probes, each focused on one of the science questions and includes a mission dedicated resolving the Dark Energy mystery. The third element is a program of technology development, theoretical studies and education. The Beyond Einstein program is a new element in the proposed NASA budget for 2004. This talk will give an overview of the program and the missions contained within it.
NASA Astrophysics Data System (ADS)
Kengne, E.; Lakhssassi, A.; Vaillancourt, R.; Liu, Wu-Ming
2012-12-01
We present a double-mapping method (D-MM), a natural combination of a similarity with F-expansion methods, for obtaining general solvable nonlinear evolution equations. We focus on variable-coefficients complex Ginzburg-Landau equations (VCCGLE) with multi-body interactions. We show that it is easy by this method to find a large class of exact solutions of Gross-Pitaevskii and Gross-Pitaevskii-Ginzburg equations. We apply the D-MM to investigate the dynamics of Bose-Einstein condensation with two- and three-body interactions. As a surprising result, we obtained that it is very easy to use the built D-MM to obtain a large class of exact solutions of VCCGLE with two-body interactions via a generalized VCCGLE with two- and three-body interactions containing cubic-derivative terms. The results show that the proposed method is direct, concise, elementary, and effective, and can be a very effective and powerful mathematical tool for solving many other nonlinear evolution equations in physics.
Mallory, Kristina; Van Gorder, Robert A
2015-07-01
Stationary solutions for the cubic nonlinear Schrödinger equation modeling Bose-Einstein condensates (BECs) confined in three spatial dimensions by general forms of a potential are studied through a perturbation method and also numerically. Note that we study both repulsive and attractive BECs under similar frameworks in order to deduce the effects of the potentials in each case. After outlining the general framework, solutions for a collection of specific confining potentials of physical relevance to experiments on BECs are provided in order to demonstrate the approach. We make several observations regarding the influence of the particular potentials on the behavior of the BECs in these cases, comparing and contrasting the qualitative behavior of the attractive and repulsive BECs for potentials of various strengths and forms. Finally, we consider the nonperturbative where the potential or the amplitude of the solutions is large, obtaining various qualitative results. When the kinetic energy term is small (relative to the nonlinearity and the confining potential), we recover the expected Thomas-Fermi approximation for the stationary solutions. Naturally, this also occurs in the large mass limit. Through all of these results, we are able to understand the qualitative behavior of spherical three-dimensional BECs in weak, intermediate, or strong confining potentials.
NASA Astrophysics Data System (ADS)
Bruns, Donald
2016-05-01
In 1919, astronomers performed an experiment during a solar eclipse, attempting to measure the deflection of stars near the sun, in order to verify Einstein's theory of general relativity. The experiment was very difficult and the results were marginal, but the success made Albert Einstein famous around the world. Astronomers last repeated the experiment in 1973, achieving an error of 11%. In 2017, using amateur equipment and modern technology, I plan to repeat the experiment and achieve a 1% error. The best available star catalog will be used for star positions. Corrections for optical distortion and atmospheric refraction are better than 0.01 arcsec. During totality, I expect 7 or 8 measurable stars down to magnitude 9.5, based on analysis of previous eclipse measurements taken by amateurs. Reference images, taken near the sun during totality, will be used for precise calibration. Preliminary test runs performed during twilight in April 2016 and April 2017 can accurately simulate the sky conditions during totality, providing an accurate estimate of the final uncertainty.
El destino del asteroide Albert (719)
NASA Astrophysics Data System (ADS)
Orellana, R. B.; Melita, M. D.; Brunini, A.
Albert is the only numbered asteroid that remains lost at present. This object has been discovered while it was making a close apporach to the Earth by Johann Palisa in the Imperial Observatory of Vienna. According to the standard procedure of the time, a number was assigned to it shortly after a preliminar orbit has been obtained and it was named after a great benefactor of Imperial Observatory, Baron Albert von Rothschild. In this work we analyze why this body could not be recovered in its subsequent approaches to the Earth. Basicaly the cause of the loss can be summarized as follows. Given the high absolute magnitude of the object it can only be observed when it is close to the Earth. But naturally, at the close approches, the uncertanty in the position in the celestial sphere is the greatest due to a parallax effect. We have estimated the uncertanty in R.A. and declination by the non-linear propagation of the initial obervational uncertanty. We have determined that, when the aparent magnitude was low enough to observe the object with the instruments available at the time, the uncertainty region exceeded noticeably the region where it was searched. Regarding its possible recovery at present, the uncertainty in its position practicaly covers the whole sky. Nevertheless, the plane of the orbit is bounded in a narrow strip for a considerable length of time, which makes its recovery posible in old plates. The causes of the loss of Albert (719) are common to all NEO's, which is distintive about it is that it was numbered after just a few obervations, while at present the standard procedure requires that the orbit should be very well established before a denomination is given. Given the almost imposibility of its systematic recovery, in the future Albert (719) might be the first asteroid whose denomination is reassigned to another object.
NASA Astrophysics Data System (ADS)
Tian, Bo; Wei, Guang-Mei; Zhang, Chun-Yi; Shan, Wen-Rui; Gao, Yi-Tian
2006-07-01
The variable-coefficient Korteweg de Vries (KdV)-typed models, although often hard to be studied, are of current interest in describing various real situations. Under investigation hereby is a large class of the generalized variable-coefficient KdV models with external-force and perturbed/dissipative terms. Recent examples of this class include those in blood vessels and circulatory system, arterial dynamics, trapped Bose Einstein condensates related to matter waves and nonlinear atom optics, Bose gas of impenetrable bosons with longitudinal confinement, rods of compressible hyperelastic material and semiconductor heterostructures with positonic phenomena. In this Letter, based on symbolic computation, four transformations are proposed from this class either to the cylindrical or standard KdV equation when the respective constraint holds. The constraints have nothing to do with the external-force term. Under those transformations, such analytic solutions as those with the Airy, Hermit and Jacobian elliptic functions can be obtained, including the solitonic profiles. The roles for the perturbed and external-force terms to play are observed and discussed. Investigations on this class can be performed through the properties of solutions of cylindrical and standard KdV equations.
EDITORIAL: Squeeze transformation and optics after Einstein
NASA Astrophysics Data System (ADS)
Kim, Young S.; Man'ko, Margarita A.; Planat, Michel
2005-12-01
With this special issue, Journal of Optics B: Quantum and Semiclassical Optics contributes to the celebration of the World Year of Physics held in recognition of five brilliant papers written by Albert Einstein in 1905. There is no need to explain to the readers of this journal the content and importance of these papers, which are cornerstones of modern physics. The 51 contributions in this special issue represent current trends in quantum optics —100 years after the concept of light quanta was introduced. At first glance, in his famous papers of 1905, Einstein treated quite independent subjects—special relativity, the nature and statistical properties of light, electrodynamics of moving bodies and Brownian motion. We now know that all these phenomena are deeply related, and these relations are clearly shown in many papers in this issue. Most of the papers are based on the talks and poster contributions from participants of the 9th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'05), which took place in Besançon, France, 2-6 May, 2005. This was the continuation of a series of meetings, originating with the first workshops organized by Professor Y S Kim at the University of Maryland, College Park, USA, in 1991 and by Professor V I Man'ko at the Lebedev Physical Institute, Moscow in 1992. One of the main topics of ICSSUR'05 and this special issue is the theory and applications of squeezed states and their generalizations. At first glance, one could think that this subject has no relation to Einstein's papers. However, this is not true: the theory of squeezed states is deeply related to special relativity, as far as it is based on the representations of the Lorentz group (see the paper by Kim Y S and Noz M E, S458-S467), which also links the current concepts of entanglement and decoherence with Lorentz-covariance. Besides, studies of the different quantum states of light imply, after all, the study of photon (or photo
Einstein's Universe - Gravity at Work and Play
NASA Astrophysics Data System (ADS)
Zee, A.
2001-07-01
On Albert Einstein's seventy-sixth and final birthday, a friend gave him a simple toy made from a broomstick, a brass ball attached to a length of string, and a weak spring. Einstein was delighted: the toy worked on a principle he had conceived fifty years earlier when he was working on his revolutionary theory of gravitya principle whose implications are still confounding physicists today.Starting with this winning anecdote, Anthony Zee begins his animated discussion of phenomena ranging from the emergence of galaxies to the curvature of space-time, evidence for the existence of gravity waves, and the shape of the universe in the first nanoseconds of creation and today. Making complex ideas accessible without oversimplifying, Zee leads the reader through the implications of Einstein's theory and its influence on modern physics. His playful and lucid style conveys the excitement of some of the latest developments in physics, and his new Afterword brings things even further up-to-date.
20. Historic American Buildings Survey Albert S. Burns, Photographer September ...
20. Historic American Buildings Survey Albert S. Burns, Photographer September 30, 1935. MAIN ENTRANCE - SOUTH FACADE - The Maples, 630 South Carolina Avenue Southeast, Washington, District of Columbia, DC
17. Historic American Buildings Survey Albert S. Burns, Photographer September ...
17. Historic American Buildings Survey Albert S. Burns, Photographer September 30, 1935. DETAIL OF WEST ELEVATION - The Maples, 630 South Carolina Avenue Southeast, Washington, District of Columbia, DC
27. Historic American Buildings Survey Albert S. Burns, Photographer September ...
27. Historic American Buildings Survey Albert S. Burns, Photographer September 30, 1935. PLASTER CORNICE - MUSIC ROOM - The Maples, 630 South Carolina Avenue Southeast, Washington, District of Columbia, DC
13. Historic American Buildings Survey Albert S. Burns, Photographer C. ...
13. Historic American Buildings Survey Albert S. Burns, Photographer C. 1934 - 1935 WHEEL PIT UNDER RESTORATION - Pierce Mill, Tilden Street & Beach Drive Northwest, Washington, District of Columbia, DC
7. Historic American Buildings Survey Albert S. Burns, Photographer C. ...
7. Historic American Buildings Survey Albert S. Burns, Photographer C. 1934, 1935. CREEK SIDE DURING RESTORATION - Pierce Mill, Tilden Street & Beach Drive Northwest, Washington, District of Columbia, DC
The creativity of Einstein and astronomy
NASA Technical Reports Server (NTRS)
Zeldovich, Y. B.
1980-01-01
A discussion of Einstein's scientific achievements for the 100th anniversary of his birth is presented. His works dealing with thermodynamics are described, along with his quantum theory of radiation. Most of the article discusses his general theory of relativity.
Obituary: Albert Gray Mowbray, 1916-2002
NASA Astrophysics Data System (ADS)
Hockey, Thomas
2009-01-01
Albert G. Mowbray was born on 23 June 1916. He was the son of Albert Henry Mowbray, a professor of economics at the University of California, Berkeley [UCB], and Elizabeth Gray Mowbray. He had one sister, Mary Elizabeth. Mowbray did undergraduate and graduate work at UCB. His 1943 PhD. dissertation had to do with the apparent sizes of globular clusters. Mowbray became an observing assistant at Lick Observatory in about 1942; later that year he went to the Perkins Observatory, operated for Ohio Wesleyan University by the Ohio State University [OSU]. Due to the wartime shortage of instructors, he also taught physics at OSU. In 1946 Mowbray joined the Jet Propulsion Laboratory. By 1948 he lived in Pasadena California, and was a volunteer observer at the Mount Wilson Observatory. Later, until 1956, he was employed by UCB professor Leland Cunningham, a solar-system dynamicist. Mowbray did computations and measured plates for Cunningham. Mowbray joined the physics faculty at San Jose State College (now California State University, San Jose) in 1957. In addition to the AAS, Mowbray was a member of the Astronomical Society of the Pacific. He died in San Francisco, California, on 21 August 2002. The kind assistance of George Herbig, Virginia Trimble, and Elizabeth Roemer is acknowledged.
Little Albert from the Viewpoint of Abnormal Psychology Textbook Authors.
ERIC Educational Resources Information Center
LeUnes, Arnold
1983-01-01
Watson and Rayner's study of Little Albert and conditioned emotional reactions is unquestionably a classic in psychology. Observations are made on what authors of 27 college textbooks in abnormal psychology have to say or not to say about Little Albert. (RM)
Dr. Albert Carr--Science Educator 1930-2000
ERIC Educational Resources Information Center
Lopez, Leslie
2013-01-01
The very first issue of "Educational Perspectives" was published in October of 1962. Dr. Albert Carr wrote one of the inaugural essays on the topic of current developments in science education, and he went on to write several other articles for the journal. This article shares why Dr. Albert Carr's colleagues remember him for his…
Albert Schweitzer's Legacy for Education: Reverence for Life
ERIC Educational Resources Information Center
Rud, A. G.
2010-01-01
"Albert Schweitzer's Legacy for Education" is the first book devoted to the study of the thought and deeds of Albert Schweitzer in relation to education. Schweitzer's life and work offer both inspiration and timely insights for educational thought and practice in the twenty-first century. Focusing on Schweitzer's central thought,…
Albert and Erwin: decline and fall
NASA Astrophysics Data System (ADS)
Weaire, Denis
2015-04-01
More than a century has passed since quantum theory began to pose teasing questions about how we interpret our world. Books abound that offer alternative views of the problems the theory raises, and Einstein's Dice and SchrÃ¶dinger's Cat is another.
Echoing Citizen Einstein in the East: Andrei Sakharov
NASA Astrophysics Data System (ADS)
Rhéaume, Charles
2006-11-01
As if a handing of the torch, Andrei Sakharov saw his dissidence acquire initial impetus from nuclear tests that it was clear were becoming out of control in the hands of an unscrupulous regime in 1955, the very year Einstein died. He had of course drawn from the latter's science for the realization of the Soviet H-bomb. From then on, however, it would be the humanistic views of Einstein that would lead his way. Not only was he not an anti-Semite like many in official circles in the Soviet Union at the time but through experiences in his young age and later in his work on the bomb where he had many Jewish colleagues, Sakharov had come to admire Jewish culture and particularly its inclination towards intellectual life. It was with a fully open mind then that he got acquainted with Einstein's ideas on how the great man saw the world. Sakharov would divulge his own vision of the world in an essay titled "Progress, Peaceful Coexistence and Intellectual Freedom" in 1968. The Albert Einstein Peace Prize he would be awarded in 1988 for his relentless advocacy of peace would come as a confirmation of the spiritual linkage between the two men. This paper scrutinizes traces of Einstein's thinking in Sakharov's own. It focuses particularly on their convergent understanding of the notion of world government.
Bruno, Galileo, Einstein: The Value of Myths in Physics
NASA Astrophysics Data System (ADS)
Martinez, Alberto
2015-03-01
Usually, historical myths are portrayed as something to be avoided in a physics classroom. Instead, I will discuss the positive function of myths and how they can be used to improve physics education. First, on the basis of historical research from primary sources and significant new findings about the Catholic Inquisition, I will discuss how to use the inspirational story of Giordano Bruno when discussing cosmology. Next, I will discuss the recurring story about Galileo and the Leaning Tower of Pisa. Finally, I will discuss how neglected stories about the young Albert Einstein can help to inspire students.
Policing epistemic deviance: Albert Von Schrenck-Notzing and Albert Moll(1).
Sommer, Andreas
2012-04-01
Shortly after the death of Albert von Schrenck-Notzing (1862-1929), the doyen of early twentieth century German para psychology, his former colleague in hypnotism and sexology Albert Moll (1862-1939) published a treatise on the psychology and pathology of parapsychologists, with Schrenck-Notzing serving as a prototype of a scientist suffering from an 'occult complex'. Moll's analysis concluded that parapsychologists vouching for the reality of supernormal phenomena, such as telepathy, clairvoyance, telekinesis and materialisations, suffered from a morbid will to believe, which paralysed their critical faculties and made them cover obvious mediumistic fraud. Using Moll's treatment of Schrenck-Notzing as an historical case study of boundary disputes in science and medicine, this essay traces the career of Schrenck-Notzing as a researcher in hypnotism, sexology and parapsychology; discusses the relationship between Moll and Schrenck-Notzing; and problematises the pathologisation and defamation strategies of deviant epistemologies by authors such as Moll.
Astronomical and Cosmological Symbolism in Art Dedicated to Newton and Einstein
NASA Astrophysics Data System (ADS)
Sinclair, R.
2013-04-01
Separated by two and a half centuries, Isaac Newton (1642-1727) and Albert Einstein (1879-1955) had profound impacts on our understanding of the universe. Newton established our understanding of universal gravitation, which was recast almost beyond recognition by Einstein. Both discovered basic patterns behind astronomical phenomena and became the best-known scientists of their respective periods. I will describe here how artists of the 18th and 20th centuries represented the achievements of Newton and Einstein. Representations of Newton express reverence, almost an apotheosis, portraying him as the creator of the universe. Einstein, in a different age, is represented often as a comic figure, and only rarely do we find art that hints at the profound view of the universe he developed.
Design analysis of the Einstein refrigeration cycle
Shelton, S.V.; Delano, A.; Schaefer, L.A.
1999-07-01
After developing the theory of relativity, Albert Einstein spent several years working with Leo Szilard on absorption refrigeration cycles. In 1930, they obtained a US patent for a unique single pressure absorption cycle. The single pressure eliminates the need for a solution pump. Their cycle has only recently been rediscovered. The cycle utilizes butane as its refrigerant, ammonia as a pressure equalizing fluid, and water as an absorbing fluid. This cycle is dramatically different in both concept and detail than the better-known ammonia-water-hydrogen cycle. In this study, thermodynamic and mixture property models of the Einstein cycle were created to gain insight into the cycle's operating characteristics and to calculate its performance. A conceptual demonstration model was built and successfully operated, showing for the first time the viability of the cycle. The model results found that the system pressure is an important design parameter, with the COP having an optimum when the system pressure is equal to the saturation pressure of the butane refrigerant. It was also found that for a given system pressure, there is a maximum condenser-absorber temperature and a minimum evaporator temperature.
Gravity Before Einstein and Schwinger Before Gravity
NASA Astrophysics Data System (ADS)
Trimble, Virginia L.
2012-05-01
Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.
Saving Space and Time: The Tractor That Einstein Built
NASA Technical Reports Server (NTRS)
2006-01-01
In 1984, NASA initiated the Gravity Probe B (GP-B) program to test two unverified predictions of Albert Einstein s theory of general relativity, hypotheses about the ways space, time, light, and gravity relate to each other. To test these predictions, the Space Agency and researchers at Stanford University developed an experiment that would check, with extreme precision, tiny changes in the spin direction of four gyroscopes contained in an Earth satellite orbiting at a 400-mile altitude directly over the Earth s poles. When the program first began, the researchers assessed using Global Positioning System (GPS) technology to control the attitude of the GP-B spacecraft accurately. At that time, the best GPS receivers could only provide accuracy to nearly 1 meter, but the GP-B spacecraft required a system 100 times more accurate. To address this concern, researchers at Stanford designed high-performance, attitude-determining hardware that used GPS signals, perfecting a high-precision form of GPS called Carrier-Phase Differential GPS that could provide continuous real-time position, velocity, time, and attitude sensor information for all axes of a vehicle. The researchers came to the realization that controlling the GP-B spacecraft with this new system was essentially no different than controlling an airplane. Their thinking took a new direction: If this technology proved successful, the airlines and the Federal Aviation Administration (FAA) were ready commercial markets. They set out to test the new technology, the "Integrity Beacon Landing System," using it to automatically land a commercial Boeing 737 over 100 times successfully through Real-Time Kinematic (RTK) GPS technology. The thinking of the researchers shifted again, from automatically landing aircraft, to automating precision farming and construction equipment.
Piccioni, Robert
2010-10-05
Young Einstein was a rebel who seemed doomed to fail. How did he overcome rejection to become the most famous scientist in history? We will discuss and explain all his theories in plain English and without math, and we will discover how Einstein's achievements impact our lives through DVDs, GPS, iPods, computers and green energy.
NASA Astrophysics Data System (ADS)
Nauenberg, Michael
2005-03-01
In 1916 Einstein published a remarkable paper entitled ``On the Quantum Theory of Radiation''ootnotetextA. Einstein ``On the Quantum theory of Radiation,'' Phys. Zeitschrift 18 (1917) 121. First printed in Mitteilungender Physikalischen Gesellschaft Zurich. No 18, 1916. Translated into English in Van der Waerden ``Sources of Quantum Mechanics'' (North Holland 1967) pp. 63-77. in which he obtained Planck's formula for black-body radiation by introducing a new statistical hypothesis for the emmision and absorption of electromagneic radiation based on discrete bundles of energy and momentum which are now called photons. Einstein radiation theory replaced Maxwell's classical theory by a stochastic process which, when properly interpreted, also gives well known statistics of massless particles with even spin.^2 This quantum distribution, however, was not discovered by Einstein but was communicated to him by Bose in 1924. Like Boltzmann's classical counterpart, Einstein's statistical theory leads to an irreversible approach to thermal equilibrium, but because this violates time reversal, Einstein theory can not be regarded as a fundamental theory of physical process.ootnotetextM. Nauenberg ``The evolution of radiation towards thermal equilibrium: A soluble model which illustrates the foundations of statistical mechanics,'' American Journal of Physics 72 (2004) 313 Apparently Einstein and his contemporaries were unaware of this problem, and even today this problem is ignored in contemporary discussions of Einstein's treatment of the black-body spectrum.
Piccioni, Robert
2016-07-12
Young Einstein was a rebel who seemed doomed to fail. How did he overcome rejection to become the most famous scientist in history? We will discuss and explain all his theories in plain English and without math, and we will discover how Einstein's achievements impact our lives through DVDs, GPS, iPods, computers and green energy.
NASA Astrophysics Data System (ADS)
Sterken, C.; Duerbeck, H. W.; Dick, W. R.
2006-12-01
This book collects about 15 papers (most of them by one single author) on Einstein and the history of general relativity (GR) and the foundations of relativistic cosmology. The matter not only deals with Einstein and his times, but also with pre-GR ideas, and with the interplay of Einstein and his colleagues (opposing as well as supporting personalities). As the title indicates, all papers are written in German, but they include comprehensive Abstracts both in German and English. The book is illustrated with quite a number classical - but also some far more original though not less beautiful - photographs and facsimiles of documents. The book is edited very well, though the style of references is not quite homogeneous. There is no Index. K. Hentschel covers Einstein's argumentation for the existence of graviational redshift, and the initial search for empirical support. The error analysis of observational evidence supporting relativistic light deflection is discussed in a paper by P. Brosche. In particular, H. Duerbeck and P. Flin - in their description of the life and work of Silberstein, who was quite sceptic on the significance of the observational verifications a la Eddington - include the transcription of two most revealing letters by Silberstein to Sommerfeld (1919) and to Einstein (1934). In the first letter, Silberstein clearly shows his scientific maturity and integrity by scrutinising the observational evidence supporting light deflection, presented at a joint meeting of the Royal Society and the Royal Astronomical Society. The second letter, which is more a personal letter, includes lots of political references and connotations. Some of Einstein's political views are also revealed by D.B. Herrmann on the basis of his own correspondence with E.G. Straus, a collaborator of Einstein's. In a consequent paper, S. Grundmann gives remarks on Herrmann's contribution and illustrates Einstein's attitude towards Marx, Engels, Lenin and Stalin. M. Schemmel discusses
Space Radar Image of Prince Albert, Canada
NASA Technical Reports Server (NTRS)
1999-01-01
This is a false-color composite of Prince Albert, Canada, centered at 53.91 north latitude and 104.69 west longitude. This image was acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar(SIR-C/X-SAR) aboard space shuttle Endeavour on its 20th orbit. The area is located 40 kilometers (25 miles) north and 30 kilometers (20 miles) east of the town of Prince Albert in the Saskatchewan province of Canada. The image covers the area east of the Candle lake, between gravel surface highways 120 and 106 and west of 106. The area in the middle of the image covers the entire Nipawin (Narrow Hills) provincial park. The look angle of the radar is 30 degrees and the size of the image is approximately 20 kilometers by 50 kilometers (12 by 30 miles). The image was produced by using only the L-band. The three polarization channels HH, HV and VV are illustrated by red, green and blue respectively. The changes in the intensity of each color are related to various surface conditions such as variations in forest stands, frozen or thawed condition of the surface, disturbances (fire and deforestation), and areas of regrowth. Most of the dark areas in the image are the ice-covered lakes in the region. The dark area on the top right corner of the image is the white Gull Lake north of the intersection of highway 120 and 913. The right middle part of the image shows Lake Ispuchaw and Lower Fishing Lake. The deforested areas are also shown by dark areas in the image. Since most of the logging practice at the Prince Albert area is around the major highways, the deforested areas can be easily detected as small geometrically shaped dark regions along the roads. At the time of the SIR-C/X-SAR overpass a major part of the forest is either frozen or undergoing the spring thaw. The L-band HH shows a high return in the jack pine forest. The reddish areas in the image are old jack pine forest, 12 to 17 meters (40to 55 feet) in height and 60 to 75 years old. The orange
14. BRIDGE TENDER ALBERT REEVES (RIGHT) AND YOUTHFUL HELPER (WALLY ...
14. BRIDGE TENDER ALBERT REEVES (RIGHT) AND YOUTHFUL HELPER (WALLY HALES), HANDLING HUGE 'KEY' TO WIND OPEN THE CENTER SWING SPAN. - Maurice River Pratt Through-Truss Swing Bridge, Spanning Maurice River, Mauricetown, Cumberland County, NJ
Albert Gallatin and the Movement for Peace with Mexico
ERIC Educational Resources Information Center
Mannix, Richard
1969-01-01
An account of Albert Gallatin's efforts at promoting peace during the Mexican American war in 1847: In particular, the pamphlet Gallatin authored as an appeal for peace is discussed in terms of its distribution and impact. (AP)
Biographical sketch: John Albert Key, 1890-1955.
Brand, Richard A
2013-07-01
This biographical sketch on John Albert Key corresponds to the historic text, The Classic: Epiphyseal coxa vara or displacement of the capital epiphysis of the femur in adolescence, available at DOI 10.1007/s11999-013-2913-y.
19. Historic American Buildings Survey Albert S. Burns, Photographer September ...
19. Historic American Buildings Survey Albert S. Burns, Photographer September 30, 1935. VIEW OF SOUTHEAST CORNER, COURT YARD - The Maples, 630 South Carolina Avenue Southeast, Washington, District of Columbia, DC
29. Historic American Buildings Survey Albert S. Burns, Photographer September ...
29. Historic American Buildings Survey Albert S. Burns, Photographer September 30, 1935. MANTEL, SOUTHWEST BEDROOM - 2d FLOOR - The Maples, 630 South Carolina Avenue Southeast, Washington, District of Columbia, DC
28. Historic American Buildings Survey Albert S. Burns, Photographer September ...
28. Historic American Buildings Survey Albert S. Burns, Photographer September 30, 1935. MANTEL, SECOND FLOOR LIVING ROOM - The Maples, 630 South Carolina Avenue Southeast, Washington, District of Columbia, DC
25. Historic American Buildings Survey Albert S. Burns, Photographer September ...
25. Historic American Buildings Survey Albert S. Burns, Photographer September 30, 1935. CEILING AND CHANDELIER IN MUSIC ROOM - The Maples, 630 South Carolina Avenue Southeast, Washington, District of Columbia, DC
26. Historic American Buildings Survey Albert S. Burns, Photographer September ...
26. Historic American Buildings Survey Albert S. Burns, Photographer September 30, 1935. FRAGMENTS OF PLASTER CEILING ROSETTE - MUSIC ROOM - The Maples, 630 South Carolina Avenue Southeast, Washington, District of Columbia, DC
18. Historic American Buildings Survey Albert S. Burns, Photographer October ...
18. Historic American Buildings Survey Albert S. Burns, Photographer October 1, 1935. DETAIL OF NORTH ELEVATION AT COURT WALL. - The Maples, 630 South Carolina Avenue Southeast, Washington, District of Columbia, DC
4. Historic American Buildings Survey Albert S. Burns Photographer c. ...
4. Historic American Buildings Survey Albert S. Burns Photographer c. 1934-35 PIERCE MILL (Before restoration) - Pierce Mill, Tilden Street & Beach Drive Northwest, Washington, District of Columbia, DC
12. Photocopy of drawing, measured and drawn by Albert P. ...
12. Photocopy of drawing, measured and drawn by Albert P. Erb. WEST ELEVATION - Dr. David Ross House, Annapolis Road (moved to Preservation Hill, Western Run Road, Cockeysville), Bladensburg, Prince George's County, MD
8. Historic American Buildings Survey Albert S. Burns, Photographer September ...
8. Historic American Buildings Survey Albert S. Burns, Photographer September 30, 1935. LIVING ROOM MANTLE (DINING ROOM SAME) - Captain Joseph Johnson House, 49 T Street Southwest, Buzzards Point, Washington, District of Columbia, DC
7. Photocopied 1973 from original owned by Albert M. Stiles, ...
7. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1880's. VOLCANO LITTLE THEATRE GUILD. SOME CAST. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
19. Photocopied 1973 from original owned by Albert M. Stiles, ...
19. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1907. THE OLD STILES HOUSE, LOOKING WEST. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
9. Photocopied 1973 from original owned by Albert M. Stiles, ...
9. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1907. VIEW LOOKING NORTH. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
16. Photocopied 1973 from original owned by Albert M. Stiles, ...
16. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1907. STILES RESIDENCE, THORNHILL FARM. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
17. Photocopied 1973 from original owned by Albert M. Stiles, ...
17. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1907. THE OLD STILES HOUSE LOOKING EAST. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
5. Photocopied 1973 from original owned by Albert M. Stiles, ...
5. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1880. VOLCANO TOWN HALL. BLACKLIN HOUSE AT LEFT. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
1. Photocopied 1973 from original owned by Albert M. Stiles, ...
1. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1907. VIEW LOOKING SOUTH. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
14. Photocopied 1973 from original owned by Albert M. Stiles, ...
14. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1907. MOUNT FARM OIL COMPANY. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
12. Photocopied 1973 from original owned by Albert M. Stiles, ...
12. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1907. THORNHILL STORE. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
Extended Horava gravity and Einstein-aether theory
Jacobson, Ted
2010-05-15
Einstein-aether theory is general relativity coupled to a dynamical, unit timelike vector. If this vector is restricted in the action to be hypersurface orthogonal, the theory is identical to the IR limit of the extension of Horava gravity proposed by Blas, Pujolas and Sibiryakov. Hypersurface orthogonal solutions of Einstein-aether theory are solutions to the IR limit of this theory, hence numerous results already obtained for Einstein-aether theory carry over.
[Albert Schweitzer. The man as a symbol].
Urdaneta-Carruyo, Eliexer
2007-01-01
Albert Schweitzer, the great missionary physician from the XXth century, had a versatile personality that integrated multiple talents, leading to the slightly frequent conjunction of the thinker with the man of action, and the humanist with the scientist and the artist. He studied all these disciplines in a brilliant manner: Philosophy, Theology, Music and Medicine; he was also a great scholar of Bach's work, Jesus Christ and the civilization history. In his maturity, this great man renounced to the fame and glory gained as intellectual and musician, to dedicate his life as a physician for the forgotten African natives. His deeply religious spirit allowed him to penetrate into the most recondite of the human soul; in his personality, he expressed in its entire dimension the eternally unsatisfied desire of the solitary man, against the immensity of the universe. His philosophy, based on the respect for life, was realized throughout the practice of the medical profession. His noble character and personality was based on the man as symbol, since it was not so much what he did helping people but what people could do to others due to him. His singular example represented a moral force in the world, superior to millions of men armed for a war. In 1953, he received the Nobel Peace Prize for his philanthropic work in Africa during more that fifty years, and for his deep love to the living beings. He was transformed in a perennial legend as the Lambaréné doctor.
Falk, Dean
2016-06-20
Fossil and comparative primatological evidence suggest that alterations in the development of prehistoric hominin infants kindled three consecutive evolutionary-developmental (evo-devo) trends that, ultimately, paved the way for the evolution of the human brain and cognition. In the earliest trend, infants' development of posture and locomotion became delayed because of anatomical changes that accompanied the prolonged evolution of bipedalism. Because modern humans have inherited these changes, our babies are much slower than other primates to reach developmental milestones such as standing, crawling, and walking. The delay in ancestral babies' physical development eventually precipitated an evolutionary reversal in which they became increasing unable to cling independently to their mothers. For the first time in prehistory, babies were, thus, periodically deprived of direct physical contact with their mothers. This prompted the emergence of a second evo-devo trend in which infants sought contact comfort from caregivers using evolved signals, including new ways of crying that are conserved in modern babies. Such signaling stimulated intense reciprocal interactions between prehistoric mothers and infants that seeded the eventual emergence of motherese and, subsequently, protolanguage. The third trend was for an extreme acceleration in brain growth that began prior to the last trimester of gestation and continued through infants' first postnatal year (early "brain spurt"). Conservation of this trend in modern babies explains why human brains reach adult sizes that are over three times those of chimpanzees. The fossil record of hominin cranial capacities together with comparative neuroanatomical data suggest that, around 3 million years ago, early brain spurts began to facilitate an evolutionary trajectory for increasingly large adult brains in association with neurological reorganization. The prehistoric increase in brain size eventually caused parturition to become exceedingly difficult, and this difficulty, known as the "obstetrical dilemma", is likely to constrain the future evolution of brain size and, thus, privilege ongoing evolution in neurological reorganization. In modern babies, the brain spurt is accompanied by formation and tuning (pruning) of neurological connections, and development of dynamic higher-order networks that facilitate acquisition of grammatical language and, later in development, other advanced computational abilities such as musical or mathematical perception and performance. The cumulative evidence suggests that the emergence and refinement of grammatical language was a prime mover of hominin brain evolution.
The Albert Einstein Distinguished Educator Fellowship: Bridging the Gap Between Policy and Practice
NASA Astrophysics Data System (ADS)
Milbourne, Jeff; Wheeler, Sam
2017-02-01
In an ideal world, education policy and practice would exist as parts of a coherent system. Effective practice would inform policy and that policy would, in turn, promote the tenets of effective practice at the local, state, and national levels. Policymakers and practitioners would collaborate and, by extension, have familiarity and respect for one another's perspective. Unfortunately, our current education system is a far cry from the ideal, a fact that we as practitioners know all too well.
NYPIRG Petition to Object to Yeshiva University's Albert Einstein College of Medicane Title V Permit
This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Petition Database available at www2.epa.gov/title-v-operating-permits/title-v-petition-database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
NASA Astrophysics Data System (ADS)
Heilbron, John
2005-03-01
As an editor of the Annalen der Physik, Max Planck published Einstein's early papers on thermodynamics and on special relativity, which Planck probably was the first major physicist to appreciate. They respected one another not only as physicists but also, for their inspired creation of world pictures, as artists. Planck helped to establish Einstein in a sinecure at the center of German physics, Berlin. Despite their differences in scientific style, social life, politics, and religion, they became fast friends. Their mutual admiration survived World War I, during which Einstein advocated pacifism and Planck signed the infamous Manifesto of the 93 Intellectuals supporting the German invasion of Belgium. It also survived the Weimar Republic, which Einstein favored and Planck disliked. Physics drew them together, as both opposed the Copenhagen Interpretation; so did common decency, as Planck helped to protect Einstein from anti-semitic attacks. Their friendship did not survive the Nazis. As a standing secretary of the Berlin Academy, Planck had to advise Einstein to resign from it before his colleagues, outraged at his criticism of the new Germany from the safety of California, expelled him. Einstein never forgave his old friend and former fellow artist for not protesting publicly against his expulsion and denigration, and other enormities of National Socialism. .
Einstein, Bose and Bose-Einstein Statistics
NASA Astrophysics Data System (ADS)
Wali, Kameshwar C.
2005-05-01
In June 1924, a relatively unknown Satyendra Nath Bose from Dacca, India, wrote a letter to Einstein beginning with ``Respected Sir, I have ventured to send you the accompanying article for your perusal. I am anxious to know what you think of it. You will see that I have ventured to deduce the coefficient 8πυ^2/c^3 in Planck's law independent of the classical electrodynamics, only assuming that the ultimate elementary regions in Phase-space have the content h^3. I do not know sufficient German to translate the paper. If you think the paper worth publication, I shall be grateful if you arrange for its publication in Zeitschrift für Physik.'' Einstein did translate the article himself and got it published. He wrote to Ehrenfest: ``The Indian Bose has given a beautiful derivation of Planck's law, including the constant [i.e.8πυ^2/c^3].'' Einstein extended the ideas of Bose that implied, among other things, a new statistics for the light-quanta to the molecules of an ideal gas and wrote to Ehrenfest, `from a certain temperature on, the molecules ``condense'' without attractive forces, that is, they accumulate at zero velocity. The theory is pretty, but is there also some truth to it?' Abraham Pais has called Bose's paper ``the fourth and the last revolutionary papers of the old quantum theory.'' My paper will present the works of Bose and Einstein in their historical perspective and the eventual birth of the new quantum Bose-Einstein statistics.
BOOK REVIEW: Once Upon Einstein
NASA Astrophysics Data System (ADS)
Giannetto, E.
2007-07-01
Thibault Damour is a theoretical physicist, and a member of the French Academy of Sciences. This book is the translation, by Eric Novak, of the original French Si Einstein m'etait conté (Le Cherche Midi, 2005). It is neither a book of theoretical physics nor a biography of Einstein. It is not a book of history nor philosophy of science. In Damour's words it was written to encourage the reader to share with Einstein `those times when he understood some part of the hidden order of the universe'. It is a relatively short book, written in a very fluent style, but it deals with all the major problems and achievements of Einstein's works. Starting from special relativity, it continues with general relativity, quantum theories, unified field theory and a brief overview of the actual research related to Einstein's legacy. It is essentially a popular science book with some related exploration in history and philosophy to interpret physical theories. The most important problem discussed by Damour is the nature of time. On this subject, there is a very interesting short paragraph (pp 33--35) dedicated to the reception of the relativity idea by the great writer Marcel Proust and its counterpart within À la Recherche du Temps Perdu. A correct discussion of the implications of a relativistic time should imply the distinction of the different possible interpretations of this concept. Damour seems to conclude that only one interpretation is possible: `time does not exist', flowing of time is an illusion. One has to know that Einstein's ideas on time were related to Spinoza's perspective of a knowledge sub specie aeternitatis. However, other interpretations are possible and are related to the idea of time as an actuality. Damour speaks about the controversy between Einstein and Bergson, but Bergson is considered as a philosopher who did not understand relativity. This philosophical problem of relativistic time is indeed related to a historical problem briefly discussed by Damour
NASA Astrophysics Data System (ADS)
Rigden, John
2005-05-01
From March 17 to September 29, 1905, just over six months, Einstein wrote five papers that shifted the tectonic foundations of physics and changed the face of Nature. Three of these papers, the March paper presenting the particle of light, the May paper on Brownian motion, and the June paper on the Special Theory of Relativity are universally recognized as fundamental; however, the Brownian motion paper cannot be divorced from Einstein's April paper, A New Determination of the Dimensions of Molecules, and the September paper that gave the world its most famous equation, E = mc^2, cannot be separated from the June paper. These five papers reveal characteristics of Einstein's approach to physics.
Policing Epistemic Deviance: Albert von Schrenck-Notzing and Albert Moll1
Sommer, Andreas
2012-01-01
Shortly after the death of Albert von Schrenck-Notzing (1862–1929), the doyen of early twentieth century German para psychology, his former colleague in hypnotism and sexology Albert Moll (1862–1939) published a treatise on the psychology and pathology of parapsychologists, with Schrenck-Notzing serving as a prototype of a scientist suffering from an ‘occult complex’. Moll’s analysis concluded that parapsychologists vouching for the reality of supernormal phenomena, such as telepathy, clairvoyance, telekinesis and materialisations, suffered from a morbid will to believe, which paralysed their critical faculties and made them cover obvious mediumistic fraud. Using Moll’s treatment of Schrenck-Notzing as an historical case study of boundary disputes in science and medicine, this essay traces the career of Schrenck-Notzing as a researcher in hypnotism, sexology and parapsychology; discusses the relationship between Moll and Schrenck-Notzing; and problematises the pathologisation and defamation strategies of deviant epistemologies by authors such as Moll. PMID:23002296
ERIC Educational Resources Information Center
Elliot, Ian
1996-01-01
Describes "Einstein's Adventurarium," a science center housed in an empty shopping mall in Gillette, Wyoming, created through school, business, and city-county government partnership. Describes how interactive exhibits allow exploration of life sciences, physics, and paleontology. (KDFB)
Little Albert's alleged neurological impairment: Watson, Rayner, and historical revision.
Digdon, Nancy; Powell, Russell A; Harris, Ben
2014-11-01
In 2012, Fridlund, Beck, Goldie, and Irons (2012) announced that "Little Albert"-the infant that Watson and Rayner used in their 1920 study of conditioned fear (Watson & Rayner, 1920)-was not the healthy child the researchers described him to be, but was neurologically impaired almost from birth. Fridlund et al. also alleged that Watson had committed serious ethical breaches in regard to this research. Our article reexamines the evidentiary bases for these claims and arrives at an alternative interpretation of Albert as a normal infant. In order to set the stage for our interpretation, we first briefly describe the historical context for the Albert study, as well as how the study has been construed and revised since 1920. We then discuss the evidentiary issues in some detail, focusing on Fridlund et al.'s analysis of the film footage of Albert, and on the context within which Watson and Rayner conducted their study. In closing, we return to historical matters to speculate about why historiographical disputes matter and what the story of neurologically impaired Albert might be telling us about the discipline of psychology today.
EPR before EPR: A 1930 Einstein-Bohr thought Experiment Revisited
ERIC Educational Resources Information Center
Nikolic, Hrvoje
2012-01-01
In 1930, Einstein argued against the consistency of the time-energy uncertainty relation by discussing a thought experiment involving a measurement of the mass of the box which emitted a photon. Bohr seemingly prevailed over Einstein by arguing that Einstein's own general theory of relativity saves the consistency of quantum mechanics. We revisit…
[Interculturality in the medical practice of Dr. Albert Schweitzer].
Campos-Navarro, Roberto; Ruiz-Llanos, Adriana
2004-01-01
Albert Schweitzer (1875-1965) was a young and promising German who at age 29 decided to undertake the profession of Medical Doctor at the University of Strassburg after finishing a career in musical studies in Paris (1899) and obtaining in Berlin a doctoral degree in Philosophy and Theology. Surprisingly, Albert Schweitzer, despite his comfortable life in Europe, decided in 1913 to practice his medical career in a remote and small Equatorial African country. He devoted nearly 50 years of his life caring for the Black population at Lamaberene, where he built a hospital. In this paper, we attempt to develop some theoretical aspects related with interculturality in the medical practice of Dr. Albert Schweitzer. We begin by considering certain sociocultural variables in hospitals that give care to patients with cultural characteristics that are substantially different from those of the health care personnel who organize, administer, and execute medical functions.
Bose-Einstein condensation. Twenty years after
Bagnato, V. S.; Frantzeskakis, D. J.; Kevrekidis, P. G.; ...
2015-02-23
The aim of this introductory article is two-fold. First, we aim to offer a general introduction to the theme of Bose-Einstein condensates, and briefly discuss the evolution of a number of relevant research directions during the last two decades. Second, we introduce and present the articles that appear in this Special Volume of Romanian Reports in Physics celebrating the conclusion of the second decade since the experimental creation of Bose-Einstein condensation in ultracold gases of alkali-metal atoms.
Chromohydrodynamics in Einstein-Cartan theory
Amorim, R.
1986-05-15
The complete dynamical system for a classical fluid endowed with non-Abelian charge density is obtained by using variational techniques. Spin density appears in a natural way, as a consequence of a usual gauge construction. Einstein-Cartan, Yang-Mills, and generalized Wong equations are explicitly shown.
[Photoeffects, Einstein's light quanta and the history of their acceptance].
Wiederkehr, Karl Heinrich
2006-01-01
It is generally supposed, that the discovery of the efficacy-quantum by Planck was the impetus to Einstein's hypothesis of lightquanta. With its help Einstein could explain the external light-electrical effect. But even years before Einstein had worked at the photoeffect and already made experiments on it. For that reason the article gives a short survey about the history of the lightelectric effects. Lenard's basical work about the release of the photoelectrons is dealt with in detail, without which Einstein would scarcely have found his lightquanta. Furthermore it is shown how difficult it was for the physicists to give up--at least partially--the traditional view of the undulation-nature of light, and how they searched to explain the great energies of the photoelectrons. On the other side it is set forth how Einstein's formula of lightquanta was gradually confirmed. The tragical development of Einstein's personal relations with Johannes Stark and Philipp Lenard are briefly described. Stark was one of the few who supported Einstein's ideas at the beginning. Only with the Compton-effect, which could only be quantitatively interpreted by means of lightquanta and the special theory of relativity 1923, the way was free for the general acceptance of the lightquanta. Einstein did not agree to the obtained dualism of undulation and corpuscle; he had a different solution in mind about the fusion of the two forms of appearance of light.
Is Einstein the Father of the Atomic Bomb
NASA Astrophysics Data System (ADS)
Lustig, Harry
2009-05-01
Soon after the American atomic bombs were dropped on Hiroshima and Nagasaki, the notion took hold in the popular mind that Albert Einstein was ``the father of the bomb.'' The claim of paternity rests on the belief that E=mc2 is what makes the release of enormous amounts of energy in the fission process possible and that the atomic bomb could not have been built without it. This is a misapprehension. Most physicists have known that all along. Nevertheless in his reaction to the opera Dr. Atomic, a prominent physicist claimed that Einstein's discovery that matter can be transformed into energy ``is precisely what made the bomb possible.'' In fact what makes the fission reaction and one of its applications,the atomic bomb, possible is the smaller binding energies of fission products compared to the binding energies of the nuclei that undergo fission.The binding energies of nuclei are a well understood consequence of the numbers and arrangements of protons and neutrons in the nucleus and of quantum-mechanical effects. The realization that composite systems have binding energies predates relativity. In the 19th century they were ascribed to potential and other forms of energy that reside in the system. With Einstein they became rest mass energy. While E=mc2 is not the cause of fission, measuring the masses of the participants in the reaction does permit an easy calculation of the kinetic energy that is released.
The Einstein-Brazil Fogarty: A decade of synergy.
Nosanchuk, Joshua D; Nosanchuk, Murphy D; Rodrigues, Marcio L; Nimrichter, Leonardo; Carvalho, Antonio C Campos de; Weiss, Louis M; Spray, David C; Tanowitz, Herbert B
2015-01-01
A rich, collaborative program funded by the US NIH Fogarty program in 2004 has provided for a decade of remarkable opportunities for scientific advancement through the training of Brazilian undergraduate, graduate and postdoctoral students from the Federal University and Oswaldo Cruz Foundation systems at Albert Einstein College of Medicine. The focus of the program has been on the development of trainees in the broad field of Infectious Diseases, with a particular focus on diseases of importance to the Brazilian population. Talented trainees from various regions in Brazil came to Einstein to learn techniques and study fungal, parasitic and bacterial pathogens. In total, 43 trainees enthusiastically participated in the program. In addition to laboratory work, these students took a variety of courses at Einstein, presented their results at local, national and international meetings, and productively published their findings. This program has led to a remarkable synergy of scientific discovery for the participants during a time of rapid acceleration of the scientific growth in Brazil. This collaboration between Brazilian and US scientists has benefitted both countries and serves as a model for future training programs between these countries.
The Einstein-Brazil Fogarty: A decade of synergy
Nosanchuk, Joshua D.; Nosanchuk, Murphy D.; Rodrigues, Marcio L.; Nimrichter, Leonardo; de Carvalho, Antonio C. Campos; Weiss, Louis M.; Spray, David C.; Tanowitz, Herbert B.
2015-01-01
Abstract A rich, collaborative program funded by the US NIH Fogarty program in 2004 has provided for a decade of remarkable opportunities for scientific advancement through the training of Brazilian undergraduate, graduate and postdoctoral students from the Federal University and Oswaldo Cruz Foundation systems at Albert Einstein College of Medicine. The focus of the program has been on the development of trainees in the broad field of Infectious Diseases, with a particular focus on diseases of importance to the Brazilian population. Talented trainees from various regions in Brazil came to Einstein to learn techniques and study fungal, parasitic and bacterial pathogens. In total, 43 trainees enthusiastically participated in the program. In addition to laboratory work, these students took a variety of courses at Einstein, presented their results at local, national and international meetings, and productively published their findings. This program has led to a remarkable synergy of scientific discovery for the participants during a time of rapid acceleration of the scientific growth in Brazil. This collaboration between Brazilian and US scientists has benefitted both countries and serves as a model for future training programs between these countries. PMID:26691452
The Media of Relativity: Einstein and Telecommunications Technologies.
Canales, Jimena
2015-07-01
How are fundamental constants, such as "c" for the speed of light, related to the technological environments that produce them? Relativistic cosmology, developed first by Albert Einstein, depended on military and commercial innovations in telecommunications. Prominent physicists (Hans Reichenbach, Max Born, Paul Langevin, Louis de Broglie, and Léon Brillouin, among others) worked in radio units during WWI and incorporated battlefield lessons into their research. Relativity physicists, working at the intersection of physics and optics by investigating light and electricity, responded to new challenges by developing a novel scientific framework. Ideas about lengths and solid bodies were overhauled because the old Newtonian mechanics assumed the possibility of "instantaneous signaling at a distance." Einstein's universe, where time and space dilated, where the shortest path between two points was often curved and non-Euclidean, followed the rules of electromagnetic "signal" transmission. For these scientists, light's constant speed in the absence of a gravitational field-a fundamental tenet of Einstein's theory-was a lesson derived from communication technologies.
Classes of exact Einstein Maxwell solutions
NASA Astrophysics Data System (ADS)
Komathiraj, K.; Maharaj, S. D.
2007-12-01
We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.
NASA Astrophysics Data System (ADS)
Jung, Tobias
It is well known that Einstein founded relativistic cosmology in 1917 when he published his ``Cosmological considerations in the general theory of relativity.'' He presented a static, spatially closed though unbounded cosmological model with a uniform large-scale distribution of matter. For more than a decade, he defended his Einstein model against the proposals of Friedmann (1922/23) and Lemaître (1927) who took non-static world models into consideration, as well as against the spatially infinite model worked out by Selety (1922). Only after getting acquainted with the latest observational data like Hubble's redshift-distance relation during visiting Hubble, Tolman and others in California around the turn of the year 1930, Einstein gave up his static model and began to accept expanding world models. In the aftermath, he himself proposed two expanding world models, namely the Friedmann-Einstein universe in 1931 and the Einstein-de Sitter universe in a joint paper with de Sitter in 1932. In Einstein's opinion, world models still had to be spatially closed, but the cosmological constant which he had introduced in 1917 to obtain a static cosmological model had to be abandoned. In his later years, Einstein showed scepticism against relativistic cosmology as can be seen from his remarks concerning the rotating Gödel universes (1949). Although Einstein seemed to consider relativistic cosmology as a ``fashionable disease'' the then discovered Friedmann-Lemaître models are still used to describe the large-scale evolution of the space-time background of the universe.
Teaching, Learning and Ethical Dilemmas: Lessons from Albert Camus
ERIC Educational Resources Information Center
Roberts, Peter
2008-01-01
Over the past half century, Albert Camus's story "The Guest" has attracted a great deal of scholarly attention. "The Guest" focuses on the ethical dilemmas faced by Daru, a school teacher in Algeria, and the two visitors he receives one day: Balducci, a gendarme, and an unnamed Arab prisoner. This paper addresses Camus's text from an educational…
76 FR 66072 - Albert Ronald Cioffi: Debarment Order
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... unapproved drug derived from Botulinum Toxin Type A (TRI-toxin), sold by Toxin Research International (TRI... HUMAN SERVICES Food and Drug Administration Albert Ronald Cioffi: Debarment Order AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is issuing an order...
2. Historic American Buildings Survey Albert S. Burns, Photographer C. ...
2. Historic American Buildings Survey Albert S. Burns, Photographer C. 1934, 1935 COPY OF PRINT LOANED BY MR. POLLEN JEWETT, NYACK, N.Y. TAKEN ABOUT 1900 VIEW ACROSS ROCK CREEK - Pierce Mill, Tilden Street & Beach Drive Northwest, Washington, District of Columbia, DC
View northeast, overview of Albert Thacker building group: chicken house ...
View northeast, overview of Albert Thacker building group: chicken house (HABS No. WV-267-D), wash house (267-C), privy (HABS No. WV-268-B), and house (267-A) (left to right in photograph) - 3249 Cyrus Road (House), Cyrus, Wayne County, WV
15. BRIDGE TENDER ALBERT REEVES OF MAURICETOWN AND HELPER WALLY ...
15. BRIDGE TENDER ALBERT REEVES OF MAURICETOWN AND HELPER WALLY HALES HOLDING HUGE KEY ABOVE HOLE IN DECK OF CENTER SWING SPAN TO REVEAL KEY BASETHE KEY IS SET UPON A MALE FITTING USED TO OPEN THE SPAN - Maurice River Pratt Through-Truss Swing Bridge, Spanning Maurice River, Mauricetown, Cumberland County, NJ
Albert Sidney Beckham: The First African American School Psychologist
ERIC Educational Resources Information Center
Graves, Scott L., Jr.
2009-01-01
Albert Sidney Beckham was the first African American to hold the title school psychologist. This article examines the life and professional career of Beckham in the context of his contributions to the field of school psychology. It explores his graduate education, the founding of Howard University's Psychological Laboratory and his research and…
Let's Nuke the Transpersonalists: A Response to Albert Ellis.
ERIC Educational Resources Information Center
Wilber, Ken
1989-01-01
Responds to Albert Ellis' 1986 article which proposed to use rational-emotive therapy (RET) to save the world from religious and psychological fanatics and nuclear war. Attempts to provide a more balanced view of religion, RET, non-RET therapies, and the role of psychology in averting nuclear war. (Author/ABL)
Cereal Building (1926, Albert Kahn), with corner of Meat Products ...
Cereal Building (1926, Albert Kahn), with corner of Meat Products Building at left, looking northeast from Heinz Street. Heinz Lofts archway added ca. 2005. The bridge in the rear connects to the Bean Building. - H.J. Heinz Company Factories, 300 Heinz Street, Pittsburgh, Allegheny County, PA
222. BUILDINGS 44 AND 42 (ENLISTED BARRACKS), 194041. ALBERT KAHN, ...
222. BUILDINGS 44 AND 42 (ENLISTED BARRACKS), 1940-41. ALBERT KAHN, INC., ARCHITECTS. VIEW FROM THE WEST SHOWING ENCLOSED CORRIDOR CONNECTING BUILDING 44 (ON LEFT) AND BUILDING 42. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI
6. Photocopied 1973 from original owned by Albert M. Stiles, ...
6. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1907. STAGE, VOLCANO TOWN HALL. OLD GLORY, GETTING THE WORST OF IT. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
10. Photocopied 1973 from original owned by Albert M. Stiles, ...
10. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV. EPISCOPAL CHURCH AND GATES RESIDENCE AT LEFT (n.d.). - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
8. Photocopied 1973 from original owned by Albert M. Stiles, ...
8. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1907. INTERIOR VOLCANO TOWN HALL FROM STAGE SHOWING RAISED SEATS. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
3. Photocopied 1973 from original owned by Albert M. Stiles, ...
3. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV. LOOKING DOWN THE CREEK, WEST BACK OF THE STORES, BEFORE THE FIRE (n.d.). - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
2. Photocopied 1973 from original owned by Albert M. Stiles, ...
2. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1898. LARGE TANK, VOLOCANO STATION AND BAND HOUSE, AFTER THE RR WAS DISMANTLED. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
23. Photocopied 1973 from original owned by Albert M. Stiles, ...
23. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1897. TAKEN AT WATER TANKS NEAR THE HIGH TRESTLE. BOB FLEMING-ENGINEER, WILSH (?) ROLLINS-FIREMAN, OTH (?) COLLINS-PASSENGER (WITH CANE). - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
11. Photocopied 1973 from original owned by Albert M. Stiles, ...
11. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1907. JOHN SHAFFER'S STORE AND JOHN WILSON'S BOWLING ALLEY AND SALOON IN FOREGROUND. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
21. Photocopied 1973 from original owned by Albert M. Stiles, ...
21. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV. 'JOHN NOON L(*(. SAYS HE DROVE THE FIRST SPIKE AND I SAW HIM PULL THE LAST ONE AT VOLCANO JUNCTION' SBS. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
18. Photocopied 1973 from original owned by Albert M. Stiles, ...
18. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1998. THIS ENGINE HAD CAB KNOCKED OFF AND TIRES USED ON OTHER ENGINE, SO JOHN NOON AND PAT O'BRIEN WERE SCRAPING IT. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
13. Photocopied 1973 from original owned by Albert M. Stiles, ...
13. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1907. VOLCANO SCHOOL HOUSE, ME. CHURCH IN WOODS AT LEFT. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
22. Photocopied 1973 from original owned by Albert M. Stiles, ...
22. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1898. TANK, VOLCANO PUMPING STATION, AND BARNE HOUSE STILL STANDING AND IN USE. THIS SHOWS THE OLD RR LINE. (1934 CAPTION). - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
15. Photocopied 1973 from original owned by Albert M. Stiles, ...
15. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, UP THE HILL, SOUTH OF THE TOWN (n.d.). - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
24. Photocopied 1973 from original owned by Albert M. Stiles, ...
24. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1907. JIM RIDGE'S CARPENTER SHOP, LOOKING UP THE CREEK, EAST. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
4. Photocopied 1973 from original owned by Albert M. Stiles, ...
4. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1907. CORNER OF THORNHILL STORE AND TOWN HALL. MRS. GATES AND JOHN SCHAFFER. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
20. Photocopied 1973 from original owned by Albert M. Stiles, ...
20. Photocopied 1973 from original owned by Albert M. Stiles, Jr., Parkersburg, WV, 1907. RESIDENCE OF E.W. STAPLES AND DR. W.H. SHARP. - West Oil Company Endless Wire Pumping Station, U.S. Route 50 (Volcano vicinity), Petroleum, Ritchie County, WV
NASA Astrophysics Data System (ADS)
Löffler, Frank
2012-03-01
The Einstein Toolkit Consortium is developing and supporting open software for relativistic astrophysics. Its aim is to provide the core computational tools that can enable new science, broaden our community, facilitate interdisciplinary research and take advantage of petascale computers and advanced cyberinfrastructure. The Einstein Toolkit currently consists of an open set of over 100 modules for the Cactus framework, primarily for computational relativity along with associated tools for simulation management and visualization. The toolkit includes solvers for vacuum spacetimes as well as relativistic magneto-hydrodynamics, along with modules for initial data, analysis and computational infrastructure. These modules have been developed and improved over many years by many different researchers. The Einstein Toolkit is supported by a distributed model, combining core support of software, tools, and documentation in its own repositories and through partnerships with other developers who contribute open software and coordinate together on development. As of January 2012 it has 68 registered members from 30 research groups world-wide. This talk will present the current capabilities of the Einstein Toolkit and will point to information how to leverage it for future research.
NASA Astrophysics Data System (ADS)
2011-03-01
ASA has announced the selection of the 2011 Einstein Fellows who will conduct research related to NASA's Physics of the Cosmos program, which aims to expand our knowledge of the origin, evolution, and fate of the Universe. The Einstein Fellowship provides support to the awardees for three years, and the Fellows may pursue their research at a host university or research center of their choosing in the United States. The new Fellows will begin their programs in the fall of 2011. The new Einstein Fellows and their host institutions are listed below: * Akos Bogdan (Smithsonian Astrophysical Observatory, Cambridge, Mass.) * Samuel Gralla (University of Maryland, College Park, Md.) * Philip Hopkins (University of California at Berkeley) * Matthew Kunz (Princeton University, Princeton, N.J.) * Laura Lopez (Massachusetts Institute of Technology, Cambridge, Mass.) * Amy Reines (National Radio Astronomy Observatory, Charlottesville, Virg.) * Rubens Reis (University of Michigan, Ann Arbor) * Ken Shen (Lawrence Berkeley National Laboratory, Berkeley, Calif.) * Jennifer Siegal-Gaskins (California Institute of Technology, Pasadena) * Lorenzo Sironi (Harvard University, Cambridge, Mass.) NASA has two other astrophysics theme-based fellowship programs: the Sagan Fellowship Program, which supports research into exoplanet exploration, and the Hubble Fellowship Program, which supports research into cosmic origins. More information on the Einstein Fellowships can be found at: http://cxc.harvard.edu/fellows/
Unique Stellar System Gives Einstein a Thumbs-Up
NASA Astrophysics Data System (ADS)
2008-07-01
Taking advantage of a unique cosmic coincidence, astronomers have measured an effect predicted by Albert Einstein's theory of General Relativity in the extremely strong gravity of a pair of superdense neutron stars. The new data indicate that the famed physicist's 93-year-old theory has passed yet another test. Double Pulsar Graphic Artist's Conception of Double Pulsar System PSR J0737-3039A/B CREDIT: Daniel Cantin, DarwinDimensions, McGill University Click on image for more graphics. The scientists used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to make a four-year study of a double-star system unlike any other known in the Universe. The system is a pair of neutron stars, both of which are seen as pulsars that emit lighthouse-like beams of radio waves. "Of about 1700 known pulsars, this is the only case where two pulsars are in orbit around each other," said Rene Breton, a graduate student at McGill University in Montreal, Canada. In addition, the stars' orbital plane is aligned nearly perfectly with their line of sight to the Earth, so that one passes behind a doughnut-shaped region of ionized gas surrounding the other, eclipsing the signal from the pulsar in back. "Those eclipses are the key to making a measurement that could never be done before," Breton said. Einstein's 1915 theory predicted that, in a close system of two very massive objects, such as neutron stars, one object's gravitational tug, along with an effect of its spinning around its axis, should cause the spin axis of the other to wobble, or precess. Studies of other pulsars in binary systems had indicated that such wobbling occurred, but could not produce precise measurements of the amount of wobbling. "Measuring the amount of wobbling is what tests the details of Einstein's theory and gives a benchmark that any alternative gravitational theories must meet," said Scott Ransom of the National Radio Astronomy Observatory. The eclipses allowed the astronomers to pin
NASA Astrophysics Data System (ADS)
Wali, Kameshwar C.
2005-04-01
In June 1924, a relatively unknown Satyendra Nath Bose from Dacca, India, wrote a letter to Einstein beginning with ``Respected Sir, I have ventured to send you the accompanying article for your perusal. I am anxious to know what you think of it. You will see that I have ventured to deduce the coefficient 8πυ^2/c^3 in Planck's law independent of the classical electrodynamics, only assuming that the ultimate elementary regions in Phase-space have the content h^3. I do not know sufficient German to translate the paper. If you think the paper worth publication, I shall be grateful if you arrange for its publication in Zeitschrift für Physik.'' Einstein did translate the article himself and got it published. He wrote to Ehrenfest: ``The Indian Bose has given a beautiful derivation of Planck's law, including the constant [i.e.8πυ^2/c^3].'' Einstein extended the ideas of Bose that implied, among other things, a new statistics for the light-quanta to the molecules of an ideal gas and wrote to Ehrenfest, `from a certain temperature on, the molecules ``condense'' without attractive forces, that is, they accumulate at zero velocity. The theory is pretty, but is there also some truth to it?' Abraham Pais has called Bose's paper ``the fourth and the last revolutionary papers of the old quantum theory.'' My paper will present the works of Bose and Einstein in their historical perspective and the eventual birth of the new quantum Bose-Einstein statistics.
Inhomogeneous Einstein-Rosen string cosmology
NASA Astrophysics Data System (ADS)
Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza
1999-08-01
Families of anisotropic and inhomogeneous string cosmologies containing non-trivial dilaton and axion fields are derived by applying the global symmetries of the string effective action to a generalized Einstein-Rosen metric. The models exhibit a two-dimensional group of Abelian isometries. In particular, two classes of exact solutions are found that represent inhomogeneous generalizations of the Bianchi type VIh cosmology. The asymptotic behavior of the solutions is investigated and further applications are briefly discussed.
Bose-Einstein condensate strings
NASA Astrophysics Data System (ADS)
Harko, Tiberiu; Lake, Matthew J.
2015-02-01
We consider the possible existence of gravitationally bound general relativistic strings consisting of Bose-Einstein condensate (BEC) matter which is described, in the Newtonian limit, by the zero temperature time-dependent nonlinear Schrödinger equation (the Gross-Pitaevskii equation), with repulsive interparticle interactions. In the Madelung representation of the wave function, the quantum dynamics of the condensate can be formulated in terms of the classical continuity equation and the hydrodynamic Euler equations. In the case of a condensate with quartic nonlinearity, the condensates can be described as a gas with two pressure terms, the interaction pressure, which is proportional to the square of the matter density, and the quantum pressure, which is without any classical analogue, though, when the number of particles in the system is high enough, the latter may be neglected. Assuming cylindrical symmetry, we analyze the physical properties of the BEC strings in both the interaction pressure and quantum pressure dominated limits, by numerically integrating the gravitational field equations. In this way we obtain a large class of stable stringlike astrophysical objects, whose basic parameters (mass density and radius) depend sensitively on the mass and scattering length of the condensate particle, as well as on the quantum pressure of the Bose-Einstein gas.
Bohr's Electron was Problematic for Einstein: String Theory Solved the Problem
NASA Astrophysics Data System (ADS)
Webb, William
2013-04-01
Neils Bohr's 1913 model of the hydrogen electron was problematic for Albert Einstein. Bohr's electron rotates with positive kinetic energies +K but has addition negative potential energies - 2K. The total net energy is thus always negative with value - K. Einstein's special relativity requires energies to be positive. There's a Bohr negative energy conflict with Einstein's positive energy requirement. The two men debated the problem. Both would have preferred a different electron model having only positive energies. Bohr and Einstein couldn't find such a model. But Murray Gell-Mann did! In the 1960's, Gell-Mann introduced his loop-shaped string-like electron. Now, analysis with string theory shows that the hydrogen electron is a loop of string-like material with a length equal to the circumference of the circular orbit it occupies. It rotates like a lariat around its centered proton. This loop-shape has no negative potential energies: only positive +K relativistic kinetic energies. Waves induced on loop-shaped electrons propagate their energy at a speed matching the tangential speed of rotation. With matching wave speed and only positive kinetic energies, this loop-shaped electron model is uniquely suited to be governed by the Einstein relativistic equation for total mass-energy. Its calculated photon emissions are all in excellent agreement with experimental data and, of course, in agreement with those -K calculations by Neils Bohr 100 years ago. Problem solved!
Reassessing the Ritz-Einstein debate on the radiation asymmetry in classical electrodynamics
NASA Astrophysics Data System (ADS)
Frisch, Mathias; Pietsch, Wolfgang
2016-08-01
We investigate the debate between Walter Ritz and Albert Einstein on the origin and nature of the radiation asymmetry. We argue that Ritz's views on the radiation asymmetry were far richer and nuanced than the oft-cited joint letter with Einstein (Ritz & Einstein, 1909) suggests, and that Einstein's views in 1909 on the asymmetry are far more ambiguous than is commonly recognized. Indeed, there is strong evidence that Einstein ultimately came to agree with Ritz that elementary radiation processes in classical electrodynamics are non-symmetric and fully retarded. (Sommerfeld, 1968, p. 290; italics in the original). That is, what Sommerfeld is looking for is a mathematical condition that can restrict the solution space of the equation to those solutions that are physically possible. Rather than taking the wave equation as delimiting the range of what is physically possible and then looking for an explanation of why a large class of physically possible solutions is not actualized, the problem for Sommerfeld seems to be with the mathematics: the wave equation has 'too many' solutions. The Sommerfeld radiation condition, according to this view, does not explain the asymmetry, but is merely the mathematical condition imposing a restriction on the electromagnetic field in large distances that enables us to exclude non-physical solutions of the wave equation and restrict the solutions to the physically plausible purely diverging waves.
The Geometry of Almost Einstein (2, 3, 5) Distributions
NASA Astrophysics Data System (ADS)
Sagerschnig, Katja; Willse, Travis
2017-01-01
We analyze the classic problem of existence of Einstein metrics in a given conformal structure for the class of conformal structures inducedf Nurowski's construction by (oriented) (2, 3, 5) distributions. We characterize in two ways such conformal structures that admit an almost Einstein scale: First, they are precisely the oriented conformal structures c that are induced by at least two distinct oriented (2, 3, 5) distributions; in this case there is a 1-parameter family of such distributions that induce c. Second, they are characterized by the existence of a holonomy reduction to SU(1, 2), SL(3, R), or a particular semidirect product SL(2, R) ltimes Q_+, according to the sign of the Einstein constant of the corresponding metric. Via the curved orbit decomposition formalism such a reduction partitions the underlying manifold into several submanifolds and endows each ith a geometric structure. This establishes novel links between (2, 3, 5) distributions and many other geometries - several classical geometries among them - including: Sasaki-Einstein geometry and its paracomplex and null-complex analogues in dimension 5; Kähler-Einstein geometry and its paracomplex and null-complex analogues, Fefferman Lorentzian conformal structures, and para-Fefferman neutral conformal structures in dimension 4; CR geometry and the point geometry of second-order ordinary differential equations in dimension 3; and projective geometry in dimension 2. We describe a generalized Fefferman construction that builds from a 4-dimensional Kähler-Einstein or para-Kähler-Einstein structure a family of (2, 3, 5) distributions that induce the same (Einstein) conformal structure. We exploit some of these links to construct new examples, establishing the existence of nonflat almost Einstein (2, 3, 5) conformal structures for which the Einstein constant is positive and negative.
Einstein and a century of time
NASA Astrophysics Data System (ADS)
Raine, D. J.
2005-09-01
this pivotal insight into the role of theory when it came to quantum mechanics. Much has been written about this and we do not add to it in this collection. Quantum theory is a consistent description of nature whatever Einstein may think of 'god' for making it so. Many of us would side with Einstein in hoping it will yet turn out not to be a complete description. This will not happen, as Einstein hoped throughout his later work, from a return to classical field theory. But quantum behaviour is a universal property of matter and may therefore be expected, according to Einstein's way of thought, to have a geometrical origin. The advent of non-commutative quantum geometries may turn out to be a step in this direction. My own introduction to Einstein's physics was through what has come to be known as Mach's principle. My research supervisor, Dennis Sciama, in what he always claimed was probably Einstein's last significant scientific conversation, talked with him on this subject, during which Einstein explained that he had abandoned the idea of Mach's principle. This principle had been a guiding thought in the development of general relativity, but superfluous to its final exposition. It can be interpreted variously as the determination of the local compass of inertia by the distant stars, the non-rotation of the Universe or, more restrictedly, as requiring a critical density universe (to generate the right amount of inertia). This last formulation amounts to Gρτ2 approx 1, where ρ is the density of the Universe at time τ. This appears to be a classical expression, which would probably be sufficient to relegate Mach's principle to mere historical interest along with the classical unified field theories. It is also usually considered to be accounted for by inflation, which drives the Universe to Ω=1. However, we can also think of the expression as saying that the Universe has a Planck mass in a Planck volume at the Planck time: G=(hc / G)1/2(c3 / Gh)3/2(Gh / c5)=1. This
El-Sherbini, Th.M.
2005-03-17
This article gives a brief review of Bose-Einstein condensation. It is an exotic quantum phenomenon that was observed in dilute atomic gases for the first time in 1995. It exhibits a new state of matter in which a group of atoms behaves as a single particle. Experiments on this form of matter are relevant to many different areas of physics- from atomic clocks and quantum computing to super fluidity, superconductivity and quantum phase transition.
Majority-Vote on Directed BARABÁSI-ALBERT Networks
NASA Astrophysics Data System (ADS)
Lima, F. W. S.
On directed Barabási-Albert networks with two and seven neighbours selected by each added site, the Ising model was seen not to show a spontaneous magnetisation. Instead, the decay time for flipping of the magnetisation followed an Arrhenius law for Metropolis and Glauber algorithms, but for Wolff cluster flipping the magnetisation decayed exponentially with time. On these networks the Majority-vote model with noise is now studied through Monte Carlo simulations. However, in this model, the order-disorder phase transition of the order parameter is well defined in this system. We calculate the value of the critical noise parameter qc for several values of connectivity z of the directed Barabási-Albert network. The critical exponentes β/ν, γ/ν and 1/ν were calculated for several values of z.
Non-thermal Einstein relations
NASA Astrophysics Data System (ADS)
Guichardaz, Robin; Pumir, Alain; Wilkinson, Michael
2016-07-01
We consider a particle moving with equation of motion \\dot x=f(t) , where f(t) is a random function with statistics which are independent of x and t, with a finite drift velocity v=< f> and in the presence of a reflecting wall. Far away from the wall, translational invariance implies that the stationary probability distribution is P(x)∼ \\exp(α x) . A classical example of a problem of this type is sedimentation equilibrium, where α is determined by temperature. In this work we do not introduce a thermal reservoir and α is determined from the equation of motion. We consider a general approach to determining α which is not always in agreement with Einstein's relation between the mean velocity and the diffusion coefficient. We illustrate our results with a model inspired by the Boltzmann equation.
Dadhich, Naresh; Pons, Josep M
We study static black hole solutions in Einstein and Einstein-Gauss-Bonnet gravity with the topology of the product of two spheres, [Formula: see text], in higher dimensions. There is an unusual new feature of the Gauss-Bonnet black hole: the avoidance of a non-central naked singularity prescribes a mass range for the black hole in terms of [Formula: see text]. For an Einstein-Gauss-Bonnet black hole a limited window of negative values for [Formula: see text] is also permitted. This topology encompasses black strings, branes, and generalized Nariai metrics. We also give new solutions with the product of two spheres of constant curvature.
NASA Astrophysics Data System (ADS)
Costa, A. C. S.; Beims, M. W.; Angelo, R. M.
2016-11-01
Generalized quantum discord (Dq) , Einstein-Podolsky-Rosen steering (S) , entanglement (E) , and Bell nonlocality (N), are logically distinct quantifiers of quantum correlations. All these measures capture nonclassical aspects of quantum states and play some role as resources in quantum information processing. In this work, we look for the hierarchy satisfied by these quantum correlation witnesses for a class of two-qubit states. We show that N ⊳ S ⊳ E ⊳Dq, meaning that nonlocality implies steering, which in turn implies entanglement, which then implies q-discord. For the quantum states under concern, we show that the invariance of this hierarchy under noisy quantum channels directly implies a death chronology. Additionally, we have found that sudden death of all quantum resources except discord is absent only for a subset of states of measure zero. At last, we provide an illustration of another consequence of the aforementioned hierarchy, namely, the existence of a sudden birth chronology under non-Markovian channels.
NASA Astrophysics Data System (ADS)
Bellac, Michel Le
2014-11-01
The final form of quantum physics, in the particular case of wave mechanics, was established in the years 1925-1927 by Heisenberg, Schrödinger, Born and others, but the synthesis was the work of Bohr who gave an epistemological interpretation of all the technicalities built up over those years; this interpretation will be examined briefly in Chapter 10. Although Einstein acknowledged the success of quantum mechanics in atomic, molecular and solid state physics, he disagreed deeply with Bohr's interpretation. For many years, he tried to find flaws in the formulation of quantum theory as it had been more or less accepted by a large majority of physicists, but his objections were brushed away by Bohr. However, in an article published in 1935 with Podolsky and Rosen, universally known under the acronym EPR, Einstein thought he had identified a difficulty in the by then standard interpretation. Bohr's obscure, and in part beyond the point, answer showed that Einstein had hit a sensitive target. Nevertheless, until 1964, the so-called Bohr-Einstein debate stayed uniquely on a philosophical level, and it was actually forgotten by most physicists, as the few of them aware of it thought it had no practical implication. In 1964, the Northern Irish physicist John Bell realized that the assumptions contained in the EPR article could be tested experimentally. These assumptions led to inequalities, the Bell inequalities, which were in contradiction with quantum mechanical predictions: as we shall see later on, it is extremely likely that the assumptions of the EPR article are not consistent with experiment, which, on the contrary, vindicates the predictions of quantum physics. In Section 3.2, the origin of Bell's inequalities will be explained with an intuitive example, then they will be compared with the predictions of quantum theory in Section 3.3, and finally their experimental status will be reviewed in Section 3.4. The debate between Bohr and Einstein goes much beyond a
From conformal to Einstein gravity
NASA Astrophysics Data System (ADS)
Anastasiou, Giorgos; Olea, Rodrigo
2016-10-01
We provide a simple derivation of the equivalence between Einstein and conformal gravity (CG) with Neumann boundary conditions given by Maldacena. As Einstein spacetimes are Bach flat, a generic solution to CG would contain both Einstein and non-Einstein parts. Using this decomposition of the spacetime curvature in the Weyl tensor makes manifest the equivalence between the two theories, both at the level of the action and the variation of it. As a consequence, we show that the on-shell action for critical gravity in four dimensions is given uniquely in terms of the Bach tensor.
Going to school with Madame Curie and Mr. Einstein: gender roles in children's science biographies
NASA Astrophysics Data System (ADS)
Owens, Trevor
2009-12-01
One of the first places children encounter science and scientists is children's literature. Children's books about science and scientists have, however, received limited scholarly attention. By exploring the history of children's biographies of Marie Curie and Albert Einstein, the two most written about scientist in children's literature, this paper taps this unutilized resource to cultivate a unique perspective on the history of gender and authority in science and science education. Through analysis of explicit discussions of womanhood and science and implicit gendering of Curie and Einstein's school experiences within these books, this study demonstrates that while much has changed in how these stories are framed the gender of the scientist is still central to how they are represented in children's literature.
NASA Technical Reports Server (NTRS)
Van Patten, R. A.; Everitt, C. W. F.
1976-01-01
In 1918, Lense and Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect by means of two counter-orbiting drag-free satellites in polar orbit about the earth. For a 2-1/2 year experiment, the measurement should approach an accuracy of 1%. An independent measurement of the geodetic precession of the orbit plane due to the motion about the sun may also be possible to about 10% accuracy. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler data are taken at points of passing near the poles to yield an accurate measurement of the separation distance between the two satellites. New geophysical information on both earth harmonics and tidal effects is inherent in this polar ranging data.
NASA Astrophysics Data System (ADS)
Grundmann, Siegfried
In 1919 the Prussian Ministry of Science, Arts and Culture opened a dossier on "Einstein's Theory of Relativity." It was rediscovered by the author in 1961 and is used in conjunction with numerous other subsequently identified 'Einstein' files as the basis of this fascinating book. In particular, the author carefully scrutinizes Einstein's FBI file from 1950-55 against mostly unpublished material from European including Soviet sources and presents hitherto unknown documentation on Einstein's alleged contacts with the German Communist Party and the Comintern.
Einstein's idealism and a new kind of space research
NASA Astrophysics Data System (ADS)
Popov, M. A.
In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen made an attempt to imagine quantum experimental nonsense or some impossible experiment (EPR-experiment) in order to justify their local realism in physics. However, in the mid-1960s, John Bell showed that it is possible to realize this kind of nonsense in laboratory. Today, when EPR-refutation of local realism is routine in modern experimental physics (Clauser and Freedman [1972]; Aspect, Dalibard and Roger [1982]; Zeilinger et al. [1998]), we must; nevertheless, remark that Albert Einstein was not always a realist. As is known, in his Special Relativitz A. Einstein introduced some pure idealistic principle which K. Godel developed in famous "Remark about the relationship between Relativity theorz and Idealistic Philosophy" (1949). Kurt Godel for the first time showed an existence of special-relativistic solipsism, assuming that objective simultaneity in experimental science "loses its objective meaning". Correspondingly, there is only subjective simultaneity, that is provable by calculations with the finite velocity of light and astronomical observations. In particular, this space solipsism means that when we observe the sun, we can see only what happend on Sun 8.33 minutes ago; in other words, we percieve only certain sensations or a certain collections of ideas of the past, but not the present. Similarly, when astronomers observe galaxies estimated to be two billion light years from the Earth, they see these galaxies as they were two billion light years ago not as they are Now. Thus, in accordance with this, we may await that in this context for some pairs of astronomical objects we cannot prove they exist NOW. Moreover, this new kind of space research could be connected with introduction of the Cognitive Dark Matter, or, what is associated with manifold of the large-scale events of the Universe as a whole which are realizing Now, beyond consciousness of the observers-humans. Because we cannot know
The Einstein-Vlasov System/Kinetic Theory.
Andréasson, Håkan
2011-01-01
The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to a good comprehension of kinetic theory in general relativity.
Induced matter brane gravity and Einstein static universe
Heydarzade, Y.; Darabi, F. E-mail: f.darabi@azaruniv.edu
2015-04-01
We investigate stability of the Einstein static universe against the scalar, vector and tensor perturbations in the context of induced matter brane gravity. It is shown that in the framework of this model, the Einstein static universe has a positive spatial curvature. In contrast to the classical general relativity, it is found that a stable Einstein static universe against the scalar perturbations does exist provided that the variation of time dependent geometrical equation of state parameter is proportional to the minus of the variation of the scale factor, δ ω{sub g}(t) = −Cδ a(t). We obtain neutral stability against the vector perturbations, and the stability against the tensor perturbations is guaranteed due to the positivity of the spatial curvature of the Einstein static universe in induced matter brane gravity.
Einstein's Theory Fights off Challengers
NASA Astrophysics Data System (ADS)
2010-04-01
Two new and independent studies have put Einstein's General Theory of Relativity to the test like never before. These results, made using NASA's Chandra X-ray Observatory, show Einstein's theory is still the best game in town. Each team of scientists took advantage of extensive Chandra observations of galaxy clusters, the largest objects in the Universe bound together by gravity. One result undercuts a rival gravity model to General Relativity, while the other shows that Einstein's theory works over a vast range of times and distances across the cosmos. The first finding significantly weakens a competitor to General Relativity known as "f(R) gravity". "If General Relativity were the heavyweight boxing champion, this other theory was hoping to be the upstart contender," said Fabian Schmidt of the California Institute of Technology in Pasadena, who led the study. "Our work shows that the chances of its upsetting the champ are very slim." In recent years, physicists have turned their attention to competing theories to General Relativity as a possible explanation for the accelerated expansion of the universe. Currently, the most popular explanation for the acceleration is the so-called cosmological constant, which can be understood as energy that exists in empty space. This energy is referred to as dark energy to emphasize that it cannot be directly detected. In the f(R) theory, the cosmic acceleration comes not from an exotic form of energy but from a modification of the gravitational force. The modified force also affects the rate at which small enhancements of matter can grow over the eons to become massive clusters of galaxies, opening up the possibility of a sensitive test of the theory. Schmidt and colleagues used mass estimates of 49 galaxy clusters in the local universe from Chandra observations, and compared them with theoretical model predictions and studies of supernovas, the cosmic microwave background, and the large-scale distribution of galaxies. They
Einstein: The Standard of Greatness
Rigdon, John
2005-03-16
Einstein's seven-month performance in 1905 has no equal in the history of physics. Beginning with his revolutionary paper, completed on March 17, and continuing to September 26, Einstein wrote a total of five papers that changed the infrastructure of physics and today, a century later, these papers remain part of the tectonic bedrock of the discipline. How Einstein approached his physics and what he accomplished certainly provided the basis for his world fame. But while the What? and the How? were, and remain, of primary importance, can they explain Einstein's celebrity standing after 1922 and his iconic status today, fifty years after his death? The question remains: Why is Einstein the standard of greatness?
Einstein Inflationary Probe (EIP)
NASA Technical Reports Server (NTRS)
Hinshaw, Gary
2004-01-01
I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.
Einstein, Entropy and Anomalies
NASA Astrophysics Data System (ADS)
Sirtes, Daniel; Oberheim, Eric
2006-11-01
This paper strengthens and defends the pluralistic implications of Einstein's successful, quantitative predictions of Brownian motion for a philosophical dispute about the nature of scientific advance that began between two prominent philosophers of science in the second half of the twentieth century (Thomas Kuhn and Paul Feyerabend). Kuhn promoted a monistic phase-model of scientific advance, according to which a paradigm driven `normal science' gives rise to its own anomalies, which then lead to a crisis and eventually a scientific revolution. Feyerabend stressed the importance of pluralism for scientific progress. He rejected Kuhn's model arguing that it fails to recognize the role that alternative theories can play in identifying exactly which phenomena are anomalous in the first place. On Feyerabend's account, Einstein's predictions allow for a crucial experiment between two incommensurable theories, and are an example of an anomaly that could refute the reigning paradigm only after the development of a competitor. Using Kuhn's specification of a disciplinary matrix to illustrate the incommensurability between the two paradigms, we examine the different research strategies available in this peculiar case. On the basis of our reconstruction, we conclude by rebutting some critics of Feyerabend's argument.
Finding Horndeski theories with Einstein gravity limits
NASA Astrophysics Data System (ADS)
McManus, Ryan; Lombriser, Lucas; Peñarrubia, Jorge
2016-11-01
The Horndeski action is the most general scalar-tensor theory with at most second-order derivatives in the equations of motion, thus evading Ostrogradsky instabilities and making it of interest when modifying gravity at large scales. To pass local tests of gravity, these modifications predominantly rely on nonlinear screening mechanisms that recover Einstein's Theory of General Relativity in regions of high density. We derive a set of conditions on the four free functions of the Horndeski action that examine whether a specific model embedded in the action possesses an Einstein gravity limit or not. For this purpose, we develop a new and surprisingly simple scaling method that identifies dominant terms in the equations of motion by considering formal limits of the couplings that enter through the new terms in the modified action. This enables us to find regimes where nonlinear terms dominate and Einstein's field equations are recovered to leading order. Together with an efficient approximation of the scalar field profile, one can then further evaluate whether these limits can be attributed to a genuine screening effect. For illustration, we apply the analysis to both a cubic galileon and a chameleon model as well as to Brans-Dicke theory. Finally, we emphasise that the scaling method also provides a natural approach for performing post-Newtonian expansions in screened regimes.
Taming the nonlinearity of the Einstein equation.
Harte, Abraham I
2014-12-31
Many of the technical complications associated with the general theory of relativity ultimately stem from the nonlinearity of Einstein's equation. It is shown here that an appropriate choice of dynamical variables may be used to eliminate all such nonlinearities beyond a particular order: Both Landau-Lifshitz and tetrad formulations of Einstein's equation are obtained that involve only finite products of the unknowns and their derivatives. Considerable additional simplifications arise in physically interesting cases where metrics become approximately Kerr or, e.g., plane waves, suggesting that the variables described here can be used to efficiently reformulate perturbation theory in a variety of contexts. In all cases, these variables are shown to have simple geometrical interpretations that directly relate the local causal structure associated with the metric of interest to the causal structure associated with a prescribed background. A new method to search for exact solutions is outlined as well.
Solar physics at the Einstein Tower
NASA Astrophysics Data System (ADS)
Denker, C.; Heibel, C.; Rendtel, J.; Arlt, K.; Balthasar, Juergen H.; Diercke, A.; González Manrique, S. J.; Hofmann, A.; Kuckein, C.; Önel, H.; Senthamizh Pavai, V.; Staude, J.; Verman, M.
2016-11-01
The solar observatory Einstein Tower ({Einsteinturm}) at the Telegrafenberg in Potsdam is both a landmark of modern architecture and an important place for solar physics. Originally built for high-resolution spectroscopy and measuring the gravitational redshift, research shifted over the years to understanding the active Sun and its magnetic field. Nowadays, telescope and spectrographs are used for research and development, i.e., testing instruments and in particular polarization optics for advanced instrumentation deployed at major European and international astronomical and solar telescopes. In addition, the Einstein Tower is used for educating and training of the next generation astrophysicists as well as for education and public outreach activities directed at the general public. This article comments on the observatory's unique architecture and the challenges of maintaining and conserving the building. It describes in detail the characteristics of telescope, spectrographs, and imagers; it portrays some of the research and development activities.
Einstein's steady-state theory: an abandoned model of the cosmos
NASA Astrophysics Data System (ADS)
O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon
2014-09-01
We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.
[A biographical sketch of Albert Szent-Györgyi].
Berger, Zoltán; Berger Salinas, Alexandra; Szánthó Pongrácz, György
2015-08-01
Albert Szent-Györgyi was a Hungarian biochemist and physiologist. He identified the structure and function of vitamin C, naming it as ascorbic acid. His research on cellular respiration and oxidation provided the basis for Krebs' citric acid cycle. He was awarded the Nobel Prize in 1937. With his collaborators, he discovered the biochemical basis of muscle contractility, isolating the basic proteins, giving them the name myosin and actin. Later on, he worked on the theory of carcinogenesis, linked to electron movements. He was one of the first researchers to describe the connection between free radicals and cancer. He lived a long, very complete life, defending always his opinion and freedom.
Scanning transmission electron microscopy: Albert Crewe's vision and beyond.
Krivanek, Ondrej L; Chisholm, Matthew F; Murfitt, Matthew F; Dellby, Niklas
2012-12-01
Some four decades were needed to catch up with the vision that Albert Crewe and his group had for the scanning transmission electron microscope (STEM) in the nineteen sixties and seventies: attaining 0.5Å resolution, and identifying single atoms spectroscopically. With these goals now attained, STEM developments are turning toward new directions, such as rapid atomic resolution imaging and exploring atomic bonding and electronic properties of samples at atomic resolution. The accomplishments and the future challenges are reviewed and illustrated with practical examples.
Remembering Albert deutsch, an advocate for mental health.
Weiss, Kenneth J
2011-12-01
Albert Deutsch, journalist, advocate for the mentally ill, and honorary APA Fellow died 50 years ago. Author of The Mentally Ill in America and The Shame of the States, he believed in the obligation of individuals and institutions to advocate for patients. In 1961, he was in the midst of a vast project to assess the state of the art in psychiatric research. This article recalls aspects of Deutsch's life and work and places him in the historical context of individuals who have shown great compassion for disabled persons.
Finding solutions to the Einstein equations
NASA Astrophysics Data System (ADS)
Millward, Robert Steven
2004-07-01
This dissertation is a description of a variety of methods of solving the Einstein equations describing the gravitational interaction in different mathematical and astrophysical settings. We begin by discussing a numerical study of the Einstein-Yang-Mills-Higgs system in spherical symmetry. The equations are presented along with boundary and initial conditions. An explanation of the numerical scheme is then given. This is followed by a discussion of the solutions obtained together with an interpretation in the context of gravitational collapse and critical phenomena at the threshold of black hole formation. Following this, we generalize the same system to axisymmetry. The full, gravitational equations are presented along with a short discussion of the problems we encountered in trying to solve these. As a first step we consider evolving the matter fields in flat space. The simplified equations are given and the numerical scheme implemented to solve them discussed. We then consider some analytic techniques to understanding the Einstein equations and the gravitating systems they should describe. One such is to change the spacetime dimension. This we do in considering magnetic solutions to the (2 + 1) Einstein-Maxwell-Dilaton system with nonzero cosmological constant. The solutions are investigated to determine whether these correspond to “soliton”-like solutions or black holes. As another example of this general approach, we introduce an extra timelike coordinate into the spherically symmetric vacuum system, and attempt to find a solution comparing the result to the more well known Schwarzschild solution. Finally, we give a short description of some preliminary work which will combine some of these numerical and analytical techniques. This approach simply takes the matter fields as weak and propagates them on a fixed spacetime background. In our particular case, we intend to study the evolution of Maxwell fields in the Schwarzschild geometry. We provide
Evolution of ethnocentrism on undirected and directed Barabási-Albert networks
NASA Astrophysics Data System (ADS)
Lima, F. W. S.; Hadzibeganovic, Tarik; Stauffer, Dietrich
2009-12-01
Using Monte Carlo simulations, we study the evolution of contingent cooperation and ethnocentrism in the one-shot game. Interactions and reproduction among computational agents are simulated on undirected and directed Barabási-Albert (BA) networks. We first replicate the Hammond-Axelrod model of in-group favoritism on a square lattice and then generalize this model on undirected and directed BA networks for both asexual and sexual reproduction cases. Our simulations demonstrate that irrespective of the mode of reproduction, the ethnocentric strategy becomes common even though cooperation is individually costly and mechanisms such as reciprocity or conformity are absent. Moreover, our results indicate that the spread of favoritism towards similar others highly depends on the network topology and the associated heterogeneity of the studied population.
Diquark Bose-Einstein condensation
Nawa, K.; Nakano, E.; Yabu, H.
2006-08-01
Bose-Einstein condensation of composite diquarks in quark matter (the color superconductor phase) is discussed using the quasichemical equilibrium theory at a relatively low-density region near the deconfinement phase transition, where dynamical quark-pair fluctuations are assumed to be described as bosonic degrees of freedom (diquarks). A general formulation is given for the diquark formation and particle-antiparticle pair-creation processes in the relativistic framework, and some interesting properties are shown, which are characteristic for the relativistic many-body system. Behaviors of transition temperature and phase diagram of the quark-diquark matter are generally presented in model parameter space, and their asymptotic behaviors are also discussed. As an application to the color superconductivity, the transition temperatures and the quark and diquark density profiles are calculated in case with constituent/current quarks, where the diquark is in the bound/resonant state. We obtained T{sub C}{approx}60-80 MeV for constituent quarks and T{sub C}{approx}130 MeV for current quarks at a moderate density ({rho}{sub b}{approx}3{rho}{sub 0}). The method is also developed to include interdiquark interactions into the quasichemical equilibrium theory within a mean-field approximation, and it is found that a possible repulsive diquark-diquark interaction lowers the transition temperature by {approx}50%.
Quasi-Einstein metrics on hypersurface families
NASA Astrophysics Data System (ADS)
Hall, Stuart James
2013-02-01
We construct quasi-Einstein metrics on some hypersurface families. The hypersurfaces are circle bundles over the product of Fano, Kähler-Einstein manifolds. The quasi-Einstein metrics are related to various gradient Kähler-Ricci solitons constructed by Dancer and Wang and some Hermitian, non-Kähler, Einstein metrics constructed by Wang and Wang on the same manifolds.
Three frequency false-color image of Prince Albert, Canada
NASA Technical Reports Server (NTRS)
1994-01-01
This is a three-frequency, false color image of Prince Albert, Canada, centered at 53.91 north latitude and 104.69 west longitude. It was produced using data from the X-band, C-band and L-band radars that comprise the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). SIR-C/X-SAR acquired this image on the 20th orbit of the Shuttle Endeavour. The area is located 40 km north and 30 km east of the town of Prince Albert in the Saskatchewan province of Canada. The image covers the area east of the Candle Lake, between gravel surface highways 120 and 106 and west of 106. The area in the middle of the image covers the entire Nipawin (Narrow Hills) provincial park. Most of the dark blue areas in the image are the ice covered lakes. The dark area on the top right corner of the image is the White Gull Lake north of the intersection of highway 120 and 913. The right middle part of the image shows Lake Ispuchaw and Lower Fishing Lake. The deforested areas are shown by light
False-color composite image of Prince Albert, Canada
NASA Technical Reports Server (NTRS)
1994-01-01
This is a false color composite of Prince Albert, Canada, centered at 53.91 north latitude and 104.69 west longitude. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on the 20th orbit of the Shuttle Endeavour. The area is located 40 km north and 30 km east of the town of Prince Albert in the Saskatchewan province of Canada. The image covers the area east of the Candle Lake, between gravel surface highways 120 and 106 and west of 106. The area in the middle of the image covers the entire Nipawin (Narrow Hills) provincial park. The look angle of the radar is 30 degrees and the size of the image is approximately 20 kilometers by 50 kilometers (12 by 30 miles). Most of the dark areas in the image are the ice-covered lakes in the region. The dark area on the top right corner of the image is the White Gull Lake north of the intersection of Highway 120 and 913. The right middle part of the image shows Lake Ispuchaw and Lower Fishing Lake
Psychology's Lost Boy: Will the Real Little Albert Please Stand Up?
ERIC Educational Resources Information Center
Griggs, Richard A.
2015-01-01
This article is concerned with the recent debate about the identity of psychology's lost boy-Little Albert, the infant subject in Watson and Rayner's classic experiment on fear conditioning. For decades, psychologists and psychology students have been intrigued by the mystery of Albert's fate. Now two evidentiary-based solutions to…
Albert W. Frenkel (1919-2015): photosynthesis research pioneer, much-loved teacher, and scholar.
Govindjee; Frenkel, Susanna
2015-06-01
Albert W. Frenkel, a pioneer in photosynthesis research, and discoverer of photophosphorylation in photosynthetic bacteria, is remembered here by two of us: Govindjee (historical corner editor of photosynthesis research) and Susanna Frenkel (SF; Albert Frenkel's daughter, who provided most of the family information).
ERIC Educational Resources Information Center
Child Care Information Exchange, 1994
1994-01-01
Profiles Chuck Larson and Steve Albert, each of whom directs a multi-site child care organization in Hawaii. Larson directs Rainbow School, dedicated to the idea that learning is a natural, joyful accomplishment of living. Albert directs Seagull School, responding to the early educational needs of Hawaii's diverse community by offering affordable,…
Golden, Aaron; McLellan, Andrew S; Dubin, Robert A; Jing, Qiang; O Broin, Pilib; Moskowitz, David; Zhang, Zhengdong; Suzuki, Masako; Hargitai, Joseph; Calder, R Brent; Greally, John M
2012-01-01
Massively-parallel sequencing (MPS) technologies and their diverse applications in genomics and epigenomics research have yielded enormous new insights into the physiology and pathophysiology of the human genome. The biggest hurdle remains the magnitude and diversity of the datasets generated, compromising our ability to manage, organize, process and ultimately analyse data. The Wiki-based Automated Sequence Processor (WASP), developed at the Albert Einstein College of Medicine (hereafter Einstein), uniquely manages to tightly couple the sequencing platform, the sequencing assay, sample metadata and the automated workflows deployed on a heterogeneous high performance computing cluster infrastructure that yield sequenced, quality-controlled and 'mapped' sequence data, all within the one operating environment accessible by a web-based GUI interface. WASP at Einstein processes 4-6 TB of data per week and since its production cycle commenced it has processed ~ 1 PB of data overall and has revolutionized user interactivity with these new genomic technologies, who remain blissfully unaware of the data storage, management and most importantly processing services they request. The abstraction of such computational complexity for the user in effect makes WASP an ideal middleware solution, and an appropriate basis for the development of a grid-enabled resource - the Einstein Genome Gateway - as part of the Extreme Science and Engineering Discovery Environment (XSEDE) program. In this paper we discuss the existing WASP system, its proposed middleware role, and its planned interaction with XSEDE to form the Einstein Genome Gateway.
Einstein's steady-state cosmology
NASA Astrophysics Data System (ADS)
O'Raifeartaigh, Cormac
2014-09-01
Last year, a team of Irish scientists discovered an unpublished manuscript by Einstein in which he attempted to construct a "steady-state" model of the universe. Cormac O'Raifeartaigh describes the excitement of finding this previously unknown work.
Graudenz, K; Raulin, C
2003-07-01
Laser technology has considerably expanded therapeutic modalities in dermatology and aesthetic medicine. In addition, lasers have broadened the spectrum of diagnostic and therapeutic options in many other medical fields. Dermatologists, especially Dr. Leon Goldman, played an important role in the evolution and use of medical lasers. There was a long way from the concept of stimulated emission as the fundamental idea of laser technology by Albert Einstein in 1917 to the practical use of the laser today. We review the development of laser technology from the early days through the latest advances.
The NASA Beyond Einstein Program
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2004-01-01
The Laser Interferometer Space Antenna (LISA) mission is part of NASA s Beyond Einstein program. This program seeks to answer the questions What Powered the Big Bang?, What happens at the edge of a Black Hole?, and What is Dark Energy?. LISA IS the first mission to be launched in this new program. This paper will give an overview of the Beyond Einstein program, its current status and where LISA fits in.
Some notes on Einstein relationships
NASA Astrophysics Data System (ADS)
Allen, Michael P.; Masters, Andrew J.
Transport coefficients are often expressed in the form of an Einstein relationship. In this report we point out some possibly surprising properties of the correlation functions appearing in such expressions and we discuss under what conditions the relationships are true. We further consider the Einstein relationship for the shear viscosity proposed by McQuarrie [in Statistical Mechanics (Harper and Row), 1976]. On the basis both of theoretical analysis and computer simulation, we conclude that this expression is incorrect.
NASA Astrophysics Data System (ADS)
Janssen, Michel
2013-12-01
The core of this volume is formed by four chapters (2-5) with detailed reconstructions of the arguments and derivations in four of Einstein's most important papers, the three main papers of his annus mirabilis 1905 (on the light quantum, Brownian motion, and special relativity) and his first systematic exposition of general relativity of 1916. The derivations are given in sufficient detail and in sufficiently modernized notation (without any serious distortion of the originals) for an undergraduate physics major to read and understand them with far less effort than it would take him or her to understand (English translations of) Einstein's original papers. Each of these four papers is accompanied by a detailed introduction, which covers the conceptual development of the relevant field prior to Einstein's contribution to it and corrects some of the myths surrounding these papers that still have not been fully eradicated among physicists. (One quibble: though Kennedy correctly points out that the goal of the light quantum paper was not to explain the photoelectric effect, it is also not quite right to say that 'it was written to explain the Wien region of blackbody radiation' (p. xv). Einstein used this explanatory feat as the central argument for his light quantum hypothesis.) These four chapters then are the most valuable part of the volume. They could be used, independently of one another, but preferably in conjunction with Einstein's original texts, in courses on quantum mechanics, statistical mechanics, electrodynamics, and general relativity, respectively, to add a historical component to such courses. As a historian of science embedded in a physics department who is regularly called upon to give guest lectures in such courses on the history of their subjects, I can highly recommend the volume for this purpose. However, I would not adopt this volume as (one of) the central text(s) for a course on the history of modern physics. For one thing, chapter 1, which in
Forrester, John
2005-01-01
The paper explores the relationship between Sigmund Freud and Albert Einstein, including the parallels in the trajectories of their scientific careers, starting with the 'annus mirabilis' of 1905. Noting how they shared much in common, the paper underlines that it was as "great Jewish thinkers" that they were most often twinned, and proceeds to compare and contrast the development of their self-consciousness of being Jewish. It then traces their relationship in one meeting and in correspondence, both private and public, from 1926 to their deaths, emphasizing Freud's envy of Einstein and Einstein's ambivalent admiration of Freud. The paper ends with a consideration of the significance of the figure of Moses in both of their final years.
NASA Technical Reports Server (NTRS)
Elvis, Martin; Plummer, David; Schachter, Jonathan; Fabbiano, G.
1992-01-01
A catalog of 819 sources detected in the Einstein IPC Slew Survey of the X-ray sky is presented; 313 of the sources were not previously known as X-ray sources. Typical count rates are 0.1 IPC count/s, roughly equivalent to a flux of 3 x 10 exp -12 ergs/sq cm s. The sources have positional uncertainties of 1.2 arcmin (90 percent confidence) radius, based on a subset of 452 sources identified with previously known pointlike X-ray sources (i.e., extent less than 3 arcmin). Identifications based on a number of existing catalogs of X-ray and optical objects are proposed for 637 of the sources, 78 percent of the survey (within a 3-arcmin error radius) including 133 identifications of new X-ray sources. A public identification data base for the Slew Survey sources will be maintained at CfA, and contributions to this data base are invited.
[Albert-Jean-Louis Brun, pharmacist of Geneva and vulcanologist].
Chaigneau, M
1996-01-01
Albert-Jean-Louis Brun (1851-1929), was chemist of the University of Bern (Switzerland) and "licencié ès sciences" of the University of Sorbonne (France). In Paris he was a faithful follower of Charles Friedel. In Coutance (Genève), where he was working in his own chemistry, he realised all his researchs. After a trip to Stromboli in 1901, he studied the volcanic phenomena as a chemist, as a mineralogist and as a geophysicist. His researchs brought him till the mediterranean volcanos--Vesuve, Etna, Santorin--, till Java and Krakatoa, then Canarian islands, and the lava lake of Kilauea, etc. The results of his works are collected in a big book called "Recherches sur l'exhalaison volcanique": he presents a theory which was the subject of a polemic with the professor Henri Gautier of the professor Henri Gautier of the Faculty of Pharmacy of Paris.
Albert Ross Tilley: The legacy of a Canadian plastic surgeon.
Mowbrey, Kevin
2013-01-01
The present article chronicles the career of Dr Albert Ross Tilley, one of the most important Canadian plastic surgeons of the 20th century. Tilley is most well known for his innovations of burn management during World War II and his treatment of a group of burn patients known affectionately as the 'Guinea Pig Club'. In addition to the superb surgical skills he applied to the physical wounds of his patients, Tilley was also a pioneer of caring for the emotional and psychological afflictions suffered by many airmen of World War II. As one of the founding fathers of the Canadian Society of Plastic Surgeons, Tilley's work was instrumental in establishing the specialty and ensured its prosperity for years to come. Serving in the capacity of leader, educator and innovator, Tilley remains one of Canada's most decorated physicians, and his body of work encompasses contributions to the medical field that remain significant and beneficial to patient care to this day.
Wealth condensation in a Barabasi-Albert network
NASA Astrophysics Data System (ADS)
Vázquez-Montejo, J.; Huerta-Quintanilla, R.; Rodríguez-Achach, M.
2010-04-01
We study the flow of money among agents in a Barabasi-Albert (BA) scale free network, where each network node represents an agent and money exchange interactions are established through links. The system allows money trade between two agents at a time, betting a fraction f of the poorer’s agent wealth. We also allow for the bet to be biased, giving the poorer agent a winning probability p. In the no network case there is a phase transition involving a relationship between p and f. In the networked case, we also found a condensation interface, however, this is not a complete condensation due to the presence of clusters in the network and its topology. As can be expected, the winner is always a well-connected agent, but we also found that the mean wealth decreases with the agents’ connectivity.
Groups, information theory, and Einstein's likelihood principle
NASA Astrophysics Data System (ADS)
Sicuro, Gabriele; Tempesta, Piergiulio
2016-04-01
We propose a unifying picture where the notion of generalized entropy is related to information theory by means of a group-theoretical approach. The group structure comes from the requirement that an entropy be well defined with respect to the composition of independent systems, in the context of a recently proposed generalization of the Shannon-Khinchin axioms. We associate to each member of a large class of entropies a generalized information measure, satisfying the additivity property on a set of independent systems as a consequence of the underlying group law. At the same time, we also show that Einstein's likelihood function naturally emerges as a byproduct of our informational interpretation of (generally nonadditive) entropies. These results confirm the adequacy of composable entropies both in physical and social science contexts.
Groups, information theory, and Einstein's likelihood principle.
Sicuro, Gabriele; Tempesta, Piergiulio
2016-04-01
We propose a unifying picture where the notion of generalized entropy is related to information theory by means of a group-theoretical approach. The group structure comes from the requirement that an entropy be well defined with respect to the composition of independent systems, in the context of a recently proposed generalization of the Shannon-Khinchin axioms. We associate to each member of a large class of entropies a generalized information measure, satisfying the additivity property on a set of independent systems as a consequence of the underlying group law. At the same time, we also show that Einstein's likelihood function naturally emerges as a byproduct of our informational interpretation of (generally nonadditive) entropies. These results confirm the adequacy of composable entropies both in physical and social science contexts.
Focus on quantum Einstein gravity Focus on quantum Einstein gravity
NASA Astrophysics Data System (ADS)
Ambjorn, Jan; Reuter, Martin; Saueressig, Frank
2012-09-01
The gravitational asymptotic safety program summarizes the attempts to construct a consistent and predictive quantum theory of gravity within Wilson's generalized framework of renormalization. Its key ingredient is a non-Gaussian fixed point of the renormalization group flow which controls the behavior of the theory at trans-Planckian energies and renders gravity safe from unphysical divergences. Provided that the fixed point comes with a finite number of ultraviolet-attractive (relevant) directions, this construction gives rise to a consistent quantum field theory which is as predictive as an ordinary, perturbatively renormalizable one. This opens up the exciting possibility of establishing quantum Einstein gravity as a fundamental theory of gravity, without introducing supersymmetry or extra dimensions, and solely based on quantization techniques that are known to work well for the other fundamental forces of nature. While the idea of gravity being asymptotically safe was proposed by Steven Weinberg more than 30 years ago [1], the technical tools for investigating this scenario only emerged during the last decade. Here a key role is played by the exact functional renormalization group equation for gravity, which allows the construction of non-perturbative approximate solutions for the RG-flow of the gravitational couplings. Most remarkably, all solutions constructed to date exhibit a suitable non-Gaussian fixed point, lending strong support to the asymptotic safety conjecture. Moreover, the functional renormalization group also provides indications that the central idea of a non-Gaussian fixed point providing a safe ultraviolet completion also carries over to more realistic scenarios where gravity is coupled to a suitable matter sector like the standard model. These theoretical successes also triggered a wealth of studies focusing on the consequences of asymptotic safety in a wide range of phenomenological applications covering the physics of black holes, early
A Ring with a Spin: Superfluidity in a toroidal Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Ramanathan, Anand Krishnan
2011-12-01
Superfluidity is a remarkable phenomenon. Superfluidity was initially characterized by flow without friction, first seen in liquid helium in 1938, and has been studied extensively since. Superfluidity is believed to be related to, but not identical to Bose-Einstein condensation, a statistical mechanical phenomena predicted by Albert Einstein in 1924 based on the statistics of Satyendra Nath Bose, where bosonic atoms make a phase transition to form a Bose-Einstein condensate (BEC), a gas which has macroscopic occupation of a single quantum state. Developments in laser cooling of neutral atoms and the subsequent realization of Bose-Einstein condensates in ultracold gases have opened a new window into the study of superfluidity and its relation to Bose-Einstein condensation. In our atomic sodium BEC experiment, we studied superfluidity and dissipationless flow in an all-optical toroidal trap, constructed using the combination of a horizontal "sheet"-like beam and vertical "ring"-like beam, which, like a circuit loop, allows flow around the ring. On inducing a single quantum of circulation in the condensate, the smoothness and uniformity of the toroidal BEC enabled the sustaining of a persistent current lasting 40 seconds, limited by the lifetime of the BEC due to background gas pressure. This success set the stage for further experiments studying superfluidity. In a first set of experiments, we studied the stability of the persistent current by inserting a barrier in the flow path of the ring. The superflow stopped abruptly at a barrier strength such that the local flow velocity at the barrier exceeded a critical velocity, which supported decay via the creation of a vortex-antivortex pair. Our precise control in inducing and arresting superflow in the BEC is a first step toward studying other aspects of superfluidity, such as the effect of temperature and dimensionality. This thesis discusses these experiments and also details partial-transfer absorption imaging, an
Second law study of the Einstein refrigeration cycle
Shelton, S.V.; Delano, A.; Schaefer, L.A.
1999-07-01
After formulating the theory of relativity, Albert Einstein spent several years developing absorption refrigeration cycles. In 1930, he obtained a US patent for a unique single pressure absorption cycle. The single pressure throughout the cycle eliminates the need for the solution pump found in conventional absorption cycles. The Einstein cycle utilizes butane as a refrigerant, ammonia as a pressure equalizing fluid, and water as an absorbing fluid. This cycle is dramatically different in both concept and detail than the better known ammonia-water-hydrogen cycle. Recent studies have shown that the cycle's COP is 0.17, which is relatively low compared to two-pressure cycles. This limits the cycle to refrigeration applications where simplicity, compactness, silent operation, and low cost are the important characteristics. Improved efficiency would open up other potential applications. In this study, a comprehensive second law analysis of the cycle was carried out on each component and process to determine the thermodynamic source of the low efficiency. The results show that the reversible COP for the cycle is 0.58, and that the component with the largest irreversibility is the generator. The entropic average temperatures for the heat flows into and out of the cycle are 353 K for the generator, 266 K for the evaporator, and 315 K for the absorber/condenser. The COP degradations from the ideal due to irreversibilities are 0.12 for the evaporator, 0.11 for the absorber/condenser, and 0.17 for the generator. The generator irreversibility is due to the inherent temperature difference in the internal heat exchange. The results show that there is a large potential for increasing the cycle's efficiency through design changes to raise the low generator temperature and to reduce the large generator irreversibilities.
Wormholes in dilatonic Einstein-Gauss-Bonnet theory.
Kanti, Panagiota; Kleihaus, Burkhard; Kunz, Jutta
2011-12-30
We construct traversable wormholes in dilatonic Einstein-Gauss-Bonnet theory in four spacetime dimensions, without needing any form of exotic matter. We determine their domain of existence, and show that these wormholes satisfy a generalized Smarr relation. We demonstrate linear stability with respect to radial perturbations for a subset of these wormholes.
Recommendations for Broader Impacts in K-12: Advice from Einstein Educator Fellows
NASA Astrophysics Data System (ADS)
Pacheco, H. A.; LaDue, N.; Moore, J. D.; Whitsett, S.
2011-12-01
Since 1994, the Albert Einstein Distinguished Science Educator Fellowship Act has brought Master K-12 STEM educators to Washington D.C. and Virginia for 11-month appointments in STEM-related Federal agencies and Congressional Offices. These top educators are leaders in their communities and often have years of experience working with government-funded researchers reaching out to the K-12 community. During their fellowship year, Einstein Fellows use their years of experience and expertise in to inform efforts and initiatives in the federal departments, directorates and offices to which they are assigned. The collaborative efforts of a group of NSF Einstein Fellows has led to the development of "Broader Impacts in the K-12 Community", a suite of experience-based recommendations and ideas designed to leverage grant resources and maximize effective partnerships between the research and K-12 communities. The goal of this presentation is to communicate best practices for researchers engaging in the realm of K-12 education from the perspective of educators. Challenges are highlighted and mapped to realistic solutions. Written originally as a panel talk to help NSF panel members consider feasible, high-quality K-12 broader impacts, this presentation has become an invaluable resource for principle investigators as they consider engaging with the K-12 community. While this presentation specifically addresses merit review components of NSF solicitations, these recommendations are relevant for any STEM initiatives that involve partnerships between scientists and teachers.
A note on para-holomorphic Riemannian-Einstein manifolds
NASA Astrophysics Data System (ADS)
Ida, Cristian; Ionescu, Alexandru; Manea, Adelina
2016-06-01
The aim of this note is the study of Einstein condition for para-holomorphic Riemannian metrics in the para-complex geometry framework. First, we make some general considerations about para-complex Riemannian manifolds (not necessarily para-holomorphic). Next, using a one-to-one correspondence between para-holomorphic Riemannian metrics and para-Kähler-Norden metrics, we study the Einstein condition for a para-holomorphic Riemannian metric and the associated real para-Kähler-Norden metric on a para-complex manifold. Finally, it is shown that every semi-simple para-complex Lie group inherits a natural para-Kählerian-Norden Einstein metric.
13. Photocopy of drawing (Original by Albert P.Erb) SOUTH ELEVATION,FIRST ...
13. Photocopy of drawing (Original by Albert P.Erb) SOUTH ELEVATION,FIRST FLOOR PLAN AND SECOND FLOOR PLAN - Dr. David Ross House, Annapolis Road (moved to Preservation Hill, Western Run Road, Cockeysville), Bladensburg, Prince George's County, MD
Planck radiation law and Einstein coefficients reexamined in Kaniadakis κ statistics.
Ourabah, Kamel; Tribeche, Mouloud
2014-06-01
Blackbody radiation is reconsidered using the counterpart of the Bose-Einstein distribution in the κ statistics arising from the Kaniadakis entropy. The generalized Planck radiation law is presented and compared to the usual law, to which it reduces in the limiting case κ→0. Effective Einstein's coefficients of emission and absorption are defined in terms of the Kaniadakis parameter κ. It is shown that the Kaniadakis statistics keeps unchanged the first Einstein coefficient A while the second coefficient B admits a generalized form within the present theoretical framework.
Sexual modernity in the works of Richard von Krafft-Ebing and Albert Moll.
Oosterhuis, Harry
2012-04-01
The modern notion of sexuality took shape at the end of the nineteenth century, especially in the works of Richard von Krafft-Ebing and Albert Moll. This modernisation of sexuality was closely linked to the recognition of sexual diversity, as it was articulated in the medical-psychiatric understanding of what, at that time, was labelled as perversion. From around 1870, psychiatrists shifted the focus from immoral acts, a temporary deviation of the norm, to an innate morbid condition. In the late nineteenth century, several psychiatrists, collecting and publishing more and more case histories, classified and explained the wide range of deviant sexual behaviours they traced. The emergence of medical sexology meant that perversions could be diagnosed and discussed. Against this background both Krafft-Ebing and Moll articulated a new perspective, not only on perversion, but also on sexuality in general. Krafft-Ebing initiated and Moll elaborated a shift from a psychiatric perspective in which deviant sexuality was explained as a derived, episodic and more or less singular symptom of a more fundamental mental disorder, to a consideration of perversion as an integral part of a more general, autonomous and continuous sexual instinct. Before Sigmund Freud and others had expressed similar views, it was primarily through the writings of Krafft-Ebing and Moll that a new understanding of human sexuality emerged.
Sexual Modernity in the Works of Richard von Krafft-Ebing and Albert Moll
Oosterhuis, Harry
2012-01-01
The modern notion of sexuality took shape at the end of the nineteenth century, especially in the works of Richard von Krafft-Ebing and Albert Moll. This modernisation of sexuality was closely linked to the recognition of sexual diversity, as it was articulated in the medical–psychiatric understanding of what, at that time, was labelled as perversion. From around 1870, psychiatrists shifted the focus from immoral acts, a temporary deviation of the norm, to an innate morbid condition. In the late nineteenth century, several psychiatrists, collecting and publishing more and more case histories, classified and explained the wide range of deviant sexual behaviours they traced. The emergence of medical sexology meant that perversions could be diagnosed and discussed. Against this background both Krafft-Ebing and Moll articulated a new perspective, not only on perversion, but also on sexuality in general. Krafft-Ebing initiated and Moll elaborated a shift from a psychiatric perspective in which deviant sexuality was explained as a derived, episodic and more or less singular symptom of a more fundamental mental disorder, to a consideration of perversion as an integral part of a more general, autonomous and continuous sexual instinct. Before Sigmund Freud and others had expressed similar views, it was primarily through the writings of Krafft-Ebing and Moll that a new understanding of human sexuality emerged. PMID:23002290
Albert Ross Tilley: The legacy of a Canadian plastic surgeon
Mowbrey, Kevin
2013-01-01
The present article chronicles the career of Dr Albert Ross Tilley, one of the most important Canadian plastic surgeons of the 20th century. Tilley is most well known for his innovations of burn management during World War II and his treatment of a group of burn patients known affectionately as the ‘Guinea Pig Club’. In addition to the superb surgical skills he applied to the physical wounds of his patients, Tilley was also a pioneer of caring for the emotional and psychological afflictions suffered by many airmen of World War II. As one of the founding fathers of the Canadian Society of Plastic Surgeons, Tilley’s work was instrumental in establishing the specialty and ensured its prosperity for years to come. Serving in the capacity of leader, educator and innovator, Tilley remains one of Canada’s most decorated physicians, and his body of work encompasses contributions to the medical field that remain significant and beneficial to patient care to this day. PMID:24431953
Approaching Bose-Einstein Condensation
ERIC Educational Resources Information Center
Ferrari, Loris
2011-01-01
Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…
The Spacetime Between Einstein and Kaluza-Klein: Further Explorations
NASA Astrophysics Data System (ADS)
Vuille, Chris
2017-01-01
Tensor multinomials can be used to create a generalization of Einstein's general relativity that in a mathematical sense falls between Einstein's original theory in four dimensions and the Kaluza-Klein theory in five dimensions. In the extended theory there are only four physical dimensions, but the tensor multinomials are expanded operators that can accommodate other forces of nature. The equivalent Ricci tensor of this geometry yields vacuum general relativity and electromagnetism, as well as a Klein-Gordon-like quantum scalar field. With a generalization of the stress-energy tensor, an exact solution for a plane-symmetric dust can be found where the scalar portion of the field drives early universe inflation, levels off for a period, then causes a later continued universal acceleration, a possible geometric mechanism for the inflaton or dark energy. Some new explorations of the equations, the problems, and possibilities will be presented and discussed.
The Einstein Center for Epigenomics: studying the role of epigenomic dysregulation in human disease.
McLellan, Andrew S; Dubin, Robert A; Jing, Qiang; Maqbool, Shahina B; Olea, Raul; Westby, Gael; Broin, Pilib Ó; Fazzari, Melissa J; Zheng, Deyou; Suzuki, Masako; Greally, John M
2009-10-01
There is increasing interest in the role of epigenetic and transcriptional dysregulation in the pathogenesis of a range of human diseases, not just in the best-studied example of cancer. It is, however, quite difficult for an individual investigator to perform these studies, as they involve genome-wide molecular assays combined with sophisticated computational analytical approaches of very large datasets that may be generated from various resources and technologies. In 2008, the Albert Einstein College of Medicine in New York, USA established a Center for Epigenomics to facilitate the research programs of its investigators, providing shared resources for genome-wide assays and for data analysis. As a result, several avenues of research are now expanding, with cancer epigenomics being complemented by studies of the epigenomics of infectious disease and a neuroepigenomics program.
Arthur Beer and his relations with Einstein and the Warburg Institute
NASA Astrophysics Data System (ADS)
Duerbeck, Hilmar W.; Beer, Peter
2006-06-01
We give an account of the scientific life of Arthur Beer (1900-1980). Born in Reichenberg, Bohemia, he studied in Leipzig, Vienna and Berlin. After obtaining his Ph.D., he worked with the Seewarte (maritime observatory) and with the Warburg Library, both in Hamburg. Because of his relations with Finlay Freundlich, Albert Einstein and Fritz Saxl, he succeeded in emigrating to England in 1934, where he obtained a temporary position at Cambridge Observatory, and carried out astrophysical research under F.J.M. Stratton. After shorter stays at the observatories of Mill Hill and Kew, both in the vicinity of London, he obtained, after World War II, the position of Senior Assistant Observer in Cambridge. Besides his studies in astrophysics and the history of astronomy, he is best known as the founding Editor of the series Vistas in Astronomy.
ERIC Educational Resources Information Center
Jackson, A. T.
1973-01-01
Reviews theoretical and experimental fundamentals of Einstein's theory of general relativity. Indicates that recent development of the theory of the continually expanding universe may lead to revision of the space-time continuum of the finite and unbounded universe. (CC)
‘God’s Ethicist’: Albert Moll and His Medical Ethics in Theory and Practice
Maehle, Andreas-Holger
2012-01-01
In 1902, Albert Moll, who at that time ran a private practice for nervous diseases in Berlin, published his comprehensive book on medical ethics, Ärztliche Ethik. Based on the concept of a contractual relationship between doctor and client, it gave more room to the self-determination of patients than the contemporary, usually rather paternalistic, works of this genre. In the first part of the present paper this is illustrated by examining Moll’s views and advice on matters such as truthfulness towards patients, euthanasia, and abortion. The second part of this article discusses how Moll engaged with the then publicly debated issues of experimentation on hospital patients and the ‘trade’ of foreign private patients between agents and medical consultants. In both matters Moll collected evidence of unethical practices and tried to use it to bring about change without damaging his or the profession’s reputation. However, with his tactical manoeuvres, Moll made no friends for himself among his colleagues or the authorities; his book on ethics also met with a generally cool response from the medical profession and seems to have been more appreciated by lawyers than by other doctors. PMID:23002294
'God's ethicist': Albert Moll and his medical ethics in theory and practice.
Maehle, Andreas-Holger
2012-04-01
In 1902, Albert Moll, who at that time ran a private practice for nervous diseases in Berlin, published his comprehensive book on medical ethics, Ärztliche Ethik. Based on the concept of a contractual relationship between doctor and client, it gave more room to the self-determination of patients than the contemporary, usually rather paternalistic, works of this genre. In the first part of the present paper this is illustrated by examining Moll's views and advice on matters such as truthfulness towards patients, euthanasia, and abortion. The second part of this article discusses how Moll engaged with the then publicly debated issues of experimentation on hospital patients and the 'trade' of foreign private patients between agents and medical consultants. In both matters Moll collected evidence of unethical practices and tried to use it to bring about change without damaging his or the profession's reputation. However, with his tactical manoeuvres, Moll made no friends for himself among his colleagues or the authorities; his book on ethics also met with a generally cool response from the medical profession and seems to have been more appreciated by lawyers than by other doctors.
The strongest gravitational lenses. III. The order statistics of the largest Einstein radii
NASA Astrophysics Data System (ADS)
Waizmann, J.-C.; Redlich, M.; Meneghetti, M.; Bartelmann, M.
2014-05-01
Context. The Einstein radius of a gravitational lens is a key characteristic. It encodes information about decisive quantities such as halo mass, concentration, triaxiality, and orientation with respect to the observer. Therefore, the largest Einstein radii can potentially be utilised to test the predictions of the ΛCDM model. Aims: Hitherto, studies have focussed on the single largest observed Einstein radius. We extend those studies by employing order statistics to formulate exclusion criteria based on the n largest Einstein radii and apply these criteria to the strong lensing analysis of 12 MACS clusters at z> 0.5. Methods: We obtain the order statistics of Einstein radii by a Monte Carlo approach, based on the semi-analytic modelling of the halo population on the past lightcone. After sampling the order statistics, we fit a general extreme value distribution to the first-order distribution, which allows us to derive analytic relations for the order statistics of the Einstein radii. Results: We find that the Einstein radii of the 12 MACS clusters are not in conflict with the ΛCDM expectations. Our exclusion criteria indicate that, in order to exhibit tension with the concordance model, one would need to observe approximately twenty Einstein radii with θeff ≳ 30″, ten with θeff ≳ 35″, five with θeff ≳ 42″, or one with θeff ≳ 74″ in the redshift range 0.5 ≤ z ≤ 1.0 on the full sky (assuming a source redshift of zs = 2). Furthermore, we find that, with increasing order, the haloes with the largest Einstein radii are on average less aligned along the line-of-sight and less triaxial. In general, the cumulative distribution functions steepen for higher orders, giving them better constraining power. Conclusions: A framework that allows the individual and joint order distributions of the n-largest Einstein radii to be derived is presented. From a statistical point of view, we do not see any evidence of an Einstein ring problem even for the
NASA Astrophysics Data System (ADS)
Chavanis, Pierre-Henri; Matos, Tonatiuh
2017-01-01
We develop a hydrodynamic representation of the Klein-Gordon-Maxwell-Einstein equations. These equations combine quantum mechanics, electromagnetism, and general relativity. We consider the case of an arbitrary curved spacetime, the case of weak gravitational fields in a static or expanding background, and the nonrelativistic (Newtonian) limit. The Klein-Gordon-Maxwell-Einstein equations govern the evolution of a complex scalar field, possibly describing self-gravitating Bose-Einstein condensates, coupled to an electromagnetic field. They may find applications in the context of dark matter, boson stars, and neutron stars with a superfluid core.
Polymer Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Castellanos, E.; Chacón-Acosta, G.
2013-05-01
In this work we analyze a non-interacting one-dimensional polymer Bose-Einstein condensate in a harmonic trap within the semiclassical approximation. We use an effective Hamiltonian coming from the polymer quantization that arises in loop quantum gravity. We calculate the number of particles in order to obtain the critical temperature. The Bose-Einstein functions are replaced by series, whose high order terms are related to powers of the polymer length. It is shown that the condensation temperature presents a shift respect to the standard case, for small values of the polymer scale. In typical experimental conditions, it is possible to establish a bound for λ2 up to ≲10-16 m2. To improve this bound we should decrease the frequency of the trap and also decrease the number of particles.
Einstein energy associated with the Friedmann-Robertson-Walker metric
NASA Astrophysics Data System (ADS)
Mitra, Abhas
2010-03-01
Following Einstein’s definition of Lagrangian density and gravitational field energy density (Einstein in Ann Phys Lpz 49:806, 1916, Einstein in Phys Z 19:115, 1918, Pauli in Theory of Relativity, B.I. Publications, Mumbai, 1963), Tolman derived a general formula for the total matter plus gravitational field energy ( P 0) of an arbitrary system (Tolman in Phys Rev 35:875, 1930, Tolman in Relativity, Thermodynamics & Cosmology, Clarendon Press, Oxford, 1962, Xulu in hep-th/0308070, 2003). For a static isolated system, in quasi-Cartesian coordinates, this formula leads to the well known result {P_0 = int sqrt{-g} (T_0^0 - T_1^1 - T_2^2 - T_3^3) d^3 x,} where g is the determinant of the metric tensor and {T^a_b} is the energy momentum tensor of the matter. Though in the literature, this is known as “Tolman Mass”, it must be realized that this is essentially “Einstein Mass” because the underlying pseudo-tensor here is due to Einstein. In fact, Landau-Lifshitz obtained the same expression for the “inertial mass” of a static isolated system without using any pseudo-tensor at all and which points to physical significance and correctness of Einstein Mass (Landau, Lifshitz in The Classical Theory of Fields, Pergamon Press, Oxford, 1962)! For the first time we apply this general formula to find an expression for P 0 for the Friedmann-Robertson-Walker (FRW) metric by using the same quasi-Cartesian basis. As we analyze this new result, it transpires that, physically, a spatially flat model having no cosmological constant is preferred. Eventually, it is seen that conservation of P 0 is honoured only in the static limit.
Vision and cognition in the natural philosophy of Albert the Great (Albertus Magnus).
Theiss, P; Grüsser, O J
1994-01-01
Albert the Great (Albertus Magnus, ca. 1197-1280) descended from a nobleman's family in Upper Suebia and studied natural philosophy and theology at the University of Padova, where he joined the Dominican order. Confronted with Aristotelian thought mainly in its Arabic modification (Avicenna, Al-Farabi, Averroes, Alhazen, Costa ben Luca and others) from his days in Padova, he elaborated in several books on the principles of natural philosophy, biology, brain and sense functions and psychology in addition to his theological and exegetic works. His observations and concepts on vision are discussed in detail. It is pointed out that Albert discovered some phenomena of vision not before known such as vestibular nystagmus and rod monochromacy, i.e. total colour blindness accompanied by photophobia. Based on clinical observations Albert also postulated a decussation of the optic nerve fibres at the optic chiasm. Albert's concept of higher order cognitive function is discussed and some of his explanations of dreams and neuropsychiatric disease on the basis of his cognitive model are mentioned. Albert's thoughts on vision and other sense perceptions, higher brain functions and cognition are considered as progressive elaborations of Galenic concepts as adapted by some Patristic theologians and the Arabic natural scientists and philosophers of the 9th-11th century.
Putting agent-based modeling to work: results of the 4th International Project Albert Workshop
NASA Astrophysics Data System (ADS)
Horne, Gary E.; Bjorkman, Eileen A.; Colton, Trevor
2002-07-01
Project Albert is an initiative of the US Marine Corps which uses a series of new models and tools, multidisciplinary teams, and the scientific method to explore questions of interest to military planners. Project Albert attempts to address key areas that traditional modeling and simulation techniques often do not capture satisfactorily and uses two data management concepts, data farming and data mining, to assist in identifying areas of interest. The current suite of models used by Project Albert includes four agent-based models that allow agents to interact with each other and produce emergent behaviors. The 4th International Project Albert Workshop was held 6-9 August 2001 in Australia. Workshop participants split into five groups, each of which attempted to apply various combinations of the Project Albert models to answer a series of questions in five areas: Control Operations; Reconnaissance, Surveillance, and Intelligence Force Mix; Precision Maneuver; Mission Area Analysis; and Peace Support Operations. This paper focuses on the methodology used during the workshop, the results of the workshop, and a summary of follow-on work since the workshop.
NASA's Gravity Probe B Mission: Was Einstein Right?
NASA Astrophysics Data System (ADS)
Range, Shannon K.
2006-12-01
The most sophisticated and precise test of Einstein's theory of curved spacetime is finally complete after 46 years of development and study. What did we discover? THE MISSION: In 1960, NASA began developing the most sophisticated and precise test of Einstein's theory of general relativity -the Gravity Probe B mission based at Stanford University. Was Einstein right about the shape of curved spacetime around the Earth? Did Earth's rotation actually "twist" spacetime around with it? After four decades of physics and engineering innovations, Gravity Probe B was ready to go. In 2004, NASA launched the Earth-orbiting satellite containing four near-perfect spinning spheres (gyroscopes) designed to reveal the shape of spacetime curvature near the Earth and the presence of "frame-dragging." After 16 months of observations and a year-and-a-half of data analysis, we nearly have our answers. Stanford scientists and theorists are making the final verifications to our data and analysis in preparation for the release of the results. IN YOUR CLASSROOM: We have translated the sophisticated science and technology of this unique mission into a teacher's guide, demonstration activities, and a mission DVD/CD. Each of these items is available to all and will help you engage your students in Einstein's ideas of spacetime, our work with gyroscopes and the exciting work of conducting research in space.
Bryant, Thomas
2012-01-01
The physician and sexologist Albert Moll, from Berlin, was one of the main protagonists within the German discourse on the opportunities and dangers of social engineering, by eugenic interventions into human life in general, as well as into reproductive hygiene and healthcare policy in particular. One of the main sexological topics that were discussed intensively during the late-Wilhelminian German Reich and the Weimar Republic was the question of the legalisation of voluntary and compulsory sterilisations on the basis of medical, social, eugenic, economic or criminological indications. As is clear from Moll’s conservative principles of medical ethics, and his conviction that the genetic knowledge required for eugenically indicated sterilisations was not yet sufficiently elaborated, he had doubts and worries about colleagues who were exceedingly zealous about these surgical sterilisations – especially Gustav Boeters from Saxony. PMID:23002295
Bogomol'nyi equations and solutions for Einstein-Yang-Mills-dilaton-σ models
NASA Astrophysics Data System (ADS)
Braden, H. W.; Varela, V.
1998-12-01
We derive Bogomol'nyi equations for an Einstein-Yang-Mills-dilaton-σ model on a static spacetime, showing that the Einstein equations are satisfied if and only if the associated (conformally scaled) three-metric is flat. These are precisely the static metrics for which super-covariantly constant spinors exist. We study some general properties of these equations and then consider the problem of obtaining axially symmetric solutions for the gauge group SU(2).
Einstein Gyrogroup as a B-loop
NASA Astrophysics Data System (ADS)
Suksumran, Teerapong; Wiboonton, Keng
2015-08-01
Using the Clifford algebra formalism, we give an algebraic proof that the open unit ball B = v ∈Rn : ‖ v ‖ < 1 } of Rn equipped with Einstein addition ⊕E forms a B-loop or, equivalently, a uniquely 2-divisible gyrocommutative gyrogroup. We obtain a compact formula for Einstein addition in terms of Möbius addition. We then give a characterization of associativity and commutativity of vectors in B with respect to Einstein addition.
Einstein-Yang-Mills from pure Yang-Mills amplitudes
NASA Astrophysics Data System (ADS)
Nandan, Dhritiman; Plefka, Jan; Schlotterer, Oliver; Wen, Congkao
2016-10-01
We present new relations for scattering amplitudes of color ordered gluons and gravitons in Einstein-Yang-Mills theory. Tree-level amplitudes of arbitrary multiplicities and polarizations involving up to three gravitons and up to two color traces are reduced to partial amplitudes of pure Yang-Mills theory. In fact, the double-trace identities apply to Einstein-Yang-Mills extended by a dilaton and a B-field. Our results generalize recent work of Stieberger and Taylor for the single graviton case with a single color trace. As the derivation is made in the dimension-agnostic Cachazo-He-Yuan formalism, our results are valid for external bosons in any number of spacetime dimensions. Moreover, they generalize to the superamplitudes in theories with 16 supercharges.
On Einstein warped products with a quarter-symmetric connection
NASA Astrophysics Data System (ADS)
Pahan, Sampa; Pal, Buddhadev; Bhattacharyya, Arindam
This paper characterizes the warping functions for a multiply generalized Robertson-Walker space-time to get an Einstein space M with a quarter-symmetric connection for different dimensions of M (i.e. (1). dim M = 2, (2). dim M ≥ 3) when all the fibers are Ricci flat. Then we have also computed the warping functions for a Ricci flat Einstein multiply warped product spaces M with a quarter-symmetric connection for different dimensions of M (i.e. (1). dim M = 2, (2). dim M = 3, (3). dim M ≥ 4) and all the fibers are Ricci flat. In the last section, we have given two examples of multiply generalized Robertson-Walker space-time with respect to quarter-symmetric connection.
Einstein as a Missionary of Science
NASA Astrophysics Data System (ADS)
Renn, Jürgen
2013-10-01
The paper reviews Einstein's engagement as a mediator and popularizer of science. It discusses the formative role of popular scientific literature for the young Einstein, showing that not only his broad scientific outlook but also his internationalist political views were shaped by these readings. Then, on the basis of recent detailed studies, Einstein's travels and their impact on the dissemination of relativity theory are examined. These activities as well as Einstein's own popular writings are interpreted in the context of his understanding of science as part of human culture.
Space Radar Image of Prince Albert, Canada, seasonal
NASA Technical Reports Server (NTRS)
1994-01-01
This is a comparison of images over Prince Albert, produced by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 20th orbit on April 10, 1994, and again on orbit 20 of the second flight of Endeavour on October 1, 1994. The area is centered at 53.91 degrees north latitude and 104.69 degrees west longitude and is located 40 kilometers (25 miles) north and 30 kilometers (18.5 miles) east of the town of Prince Albert in the Saskatchewan province of Canada. The image covers the area east of Candle Lake, between the gravel highway of 120 and west of highway 106. The area imaged is near the southern limit of the boreal forest. The boreal forest of North America is a continuous vegetation belt at high latitudes stretching across the continent from the Atlantic shoreline of central Labrador and then westward across Canada to the interior mountains and central coastal plains of Alaska. The forest is also part of a larger northern hemisphere circumpolar boreal forest belt. Coniferous trees dominate the entire forest but deciduous trees are also present. During the month of April, the forest experiences seasonal changes from a frozen condition to a thawed condition. The trees are completely frozen over the winter season and the forest floor is covered by snow. As the average temperature rises in the spring, the trees are thawed and the snow melts. This transition has an impact on the rate of moisture evaporation and release of carbon dioxide into the atmosphere. In late September and early October, the boreal forest experiences a relatively different seasonal change. At this time, the leaves on deciduous trees start changing color and dropping off. The soil and trees are quite often moist due to frequent rainfall and cloud cover. The evaporation of moisture and carbon dioxide into the atmosphere also diminishes at this time. SIR-C/X-SAR is sensitive to the moisture of soil and vegetation and can sense this freeze
Space Radar Image of Prince Albert, Canada, seasonal
NASA Technical Reports Server (NTRS)
1994-01-01
This is a comparison of images over Prince Albert, produced by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 20th orbit on April 10, 1994, and again on orbit 20 of the second flight of Endeavour on October 1, 1994. The area is centered at 53.91 degrees north latitude and 104.69 degrees west longitude and is located 40 kilometers (25 miles) north and 30 kilometers (18.5 miles) east of the town of Prince Albert in the Saskatchewan province of Canada. The image covers the area east of Candle Lake, between the gravel highway of 120 and west of highway 106. The area imaged is near the southern limit of the boreal forest. The boreal forest of North America is a continuous vegetation belt at high latitudes stretching across the continent from the Atlantic shoreline of central Labrador and then westward across Canada to the interior mountains and central coastal plains of Alaska. The forest is also part of a larger northern hemisphere circumpolar boreal forest belt. Coniferous trees dominate the entire forest but deciduous trees are also present. During the month of April, the forest experiences seasonal changes from a frozen condition to a thawed condition. The trees are completely frozen over the winter season and the forest floor is covered by snow. As the average temperature rises in the spring, the trees are thawed and the snow melts. This transition has an impact on the rate of moisture evaporation and release of carbon dioxide into the atmosphere. In late September and early October, the boreal forest experiences a relatively different seasonal change. At this time, the leaves on deciduous trees start changing color and dropping off. The soil and trees are quite often moist due to frequent rainfall and cloud cover. The evaporation of moisture and carbon dioxide into the atmosphere also diminishes at this time. SIR-C/X-SAR is sensitive to the moisture of soil and vegetation and can sense this freeze
Class of Einstein-Maxwell-dilaton-axion space-times
Matos, Tonatiuh; Miranda, Galaxia; Sanchez-Sanchez, Ruben; Wiederhold, Petra
2009-06-15
We use the harmonic maps ansatz to find exact solutions of the Einstein-Maxwell-dilaton-axion (EMDA) equations. The solutions are harmonic maps invariant to the symplectic real group in four dimensions Sp(4,R){approx}O(5). We find solutions of the EMDA field equations for the one- and two-dimensional subspaces of the symplectic group. Specially, for illustration of the method, we find space-times that generalize the Schwarzschild solution with dilaton, axion, and electromagnetic fields.
Deduction of Einstein equation from homogeneity of Riemann spacetime
NASA Astrophysics Data System (ADS)
Ni, Jun
2012-03-01
The symmetry of spacetime translation leads to the energy-momentum conservation. However, the Lagrange depends on spacetime coordinates, which makes the symmetry of spacetime translation different with other symmetry invariant explicitly under symmetry transformation. We need an equation to guarantee the symmetry of spacetime translation. In this talk, I will show that the Einstein equation can be deduced purely from the general covariant principle and the homogeneity of spacetime in the frame of quantum field theory. The Einstein equation is shown to be the equation to guarantee the symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field, only electroweak-strong interactions appear with curved spacetime metric determined by the Einstein equation.. The general covariant principle and the homogeneity of spacetime are merged into one basic principle: Any Riemann spacetime metric guaranteeing the energy-momentum conservation are equivalent, which can be called as the conserved general covariant principle. [4pt] [1] Jun Ni, Chin. Phys. Lett. 28, 110401 (2011).
Solitons in Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Carr, Lincoln D.
2003-05-01
The stationary form, dynamical properties, and experimental criteria for creation of matter-wave bright and dark solitons, both singly and in trains, are studied numerically and analytically in the context of Bose-Einstein condensates [1]. The full set of stationary solutions in closed analytic form to the mean field model in the quasi-one-dimensional regime, which is a nonlinear Schrodinger equation equally relevant in nonlinear optics, is developed under periodic and box boundary conditions [2]. These solutions are extended numerically into the two and three dimensional regimes, where it is shown that dark solitons can be used to create vortex-anti-vortex pairs under realistic conditions. Specific experimental prescriptions for creating viable dark and bright solitons in the quasi-one-dimensional regime are provided. These analytic methods are then extended to treat the nonlinear Schrodinger equation with a generalized lattice potential, which models a Bose-Einstein condensate trapped in the potential generated by a standing light wave. A novel solution family is developed and stability criterion are presented. Experiments which successfully carried out these ideas are briefly discussed [3]. [1] Dissertation research completed at the University of Washington Physics Department under the advisorship of Prof. William P. Reinhardt. [2] L. D. Carr, C. W. Clark, and W. P. Reinhardt, Phys. Rev. A v. 62 p. 063610-1--10 and Phys. Rev. A v.62, p.063611-1--10 (2000). [3] L. Khaykovich, F. Schreck, T. Bourdel, J. Cubizolles, G. Ferrari, L. D. Carr, Y. Castin, and C. Salomon, Science v. 296, p.1290--1293 (2002).
NASA Astrophysics Data System (ADS)
Lewis, Patricia M.
2009-05-01
``There lies before us, if we choose, continual progress in happiness, knowledge, and wisdom. Shall we, instead, choose death, because we cannot forget our quarrels? We appeal as human beings to human beings: Remember your humanity, and forget the rest.'' Days before his death, Albert Einstein joined Bertrand Russell and other notable scientists and philosophers in issuing a statement calling for the abolition of war and for governments to ``find peaceful means for the settlement of all matters of dispute between them." As a first step, they called for the renunciation of nuclear weapons. The initiative led to the establishment of the Pugwash Conferences on Science and World Affairs, which bring together influential scholars and public figures concerned with reducing the danger of armed conflict and seeking cooperative solutions for global problems. The Russell-Einstein Manifesto has had a major impact on the way in which people discuss the issues of peace and war. The paper traces the growing awareness of the meaning of war, ways in which violent conflict can be prevented, particularly in the nuclear age, and the humanitarian imperative for so doing. From the Russell-Einstein Manifesto, London, 9 July 1955, signed also by Max Born, Percy W. Bridgman, Leopold Infeld, Frederic Joliot-Curie, Herman J. Muller, Linus Pauling, Cecil F. Powell, Joseph Rotblat and Hideki Yukawa
Einstein Manifolds as Yang-Mills Instantons
NASA Astrophysics Data System (ADS)
Oh, John J.; Yang, Hyun Seok
2013-07-01
It is well known that Einstein gravity can be formulated as a gauge theory of Lorentz group where spin connections play a role of gauge fields and Riemann curvature tensors correspond to their field strengths. One can then pose an interesting question: What is the Einstein equation from the gauge theory point of view? Or equivalently, what is the gauge theory object corresponding to Einstein manifolds? We show that the Einstein equations in four dimensions are precisely self-duality equations in Yang-Mills gauge theory and so Einstein manifolds correspond to Yang-Mills instantons in SO(4) = SU(2)L × SU(2)R gauge theory. Specifically, we prove that any Einstein manifold with or without a cosmological constant always arises as the sum of SU(2)L instantons and SU(2)R anti-instantons. This result explains why an Einstein manifold must be stable because two kinds of instantons belong to different gauge groups, instantons in SU(2)L and anti-instantons in SU(2)R, and so they cannot decay into a vacuum. We further illuminate the stability of Einstein manifolds by showing that they carry nontrivial topological invariants.
Books on Einstein--Collectors' Delight
ERIC Educational Resources Information Center
Khoon, Koh Aik; Jalal, Azman; Abd-Shukor, R.; Yatim, Baharudin; Talib, Ibrahim Abu; Daud, Abdul Razak; Samat, Supian
2009-01-01
A survey of thirteen books on Einstein is presented. Its gives an idea on how much is written about the man and how frequent are the publications. The year 2005 saw the most publications. It is the centenary for the Miraculous Year. Interestingly some books can just sustain their readers' interest with just words. Einstein comes alive with the…
Einstein as a Missionary of Science
ERIC Educational Resources Information Center
Renn, Jürgen
2013-01-01
The paper reviews Einstein's engagement as a mediator and popularizer of science. It discusses the formative role of popular scientific literature for the young Einstein, showing that not only his broad scientific outlook but also his internationalist political views were shaped by these readings. Then, on the basis of recent detailed…
What Einstein Can Teach Us about Education
ERIC Educational Resources Information Center
Hayes, Denis
2007-01-01
People are more likely to associate Einstein with complex scientific theories and mathematical calculations than with education theory. In fact, Einstein's own experiences of schooling and his reflections on the meaning of life and the significance of education are profound and oddly relevant to the situation that pertains in England today. It is…
Socioeconomic Status, Risk of Obesity, and the Importance of Albert J. Stunkard
Pavela, Gregory; Lewis, Dwight W.; Locher, Julie; Allison, David B.
2015-01-01
Albert J. Stunkard's influential career in obesity research spanned over fifty years and included several landmark studies on social factors related to obesity. This review discusses the important contributions Stunkard made to research on the relationship between socioeconomic status SES and obesity, extensions of his work, and reflects on Stunkard's role in the mentoring of succeeding generations of scientists. PMID:26746415
The Albert Shanker Institute Five-Year Report, 2003-2008
ERIC Educational Resources Information Center
Albert Shanker Institute, 2008
2008-01-01
This report describes the Albert Shanker Institute's activities over the past five years in the areas of education, labor, and democracy. In the area of education, the Institute has sponsored a wide range of forums, seminars, reports, and other activities that highlight the best thinking and solid research on the most effective ways to improve…
ERIC Educational Resources Information Center
Chenoweth, Eric
2013-01-01
Albert Shanker (1928-1997) is known mainly for his successful struggle to obtain collective bargaining for teachers, his leadership of teacher unions, and his championship of education reform. Shanker built large and powerful city, state, and national unions of teachers and other public employees that still stand as models both for union democracy…
In the Beginning--Albert McKinley and the Founding of "The Social Studies"
ERIC Educational Resources Information Center
Keels, Oliver M.
2009-01-01
This article discusses the founding of "The Social Studies" by Albert E. McKinley. The author briefly introduces McKinley's life and examines the evolution of the magazine. He identifies the conflicts and struggles between the historians and social studies educators for the magazine. The author concludes that the magazine has served both history…
Distorting the Historical Record: One Detailed Example from the Albert Shanker Institute's Report
ERIC Educational Resources Information Center
American Educator, 2012
2012-01-01
This article presents a detailed example from the Albert Shanker Institute's report that shows the error of U.S. history textbooks and how it is distorting the historical record. One of the most glaring errors in textbooks is the treatment of the role that unions and labor activists played as key participants in the civil rights movement. The…
ERIC Educational Resources Information Center
Marckwardt, Albert H.; Quirk, Randolph
This transcription of radio conversations on the English language between Albert H. Marckwardt and Randolph Quirk, jointly produced by The British Broadcasting Corporation and The Voice of America, indicates that American and British English have never been so different as people have imagined and that the dominant tendency has been toward…
ERIC Educational Resources Information Center
National Register of Historic Places, Washington, DC. Interagency Resources Div.
This teacher's guide is designed to prepare teachers and their students for a rewarding experience when visiting the Friendship Hill National Historic Site, the home of Albert Gallatin (1761-1849). Gallatin was a financier, entrepreneur, politician, diplomat, scholar, and colleague of Thomas Jefferson, James Madison, and James Monroe. The guide…
Albert J. Beveridge as Imperialist and Progressive: The Means Justify the End.
ERIC Educational Resources Information Center
Carlson, A. Cheree
1988-01-01
Describes Senator Albert Jerimiah Beveridge as a leader in two early twentieth-century movements: imperialism and progressivism. Indicates that Beveridge's success demonstrates the possibility that rhetors can adapt to changes in the rhetorical situation without surrendering their personal convictions. (JK)
Quasispherical gravitational collapse in 5D Einstein-Gauss-Bonnet gravity
Ghosh, Sushant G.; Jhingan, S.
2010-07-15
We obtain a general five-dimensional quasispherical collapsing solutions of irrotational dust in Einstein gravity with the Gauss-Bonnet combination of quadratic curvature terms. These solutions are a generalization, to Einstein-Gauss-Bonnet gravity, of the five-dimensional quasispherical Szkeres like collapsing solutions in general relativity. It is found that the collapse proceeds in the same way as in the analogous spherical collapse, i.e., there exists regular initial data such that the collapse proceed to form naked singularities violating cosmic censorship conjecture. The effect of Gauss-Bonnet quadratic curvature terms on the formation and locations of the apparent horizon is deduced.
The Canarias Einstein ring: a newly discovered optical Einstein ring
NASA Astrophysics Data System (ADS)
Bettinelli, M.; Simioni, M.; Aparicio, A.; Hidalgo, S. L.; Cassisi, S.; Walker, A. R.; Piotto, G.; Valdes, F.
2016-09-01
We report the discovery of an optical Einstein ring in the Sculptor constellation, IAC J010127-334319, in the vicinity of the Sculptor dwarf spheroidal galaxy. It is an almost complete ring (˜300°) with a diameter of ˜4.5 arcsec. The discovery was made serendipitously from inspecting Dark Energy Camera (DECam) archive imaging data. Confirmation of the object nature has been obtained by deriving spectroscopic redshifts for both components, lens and source, from observations at the 10.4 m Gran Telescopio CANARIAS (GTC) with the spectrograph OSIRIS. The lens, a massive early-type galaxy, has a redshift of z = 0.581, while the source is a starburst galaxy with redshift of z = 1.165. The total enclosed mass that produces the lensing effect has been estimated to be Mtot = (1.86 ± 0.23) × 1012 M⊙.
Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory.
Kleihaus, Burkhard; Kunz, Jutta; Radu, Eugen
2011-04-15
We construct generalizations of the Kerr black holes by including higher-curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. We show that the domain of existence of these Einstein-Gauss-Bonnet-dilaton (EGBD) black holes is bounded by the Kerr black holes, the critical EGBD black holes, and the singular extremal EGBD solutions. The angular momentum of the EGBD black holes can exceed the Kerr bound. The EGBD black holes satisfy a generalized Smarr relation. We also compare their innermost stable circular orbits with those of the Kerr black holes and show the existence of differences which might be observable in astrophysical systems.
Einstein's Equations for Spin 2 Mass 0 from Noether's Converse Hilbertian Assertion
NASA Astrophysics Data System (ADS)
Pitts, J. Brian
2016-11-01
An overlap between the general relativist and particle physicist views of Einstein gravity is uncovered. Noether's 1918 paper developed Hilbert's and Klein's reflections on the conservation laws. Energy-momentum is just a term proportional to the field equations and a 'curl' term with identically zero divergence. Noether proved a converse "Hilbertian assertion": such "improper" conservation laws imply a generally covariant action.
Entanglement Equilibrium and the Einstein Equation.
Jacobson, Ted
2016-05-20
A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.
Focus: The elusive icon: Einstein, 1905-2005 - Introduction
NASA Astrophysics Data System (ADS)
Galison, Peter
2004-12-01
As Einstein's portrait comes increasingly to resemble an icon, we lose more than detail - his writings and actions lose all reference. This is as true for his physics as it is for his philosophy and his politics; the best of recent work aims to remove Einstein's interventions from the abstract sphere of Delphic pronouncements and to insert them in the stream of real events, real arguments. Politically, this means attending to McCarthyism, Paul Robeson, the Arab-Israeli conflict. Philosophically, it means tying his concerns, for example, to late nineteenth-century neo-Kantian debates and to his own struggles inside science. And where physics is concerned, it means attending both in the narrow to his reponses to others' work and his reactions to this own sometimes misfired early work on, for example, general relativity and to the wider context of technological developments. Einstein remains and will remain a magnet for historians, philosophers, and scientists; the essays assembled here represent a strong sampling - but only a sampling - of a fascinating new generation of work on this perennial figure.
Implications of Einstein-Weyl Causality on Quantum Mechanics
NASA Astrophysics Data System (ADS)
Bendaniel, David
A fundamental physical principle that has consequences for the topology of space-time is the principle of Einstein-Weyl causality. This also has quantum mechanical manifestations. Borchers and Sen have rigorously investigated the mathematical implications of Einstein-Weyl causality and shown the denumerable space-time Q2 would be implied. They were left with important philosophical paradoxes regarding the nature of the physical real line E, e.g., whether E = R, the real line of mathematics. In order to remove these paradoxes an investigation into a constructible foundation is suggested. We have pursued such a program and find it indeed provides a dense, denumerable space-time and, moreover, an interesting connection with quantum mechanics. We first show that this constructible theory contains polynomial functions which are locally homeomorphic with a dense, denumerable metric space R* and are inherently quantized. Eigenfunctions governing fields can then be effectively obtained by computational iteration. Postulating a Lagrangian for fields in a compactified space-time, we get a general description of which the Schrodinger equation is a special case. From these results we can then also show that this denumerable space-time is relational (in the sense that space is not infinitesimally small if and only if it contains a quantized field) and, since Q2 is imbedded in R*2, it directly fulfills the strict topological requirements for Einstein-Weyl causality. Therefore, the theory predicts that E = R*.
Stability of the Einstein static universe in Einstein-Cartan theory
Atazadeh, K.
2014-06-01
The existence and stability of the Einstein static solution have been built in the Einstein-Cartan gravity. We show that this solution in the presence of perfect fluid with spin density satisfying the Weyssenhoff restriction is cyclically stable around a center equilibrium point. Thus, study of this solution is interesting because it supports non-singular emergent cosmological models in which the early universe oscillates indeterminately about an initial Einstein static solution and is thus past eternal.
Stability of the graviton Bose-Einstein condensate in the brane-world
NASA Astrophysics Data System (ADS)
Casadio, Roberto; da Rocha, Roldão
2016-12-01
We consider a solution of the effective four-dimensional Einstein equations, obtained from the general relativistic Schwarzschild metric through the principle of Minimal Geometric Deformation (MGD). Since the brane tension can, in general, introduce new singularities on a relativistic Eötvös brane model in the MGD framework, we require the absence of observed singularities, in order to constrain the brane tension. We then study the corresponding Bose-Einstein condensate (BEC) gravitational system and determine the critical stability region of BEC MGD stellar configurations. Finally, the critical stellar densities are shown to be related with critical points of the information entropy.
White Holes in Einstein-Aether Theory
NASA Astrophysics Data System (ADS)
Garfinkle, David; Akhoury, Ratindranath; Gupta, Nishant
2017-01-01
Numerical simulations are performed of gravitational collapse in Einstein-aether theory. We find that under certain circumstances the collapse results in the temporary formation of a white hole horizon. NSF grant PHY-1505565.
Recent developments in Bose-Einstein condensation
Kalman, G.
1997-09-22
This paper contains viewgraphs on developments on Bose-Einstein condensation. Some topics covered are: strongly coupled coulomb systems; standard response functions of the first and second kind; dynamical mean field theory; quasi localized charge approximation; and the main equations.
The happiest thought of Einstein's life.
NASA Astrophysics Data System (ADS)
Heller, M.
It is a commonly told story that Einstein formulated his famous principle of equivalence when thinking about what happens in a freely falling elevator, and that it was an original idea of his genius distinguished by the rare capability to see deep problems in the most ordinary things. In the reading of Einstein's and Ernst Mach's works the author has discovered that it was not a physicist in an elevator which led to the principle of equivalence but rather somebody falling from a roof; moreover, the idea behind the principle was not invented by Einstein himself but rather read by him from the book by Mach entitled The Science of Mechanics. The influence this book had on young Einstein is very well known.
Gravity Probe B: Testing Einstein with Gyroscopes
NASA Technical Reports Server (NTRS)
Geveden, Rex D.; May, Todd
2003-01-01
Some 40 years in the making, NASA s historic Gravity Probe B (GP-B) mission is scheduled to launch aboard a Delta I1 in 2003. GP-B will test two extraordinary predictions from Einstein s General Relativity: geodetic precession and the Lense-Thirring effect (frame-dragging). Employing tiny, ultra-precise gyroscopes, GP-B features a measurement accuracy of 0.5 milli-arc-seconds per year. The extraordinary measurement precision is made possible by a host of breakthrough technologies, including electro-statically suspended, super-conducting quartz gyroscopes; virtual elimination of magnetic flux; a solid quartz star- tracking telescope; helium microthrusters for drag-free control of the spacecraft; and a 2400 liter superfluid helium dewar. This paper will provide an overview of the science, key technologies, flight hardware, integration and test, and flight operations of the GP-B space vehicle. It will also examine some of the technical management challenges of a large-scale, technology-driven, Principal Investigator-led mission.
Gravity Probe B: Testing Einstein with Gyroscopes
NASA Technical Reports Server (NTRS)
Geveden, Rex D.; May, Todd
2003-01-01
Some 40 years in the making, NASA' s historic Gravity Probe B (GP-B) mission is scheduled to launch aboard a Delta II in 2003. GP-B will test two extraordinary predictions from Einstein's General Relativity: geodetic precession and the Lense-Thirring effect (frame-dragging). Employing tiny, ultra-precise gyroscopes, GP-B features a measurement accuracy of 0.5 milli-arc-seconds per year. The extraordinary measurement precision is made possible by a host of breakthrough technologies, including electro-statically suspended, super-conducting quartz gyroscopes; virtual elimination of magnetic flux; a solid quartz star tracking telescope; helium microthrusters for drag-free control of the spacecraft; and a 2400 liter superfluid helium dewar. This paper will provide an overview of the science, key technologies, flight hardware, integration and test, and flight operations of the GP-B space vehicle. It will also examine some of the technical management challenges of a large-scale, technology-driven, Principal Investigator-led mission.
Einstein's Biggest Blunder: A Cosmic Mystery Story
Krauss, Lawrence
2016-07-12
The standard model of cosmology built up over 20 years is no longer accepted as accurate. New data suggest that most of the energy density of the universe may be contained in empty space. Remarkably, this is exactly what would be expected if Einstein's cosmological constant really exists. If it does, its origin is the biggest mystery in physics and presents huge challenges for the fundamental theories of elementary particles and fields. Krauss explains Einstein's concept and describes its possible implications.
Albert Szent-Györgyi (1893-1986): the scientist who discovered vitamin C.
Grzybowski, Andrzej; Pietrzak, Krzysztof
2013-01-01
Albert Szent-Györgyi, a Hungarian biochemist, discovered vitamin C and rutin (vitamin P). The role of these vitamins in the body and their application to dermatology is vast. For the discovery of vitamin C and the description of oxidation, Albert Szent-Györgyi received a Nobel Prize in medicine in 1937. He discovered the role of adenosine triphosphate, actin-myosin, and many phases of the Krebs cycle, and also initiated studies on the influence of free radicals in the formation of tumors. Between 1918 and 1946, he worked in many European research centers and between 1947 and 1986, in the United States. His achievements were made possible due to his perseverance, which allowed him to overcome many maelstroms that plagued his scientific career.
Analytic solutions for links and triangles distributions in finite Barabási-Albert networks
NASA Astrophysics Data System (ADS)
Ferreira, Ricardo M.; de Almeida, Rita M. C.; Brunnet, Leonardo G.
2017-01-01
Barabási-Albert model describes many different natural networks, often yielding sensible explanations to the subjacent dynamics. However, finite size effects may prevent from discerning among different underlying physical mechanisms and from determining whether a particular finite system is driven by Barabási-Albert dynamics. Here we propose master equations for the evolution of the degrees, links and triangles distributions, solve them both analytically and by numerical iteration, and compare with numerical simulations. The analytic solutions for all these distributions predict the network evolution for systems as small as 100 nodes. The analytic method we developed is applicable for other classes of networks, representing a powerful tool to investigate the evolution of natural networks.
Parameter specification for the degree distribution of simulated Barabási-Albert graphs
NASA Astrophysics Data System (ADS)
Mohd-Zaid, Fairul; Kabban, Christine M. Schubert; Deckro, Richard F.; White, Edward D.
2017-01-01
The degree distribution of a simulated Barabási-Albert graph under linear preferential attachment is investigated. Specifically, the parameters of the power law distribution are estimated and compared against the theoretical values derived using mean field theory. Least squares method and MLE-nonparametric method were utilized to estimate the distribution parameters on 1000 simulated Barabási-Albert graphs for edge parameter m ∈ { 2 , 4 , 6 } and size n ∈ {2k : k = 5 , 6 , … , 14 , 15 } . Goodness of fit metrics were computed on a second set of simulated graphs for the median of the estimated parameters and other hypothetical values for the distribution parameters. The results suggest that the distribution of the parameters from simulated graphs are significantly different from the theoretical distribution and is also dependent on m. Further results confirm the finding that the parameter of the power law distribution, β, increases as m increases.
Ising Model Spin S = 1 ON Directed BARABÁSI-ALBERT Networks
NASA Astrophysics Data System (ADS)
Lima, F. W. S.
On directed Barabási-Albert networks with two and seven neighbours selected by each added site, the Ising model with spin S = 1/2 was seen not to show a spontaneous magnetisation. Instead, the decay time for flipping of the magnetisation followed an Arrhenius law for Metropolis and Glauber algorithms, but for Wolff cluster flipping the magnetisation decayed exponentially with time. On these networks the Ising model spin S = 1 is now studied through Monte Carlo simulations. However, in this model, the order-disorder phase transition is well defined in this system. We have obtained a first-order phase transition for values of connectivity m = 2 and m = 7 of the directed Barabási-Albert network.
Natural Decompositions of Perceived Transparency: Reply to Albert (2008)
ERIC Educational Resources Information Center
Anderson, Barton L.; Singh, Manish; O'Vari, Judit
2008-01-01
In M. Singh and B. L. Anderson, the authors proposed a model based on ratios of Michelson contrasts to explain how human observers quantitatively scale the perceived opacity of transparent surfaces. In subsequent work by B. L. Anderson, M. Singh, & J. Meng, the authors found that this model failed to generalize to other contexts and replaced it…
[The blindness in the literature-Jose Saramago: blindness and Albert Bang: the blind witness].
Permin, H; Norn, M
2001-01-01
Two novels with different aspects of blindness seen through the doctors eyes. The Portuguese Nobel-prize winner José Saramago's story of a city struck by an epidemic of "white blindness", where the truth is what we cannot bear to see. The Danish author and unskilled labourer Albert Bang's (synonym with Karl E. Rasmussen) crime novel describes a blind or pretend to be blind butcher, who is a witness to a murder. Both novels are lyric, thought-provoking and insightful.
Finite-size effects on semi-directed Barabási-Albert networks
NASA Astrophysics Data System (ADS)
Radwan, M. A.; Sumour, Muneer A.; Elbitar, A. M.; Shabat, M. M.; Lima, F. W. S.
2016-04-01
In scale-free Barabási-Albert (BA) networks, we study the finite-size effect at different number m of neighbors. So, we investigate the effects of finite network size N for the recently developed semi-directed BA networks (SDBA1 and SDBA2) at fixed 2≤m≤300) and show and explain the gap in the distribution of the number k(i) of neighbors of the nodes i.
Campbell, Davina; Grass, Julian; Brown, Allison C.; Bicknese, Amelia; Tolar, Beth; Joseph, Lavin A.; Plumblee, Jodie R.; Walker, Carrie; Fedorka-Cray, Paula J.; Whichard, Jean M.
2015-01-01
Salmonella enterica is one of the most common causes of bacterial foodborne illness in the United States. Although most Salmonella infections are self-limiting, antimicrobial treatment of invasive salmonellosis is critical. The primary antimicrobial treatment options include fluoroquinolones or extended-spectrum cephalosporins, and resistance to these antimicrobial drugs may complicate treatment. At present, S. enterica is composed of more than 2,600 unique serotypes, which vary greatly in geographic prevalence, ecological niche, and the ability to cause human disease, and it is important to understand and mitigate the source of human infection, particularly when antimicrobial resistance is found. In this study, we identified and characterized 19 S. enterica serotype Albert isolates collected from food animals, retail meat, and humans in the United States during 2005 to 2013. All five isolates from nonhuman sources were obtained from turkeys or ground turkey, and epidemiologic data suggest poultry consumption or live-poultry exposure as the probable source of infection. S. enterica serotype Albert also appears to be geographically localized to the midwestern United States. All 19 isolates displayed multidrug resistance, including decreased susceptibility to fluoroquinolones and resistance to extended-spectrum cephalosporins. Turkeys are a likely source of multidrug-resistant S. enterica serotype Albert, and circulation of resistance plasmids, as opposed to the expansion of a single resistant strain, is playing a role. More work is needed to understand why these resistance plasmids spread and how their presence and the serotype they reside in contribute to human disease. PMID:25733501
Adriko, Moses; Standley, Claire J; Tinkitina, Benjamin; Mwesigwa, Gerald; Kristensen, Thomas K; Stothard, J Russell; Kabatereine, Narcis B
2013-11-01
In order to investigate the capacity of being intermediate host for Schistosoma mansoni, the Ugandan F1 generation of Biomphalaria snail species that were laboratory-bred from parent populations originally collected from either Lake Victoria or Lake Albert was challenged with sympatric and non-sympatric S. mansoni isolates. After a prepatent period of 20 days, a daily 10-hourly snail shedding for cercariae was done to determine the infection rate, cercarial production per hour and survival period of infected snails. The study suggests that when parasite strains from a different geographical origin is used for infection, survival of infected snails increase, leading to an increased transmission potential. Although earlier literature had indicated that the Lake Victoria Biomphalaria sudanica is refractory to S. mansoni, we showed that all Ugandan Biomphalaria spp., including B. sudanica from all locations, were highly susceptible to the S. mansoni isolates. Thus if B. choanomphala, which is an efficient intermediate host in Lake Victoria, is given an opportunity to occupy Lake Albert, it will most likely be compatible with the Albertine S. mansoni parasites. Equally, if B. stanleyi, currently restricted to Lake Albert invades Lake Victoria, it is likely to act as an efficient intermediate host. Future work should concentrate on intraspecific population-level differences in compatibility.
Folster, Jason P; Campbell, Davina; Grass, Julian; Brown, Allison C; Bicknese, Amelia; Tolar, Beth; Joseph, Lavin A; Plumblee, Jodie R; Walker, Carrie; Fedorka-Cray, Paula J; Whichard, Jean M
2015-05-01
Salmonella enterica is one of the most common causes of bacterial foodborne illness in the United States. Although most Salmonella infections are self-limiting, antimicrobial treatment of invasive salmonellosis is critical. The primary antimicrobial treatment options include fluoroquinolones or extended-spectrum cephalosporins, and resistance to these antimicrobial drugs may complicate treatment. At present, S. enterica is composed of more than 2,600 unique serotypes, which vary greatly in geographic prevalence, ecological niche, and the ability to cause human disease, and it is important to understand and mitigate the source of human infection, particularly when antimicrobial resistance is found. In this study, we identified and characterized 19 S. enterica serotype Albert isolates collected from food animals, retail meat, and humans in the United States during 2005 to 2013. All five isolates from nonhuman sources were obtained from turkeys or ground turkey, and epidemiologic data suggest poultry consumption or live-poultry exposure as the probable source of infection. S. enterica serotype Albert also appears to be geographically localized to the midwestern United States. All 19 isolates displayed multidrug resistance, including decreased susceptibility to fluoroquinolones and resistance to extended-spectrum cephalosporins. Turkeys are a likely source of multidrug-resistant S. enterica serotype Albert, and circulation of resistance plasmids, as opposed to the expansion of a single resistant strain, is playing a role. More work is needed to understand why these resistance plasmids spread and how their presence and the serotype they reside in contribute to human disease.
Nuclear Heuristics: Selected Writings of Albert and Roberta Wohlstetter
2009-01-01
Seymour Weiss, Maj. General Jasper Welch, U.S. Air Force, and Dr. Paul Wolfowitz, then a member of the U.S. Arms Control and Disarmament Agency. 140...34 Public Policy, Vol. 8, in Carl J. Friedrich and Seymour E. Harris, eds., Cambridge: Harvard University Press, 1958. 62. For a contemporary analysis... Robertson in the 1930’s, and more recently by Karl Deutsch and Alexander Eckstein. 14. For the years up to 1959 see Alfred Maizels, Industrial Growth and
Republication of: Contributions to Einstein's theory of gravitation
NASA Astrophysics Data System (ADS)
Flamm, Ludwig
2015-06-01
This is the English translation by Jörg Frauendiener of a paper by Ludwig Flamm, first published in 1916, in which the author aims to render the conclusions of Einstein's paper on the perihelion shift of Mercury and Schwarzschild's (1916) papers clearer, more transparent and, in particular those relating to photon orbits, more accurate. The paper has been selected by the Editors of General Relativity and Gravitation for re-publication in the Golden Oldies series of the journal. This republication is accompanied by an editorial note written by Gary W. Gibbons, and by a brief biography of L. Flamm, written by Hubert Goenner and Malcolm A.H. MacCallum.
Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations
NASA Astrophysics Data System (ADS)
Schneeloch, James; Broadbent, Curtis J.; Walborn, Stephen P.; Cavalcanti, Eric G.; Howell, John C.
2013-06-01
We use entropic uncertainty relations to formulate inequalities that witness Einstein-Podolsky-Rosen (EPR)-steering correlations in diverse quantum systems. We then use these inequalities to formulate symmetric EPR-steering inequalities using the mutual information. We explore the differing natures of the correlations captured by one-way and symmetric steering inequalities and examine the possibility of exclusive one-way steerability in two-qubit states. Furthermore, we show that steering inequalities can be extended to generalized positive operator-valued measures, and we also derive hybrid steering inequalities between alternate degrees of freedom.
Double species Bose-Einstein condensate with tunable interspecies interactions.
Thalhammer, G; Barontini, G; De Sarlo, L; Catani, J; Minardi, F; Inguscio, M
2008-05-30
We produce Bose-Einstein condensates of two different species, 87Rb and 41K, in an optical dipole trap in proximity of interspecies Feshbach resonances. We discover and characterize two Feshbach resonances, located around 35 and 79 G, by observing the three-body losses and the elastic cross section. The narrower resonance is exploited to create a double species condensate with tunable interactions. Our system opens the way to the exploration of double species Mott insulators and, more in general, of the quantum phase diagram of the two-species Bose-Hubbard model.
Observation of Weak Collapse in a Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Eigen, Christoph; Gaunt, Alexander L.; Suleymanzade, Aziza; Navon, Nir; Hadzibabic, Zoran; Smith, Robert P.
2016-10-01
We study the collapse of an attractive atomic Bose-Einstein condensate prepared in the uniform potential of an optical-box trap. We characterize the critical point for collapse and the collapse dynamics, observing universal behavior in agreement with theoretical expectations. Most importantly, we observe a clear experimental signature of the counterintuitive weak collapse, namely, that making the system more unstable can result in a smaller particle loss. We experimentally determine the scaling laws that govern the weak-collapse atom loss, providing a benchmark for the general theories of nonlinear wave phenomena.
Gravitation. [Book on general relativity
NASA Technical Reports Server (NTRS)
Misner, C. W.; Thorne, K. S.; Wheeler, J. A.
1973-01-01
This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.
Analogue gravitational phenomena in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Finazzi, Stefano
2012-08-01
Analogue gravity is based on the simple observation that perturbations propagating in several physical systems can be described by a quantum field theory in a curved spacetime. While phenomena like Hawking radiation are hardly detectable in astrophysical black holes, these effects may be experimentally tested in analogue systems. In this Thesis, focusing on Bose-Einstein condensates, we present our recent results about analogue models of gravity from three main perspectives: as laboratory tests of quantum field theory in curved spacetime, for the techniques that they provide to address various issues in general relativity, and as toy models of quantum gravity. The robustness of Hawking-like particle creation is investigated in flows with a single black hole horizon. Furthermore, we find that condensates with two (white and black) horizons develop a dynamical instability known in general relativity as black hole laser effect. Using techniques borrowed from analogue gravity, we also show that warp drives, which are general relativistic spacetimes allowing faster-than-light travel, are unstable. Finally, the cosmological constant issue is investigated from an analogue gravity perspective and relativistic Bose-Einstein condensates are proposed as new analogue systems with novel interesting properties.
NASA Astrophysics Data System (ADS)
Buick, Otto; Falcon, Pat; Alexander, G.; Siegel, Edward Carl-Ludwig
2013-03-01
Einstein[Dover(03)] critical-slowing-down(CSD)[Pais, Subtle in The Lord; Life & Sci. of Albert Einstein(81)] is Siegel CyberWar denial-of-access(DOA) operations-research queuing theory/pinning/jamming/.../Read [Aikido, Aikibojitsu & Natural-Law(90)]/Aikido(!!!) phase-transition critical-phenomenon via Siegel DIGIT-Physics (Newcomb[Am.J.Math. 4,39(1881)]-{Planck[(1901)]-Einstein[(1905)])-Poincare[Calcul Probabilités(12)-p.313]-Weyl [Goett.Nachr.(14); Math.Ann.77,313 (16)]-{Bose[(24)-Einstein[(25)]-Fermi[(27)]-Dirac[(1927)]}-``Benford''[Proc.Am.Phil.Soc. 78,4,551 (38)]-Kac[Maths.Stat.-Reasoning(55)]-Raimi[Sci.Am. 221,109 (69)...]-Jech[preprint, PSU(95)]-Hill[Proc.AMS 123,3,887(95)]-Browne[NYT(8/98)]-Antonoff-Smith-Siegel[AMS Joint-Mtg.,S.-D.(02)] algebraic-inversion to yield ONLY BOSE-EINSTEIN QUANTUM-statistics (BEQS) with ZERO-digit Bose-Einstein CONDENSATION(BEC) ``INTERSECTION''-BECOME-UNION to Barabasi[PRL 876,5632(01); Rev.Mod.Phys.74,47(02)...] Network /Net/GRAPH(!!!)-physics BEC: Strutt/Rayleigh(1881)-Polya(21)-``Anderson''(58)-Siegel[J.Non-crystalline-Sol.40,453(80)
Einstein Online: A Web-based Course for K-12 Teachers from the American Museum of Natural History
NASA Astrophysics Data System (ADS)
Steiner, Robert
2004-05-01
Einstein Online: A Web-based Course for K-12 Teachers from the American Museum of Natural History Robert V. Steiner, Ph.D. Project Director, Seminars on Science American Museum of Natural History The American Museum of Natural History, in collaboration with Hebrew University and the Skirball Cultural Center, has created a major exhibit on Albert Einstein, including extensive coverage of his contributions to relativity, quantum mechanics and unified field theories as well as the social and political dimensions of his life. Leveraging the assets of this exhibit as well as the expertise of the Museum's Department of Astrophysics and its Education Department, a six-week online professional development course for K-12 teachers has been created, providing inquires into some of the frontiers of physics through rich media resources, facilitated discussion forums and assignments. The course, which requires only minimal Web access, offers a unique opportunity for teachers across the United States to explore modern physics guided by a working scientist and a skilled online facilitator. The course includes original essays by Museum scientists, images, video, simulations, web links and digital resources for classroom use. The course design, development, implementation and evaluation are reviewed.
Relations for Einstein-Yang-Mills amplitudes from the CHY representation
NASA Astrophysics Data System (ADS)
de la Cruz, Leonardo; Kniss, Alexander; Weinzierl, Stefan
2017-04-01
We show that a recently discovered relation, which expresses tree-level single trace Einstein-Yang-Mills amplitudes with one graviton and (n - 1) gauge bosons as a linear combination of pure Yang-Mills tree amplitudes with n gauge bosons, can be derived from the CHY representation. In addition we show that there is a generalisation, which expresses tree-level single trace Einstein-Yang-Mills amplitudes with r gravitons and (n - r) gauge bosons as a linear combination of pure Yang-Mills tree amplitudes with n gauge bosons. We present a general formula for this case.
Realization of Einstein's Machian Program: the Pioneers and fly-by anomalies Part I
NASA Astrophysics Data System (ADS)
Berman, Marcelo Samuel
2012-01-01
In a previous paper (Berman, in Astrophys. Space Sci., 2011), we showed how to prove the two Pioneers Anomalies, and now we add the fly-bys, by means of a rotating Universe. We discuss Einstein's Machian program, which we find as being fullfilled. Godlowski et al. (Los Alamos Archives, 2003) idea for a rotating General Relativistic Universe, led us to the adopted model. Updated evidence on rotation is cited (Godlowski, in Los Alamos Archives, 2011; Ni in Phys. Rev. Lett. 107(5):051103, 2011). We conclude that a rotating and expanding Universe may be the unique solution to the apparent divergences between Einstein and Mach. This is cosmologically important.
An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field
NASA Technical Reports Server (NTRS)
Turyshev, S. G.
1995-01-01
The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.
Thin-shell wormholes supported by ordinary matter in Einstein-Gauss-Bonnet gravity
Richarte, Martin G.; Simeone, Claudio
2007-10-15
The generalized Darmois-Israel formalism for Einstein-Gauss-Bonnet theory is applied to construct thin-shell Lorentzian wormholes with spherical symmetry. We calculate the energy localized on the shell, and we find that for certain values of the parameters wormholes could be supported by matter not violating the energy conditions.
Einstein versus the Simple Pendulum Formula: Does Gravity Slow All Clocks?
ERIC Educational Resources Information Center
Puri, Avinash
2015-01-01
According to the Newtonian formula for a simple pendulum, the period of a pendulum is inversely proportional to the square root of "g", the gravitational field strength. Einstein's theory of general relativity leads to the result that time slows down where gravity is intense. The two claims look contradictory and can muddle student and…
Inflation in Einstein-Cartan theory with energy-momentum tensor with spin
NASA Technical Reports Server (NTRS)
Fennelly, A. J.; Bradas, James C.; Smalley, Larry L.
1988-01-01
Generalized, or power-law, inflation is shown to necessarily exist for a simple, anisotropic (Bianchi Type I) cosmology in the Einstein-Cartan gravitational theory with the Ray-Smalley (RS) improved energy-momentum tensor with spin. Formal solution of the EC field equations with the fluid equations of motion explicitly shows inflation caused by the RS spin angular kinetic energy density.
Existence of Einstein static universes and their stability in fourth-order theories of gravity
Goswami, Rituparno; Goheer, Naureen; Dunsby, Peter K S
2008-08-15
We investigate whether or not an Einstein static universe is a solution to the cosmological equations in f(R) gravity. It is found that only one class of f(R) theories admits an Einstein static model, and that this class is neutrally stable with respect to vector and tensor perturbations for all equations of state on all scales. Scalar perturbations are only stable on all scales if the matter fluid equation of state satisfies c{sub s}{sup 2}>({radical}(5)-1/6){approx_equal}0.21. This result is remarkably similar to the general relativity case, where it was found that the Einstein static model is stable for c{sub s}{sup 2}>(1/5)
Conformally related Einstein-Langevin equations for metric fluctuations in stochastic gravity
NASA Astrophysics Data System (ADS)
Satin, Seema; Cho, H. T.; Hu, Bei Lok
2016-09-01
For a conformally coupled scalar field we obtain the conformally related Einstein-Langevin equations, using appropriate transformations for all the quantities in the equations between two conformally related spacetimes. In particular, we analyze the transformations of the influence action, the stress energy tensor, the noise kernel and the dissipation kernel. In due course the fluctuation-dissipation relation is also discussed. The analysis in this paper thereby facilitates a general solution to the Einstein-Langevin equation once the solution of the equation in a simpler, conformally related spacetime is known. For example, from the Minkowski solution of Martín and Verdaguer, those of the Einstein-Langevin equations in conformally flat spacetimes, especially for spatially flat Friedmann-Robertson-Walker models, can be readily obtained.
Einstein Never Approved of Relativistic Mass
NASA Astrophysics Data System (ADS)
Hecht, Eugene
2009-09-01
During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's speed-independent. This paper explores the history of "relativistic mass," emphasizing Einstein's public role and private thoughts. We show how the concept of speed-dependent mass mistakenly evolved out of a tangle of ideas despite Einstein's prescient reluctance. Along the way there will be previously unrevealed surprises (e.g., Einstein never derived the expression for "relativistic mass," and privately disapproved of it).
Are Einstein's Laws of Relativity a Quantum Effect?
NASA Astrophysics Data System (ADS)
Brändas, Erkki J.
The problem of unifying quantum mechanics with special and general relativity is reconsidered from a relativistically invariant first principles theory. The ingredients are: (i) analytic extension of quantum mechanics into the complex plane via a complex symmetric ansatz, involving (ii) particle- antiparticle states interacting through a kinematical law including (iii) dynamical features such as time- and length-scale contractions and examining (iv) the likelihood of the so-called general Jordan block formations. The extended formulation has a wider set of solutions compared to standard mechanics, with general gauge invariance appropriately embedded. In the present development we establish connections with the Klein-Gordon-Dirac relativistic theories and confirm dynamical features like space and time contractions, Einstein's law of light deflection in a gravitational field, and the appearance of the Schwarzschild-gravitational radius associated with every mass-matter object.
Exact solutions with noncommutative symmetries in Einstein and gauge gravity
NASA Astrophysics Data System (ADS)
Vacaru, Sergiu I.
2005-04-01
We present new classes of exact solutions with noncommutative symmetries constructed in vacuum Einstein gravity (in general, with nonzero cosmological constant), five-dimensional (5D) gravity and (anti) de Sitter gauge gravity. Such solutions are generated by anholonomic frame transforms and parametrized by generic off-diagonal metrics. For certain particular cases, the new classes of metrics have explicit limits with Killing symmetries but, in general, they may be characterized by certain anholonomic noncommutative matrix geometries. We argue that different classes of noncommutative symmetries can be induced by exact solutions of the field equations in commutative gravity modeled by a corresponding moving real and complex frame geometry. We analyze two classes of black ellipsoid solutions (in the vacuum case and with cosmological constant) in four-dimensional gravity and construct the analytic extensions of metrics for certain classes of associated frames with complex valued coefficients. The third class of solutions describes 5D wormholes which can be extended to complex metrics in complex gravity models defined by noncommutative geometric structures. The anholonomic noncommutative symmetries of such objects are analyzed. We also present a descriptive account how the Einstein gravity can be related to gauge models of gravity and their noncommutative extensions and discuss such constructions in relation to the Seiberg-Witten map for the gauge gravity. Finally, we consider a formalism of vielbeins deformations subjected to noncommutative symmetries in order to generate solutions for noncommutative gravity models with Moyal (star) product.
Beyond Einstein: Exploring the Extreme Universe
NASA Technical Reports Server (NTRS)
Barbier, Louis M.
2005-01-01
This paper will give an overview of the NASA Universe Division Beyond Einstein program. The Beyond Einstein program consists of a series of exploratory missions to investigate some of the most important and pressing problems in modern-day astrophysics - including searches for Dark Energy and studies of the earliest times in the universe, during the inflationary period after the Big Bang. A variety of new technologies are being developed both in the science instrumentation these missions will carry and in the spacecraft that will carry those instruments.
Propagating torsion in the Einstein frame
NASA Astrophysics Data System (ADS)
Popławski, Nikodem J.
2006-11-01
The Einstein-Cartan-Saa theory of torsion modifies the spacetime volume element so that it is compatible with the connection. The condition of connection compatibility gives constraints on torsion, which are also necessary for the consistence of torsion, minimal coupling, and electromagnetic gauge invariance. To solve the problem of positivity of energy associated with the torsionic scalar, we reformulate this theory in the Einstein conformal frame. In the presence of the electromagnetic field, we obtain the Hojman-Rosenbaum-Ryan-Shepley theory of propagating torsion with a different factor in the torsionic kinetic term.
Generating solutions to the Einstein field equations
NASA Astrophysics Data System (ADS)
Contopoulos, I. G.; Esposito, F. P.; Kleidis, K.; Papadopoulos, D. B.; Witten, L.
2016-11-01
Exact solutions to the Einstein field equations may be generated from already existing ones (seed solutions), that admit at least one Killing vector. In this framework, a space of potentials is introduced. By the use of symmetries in this space, the set of potentials associated to a known solution is transformed into a new set, either by continuous transformations or by discrete transformations. In view of this method, and upon consideration of continuous transformations, we arrive at some exact, stationary axisymmetric solutions to the Einstein field equations in vacuum, that may be of geometrical or/and physical interest.
Einstein's opposition to the quantum theory
NASA Astrophysics Data System (ADS)
Deltete, Robert; Guy, Reed
1990-07-01
Einstein's opposition to the quantum theory is well known to physicists, but his reasons for being dissatisfied are not. Einstein regarded the theory as not only incomplete, but as fundamentally inadequate. He believed that the only reasonable interpretation of the quantum formalism was an ``ensemble interpretation,'' but he also thought that this interpretation and others were incomplete and irremediably inadequate, because they failed to describe the objective, real states of individual systems. He hoped, and expected, that a better theory would be developed—one expressed in terms of individuals having their own real states and from which the quantum theory could be recovered as an approximation.
Robinson-Trautman solutions to Einstein's equations
NASA Astrophysics Data System (ADS)
Davidson, William
2017-02-01
Solutions to Einstein's equations in the form of a Robinson-Trautman metric are presented. In particular, we derive a pure radiation solution which is non-stationary and involves a mass m, The resulting spacetime is of Petrov Type II A special selection of parametric values throws up the feature of the particle `rocket', a Type D metric. A suitable transformation of the complex coordinates allows the metrics to be expressed in real form. A modification, by setting m to zero, of the Type II metric thereby converting it to Type III, is then shown to admit a null Einstein-Maxwell electromagnetic field.
C. N. Yang on Einstein and Newton
NASA Astrophysics Data System (ADS)
2015-11-01
In Professor C. N. Yang’s view, Einstein’s strength was in his ability to distinguish what was truly important and to investigate it. Also, Einstein was unique in that he was able to zoom in as well as zoom out, just like a film which has both close-up and long shots. Many people are only able to have one view, either close-up or from afar, and cannot switch between the two. Professor C. N. Yang feels that, in the history of physics, only Newton can be compared with Einstein. Although Maxwell and Boltzmann were prominent physicists, their influence was not as great as Einstein’s.
Einstein - Peace Now!: Visions and Ideas
NASA Astrophysics Data System (ADS)
Braun, Reiner; Krieger, David
2005-09-01
Einstein was not only an extraordinary scientist, but also a person who faced his social responsibilities determinedly. The main focus of this book is put on topical articles by Scientific and Peace Nobel Prize laureates, prominent scientists and those committed to peace issues and justice, as well as citizens engagement for peace. Among the contributors are more than 10 Nobel Prize laureates, such as Mikhail Gorbachev, Walter Kohn, Joseph Rotblat, Alexander Ginzburg or Hans Bethe. This unique collection of intellectual thoughts on Einstein's vision of peace addresses a thoughtful, concerned and courageous audience, and was compiled to encourage and envision ways towards a more peaceful society.
Proof of the entropy principle in Einstein-Maxwell theory
NASA Astrophysics Data System (ADS)
Gao, Sijie
We consider a self-gravitating charged perfect fluid in a static spacetime. We assume that the Einstein constraint equation is satisfied. Then we prove that the extrema of the total entropy of fluid implies other components of Einstein's equation. Conversely, if Einstein's equation is satisfied, we show that the total entropy achieves an extremum. This work suggests that the maximum entropy principle is consistent with Einstein's equation when an electrostatic field is taken into account.
NASA Astrophysics Data System (ADS)
Sheehan, William
2016-01-01
The discovery of the outer planet Neptune in 1846, based on the calculated position published by Urbain Jean Joseph Le Verrier, has been hailed as the "zenith of Newtonian mechanics." An attempt by Le Verrier to further extend the dominion of Newton's gravitational theory to the innermost known planet of the Solar System, Mercury, seemingly came to grief with the discovery of a small unexplained discrepancy in the precession of the perihelion of Mercury, whose value was later calculated as 43".0 per century. Le Verrier proposed that it could be explained on the basis of Newtonian theory by assuming the existence of an intra-mercurial planet ("Vulcan") or ring of debris. Efforts to confirm this hypothesis, culminating in high drama on the plains of the western United States at the great North American solar eclipse of July 1878, proved futile; by 1908, W. W. Campbell and C.D. Perrine of Lick Observatory, who had carried out exhaustive photographic searches at three eclipses (1901, 1905, and 1908) could declare that Vulcan did not exist. The theoretical problem it was invoked to explain remained until November 1915, when Albert Einstein used the recently discovered generally covariant gravitational equations to put the problem to rest. "Perihelion motions explained quantitatively … you will be astonished," he wrote to his friend Michael Besso.
Conceptual Development of Einstein's Mass-Energy Relationship
ERIC Educational Resources Information Center
Wong, Chee Leong; Yap, Kueh Chin
2005-01-01
Einstein's special theory of relativity was published in 1905. It stands as one of the greatest intellectual achievements in the history of human thought. Einstein described the equivalence of mass and energy as "the most important upshot of the special theory of relativity" (Einstein, 1919). In this paper, we will discuss the evolution of the…
Einstein 1905-1955: His Approach to Physics
NASA Astrophysics Data System (ADS)
Damour, Thibault
We review Einstein's epistemological conceptions, and indicate their philosophical roots. The particular importance of the ideas of Hume, Kant, Mach, and Poincaré is highlighted. The specific characteristics of Einstein's approach to physics are underlined. Lastly, we consider the practical application of Einstein's methodological principles to the two theories of relativity, and to quantum theory. We emphasize a Kantian approach to quantum theory.
Numerical bifurcation analysis of conformal formulations of the Einstein constraints
NASA Astrophysics Data System (ADS)
Holst, M.; Kungurtsev, V.
2011-12-01
The Einstein constraint equations have been the subject of study for more than 50 years. The introduction of the conformal method in the 1970s as a parametrization of initial data for the Einstein equations led to increased interest in the development of a complete solution theory for the constraints, with the theory for constant mean curvature (CMC) spatial slices and closed manifolds completely developed by 1995. The first general non-CMC existence result was establish by Holst et al. in 2008, with extensions to rough data by Holst et al. in 2009, and to vacuum spacetimes by Maxwell in 2009. The non-CMC theory remains mostly open; moreover, recent work of Maxwell on specific symmetry models sheds light on fundamental nonuniqueness problems with the conformal method as a parametrization in non-CMC settings. In parallel with these mathematical developments, computational physicists have uncovered surprising behavior in numerical solutions to the extended conformal thin sandwich formulation of the Einstein constraints. In particular, numerical evidence suggests the existence of multiple solutions with a quadratic fold, and a recent analysis of a simplified model supports this conclusion. In this article, we examine this apparent bifurcation phenomena in a methodical way, using modern techniques in bifurcation theory and in numerical homotopy methods. We first review the evidence for the presence of bifurcation in the Hamiltonian constraint in the time-symmetric case. We give a brief introduction to the mathematical framework for analyzing bifurcation phenomena, and then develop the main ideas behind the construction of numerical homotopy, or path-following, methods in the analysis of bifurcation phenomena. We then apply the continuation software package AUTO to this problem, and verify the presence of the fold with homotopy-based numerical methods. We discuss these results and their physical significance, which lead to some interesting remaining questions to
Einstein@Home Finds an Elusive Pulsar
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-08-01
Since the release of the second Fermi-LAT catalog in 2012, astronomers have been hunting for 3FGL J1906.6+0720, a gamma-ray source whose association couldn't be identified. Now, personal-computer time volunteered through the Einstein@Home project has resulted in the discovery of a pulsar that has been hiding from observers for years. A Blind Search: Identifying sources detected by Fermi-LAT can be tricky: the instrument's sky resolution is limited, so the position of the source can be hard to pinpoint. The gamma-ray source 3FGL J1906.6+0720 appeared in both the second and third Fermi-LAT source catalogs, but even after years of searching, no associated radio or X-ray source had been found. A team of researchers, led by Colin Clark of the Max Planck Institute for Gravitational Physics, suspected that the source might be a gamma-ray pulsar. To confirm this, however, they needed to detect pulsed emission — something inherently difficult given the low photon count and the uncertain position of the source. The team conducted a blind search for pulsations coming from the general direction of the gamma-ray source. Two things were needed for this search: clever data analysis and a lot of computing power. The data analysis algorithm was designed to be adaptive: it searched a 4-dimensional parameter space that included a safety margin, allowing the algorithm to wander if the source was at the edge of the parameter space. The computing power was contributed by tens of thousands of personal computers volunteered by participants in the Einstein@Home project, making much shorter work out of a search that would have required dozens of years on a single laptop. The sky region around the newly discovered pulsar. The dotted ellipse shows the 3FGL catalog 95% confidence region for the source. The data analysis algorithm was designed to search an area 50% larger (given by the dashed ellipse), but it was allowed to “walk away” within the gray shaded region if the source seemed to
Evolution of egoism on semi-directed and undirected Barabási-Albert networks
NASA Astrophysics Data System (ADS)
Lima, F. W. S.
2015-05-01
Through Monte Carlo simulations, we study the evolution of the four strategies: Ethnocentric, altruistic, egoistic and cosmopolitan in one community of individuals. Interactions and reproduction among computational agents are simulated on undirected and semi-directed Barabási-Albert (BA) networks. We study the Hammond-Axelrod (HA) model on undirected and semi-directed BA networks for the asexual reproduction case. With a small modification in the traditional HA model, our simulations showed that egoism wins, differently from other results found in the literature where ethnocentric strategy is common. Here, mechanisms such as reciprocity are absent.
Biohistorical materials and contemporary privacy concerns-the forensic case of King Albert I.
Larmuseau, Maarten H D; Bekaert, Bram; Baumers, Maarten; Wenseleers, Tom; Deforce, Dieter; Borry, Pascal; Decorte, Ronny
2016-09-01
The rapid advancement of technology in genomic analysis increasingly allows researchers to study human biohistorical materials. Nevertheless, little attention has been paid to the privacy of the donor's living relatives and the negative impact they might experience from the (public) availability of genetic results, even in cases of scientific, forensic or historical relevance. This issue has become clear during a cold case investigation of a relic attributed to Belgian King and World War I-hero Albert I who died, according to the official version, in a solo climbing accident in 1934. Authentication of the relic with blood stains assigned to the King and collected on the place where his body was discovered is recognised as one of the final opportunities to test the plausibility of various conspiracy theories on the King's demise. While the historical value and current technological developments allow the genomic analysis of this relic, publication of genetic data would immediately lead to privacy concerns for living descendants and relatives of the King, including the Belgian and British royal families, even after more than 80 years. Therefore, the authentication study of the relic of King Albert I has been a difficult exercise towards balancing public research interests and privacy interests. The identification of the relic was realised by using a strict genetic genealogical approach including Y-chromosome and mitochondrial genome comparison with living relatives, thereby limiting the analysis to genomic regions relevant for identification. The genetic results combined with all available historical elements concerning the relic, provide strong evidence that King Albert I was indeed the donor of the blood stains, which is in line with the official climbing accident hypothesis and contradicts widespread 'mise-en-scène' scenarios. Since publication of the haploid data of the blood stains has the potential to violate the privacy of living relatives, we opted for
Rational emotive therapy-a study of initial therapy sessions of Albert Ellis.
Becker, I M; Rosenfeld, J G
1976-10-01
Because psychotherapy is what a therapist does, and not necessarily what he says he does, it is important to observe the activity of leaders in the field during their sessions. Twenty taped initial psychotherapy sessions by Albert Ellis were selected randomly from 70 recently recorded ones. Typescripts of each session were made, and two raters naive to the purposes were trained to place each of Ellis' statements into 1 of 17 categories. Each category consisted of a therapeutic technique. Some of these were ones that Ellis did during the 20 sessions examined was related very closely to what he has claimed to do, but that he did vary considerably from client to client.
The Einstein All-Sky Slew Survey
NASA Technical Reports Server (NTRS)
Elvis, Martin S.
1992-01-01
The First Einstein IPC Slew Survey produced a list of 819 x-ray sources, with f(sub x) approximately 10(exp -12) - 10(exp -10) erg/sq cm s and positional accuracy of approximately 1.2 feet (90 percent radius). The aim of this program was to identify these x-ray sources.
Einstein Observations of Galactic supernova remnants
NASA Technical Reports Server (NTRS)
Seward, Frederick D.
1990-01-01
This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.
Einstein Slew Survey: Data analysis innovations
NASA Technical Reports Server (NTRS)
Elvis, Martin S.; Plummer, David; Schachter, Jonathan F.; Fabbiano, G.
1992-01-01
Several new methods were needed in order to make the Einstein Slew X-ray Sky Survey. The innovations which enabled the Slew Survey to be done are summarized. These methods included experimental approach to large projects, parallel processing on a LAN, percolation source detection, minimum action identifications, and rapid dissemination of the whole data base.
The Excellence of Einstein's Theory of Gravitation.
ERIC Educational Resources Information Center
Dirac, P. A. M.
1979-01-01
This article is adapted from a presentation made in 1978 at the symposium on the Impact of Modern Scientific Ideas on Society organized by UNESCO in Ulm, West Germany. It discusses Einstein's theory of gravitation and how it started a new line of activity for physicists. (HM)
Soliton resonance in bose-einstein condensate
NASA Technical Reports Server (NTRS)
Zak, Michail; Kulikov, I.
2002-01-01
A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.
Einstein-Yang-Mills theory: Asymptotic symmetries
NASA Astrophysics Data System (ADS)
Barnich, Glenn; Lambert, Pierre-Henry
2013-11-01
Asymptotic symmetries of the Einstein-Yang-Mills system with or without cosmological constant are explicitly worked out in a unified manner. In agreement with a recent conjecture, one finds a Virasoro-Kac-Moody type algebra not only in three dimensions but also in the four-dimensional asymptotically flat case.
How Einstein Got the Nobel Prize.
ERIC Educational Resources Information Center
Pais, Abraham
1982-01-01
Discusses why the Nobel Committee for Physics waited so long before giving Einstein the Nobel Prize and why they did not award it for relativity, but for the photoelectric effect instead. Focuses on the judgments of leading scientists who made nominations as well as committee members' decisions. (Author/JN)
Dynamics of the semiclassical Einstein equations
Gonzalez-Diaz, P.F.
1986-03-15
An investigation is done on the behavior of the Einstein equation for the case of a conformally invariant field in a conformally flat spacetime when higher-order derivative terms with logarithmic dependence on the scalar curvature are introduced. It is seen that in the quantum case, flat spacetime is always stable to conformally flat perturbations.
This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Petition Database available at www2.epa.gov/title-v-operating-permits/title-v-petition-database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Petition Database available at www2.epa.gov/title-v-operating-permits/title-v-petition-database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Rolnik, Eran J
2010-12-01
Few chapters in the historiography of psychoanalysis are as densely packed with trans-cultural, ideological, institutional, and moral issues as the coming of psychoanalysis to Jewish Palestine--a geopolitical space which bears some of the deepest scars of twentieth-century European, and in particular German, history. From the historical as well as the critical perspective, this article reconstructs the intricate connections between migration, separation and loss, continuity and new beginning which resonate in the formative years of psychoanalysis in pre-state Israel.
The Adolescence of Relativity: Einstein, Minkowski, and the Philosophy of Space and Time
NASA Astrophysics Data System (ADS)
Dieks, Dennis
An often repeated account of the genesis of special relativity tells us that relativity theory was to a considerable extent the fruit of an operationalist philosophy of science. Indeed, Einstein's 1905 paper stresses the importance of rods and clocks for giving concrete physical content to spatial and temporal notions. I argue, however, that it would be a mistake to read too much into this. Einstein's operationalist remarks should be seen as serving rhetoric purposes rather than as attempts to promulgate a particular philosophical position - in fact, Einstein never came close to operationalism in any of his philosophical writings. By focussing on what could actually be measured with rods and clocks Einstein shed doubt on the empirical status of a number of pre-relativistic concepts, with the intention to persuade his readers that the applicability of these concepts was not obvious. This rhetoric manoeuvre has not always been rightly appreciated in the philosophy of physics. Thus, the influence of operationalist misinterpretations, according to which associated operations strictly define what a concept means, can still be felt in present-day discussions about the conventionality of simultaneity.The standard story continues by pointing out that Minkowski in 1908 supplanted Einstein's approach with a realist spacetime account that has no room for a foundational role of rods and clocks: relativity theory became a description of a four-dimensional "absolute world." As it turns out, however, it is not at all clear that Minkowski was proposing a substantivalist position with respect to spacetime. On the contrary, it seems that from a philosophical point of view Minkowski's general position was not very unlike the one in the back of Einstein's mind. However, in Minkowski's formulation of special relativity it becomes more explicit that the content of spatiotemporal concepts relates to considerations about the form of physical laws. If accepted, this position has important
Bose-Einstein distribution of money in a free-market economy. II
NASA Astrophysics Data System (ADS)
Kürten, K. E.; Kusmartsev, F. V.
2011-01-01
We argue about the application of methods of statistical mechanics to free economy (Kusmartsev F. V., Phys. Lett. A, 375 (2011) 966) and find that the most general distribution of money or income in a free-market economy has a general Bose-Einstein distribution form. Therewith the market is described by three parameters: temperature, chemical potential and the space dimensionality. Numerical simulations and a detailed analysis of a generic model confirm this finding.
Multimatrix models and tri-Sasaki Einstein spaces
Herzog, Christopher P.; Pufu, Silviu S.; Tesileanu, Tiberiu; Klebanov, Igor R.
2011-02-15
Localization methods reduce the path integrals in N{>=}2 supersymmetric Chern-Simons gauge theories on S{sup 3} to multimatrix integrals. A recent evaluation of such a two-matrix integral for the N=6 superconformal U(N)xU(N) Aharony-Bergman-Jafferis-Maldacena theory produced detailed agreement with the AdS/CFT correspondence, explaining, in particular, the N{sup 3/2} scaling of the free energy. We study a class of p-matrix integrals describing N=3 superconformal U(N){sup p} Chern-Simons gauge theories. We present a simple method that allows us to evaluate the eigenvalue densities and the free energies in the large N limit keeping the Chern-Simons levels k{sub i} fixed. The dual M-theory backgrounds are AdS{sub 4}xY, where Y are seven-dimensional tri-Sasaki Einstein spaces specified by the k{sub i}. The gravitational free energy scales inversely with the square root of the volume of Y. We find a general formula for the p-matrix free energies that agrees with the available results for volumes of the tri-Sasaki Einstein spaces Y, thus providing a thorough test of the corresponding AdS{sub 4}/CFT{sub 3} dualities. This formula is consistent with the Seiberg duality conjectured for Chern-Simons gauge theories.
The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics
NASA Astrophysics Data System (ADS)
Löffler, Frank; Faber, Joshua; Bentivegna, Eloisa; Bode, Tanja; Diener, Peter; Haas, Roland; Hinder, Ian; Mundim, Bruno C.; Ott, Christian D.; Schnetter, Erik; Allen, Gabrielle; Campanelli, Manuela; Laguna, Pablo
2012-06-01
We describe the Einstein Toolkit, a community-driven, freely accessible computational infrastructure intended for use in numerical relativity, relativistic astrophysics, and other applications. The toolkit, developed by a collaboration involving researchers from multiple institutions around the world, combines a core set of components needed to simulate astrophysical objects such as black holes, compact objects, and collapsing stars, as well as a full suite of analysis tools. The Einstein Toolkit is currently based on the Cactus framework for high-performance computing and the Carpet adaptive mesh refinement driver. It implements spacetime evolution via the BSSN evolution system and general relativistic hydrodynamics in a finite-volume discretization. The toolkit is under continuous development and contains many new code components that have been publicly released for the first time and are described in this paper. We discuss the motivation behind the release of the toolkit, the philosophy underlying its development, and the goals of the project. A summary of the implemented numerical techniques is included, as are results of numerical test covering a variety of sample astrophysical problems.
The Einstein equations on the 3-brane world
NASA Astrophysics Data System (ADS)
Shiromizu, Tetsuya; Maeda, Kei-Ichi; Sasaki, Misao
2000-07-01
We carefully investigate the gravitational equations of the brane world, in which all the matter forces except gravity are confined on the 3-brane in a 5-dimensional spacetime with Z2 symmetry. We derive the effective gravitational equations on the brane, which reduce to the conventional Einstein equations in the low energy limit. From our general argument we conclude that the first Randall-Sundrum-type theory predicts that the brane with a negative tension is an antigravity world and hence should be excluded from the physical point of view. Their second-type theory where the brane has a positive tension provides the correct signature of gravity. In this latter case, if the bulk spacetime is exactly anti-de Sitter spacetime, generically the matter on the brane is required to be spatially homogeneous because of the Bianchi identities. By allowing deviations from anti-de Sitter spacetime in the bulk, the situation will be relaxed and the Bianchi identities give just the relation between the Weyl tensor and the energy momentum tensor. In the present brane world scenario, the effective Einstein equations cease to be valid during an era when the cosmological constant on the brane is not well defined, such as in the case of the matter dominated by the potential energy of the scalar field.
Einstein Universe Revisited and End of Dark ERA
NASA Astrophysics Data System (ADS)
Nurgaliev, Ildus S.
2015-01-01
Historically the earliest general relativistic cosmological solution was received by Einstein himself as homogenous, isotropic one. In accordance with European cosmology it was expected static. The Eternal Universe as scientific model is conflicting with the existed theological model of the Universe created by God, therefore, of the limited age. Christianity, younger Islam, older Judaism are based on creationism. Much older oriental traditions such us Hinduism and Buddhism are based on conceptions of eternal and cyclic Universe which are closer to scientific worldview. To have static universe Einstein needed a factor to counteract gravity and postulated cosmological term and considered it as a disadvantage of the theory. This aesthetic dissatisfaction was amplified by interpretation distance-redshift relationship as a cosmological expansion effect. Emerged scientific cosmological community (excluding Hubble himself - almost always) endorsed the concept of expanding Universe. At the same time, as it is shown in this report, a natural well known factors do exist to counteract gravity. They are inertial centrifugal and Coriolis forces finding their geometrical presentation in the relativity theory.
General Relativity and Gravitation
NASA Astrophysics Data System (ADS)
Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm
2015-07-01
Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.
NASA Astrophysics Data System (ADS)
Holmes, Virginia Iris
2005-03-01
Perhaps motivated by an admiration for Einstein and a desire to identify with him, combined with a majority world-view in opposition to pacifism, skeptics may often question whether Einstein was really a pacifist. They might point to the fact that his dramatic contributions to the field of physics at the beginning of the twentieth century made nuclear weapons possible, as well as his 1939 letter to President Franklin D. Roosevelt urging him to develop such weapons before the Nazis would, as examples of at least an inconsistent stance on pacifism across time on Einstein's part. However, as this paper will show, Einstein's pacifism began early in his life, was a deep-seated conviction that he expressed repeatedly across the years, and was an independent pacifism that flowed from his own responses to events around him and contained some original and impressively forward-thinking elements. Moreover, in calling himself a pacifist, as Einstein did, he defined pacifism in his own terms, not according to the standards of others, and this self-defined pacifism included the flexibility to designate the Nazis as a special case that had to be opposed through the use of military violence, in his view. As early as during his childhood, Einstein already disliked competitive games, because of the necessity of winners and losers, and disliked military discipline. In his late thirties, living in Germany during the First World War with a prestigious academic position in Berlin, yet retaining his identity as a Swiss citizen, Einstein joined a small group of four intellectuals who signed the pacifist ``Appeal to the Europeans'' in response to the militarist ``Manifesto to the Civilized World'' signed by 93 German intellectuals. In private, throughout that War, Einstein repeatedly expressed his disgust and sense of alienation at the ``war-enthusiasm'' sentiment of the majority. In the aftermath of the War, Einstein was involved in a German private commission to investigate German war
Einstein's Photoemission from Quantum Confined Superlattices.
Debbarma, S; Ghatak, K P
2016-01-01
This paper is dedicated to the 83th Birthday of Late Professor B. R. Nag, D.Sc., formerly Head of the Departments of Radio Physics and Electronics and Electronic Science of the University of Calcutta, a firm believer of the concept of theoretical minimum of Landau and an internationally well known semiconductor physicist, to whom the second author remains ever grateful as a student and research worker from 1974-2004. In this paper, an attempt is made to study, the Einstein's photoemission (EP) from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum well heavily doped superlattices (QWHDSLs) with graded interfaces in the presence of quantizing magnetic field on the basis of newly formulated electron dispersion relations within the frame work of k · p formalism. The EP from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum wells of heavily doped effective mass superlattices respectively has been presented under magnetic quantization. Besides the said emissions, from the quantum dots of the aforementioned heavily doped SLs have further investigated for the purpose of comparison and complete investigation in the context of EP from quantum confined superlattices. Using appropriate SLs, it appears that the EP increases with increasing surface electron concentration and decreasing film thickness in spiky manners, which are the characteristic features of such quantized hetero structures. Under magnetic quantization, the EP oscillates with inverse quantizing magnetic field due to Shuvnikov-de Haas effect. The EP increases with increasing photo energy in a step-like manner and the numerical values of EP with all the physical variables are totally band structure dependent for all the cases. The most striking features are that the presence of poles in the dispersion relation of the materials in the absence of band tails create the complex energy spectra in the corresponding HD constituent materials of such quantum confined superlattices and effective electron
On Einstein's Path, essays in honor of Engelbert Schucking
NASA Astrophysics Data System (ADS)
Harvey, Alex
This collection of essays in honor of Engelbert Schucking spans the gamut of research in general relativity and presents a lively and personal account of current work in the field. Contributions include: E.L. Schucking: Jordan, Pauli, Politics, Brecht... and a Variable Gravitational Constant J.L. Anderson: Thomson Scattering in an Expanding Universe A. Ashtekar & T.A. Schilling: Geometrical Formulation of Quantum Mechanics J. Baugh, D.R. Finkelstein, H. Saller, and Zhong Tang: General Covariance is Bose-Einstein Statistics S.L. Bazanski: The Split and Propagation of Light Rays in Relativity L. Bel: How to Define a Unique Vacuum in Cosmology P.G. Bergmann: EIH Theory and Noether's Theorem W.B. Bonnor: The Static Cylinder in General Relativity C.H. Brahns: Gravity and the Tenacious Scalar Field D. Brill: The Cavendish Experiment in General Relativity Y. Choquet-Bruhat: Wave Maps in General Relativity T. Damour: General Relativty and Experiment J. Ehlers: Some Developments in Newtonian Cosmology G.F.R. Ellis & H. van Elst: Deviation of Geodesics in FLRW Spacetime Geometries S. Frittelli & E.T. Newman: Poincar Pseudo-symmetries in Asymptotically Flat Spacetimes E.N. Glass: Taub Numbers and Asymptotic Invariants J.N. Goldberg: Second Class Constraints F.W. Hehl, A. Macias, E.W. Mielke, & Yu.N. Obukhov: On the Structure of the Energy-momentum and the Spin Currents in Dirac's Electron
[Albert Schweitzer's MD thesis on Criticism of the medical pathographies on Jesus].
Seidel, Michael
2009-01-01
The prominent philosopher, theologian, physician, musicologist and organ soloist Albert Schweitzer (14. 1. 1875-4. 9. 1965) submitted his MD thesis Kritik der von medizinischer Seite veröffentlichten Pathographien uber Jesus (Criticism of the medical pathographies on Jesus) in 1913. Very soon he published this work under the title Die psychiatrische Beurteilung Jesu. Darstellung und Kritik (The psychiatric evaluation of Jesus. Description and criticism) in order to reach a broader audience. Schweitzer's explicit motive for selecting this topic was to influence the theological debate by means of a M. D. thesis on psychiatric pathographies on Jesus. He was confronted with a lot of reproaches. These reproaches contended that his theological opinions had been supporting tendencies to describe Jesus as a mentally ill person or a religious fanatic. In addition, some authors of pathographies on Jesus (De Loosten, Binet-Sanglé, Hirsch, Rasmussen) characterized Jesus as mentally ill, suffering from paranoia. Schweitzer intended to reject the reproaches considering himself and the postulates of the authors of the pathographies. Schweitzer combined in a transdisciplinary way theological, psychiatric and psychopathological arguments. He did this in a very convincing way. Although Schweitzer did not deal with a central or explicit psychiatric question, he implicitly postulated transdisciplinary approaches for proper retrospective pathographies on historic persons. At the age of thirty, Schweitzer decided to finish his academic career and to begin studies in medicine as a preparation for work as a physician in Africa. This decision provoked much lack of understanding in his personal environment. Therefore it may be possible that a very personal motive contributed to the selection of the topic of the MD thesis. Among psychiatric authorities, Albert Schweitzer's interest in the criticisms of psychiatric pathographies and his transdisciplinary approach to this topic encountered
Quantum Einstein-de Haas effect
Ganzhorn, Marc; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang
2016-01-01
The classical Einstein-de Haas experiment demonstrates that a change of magnetization in a macroscopic magnetic object results in a mechanical rotation of this magnet. This experiment can therefore be considered as a macroscopic manifestation of the conservation of total angular momentum and energy of electronic spins. Since the conservation of angular momentum is a consequence of a system's rotational invariance, it is valid for an ensemble of spins in a macroscopic ferromaget as well as for single spins. Here we propose an experimental realization of an Einstein-de Haas experiment at the single-spin level based on a single-molecule magnet coupled to a nanomechanical resonator. We demonstrate that the spin associated with the single-molecule magnet is then subject to conservation of total angular momentum and energy, which results in a total suppression of the molecule's quantum tunnelling of magnetization. PMID:27126449
Einstein metrics and Brans-Dicke superfields
Marques, S.
1988-01-01
It is obtained here a space conformal to the Einstein space-time, making the transition from an internal bosonic space, constructed with the Majorana constant spinors in the Majorana representation, to a bosonic ''superspace,'' through the use of Einstein vierbeins. These spaces are related to a Grassmann space constructed with the Majorana spinors referred to above, where the ''metric'' is a function of internal bosonic coordinates. The conformal function is a scale factor in the zone of gravitational radiation. A conformal function dependent on space-time coordinates can be constructed in that region when we introduce Majorana spinors which are functions of those coordinates. With this we obtain a scalar field of Brans-Dicke type. 11 refs.
ERIC Educational Resources Information Center
Anderson, Barton L.
2007-01-01
There has been a growing interest in understanding the computations involved in the processes underlying visual segmentation and interpolation in conditions of occlusion. P. J. Kellman, P. Garrigan, T. F. Shipley, and B. P. Keane and M. K. Albert defended the view that identical contour interpolation mechanisms underlie modal and amodal…
ERIC Educational Resources Information Center
Mee, Steve
2012-01-01
An ongoing oral history project at the University of Cumbria seeks to uncover the lived experiences of people with learning difficulties who lived at the Royal Albert Hospital. A recently made video exposed the apparent distress this caused one of the participants. Ethical discussions about the project reached a point of being "stuck".…
ERIC Educational Resources Information Center
Labov, Jay B.
2005-01-01
This column, "From the National Academies," was Bruce Alberts' idea, one of so many for improving education. As a long-standing member of the American Society for Cell Biology, the namesake for the prize that is awarded annually to cell biologists for excellence in science education, and one of the founding editors of this journal, Alberts…
Stothard, J R; Webster, B L; Weber, T; Nyakaana, S; Webster, J P; Kazibwe, F; Kabatereine, N B; Rollinson, D
2009-11-01
Representative samples of Ugandan Schistosoma mansoni from Lake Albert and Lake Victoria were examined using DNA barcoding, sequence analysis of two partially overlapping regions - ASMIT (396 bp) & MORGAN (617 bp) - of the mitochondrial cytochrome oxidase subunit I (cox1). The Victorian sample exhibited greater nucleotide diversity, 1.4% vs. 1.0%, and a significant population partition appeared as barcodes did not cross-over between lakes. With one exception, Lake Albert populations were more mixed by sampled location, while those from Lake Victoria appeared more secluded. Using statistical parsimony, barcode ASMIT 1 was putatively ancestral to all others and analysis of MORGAN cox1 confirmed population diversity. All samples fell into two of five well-resolved lineages; sub-lineages therein broadly partitioning by lake. It seems that barcode ASMIT 1 (and close variants) was likely widely dispersed throughout the Nilotic environment but later diversified in situ, and in parallel, within Lake Albert and Lake Victoria. The genetic uniformity of Ugandan S. mansoni can no longer be assumed, which might better explain known epidemiological heterogeneities. While it appears plausible that locally evolved heritable traits could spread through most of the Lake Albert populations, it seems unlikely they could quickly homogenise into Lake Victoria or amongst populations therein.
Bose-Einstein condensates in rotating lattices.
Bhat, Rajiv; Holland, M J; Carr, L D
2006-02-17
Strongly interacting bosons in a two-dimensional rotating square lattice are investigated via a modified Bose-Hubbard Hamiltonian. Such a system corresponds to a rotating lattice potential imprinted on a trapped Bose-Einstein condensate. Second-order quantum phase transitions between states of different symmetries are observed at discrete rotation rates. For the square lattice we study, there are four possible ground-state symmetries.
Schrodinger Leopards in Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Carr, Lincoln D.; Dounas-Frazer, Dimitri R.
2008-03-01
We present the complex quantum dynamics of vortices in Bose-Einstein condensates in a double well via exact diagonalization of a discretized Hamiltonian. When the barrier is high, vortices evolve into macroscopic superposition (NOON) states of a vortex in either well -- a Schrodinger cat with spots. Such Schrodinger leopard states are more robust than previously proposed NOON states, which only use two single particle modes of the double well potential.
Effective temperatures and the breakdown of the Stokes-Einstein relation for particle suspensions.
Mendoza, Carlos I; Santamaría-Holek, I; Pérez-Madrid, A
2015-09-14
The short- and long-time breakdown of the classical Stokes-Einstein relation for colloidal suspensions at arbitrary volume fractions is explained here by examining the role that confinement and attractive interactions play in the intra- and inter-cage dynamics executed by the colloidal particles. We show that the measured short-time diffusion coefficient is larger than the one predicted by the classical Stokes-Einstein relation due to a non-equilibrated energy transfer between kinetic and configuration degrees of freedom. This transfer can be incorporated in an effective kinetic temperature that is higher than the temperature of the heat bath. We propose a Generalized Stokes-Einstein relation (GSER) in which the effective temperature replaces the temperature of the heat bath. This relation then allows to obtain the diffusion coefficient once the viscosity and the effective temperature are known. On the other hand, the temporary cluster formation induced by confinement and attractive interactions of hydrodynamic nature makes the long-time diffusion coefficient to be smaller than the corresponding one obtained from the classical Stokes-Einstein relation. Then, the use of the GSER allows to obtain an effective temperature that is smaller than the temperature of the heat bath. Additionally, we provide a simple expression based on a differential effective medium theory that allows to calculate the diffusion coefficient at short and long times. Comparison of our results with experiments and simulations for suspensions of hard and porous spheres shows an excellent agreement in all cases.
Einstein's 1934 two-blackboard derivation of energy-mass equivalence
NASA Astrophysics Data System (ADS)
Topper, David; Vincent, Dwight
2007-11-01
We use a famous and a rare picture of Einstein to reconstruct the context of a lecture he gave on the derivation of the equivalence of energy and mass in Pittsburgh in 1934. This lecture is interesting from a historical and sociological point of view because, at the time, Einstein was at the height of his fame, the equivalence of energy and mass was being discussed in newspapers, and his presence in Pittsburgh created much attention among the general public. Einstein exhibited his well-known intuitive style of using only the most important physical information in the zero-momentum frame derivation. His method was simple and direct and is relevant to those who teach the zero-momentum frame idea. From the perspective of the nonspecialists in the Pittsburgh audience, it was presented at an expert level without allowing for many explanatory concessions we would take for granted today. A definitive picture of Einstein, in front of his famous energy equation, was missed by photographers who posed him with the wrong blackboard in the background.
Membrane paradigm for Einstein-Gauss-Bonnet gravity
NASA Astrophysics Data System (ADS)
Jacobson, Ted; Mohd, Arif; Sarkar, Sudipta
2017-03-01
We construct the membrane paradigm for black objects in Einstein-Gauss-Bonnet gravity in spacetime dimensions ≥5 . As in the case of general relativity, the horizon can be modeled as a membrane endowed with fluidlike properties. We derive the stress tensor for this membrane fluid and study the perturbation around static backgrounds with constant curvature horizon cross section, for which the stress tensor can be regularized with the usual redshift factor, and expressed in the form of a Newtonian viscous fluid with pressure, shear viscosity and bulk viscosity. We evaluate the transport coefficients for black holes with constant curvature horizons and negative or zero cosmological constant. For the black brane geometry our result for the ratio of shear viscosity to entropy density agrees with that obtained previously in different frameworks.
Einstein Observatory coronal temperatures of late-type stars
NASA Technical Reports Server (NTRS)
Schmitt, J. H. M. M.; Collura, A.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.
1990-01-01
The results are presented of a survey of the coronal temperatures of late-type stars using the Einstein Observatory IPC. The spectral analysis shows that the frequently found one- and two-temperature descriptions are mainly influenced by the SNR of the data and that models using continuous emission measure distributions can provide equally adequate and physically more meaningful and more plausible descriptions. Intrinsic differences in differential emission measure distributions are found for four groups of stars. M dwarfs generally show evidence for high-temperature gas in conjunction with lower-temperature material, while main-sequence stars of types F and G have the high-temperature component either absent or very weak. Very hot coronae without the lower-temperature component appearing in dwarf stars are evident in most of the giant stars studied. RS CVn systems show evidence for extremely hot coronae, sometimes with no accompanying lower-temperature material.
Landau criterion for an anisotropic Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Yu, Zeng-Qiang
2017-03-01
In this work we discuss the Landau criterion for anisotropic superfluidity. To this end we consider a pointlike impurity moving in a uniform Bose-Einstein condensate with either interparticle dipole-dipole interaction or Raman-induced spin-orbit coupling. In both cases we find that the Landau critical velocity vc is generally smaller than the sound velocity in the moving direction. Beyond vc, the energy dissipation rate is explicitly calculated via a perturbation approach. In the plane-wave phase of a spin-orbit-coupled Bose gas, the dissipationless motion is suppressed by the Raman coupling even in the direction orthogonal to the recoil momentum. Our predictions can be tested in the experiments with ultracold atoms.
Generic features of Einstein-Aether black holes
Tamaki, Takashi; Miyamoto, Umpei
2008-01-15
We reconsider spherically symmetric black hole solutions in Einstein-Aether theory with the condition that this theory has identical parametrized post-Newtonian parameters as those for general relativity, which is the main difference from the previous research. In contrast with previous study, we allow superluminal propagation of a spin-0 Aether-gravity wave mode. As a result, we obtain black holes having a spin-0 'horizon' inside an event horizon. We allow a singularity at a spin-0 horizon since it is concealed by the event horizon. If we allow such a configuration, the kinetic term of the Aether field can be large enough for black holes to be significantly different from Schwarzschild black holes with respect to Arnowitt-Deser-Misner mass, innermost stable circular orbit, Hawking temperature, and so on. We also discuss whether or not the above features can be seen in more generic vector-tensor theories.
Gravitational Radiation — In Celebration of Einstein's Annus Mirabilis
NASA Astrophysics Data System (ADS)
Sathyaprakash, B. S.
Two of Einstein's 1905 papers were on special theory of relativity. Although general relativity was to come a decade later, it was special relativity that was responsible for the existence of wave-like phenomena in gravitation. A hundred years after the discovery of special relativity we are poised to detect gravitational waves and the detection might as well come from another inevitable and exotic prediction of relativity, namely black holes. With interferometric gravitational wave detectors taking data at unprecedented sensitivity levels and bandwidth, we are entering a new century in which our view of the Universe might be revolutionized yet again with the opening of the gravitational window. The current generation of interferometric and resonant mass detectors are only the beginning of a new era during which the gravitational window could be observed by deploying pulars and microwave background radiation.
Stochastic phase slips in toroidal Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Snizhko, Kyrylo; Isaieva, Karyna; Kuriatnikov, Yevhenii; Bidasyuk, Yuriy; Vilchinskii, Stanislav; Yakimenko, Alexander
2016-12-01
Motivated by recent experiments we study the influence of thermal noise on the phase slips in toroidal Bose-Einstein condensates with a rotating weak link. We derive a generalized Arrhenius-like expression for the rate of stochastic phase slips. We develop a method to estimate the energy barrier separating different superflow states. The parameters at which the energy barrier disappears agree with the critical parameters for deterministic phase slips obtained from dynamics simulations, which confirms the validity of our energetic analysis. We reveal that adding thermal noise lowers the phase-slip threshold. However, the quantitative impact of the stochastic phase slips turns out to be too small to explain the significant discrepancy between theoretical and the experimental results.
Einstein-Maxwell-dilaton theories with a Liouville potential
Charmousis, Christos; Gouteraux, Blaise; Soda, Jiro
2009-07-15
We find and analyze solutions of Einstein's equations in arbitrary dimensions and in the presence of a scalar field with a Liouville potential coupled to a Maxwell field. We consider spacetimes of cylindrical symmetry or again subspaces of dimension d-2 with constant curvature and analyze in detail the field equations and manifest their symmetries. The field equations of the full system are shown to reduce to a single or couple of ordinary differential equations, which can be used to solve analytically or numerically the theory for the symmetry at hand. Further solutions can also be generated by a solution-generating technique akin to the electromagnetic duality in the absence of a cosmological constant. We then find and analyze explicit solutions including black holes and gravitating solitons for the case of four-dimensional relativity and the higher-dimensional oxidized five-dimensional spacetime. The general solution is obtained for a certain relation between couplings in the case of cylindrical symmetry.
Momentum-space engineering of gaseous Bose-Einstein condensates
Edwards, Mark; Benton, Brandon; Heward, Jeffrey; Clark, Charles W.
2010-12-15
We show how the momentum distribution of gaseous Bose-Einstein condensates can be shaped by applying a sequence of standing-wave laser pulses. We present a theory, whose validity was demonstrated in an earlier experiment [L. Deng et al., Phys. Rev. Lett. 83, 5407 (1999)], of the effect of a two-pulse sequence on the condensate wavefunction in momentum space. We generalize the previous result to the case of N pulses of arbitrary intensity separated by arbitrary intervals and show how these parameters can be engineered to produce a desired final momentum distribution. We find that several momentum distributions, important in atom-interferometry applications, can be engineered with high fidelity with two or three pulses.
Einstein-Yang-Mills scattering amplitudes from scattering equations
NASA Astrophysics Data System (ADS)
Cachazo, Freddy; He, Song; Yuan, Ellis Ye
2015-01-01
We present the building blocks that can be combined to produce tree-level S-matrix elements of a variety of theories with various spins mixed in arbitrary dimensions. The new formulas for the scattering of n massless particles are given by integrals over the positions of n points on a sphere restricted to satisfy the scattering equations. As applications, we obtain all single-trace amplitudes in Einstein-Yang-Mills (EYM) theory, and generalizations to include scalars. Also in EYM but extended by a B-field and a dilaton, we present all double-trace gluon amplitudes. The building blocks are made of Pfaffians and Parke-Taylor-like factors of subsets of particle labels.
Dynamics of nonautonomous rogue waves in Bose-Einstein condensate
Zhao, Li-Chen
2013-02-15
We study rogue waves of Bose-Einstein condensate (BEC) analytically in a time-dependent harmonic trap with a complex potential. Properties of the nonautonomous rogue waves are investigated analytically. It is reported that there are possibilities to 'catch' rogue waves through manipulating nonlinear interaction properly. The results provide many possibilities to manipulate rogue waves experimentally in a BEC system. - Highlights: Black-Right-Pointing-Pointer One more generalized rogue wave solutions are presented. Black-Right-Pointing-Pointer Present one possible way to catch a rouge wave. Black-Right-Pointing-Pointer Properties of rogue waves are investigated analytically for the first time. Black-Right-Pointing-Pointer Provide many possibilities to manipulate rogue waves in BEC.
Perfect fluids in the Einstein-Cartan theory
NASA Technical Reports Server (NTRS)
Ray, J. R.; Smalley, L. J.
1982-01-01
It is pointed out that whereas most of the discussion of the Einstein-Cartan (EC) theory involves the relationship between gravitation and elementary particles, it is possible that the theory, if correct, may be important in certain extreme astrophysical and cosmological problems. The latter would include something like the collapse of a spinning star or an early universe with spin. A set of equations that describe a macroscopic perfect fluid in the EC theory is derived and examined. The equations are derived starting from the fundamental variational principle for a perfect fluid in general relativity. A brief review of the study by Ray (1972) is included, and the results for the EC theory are presented.
Albert Sabin and the Coalition to Eliminate Polio from the Americas.
Hampton, Lee
2009-01-01
Albert B. Sabin, MD, developer of the oral polio vaccine, was also a major proponent of its use in annual vaccination campaigns aimed at the elimination of polio. Sabin argued that administering his vaccine simultaneously to every child in a country would break polio's chains of transmission. Although he was already promoting mass vaccination by the 1960s, Sabin's efforts expanded considerably when he became an adviser to groups fighting polio in the Americas in the 1980s. Sabin's experiences provide a window into both the formation of the coalition that eliminated poliomyelitis from the Western Hemisphere and what can happen when biomedical researchers become public health policy advisers. Although the polio elimination coalition succeeded in part because member groups often accommodated each other's priorities, Sabin was often limited by his indifference to the interests of those he was advising and to the shortcomings of his vaccine.
Albert H. Munsell: A sense of color at the interface of art and science
Landa, E.R.
2004-01-01
The color theory conceived and commercialized by Albert H. Munsell (1858-1918) has become a universal part of the lexicon of soil science. An American painter noted for his seascapes and portraits, he had a long-standing interest in the description of color. Munsell began studies aimed at standardizing color description, using hue, value, and chroma scales, around 1898. His landmark treatise, "A Color Notation," was published in 1905. Munsell died about 30 years before his color charts came into wide-spread use in soil survey programs in the United States. Dorothy Nickerson, who began her career as secretary and laboratory assistant to Munsell's son, and later spent 37 years at USDA as a color-science specialist, did much to adapt the Munsell Color System to soil-color usage. The legacy of color research pioneered by A.H. Munsell is honored today by the Munsell Color Science Laboratory established in 1983 at the Rochester Institute of Technology.
Fordism in the hospital: Albert Kahn and the design of Old Main, 1917-25.
Ahuja, Nitin K
2012-07-01
The 1917-25 planning and construction at the University of Michigan of a new University Hospital, later dubbed Old Main, offers a noteworthy case study of the formal convergence of hospital and factory in early twentieth-century America. Designed by Albert Kahn, the architect responsible for Ford Motor Company's archetypal automobile plants, and located in Ann Arbor, Michigan, less than forty miles from Detroit's burgeoning factory landscape, Old Main was well positioned to reflect the values of industry in both appearance and operation. The building's outer surface represents a striking departure from the historicism that characterized several other hospitals of this period, while plans for the building's novel diagnostic unit demonstrate unique operational parallels to the assembly line model of production. Ultimately, Old Main's industrial design similarities cast it as a precociously modernist hospital, relating streamlined form to function more explicitly than many of its contemporary institutions.
Local versus global knowledge in the Barabási-Albert scale-free network model.
Gómez-Gardeñes, Jesús; Moreno, Yamir
2004-03-01
The scale-free model of Barabási and Albert (BA) gave rise to a burst of activity in the field of complex networks. In this paper, we revisit one of the main assumptions of the model, the preferential attachment (PA) rule. We study a model in which the PA rule is applied to a neighborhood of newly created nodes and thus no global knowledge of the network is assumed. We numerically show that global properties of the BA model such as the connectivity distribution and the average shortest path length are quite robust when there is some degree of local knowledge. In contrast, other properties such as the clustering coefficient and degree-degree correlations differ and approach the values measured for real-world networks.
BOOK REVIEW: Einstein's Jury: The Race to Test Relativity
NASA Astrophysics Data System (ADS)
Ehlers, Jürgen
2007-10-01
'I know very well that my theory rests on a shaky foundation. What attracts me to it is that it leads to consequences that seem to be accessible to experiment, and it provides a starting point for the theoretical understanding of gravitation', wrote Einstein in 1911. Einstein's Jury by Jeffrey Crelinsten—well documented, well written, and fascinating to read—describes how, from 1909 on, Einstein's two theories of relativity became known to astronomers, and how the predictions made between 1907 and 1915 were received as challenges to observers. The author gives a non-technical account of the efforts made until 1930 to test these predictions; he focuses on two of the three classical tests, namely gravitational redshift and bending of light; the 'jury' consists mainly of American observers—Adams, Campbell, Curtis, Hale, Perrin, St John, Trumpler and others—working with newly built large telescopes, and the Britons Eddington and Evershed. The major steps which, after a long struggle, convinced the majority of astronomers that Einstein was right, are narrated chronologically in rather great detail, especially the work at Lick Observatory, before and after the famous British observation of 1919, on solar eclipses, and the work at Mount Wilson and the Indian Kodaikanal Observatories to extract the gravitational redshift from the complicated spectrum of the sun. The account of the eclipse work which was carried out between 1918 and 1923 by Lick astronomers corrects the impression suggested by many historical accounts that the British expedition alone settled the light-bending question. Apart from these main topics, the anomalous perihelion advance of Mercury and the ether problem are covered. By concentrating on astronomy rather than on physics this book complements the rich but repetitive literature on Einstein and relativity which appeared in connection with the commemoration of Einstein's annus mirabilis, 2005. The well told stories include curiosities such as
Einstein's Materialism and Modern Tests of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Vigier, J. P.
After a presentation of Einstein's and Bohr's antagonistic point of view on the interpretation of Quantum Mechanics an illustration of their conflicting positions in the particular case of Young's double slit experiment is presented. It is then shown that in their most recent form (i. e. time dependent neutron interferometry) these experiments suggest (if one accepts absolute energymomentum conservation in all individual microprocesses) that Einstein was right in the Bohr-Einstein controversy.Translated AbstractEinsteins Materialismus und heutige Tests der QuantenmechanikNach einer Darstellung von Einsteins und Bohrs antagonistischen Standpunkten in der Interpretation der Quantenmechanik werden ihre widersprüchlichen Positionen im speziellen Fall des Youngschen Doppelspaltexperiments dargestellt. Es wird dann gezeigt, daß diese Experimente in ihrer neuesten Form (d. h. zeitabhängige Neutroneninterferometrie) Einstein in der Bohr-Einsteinkontroverse recht gaben (wenn man absolute Energie-Impulserhaltung bei allen individuellen Mikroprozessen annimmt).
Quasilocal Hamiltonians in general relativity
Anderson, Michael T.
2010-10-15
We analyze the definition of quasilocal energy in general relativity based on a Hamiltonian analysis of the Einstein-Hilbert action initiated by Brown-York. The role of the constraint equations, in particular, the Hamiltonian constraint on the timelike boundary, neglected in previous studies, is emphasized here. We argue that a consistent definition of quasilocal energy in general relativity requires, at a minimum, a framework based on the (currently unknown) geometric well-posedness of the initial boundary value problem for the Einstein equations.
Einstein-Podolsky-Rosen Correlations via Dissociation of a Molecular Bose-Einstein Condensate
Kheruntsyan, K.V.; Drummond, P.D.; Olsen, M.K.
2005-10-07
Recent experimental measurements of atomic intensity correlations through atom shot noise suggest that atomic quadrature phase correlations may soon be measured with a similar precision. We propose a test of local realism with mesoscopic numbers of massive particles based on such measurements. Using dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic atoms, we demonstrate that strongly entangled atomic beams may be produced which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures in direct analogy to the position and momentum correlations originally considered by EPR.
Einstein-Podolsky-Rosen Correlations via Dissociation of a Molecular Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Kheruntsyan, K. V.; Olsen, M. K.; Drummond, P. D.
2005-10-01
Recent experimental measurements of atomic intensity correlations through atom shot noise suggest that atomic quadrature phase correlations may soon be measured with a similar precision. We propose a test of local realism with mesoscopic numbers of massive particles based on such measurements. Using dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic atoms, we demonstrate that strongly entangled atomic beams may be produced which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures in direct analogy to the position and momentum correlations originally considered by EPR.
A Modified Thermodynamics Method to Generate Exact Solutions of Einstein Equations
NASA Astrophysics Data System (ADS)
Tan, Hong-Wei; Yang, Jin-Bo; He, Tang-Mei; Zhang, Jing-Yi
2017-01-01
We modify the method to generate the exact solutions of the Einstein equations basing on the laws of thermodynamics. Firstly, the Komar mass is used to take the place of the Misner-Sharp energy which is used in the original methods, and then several exact solutions of Einstein equations are obtained, including the black hole solution which surrounded by quintessence. Moreover, the geometry surface gravity defined by Komar mass is obtained. Secondly, we use both the Komar mass and the ADM mass to modify such method, and the similar results are obtained. Moreover, with some generalize added to the definition of the ADM mass, our method can be generalized to global monopole sapcetime.
Inhomogeneous dust collapse in 5D Einstein-Gauss-Bonnet gravity
Jhingan, S.; Ghosh, Sushant G.
2010-01-15
We consider a Lemaitre-Tolman-Bondi type space-time in Einstein gravity with the Gauss-Bonnet combination of quadratic curvature terms, and present an exact solution in closed form. It turns out that the presence of the coupling constant of the Gauss-Bonnet terms {alpha}>0 completely changes the causal structure of the singularities from the analogous general relativistic case. The gravitational collapse of inhomogeneous dust in the five-dimensional Gauss-Bonnet extended Einstein equations leads to formation of a massive, but weak, timelike singularity which is forbidden in general relativity. Interestingly, this is a counterexample to three conjectures, viz., cosmic censorship conjecture, hoop conjecture, and Seifert's conjecture.
Dark matter as a ghost free conformal extension of Einstein theory
Barvinsky, A.O.
2014-01-01
We discuss ghost free models of the recently suggested mimetic dark matter theory. This theory is shown to be a conformal extension of Einstein general relativity. Dark matter originates from gauging out its local Weyl invariance as an extra degree of freedom which describes a potential flow of the pressureless perfect fluid. For a positive energy density of this fluid the theory is free of ghost instabilities, which gives strong preference to stable configurations with a positive scalar curvature and trace of the matter stress tensor. Instabilities caused by caustics of the geodesic flow, inherent in this model, serve as a motivation for an alternative conformal extension of Einstein theory, based on the generalized Proca vector field. A potential part of this field modifies the inflationary stage in cosmology, whereas its rotational part at the post inflationary epoch might simulate rotating flows of dark matter.
Mechanocaloric and thermomechanical effects in Bose-Einstein-condensed systems
Marques, G.C.; Bagnato, V.S.; Muniz, S.R.; Spehler, D.
2004-05-01
In this paper we extend previous hydrodynamic equations, governing the motion of Bose-Einstein-condensed fluids, to include temperature effects. This allows us to analyze some differences between a normal fluid and a Bose-Einstein-condensed one. We show that, in close analogy with superfluid {sup 4}He, a Bose-Einstein-condensed fluid exhibits the mechanocaloric and thermomechanical effects. In our approach we can explain both effects without using the hypothesis that the Bose-Einstein-condensed fluid has zero entropy. Such ideas could be investigated in existing experiments.
Dyonic (A)dS black holes in Einstein-Born-Infeld theory in diverse dimensions
NASA Astrophysics Data System (ADS)
Li, Shoulong; Lü, H.; Wei, Hao
2016-07-01
We study Einstein-Born-Infeld gravity and construct the dyonic (A)dS planar black holes in general even dimensions, that carry both the electric charge and magnetic fluxes along the planar space. In four dimensions, the solution can be constructed with also spherical and hyperbolic topologies. We study the black hole thermodynamics and obtain the first law. We also classify the singularity structure.
Quantum secure communication using continuous variable Einstein-Podolsky-Rosen correlations
He Guangqiang; Zhu Jun; Zeng Guihua
2006-01-15
A quantum secure communication protocol using correlations of continuous variable Einstein-Podolsky-Rosen (EPR) pairs is proposed. The proposed protocol may implement both quantum key distribution and quantum message encryption by using a nondegenerate optical parametric amplifier (NOPA). The general Gaussian-cloner attack strategy is investigated in detail by employing Shannon information theory. Results show that the proposed scheme is secure, which is guaranteed physically by the correlations of the continuous variable EPR entanglement pairs generated by the NOPA.
The 2017 Eclipse: Centenary of the Einstein Light Deflection Experiment
NASA Astrophysics Data System (ADS)
Kennefick, Daniel
2017-01-01
August 21st, 2017 will see a total eclipse of the Sun visible in many parts of the United States. Coincidentally this date marks the centenary of the first observational attempt to test Einstein's General Theory of Relativity by measuring gravitational deflection of light by the Sun. This was attempted by the Kodaikanal Observatory in India during the conjunction of Regulus with the Sun in daylight on August 21st, 1917. The observation was attempted at the urging of the amateur German-British astronomer A. F. Lindemann, with his son, F. A. Lindemann, a well-known physicist, who later played a significant role as Churchill's science advisor during World War II. A century later Regulus will once again be in conjunction with the Sun, but by a remarkable coincidence, this will occur during a solar eclipse! Efforts will be made to measure the star deflection during the eclipse and the experiment is contrasted with the famous expeditions of 1919 which were the first to actually measure the light deflection, since the 1917 effort did not meet with success. Although in recent decades there have been efforts made to suggest that the 1919 eclipse team, led by Arthur Stanley Eddington and Sir Frank Watson Dyson, over-interpreted their results in favor of Einstein this talk will argue that such claims are wrong-headed. A close study of their data analysis reveals that they had good grounds for the decisions they made and this conclusion is reinforced by comparison with a modern re-analysis of the plates by the Greenwich Observatory conducted in 1977.
Mercuri, Simone
2008-01-15
The Ashtekar-Barbero constraints for general relativity with fermions are derived from the Einstein-Cartan canonical theory rescaling the state functional of the gravity-spinor coupled system by the exponential of the Nieh-Yan functional. A one parameter quantization ambiguity naturally appears and can be associated with the Immirzi parameter.
Extragalactic counterparts to Einstein slew survey sources
NASA Technical Reports Server (NTRS)
Schachter, Jonathan F.; Elvis, Martin; Plummer, David; Remillard, Ron
1992-01-01
The Einstein slew survey consists of 819 bright X-ray sources, of which 636 (or 78 percent) are identified with counterparts in standard catalogs. The importance of bright X-ray surveys is stressed, and the slew survey is compared to the Rosat all sky survey. Statistical techniques for minimizing confusion in arcminute error circles in digitized data are discussed. The 238 slew survey active galactic nuclei, clusters, and BL Lacertae objects identified to date and their implications for logN-logS and source evolution studies are described.
Varying G. [in Einstein gravitation theory
NASA Technical Reports Server (NTRS)
Canuto, V.; Hsieh, S.-H.; Owen, J. R.
1979-01-01
The problem of the variation of the gravitational constant with cosmological time is critically analyzed. Since Einstein's equation does not allow G to vary on any time scale, no observational data can be analyzed within the context of the standard theory. The recently proposed scale covariant theory, which allows (but does not demand) G to vary, and which has been shown to have passed several standard cosmological tests, is employed to discuss some recent nonnull observational results which indicate a time variation of G.
Wormholes in Einstein-Born-Infeld theory
Richarte, Martin G.; Simeone, Claudio
2009-11-15
Spherically symmetric thin-shell wormholes are studied within the framework of Einstein-Born-Infeld theory. We analyze the exotic matter content, and find that for certain values of the Born-Infeld parameter the amount of exotic matter on the shell can be reduced in relation to the Maxwell case. We also examine the mechanical stability of the wormhole configurations under radial perturbations preserving the spherical symmetry. In addition, in the Appendix the repulsive or attractive character of the wormhole geometries is briefly discussed.
Atom scattering from surface Einstein modes
Manson, J.R.
1988-04-15
We consider the scattering of thermal-energy atoms by a surface with a dilute coverage of adsorbates having a dispersionless Einstein vibrational mode. We show that the diffuse elastic scattered intensity has a Debye-Waller-type thermal attenuation only at low temperatures, and at large temperatures the attenuation saturates to a much weaker form. Similar thermal attenuation behavior occurs for the diffuse inelastic intensities. For an ordered adsorbate layer there is also a diffuse elastic intensity which increases with temperature at small temperatures.
Lincoln, Don
2016-07-12
One of the most non-intuitive physics theories ever devised is Einsteinâs Theory of Special Relativity, which claim such crazy-sounding things as two people disagreeing on such familiar concepts as length and time. In this video, Fermilabâs Dr. Don Lincoln shows that every single day particle physicists prove that moving clocks tick more slowly than stationary ones. He uses an easy to understand example of particles that move for far longer distances than you would expect from combining their velocity and stationary lifetime.
The Einstein database of IPC x-ray observations of optically selected and radio-selected quasars, 1.
NASA Technical Reports Server (NTRS)
Wilkes, Belinda J.; Tananbaum, Harvey; Worrall, D. M.; Avni, Yoram; Oey, M. S.; Flanagan, Joan
1994-01-01
We present the first volume of the Einstein quasar database. The database includes estimates of the X-ray count rates, fluxes, and luminosities for 514 quasars and Seyfert 1 galaxies observed with the Imaging Proportional Counter (IPC) aboard the Einstein Observatory. All were previously known optically selected or radio-selected objects, and most were the targets of the X-ray observations. The X-ray properties of the Active Galactic Nuclei (AGNs) have been derived by reanalyzing the IPC data in a systematic manner to provide a uniform database for general use by the astronomical community. We use the database to extend earlier quasar luminosity studies which were made using only a subset of the currently available data. The database can be accessed on internet via the SAO Einstein on-line system ('Einline') and is available in ASCII format on magnetic tape and DOS diskette.
The Einstein database of IPC x-ray observations of optically selected and radio-selected quasars, 1.
NASA Astrophysics Data System (ADS)
Wilkes, Belinda J.; Tananbaum, Harvey; Worrall, D. M.; Avni, Yoram; Oey, M. S.; Flanagan, Joan
1994-05-01
We present the first volume of the Einstein quasar database. The database includes estimates of the X-ray count rates, fluxes, and luminosities for 514 quasars and Seyfert 1 galaxies observed with the Imaging Proportional Counter (IPC) aboard the Einstein Observatory. All were previously known optically selected or radio-selected objects, and most were the targets of the X-ray observations. The X-ray properties of the Active Galactic Nuclei (AGNs) have been derived by reanalyzing the IPC data in a systematic manner to provide a uniform database for general use by the astronomical community. We use the database to extend earlier quasar luminosity studies which were made using only a subset of the currently available data. The database can be accessed on internet via the SAO Einstein on-line system ('Einline') and is available in ASCII format on magnetic tape and DOS diskette.
NASA Astrophysics Data System (ADS)
Beyer, F.; Escobar, L.; Frauendiener, J.
2016-02-01
In this paper we consider the single patch pseudospectral scheme for tensorial and spinorial evolution problems on the 2-sphere presented by Beyer et al. [Classical Quantum Gravity 32, 175013 (2015); Classical Quantum Gravity31, 075019 (2014)], which is based on the spin-weighted spherical harmonics transform. We apply and extend this method to Einstein's equations and certain classes of spherical cosmological spacetimes. More specifically, we use the hyperbolic reductions of Einstein's equations obtained in the generalized wave map gauge formalism combined with Geroch's symmetry reduction, and focus on cosmological spacetimes with spatial S3 -topologies and symmetry groups U(1) or U (1 )×U (1 ) . We discuss analytical and numerical issues related to our implementation. We test our code by reproducing the exact inhomogeneous cosmological solutions of the vacuum Einstein field equations obtained by Beyer and Hennig [Classical Quantum Gravity 31, 095010 (2014)].
A Demonstration of Einstein's Equivalence of Gravity and Acceleration
ERIC Educational Resources Information Center
Newburgh, Ronald
2008-01-01
In 1907, Einstein described a "Gedankenexperiment" in which he showed that free fall in a gravitational field is indistinguishable from a body at rest in an elevator accelerated upwards in zero gravity. This paper describes an apparatus, which is simple to make and simple to operate, that acts as an observable footnote to Einstein's example. It…
Quantum Mechanics of the Einstein-Hopf Model.
ERIC Educational Resources Information Center
Milonni, P. W.
1981-01-01
The Einstein-Hopf model for the thermodynamic equilibrium between the electromagnetic field and dipole oscillators is considered within the framework of quantum mechanics. Both the wave and particle aspects of the Einstein fluctuation formula are interpreted in terms of the fundamental absorption and emission processes. (Author/SK)
Mont Albert to Buck Mountain: Provenance of Appalachian Ophiolite Chromites Using Osmium Isotopes
NASA Astrophysics Data System (ADS)
Minarik, W. G.; Gale, A.; Booker, C.
2003-12-01
Osmium 187Os/188Os isotopic ratios have been determined for chrome-rich spinels from a suite of Appalachian ophiolites thought to represent Iapetus margin mantle formed and emplaced during the Ordovician. Because Re is incompatible during mantle melting while Os is compatible, non-radiogenic initial 187Os/188Os can constrain the average source and the timing of melt extraction, especially as Os is concentrated in chromite. Radiogenic ratios indicate contamination from aged sources with high Re/Os, such as mafic or continental crust. In rocks where spinel is the only remaining primary mineral, these properties can constrain the tectonic environment of formation as well as active-margin Os transport. There is little correction for 187Os in-growth since the Ordovician due to very low sample Re. Each ultramafic unit (from Mont Albert on the Gaspé Peninsula of Québec down to the Blue Ridge of North Carolina) forms a unique cluster of 187Os/188Os ratios, spanning 1 to 3%, but the whole range is about 10%. This corresponds to a range of initial γ Os of -1 to +9, where γ Os is the percent deviation from a chondritic source at the age of formation (roughly 500 Ma). Within ophiolites where detailed mapping and other geochemical information are available, there is a correlation between mantle-like Os and tholeiitic basalts; radiogenic Os and boninites (Thetford Mines). Continental arc-related mantle chromites (Baltimore Mafic Complex; γ Os +4 to +7) are the most radiogenic. The least radiogenic are chromites from the Staten Island serpentinite and Mont Albert (γ Os -1 and 0, respectively), either indicating formation from a previously depleted source or that they predate the other Taconic ophiolites. The restricted range of each ophiolite, compared to the whole of the data set, allow provenance links to be made between isolated bodies. For example, the Buck Creek, NC ultramafic complex, which has undergone granulite facies metamorphism, (Tenthorey et al., 1996) has a
NASA Astrophysics Data System (ADS)
Hoormann, Janie Katherine
2016-06-01
While Albert Einstein's theory of General Relativity (GR) has been tested extensively in our solar system, it is just beginning to be tested in the strong gravitational fields that surround black holes. As a way to study the behavior of gravity in these extreme environments, I have used and added to a ray-tracing code that simulates the X-ray emission from the accretion disks surrounding black holes. In particular, the observational channels which can be simulated include the thermal and reflected spectra, polarization, and reverberation signatures. These calculations can be performed assuming GR as well as four alternative spacetimes. These results can be used to see if it is possible to determine if observations can test the No-Hair theorem of GR which states that stationary, astrophysical black holes are only described by their mass and spin. Although it proves difficult to distinguish between theories of gravity, it is possible to exclude a large portion of the possible deviations from GR using observations of rapidly spinning stellar mass black holes such as Cygnus X-1. The ray-tracing simulations can furthermore be used to study the inner regions of black hole accretion flows. I examined the dependence of X-ray reverberation observations on the ionization of the disk photosphere. My results show that X-ray reverberation and X-ray polarization provides a powerful tool to constrain the geometry of accretion disks which are too small to be imaged directly. The second part of my thesis describes the work on the balloon-borne X-Calibur hard X-ray polarimetry mission and on the space-borne PolSTAR polarimeter concept.
NASA Astrophysics Data System (ADS)
Zhang, Xuewei; Scholz, Christopher A.
2015-07-01
The Holocene turbidite systems of Lake Kivu and the Pliocene turbidite systems of Lake Albert in the East African Rift were examined using high-resolution 2-D and 3-D seismic reflection data and sediment core information. Based on investigations of seismic facies and lithofacies, several key turbidity-flow depositional elements were observed, including channels, overbank levees with sediment waves, and depositional lobes. Analyses of the sources of the recent and ancient turbidite systems in these two extensional basins suggest that flood-induced hyperpycnal flows are important triggers of turbidity currents in lacustrine rift basins. From source to sink, sediment dispersal, facies distribution, and depositional thickness of the turbidite systems are strongly influenced by rift topography. The Lake Kivu and Lake Albert rifts serve as excellent analogues for understanding the sedimentary patterns of lacustrine turbidites in extensional basins.
History and perspectives of medical research at the Albert Schweitzer Hospital in Lambaréné, Gabon.
Ramharter, Michael; Adegnika, Ayola A; Agnandji, Selidji T; Matsiegui, Pierre Blaise; Grobusch, Martin P; Winkler, Stefan; Graninger, Wolfgang; Krishna, Sanjeev; Yazdanbakhsh, Maria; Mordmüller, Benjamin; Lell, Bertrand; Missinou, Michel A; Mavoungou, Elie; Issifou, Saadou; Kremsner, Peter G
2007-01-01
In 1913 Albert Schweitzer founded one of the first modern hospitals in Africa dedicated to the health of the local population. The Albert Schweitzer Hospital is located in Lambaréné, a small town in Gabon. In 1981 a research department--the Medical Research Unit--was established with the aim to perform research in the field of infectious diseases ( www.lambarene.org ). The main focus lies on clinical research on malaria and other parasitic diseases. Studies on the molecular biology and immunology of parasitic diseases are fostered since the inauguration of a novel building dedicated for basic science. A training program in clinical research in tropical diseases for African scientists has been set up recently.
Cosmography: Cosmology without the Einstein equations
NASA Astrophysics Data System (ADS)
Visser, Matt
2005-09-01
How much of modern cosmology is really cosmography? How much of modern cosmology is independent of the Einstein equations? (Independent of the Friedmann equations?) These questions are becoming increasingly germane—as the models cosmologists use for the stress-energy content of the universe become increasingly baroque, it behaves us to step back a little and carefully disentangle cosmological kinematics from cosmological dynamics. The use of basic symmetry principles (such as the cosmological principle) permits us to do a considerable amount, without ever having to address the vexatious issues of just how much “dark energy”, “dark matter”, “quintessence”, and/or “phantom matter” is needed in order to satisfy the Einstein equations. This is the sub-sector of cosmology that Weinberg refers to as “cosmography”, and in this article I will explore the extent to which cosmography is sufficient for analyzing the Hubble law and so describing many of the features of the universe around us.
Newton to Einstein — dust to dust
Kopp, Michael; Uhlemann, Cora; Haugg, Thomas E-mail: cora.uhlemann@physik.lmu.de
2014-03-01
We investigate the relation between the standard Newtonian equations for a pressureless fluid (dust) and the Einstein equations in a double expansion in small scales and small metric perturbations. We find that parts of the Einstein equations can be rewritten as a closed system of two coupled differential equations for the scalar and transverse vector metric perturbations in Poisson gauge. It is then shown that this system is equivalent to the Newtonian system of continuity and Euler equations. Brustein and Riotto (2011) conjectured the equivalence of these systems in the special case where vector perturbations were neglected. We show that this approach does not lead to the Euler equation but to a physically different one with large deviations already in the 1-loop power spectrum. We show that it is also possible to consistently set to zero the vector perturbations which strongly constrains the allowed initial conditions, in particular excluding Gaussian ones such that inclusion of vector perturbations is inevitable in the cosmological context. In addition we derive nonlinear equations for the gravitational slip and tensor perturbations, thereby extending Newtonian gravity of a dust fluid to account for nonlinear light propagation effects and dust-induced gravitational waves.
Bose-Einstein condensation in quantum magnets
NASA Astrophysics Data System (ADS)
Zapf, Vivien; Jaime, Marcelo; Batista, C. D.
2014-04-01
This article reviews experimental and theoretical work on Bose-Einstein condensation in quantum magnets. These magnets are natural realizations of gases of interacting bosons whose relevant parameters such as dimensionality, lattice geometry, amount of disorder, nature of the interactions, and particle concentration can vary widely between different compounds. The particle concentration can be easily tuned by applying an external magnetic field which plays the role of a chemical potential. This rich spectrum of realizations offers a unique possibility for studying the different physical behaviors that emerge in interacting Bose gases from the interplay between their relevant parameters. The plethora of other bosonic phases that can emerge in quantum magnets, of which the Bose-Einstein condensate is the most basic ground state, is reviewed. The compounds discussed in this review have been intensively studied in the last two decades and have led to important contributions in the area of quantum magnetism. In spite of their apparent simplicity, these systems often exhibit surprising behaviors. The possibility of using controlled theoretical approaches has triggered the discovery of unusual effects induced by frustration, dimensionality, or disorder.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Energy and Natural Resources.
These hearings addressed proposed Bill S. 2104 to create a Department of Energy (DOE) fellowship program for math and science teachers that would provide them opportunities to work at DOE labs in order to enhance coordination and communication among the educational community, the Congress, and the Executive Agencies responsible for developing and…
Deformed Hořava-Lifshitz cosmology and stability of the Einstein static universe
NASA Astrophysics Data System (ADS)
Heydarzade, Y.; Khodadi, M.; Darabi, F.
2017-01-01
We investigate the stability of the Einstein static universe under linear scalar, vector, and tensor perturbations in the context of a deformed Hǒrava-Lifshitz ( HL) cosmology related to entropic forces. We obtain a general stability condition under linear scalar perturbations. Using this general condition, we show that there is no stable Einstein static universe in the case of a flat universe ( k = 0). In the special case of large values of the parameter ω of HL gravity in a positively curved universe ( k > 0), the domination of the quintessence and phantom matter fields with a barotropic equation of state parameter β < -1/3 is necessary, while for a negatively curved universe ( k < 0), matter fields with β > -1/3 must be the dominant fields of the universe. We also demonstrate a neutral stability under vector perturbations. We obtain an inequality including the cosmological parameters of the Einstein static universe for stability under tensor perturbations. It turns out that for large values of ω, there is stability under tensor perturbations.
Fujita, Tomohiro; Gao, Xian; Yokoyama, Jun'ichi E-mail: gao@th.phys.titech.ac.jp
2016-02-01
We investigate the cosmological background evolution and perturbations in a general class of spatially covariant theories of gravity, which propagates two tensor modes and one scalar mode. We show that the structure of the theory is preserved under the disformal transformation. We also evaluate the primordial spectra for both the gravitational waves and the curvature perturbation, which are invariant under the disformal transformation. Due to the existence of higher spatial derivatives, the quadratic Lagrangian for the tensor modes itself cannot be transformed to the form in the Einstein frame. Nevertheless, there exists a one-parameter family of frames in which the spectrum of the gravitational waves takes the standard form in the Einstein frame.
From the Flamm-Einstein-Rosen bridge to the modern renaissance of traversable wormholes
NASA Astrophysics Data System (ADS)
Lobo, Francisco S. N.
2016-05-01
We consider the possibility of multiply-connected spacetimes, ranging from the Flamm-Einstein-Rosen bridge, geons, and the modern renaissance of traversable wormholes. A fundamental property in wormhole physics is the flaring-out condition of the throat, which through the Einstein field equation entails the violation of the null energy condition (NEC). In the context of modified theories of gravity, it has also been shown that the normal matter can be imposed to satisfy the energy conditions, and it is the higher order curvature terms, interpreted as a gravitational fluid, that sustain these nonstandard wormhole geometries, fundamentally different from their counterparts in general relativity (GR). We explore interesting features of these geometries, in particular, the physical properties and characteristics of these ‘exotic spacetimes’.
Backreaction for Einstein-Rosen waves coupled to a massless scalar field
NASA Astrophysics Data System (ADS)
Szybka, Sebastian J.; Wyrebowski, Michał J.
2016-07-01
We present a one-parameter family of exact solutions to Einstein's equations that may be used to study the nature of the Green-Wald backreaction framework. Our explicit example is a family of Einstein-Rosen waves coupled to a massless scalar field. This solution may be reinterpreted as a generalized three-torus polarized Gowdy cosmology with scalar and gravitational waves. We use it to illustrate essential properties of the Green-Wald approach. Among other things we show that within our model the Green-Wald framework uniquely determines backreaction for finite-size inhomogeneities on a predefined background. The results agree with those calculated in the Charach-Malin approach. In the vacuum limit, the Green-Wald, the Charach-Malin and the Isaacson methods imply identical backreaction, as expected.
NASA Astrophysics Data System (ADS)
Horvath, I.; Lukacs, B.
The stationary vacuum solutions of the Einstein equations of general relativity give the external space-time around stationary mass distributions, as e.g. final states of stellar evolution. The Kerr solution has shear-free geodesic eigenrays and describes all black hole configurations with good asymptotic behaviour at infinity. Other solutions of this class are unphysical. Classes with shearing geodesic or shearfree nongeodesic eigenrays do not contain physical solutions at all, so for other physical configurations one must turn to the generic case of shearing nongeodesic eigenrays. For the stationary axisymmetric case Ansaetze for solutions can be formulated in form of a specific functional dependence between the parameters of shear and nongeodesicity, unless they both are constants. Here the authors investigate the second subcase. Their result is that there is no solution of the vacuum Einstein equations in this subclass, except when both parameters vanish.
On a new approach for constructing wormholes in Einstein-Born-Infeld gravity
NASA Astrophysics Data System (ADS)
Kim, Jin Young; Park, Mu-In
2016-11-01
We study a new approach for the wormhole construction in Einstein-Born-Infeld gravity, which does not require exotic matters in the Einstein equation. The Born-Infeld field equation is not modified by coordinate independent conditions of continuous metric tensor and its derivatives, even though the Born-Infeld fields have discontinuities in their derivatives at the throat in general. We study the relation of the newly introduced conditions with the usual continuity equation for the energy-momentum tensor and the gravitational Bianchi identity. We find that there is no violation of energy conditions for the Born-Infeld fields contrary to the usual approaches. The exoticity of the energy-momentum tensor is not essential for sustaining wormholes. Some open problems are discussed.
Resonant generation of topological modes in trapped Bose-Einstein gases
Yukalov, V.I.; Marzlin, K.-P.; Yukalova, E.P.
2004-02-01
Trapped atoms cooled down to temperatures below the Bose-Einstein condensation temperature are considered. Stationary solutions to the Gross-Pitaevskii equation (GPE) define the topological coherent modes, representing nonground-state Bose-Einstein condensates. These modes can be generated by means of alternating fields whose frequencies are in resonance with the transition frequencies between two collective energy levels corresponding to two different topological modes. The theory of resonant generation of these modes is generalized in several aspects: Multiple-mode formation is described; a shape-conservation criterion is derived, imposing restrictions on the admissible spatial dependence of resonant fields; evolution equations for the case of three coherent modes are investigated; the complete stability analysis is accomplished; the effects of harmonic generation and parametric conversion for the topological coherent modes are predicted. All considerations are realized both by employing approximate analytical methods as well as by numerically solving the GPE. Numerical solutions confirm all conclusions following from analytical methods.
Albert Chalmers: Perpetual honours for a prominent tropical medicine career in the Sudan
2014-01-01
This article starts with brief review of Albert Chalmers’ early career in tropical medicine until he was appointed Director of the Wellcome Tropical Research Laboratories in Khartoum (WTRLK) in 1913, succeeding Andrew Balfour. Then the article explores how Chalmers faced the challenges and managed to establish a solid research base under very harsh conditions. Most of his directorship was during the First World War, with shortage of staff and increased routine work load. In spite of these constraints, Chalmers managed to establish a base for research in tropical medicine in WTRK. Chalmers’ research concentrated on the taxonomy and pathogenicity of bacteria and fungi but he also worked on miscellaneous dermatological disorders and on sleeping sickness. His papers reflect a wide range of knowledge and deep understanding of the topics he was covering. His work on the classification of pathogenic fungi was widely recognized. He tried different preparations of vaccines for cerebrospinal meningitis but with the technology available at the time he could not produce a potent vaccine. Chalmers’ papers reflect the tremendous effort exerted in their production. Chamers resigned from WTRLK in 1920 and died of acute infective jaundice in the same year. In 1921 his widow, gave £500 to the Royal Society of Tropical Medicine and Hygiene (RSTMH) in memory of her husband. The RSTMH Council decided to devote this money to the foundation of the Chalmers Memorial Medal. PMID:27493397
Sexual Science and Sexual Forensics in 1920s Germany: Albert Moll as (S)Expert
Conn, Matthew
2012-01-01
Using court records involving the expert testimony of the Berlin sexologist Albert Moll, my article demonstrates that during the early 1920s a shift in the ‘epistemologies of justice’ concerning the adjudication of sex crimes took place within German courtrooms. Namely, presiding judges considered a greater number of sexual acts as punishable, despite no change in the laws themselves. Central to my argument is the role of expert testimony in practice and its critical reception. By focusing upon the rhetorical strategies presented by attorneys, judges and expert witnesses (as well as defendants themselves and their relatives), it illustrates the functions of expert and tacit knowledge in court, which were often not mutually exclusive. Moll’s stature also enabled him to translate his scientific–medical expertise into state support for his testimonies, as well as the rebuilding of an international community of sexological authorities. It was only under Moll’s leadership that the First International Sexology Congress could take place in 1926, an event that marked the apex of his prestige. PMID:23002293
The powers of suggestion: Albert Moll and the debate on hypnosis.
Maehle, Andreas-Holger
2014-03-01
The Berlin physician Albert Moll (1862-1939) was an advocate of hypnotic suggestion therapy and a prolific contributor to the medical, legal and public discussions on hypnotism from the 1880s to the 1920s. While his work in other areas, such as sexology, medical ethics and parapsychology, has recently attracted scholarly attention, this paper for the first time comprehensively examines Moll's numerous publications on hypnotism and places them in their contemporary context. It covers controversies over the therapeutic application of hypnosis, the reception of Moll's monograph Der Hypnotismus (1889), his research on the rapport between hypnotizer and subject, his role as an expert on 'hypnotic crime', and his views on the historical influence of hypnotism on the development of psychotherapy. My findings suggest that Moll rose to prominence due to the strong late-nineteenth-century public and medical interest in the phenomena of hypnosis, but that his work was soon overshadowed by new, non-hypnotic psychotherapeutic approaches, particularly Freud's psychoanalysis.
Remembering Our Forebears: Albert Jan Kluyver and the Unity of Life.
Singleton, Rivers; Singleton, David R
2017-02-01
The Dutch microbiologist/biochemist Albert Jan Kluyver (1888-1956) was an early proponent of the idea of biochemical unity, and how that concept might be demonstrated through the careful study of microbial life. The fundamental relatedness of living systems is an obvious correlate of the theory of evolution, and modern attempts to construct phylogenetic schemes support this relatedness through comparison of genomes. The approach of Kluyver and his scientific descendants predated the tools of modern molecular biology by decades. Kluyver himself is poorly recognized today, yet his influence at the time was profound. Through lens of today however, it has been argued that the focus by Kluyver and others to create taxonomic and phylogenetic schemes using morphology and biochemistry distorted and hindered progress of the discipline of microbiology, because of a perception that the older approaches focused too much on a reductionist worldview. This essay argues that in contrast the careful characterization of fundamental microbial metabolism and physiology by Kluyver made many of the advances of the latter part of the twentieth century possible, by offering a framework which in many respects anticipated our current view of phylogeny, and by directly and indirectly training a generation of scientists who became leaders in the explosive growth of biotechnology.
Laparoscopic Appendectomy in Children: Preliminary Study in Pediatric Hospital Albert Royer, Dakar
Fall, Mbaye; Gueye, Doudou; Wellé, Ibrahima Bocar; Lo, Faty Balla; Sagna, Aloise; Diop, Marie; Fall, Ibrahima
2015-01-01
Appendiceal pathology's management has benefited in recent years from the advent of laparoscopic surgery. This study is to make a preliminary assessment of laparoscopic management of acute and complicated appendicitis in children after a few months of practice at the University Hospital Albert Royer, Dakar. This is a retrospective study of 22 cases of patients, all operated on by the same surgeon. The parameters studied were age, sex, clinical data and laboratory features, radiological data, and results of surgical treatment. The mean age of patients was 9.5 years with a male predominance. The series includes 14 cases of acute appendicitis and 8 complicated cases. Appendectomy anterograde is practiced in 81% of cases. Appendectomy was associated with peritoneal wash in 17 patients including 9 cases of acute appendicitis. Drainage of Douglas pouch is performed in 2 patients with complicated appendicitis; the average production was 300 cc of turbid liquids and any complications were not founded. An abscess of Douglas pouch is noted in 2 patients with complicated appendicitis undrained. These Douglas abscesses were treated medically. No conversion of laparotomy was performed in the series. After an average of 8 months no other problems were noted. PMID:26448743
Sexual science and sexual forensics in 1920s Germany: Albert Moll as (S)expert.
Conn, Matthew
2012-04-01
Using court records involving the expert testimony of the Berlin sexologist Albert Moll, my article demonstrates that during the early 1920s a shift in the 'epistemologies of justice' concerning the adjudication of sex crimes took place within German courtrooms. Namely, presiding judges considered a greater number of sexual acts as punishable, despite no change in the laws themselves. Central to my argument is the role of expert testimony in practice and its critical reception. By focusing upon the rhetorical strategies presented by attorneys, judges and expert witnesses (as well as defendants themselves and their relatives), it illustrates the functions of expert and tacit knowledge in court, which were often not mutually exclusive. Moll's stature also enabled him to translate his scientific-medical expertise into state support for his testimonies, as well as the rebuilding of an international community of sexological authorities. It was only under Moll's leadership that the First International Sexology Congress could take place in 1926, an event that marked the apex of his prestige.