Science.gov

Sample records for albicans candida species

  1. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species.

    PubMed

    Whibley, Natasha; Gaffen, Sarah L

    2015-11-01

    The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our knowledge of immunity to Candida mainly comes from studies on Candida albicans, the most frequent species associated with disease. However, non-albicans Candida (NAC) species also cause disease and their prevalence is increasing. Although research into immunity to NAC species is still at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways from non-albicans species, with important implications for treatment, therapy and predicted demographic susceptibility. This review will discuss the current understanding of immunity to NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered questions.

  2. Candida/Candida biofilms. First description of dual-species Candida albicans/C. rugosa biofilm.

    PubMed

    Martins, Carlos Henrique Gomes; Pires, Regina Helena; Cunha, Aline Oliveira; Pereira, Cristiane Aparecida Martins; Singulani, Junya de Lacorte; Abrão, Fariza; Moraes, Thais de; Mendes-Giannini, Maria José Soares

    2016-04-01

    Denture liners have physical properties that favour plaque accumulation and colonization by Candida species, irritating oral tissues and causing denture stomatitis. To isolate and determine the incidence of oral Candida species in dental prostheses, oral swabs were collected from the dental prostheses of 66 patients. All the strains were screened for their ability to form biofilms; both monospecies and dual-species combinations were tested. Candida albicans (63 %) was the most frequently isolated microorganism; Candida tropicalis (14 %), Candida glabrata (13 %), Candida rugosa (5 %), Candida parapsilosis (3 %), and Candida krusei (2 %) were also detected. The XTT assay showed that C. albicans SC5314 possessed a biofilm-forming ability significantly higher (p < 0.001) than non-albicans Candida strains, after 6 h 37 °C. The total C. albicans CFU from a dual-species biofilm was less than the total CFU of a monospecies C. albicans biofilm. In contrast to the profuse hyphae verified in monospecies C. albicans biofilms, micrographies showed that the C. albicans/non-albicans Candida biofilms consisted of sparse yeast forms and profuse budding yeast cells that generated a network. These results suggested that C. albicans and the tested Candida species could co-exist in biofilms displaying apparent antagonism. The study provide the first description of C. albicans/C. rugosa mixed biofilm.

  3. Antibiofilm activity of carboxymethyl chitosan on the biofilms of non-Candida albicans Candida species.

    PubMed

    Tan, Yulong; Leonhard, Matthias; Moser, Doris; Schneider-Stickler, Berit

    2016-09-20

    Although most cases of candidiasis have been attributed to Candida albicans, non-C. albicans Candida species have been isolated in increasing numbers in patients. In this study, we determined the inhibition of carboxymethyl chitosan (CM-chitosan) on single and mixed species biofilm of non-albicans Candida species, including Candida tropicalis, Candida parapsilosis, Candida krusei and Candida glabrata. Biofilm by all tested species in microtiter plates were inhibited nearly 70%. CM-chitosan inhibited mixed species biofilm in microtiter plates and also on medical materials surfaces. To investigate the mechanism, the effect of CM-chitosan on cell viability and biofilm growth was employed. CM-chitosan inhibited Candida planktonic growth as well as adhesion. Further biofilm formation was inhibited with CM-chitosan added at 90min, 12h or 24h after biofilm initiation. CM-chitosan was not only able to inhibit the metabolic activity of Candida cells, but was also active upon the establishment and the development of biofilms. PMID:27261732

  4. Antibiofilm activity of carboxymethyl chitosan on the biofilms of non-Candida albicans Candida species.

    PubMed

    Tan, Yulong; Leonhard, Matthias; Moser, Doris; Schneider-Stickler, Berit

    2016-09-20

    Although most cases of candidiasis have been attributed to Candida albicans, non-C. albicans Candida species have been isolated in increasing numbers in patients. In this study, we determined the inhibition of carboxymethyl chitosan (CM-chitosan) on single and mixed species biofilm of non-albicans Candida species, including Candida tropicalis, Candida parapsilosis, Candida krusei and Candida glabrata. Biofilm by all tested species in microtiter plates were inhibited nearly 70%. CM-chitosan inhibited mixed species biofilm in microtiter plates and also on medical materials surfaces. To investigate the mechanism, the effect of CM-chitosan on cell viability and biofilm growth was employed. CM-chitosan inhibited Candida planktonic growth as well as adhesion. Further biofilm formation was inhibited with CM-chitosan added at 90min, 12h or 24h after biofilm initiation. CM-chitosan was not only able to inhibit the metabolic activity of Candida cells, but was also active upon the establishment and the development of biofilms.

  5. Comparison of the hemolytic activity between C. albicans and non-albicans Candida species.

    PubMed

    Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Vilela, Simone Furgeri Godinho; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2013-01-01

    The ability to produce enzymes, such as hemolysins, is an important virulence factor for the genus Candida.The objective of this study was to compare the hemolytic activity between C. albicansand non-albicans Candida species. Fifty strains of Candida species, isolated from the oral cavity of patients infected with HIV were studied. The isolates included the following species: C. albicans, C. dubliniensis, C. glabrata, C. tropicalis, C. krusei, C. parapsilosis, C. dubliniensis, C. norvegensis, C. lusitaniae, and C. guilliermondii. Hemolysin production was evaluated on Sabouraud dextrose agar containing chloramphenicol, blood, and glucose. A loop-full of pure Candidaculture was spot-inoculated onto plates and incubated at 37 ºC for 24 h in a 5% CO2 atmosphere. Hemolytic activity was defined as the formation of a translucent halo around the colonies. All C. albicansstrains that were studied produced hemolysins. Among the non-albicans Candidaspecies, 86% exhibited hemolytic activity. Only C. guilliermondiiand some C. parapsilosis isolates were negative for this enzyme. In conclusion, most non-albicans Candidaspecies had a similar ability to produce hemolysins when compared to C. albicans.

  6. Postantifungal Effect of Micafungin against the Species Complexes of Candida albicans and Candida parapsilosis

    PubMed Central

    Gil-Alonso, Sandra; Jauregizar, Nerea; Eraso, Elena; Quindós, Guillermo

    2015-01-01

    Micafungin is an effective antifungal agent useful for the therapy of invasive candidiasis. Candida albicans is the most common cause of invasive candidiasis; however, infections due to non-C. albicans species, such as Candida parapsilosis, are rising. Killing and postantifungal effects (PAFE) are important factors in both dose interval choice and infection outcome. The aim of this study was to determinate the micafungin PAFE against 7 C. albicans strains, 5 Candida dubliniensis, 2 Candida Africana, 3 C. parapsilosis, 2 Candida metapsilosis and 2 Candida orthopsilosis. For PAFE studies, cells were exposed to micafungin for 1 h at concentrations ranging from 0.12 to 8 μg/ml. Time-kill experiments (TK) were conducted at the same concentrations. Samples were removed at each time point (0-48 h) and viable counts determined. Micafungin (2 μg/ml) was fungicidal (≥ 3 log10 reduction) in TK against 5 out of 14 (36%) strains of C. albicans complex. In PAFE experiments, fungicidal endpoint was achieved against 2 out of 14 strains (14%). In TK against C. parapsilosis, 8 μg/ml of micafungin turned out to be fungicidal against 4 out 7 (57%) strains. Conversely, fungicidal endpoint was not achieved in PAFE studies. PAFE results for C. albicans complex (41.83 ± 2.18 h) differed from C. parapsilosis complex (8.07 ± 4.2 h) at the highest tested concentration of micafungin. In conclusion, micafungin showed significant differences in PAFE against C. albicans and C. parapsilosis complexes, being PAFE for the C. albicans complex longer than for the C. parapsilosis complex. PMID:26168269

  7. Postantifungal Effect of Micafungin against the Species Complexes of Candida albicans and Candida parapsilosis.

    PubMed

    Gil-Alonso, Sandra; Jauregizar, Nerea; Eraso, Elena; Quindós, Guillermo

    2015-01-01

    Micafungin is an effective antifungal agent useful for the therapy of invasive candidiasis. Candida albicans is the most common cause of invasive candidiasis; however, infections due to non-C. albicans species, such as Candida parapsilosis, are rising. Killing and postantifungal effects (PAFE) are important factors in both dose interval choice and infection outcome. The aim of this study was to determinate the micafungin PAFE against 7 C. albicans strains, 5 Candida dubliniensis, 2 Candida Africana, 3 C. parapsilosis, 2 Candida metapsilosis and 2 Candida orthopsilosis. For PAFE studies, cells were exposed to micafungin for 1 h at concentrations ranging from 0.12 to 8 μg/ml. Time-kill experiments (TK) were conducted at the same concentrations. Samples were removed at each time point (0-48 h) and viable counts determined. Micafungin (2 μg/ml) was fungicidal (≥ 3 log10 reduction) in TK against 5 out of 14 (36%) strains of C. albicans complex. In PAFE experiments, fungicidal endpoint was achieved against 2 out of 14 strains (14%). In TK against C. parapsilosis, 8 μg/ml of micafungin turned out to be fungicidal against 4 out 7 (57%) strains. Conversely, fungicidal endpoint was not achieved in PAFE studies. PAFE results for C. albicans complex (41.83 ± 2.18 h) differed from C. parapsilosis complex (8.07 ± 4.2 h) at the highest tested concentration of micafungin. In conclusion, micafungin showed significant differences in PAFE against C. albicans and C. parapsilosis complexes, being PAFE for the C. albicans complex longer than for the C. parapsilosis complex.

  8. Candida species biofilm and Candida albicans ALS3 polymorphisms in clinical isolates.

    PubMed

    Bruder-Nascimento, Ariane; Camargo, Carlos Henrique; Mondelli, Alessandro Lia; Sugizaki, Maria Fátima; Sadatsune, Terue; Bagagli, Eduardo

    2014-01-01

    Over the last decades, there have been important changes in the epidemiology of Candida infections. In recent years, Candida species have emerged as important causes of invasive infections mainly among immunocompromised patients. This study analyzed Candida spp. isolates and compared the frequency and biofilm production of different species among the different sources of isolation: blood, urine, vulvovaginal secretions and peritoneal dialysis fluid. Biofilm production was quantified in 327 Candida isolates obtained from patients attended at a Brazilian tertiary public hospital (Botucatu, Sao Paulo). C. albicans ALS3 gene polymorphism was also evaluated by determining the number of repeated motifs in the central domain. Of the 198 total biofilm-positive isolates, 72 and 126 were considered as low and high biofilm producers, respectively. Biofilm production by C. albicans was significantly lower than that by non-albicans isolates and was most frequently observed in C. tropicalis. Biofilm production was more frequent among bloodstream isolates than other clinical sources, in urine, the isolates displayed a peculiar distribution by presenting two distinct peaks, one containing biofilm-negative isolates and the other containing isolates with intense biofilm production. The numbers of tandem-repeat copies per allele were not associated with biofilm production, suggesting the evolvement of other genetic determinants.

  9. Silicone colonization by non-Candida albicans Candida species in the presence of urine.

    PubMed

    Silva, Sónia; Negri, Melyssa; Henriques, Mariana; Oliveira, Rosário; Williams, David; Azeredo, Joana

    2010-07-01

    Urinary tract infections (UTIs) are the most common nosocomial infections and 80 % are related to the use of urinary catheters. Furthermore, Candida species are responsible for around 15 % of UTIs and an increasing involvement of non-Candida albicans Candida (NCAC) species (e.g. Candida glabrata, Candida tropicalis and Candida parapsilosis) has been recognized. Given the fact that silicone is frequently used in the manufacture of urinary catheters, the aim of this work was to compare both the adhesion and biofilm formation on silicone of different urinary clinical isolates of NCAC species (i.e. C. glabrata, C. tropicalis and C. parapsilosis) in the presence of urine. Several clinical isolates of NCAC species recovered from patients with UTIs, together with reference strains of each species, were examined. Adhesion and biofilm formation were performed in artificial urine and the biofilm biomass was assessed by crystal violet staining. Hydrophobicity and surface charge of cells was determined by measuring contact angles and zeta potential, respectively. The number of viable cells in biofilms was determined by enumeration of c.f.u. after appropriate culture. The biofilm structure was also examined by confocal laser scanning microscopy (CLSM). The results showed that all isolates adhered to silicone in a species- and strain-dependent manner with C. parapsilosis showing the lowest and C. glabrata the highest levels of adhesion. However, these differences in adhesion abilities cannot be correlated with surface properties since all strains examined were hydrophilic and exhibited a similar zeta potential. Despite a higher number of cultivable cells being recovered after 72 h of incubation, stronger biofilm formation was not observed and CLSM showed an absence of extracellular polymeric material for all isolates examined. In summary, this work demonstrated that all tested NCAC species were able to adhere to and survive on silicone in the presence of urine. Furthermore, C

  10. The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata.

    PubMed

    Inglis, Diane O; Arnaud, Martha B; Binkley, Jonathan; Shah, Prachi; Skrzypek, Marek S; Wymore, Farrell; Binkley, Gail; Miyasato, Stuart R; Simison, Matt; Sherlock, Gavin

    2012-01-01

    The Candida Genome Database (CGD, http://www.candidagenome.org/) is an internet-based resource that provides centralized access to genomic sequence data and manually curated functional information about genes and proteins of the fungal pathogen Candida albicans and other Candida species. As the scope of Candida research, and the number of sequenced strains and related species, has grown in recent years, the need for expanded genomic resources has also grown. To answer this need, CGD has expanded beyond storing data solely for C. albicans, now integrating data from multiple species. Herein we describe the incorporation of this multispecies information, which includes curated gene information and the reference sequence for C. glabrata, as well as orthology relationships that interconnect Locus Summary pages, allowing easy navigation between genes of C. albicans and C. glabrata. These orthology relationships are also used to predict GO annotations of their products. We have also added protein information pages that display domains, structural information and physicochemical properties; bibliographic pages highlighting important topic areas in Candida biology; and a laboratory strain lineage page that describes the lineage of commonly used laboratory strains. All of these data are freely available at http://www.candidagenome.org/. We welcome feedback from the research community at candida-curator@lists.stanford.edu.

  11. Investigation of minor species Candida africana, Candida stellatoidea and Candida dubliniensis in the Candida albicans complex among Yaoundé (Cameroon) HIV-infected patients.

    PubMed

    Ngouana, Thierry K; Krasteva, Donika; Drakulovski, Pascal; Toghueo, Rufin K; Kouanfack, Charles; Ambe, Akaba; Reynes, Jacques; Delaporte, Eric; Boyom, Fabrice F; Mallié, Michèle; Bertout, Sébastien

    2015-01-01

    Minor species of the Candida albicans complex may cause overestimation of the epidemiology of C. albicans, and misidentifications could mask their implication in human pathology. Authors determined the occurrence of minor species of the C. albicans complex (C. africana, C. dubliniensis and C. stellatoidea) among Yaoundé HIV-infected patients, Cameroon. Stool, vaginal discharge, urine and oropharyngeal samples were analysed by mycological diagnosis. Isolates were identified by conventional methods and mass spectrometry (MS; carried out by the matrix-assisted laser desorption-ionisation time-of-flight MS protocol). Candida albicans isolates were thereafter submitted to the PCR amplification of the Hwp1 gene. The susceptibility of isolates to antifungal drugs was tested using the Clinical and Laboratory Standards Institute M27-A3 protocol. From 115 C. albicans obtained isolates, neither C. dubliniensis nor C. stellatoidea was observed; two strains of C. africana (422PV and 448PV) were identified by PCR electrophoretic profiles at 700 bp. These two C. africana strains were vaginal isolates. The isolate 448PV was resistant to ketoconazole at the minimal inhibitory concentration of 2 μg ml(-1), and showed reduced susceptibility to amphotericin B at 1 μg ml(-1). This first report on C. africana occurrence in Cameroon brings clues for the understanding of the global epidemiology of this yeast as well as that of minor species of the C. albicans complex.

  12. Yeasts isolated from Algerian infants's feces revealed a burden of Candida albicans species, non-albicans Candida species and Saccharomyces cerevisiae.

    PubMed

    Seddik, Hamza Ait; Ceugniez, Alexandre; Bendali, Farida; Cudennec, Benoit; Drider, Djamel

    2016-01-01

    This study aimed at showing the yeast diversity in feces of Algerian infants, aged between 1 and 24 months, hospitalized at Bejaia hospital (northeast side of the country). Thus, 20 colonies with yeast characteristics were isolated and identified using biochemical (ID32C Api system) and molecular (sequencing of ITS1-5.8S-ITS2 region) methods. Almost all colonies isolated (19 strains) were identified as Candida spp., with predominance of Candida albicans species, and one strain was identified as Saccharomyces cerevisiae. Screening of strains with inhibitory activities unveiled the potential of Candida parapsilosis P48L1 and Candida albicans P51L1 to inhibit the growth of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Further studies performed with these two Candida strains revealed their susceptibility to clinically used antifungal compounds and were then characterized for their cytotoxicity and hemolytic properties. On the other hand, Saccharomyces cerevisiae P9L1 isolated as well in this study was shown to be devoid of antagonism but resulted safe and overall usable as probiotic.

  13. Candida albicans and non-albicans species as etiological agent of vaginitis in pregnant and non-pregnant women.

    PubMed

    Babic, Mirela; Hukic, Mirsada

    2010-02-01

    Pregnancy represents a risk factor in the occurrence of vaginal candidosis. The objectives of our study were: to make determination of the microscopic findings of vaginal swab, frequency of Candida species in the culture of pregnant women and patients who are not pregnant, determine the Candida species in all cultures, and to determine the frequency and differences in the frequency of C. albicans and other non-albicans species. In one year study performed during 2006 year, we tested patients of Gynaecology and Obstetrics clinic of the Clinical Centre in Sarajevo and Gynaecology department of the General hospital in Sarajevo. 447 woman included in the study were separated in two groups: 203 pregnant (in the last trimester of pregnancy), and 244 non-pregnant woman in period of fertility. Each vaginal swab was examined microscopically. The yeast, number of colonies, and the species of Candida were determined on Sabouraud dextrose agar with presence of antibiotics. For determination of Candida species, we used germ tube test for detection of C. albicans, and cultivation on the selective medium and assimilation tests for detection of non-albicans species. The results indicated positive microscopic findings in the test group (40,9%), as well as greater number of positive cultures (46,8%). The most commonly detected species for both groups was C. albicans ( test group 40.9% and control group 23,0%). The most commonly detected non-albicans species for the test group were C. glabrata (4,2 %) and C. krusei (3,2%), and for the control group were C. glabrata (3,2%) and C. parapsilosis (3,2%). The microscopic findings correlated with the number of colonies in positive cultures. In the test group, we found an increased number of yeasts (64,3%), and the pseudopyphae and blastopores by microscopic examination as an indication of infection. In the control group, we found a small number of yeasts (64,6%) , in the form of blastopores, as an indication of the candida colonisation. Our

  14. Association of KPC-producing Klebsiella pneumoniae colonization or infection with Candida isolation and selection of non-albicans species.

    PubMed

    Papadimitriou-Olivgeris, Matthaios; Spiliopoulou, Anastasia; Fligou, Fotini; Manolopoulou, Patroula; Spiliopoulou, Iris; Vrettos, Theofanis; Dodou, Vasiliki; Filos, Kriton S; Anastassiou, Evangelos D; Marangos, Markos; Christofidou, Myrto

    2014-11-01

    Clinical specimens from 565 patients hospitalized in 2 intensive care units (ICUs A and B) during a 28-month period were cultured on appropriate media for isolation of Candida. Forty-nine (9%) patients had at least a Candida spp.-positive sample. Candida albicans was the predominant species isolated from 26 (53%) patients. Seventeen patients (3%) developed candidemia. Multivariate analysis showed that obesity, female gender, hospitalization during summer months, admission at ICU B, parenteral nutrition, administration of metronidazole, transplantation, and KPC-producing Klebsiella pneumoniae (KPC-Kp) infection were independently associated with Candida spp. isolation. Candidemia was associated with cortisone administration, KPC-Kp infection, and presence of colostomy or abdominal catheter. Administration of fluconazole was a protective factor for both Candida spp. isolation and infection, leading to selection of Candida non-albicans species. Among several risk factors, KPC-Kp infection and colonization are identified as statistically significant factors associated with Candida isolation, especially of non-albicans species.

  15. Presumptive identification of Candida species other than C. albicans, C. krusei, and C. tropicalis with the chromogenic medium CHROMagar Candida

    PubMed Central

    Hospenthal, Duane R; Beckius, Miriam L; Floyd, Karon L; Horvath, Lynn L; Murray, Clinton K

    2006-01-01

    Background CHROMagar Candida (CaC) is increasingly being reported as a medium used to differentiate Candida albicans from non-albicans Candida (NAC) species. Rapid identification of NAC can assist the clinician in selecting appropriate antifungal therapy. CaC is a differential chromogenic medium designed to identify C. albicans, C. krusei, and C. tropicalis based on colony color and morphology. Some reports have proposed that CaC can also reliably identify C. dubliniensis and C. glabrata. Methods We evaluated the usefulness of CaC in the identification of C. dubliniensis, C. famata, C. firmetaria, C. glabrata, C. guilliermondii, C. inconspicua, C. kefyr, C. lipolytica, C. lusitaniae, C. norvegensis, C. parapsilosis, and C. rugosa. Results Most NAC produced colonies that were shades of pink, lavender, or ivory. Several isolates of C. firmetaria and all C. inconspicua produced colonies difficult to differentiate from C. krusei. Most C. rugosa isolates produced unique colonies with morphology like C. krusei except in a light blue-green color. C. glabrata isolates produced small dark violet colonies that could be differentiated from the pink and lavender colors produced by other species. All seventeen isolates of C. dubliniensis produced green colonies similar to those produced by C. albicans. Conclusion C. glabrata and C. rugosa appear distinguishable from other species using CaC. Some NAC, including C. firmetaria and C. inconspicua, could be confused with C. krusei using this medium. PMID:16390552

  16. Prospective evaluation of the chromogenic medium CandiSelect 4 for differentiation and presumptive identification of non-Candida albicans Candida species.

    PubMed

    Zhao, Liang; de Hoog, G Sybren; Cornelissen, Akke; Lyu, Qian; Mou, Lili; Liu, Taohua; Cao, Yu; Vatanshenassan, Mansoureh; Kang, Yingqian

    2016-02-01

    Rapid identification of pathogenic yeasts is a crucial step in timely and appropriate antifungal therapy. For diagnostics in the clinical laboratory, simplified alternatives to barcoding are needed. CandiSelect 4 (CS4) medium, a chromogenic medium for isolation of clinical yeasts, allows routine recognition of Candida albicans and presumptive identification of Candida tropicalis, Candida glabrata, and Candida krusei. We evaluated an extension of this method with 46 non-Candida albicans Candida (NCAC) and 7 Malassezia species. The medium supported growth of all species tested and a wide diversity of cultural types were observed. Colony colours were in violet, turquoise (including green and blue), or white tinges. Eight NCAC species produced violet pigmentation similar to that of C. albicans. Most NCAC species, including C. glabrata and C. tropicalis were distributed in the turquoise group. Malassezia species were invariably blue.

  17. Prospective evaluation of the chromogenic medium CandiSelect 4 for differentiation and presumptive identification of non-Candida albicans Candida species.

    PubMed

    Zhao, Liang; de Hoog, G Sybren; Cornelissen, Akke; Lyu, Qian; Mou, Lili; Liu, Taohua; Cao, Yu; Vatanshenassan, Mansoureh; Kang, Yingqian

    2016-02-01

    Rapid identification of pathogenic yeasts is a crucial step in timely and appropriate antifungal therapy. For diagnostics in the clinical laboratory, simplified alternatives to barcoding are needed. CandiSelect 4 (CS4) medium, a chromogenic medium for isolation of clinical yeasts, allows routine recognition of Candida albicans and presumptive identification of Candida tropicalis, Candida glabrata, and Candida krusei. We evaluated an extension of this method with 46 non-Candida albicans Candida (NCAC) and 7 Malassezia species. The medium supported growth of all species tested and a wide diversity of cultural types were observed. Colony colours were in violet, turquoise (including green and blue), or white tinges. Eight NCAC species produced violet pigmentation similar to that of C. albicans. Most NCAC species, including C. glabrata and C. tropicalis were distributed in the turquoise group. Malassezia species were invariably blue. PMID:26781374

  18. Experimental hematogenous candidiasis caused by Candida krusei and Candida albicans: species differences in pathogenicity.

    PubMed Central

    Anaissie, E; Hachem, R; K-Tin-U, C; Stephens, L C; Bodey, G P

    1993-01-01

    Hematogenous infections caused by Candida krusei have been noted with increasing frequency, particularly in cancer patients receiving prophylaxis with antifungal triazoles. Progress in understanding the pathogenesis of this emerging infection has been limited by the lack of an animal model. We developed a CF1 mouse intravenous inoculation model of candidiasis to evaluate the pathogenicity of C. krusei in normal and immunosuppressed mice and to compare it with that of Candida albicans. Several inocula (10(6) to 10(8) CFU per animal) of two clinical strains of C. krusei and three American Type Culture Collection strains of C. albicans were tested. Groups of 20 mice each were injected with a single intravenous dose of one inoculum. Animals randomized to receive C. krusei were immunosuppressed by intraperitoneal injection of cyclophosphamide or the combination of cyclophosphamide plus cortisone acetate or they did not receive immunosuppressive agents (normal mice). One hundred percent mortality was observed in normal mice injected with 10(6) CFU of C. albicans per mouse compared with no mortality in normal mice that received 10(8) CFU of C. krusei per mouse (P < 0.01). Resistance to C. krusei infection was markedly lowered by immunosuppression, particularly by the combination of cyclophosphamide plus cortisone acetate, with a significantly shorter survival and a higher organ fungal burden in immunosuppressed than in normal animals (P < 0.01). Tissue infection was documented by culture and histopathologic findings in all examined organs. Images PMID:8454330

  19. Direct identification and recognition of yeast species from clinical material by using albicans ID and CHROMagar Candida plates.

    PubMed Central

    Baumgartner, C; Freydiere, A M; Gille, Y

    1996-01-01

    Two chromogenic media, Albicans ID and CHROMagar Candida agar plates, were compared with a reference medium, Sabouraud-chloramphenicol agar, and standard methods for the identification of yeast species. This study involved 951 clinical specimens. The detection rates for the two chromogenic media for polymicrobial specimens were 20% higher than that for the Sabouraud-chloramphenicol agar plates. The rates of identification of Candida albicans for Albicans ID and CHROMagar Candida agar plates were, respectively, 37.0 and 6.0% after 24 h of incubation and 93.6 and 92.2% after 72 h of incubation, with specificities of 99.8 and 100%. Furthermore, CHROMagar Candida plates identified 13 of 14 Candida tropicalis and 9 of 12 Candida krusei strains after 48 h of incubation. PMID:8789038

  20. Urinary tract infections and Candida albicans

    PubMed Central

    Behzadi, Payam; Behzadi, Elham

    2015-01-01

    Introduction Urinary tract candidiasis is known as the most frequent nosocomial fungal infection worldwide. Candida albicans is the most common cause of nosocomial fungal urinary tract infections; however, a rapid change in the distribution of Candida species is undergoing. Simultaneously, the increase of urinary tract candidiasis has led to the appearance of antifungal resistant Candida species. In this review, we have an in depth look into Candida albicans uropathogenesis and distribution of the three most frequent Candida species contributing to urinary tract candidiasis in different countries around the world. Material and methods For writing this review, Google Scholar –a scholarly search engine– (http://scholar.google.com/) and PubMed database (http://www.ncbi.nlm.nih.gov/pubmed/) were used. The most recently published original articles and reviews of literature relating to the first three Candida species causing urinary tract infections in different countries and the pathogenicity of Candida albicans were selected and studied. Results Although some studies show rapid changes in the uropathogenesis of Candida species causing urinary tract infections in some countries, Candida albicans is still the most important cause of candidal urinary tract infections. Conclusions Despite the ranking of Candida albicans as the dominant species for urinary tract candidiasis, specific changes have occurred in some countries. At this time, it is important to continue the surveillance related to Candida species causing urinary tract infections to prevent, control and treat urinary tract candidiasis in future. PMID:25914847

  1. Evaluation of the new chromogenic medium Candida ID 2 for isolation and identification of Candida albicans and other medically important Candida species.

    PubMed

    Eraso, Elena; Moragues, María D; Villar-Vidal, María; Sahand, Ismail H; González-Gómez, Nagore; Pontón, José; Quindós, Guillermo

    2006-09-01

    The usefulness of Candida ID 2 (CAID2) reformulated medium (bioMérieux, France) has been compared with that of the former Candida ID (CAID; bioMérieux), Albicans ID 2 (ALB2; bioMérieux), and CHROMagar Candida (CAC; Chromagar, France) chromogenic media for the isolation and presumptive identification of clinically relevant yeasts. Three hundred forty-five stock strains from culture collections, and 103 fresh isolates from different clinical specimens were evaluated. CAID2 permitted differentiation based on colony color between Candida albicans (cobalt blue; sensitivity, 91.7%; specificity, 97.2%) and Candida dubliniensis (turquoise blue; sensitivity, 97.9%; specificity, 96.6%). Candida tropicalis gave distinguishable pink-bluish colonies in 97.4% of the strains in CAID2 (sensitivity, 97.4%; specificity, 100%); the same proportion was reached in CAC, where colonies were blue-gray (sensitivity, 97.4%; specificity, 98.7%). CAC and CAID2 showed 100% sensitivity values for the identification of Candida krusei. However, with CAID2, experience is required to differentiate the downy aspect of the white colonies of C. krusei from other white-colony-forming species. The new CAID2 medium is a good candidate to replace CAID and ALB2, and it compares well to CAC for culture and presumptive identification of clinically relevant Candida species. CAID2 showed better results than CAC in some aspects, such as quicker growth and color development of colonies from clinical specimens, detection of mixed cultures, and presumptive differentiation between C. albicans and C. dubliniensis.

  2. Evaluation of the new chromogenic medium Candida ID 2 for isolation and identification of Candida albicans and other medically important Candida species.

    PubMed

    Eraso, Elena; Moragues, María D; Villar-Vidal, María; Sahand, Ismail H; González-Gómez, Nagore; Pontón, José; Quindós, Guillermo

    2006-09-01

    The usefulness of Candida ID 2 (CAID2) reformulated medium (bioMérieux, France) has been compared with that of the former Candida ID (CAID; bioMérieux), Albicans ID 2 (ALB2; bioMérieux), and CHROMagar Candida (CAC; Chromagar, France) chromogenic media for the isolation and presumptive identification of clinically relevant yeasts. Three hundred forty-five stock strains from culture collections, and 103 fresh isolates from different clinical specimens were evaluated. CAID2 permitted differentiation based on colony color between Candida albicans (cobalt blue; sensitivity, 91.7%; specificity, 97.2%) and Candida dubliniensis (turquoise blue; sensitivity, 97.9%; specificity, 96.6%). Candida tropicalis gave distinguishable pink-bluish colonies in 97.4% of the strains in CAID2 (sensitivity, 97.4%; specificity, 100%); the same proportion was reached in CAC, where colonies were blue-gray (sensitivity, 97.4%; specificity, 98.7%). CAC and CAID2 showed 100% sensitivity values for the identification of Candida krusei. However, with CAID2, experience is required to differentiate the downy aspect of the white colonies of C. krusei from other white-colony-forming species. The new CAID2 medium is a good candidate to replace CAID and ALB2, and it compares well to CAC for culture and presumptive identification of clinically relevant Candida species. CAID2 showed better results than CAC in some aspects, such as quicker growth and color development of colonies from clinical specimens, detection of mixed cultures, and presumptive differentiation between C. albicans and C. dubliniensis. PMID:16954270

  3. Candida albicans commensalism in the gastrointestinal tract.

    PubMed

    Neville, B Anne; d'Enfert, Christophe; Bougnoux, Marie-Elisabeth

    2015-11-01

    Candida albicans is a polymorphic yeast species that often forms part of the commensal gastrointestinal mycobiota of healthy humans. It is also an important opportunistic pathogen. A tripartite interaction involving C. albicans, the resident microbiota and host immunity maintains C. albicans in its commensal form. The influence of each of these factors on C. albicans carriage is considered herein, with particular focus on the mycobiota and the approaches used to study it, models of gastrointestinal colonization by C. albicans, the C. albicans genes and phenotypes that are necessary for commensalism and the host factors that influence C. albicans carriage.

  4. Prevalence and antifungal susceptibility of Candida albicans and its related species Candida dubliniensis and Candida africana isolated from vulvovaginal samples in a hospital of Argentina.

    PubMed

    Theill, Laura; Dudiuk, Catiana; Morano, Susana; Gamarra, Soledad; Nardin, María Elena; Méndez, Emilce; Garcia-Effron, Guillermo

    2016-01-01

    Candida africana taxonomical status is controversial. It was proposed as a separate species within the Candida albicans species complex; however, phylogenetic analyses suggested that it is an unusual variety of C. albicans. The prevalence of C. albicans-related species (Candida dubliniensis and C. africana) as vulvovaginal pathogens is not known in Argentina. Moreover, data on antifungal susceptibility of isolates causing vulvovaginal candidiasis is scarce. The aims of this study were to establish the prevalence of C. dubliniensis and C. africana in vaginal samples and to evaluate the antifungal susceptibilities of vaginal C. albicans species complex strains. We used a molecular-based method coupled with a new pooled DNA extraction methodology to differentiate C. dubliniensis and C. africana in a collection of 287 strains originally identified as C. albicans isolated from an Argentinian hospital during 2013. Antifungal susceptibilities to fluconazole, clotrimazole, itraconazole, voriconazole, nystatin, amphotericin B and terbinafine were evaluated by using the CLSI M27-A3 and M27-S4 documents. Of the 287 isolates, 4 C. dubliniensis and one C. africana strains (1.39% and 0.35% prevalence, respectively) were identified. This is the first description of C. africana in Argentina and its identification was confirmed by sequencing the ITS2 region and the hwp1 gene. C. dubliniensis and C. africana strains showed very low MIC values for all the tested antifungals. Fluconazole-reduced-susceptibility and azole cross-resistance were observed in 3.55% and 1.41% of the C. albicans isolates, respectively. These results demonstrate that antifungal resistance is still a rare phenomenon in this kind of isolates.

  5. Prevalence and antifungal susceptibility of Candida albicans and its related species Candida dubliniensis and Candida africana isolated from vulvovaginal samples in a hospital of Argentina.

    PubMed

    Theill, Laura; Dudiuk, Catiana; Morano, Susana; Gamarra, Soledad; Nardin, María Elena; Méndez, Emilce; Garcia-Effron, Guillermo

    2016-01-01

    Candida africana taxonomical status is controversial. It was proposed as a separate species within the Candida albicans species complex; however, phylogenetic analyses suggested that it is an unusual variety of C. albicans. The prevalence of C. albicans-related species (Candida dubliniensis and C. africana) as vulvovaginal pathogens is not known in Argentina. Moreover, data on antifungal susceptibility of isolates causing vulvovaginal candidiasis is scarce. The aims of this study were to establish the prevalence of C. dubliniensis and C. africana in vaginal samples and to evaluate the antifungal susceptibilities of vaginal C. albicans species complex strains. We used a molecular-based method coupled with a new pooled DNA extraction methodology to differentiate C. dubliniensis and C. africana in a collection of 287 strains originally identified as C. albicans isolated from an Argentinian hospital during 2013. Antifungal susceptibilities to fluconazole, clotrimazole, itraconazole, voriconazole, nystatin, amphotericin B and terbinafine were evaluated by using the CLSI M27-A3 and M27-S4 documents. Of the 287 isolates, 4 C. dubliniensis and one C. africana strains (1.39% and 0.35% prevalence, respectively) were identified. This is the first description of C. africana in Argentina and its identification was confirmed by sequencing the ITS2 region and the hwp1 gene. C. dubliniensis and C. africana strains showed very low MIC values for all the tested antifungals. Fluconazole-reduced-susceptibility and azole cross-resistance were observed in 3.55% and 1.41% of the C. albicans isolates, respectively. These results demonstrate that antifungal resistance is still a rare phenomenon in this kind of isolates. PMID:26922471

  6. Nanoscale effects of caspofungin against two yeast species, Saccharomyces cerevisiae and Candida albicans.

    PubMed

    Formosa, C; Schiavone, M; Martin-Yken, H; François, J M; Duval, R E; Dague, E

    2013-08-01

    Saccharomyces cerevisiae and Candida albicans are model yeasts for biotechnology and human health, respectively. We used atomic force microscopy (AFM) to explore the effects of caspofungin, an antifungal drug used in hospitals, on these two species. Our nanoscale investigation revealed similar, but also different, behaviors of the two yeasts in response to treatment with the drug. While administration of caspofungin induced deep cell wall remodeling in both yeast species, as evidenced by a dramatic increase in chitin and decrease in β-glucan content, changes in cell wall composition were more pronounced with C. albicans cells. Notably, the increase of chitin was proportional to the increase in the caspofungin dose. In addition, the Young modulus of the cell was three times lower for C. albicans cells than for S. cerevisiae cells and increased proportionally with the increase of chitin, suggesting differences in the molecular organization of the cell wall between the two yeast species. Also, at a low dose of caspofungin (i.e., 0.5× MIC), the cell surface of C. albicans exhibited a morphology that was reminiscent of cells expressing adhesion proteins. Interestingly, this morphology was lost at high doses of the drug (i.e., 4× MIC). However, the treatment of S. cerevisiae cells with high doses of caspofungin resulted in impairment of cytokinesis. Altogether, the use of AFM for investigating the effects of antifungal drugs is relevant in nanomedicine, as it should help in understanding their mechanisms of action on fungal cells, as well as unraveling unexpected effects on cell division and fungal adhesion.

  7. Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction.

    PubMed

    Choi, Hyemin; Lee, Dong Gun

    2015-08-01

    Lycopene, a well-known carotenoid pigment found in tomatoes, has shown various biological functions. In our previous report, we showed that lycopene induces two apoptotic hallmarks, plasma membrane depolarization and G2/M cell cycle arrest, in Candida albicans. In this study, we investigated the ability of lycopene to induce apoptosis, and the mechanism by which it regulates apoptosis. FITC-Annexin V staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis, and 4',6-diamidino-2-phenylindole (DAPI) assay showed that lycopene exerted its antifungal activity during the early and late stages of apoptosis in C. albicans. During apoptosis, intracellular reactive oxygen species (ROS) were increased, and specifically the hydroxyl radicals contributed to the fungal cell death. Furthermore, lycopene treatment caused intracellular Ca(2+) overload and mitochondrial dysfunction, such as mitochondrial depolarization and cytochrome c release from the mitochondria to the cytoplasm. At last caspase activation was triggered. In summary, lycopene exerted its antifungal effects against C. albicans by inducing apoptosis via ROS production and mitochondrial dysfunction.

  8. GENETIC CONTROL OF CANDIDA ALBICANS BIOFILM DEVELOPMENT

    PubMed Central

    Finkel, Jonathan S.; Mitchell, Aaron P.

    2014-01-01

    Preface Candida species cause frequent infections due to their ability to form biofilms – surface-associated microbial communities – primarily on implanted medical devices. Increasingly, mechanistic studies have identified the gene products that participate directly in Candida albicans biofilm formation, as well as the regulatory circuitry and networks that control their expression and activity. These studies have revealed new mechanisms and signals that govern C. albicans biofilm formation and associated drug resistance, thus providing biological insight and therapeutic foresight. PMID:21189476

  9. Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans.

    PubMed

    Gleason, Julie E; Li, Cissy X; Odeh, Hana M; Culotta, Valeria C

    2014-06-01

    Candida albicans is a pathogenic yeast of important public health relevance. Virulence of C. albicans requires a copper and zinc containing superoxide dismutase (SOD1), but the biology of C. albicans SOD1 is poorly understood. To this end, C. albicans SOD1 activation was examined in baker's yeast (Saccharomyces cerevisiae), a eukaryotic expression system that has proven fruitful for the study of SOD1 enzymes from invertebrates, plants, and mammals. In spite of the 80% similarity between S. cerevisiae and C. albicans SOD1 molecules, C. albicans SOD1 is not active in S. cerevisiae. The SOD1 appears incapable of productive interactions with the copper chaperone for SOD1 (CCS1) of S. cerevisiae. C. albicans SOD1 contains a proline at position 144 predicted to dictate dependence on CCS1. By mutation of this proline, C. albicans SOD1 gained activity in S. cerevisiae, and this activity was independent of CCS1. We identified a putative CCS1 gene in C. albicans and created heterozygous and homozygous gene deletions at this locus. Loss of CCS1 resulted in loss of SOD1 activity, consistent with its role as a copper chaperone. C. albicans CCS1 also restored activity to C. albicans SOD1 expressed in S. cerevisiae. C. albicans CCS1 is well adapted for activating its partner SOD1 from C. albicans, but not SOD1 from S. cerevisiae. In spite of the high degree of homology between the SOD1 and CCS1 molecules in these two fungal species, there exists a species-specific barrier in CCS-SOD interactions which may reflect the vastly different lifestyles of the pathogenic versus the noninfectious yeast.

  10. Candida albicans isolates from a Malaysian hospital exhibit more potent phospholipase and haemolysin activities than non-albicans Candida isolates.

    PubMed

    Chin, V K; Foong, K J; Maha, A; Rusliza, B; Norhafizah, M; Ng, K P; Chong, P P

    2013-12-01

    This study was aimed at determining the phospholipase and haemolysin activity of Candida isolates in Malaysia. A total of 37 Candida clinical isolates representing seven species, Candida albicans (12), Candida tropicalis (8), Candida glabrata (4), Candida parapsilosis (1), Candida krusei (4), Candida orthopsilosis (1) and Candida rugosa (7) were tested. In vitro phospholipase activity was determined by using egg yolk plate assay whereas in vitro haemolysin activity was tested by using blood plate assay on sheep blood Sabouraud's dextrose agar (SDA) enriched with glucose. Phospholipase activity was detected in 75% (9 out of 12) of the C. albicans isolates. Among the 25 non- C. albicans Candida isolates, phospholipase activity was detected in only 24% of these isolates. The phospholipase activity of C. albicans was significantly higher than that of the non- C. albicans Candida isolates (P=0.002). Haemolysin activity was detected in 100% of the C. albicans, C. tropicalis, C. glabrata, C. krusei, C. parapsilosis, and C. orthopsilosis isolates while 75% of the C. krusei isolates and 12.3% of the C. rugosa isolates showed haemolysin activity. The haemolytic activity of C. albicans was significantly higher than that of the non- C. albicans Candida isolates (P=0.0001).The findings in this study indicate that C. albicans isolates in Malaysia may possess greater virulence potential than the non-albicans species.

  11. Study on the Structure of Candida Albicans-Staphylococcus Epidermidis Mixed Species Biofilm on Polyvinyl Chloride Biomaterial.

    PubMed

    Chen, Ying; Wang, Xiao-Yan; Huang, Yun-Chao; Zhao, Guang-Qiang; Lei, Yu-Jie; Ye, Lian-Hua; Huang, Qiu-Bo; Duan, Wan-Shi

    2015-11-01

    The objective of the study was to establish an in vitro model of Candida albicans-Staphylococcus epidermidis mixed species biofilm (BF) on polyvinyl chloride (PVC) material, and to investigate the formation and the structure of mixed species BF formation using a combined approach of confocal laser scanning microscope (CLSM), scanning electron microscope (SEM), and 3D image reconstruction technique. Mixed species BF is achieved by co-incubating Staphylococcus epidermidis bacteria (ATCC35984) and Candida albicans fungal (ATCC10231) with PVC pieces in Tris-buffered saline. BF formation was examined at 2, 6, 12, 24, 48, and 72 h of co-culture. Thickness of these BFs and the number, and percentage of viable cells in BFs were measured. CT scan images of BFs were obtained using CLSM and SEM and reconstructed 3D images of mixed species BF were acquired, in an effort to examine structure of the BF. Staphylococcus epidermidis attached to various forms of candida albicans (spores, pseudohyphae, and hyphae), formed complex and dense mesh arrays. The BF is constituted of a large number of viable and dead pathogens, the surface of mixed species BF is uneven, with living pathogens predominating protrusive portions and dead pathogens aggregating in concaves. Mixed species BF formation on the surface of PVC material was found to be a dynamic process, with rapid growth being at 24 h of co-culture, maximal thickness peaked at 48 h. These mixed species BF matured at 48-72 h. Significant differences were observed in the proportion of viable cells between interior, middle, and outer layers of BFs (p < 0.05). Mixed species BF Candida albicans-Staphylococcus epidermidis is sophisticated in structure. The combined approach involving CLSM, SEM, and 3D image reconstruction technique is ideal for the investigation of mixed species BF on PVC material.

  12. Study on the Structure of Candida Albicans-Staphylococcus Epidermidis Mixed Species Biofilm on Polyvinyl Chloride Biomaterial.

    PubMed

    Chen, Ying; Wang, Xiao-Yan; Huang, Yun-Chao; Zhao, Guang-Qiang; Lei, Yu-Jie; Ye, Lian-Hua; Huang, Qiu-Bo; Duan, Wan-Shi

    2015-11-01

    The objective of the study was to establish an in vitro model of Candida albicans-Staphylococcus epidermidis mixed species biofilm (BF) on polyvinyl chloride (PVC) material, and to investigate the formation and the structure of mixed species BF formation using a combined approach of confocal laser scanning microscope (CLSM), scanning electron microscope (SEM), and 3D image reconstruction technique. Mixed species BF is achieved by co-incubating Staphylococcus epidermidis bacteria (ATCC35984) and Candida albicans fungal (ATCC10231) with PVC pieces in Tris-buffered saline. BF formation was examined at 2, 6, 12, 24, 48, and 72 h of co-culture. Thickness of these BFs and the number, and percentage of viable cells in BFs were measured. CT scan images of BFs were obtained using CLSM and SEM and reconstructed 3D images of mixed species BF were acquired, in an effort to examine structure of the BF. Staphylococcus epidermidis attached to various forms of candida albicans (spores, pseudohyphae, and hyphae), formed complex and dense mesh arrays. The BF is constituted of a large number of viable and dead pathogens, the surface of mixed species BF is uneven, with living pathogens predominating protrusive portions and dead pathogens aggregating in concaves. Mixed species BF formation on the surface of PVC material was found to be a dynamic process, with rapid growth being at 24 h of co-culture, maximal thickness peaked at 48 h. These mixed species BF matured at 48-72 h. Significant differences were observed in the proportion of viable cells between interior, middle, and outer layers of BFs (p < 0.05). Mixed species BF Candida albicans-Staphylococcus epidermidis is sophisticated in structure. The combined approach involving CLSM, SEM, and 3D image reconstruction technique is ideal for the investigation of mixed species BF on PVC material. PMID:27352339

  13. Development of DNA probes for Candida albicans

    SciTech Connect

    Cheung, L.L.; Hudson, J.B.

    1988-07-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both /sup 32/P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis.

  14. Effect of Piper betle and Brucea javanica on the Differential Expression of Hyphal Wall Protein (HWP1) in Non-Candida albicans Candida (NCAC) Species

    PubMed Central

    Jamil, Nur Alyaa; Jamaludin, Nor Hazwani; Nordin, Mohd-Al-Faisal

    2013-01-01

    The study aimed to identify the HWP1 gene in non-Candida albicans Candida species and the differential expression of HWP1 following treatment with Piper betle and Brucea javanica aqueous extracts. All candidal suspensions were standardized to 1 × 106 cells/mL. The suspension was incubated overnight at 37 °C (C. parapsilosis, 35°C). Candidal cells were treated with each respective extract at 1, 3, and 6 mg/mL for 24 h. The total RNA was extracted and reverse transcription-polymerase chain reaction was carried out with a specific primer of HWP1. HWP1 mRNAs were only detected in C. albicans, C. parapsilosis, and C. tropicalis. Exposing the cells to the aqueous extracts has affected the expression of HWP1 transcripts. C. albicans, C. parapsilosis, and C. tropicalis have demonstrated different intensity of mRNA. Compared to P. betle, B. javanica demonstrated a higher suppression on the transcript levels of HWP1 in all samples. HWP1 was not detected in C. albicans following the treatment of B. javanica at 1 mg/mL. In contrast, C. parapsilosis and C. tropicalis were shown to have HWP1 regulation. However, the expression levels were reduced upon the addition of higher concentration of B. javanica extract. P. betle and B. javanica have potential to be developed as oral health product. PMID:23853657

  15. Scanning electron and confocal scanning laser microscopy imaging of the ultrastructure and viability of vaginal Candida albicans and non- albicans species adhered to an intrauterine contraceptive device.

    PubMed

    Paiva, Luciene C Farias; Donatti, Lucélia; Patussi, Eliana V; Svizdinski, Terezinha I E; Lopes-Consolaro, Márcia E

    2010-10-01

    Although bacterial biofilms have been studied in detail, adhesion of Candida albicans and non-albicans species to an intrauterine contraceptive device (IUD) is not clear. The objective of this study was to evaluate aspects of imaging of the ultrastructure and viability of vaginal yeasts adhered to different parts of an IUD, through scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). We studied yeasts isolated from different patients with vulvovaginal candidiasis: C. albicans, C. glabrata, C. guillermondii, C. parapsilosis, C. tropicalis, and Saccharomyces cerevisiae. A suspension of the each yeast was prepared and incubated with IUD parts (tail, without copper, and copper-covered). SEM and CSLM showed that all the vaginal yeasts adhered to all the parts of the IUD and demonstrated viability, including 30 days after contact for C. albicans. Possibly irregularities of IUD surface contribute to the adherence process. Although all of the IUD parts contribute to retention of yeasts in the genital tract, high concentration of yeast cells on the tail may indicate the importance of this segment in maintaining the colonization by yeast cells because the tail forms a bridge between the external environment, the vagina that is colonized by yeast cells, and the upper genital tract where there is no colonization. PMID:20804637

  16. Rapid detection and identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-alpha-demethylase (L1A1) gene fragment.

    PubMed

    Burgener-Kairuz, P; Zuber, J P; Jaunin, P; Buchman, T G; Bille, J; Rossier, M

    1994-08-01

    PCR of a Candida albicans cytochrome P-450 lanosterol-alpha-demethylase (P450-L1A1) gene segment is a rapid and sensitive method of detection in clinical specimens. This enzyme is a target for azole antifungal action. In order to directly detect and identify the clinically most important species of Candida, we cloned and sequenced 1.3-kbp fragments of the cytochrome P450-L1A1 genes from Torulopsis (Candida) glabrata and from Candida krusei. These segments were compared with the published sequences from C. albicans and Candida tropicalis. Amplimers for gene sequences highly conserved throughout the fungal kingdom were first used; positive PCR results were obtained for C. albicans, T. glabrata, C. krusei, Candida parapsilosis, C. tropicalis, Cryptococcus neoformans, and Trichosporon beigelii DNA extracts. Primers were then selected for a highly variable region of the gene, allowing the species-specific detection from purified DNA of C. albicans, T. glabrata, C. krusei, and C. tropicalis. The assay sensitivity as tested for C. albicans in seeded clinical specimens such as blood, peritoneal fluid, or urine was 10 to 20 cells per 0.1 ml. Compared with results obtained by culture, the sensitivity, specificity, and efficiency of the species-specific nested PCR tested with 80 clinical specimens were 71, 95, and 83% for C. albicans and 100, 97, and 98% for T. glabrata, respectively.

  17. Milestones in Candida albicans Gene Manipulation

    PubMed Central

    Samaranayake, Dhanushki P.; Hanes, Steven D.

    2011-01-01

    In the United States, candidemia is one of the most common hospital-acquired infections and is estimated to cause 10,000 deaths per year. The species Candida albicans is responsible for the majority of these cases. As C. albicans is capable of developing resistance against the currently available drugs, understanding the molecular basis of drug resistance, finding new cellular targets, and further understanding the overall mechanism of C. albicans pathogenesis are important goals. To study this pathogen it is advantageous to manipulate its genome. Numerous strategies of C. albicans gene manipulation have been introduced. This review evaluates a majority of these strategies and should be a helpful guide for researchers to identify gene targeting strategies to suit their requirements. PMID:21511047

  18. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans

    PubMed Central

    Sztajer, Helena; Szafranski, Szymon P; Tomasch, Jürgen; Reck, Michael; Nimtz, Manfred; Rohde, Manfred; Wagner-Döbler, Irene

    2014-01-01

    Polymicrobial biofilms are of large medical importance, but relatively little is known about the role of interspecies interactions for their physiology and virulence. Here, we studied two human pathogens co-occuring in the oral cavity, the opportunistic fungus Candida albicans and the caries-promoting bacterium Streptococcus mutans. Dual-species biofilms reached higher biomass and cell numbers than mono-species biofilms, and the production of extracellular polymeric substances (EPSs) by S. mutans was strongly suppressed, which was confirmed by scanning electron microscopy, gas chromatography–mass spectrometry and transcriptome analysis. To detect interkingdom communication, C. albicans was co-cultivated with a strain of S. mutans carrying a transcriptional fusion between a green fluorescent protein-encoding gene and the promoter for sigX, the alternative sigma factor of S. mutans, which is induced by quorum sensing signals. Strong induction of sigX was observed in dual-species biofilms, but not in single-species biofilms. Conditioned media from mixed biofilms but not from C. albicans or S. mutans cultivated alone activated sigX in the reporter strain. Deletion of comS encoding the synthesis of the sigX-inducing peptide precursor abolished this activity, whereas deletion of comC encoding the competence-stimulating peptide precursor had no effect. Transcriptome analysis of S. mutans confirmed induction of comS, sigX, bacteriocins and the downstream late competence genes, including fratricins, in dual-species biofilms. We show here for the first time the stimulation of the complete quorum sensing system of S. mutans by a species from another kingdom, namely the fungus C. albicans, resulting in fundamentally changed virulence properties of the caries pathogen. PMID:24824668

  19. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans.

    PubMed

    Sztajer, Helena; Szafranski, Szymon P; Tomasch, Jürgen; Reck, Michael; Nimtz, Manfred; Rohde, Manfred; Wagner-Döbler, Irene

    2014-11-01

    Polymicrobial biofilms are of large medical importance, but relatively little is known about the role of interspecies interactions for their physiology and virulence. Here, we studied two human pathogens co-occuring in the oral cavity, the opportunistic fungus Candida albicans and the caries-promoting bacterium Streptococcus mutans. Dual-species biofilms reached higher biomass and cell numbers than mono-species biofilms, and the production of extracellular polymeric substances (EPSs) by S. mutans was strongly suppressed, which was confirmed by scanning electron microscopy, gas chromatography-mass spectrometry and transcriptome analysis. To detect interkingdom communication, C. albicans was co-cultivated with a strain of S. mutans carrying a transcriptional fusion between a green fluorescent protein-encoding gene and the promoter for sigX, the alternative sigma factor of S. mutans, which is induced by quorum sensing signals. Strong induction of sigX was observed in dual-species biofilms, but not in single-species biofilms. Conditioned media from mixed biofilms but not from C. albicans or S. mutans cultivated alone activated sigX in the reporter strain. Deletion of comS encoding the synthesis of the sigX-inducing peptide precursor abolished this activity, whereas deletion of comC encoding the competence-stimulating peptide precursor had no effect. Transcriptome analysis of S. mutans confirmed induction of comS, sigX, bacteriocins and the downstream late competence genes, including fratricins, in dual-species biofilms. We show here for the first time the stimulation of the complete quorum sensing system of S. mutans by a species from another kingdom, namely the fungus C. albicans, resulting in fundamentally changed virulence properties of the caries pathogen.

  20. Candida albicans Biofilms and Human Disease.

    PubMed

    Nobile, Clarissa J; Johnson, Alexander D

    2015-01-01

    In humans, microbial cells (including bacteria, archaea, and fungi) greatly outnumber host cells. Candida albicans is the most prevalent fungal species of the human microbiota; this species asymptomatically colonizes many areas of the body, particularly the gastrointestinal and genitourinary tracts of healthy individuals. Alterations in host immunity, stress, resident microbiota, and other factors can lead to C. albicans overgrowth, causing a wide range of infections, from superficial mucosal to hematogenously disseminated candidiasis. To date, most studies of C. albicans have been carried out in suspension cultures; however, the medical impact of C. albicans (like that of many other microorganisms) depends on its ability to thrive as a biofilm, a closely packed community of cells. Biofilms are notorious for forming on implanted medical devices, including catheters, pacemakers, dentures, and prosthetic joints, which provide a surface and sanctuary for biofilm growth. C. albicans biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental perturbations, making biofilm-based infections a significant clinical challenge. Here, we review our current knowledge of biofilms formed by C. albicans and closely related fungal species. PMID:26488273

  1. The Candida Pathogenic Species Complex

    PubMed Central

    Turner, Siobhán A.; Butler, Geraldine

    2014-01-01

    Candida species are the most common causes of fungal infection. Approximately 90% of infections are caused by five species: Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei. Three (C. albicans, C. tropicalis, and C. parapsilosis) belong to the CTG clade, in which the CTG codon is translated as serine and not leucine. C. albicans remains the most commonly isolated but is decreasing relative to the other species. The increasing incidence of C. glabrata is related to its reduced susceptibility to azole drugs. Genome analysis suggests that virulence in the CTG clade is associated with expansion of gene families, particularly of cell wall genes. Similar independent processes took place in the C. glabrata species group. Gene loss and expansion in an ancestor of C. glabrata may have resulted in preadaptations that enabled pathogenicity. PMID:25183855

  2. Candida albicans erythroascorbate peroxidase regulates intracellular methylglyoxal and reactive oxygen species independently of D-erythroascorbic acid.

    PubMed

    Kwak, Min-Kyu; Song, Sung-Hyun; Ku, MyungHee; Kang, Sa-Ouk

    2015-07-01

    Candida albicans D-erythroascorbate peroxidase (EAPX1), which can catalyze the oxidation of D-erythroascorbic acid (EASC) to water, was observed to be inducible in EAPX1-deficient and EAPX1-overexpressing cells via activity staining. EAPX1-deficient cells have remarkably increased intracellular reactive oxygen species and methylglyoxal independent of the intracellular EASC content. The increased methylglyoxal caused EAPX1-deficient cells to activate catalase-peroxidase and cytochrome c peroxidase, which led to defects in cell growth, viability, mitochondrial respiration, filamentation and virulence. These findings indicate that EAPX1 mediates cell differentiation and virulence by regulating intracellular methylglyoxal along with oxidative stresses, regardless of endogenous EASC biosynthesis or alternative oxidase expression. PMID:25957768

  3. Performance of Candida ID, a New Chromogenic Medium for Presumptive Identification of Candida Species, in Comparison to CHROMagar Candida

    PubMed Central

    Willinger, Birgit; Hillowoth, Cornelia; Selitsch, Brigitte; Manafi, Mammad

    2001-01-01

    Candida ID agar allows identification of Candida albicans and differentiation of other Candida species. In comparison with CHROMagar Candida, we evaluated the performance of this medium directly from 596 clinical specimens. In particular, detection of C. albicans after 24 h of incubation was easier on Candida ID (sensitivity, 96.8%) than on CHROMagar (sensitivity, 49.6%). PMID:11574621

  4. Melittin induces apoptotic features in Candida albicans

    SciTech Connect

    Park, Cana; Lee, Dong Gun

    2010-03-26

    Melittin is a well-known antimicrobial peptide with membrane-active mechanisms. In this study, it was found that Melittin exerted its antifungal effect via apoptosis. Candida albicans exposed to Melittin showed the increased reactive oxygen species (ROS) production, measured by DHR-123 staining. Fluorescence microscopy staining with FITC-annexin V, TUNEL and DAPI further confirmed diagnostic markers of yeast apoptosis including phosphatidylserine externalization, and DNA and nuclear fragmentation. The current study suggests that Melittin possesses an antifungal effect with another mechanism promoting apoptosis.

  5. In vitro modification of Candida albicans invasiveness.

    PubMed

    Fontenla de Petrino, S E; de Jorrat, M E; Sirena, A; Valdez, J C; Mesón, O

    1986-05-01

    Candida albicans produces germ-tubes (GT) when it is incubated in animal or human serum. This dimorphism is responsible for its invasive ability. The purpose of the present paper is (1) to evaluate the ability of rat peritoneal macrophages to inhibit GT production of ingested Candida albicans, obtained from immunized rats and then activated in vitro with Candida-induced lymphokines; (2) to determinate any possible alteration of phagocytic and candidacidal activities. The phagocytes were obtained from rats immunized with viable C. albicans. Some of them were exposed to Candida-induced lymphokines in order to activate the macrophages in vitro. The monolayers of activated, immune and normal macrophages were infected with a C. albicans suspension during 4 hr. Activated macrophages presented not only the highest phagocytic and candidacidal activities but a noticeable inhibition of GT formation and incremented candidacidal activity.

  6. In vitro modification of Candida albicans invasiveness.

    PubMed

    Fontenla de Petrino, S E; de Jorrat, M E; Sirena, A; Valdez, J C; Mesón, O

    1986-05-01

    Candida albicans produces germ-tubes (GT) when it is incubated in animal or human serum. This dimorphism is responsible for its invasive ability. The purpose of the present paper is (1) to evaluate the ability of rat peritoneal macrophages to inhibit GT production of ingested Candida albicans, obtained from immunized rats and then activated in vitro with Candida-induced lymphokines; (2) to determinate any possible alteration of phagocytic and candidacidal activities. The phagocytes were obtained from rats immunized with viable C. albicans. Some of them were exposed to Candida-induced lymphokines in order to activate the macrophages in vitro. The monolayers of activated, immune and normal macrophages were infected with a C. albicans suspension during 4 hr. Activated macrophages presented not only the highest phagocytic and candidacidal activities but a noticeable inhibition of GT formation and incremented candidacidal activity. PMID:3523254

  7. High throughput multiplex-PCR for direct detection and diagnosis of dermatophyte species, Candida albicans and Candida parapsilosis in clinical specimen.

    PubMed

    Vahidnia, Ali; Bekers, Wouter; Bliekendaal, Harry; Spaargaren, Joke

    2015-06-01

    We have developed and validated a multiplex-PCR method for detection of dermatophyte spp., Candida albicans and parapsilosis for routine diagnostics. Our m-PCR showed excellent concordance with culture results in 475 clinical samples. Through the rapid diagnosis by our m-PCR, clinicians are able to initiate adequate antimycotic therapy much earlier.

  8. Mixed biofilms formed by C. albicans and non-albicans species: a study of microbial interactions.

    PubMed

    Santos, Jéssica Diane dos; Piva, Elisabete; Vilela, Simone Furgeri Godinho; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Most Candida infections are related to microbial biofilms often formed by the association of different species. The objective of this study was to evaluate the interactions between Candida albicans and non-albicans species in biofilms formed in vitro. The non-albicans species studied were:Candida tropicalis, Candida glabrata and Candida krusei. Single and mixed biofilms (formed by clinical isolates of C. albicans and non-albicans species) were developed from standardized suspensions of each strain (10(7) cells/mL), on flat-bottom 96-well microtiter plates for 48 hour. These biofilms were analyzed by counting colony-forming units (CFU/mL) in Candida HiChrome agar and by determining cell viability, using the XTT 2,3-bis (2-methoxy-4-nitro-5-sulphophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide colorimetric assay. The results for both the CFU/mL count and the XTT colorimetric assay showed that all the species studied were capable of forming high levels of in vitro biofilm. The number of CFU/mL and the metabolic activity of C. albicans were reduced in mixed biofilms with non-albicans species, as compared with a single C. albicans biofilm. Among the species tested, C. krusei exerted the highest inhibitory action against C. albicans. In conclusion, C. albicans established antagonistic interactions with non-albicans Candida species in mixed biofilms.

  9. Chlorhexidine markedly potentiates the oxidants scavenging abilities of Candida albicans.

    PubMed

    Ginsburg, I; Koren, E; Feuerstein, O; Zogakis, I P; Shalish, M; Gorelik, S

    2015-10-01

    The oxidant scavenging ability (OSA) of catalase-rich Candida albicans is markedly enhanced by chlorhexidine digluconate (CHX), polymyxin B, the bile salt ursodeoxycholate and by lysophosphatidylcholine, which all act as detergents facilitating the penetration of oxidants and their intracellular decomposition. Quantifications of the OSA of Candida albicans were measured by a highly sensitive luminol-dependent chemiluminescence assay and by the Thurman's assay, to quantify hydrogen peroxide (H2O2). The OSA enhancing activity by CHX depends to some extent on the media on which candida grew. The OSA of candida treated by CHX was modulated by whole human saliva, red blood cells, lysozyme, cationic peptides and by polyphenols. Concentrations of CHX, which killed over 95 % of Candida albicans cells, did not affect the cells' abilities to scavenge reactive oxygen species (ROS). The OSA of Candida cells treated by CHX is highly refractory to H2O2 (50 mM) but is strongly inhibited by hypochlorous acid, lecithin, trypan blue and by heparin. We speculate that similarly to catalase-rich red blood cells, Candida albicans and additional catalase-rich microbiota may also have the ability to scavenge oxidants and thus can protect catalase-negative anaerobes and facultative anaerobes cariogenic streptococci against peroxide and thus secure their survival in the oral cavity.

  10. Chlorhexidine markedly potentiates the oxidants scavenging abilities of Candida albicans.

    PubMed

    Ginsburg, I; Koren, E; Feuerstein, O; Zogakis, I P; Shalish, M; Gorelik, S

    2015-10-01

    The oxidant scavenging ability (OSA) of catalase-rich Candida albicans is markedly enhanced by chlorhexidine digluconate (CHX), polymyxin B, the bile salt ursodeoxycholate and by lysophosphatidylcholine, which all act as detergents facilitating the penetration of oxidants and their intracellular decomposition. Quantifications of the OSA of Candida albicans were measured by a highly sensitive luminol-dependent chemiluminescence assay and by the Thurman's assay, to quantify hydrogen peroxide (H2O2). The OSA enhancing activity by CHX depends to some extent on the media on which candida grew. The OSA of candida treated by CHX was modulated by whole human saliva, red blood cells, lysozyme, cationic peptides and by polyphenols. Concentrations of CHX, which killed over 95 % of Candida albicans cells, did not affect the cells' abilities to scavenge reactive oxygen species (ROS). The OSA of Candida cells treated by CHX is highly refractory to H2O2 (50 mM) but is strongly inhibited by hypochlorous acid, lecithin, trypan blue and by heparin. We speculate that similarly to catalase-rich red blood cells, Candida albicans and additional catalase-rich microbiota may also have the ability to scavenge oxidants and thus can protect catalase-negative anaerobes and facultative anaerobes cariogenic streptococci against peroxide and thus secure their survival in the oral cavity. PMID:26223507

  11. Mechanisms involved in the inhibition of glycolysis by cyanide and antimycin A in Candida albicans and its reversal by hydrogen peroxide. A common feature in Candida species.

    PubMed

    Peña, Antonio; Sánchez, Norma Silvia; González-López, Omar; Calahorra, Martha

    2015-12-01

    In Candida albicans, cyanide and antimycin A inhibited K(+) transport, not only with ethanol-O2 as the substrate, but also with glucose. The reason for this was that they inhibited not only respiration, but also fermentation, decreasing ATP production. Measurements of oxygen levels in cell suspensions allowed identification of the electron pathways involved. NADH fluorescence levels increased in the presence of the inhibitors, indirectly indicating lower levels of NAD(+) and so pointing to glyceraldehyde-3-phosphate dehydrogenase as the limiting step responsible for the inhibition of glycolysis, which was confirmed by the levels of glycolytic intermediaries. The cyanide effect could be reversed by hydrogen peroxide, mainly due to an activity by which H2O2 can be reduced by electrons flowing from NADH through a pathway that can be inhibited by antimycin A, and appears to be a cytochrome c peroxidase. Therefore, the inhibition of glycolysis by the respiratory inhibitors seems to be due to the decreased availability of NAD(+), resulting in a decreased activity of glyceraldehyde-3-phosphate dehydrogenase. Compartmentalization of pyridine nucleotides in favor of the mitochondria can contribute to explaining the low fermentation capacity of C. albicans. Similar results were obtained with three C. albicans strains, Candida dubliniensis and, to a lower degree, Candida parapsilosis.

  12. Global Identification of Biofilm-Specific Proteolysis in Candida albicans

    PubMed Central

    Winter, Michael B.; Salcedo, Eugenia C.; Lohse, Matthew B.; Hartooni, Nairi; Gulati, Megha; Sanchez, Hiram; Takagi, Julie; Hube, Bernhard; Andes, David R.

    2016-01-01

    ABSTRACT Candida albicans is a fungal species that is part of the normal human microbiota and also an opportunistic pathogen capable of causing mucosal and systemic infections. C. albicans cells proliferate in a planktonic (suspension) state, but they also form biofilms, organized and tightly packed communities of cells attached to a solid surface. Biofilms colonize many niches of the human body and persist on implanted medical devices, where they are a major source of new C. albicans infections. Here, we used an unbiased and global substrate-profiling approach to discover proteolytic activities produced specifically by C. albicans biofilms, compared to planktonic cells, with the goal of identifying potential biofilm-specific diagnostic markers and targets for therapeutic intervention. This activity-based profiling approach, coupled with proteomics, identified Sap5 (Candidapepsin-5) and Sap6 (Candidapepsin-6) as major biofilm-specific proteases secreted by C. albicans. Fluorogenic peptide substrates with selectivity for Sap5 or Sap6 confirmed that their activities are highly upregulated in C. albicans biofilms; we also show that these activities are upregulated in other Candida clade pathogens. Deletion of the SAP5 and SAP6 genes in C. albicans compromised biofilm development in vitro in standard biofilm assays and in vivo in a rat central venous catheter biofilm model. This work establishes secreted proteolysis as a promising enzymatic marker and potential therapeutic target for Candida biofilm formation. PMID:27624133

  13. Characterization of extracellular nucleotide metabolism in Candida albicans.

    PubMed

    Rodrigues, Lisa; Russo-Abrahão, Thais; Cunha, Rodrigo A; Gonçalves, Teresa; Meyer-Fernandes, José Roberto

    2016-01-01

    Candida albicans is the most frequent agent of human disseminated fungal infection. Ectophosphatase and ectonucleotidase activities are known to influence the infectious potential of several microbes, including other non-albicans species of Candida. With the present work we aim to characterize these ecto-enzymatic activities in C. albicans. We found that C. albicans does not have a classical ecto-5'-nucleotidase enzyme and 5'AMP is cleaved by a phosphatase instead of exclusively by a nucleotidase that also can use 3'AMP as a substrate. Moreover, these enzymatic activities are not dependent on secreted soluble enzymes and change when the yeast cells are under infection conditions, including low pH, and higher temperature and CO2 content.

  14. Adaptive immune responses to Candida albicans infection.

    PubMed

    Richardson, Jonathan P; Moyes, David L

    2015-01-01

    Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections.

  15. Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis.

    PubMed

    Tati, Swetha; Davidow, Peter; McCall, Andrew; Hwang-Wong, Elizabeth; Rojas, Isolde G; Cormack, Brendan; Edgerton, Mira

    2016-03-01

    Pathogenic mechanisms of Candida glabrata in oral candidiasis, especially because of its inability to form hyphae, are understudied. Since both Candida albicans and C. glabrata are frequently co-isolated in oropharyngeal candidiasis (OPC), we examined their co-adhesion in vitro and observed adhesion of C. glabrata only to C. albicans hyphae microscopically. Mice were infected sublingually with C. albicans or C. glabrata individually, or with both species concurrently, to study their ability to cause OPC. Infection with C. glabrata alone resulted in negligible infection of tongues; however, colonization by C. glabrata was increased by co-infection or a pre-established infection with C. albicans. Furthermore, C. glabrata required C. albicans for colonization of tongues, since decreasing C. albicans burden with fluconazole also reduced C. glabrata. C. albicans hyphal wall adhesins Als1 and Als3 were important for in vitro adhesion of C. glabrata and to establish OPC. C. glabrata cell wall protein coding genes EPA8, EPA19, AWP2, AWP7, and CAGL0F00181 were implicated in mediating adhesion to C. albicans hyphae and remarkably, their expression was induced by incubation with germinated C. albicans. Thus, we found a near essential requirement for the presence of C. albicans for both initial colonization and establishment of OPC infection by C. glabrata.

  16. Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis

    PubMed Central

    Tati, Swetha; Davidow, Peter; McCall, Andrew; Hwang-Wong, Elizabeth; Rojas, Isolde G.; Cormack, Brendan; Edgerton, Mira

    2016-01-01

    Pathogenic mechanisms of Candida glabrata in oral candidiasis, especially because of its inability to form hyphae, are understudied. Since both Candida albicans and C. glabrata are frequently co-isolated in oropharyngeal candidiasis (OPC), we examined their co-adhesion in vitro and observed adhesion of C. glabrata only to C. albicans hyphae microscopically. Mice were infected sublingually with C. albicans or C. glabrata individually, or with both species concurrently, to study their ability to cause OPC. Infection with C. glabrata alone resulted in negligible infection of tongues; however, colonization by C. glabrata was increased by co-infection or a pre-established infection with C. albicans. Furthermore, C. glabrata required C. albicans for colonization of tongues, since decreasing C. albicans burden with fluconazole also reduced C. glabrata. C. albicans hyphal wall adhesins Als1 and Als3 were important for in vitro adhesion of C. glabrata and to establish OPC. C. glabrata cell wall protein coding genes EPA8, EPA19, AWP2, AWP7, and CAGL0F00181 were implicated in mediating adhesion to C. albicans hyphae and remarkably, their expression was induced by incubation with germinated C. albicans. Thus, we found a near essential requirement for the presence of C. albicans for both initial colonization and establishment of OPC infection by C. glabrata. PMID:27029023

  17. Photodynamic Inactivation of Candida albicans with Imidazoacridinones: Influence of Irradiance, Photosensitizer Uptake and Reactive Oxygen Species Generation.

    PubMed

    Taraszkiewicz, Aleksandra; Szewczyk, Grzegorz; Sarna, Tadeusz; Bielawski, Krzysztof P; Nakonieczna, Joanna

    2015-01-01

    The increasing applicability of antifungal treatments, the limited range of available drug classes and the emergence of drug resistance in Candida spp. suggest the need for new treatment options. To explore the applicability of C. albicans photoinactivation, we examined nine structurally different imidazoacridinone derivatives as photosensitizing agents. The most effective derivatives showed a >10(4)-fold reduction of viable cell numbers. The fungicidal action of the three most active compounds was compared at different radiant powers (3.5 to 63 mW/cm2), and this analysis indicated that 7 mW/cm2 was the most efficient. The intracellular accumulation of these compounds in fungal cells correlated with the fungicidal activity of all 9 derivatives. The lack of effect of verapamil, an inhibitor targeting Candida ABC efflux pumps, suggests that these imidazoacridinones are not substrates for ABC transporters. Thus, unlike azoles, a major class of antifungals used against Candida, ABC transporter-mediated resistance is unlikely. Electron paramagnetic resonance (EPR)-spin trapping data suggested that the fungicidal light-induced action of these derivatives might depend on the production of superoxide anion. The highest generation rate of superoxide anion was observed for 1330H, 1610H, and 1611. Singlet oxygen production was also detected upon the irradiation of imidazoacridinone derivatives with UV laser light, with a low to moderate yield, depending on the type of compound. Thus, imidazoacridinone derivatives examined in the present study might act via mixed type I/type II photodynamic mechanism. The presented data indicate lack of direct correlation between the structures of studied imidazoacridinones, cell killing ability, and ROS production. However, we showed for the first time that for imidazoacridinones not only intracellular accumulation is necessary prerequisite of lethal photosensitization of C. albicans, but also localization within particular cellular

  18. Photodynamic Inactivation of Candida albicans with Imidazoacridinones: Influence of Irradiance, Photosensitizer Uptake and Reactive Oxygen Species Generation.

    PubMed

    Taraszkiewicz, Aleksandra; Szewczyk, Grzegorz; Sarna, Tadeusz; Bielawski, Krzysztof P; Nakonieczna, Joanna

    2015-01-01

    The increasing applicability of antifungal treatments, the limited range of available drug classes and the emergence of drug resistance in Candida spp. suggest the need for new treatment options. To explore the applicability of C. albicans photoinactivation, we examined nine structurally different imidazoacridinone derivatives as photosensitizing agents. The most effective derivatives showed a >10(4)-fold reduction of viable cell numbers. The fungicidal action of the three most active compounds was compared at different radiant powers (3.5 to 63 mW/cm2), and this analysis indicated that 7 mW/cm2 was the most efficient. The intracellular accumulation of these compounds in fungal cells correlated with the fungicidal activity of all 9 derivatives. The lack of effect of verapamil, an inhibitor targeting Candida ABC efflux pumps, suggests that these imidazoacridinones are not substrates for ABC transporters. Thus, unlike azoles, a major class of antifungals used against Candida, ABC transporter-mediated resistance is unlikely. Electron paramagnetic resonance (EPR)-spin trapping data suggested that the fungicidal light-induced action of these derivatives might depend on the production of superoxide anion. The highest generation rate of superoxide anion was observed for 1330H, 1610H, and 1611. Singlet oxygen production was also detected upon the irradiation of imidazoacridinone derivatives with UV laser light, with a low to moderate yield, depending on the type of compound. Thus, imidazoacridinone derivatives examined in the present study might act via mixed type I/type II photodynamic mechanism. The presented data indicate lack of direct correlation between the structures of studied imidazoacridinones, cell killing ability, and ROS production. However, we showed for the first time that for imidazoacridinones not only intracellular accumulation is necessary prerequisite of lethal photosensitization of C. albicans, but also localization within particular cellular

  19. Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis

    PubMed Central

    2011-01-01

    Background Sterol biosynthesis is an essential pathway for fungal survival, and is the biochemical target of many antifungal agents. The antifungal drugs most widely used to treated fungal infections are compounds that inhibit cytochrome P450-dependent C14α-demethylase (CYP51), but other enzymes of this pathway, such as squalene synthase (SQS) which catalyses the first committed step in sterol biosynthesis, could be viable targets. The aim of this study was to evaluate the antifungal activity of SQS inhibitors on Candida albicans, Candida tropicalis and Candida parapsilopsis strains. Methods Ten arylquinuclidines that act as SQS inhibitors were tested as antiproliferative agents against three ATCC strains and 54 clinical isolates of Candida albicans, Candida tropicalis and Candida parapsilopsis. Also, the morphological alterations induced in the yeasts by the experimental compounds were evaluated by fluorescence and transmission electron microscopy. Results The most potent arylquinuclidine derivative (3-[1'-{4'-(benzyloxy)-phenyl}]-quinuclidine-2-ene) (WSP1267) had a MIC50 of 2 μg/ml for all species tested and MIC90 varying from 4 μg/ml to 8 μg/ml. Ultrathin sections of C. albicans treated with 1 μg/ml of WSP1267 showed several ultrastructural alterations, including (a) loss of cell wall integrity, (b) detachment of the plasma membrane from the fungal cell wall, (c) accumulation of small vesicles in the periplasmic region, (d) presence of large electron-dense vacuoles and (e) significantly increased cell size and cell wall thickness. In addition, fluorescence microscopy of cells labelled with Nile Red showed an accumulation of lipid droplets in the cytoplasm of treated yeasts. Nuclear staining with DAPI revealed the appearance of uncommon yeast buds without a nucleus or with two nuclei. Conclusion Taken together, our data demonstrate that arylquinuclidine derivatives could be useful as lead compounds for the rational synthesis of new antifungal drugs. PMID

  20. Diallyl disulphide depletes glutathione in Candida albicans

    PubMed Central

    Lemar, Katey M.; Aon, Miguel A.; Cortassa, Sonia; O’Rourke, Brian; T. Müller, Carsten; Lloyd, David

    2008-01-01

    Using two-photon scanning laser microscopy, we investigated the effect of an Allium sativum (garlic) constituent, diallyl disulphide (DADS), on key physiological functions of the opportunistic pathogen Candida albicans. A short 30 min exposure to 0.5 mm DADS followed by removal induced 70% cell death (50% necrotic, 20% apoptotic) within 2 h, increasing to 75% after 4 h. The early intracellular events associated with DADS-induced cell death were monitored with two-photon fluorescence microscopy to track mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS) and NADH or reduced glutathione (GSH) under aerobic conditions. DADS treatment decreased intracellular GSH and elevated intracellular ROS levels. Additionally, DADS induced a marked decrease of ΔΨm and lowered respiration in cell suspensions and isolated mitochondria. In vitro kinetic experiments in cell-free extracts suggest that glutathione-S-transferase (GST) is one of the intracellular targets of DADS. Additional targets were also identified, including inhibition of a site or sites between complexes II-IV in the electron transport chain, as well as the mitochondrial ATP-synthase. The results indicate that DADS is an effective antifungal agent able to trigger cell death in Candida, most probably by eliciting oxidative stress as a consequence of thiol depletion and impaired mitochondrial function. PMID:17534841

  1. Effect of Marine Polyunsaturated Fatty Acids on Biofilm Formation of Candida albicans and Candida dubliniensis

    PubMed Central

    Thibane, Vuyisile S.; Kock, Johan L. F.; Ells, Ruan; van Wyk, Pieter W. J.; Pohl, Carolina H.

    2010-01-01

    The effect of marine polyunsaturated fatty acids on biofilm formation by the human pathogens Candida albicans and Candida dubliniensis was investigated. It was found that stearidonic acid (18:4 n-3), eicosapentaenoic acid (20:5 n-3), docosapentaenoic acid (22:5 n-3) and docosahexaenoic acid (22:6 n-3) have an inhibitory effect on mitochondrial metabolism of both C. albicans and C. dubliniensis and that the production of biofilm biomass by C. dubliniensis was more susceptible to these fatty acids than C. albicans. Ultrastructural differences, which may be due to increased oxidative stress, were observed between treated and untreated cells of C. albicans and C. dubliniensis with formation of rough cell walls by both species and fibrillar structures in C. dubliniensis. These results indicate that marine polyunsaturated fatty acids may be useful in the treatment and/or prevention of biofilms formed by these pathogenic yeasts. PMID:21116408

  2. Molecular epidemiology of Candida albicans and its closely related yeasts Candida dubliniensis and Candida africana.

    PubMed

    Romeo, Orazio; Criseo, Giuseppe

    2009-01-01

    We performed a molecular study to determine the occurrence of Candida albicans, Candida africana, and Candida dubliniensis in different clinical samples. The study provides new insights into the epidemiology of candidiasis in hospitalized patients in three hospitals in southern Italy. It also reports the first detailed epidemiological data concerning the occurrence of C. africana in clinical samples.

  3. Molecular Epidemiology of Candida albicans and Its Closely Related Yeasts Candida dubliniensis and Candida africana▿

    PubMed Central

    Romeo, Orazio; Criseo, Giuseppe

    2009-01-01

    We performed a molecular study to determine the occurrence of Candida albicans, Candida africana, and Candida dubliniensis in different clinical samples. The study provides new insights into the epidemiology of candidiasis in hospitalized patients in three hospitals in southern Italy. It also reports the first detailed epidemiological data concerning the occurrence of C. africana in clinical samples. PMID:18987171

  4. Candida albicans escapes from mouse neutrophils.

    PubMed

    Ermert, David; Niemiec, Maria J; Röhm, Marc; Glenthøj, Andreas; Borregaard, Niels; Urban, Constantin F

    2013-08-01

    Candida albicans, the most commonly isolated human fungal pathogen, is able to grow as budding yeasts or filamentous forms, such as hyphae. The ability to switch morphology has been attributed a crucial role for the pathogenesis of C. albicans. To mimic disseminated candidiasis in humans, the mouse is the most widely used model organism. Neutrophils are essential immune cells to prevent opportunistic mycoses. To explore potential differences between the rodent infection model and the human host, we compared the interactions of C. albicans with neutrophil granulocytes from mice and humans. We revealed that murine neutrophils exhibited a significantly lower ability to kill C. albicans than their human counterparts. Strikingly, C. albicans yeast cells formed germ tubes upon internalization by murine neutrophils, eventually rupturing the neutrophil membrane and thereby, killing the phagocyte. On the contrary, growth and subsequent escape of C. albicans are blocked inside human neutrophils. According to our findings, this blockage in human neutrophils might be a result of higher levels of MPO activity and the presence of α-defensins. We therefore outline differences in antifungal immune defense between humans and mouse strains, which facilitates a more accurate interpretation of in vivo results.

  5. Antifungal Activity of Selenium Nanoparticles Synthesized by Bacillus species Msh-1 Against Aspergillus fumigatus and Candida albicans

    PubMed Central

    Shakibaie, Mojtaba; Salari Mohazab, Naser; Ayatollahi Mousavi, Seyyed Amin

    2015-01-01

    Background: Fungal infections affect various parts of the body and can be difficult to treat. Aspergillus infection causes a spectrum of diverse diseases particularly in lung according to host immunity. The two major entities are invasive pulmonary aspergillosis and chronic pulmonary aspergillosis. Candida infections can be superficial or invasive. Superficial infections often affect the skin or mucous membranes. However, invasive fungal infections are often life-threatening. Advances in nanotechnology have opened new horizons in nanomedicine, allowing the synthesis of nanoparticles that can be assembled into complex architectures. Novel studies and technologies are devoted to understanding the mechanisms of disease for the design of new drugs. Objectives: In the present study, the antifungal activity of biogenic selenium nanoparticles (Se NPs) against Aspergillus fumigatus and Candida albicans was investigated. Materials and Methods: Se-reducing bacteria previously identified as Bacillus sp. MSh-1 were used for the intracellular biosynthesis of elemental Se NPs. The shape, size, and purity of the extracted NPs were determined with various instrumental techniques. The nanoparticles antifungal characterization mainly derives from the following pathways: (i) to generate sustained flux of nano-ions from the compounds that deposited on special substrates or imbedded in colloidal or semisolid matrices. (ii) To transport active those ions to sensitive targets on plasma membrane of fungi. Results: The results of energy-dispersive X-ray demonstrated that the purified NPs consisted of only Se. In addition, transmission electron micrographs showed that 120- to 140-nm spherical Se NPs were the most common. An antifungal assay was performed with a standard Clinical and Laboratory Standards Institute broth microdilution method. Minimum inhibitory concentration (MIC) measurements of the antifungal activity of the Se NPs against C. albicans (70 μg/mL) and A. fumigatus (100

  6. Comparison of the in vitro activity of echinocandins against Candida albicans, Candida dubliniensis, and Candida africana by time-kill curves.

    PubMed

    Gil-Alonso, Sandra; Jauregizar, Nerea; Cantón, Emilia; Eraso, Elena; Quindós, Guillermo

    2015-05-01

    Candida albicans remains the most common fungal pathogen. This species is closely related to 2 phenotypically similar cryptic species, Candida dubliniensis and Candida africana. This study aims to compare the antifungal activities of echinocandins against 7 C. albicans, 5 C. dubliniensis, and 2 C. africana strains by time-kill methodology. MIC values were similar for the 3 species; however, differences in killing activity were observed among species, isolates, and echinocandins. Echinocandins produced weak killing activity against the 3 species. In all drugs, the fungicidal endpoint (99.9% mortality) was reached at ≤31 h with ≥0.5 μg/mL for anidulafungin in 4 C. albicans and 1 C. dubliniensis, for caspofungin in 1 C. albicans and 2 C. dubliniensis, and for micafungin in 4 C. albicans and 1 C. dubliniensis. None of echinocandins showed lethality against C. africana. Identification of these new cryptic species and time-kill studies would be recommendable when echinocandin treatment fails.

  7. Neutrophil activation by Candida glabrata but not Candida albicans promotes fungal uptake by monocytes.

    PubMed

    Duggan, Seána; Essig, Fabian; Hünniger, Kerstin; Mokhtari, Zeinab; Bauer, Laura; Lehnert, Teresa; Brandes, Susanne; Häder, Antje; Jacobsen, Ilse D; Martin, Ronny; Figge, Marc Thilo; Kurzai, Oliver

    2015-09-01

    Candida albicans and Candida glabrata account for the majority of candidiasis cases worldwide. Although both species are in the same genus, they differ in key virulence attributes. Within this work, live cell imaging was used to examine the dynamics of neutrophil activation after confrontation with either C. albicans or C. glabrata. Analyses revealed higher phagocytosis rates of C. albicans than C. glabrata that resulted in stronger PMN (polymorphonuclear cells) activation by C. albicans. Furthermore, we observed differences in the secretion of chemokines, indicating chemotactic differences in PMN signalling towards recruitment of further immune cells upon confrontation with Candida spp. Supernatants from co-incubations of neutrophils with C. glabrata primarily attracted monocytes and increased the phagocytosis of C. glabrata by monocytes. In contrast, PMN activation by C. albicans resulted in recruitment of more neutrophils. Two complex infection models confirmed distinct targeting of immune cell populations by the two Candida spp.: In a human whole blood infection model, C. glabrata was more effectively taken up by monocytes than C. albicans and histopathological analyses of murine model infections confirmed primarily monocytic infiltrates in C. glabrata kidney infection in contrast to PMN-dominated infiltrates in C. albicans infection. Taken together, our data demonstrate that the human opportunistic fungi C. albicans and C. glabrata are differentially recognized by neutrophils and one outcome of this differential recognition is the preferential uptake of C. glabrata by monocytes.

  8. The parasexual lifestyle of Candida albicans.

    PubMed

    Bennett, Richard J

    2015-12-01

    Candida albicans is both a prevalent human commensal and the most commonly encountered human fungal pathogen. This lifestyle is dependent on the ability of the fungus to undergo rapid genetic and epigenetic changes, often in response to specific environmental cues. A parasexual cycle in C. albicans has been defined that includes several unique properties when compared to the related model yeast, Saccharomyces cerevisiae. Novel features include strict regulation of mating via a phenotypic switch, enhanced conjugation within a sexual biofilm, and a program of concerted chromosome loss in place of a conventional meiosis. It is expected that several of these adaptations co-evolved with the ability of C. albicans to colonize the mammalian host.

  9. A Candida albicans PeptideAtlas

    PubMed Central

    Vialas, Vital; Sun, Zhi; Penha, Carla Verónica Loureiro y; Carrascal, Montserrat; Abian, Joaquin; Monteoliva, Lucía; Deutsch, Eric W.; Aebersold, Ruedi; Moritz, Robert L.; Gil, Concha

    2013-01-01

    Candida albicans public proteomic data sets, though growing steadily in the last few years, still have a very limited presence in online repositories. We report here the creation of a C. albicans PeptideAtlas comprising near 22000 distinct peptides at a 0.24 % False Discovery Rate (FDR) that account for over 2500 canonical proteins at a 1.2% FDR. Based on data from 16 experiments, we attained coverage of 41% of the C.albicans open reading frame sequences (ORFs) in the database used for the searches. This PeptideAtlas provides several useful features, including comprehensive protein and peptide-centered search capabilities and visualization tools that establish a solid basis for the study of basic biological mechanisms key to virulence and pathogenesis such as dimorphism, adherence, and apoptosis. Further, it is a valuable resource for the selection of candidate proteotypic peptides for targeted proteomic experiments via selected reaction monitoring (SRM) or SWATH-MS. PMID:23811049

  10. Candida albicans adhesion to composite resin materials.

    PubMed

    Bürgers, Ralf; Schneider-Brachert, Wulf; Rosentritt, Martin; Handel, Gerhard; Hahnel, Sebastian

    2009-09-01

    The adhesion of Candida albicans to dental restorative materials in the human oral cavity may promote the occurrence of oral candidosis. This study aimed to compare the susceptibility of 14 commonly used composite resin materials (two compomers, one ormocer, one novel silorane, and ten conventional hybrid composites) to adhere Candida albicans. Differences in the amount of adhering fungi should be related to surface roughness, hydrophobicity, and the type of matrix. Cylindrical specimens of each material were made according to the manufacturers' instructions. Surface roughness R (a) was assessed by perthometer measurements and the degree of hydrophobicity by computerized contact angle analysis. Specimens were incubated with a reference strain of C. albicans (DMSZ 1386), and adhering fungi were quantified by using a bioluminometric assay in combination with an automated plate reader. Statistical differences were analyzed by the Kruskal-Wallis test and Mann-Whitney U test. Spearman's rank correlation coefficients were calculated to assess correlations. Median R (a) of the tested composite resin materials ranged between 0.04 and 0.23 microm, median contact angles between 69.2 degrees and 86.9 degrees . The two compomers and the ormocer showed lower luminescence intensities indicating less adhesion of fungi than all tested conventional hybrid composites. No conclusive correlation was found between surface roughness, hydrophobicity, and the amount of adhering C. albicans.

  11. Adherence ability of Candida africana: a comparative study with Candida albicans and Candida dubliniensis.

    PubMed

    Romeo, Orazio; De Leo, Filomena; Criseo, Giuseppe

    2011-07-01

    In this study, we compared the adherence ability to human Hela cells and biofilm formation of three closely related Candida yeast. In our experiments, Candida africana showed poor adhesion ability to human Hela cells and the absence of biofilm formation on polyvinyl chloride strips. Conversely, Candida albicans and Candida dubliniensis formed mature biofilms and stable attachment to Hela cells. To our knowledge, this is the first comparative study reporting data on biofilm formation and adherence to human Hela cells by C. africana.

  12. Adherence and receptor relationships of Candida albicans.

    PubMed Central

    Calderone, R A; Braun, P C

    1991-01-01

    The cell surface of Candida albicans is composed of a variety of polysaccharides such as glucan, chitin, and mannan. The first two components primarily provide structure, while the mannan, often covalently linked to protein, constitutes the major antigen of the organism. Mannoproteins also have enzymatic activity (acid protease) and ligand-receptor functions. The complement receptors of C. albicans appear to be mannoproteins that are required for the adherence of the organism to endothelial cells. This is certainly true of the CR3-like protein of C. albicans. Proof that the CR3 is the Candida receptor for endothelial cells is derived from two observations. First, mutants lacking CR3 activity are less adherent in vitro and, in fact, less virulent. Second, the ligand recognized by the CR3 receptor (C3bi) as well as anti-CR3 antibodies blocks adherence of the organism to endothelial cells. The CR2 of C. albicans appears to promote the adherence of the organism to plastic substrates. Unlike the CR2 of mammalian cells, the Candida CR2 recognizes ligands containing the RGD sequence of amino acids in addition to the C3d ligand, which does not contain the RGD sequence. There is uncertainty as to whether the Candida CR2 and CR3 are, in fact, different proteins. A mannoprotein has also been described as the adhesin for epithelial cells. In this case, the receptor has a lectinlike activity and recognizes fucose- or glucosamine-containing glycoproteins of epithelial cells, depending on the strain of C. albicans. The oligosaccharide component of the receptor is probably not involved in ligand recognition and may serve to stabilize the receptor. However, the oligosaccharide factor 6 epitope of mannan may also provide adhesin activity in the recognition of epithelial cells. Mannoproteins can be extracted from cells by a number of reagents. Zymolyase, for instance, tends to remove structural mannoproteins, which contain relatively little protein and are linked to glucan. Reagents

  13. Candida albicans and Enterococcus faecalis in the gut

    PubMed Central

    Garsin, Danielle A; Lorenz, Michael C

    2013-01-01

    The fungus Candida albicans and the gram-positive bacterium Enterococcus faecalis are both normal residents of the human gut microbiome and cause opportunistic disseminated infections in immunocompromised individuals. Using a nematode infection model, we recently showed that co-infection resulted in less pathology and less mortality than infection with either species alone and this was partly explained by an interkingdom signaling event in which a bacterial-derived product inhibits hyphal morphogenesis of C. albicans. In this addendum we discuss these findings in the contest of other described bacterial-fungal interactions and recent data suggesting a potentially synergistic relationship between these two species in the mouse gut as well. We suggest that E. faecalis and C. albicans promote a mutually beneficial association with the host, in effect choosing a commensal lifestyle over a pathogenic one. PMID:23941906

  14. Oxidative stress of photodynamic antimicrobial chemotherapy inhibits Candida albicans virulence

    NASA Astrophysics Data System (ADS)

    Kato, Ilka Tiemy; Prates, Renato Araujo; Tegos, George P.; Hamblin, Michael R.; Simões Ribeiro, Martha

    2011-03-01

    Photodynamic antimicrobial chemotherapy (PACT) is based on the principal that microorganisms will be inactivated using a light source combined to a photosensitizing agent in the presence of oxygen. Oxidative damage of cell components occurs by the action of reactive oxygen species leading to cell death for microbial species. It has been demonstrated that PACT is highly efficient in vitro against a wide range of pathogens, however, there is limited information for its in vivo potential. In addition, it has been demonstrated that sublethal photodynamic inactivation may alter the virulence determinants of microorganisms. In this study, we explored the effect of sublethal photodynamic inactivation to the virulence factors of Candida albicans. Methylene Blue (MB) was used as photosensitizer for sublethal photodynamic challenge on C. albicans associated with a diode laser irradiation (λ=660nm). The parameters of irradiation were selected in causing no reduction of viable cells. The potential effects of PACT on virulence determinants of C. albicans cells were investigated by analysis of germ tube formation and in vivo pathogenicity assays. Systemic infection was induced in mice by the injection of fungal suspension in the lateral caudal vein. C. albicans exposed to sublethal photodynamic inactivation formed significantly less germ tube than untreated cells. In addition, mice infected with C. albicans submitted to sublethal PACT survived for a longer period of time than mice infected with untreated cells. The oxidative damage promoted by sublethal photodynamic inactivation inhibited virulence determinants and reduced in vivo pathogenicity of C. albicans.

  15. Proteolytic activity and cytokine up-regulation by non-albicans Candida albicans.

    PubMed

    Nawaz, Ali; Pärnänen, Pirjo; Kari, Kirsti; Meurman, Jukka H

    2015-05-01

    Mouth is an important source of infections and oral infections such as Candida infections increase the risk of mortality. Our purpose was to investigate differences in proteolytic activity of non-albicans Candida albicans (non-albicans Candida) between clinical isolates and laboratory samples. The second aim was to assess the concentration of pro- and anti-inflammatory cytokine levels IL-1β, IL-10, and TNF-α in saliva of patients with the non-albicans Candida and Candida-negative saliva samples. Clinical yeast samples from our laboratory were used for analyses. Candida strains were grown in YPG at 37 °C for 24 h in water bath with shaking. The activity of Candida proteinases of cell and cell-free fractions were analyzed by MDPF-gelatin zymography. The levels of IL-1β, IL-10, and TNF-α were measured from saliva with ELISA. The study showed differences in the proteolytic activity among the non-albicans Candida strains. C. tropicalis had higher proteolytic activity when compared to the other strains. Significant difference was found in salivary IL-1β levels between the non-albicans Candida and control strains (P < 0.002). The present findings showed differences in proteolytic activity among the non-albicans Candida strains. The increased IL-1β concentration may be one of the host response components associated with non-albicans Candida infection.

  16. Coaggregation of Candida albicans, Actinomyces naeslundii and Streptococcus mutans is Candida albicans strain dependent.

    PubMed

    Arzmi, Mohd Hafiz; Dashper, Stuart; Catmull, Deanne; Cirillo, Nicola; Reynolds, Eric C; McCullough, Michael

    2015-08-01

    Microbial interactions are necessarily associated with the development of polymicrobial oral biofilms. The objective of this study was to determine the coaggregation of eight strains of Candida albicans with Actinomyces naeslundii and Streptococcus mutans. In autoaggregation assays, C. albicans strains were grown in RPMI-1640 and artificial saliva medium (ASM) whereas bacteria were grown in heart infusion broth. C. albicans, A. naeslundii and S. mutans were suspended to give 10(6), 10(7) and 10(8) cells mL(-1) respectively, in coaggregation buffer followed by a 1 h incubation. The absorbance difference at 620 nm (ΔAbs) between 0 h and 1 h was recorded. To study coaggregation, the same protocol was used, except combinations of microorganisms were incubated together. The mean ΔAbs% of autoaggregation of the majority of RPMI-1640-grown C. albicans was higher than in ASM grown. Coaggregation of C. albicans with A. naeslundii and/or S. mutans was variable among C. albicans strains. Scanning electron microscopy images showed that A. naeslundii and S. mutans coaggregated with C. albicans in dual- and triculture. In conclusion, the coaggregation of C. albicans, A. naeslundii and S. mutans is C. albicans strain dependent.

  17. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: data from the Prospective Antifungal Therapy (PATH) registry 2004-2008.

    PubMed

    Pfaller, Michael A; Andes, David R; Diekema, Daniel J; Horn, David L; Reboli, Annette C; Rotstein, Coleman; Franks, Billy; Azie, Nkechi E

    2014-01-01

    This analysis describes the epidemiology and outcomes of invasive candidiasis caused by non-albicans species of Candida in patients enrolled in the Prospective Antifungal Therapy Alliance (PATH Alliance) registry from 2004 to 2008. A total of 2,496 patients with non-albicans species of Candida isolates were identified. The identified species were C. glabrata (46.4%), C. parapsilosis (24.7%), C. tropicalis (13.9%), C. krusei (5.5%), C. lusitaniae (1.6%), C. dubliniensis (1.5%) and C. guilliermondii (0.4%); 111 infections involved two or more species of Candida (4.4%). Non-albicans species accounted for more than 50% of all cases of invasive candidiasis in 15 of the 24 sites (62.5%) that contributed more than one case to the survey. Among solid organ transplant recipients, patients with non-transplant surgery, and patients with solid tumors, the most prevalent non-albicans species was C. glabrata at 63.7%, 48.0%, and 53.8%, respectively. In 1,883 patients receiving antifungal therapy on day 3, fluconazole (30.5%) and echinocandins (47.5%) were the most frequently administered monotherapies. Among the 15 reported species, 90-day survival was highest for patients infected with either C. parapsilosis (70.7%) or C. lusitaniae (74.5%) and lowest for patients infected with an unknown species (46.7%) or two or more species (53.2%). In conclusion, this study expands the current knowledge of the epidemiology and outcomes of invasive candidiasis caused by non-albicans species of Candida in North America. The variability in species distribution in these centers underscores the importance of local epidemiology in guiding the selection of antifungal therapy.

  18. Effect of Tetrandrine against Candida albicans Biofilms

    PubMed Central

    Zhao, Lan-Xue; Li, De-Dong; Hu, Dan-Dan; Hu, Gan-Hai; Yan, Lan; Wang, Yan; Jiang, Yuan-Ying

    2013-01-01

    Candida albicans is the most common human fungal pathogen and has a high propensity to develop biofilms that are resistant to traditional antifungal agents. In this study, we investigated the effect of tetrandrine (TET) on growth, biofilm formation and yeast-to-hypha transition of C. albicans. We characterized the inhibitory effect of TET on hyphal growth and addressed its possible mechanism of action. Treatment of TET at a low concentration without affecting fungal growth inhibited hyphal growth in both liquid and solid Spider media. Real-time RT-PCR revealed that TET down-regulated the expression of hypha-specific genes ECE1, ALS3 and HWP1, and abrogated the induction of EFG1 and RAS1, regulators of hyphal growth. Addition of cAMP restored the normal phenotype of the SC5314 strain. These results indicate that TET may inhibit hyphal growth through the Ras1p-cAMP-PKA pathway. In vivo, at a range of concentrations from 4 mg/L to 32 mg/L, TET prolonged the survival of C. albicans-infected Caenorhabditis elegans significantly. This study provides useful information for the development of new strategies to reduce the incidence of C. albicans biofilm-associated infections. PMID:24260276

  19. Germination of Candida albicans induced by proline.

    PubMed Central

    Dabrowa, N; Taxer, S S; Howard, D H

    1976-01-01

    Blastospores of Candida albicans germinated in proline-biotin-buffer medium incubated at 37 C. Certain other amino acids in the glatamate, asparate, and pyruvate families also fostered germinaton but generally to a lesser extent than did proline. L-Cysteine, D-proline, and certain structural analogues of L-proline inhibited proline-stimualted germination. The concentration of phosphate and glucose was crucial to amino acid-stimulated germination of C. albicans. Clinical isolates and stock cultures varied in their response to the germ tube-inducing activity of proline or other amino acids. The proline-buffer medium cannot be used in a diagnostic test for production of germ tubes by isolates of yeasts. PMID:5375

  20. Inhibition of Candida albicans by Lactobacillus acidophilus.

    PubMed

    Collins, E B; Hardt, P

    1980-05-01

    Candida albicans grew at pH 4.6 or above in nutrient broth containing 5% glucose but was retarded at pH 7.7 by filtrates of Lactobacillus acidophilus grown in casitone broth. Vaginal implantation of nonfermented acidophilus milk, yogurt, or low-fat milk for preventing recurrence of monilia vaginitis subsequent to treatment with Nystatin was studied with 30 women. Reinfections within 3 mo according to product received were: no milk product, 3; yogurt, 1; nonfermented acidophilus milk, 1; and low-fat milk, 0. PMID:6771309

  1. Analysis of the Candida albicans Phosphoproteome

    PubMed Central

    Willger, S. D.; Liu, Z.; Olarte, R. A.; Adamo, M. E.; Myers, L. C.; Kettenbach, A. N.

    2015-01-01

    Candida albicans is an important human fungal pathogen in both immunocompetent and immunocompromised individuals. C. albicans regulation has been studied in many contexts, including morphological transitions, mating competence, biofilm formation, stress resistance, and cell wall synthesis. Analysis of kinase- and phosphatase-deficient mutants has made it clear that protein phosphorylation plays an important role in the regulation of these pathways. In this study, to further our understanding of phosphorylation in C. albicans regulation, we performed a deep analysis of the phosphoproteome in C. albicans. We identified 19,590 unique peptides that corresponded to 15,906 unique phosphosites on 2,896 proteins. The ratios of serine, threonine, and tyrosine phosphosites were 80.01%, 18.11%, and 1.81%, respectively. The majority of proteins (2,111) contained at least two detected phosphorylation sites. Consistent with findings in other fungi, cytoskeletal proteins were among the most highly phosphorylated proteins, and there were differences in Gene Ontology (GO) terms for proteins with serine and threonine versus tyrosine phosphorylation sites. This large-scale analysis identified phosphosites in protein components of Mediator, an important transcriptional coregulatory protein complex. A targeted analysis of the phosphosites in Mediator complex proteins confirmed the large-scale studies, and further in vitro assays identified a subset of these phosphorylations that were catalyzed by Cdk8 (Ssn3), a kinase within the Mediator complex. These data represent the deepest single analysis of a fungal phosphoproteome and lay the groundwork for future analyses of the C. albicans phosphoproteome and specific phosphoproteins. PMID:25750214

  2. Medical treatment of a pacemaker endocarditis due to Candida albicans and to Candida glabrata.

    PubMed

    Roger, P M; Boissy, C; Gari-Toussaint, M; Foucher, R; Mondain, V; Vandenbos, F; le Fichoux, Y; Michiels, J F; Dellamonica, P

    2000-09-01

    We describe a case of pacemaker infection due to two fungal species: Candida albicans and C. glabrata. Transthoracic echocardiography showed a large vegetation on the intraventricular wires. Because of severe underlying diseases, surgery was believed to be contraindicated. The patient was treated using high dose of fluconazole, resulting in clinical improvement and negative blood cultures. However, 2 months later, the patient underwent a fatal stroke. At autopsy, a large vegetation was found only all along the wires. Postmortem culture of the infected material was positive for both C. albicans and C. glabrata. PMID:11023765

  3. Baicalein induces programmed cell death in Candida albicans.

    PubMed

    Dai, Bao-Di; Cao, Ying-Ying; Huang, Shan; Xu, Yong-Gang; Gao, Ping-Hui; Wang, Yan; Jiang, Yuan-Ying

    2009-08-01

    Recent evidence has revealed the occurrence of an apoptotic phenotype in Candida albicans that is inducible with environmental stresses such as acetic acid, hydrogen peroxide, and amphotericin B. In the present study, we found that the Chinese herbal medicine Baicalein (BE), which was one of the skullcapflavones, can induce apoptosis in C. albicans. The apoptotic effects of BE were detected by flow cytometry using Annexin V-FITC and DAPI, and it was confirmed by transmission electron microscopy analysis. After exposure to 4 microg/ml BE for 12 h, about 10% of C. albicans cells were apoptotic. Both the increasing intracellular levels of reactive oxygen species (ROS) and upregulation of some redox-related genes (CAP1, SOD2, TRR1) were observed. Furthermore, we compared the survivals of CAP1 deleted, wild-type, and overexpressed strains and found that Cap1p attenuated BE-initiated cell death, which was coherent with a higher mRNA level of the CAP1 gene. In addition, the mitochondrial membrane potential of C. albicans cells changed significantly ( p<0.001) upon BE treatment compared with control. Taken together, our results indicate that BE treatment induces apoptosis in C.albicans cells, and the apoptosis was associated with the breakdown of mitochondrial membrane potential. PMID:19734718

  4. Oxidative stress responses in the human fungal pathogen, Candida albicans.

    PubMed

    Dantas, Alessandra da Silva; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  5. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    PubMed Central

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  6. Antifungal susceptibility and molecular typing of 115 Candida albicans isolates obtained from vulvovaginal candidiasis patients in 3 Shanghai maternity hospitals.

    PubMed

    Ying, Chunmei; Zhang, Hongju; Tang, Zhenhua; Chen, Huifen; Gao, Jing; Yue, Chaoyan

    2016-05-01

    In our multicenter study, we studied the distribution of Candida species in vulvovaginal candidiasis patients and investigated antifungal susceptibility profile and genotype of Candida albicans in vaginal swab. A total of 115 Candida albicans strains were detected in 135 clinical isolates. Minimum inhibitory concentration determinations showed that 83% and 81% of the 115 Candida albicans strains were susceptible to fluconazole and voriconazole. Randomly amplified polymorphic DNA analysis (RAPD) was applied to identify clonally related isolates from different patients at the local level. All tested strains were classified into genotype A (77.4%), genotype B (18.3%), and genotype C (4.3%). Genotype A was further classified into five subtypes and genotype B into two subtypes.Candida albicans was the dominant pathogen of vulvovaginal candidiasis, the majority belonging to genotype A in this study. Exposure to azoles is a risk factor for the emergence of azole resistance among Candida albicans isolated from VVC patients.

  7. Karyotyping of Candida albicans and Candida glabrata from patients with Candida sepsis.

    PubMed

    Klempp-Selb, B; Rimek, D; Kappe, R

    2000-01-01

    The aim of this study was to determine the relatedness of Candida strains from patients suffering from Candida septicaemia by typing of Candida isolates from blood cultures and different body sites by pulsed field gel electrophoresis (PFGE using a contour-clamped homogenous electric field, CHEF). We studied 17 isolates of Candida albicans and 10 isolates of Candida glabrata from six patients. Four patients suffered from a C. albicans septicaemia, one patient from a C. glabrata septicaemia, and one patient had a mixed septicaemia with C. albicans and C. glabrata. Eight isolates from blood cultures were compared with 19 isolates of other sites (stool six, urine four, genital swab four, tip of central venous catheter three, tracheal secretion one, sputum one). PFGE typing resulted in 10 different patterns, four with C. albicans and six with C. glabrata. Five of the six patients had strains of identical PFGE patterns in the blood and at other sites. Seven isolates of a 58-year-old female with a C. glabrata septicaemia fell into five different PFGE patterns. However, they showed minor differences only, which may be due to chromosomal rearrangements within a single strain. Thus it appears, that the colonizing Candida strains were identical to the circulating strains in the bloodstream in at least five of six patients.

  8. Cellular Components Mediating Coadherence of Candida albicans and Fusobacterium nucleatum.

    PubMed

    Wu, T; Cen, L; Kaplan, C; Zhou, X; Lux, R; Shi, W; He, X

    2015-10-01

    Candida albicans is an opportunistic fungal pathogen found as part of the normal oral flora. It can be coisolated with Fusobacterium nucleatum, an opportunistic bacterial pathogen, from oral disease sites, such as those involved in refractory periodontitis and pulp necrosis. The physical coadherence between these 2 clinically important microbes has been well documented and suggested to play a role in facilitating their oral colonization and colocalization and contributing to polymicrobial pathogenesis. Previous studies indicated that the physical interaction between C. albicans and F. nucleatum was mediated by the carbohydrate components on the surface of C. albicans and the protein components on the Fusobaterium cell surface. However, the identities of the components involved still remain elusive. This study was aimed at identifying the genetic determinants involved in coaggregation between the 2 species. By screening a C. albicans SN152 mutant library and a panel of F. nucleatum 23726 outer membrane protein mutants, we identified FLO9, which encodes a putative adhesin-like cell wall mannoprotein of C. albicans and radD, an arginine-inhibitable adhesin-encoding gene in F. nucleatum that is involved in interspecies coadherence. Consistent with these findings, we demonstrated that the strong coaggregation between wild-type F. nucleatum 23726 and C. albicans SN152 in an in vitro assay could be greatly inhibited by arginine and mannose. Our study also suggested a complex multifaceted mechanism underlying physical interaction between C. albicans and F. nucleatum and for the first time revealed the identity of major genetic components involved in mediating the coaggregation. These observations provide useful knowledge for developing new targeted treatments for disrupting interactions between these 2 clinically relevant pathogens.

  9. Cellular Components Mediating Coadherence of Candida albicans and Fusobacterium nucleatum

    PubMed Central

    Wu, T.; Cen, L.; Kaplan, C.; Zhou, X.; Lux, R.; Shi, W.; He, X.

    2015-01-01

    Candida albicans is an opportunistic fungal pathogen found as part of the normal oral flora. It can be coisolated with Fusobacterium nucleatum, an opportunistic bacterial pathogen, from oral disease sites, such as those involved in refractory periodontitis and pulp necrosis. The physical coadherence between these 2 clinically important microbes has been well documented and suggested to play a role in facilitating their oral colonization and colocalization and contributing to polymicrobial pathogenesis. Previous studies indicated that the physical interaction between C. albicans and F. nucleatum was mediated by the carbohydrate components on the surface of C. albicans and the protein components on the Fusobaterium cell surface. However, the identities of the components involved still remain elusive. This study was aimed at identifying the genetic determinants involved in coaggregation between the 2 species. By screening a C. albicans SN152 mutant library and a panel of F. nucleatum 23726 outer membrane protein mutants, we identified FLO9, which encodes a putative adhesin-like cell wall mannoprotein of C. albicans and radD, an arginine-inhibitable adhesin-encoding gene in F. nucleatum that is involved in interspecies coadherence. Consistent with these findings, we demonstrated that the strong coaggregation between wild-type F. nucleatum 23726 and C. albicans SN152 in an in vitro assay could be greatly inhibited by arginine and mannose. Our study also suggested a complex multifaceted mechanism underlying physical interaction between C. albicans and F. nucleatum and for the first time revealed the identity of major genetic components involved in mediating the coaggregation. These observations provide useful knowledge for developing new targeted treatments for disrupting interactions between these 2 clinically relevant pathogens. PMID:26152186

  10. Acid production by oral strains of Candida albicans and lactobacilli.

    PubMed

    Klinke, T; Kneist, S; de Soet, J J; Kuhlisch, E; Mauersberger, S; Forster, A; Klimm, W

    2009-01-01

    Both Candida albicans and lactobacilli are common colonizers of carious lesions in children and adolescents. The purpose of this study is to compare the velocity of acid production between C. albicans and several Lactobacillus species at different pH levels and concentrations of glucose. Washed, pure resting-cell suspensions were obtained by culturing a total of 28 oral isolates comprising the species C. albicans, Lactobacillus rhamnosus, Lactobacillus paracasei paracasei, Lactobacillus paracasei tolerans and Lactobacillus delbrueckii lactis. Acid production from glucose was determined at a constant pH of 7.0, 5.5, 5.0 and 4.0 by repeated titrations with NaOH in an automated pH-stat system. Acid formation rates of yeast and lactobacilli proved to be similar at both neutral and low pH, while in a moderately acidic environment C. albicans produced less acid than the lactobacilli. Ion chromatographic analysis of the cell-free medium after titration revealed pyruvate to be the predominant organic acid anion secreted by C. albicans. The proportion of organic acids to overall acid production by the yeast was below 10% at neutral conditions, in contrast to 42-66% at pH 4.0. Compared to lactobacilli, yeast required a concentration of glucose that was about 50 times higher to allow acid production at half the maximum speed. Considering the clinical data in the literature about the frequency and proportions of microorganisms present in early childhood caries lesions, the contribution of oral lactobacilli as well as C. albicans to overall microbial acid formation appears to be important. PMID:19246906

  11. Acid production by oral strains of Candida albicans and lactobacilli.

    PubMed

    Klinke, T; Kneist, S; de Soet, J J; Kuhlisch, E; Mauersberger, S; Forster, A; Klimm, W

    2009-01-01

    Both Candida albicans and lactobacilli are common colonizers of carious lesions in children and adolescents. The purpose of this study is to compare the velocity of acid production between C. albicans and several Lactobacillus species at different pH levels and concentrations of glucose. Washed, pure resting-cell suspensions were obtained by culturing a total of 28 oral isolates comprising the species C. albicans, Lactobacillus rhamnosus, Lactobacillus paracasei paracasei, Lactobacillus paracasei tolerans and Lactobacillus delbrueckii lactis. Acid production from glucose was determined at a constant pH of 7.0, 5.5, 5.0 and 4.0 by repeated titrations with NaOH in an automated pH-stat system. Acid formation rates of yeast and lactobacilli proved to be similar at both neutral and low pH, while in a moderately acidic environment C. albicans produced less acid than the lactobacilli. Ion chromatographic analysis of the cell-free medium after titration revealed pyruvate to be the predominant organic acid anion secreted by C. albicans. The proportion of organic acids to overall acid production by the yeast was below 10% at neutral conditions, in contrast to 42-66% at pH 4.0. Compared to lactobacilli, yeast required a concentration of glucose that was about 50 times higher to allow acid production at half the maximum speed. Considering the clinical data in the literature about the frequency and proportions of microorganisms present in early childhood caries lesions, the contribution of oral lactobacilli as well as C. albicans to overall microbial acid formation appears to be important.

  12. Differentiation of Candida dubliniensis from Candida albicans on rosemary extract agar and oregano extract agar.

    PubMed

    de Loreto, Erico Silva; Pozzatti, Patrícia; Alves Scheid, Liliane; Santurio, Deise; Morais Santurio, Janio; Alves, Sydney Hartz

    2008-01-01

    Candida dubliniensis is a recently described pathogenic species which shares many phenotypic features with Candida albicans and therefore, may be misidentified in microbiological laboratories. Because molecular methods can be onerous and unfeasible in routine mycological laboratories with restricted budgets such as those in developing countries, phenotypic techniques have been encouraged in the development of differential media for the presumptive identification of these species. We examined the colony morphology and chlamydospore production of 30 C. dubliniensis isolates and 100 C. albicans isolates on two new proposed media: rosemary (Rosmarinus officinalis) extract agar (REA) and oregano (Origanum vulgare) extract agar (OEA). These substrates are traditionally used as spices and medicinal herbs. In both of these media, all C. dubliniensis isolates (100%) showed rough colonies with peripheral hyphal fringes and abundant chlamydospores after 24 to 48 hr of incubation at 25 degrees C. In contrast, under the same conditions, all isolates of C. albicans (100%) showed smooth colonies without hyphal fringes or chlamydospores. In conclusion, REA and OEA offer a simple, rapid, and inexpensive screening media for the differentiation of C. albicans and C. dubliniensis.

  13. Postantifungal effect of caspofungin against the Candida albicans and Candida parapsilosis clades.

    PubMed

    Gil-Alonso, Sandra; Jauregizar, Nerea; Eraso, Elena; Quindós, Guillermo

    2016-10-01

    Killing and postantifungal effects could be relevant for the selection of optimal dosing schedules. This study aims to compare time-kill and postantifungal effects with caspofungin on Candida albicans (C. albicans, Candida dubliniensis, Candida africana) and Candida parapsilosis (C. parapsilosis, Candida metapsilosis, Candida orthopsilosis) clades. In the postantifungal effect experiments, strains were exposed to caspofungin for 1 h at concentrations 0.12-8 μg/mL. Time-kill experiments were conducted at the same concentrations. Caspofungin exhibited a significant and prolonged postantifungal effect (>37 h) with 2 μg/mL against the most strains of C. albicans clade. Against the C. parapsilosis clade, the postantifungal effect was <12 h at 8 μg/mL, except for two strains. Caspofungin was fungicidal against C. albicans, C. dubliniensis and C. metapsilosis. PMID:27492134

  14. Postantifungal effect of caspofungin against the Candida albicans and Candida parapsilosis clades.

    PubMed

    Gil-Alonso, Sandra; Jauregizar, Nerea; Eraso, Elena; Quindós, Guillermo

    2016-10-01

    Killing and postantifungal effects could be relevant for the selection of optimal dosing schedules. This study aims to compare time-kill and postantifungal effects with caspofungin on Candida albicans (C. albicans, Candida dubliniensis, Candida africana) and Candida parapsilosis (C. parapsilosis, Candida metapsilosis, Candida orthopsilosis) clades. In the postantifungal effect experiments, strains were exposed to caspofungin for 1 h at concentrations 0.12-8 μg/mL. Time-kill experiments were conducted at the same concentrations. Caspofungin exhibited a significant and prolonged postantifungal effect (>37 h) with 2 μg/mL against the most strains of C. albicans clade. Against the C. parapsilosis clade, the postantifungal effect was <12 h at 8 μg/mL, except for two strains. Caspofungin was fungicidal against C. albicans, C. dubliniensis and C. metapsilosis.

  15. Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture

    PubMed Central

    Amornvit, Pokpong; Srithavaj, Theerathavaj

    2014-01-01

    Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638

  16. Calcineurin signaling: lessons from Candida species.

    PubMed

    Yu, Shang-Jie; Chang, Ya-Lin; Chen, Ying-Lien

    2015-06-01

    Human fungal infections have significantly increased in recent years due to the emergence of immunocompromised patients with AIDS and cancer. Among them, Candida species are frequently isolated and associated with high mortality if not appropriately treated. Current antifungal drugs (azoles, echinocandins and polyenes) are not sufficient to combat Candida species particularly those that are drug resistant. Calcineurin, a calcium/calmodulin-dependent protein phosphatase, is an attractive antifungal drug target, and its inhibitor (FK506 or cyclosporin A) can be combined with azoles or echinocandins for use against multidrug-resistant Candida species. The role of calcineurin in the hyphal growth of Candida albicans is controversial, but its roles in C. dubliniensis, C. tropicalis and C. lusitaniae can be demonstrated. In addition, calcineurin is required for virulence of Candida species in murine systemic, ocular or urinary infection models. However, the requirement for calcineurin substrate Crz1 in these infection models varies in Candida species, suggesting that Crz1 has diverse functions in different Candida species. Besides being critical for growth in serum of Candida species, calcineurin is critical for plasma membrane integrity and growth at body temperature (37°C) uniquely in C. glabrata, suggesting that Candida calcineurin controls pathogenesis via various novel mechanisms. In this review, we summarize studies of calcineurin signaling and hyphal growth, virulence and its relationship with drug tolerance in Candida species, focusing on the divergent and conserved functions. PMID:25878052

  17. Calcineurin signaling: lessons from Candida species.

    PubMed

    Yu, Shang-Jie; Chang, Ya-Lin; Chen, Ying-Lien

    2015-06-01

    Human fungal infections have significantly increased in recent years due to the emergence of immunocompromised patients with AIDS and cancer. Among them, Candida species are frequently isolated and associated with high mortality if not appropriately treated. Current antifungal drugs (azoles, echinocandins and polyenes) are not sufficient to combat Candida species particularly those that are drug resistant. Calcineurin, a calcium/calmodulin-dependent protein phosphatase, is an attractive antifungal drug target, and its inhibitor (FK506 or cyclosporin A) can be combined with azoles or echinocandins for use against multidrug-resistant Candida species. The role of calcineurin in the hyphal growth of Candida albicans is controversial, but its roles in C. dubliniensis, C. tropicalis and C. lusitaniae can be demonstrated. In addition, calcineurin is required for virulence of Candida species in murine systemic, ocular or urinary infection models. However, the requirement for calcineurin substrate Crz1 in these infection models varies in Candida species, suggesting that Crz1 has diverse functions in different Candida species. Besides being critical for growth in serum of Candida species, calcineurin is critical for plasma membrane integrity and growth at body temperature (37°C) uniquely in C. glabrata, suggesting that Candida calcineurin controls pathogenesis via various novel mechanisms. In this review, we summarize studies of calcineurin signaling and hyphal growth, virulence and its relationship with drug tolerance in Candida species, focusing on the divergent and conserved functions.

  18. Correlation of atherogenesis with an infection of Candida albicans

    PubMed Central

    Nurgeldiyeva, Maya J; Hojakuliyev, Bayram G; Muhammedov, Merdan B

    2014-01-01

    Purpose: To study contents of atherosclerotic plaques for the presence of fungi of the genus Candida; and an analysis of some immunological and biochemical indices in patients with acute coronary syndrome (ACS) that are positive for Candida albicans. Materials and methods: To test for the presence of fungi in an atherosclerotic plaque, we used a method developed by us (patent NO 531, a priority from 6/28/2010). A total of 47 atherosclerotic plaques were obtained during 20 autopsies. In addition, 80 individuals (58 male, 22 female; age range from 29 to 85) with acute coronary syndrome were subjected to a blood biochemical test, including quantification of TNF-α levels and IgG and IgM to Candida albicans was determined. Results: Fungi of the genus Candida were identified in 31.9% (15 out of 47) of atherosclerotic plaques. Particularly, Candida krusii and Candida grabrata were identified in overwhelming majority, although solitary colonies of Candida tropicalis and a single colony of Candida albicans were also detected. 80 (100%) patients were negative for IgM, but 30 (37.5%) were positive for IgG to Candida albicans. TNF-α was detected in a smaller quantity of IgG-negative patients (36.7%) relative to patients of IgG-positive group (70%), however its levels were considerably above in the first group (511.73±195.80 pg/ml) than in the second one (326.68±259.91 pg/ml, P < 0.05). Differences in the levels of ASAT and ALAT in patients positive to Candida albicans and negative for TNF-α were significantly higher than in the rest of patients. Conclusion: It is conceivable that fungi of the genus Candida are capable of inducing an inflammation of the vascular wall that in turn can lead to the development of atherosclerosis. PMID:25232398

  19. Improved gene ontology annotation for biofilm formation, filamentous growth, and phenotypic switching in Candida albicans.

    PubMed

    Inglis, Diane O; Skrzypek, Marek S; Arnaud, Martha B; Binkley, Jonathan; Shah, Prachi; Wymore, Farrell; Sherlock, Gavin

    2013-01-01

    The opportunistic fungal pathogen Candida albicans is a significant medical threat, especially for immunocompromised patients. Experimental research has focused on specific areas of C. albicans biology, with the goal of understanding the multiple factors that contribute to its pathogenic potential. Some of these factors include cell adhesion, invasive or filamentous growth, and the formation of drug-resistant biofilms. The Gene Ontology (GO) (www.geneontology.org) is a standardized vocabulary that the Candida Genome Database (CGD) (www.candidagenome.org) and other groups use to describe the functions of gene products. To improve the breadth and accuracy of pathogenicity-related gene product descriptions and to facilitate the description of as yet uncharacterized but potentially pathogenicity-related genes in Candida species, CGD undertook a three-part project: first, the addition of terms to the biological process branch of the GO to improve the description of fungus-related processes; second, manual recuration of gene product annotations in CGD to use the improved GO vocabulary; and third, computational ortholog-based transfer of GO annotations from experimentally characterized gene products, using these new terms, to uncharacterized orthologs in other Candida species. Through genome annotation and analysis, we identified candidate pathogenicity genes in seven non-C. albicans Candida species and in one additional C. albicans strain, WO-1. We also defined a set of C. albicans genes at the intersection of biofilm formation, filamentous growth, pathogenesis, and phenotypic switching of this opportunistic fungal pathogen, which provides a compelling list of candidates for further experimentation.

  20. Sampling of Candida albicans and Candida tropicalis by Langerin-positive dendritic cells in mouse Peyer's patches.

    PubMed

    De Jesus, Magdia; Rodriguez, Adam E; Yagita, Hideo; Ostroff, Gary R; Mantis, Nicholas J

    2015-11-01

    Members of the Candida genus, including C. albicans and C. tropicalis are opportunistic fungal pathogens that are increasingly associated with gastrointestinal infections and inflammatory bowel diseases. In healthy populations, however, C. albicans and C. tropicalis are considered benign members of the mycobiome, and are presumably kept in check by the mucosal immune system. In this study, we demonstrate in mice that C. albicans and C. tropicalis are sampled by Peyer's patch (PP) dendritic cells (DCs). Uptake into gut-associated lymphoid tissues occurred rapidly and was at least partly M cell-dependent. C. albicans and C. tropicalis preferentially localized in (and persisted within) a recently identified sub- population of Peyer's patch DCs distinguished by their expression of the C-type lectin receptor, Langerin. This study is the first to identify a subset of PP DCs capable of sampling Candida species.

  1. Antifungal susceptibilities of Candida species isolated from urine culture.

    PubMed

    Toka Özer, Türkan; Durmaz, Süleyman; Yula, Erkan

    2016-09-01

    Candida spp. are the most common opportunistic mycosis worldwide. Although Candida albicans is the most common cause of urinary tract infections, the frequency of non-albicans Candida species is increasing with common use of antifungal in the prophylaxis and treatment. This may lead to difficulties in treatment. Antifungal tests should be applied with identification of species for effective treatment. In this study, identification of Candida species isolated from urine culture and investigation of susceptibility of these strains to amphotericin B, flucytosine, fluconazole, voriconazole was aimed. In this study, 58 Candida strains isolated from urine cultures at Osmaniye State Hospital between January 2012 and April 2013 were included. Urine culture and antifungal susceptibility tests were applied. Incidence rate of Candida spp. was determined as C. albicans (56.9%), Candida glabrata (20.6%), Candida tropicalis (10.3%), Candida parapsilosis (7%), Candida krusei (3.4%), Candida kefyr (1.8%). Most of the isolates were susceptible to amphotericin B, flucytosine, fluconazole, voriconazole. Twenty three (39.7%) Candida strains were isolated from internal medical branches and Intensive Care Unit and 12 (20.6%) from the Surgical Medical Branches. C. albicans and C. glabrata species were isolated most frequently as a candiduria factor in this hospital between January 2012 and April 2013. The analysis of antifungal susceptibility profile shows no significant resistance to antifungals.

  2. [Distribution of Candida species in vaginal specimens and evaluation of CHROMagar Candida medium].

    PubMed

    Gültekin, Berna; Yazici, Vesile; Aydin, Neriman

    2005-07-01

    Identification of Candida species is important to guide treatment in vulvovaginal candidiasis which is seen frequently and needs long-term therapy due to recurrence. The aim of this study was to determine the species distribution of Candida isolated from vaginal specimens and evaluation of CHROMagar Candida medium in the laboratory diagnosis. Samples from 80 patients who were clinically diagnosed as vaginitis have been analysed in our laboratory. Colonies appeared on CHROMagar Candida media after 48 hours of incubation at 35 degrees C were evaluated for their colors and characteristics. Candida strains were identified by germ tube test, growth on corn meal Tween 80 agar and when necessary also by API 20 C AUX commercial kit. A total of 84 Candida strains were isolated from 80 patients. Two different Candida species have been isolated from four (5%) of the samples. Among Candida strains isolated, 45 (53.6%) were C. albicans, 29 (34.5%) C. glabrata, 7 (8.3%) C. krusei, and 3 (3.6%) C. kefyr. All of the C. albicans and six of the seven C. krusei isolates have been identified correctly by CHROMagar Candida medium. These results showed that C. albicans is still the most frequently isolated species from vaginal samples. It was concluded that CHROMagar Candida medium is useful for identification of colonies due to frequently seen Candida species and also in differentiation of multiple Candida species grown on the same culture.

  3. Ultrastructural Analysis of Candida albicans When Exposed to Silver Nanoparticles

    PubMed Central

    Vazquez-Muñoz, Roberto; Avalos-Borja, Miguel; Castro-Longoria, Ernestina

    2014-01-01

    Candida albicans is the most common fungal pathogen in humans, and recently some studies have reported the antifungal activity of silver nanoparticles (AgNPs) against some Candida species. However, ultrastructural analyses on the interaction of AgNPs with these microorganisms have not been reported. In this work we evaluated the effect of AgNPs on C. albicans, and the minimum inhibitory concentration (MIC) was found to have a fungicidal effect. The IC50 was also determined, and the use of AgNPs with fluconazole (FLC), a fungistatic drug, reduced cell proliferation. In order to understand how AgNPs interact with living cells, the ultrastructural distribution of AgNPs in this fungus was determined. Transmission electron microscopy (TEM) analysis revealed a high accumulation of AgNPs outside the cells but also smaller nanoparticles (NPs) localized throughout the cytoplasm. Energy dispersive spectroscopy (EDS) analysis confirmed the presence of intracellular silver. From our results it is assumed that AgNPs used in this study do not penetrate the cell, but instead release silver ions that infiltrate into the cell leading to the formation of NPs through reduction by organic compounds present in the cell wall and cytoplasm. PMID:25290909

  4. High-frequency switching in Candida albicans.

    PubMed Central

    Soll, D R

    1992-01-01

    Most strains of Candida albicans are capable of switching frequently and reversibly between a number of phenotypes distinguishable by colony morphology. A number of different switching systems have been defined according to the limited set of phenotypes in each switching repertoire, and each strain appears to possess a single system. Switching can affect many aspects of cellular physiology and morphology and appears to be a second level of phenotypic variability superimposed upon the bud-hypha transition. The most dramatic switching system so far identified is the "white-opaque transition." This system dramatizes the extraordinary effects switching can have on the budding cell phenotype, including the synthesis of opaque-specific antigens, the expression of white-specific and opaque-specific genes, and the genesis of unique cell wall structures. Switching has been demonstrated to occur at sites of infection and between episodes of recurrent vaginitis, and it may function to generate variability in commensal and infecting populations for adaptive reasons. Although the molecular mechanisms involved in the switch event are not understood, recent approaches to its elucidation are discussed and an epigenetic mechanism is proposed. Images PMID:1576587

  5. Activity of Novel Synthetic Peptides against Candida albicans.

    PubMed

    Lum, Kah Yean; Tay, Sun Tee; Le, Cheng Foh; Lee, Vannajan Sanghiran; Sabri, Nadia Hanim; Velayuthan, Rukumani Devi; Hassan, Hamimah; Sekaran, Shamala Devi

    2015-01-01

    Candida spp. are the most common causes of fungal infections worldwide. Among the Candida species, Candida albicans remains the predominant species that causes invasive candidiasis in most countries. In this study, we used two peptides, KABT-AMP and uperin 3.6 as templates to develop novel antifungal peptides. Their anticandidal activity was assessed using a combination of MIC, time-killing assay and biofilm reduction assay. Hybrid peptides, KU2 and KU3 containing a mixed backbone of KABT-AMP and Uperin 3.6 demonstrated the most potent anticandidal activity with MIC values ranging from 8-16 mg/L. The number of Trp residues and the amphipathic structure of peptides probably enhanced the anticandidal activity of peptides. Increasing the cationicity of the uperin 3.6 analogues resulted in reduced MIC from the range of 64-128 mg/L to 16-64 mg/L and this was also correlated with the antibiofilm activity and killing kinetics of the peptides. Peptides showed synergistic effects when used in combination with conventional antifungals. Peptides demonstrated low haemolytic activity but significant toxicity on two normal human epithelial cell lines. This study provides us with a better understanding on the structure-activity relationship and the balance between cationicity and hydrophobicity of the peptides although the therapeutic application of the peptides is limited. PMID:25965506

  6. [Evaluation of a new chromogenic medium (Candida ID) for the isolation and presumptive identification of Candida albicans and other medically important yeasts].

    PubMed

    Quindós, G; Alonso-Vargas, R; Helou, S; Arechavala, A; Martín-Mazuelos, E; Negroni, R

    2001-03-01

    Candidiasis is a frequent human infection caused mainly by Candida albicans. However, other species are emerging as important pathogens, as Candida glabrata, Candida parapsilosis, Candida tropicalis, Candida krusei or Candida guilliermondii. Rapid identification of clinical isolates could facilitate diagnosis and treatment. Candida ID (bioMerieux, Spain) is a new medium for the isolation and presumptive identification of yeasts: C. albicans grows as blue colonies, and C. tropicalis, C. guilliermondii, Candida kefyr and Candida lusitaniae as pink ones. The utility of Candida ID was evaluated with more than 700 clinical isolates and type culture collection strains from different genera including Candida, Cryptococcus, Saccharomyces, and Rhodotorula. Presumptive identification was confirmed by germ tube test, microscopic morphology and chlamydoconidia production on corn meal agar and carbohydrate assimilation on API-ATB ID 32C or Vitek (bioMerieux). Growth on Candida ID was rapid (18-24 h) for most of the yeast strains tested. Sensitivity and specificity of identification of C. albicans was significantly high (>98%), since a very low number of isolates were found to be false negative or false positive. A better result was obtained for species growing as pink colonies (>99.5%). Detection of different species of medical important yeasts was easy with Candida ID, as perfectly distinct colors and textures of colonies were observed on this medium. Candida ID allowed the discrimination between C. glabrata (creamy and smooth) and C. krusei (rough and white) colonies. Other species showed different colony textures and colours, white being the predominant colour. Candida ID was very useful for the presumptive identification C. albicans isolates.

  7. Frequency, pathogenicity and microbiologic outcome of non-Candida albicans candiduria.

    PubMed

    Occhipinti, D J; Gubbins, P O; Schreckenberger, P; Danziger, L H

    1994-06-01

    A retrospective review of urine cultures obtained from patients at the University of Illinois Hospital revealed that the frequency of isolation of non-albicans Candida species increased significantly from 1990 to 1991 (p = 0.0003), while the frequency of isolation of Candida albicans species decreased significantly (p = 0.0006). Patients with urine cultures positive for non-albicans Candida species of Torulopsis glabrata during 1991 were identified for review. Sixty-seven patients were eligible for evaluation. Non-albicans candiduria developed in an average of 12 days. Identical fungal species were isolated from the blood following a positive urine culture in only two patients. Twenty patients were treated; candiduria persisted in 9 (45%), while resolution occurred in 11 (55%). The remaining 47 patients were not treated. Non-albicans candiduria persisted in 30 (64%) of these patients and resolved in 15 (32%); in the remaining two patients (4%) the microbiologic outcome was undetermined. The difference in microbiologic outcomes between treated and untreated patients was not significant using the Chi-square test (p = 0.170). Non-albicans candiduria developed rapidly, frequently persisted whether treated or untreated, and rarely progressed to candidemia.

  8. New aniline blue dye medium for rapid identification and isolation of Candida albicans.

    PubMed Central

    Goldschmidt, M C; Fung, D Y; Grant, R; White, J; Brown, T

    1991-01-01

    Organic dyes have long been used in diagnostic microbiology to differentiate species by color reactions. We studied the ability of a new noninhibitory medium, YM agar containing 0.01% aniline blue WS dye, Colour Index 42780 (YMAB), to identify Candida albicans among 1,554 yeast specimens obtained from seven clinical laboratories. Appropriate American Type Culture Collection and other characterized strains served as controls. A total of 487 of the clinical strains were identified as C. albicans. The remainder were other Candida species and non-Candida yeasts. Clinical isolates and controls were grown on Sabouraud agar for 18 h at 30 degrees C and then transferred to YMAB. Plates were incubated for 12 to 18 h at 30 degrees C, and colonies were observed for yellow-green fluorescence under long-wave UV light (A365). All control strains of C. albicans and Candida stellatoidea fluoresced, as did 480 of the 490 isolates designated as C. albicans (which included 3 strains of C. stellatoidea). Cells of C. albicans grown on YMAB produced germ tubes in serum. Only five of the other 1,062 non-C. albicans yeasts fluoresced. The sensitivity and specificity were 98.0 and 99.5%, respectively, with a predictive value of 99.1%. A fluorescent metabolite was found in cell wall particulate fractions of C. albicans sonic extracts grown on YMAB but not in non-C. albicans yeasts. This metabolite showed the same spectral curve as those of metabolites from whole cells in a recording spectrofluorometer when it was excited at 400 nm and scanned from 420 to 550 nm. Thus, growth on YMAB generates the production of a fluorescent moiety that can be used to specifically identify C. albicans within 12 to 18 h. Images PMID:1864924

  9. Effect of tyrosol on adhesion of Candida albicans and Candida glabrata to acrylic surfaces.

    PubMed

    Monteiro, Douglas Roberto; Feresin, Leonardo Perina; Arias, Laís Salomão; Barão, Valentim Adelino Ricardo; Barbosa, Debora Barros; Delbem, Alberto Carlos Botazzo

    2015-09-01

    The prevention of adhesion of Candida cells to acrylic surfaces can be regarded as an alternative to prevent denture stomatitis. The use of quorum sensing molecules, such as tyrosol, could potentially interfere with the adhesion process. Therefore, the aim of this study was to assess the effect of tyrosol on adhesion of single and mixed cultures of Candida albicans and Candida glabrata to acrylic resin surfaces. Tyrosol was diluted in each yeast inoculum (10(7) cells/ml in artificial saliva) at 25, 50, 100, and 200 mM. Then, each dilution was added to wells of 24-well plates containing the acrylic specimens, and the plates were incubated at 37°C for 2 h. After, the effect of tyrosol was determined by total biomass quantification, metabolic activity of the cells and colony-forming unit counting. Chlorhexidine gluconate (CHG) was used as a positive control. Data were analyzed using analysis of variance (ANOVA) and the Holm-Sidak post hoc test (α = 0.05). The results of total biomass quantification and metabolic activity revealed that the tyrosol promoted significant reductions (ranging from 22.32 to 86.16%) on single C. albicans and mixed cultures. Moreover, tyrosol at 200 mM and CHG significantly reduced (p < 0.05) the number of adhered cells to the acrylic surface for single and mixed cultures of both species, with reductions ranging from 1.74 to 3.64-log10. In conclusion, tyrosol has an inhibitory effect on Candida adhesion to acrylic resin, and further investigations are warranted to clarify its potential against Candida infections. PMID:26162470

  10. Effect of tyrosol on adhesion of Candida albicans and Candida glabrata to acrylic surfaces.

    PubMed

    Monteiro, Douglas Roberto; Feresin, Leonardo Perina; Arias, Laís Salomão; Barão, Valentim Adelino Ricardo; Barbosa, Debora Barros; Delbem, Alberto Carlos Botazzo

    2015-09-01

    The prevention of adhesion of Candida cells to acrylic surfaces can be regarded as an alternative to prevent denture stomatitis. The use of quorum sensing molecules, such as tyrosol, could potentially interfere with the adhesion process. Therefore, the aim of this study was to assess the effect of tyrosol on adhesion of single and mixed cultures of Candida albicans and Candida glabrata to acrylic resin surfaces. Tyrosol was diluted in each yeast inoculum (10(7) cells/ml in artificial saliva) at 25, 50, 100, and 200 mM. Then, each dilution was added to wells of 24-well plates containing the acrylic specimens, and the plates were incubated at 37°C for 2 h. After, the effect of tyrosol was determined by total biomass quantification, metabolic activity of the cells and colony-forming unit counting. Chlorhexidine gluconate (CHG) was used as a positive control. Data were analyzed using analysis of variance (ANOVA) and the Holm-Sidak post hoc test (α = 0.05). The results of total biomass quantification and metabolic activity revealed that the tyrosol promoted significant reductions (ranging from 22.32 to 86.16%) on single C. albicans and mixed cultures. Moreover, tyrosol at 200 mM and CHG significantly reduced (p < 0.05) the number of adhered cells to the acrylic surface for single and mixed cultures of both species, with reductions ranging from 1.74 to 3.64-log10. In conclusion, tyrosol has an inhibitory effect on Candida adhesion to acrylic resin, and further investigations are warranted to clarify its potential against Candida infections.

  11. [A case report of pulmonary infiltration with eosinophilia syndrome induced by Candida albicans].

    PubMed

    Miyagawa, H; Yokota, S; Kajimoto, K; Makimoto, K; Sato, K; Nabe, M; Tada, S; Kimura, I

    1992-01-01

    A sixty six-year-old female who had been treated for bronchial asthma for about 25 years was admitted to the hospital with complaints of episodes of dyspnea, eosinophilia and infiltrative shadows in the chest X-ray film. An infiltrative shadow appeared to move from the left to the right lung field and finally formed a shadow of atelectasis in the middle field of the right lung. A sputum culture showed only Candida albicans. Allergic and immunologic examination revealed high IgE serum levels with specific IgE against Candida albicans in high titer, and Aspergillus fumigatus in low titer. The precipitating antibody was shown only against Candida antigen. Additionally, the blastogenic response to Candida antigen was high in comparison with other fungal antigens including Aspergillus fumigatus. The clinical features and laboratory findings of this patient were found to satisfy Rosenberg's criteria for allergic bronchopulmonary aspergillosis (ABPA), except for the existence of Candida albicans in place of Aspergillus species as the causative antigen. The pathogenesis of PIE syndrome has been studied and various allergic mechanisms against many antigens reported. In this patient Candida albicans could be playing the crucial role in the formation of PIE syndrome, which might be best described as allergic bronchopulmonary candidiasis (ABPC). PMID:1554325

  12. In Vitro Activity of Caspofungin against Candida albicans Biofilms

    PubMed Central

    Bachmann, Stefano P.; VandeWalle, Kacy; Ramage, Gordon; Patterson, Thomas F.; Wickes, Brian L.; Graybill, John R.; López-Ribot, José L.

    2002-01-01

    Most manifestations of candidiasis are associated with biofilm formation on biological or inanimate surfaces. Candida albicans biofilms are recalcitrant to treatment with conventional antifungal therapies. Here we report on the activity of caspofungin, a new semisynthetic echinocandin, against C. albicans biofilms. Caspofungin displayed potent in vitro activity against sessile C. albicans cells within biofilms, with MICs at which 50% of the sessile cells were inhibited well within the drug's therapeutic range. Scanning electron microscopy and confocal scanning laser microscopy were used to visualize the effects of caspofungin on preformed C. albicans biofilms, and the results indicated that caspofungin affected the cellular morphology and the metabolic status of cells within the biofilms. The coating of biomaterials with caspofungin had an inhibitory effect on subsequent biofilm development by C. albicans. Together these findings indicate that caspofungin displays potent activity against C. albicans biofilms in vitro and merits further investigation for the treatment of biofilm-associated infections. PMID:12384370

  13. Characterization of Candida species from different populations in Taiwan.

    PubMed

    Yang, Yun-Liang; Hsieh, Li-Yun; Wang, An-Huei; Lo, Hsiu-Jung

    2011-08-01

    The opportunistic Candida species existing as part of commensal microbiota in humans are usually the etiological agents causing infections. We investigated whether isolates collected from different age groups, hospital units, and sources have distinct characteristics. A total of 913 isolates comprising 395 Candida albicans, 230 Candida tropicalis, 202 Candida glabrata, 62 Candida parapsilosis, 13 Candida krusei, and 11 of other six species were analyzed. Urine was the most common source (41.2%), followed by sputum (16.3%), blood (15.2%), and others (27.3%). Candida albicans and C. parapsilosis were more prevalent in the working group [from 19 to 65 years], whereas C. tropicalis and C. glabrata were more prevalent in the elder one (≥ 66 years). We found that the age of patients and the source of isolates affect the distribution of species. On the other hand, the drug susceptibility of isolates was associated with fungal species and whether patients were hospitalized.

  14. Antifungal drug resistance among Candida species: mechanisms and clinical impact.

    PubMed

    Sanguinetti, Maurizio; Posteraro, Brunella; Lass-Flörl, Cornelia

    2015-06-01

    The epidemiology of Candida infections has changed in recent years. Although Candida albicans is still the main cause of invasive candidiasis in most clinical settings, a substantial proportion of patients is now infected with non-albicans Candida species. The various Candida species vary in their susceptibility to the most commonly used antifungal agents, and the intrinsic resistance to antifungal therapy seen in some species, along with the development of acquired resistance during treatment in others, is becoming a major problem in the management of Candida infection. A better understanding of the mechanisms and clinical impact of antifungal drug resistance is essential for the efficient treatment of patients with Candida infection and for improving treatment outcomes. Herein, we report resistance to the azoles and echinocandins among Candida species.

  15. Application of CHROMagar Candida for rapid screening of clinical specimens for Candida albicans, Candida tropicalis, Candida krusei, and Candida (Torulopsis) glabrata.

    PubMed Central

    Pfaller, M A; Houston, A; Coffmann, S

    1996-01-01

    CHROMagar Candida is a new differential culture medium that allows selective isolation of yeasts and simultaneously identifies colonies of Candida albicans, C. tropicalis, and C. krusei. We evaluated the use of this medium with 316 yeast isolates including 247 isolated directly on CHROMagar from clinical material. Over 95% of stock and clinical isolates of C. albicans, C. tropicalis, and C. krusei were correctly identified on the basis of colony morphology and pigmentation on CHROMagar. Additionally, CHROMagar also allowed the identification of C. (Torulopsis) glabrata at a similar level of accuracy. The overall agreement between two observers in reading the CHROMagar plates was 95%. Growth of Candida sp. isolates on CHROMagar had no adverse effect on antifungal MICs or Vitek identification results. In parallel, cultures of 548 stool and rectal swab specimens set up on CHROMagar and Sabouraud glucose agar (SGA) were positive in 234 instances. CHROMagar was positive and SGA was negative for 11 specimens, and CHROMagar was negative and SGA was positive for 18 specimens. A single yeast species was isolated on both media from 162 specimens, and in 146 (90%) of these specimens the same species was detected on both CHROMagar and SGA. A total of 43 of the 234 positive cultures contained mixtures of yeast species. Twenty (47%) of these mixed cultures were detected only on CHROMagar. CHROMagar is extremely useful in making a rapid presumptive identification of common yeast species. This capability plus the ability to detect mixed cultures of Candida spp. promises to improve and streamline the work flow in the mycology and clinical microbiology laboratory. PMID:8748273

  16. Recurrent Candida albicans Ventriculitis Treated with Intraventricular Liposomal Amphotericin B.

    PubMed

    Toprak, Demet; Öcal Demir, Sevliya; Kadayifci, Eda Kepenekli; Türel, Özden; Soysal, Ahmet; Bakir, Mustafa

    2015-01-01

    Central nervous system (CNS) infection with Candida is rare but significant because of its high morbidity and mortality. When present, it is commonly seen among immunocompromised and hospitalized patients. Herein, we describe a case of a four-year-old boy with acute lymphoblastic leukemia (ALL) who experienced recurrent Candida albicans meningitis. The patient was treated successfully with intravenous liposomal amphotericin B at first attack, but 25 days after discharge he was readmitted to hospital with symptoms of meningitis. Candida albicans was grown in CFS culture again and cranial magnetic resonance imaging (MRI) showed ventriculitis. We administered liposomal amphotericin B both intravenously and intraventricularly and favorable result was achieved without any adverse effects. Intraventricular amphotericin B may be considered for the treatment of recurrent CNS Candida infections in addition to intravenous administration. PMID:26558119

  17. Recurrent Candida albicans Ventriculitis Treated with Intraventricular Liposomal Amphotericin B

    PubMed Central

    Toprak, Demet; Öcal Demir, Sevliya; Kadayifci, Eda Kepenekli; Türel, Özden; Soysal, Ahmet; Bakir, Mustafa

    2015-01-01

    Central nervous system (CNS) infection with Candida is rare but significant because of its high morbidity and mortality. When present, it is commonly seen among immunocompromised and hospitalized patients. Herein, we describe a case of a four-year-old boy with acute lymphoblastic leukemia (ALL) who experienced recurrent Candida albicans meningitis. The patient was treated successfully with intravenous liposomal amphotericin B at first attack, but 25 days after discharge he was readmitted to hospital with symptoms of meningitis. Candida albicans was grown in CFS culture again and cranial magnetic resonance imaging (MRI) showed ventriculitis. We administered liposomal amphotericin B both intravenously and intraventricularly and favorable result was achieved without any adverse effects. Intraventricular amphotericin B may be considered for the treatment of recurrent CNS Candida infections in addition to intravenous administration. PMID:26558119

  18. Molecular concordance of concurrent Candida albicans candidemia and candiduria.

    PubMed

    Huang, Po-Yen; Hung, Min-Hui; Shie, Shian-Sen; Su, Lin-Hui; Chen, Ke-Yuan; Ye, Jung-Jr; Chiang, Ping-Cheng; Leu, Hsieh-Shong; Huang, Ching-Tai

    2013-07-01

    The significance of candiduria remains unclear. We correlated Candida albicans candidemia with candiduria by molecular genotyping. 33 pairs of concurrent blood and urine C. albicans isolates from 31 adult (≥ 18 years) were genotyped with infrequent-restriction-site PCR. The molecular concordance rates of three major genotypes were 100% for I, 82% for II, and 71% for III. The molecular concordance between concurrent C. albicans candidemia and candiduria was frequent. Our findings substantiate the importance of candiduria in appropriate clinical context as the majority of our patients were from intensive care units.

  19. Relationship between salivary flow rates and Candida albicans counts.

    PubMed

    Navazesh, M; Wood, G J; Brightman, V J

    1995-09-01

    Seventy-one persons (48 women, 23 men; mean age, 51.76 years) were evaluated for salivary flow rates and Candida albicans counts. Each person was seen on three different occasions. Samples of unstimulated whole, chewing-stimulated whole, acid-stimulated parotid, and candy-stimulated parotid saliva were collected under standardized conditions. An oral rinse was also obtained and evaluated for Candida albicans counts. Unstimulated and chewing-stimulated whole flow rates were negatively and significantly (p < 0.001) related to the Candida counts. Unstimulated whole saliva significantly (p < 0.05) differed in persons with Candida counts of 0 versus <500 versus < or = 500. Chewing-stimulated saliva was significantly (p < 0.05) different in persons with 0 counts compared with those with a > or = 500 count. Differences in stimulated parotid flow rates were not significant among different levels of Candida counts. The results of this study reveal that whole saliva is a better predictor than parotid saliva in identification of persons with high Candida albicans counts.

  20. Sensitization of Candida albicans to terbinafine by berberine and berberrubine

    PubMed Central

    LAM, PIKLING; KOK, STANTON HON LUNG; LEE, KENNETH KA HO; LAM, KIM HUNG; HAU, DESMOND KWOK PO; WONG, WAI YEUNG; BIAN, ZHAOXIANG; GAMBARI, ROBERTO; CHUI, CHUNG HIN

    2016-01-01

    Candida albicans (C. albicans) is an opportunistic fungal pathogen, particularly observed in immunocompromised patients. C. albicans accounts for 50–70% of cases of invasive candidiasis in the majority of clinical settings. Terbinafine, an allylamine antifungal drug, has been used to treat fungal infections previously. It has fungistatic activity against C. albicans. Traditional Chinese medicines can be used as complementary medicines to conventional drugs to treat a variety of ailments and diseases. Berberine is a quaternary alkaloid isolated from the traditional Chinese herb, Coptidis Rhizoma, while berberrubine is isolated from the medicinal plant Berberis vulgaris, but is also readily derived from berberine by pyrolysis. The present study demonstrates the possible complementary use of berberine and berberrubine with terbinafine against C. albicans. The experimental findings assume that the potential application of these alkaloids together with reduced dosage of the standard drug would enhance the resulting antifungal potency. PMID:27073630

  1. HWY-289, a novel semi-synthetic protoberberine derivative with multiple target sites in Candida albicans.

    PubMed

    Park, K S; Kang, K C; Kim, K Y; Jeong, P Y; Kim, J H; Adams, D J; Kim, J H; Paik, Y K

    2001-05-01

    The antifungal properties of 515 synthetic and semi-synthetic protoberberines were investigated. HWY-289 was chosen for further study because it exhibited the most significant anti-Candida activity (MICs were 1.56 mg/L for Candida albicans and Candida krusei; 6.25 mg/L for Candida guilliermondii) but did not demonstrate toxicity in rats. HWY-289 inhibited the incorporation of L-[methyl-(14)C]methionine into the C-24 of ergosterol in whole cells of C. albicans (IC(50) 20 microM). However, HWY-289 (100 microM) had no effect on mammalian cholesterol biosynthesis in rat microsomes while miconazole (100 microM) was a potent inhibitor of cholesterol biosynthesis under identical assay conditions. A second major target site for HWY-289 was identified that involves cell wall biosynthesis in C. albicans. HWY-289 was a potent inhibitor of the chitin synthase isozymes CaCHS1 and CaCHS2, with IC(50) values of 22 microM for each enzyme. The effect was highly specific in that HWY-289 had no significant effect on C. albicans CaCHS3 (IC(50) > 200 microM). Thus, HWY-289 compared favourably with well-established antifungal agents as an inhibitor of the growth of Candida species in vitro, and may have considerable potential as a new class of antifungal agent that lacks toxic side effects in the human host.

  2. Study on the comparative activity of echinocandins on murine gut colonization by Candida albicans.

    PubMed

    Maraki, Sofia; Hamilos, George; Dimopoulou, Dimitra; Andrianaki, Angeliki M; Karageorgiadis, Alexander Steven; Kyvernitakis, Andreas; Lionakis, Stelios; Kofteridis, Diamantis P; Samonis, George

    2015-08-01

    Colonization of the gastrointestinal (GI) tract by Candida species is a principal pathogenetic event for development of invasive candidiasis. Importantly, the effect of echinocandins, the preferred antifungal agents for treatment of invasive candidiasis, on GI tract colonization by Candida spp. is currently unknown. Herein, we used an established model of persistent murine GI tract colonization by Candida albicans to test the ability of different echinocandins to eradicate the yeast from murine gut. Adult male Crl:CD1 (ICR) BR mice were fed with chow containing C. albicans and subsequently treated with different echinocandins or normal saline via daily intraperitoneal injections for 10 days. Quantitative stool cultures were performed immediately before (week one), and weekly for three months after discontinuation of treatment. Notably, treatment with all three echinocandins used (caspofungin, anidulafungin, and micafungin) resulted in eradication of Candida albicans from the stools, as evidenced by the significant reduction of yeast cells from a mean of 4.2 log10 CFU/g of stool before treatment (week one of colonization) to undetectable (<2 log10 CFU/g of stool) levels (week 12, P < 0.0001). In contrast, there was no significant reduction of Candida yeast cells in the stools of control mice. Collectively, the ability of echinocandins to eradicate C. albicans from the stools could have important implications in prophylaxis of high-risk patients for development of invasive candidiasis originating from the GI tract.

  3. Scolopendin 2 leads to cellular stress response in Candida albicans.

    PubMed

    Lee, Heejeong; Hwang, Jae-Sam; Lee, Dong Gun

    2016-07-01

    Centipedes, a kind of arthropod, have been reported to produce antimicrobial peptides as part of an innate immune response. Scolopendin 2 (AGLQFPVGRIGRLLRK) is a novel antimicrobial peptide derived from the body of the centipede Scolopendra subspinipes mutilans by using RNA sequencing. To investigate the intracellular responses induced by scolopendin 2, reactive oxygen species (ROS) and glutathione accumulation and lipid peroxidation were monitored over sublethal and lethal doses. Intracellular ROS and antioxidant molecule levels were elevated and lipids were peroxidized at sublethal concentrations. Moreover, the Ca(2+) released from the endoplasmic reticulum accumulated in the cytosol and mitochondria. These stress responses were considered to be associated with yeast apoptosis. Candida albicans cells exposed to scolopendin 2 were identified using diagnostic markers of apoptotic response. Various responses such as phosphatidylserine externalization, chromatin condensation, and nuclear fragmentation were exhibited. Scolopendin 2 disrupted the mitochondrial membrane potential and activated metacaspase, which was mediated by cytochrome c release. In conclusion, treatment of C. albicans with scolopendin 2 induced the apoptotic response at sublethal doses, which in turn led to mitochondrial dysfunction, metacaspase activation, and cell death. The cationic antimicrobial peptide scolopendin 2 from the centipede is a potential antifungal peptide, triggering the apoptotic response. PMID:27207682

  4. Comparative adherence of Candida albicans and Candida dubliniensis to human buccal epithelial cells and extracellular matrix proteins.

    PubMed

    Jordan, Rachael P C; Williams, David W; Moran, Gary P; Coleman, David C; Sullivan, Derek J

    2014-04-01

    Candida albicans and Candida dubliniensis are very closely related pathogenic yeast species. Despite their close relationship, C. albicans is a far more successful colonizer and pathogen of humans. The purpose of this study was to determine if the disparity in the virulence of the two species is attributed to differences in their ability to adhere to human buccal epithelial cells (BECs) and/or extracellular matrix proteins. When grown overnight at 30°C in yeast extract peptone dextrose, genotype 1 C. dubliniensis isolates were found to be significantly more adherent to human BECs than C. albicans or C. dubliniensis genotypes 2-4 (P < 0.001). However, when the yeast cells were grown at 37°C, no significant difference between the adhesion of C. dubliniensis genotype 1 and C. albicans to human BECs was observed, and C. dubliniensis genotype 1 and C. albicans adhered to BECs in significantly greater numbers than the other C. dubliniensis genotypes (P < 0.001). Using surface plasmon resonance analysis, C. dubliniensis isolates were found to adhere in significantly greater numbers than C. albicans to type I and IV collagen, fibronectin, laminin, vitronectin, and proline-rich peptides. These data suggest that C. albicans is not more adherent to epithelial cells or matrix proteins than C. dubliniensis and therefore other factors must contribute to the greater levels of virulence exhibited by C. albicans.

  5. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans.

    PubMed

    Chen, Yuxin; Zeng, Hong; Tian, Jun; Ban, Xiaoquan; Ma, Bingxin; Wang, Youwei

    2013-08-01

    This work studied the antifungal mechanism of dill seed essential oil (DSEO) against Candida albicans. Flow cytometric analysis and inhibition of ergosterol synthesis were performed to clarify the mechanism of action of DSEO on C. albicans. Upon treatment of cells with DSEO, propidium iodide penetrated C. albicans through a lesion in its plasma membrane. DSEO also significantly reduced the amount of ergosterol. These findings indicate that the plasma membrane of C. albicans was damaged by DSEO. The effect of DSEO on the functions of the mitochondria in C. albicans was also studied. We assayed the mitochondrial membrane potential (mtΔψ) using rhodamine 123 and determined the production of mitochondrial dysfunction-induced reactive oxygen species (ROS) via flow cytometry. The effects of the antioxidant l-cysteine (Cys) on DSEO-induced ROS production and the antifungal effect of DSEO on C. albicans were investigated. Exposure to DSEO increased mtΔψ. Dysfunctions in the mitochondria caused ROS accumulation in C. albicans. This increase in the level of ROS production and DSEO-induced decrease in cell viability were prevented by the addition of Cys, indicating that ROS are an important mediator of the antifungal action of DSEO. These findings indicate that the cytoplasmic membrane and mitochondria are the main anti-Candida targets of DSEO. PMID:23657528

  6. Virulence and pathogenicity of Candida albicans is enhanced in biofilms containing oral bacteria.

    PubMed

    Cavalcanti, Yuri Wanderley; Morse, Daniel James; da Silva, Wander José; Del-Bel-Cury, Altair Antoninha; Wei, Xiaoqing; Wilson, Melanie; Milward, Paul; Lewis, Michael; Bradshaw, David; Williams, David Wynne

    2015-01-01

    This study examined the influence of bacteria on the virulence and pathogenicity of candidal biofilms. Mature biofilms (Candida albicans-only, bacteria-only, C. albicans with bacteria) were generated on acrylic and either analysed directly, or used to infect a reconstituted human oral epithelium (RHOE). Analyses included Candida hyphae enumeration and assessment of Candida virulence gene expression. Lactate dehydrogenase (LDH) activity and Candida tissue invasion following biofilm infection of the RHOE were also measured. Candida hyphae were more prevalent (p < 0.05) in acrylic biofilms also containing bacteria, with genes encoding secreted aspartyl-proteinases (SAP4/SAP6) and hyphal-wall protein (HWP1) up-regulated (p < 0.05). Candida adhesin genes (ALS3/EPA1), SAP6 and HWP1 were up-regulated in mixed-species biofilm infections of RHOE. Multi-species infections exhibited higher hyphal proportions (p < 0.05), up-regulation of IL-18, higher LDH activity and tissue invasion. As the presence of bacteria in acrylic biofilms promoted Candida virulence, consideration should be given to the bacterial component when managing denture biofilm associated candidoses.

  7. Baicalin prevents Candida albicans infections via increasing its apoptosis rate

    SciTech Connect

    Yang, Shulong; Fu, Yingyuan Wu, Xiuzhen; Zhou, Zhixing; Xu, Jing; Zeng, Xiaoping; Kuang, Nanzhen; Zeng, Yurong

    2014-08-15

    Highlights: • Baicalin increases the ratio of the G0/G1 stages and C. albicans apoptosis. • Baicalin decreases the proliferation index of C. albicans. • Baicalin inhibits the biosynthesis of DNA, RNA and protein in C. albicans. • Baicalin depresses Succinate Dehydrogenase and Ca{sup 2+}–Mg{sup 2+} ATPase in C. albicans. • Baicalin increases the endocytic free Ca{sup 2+} concentration in C. albicans. - Abstract: Background: These experiments were employed to explore the mechanisms underlying baicalin action on Candida albicans. Methodology and principal findings: We detected the baicalin inhibition effects on three isotope-labeled precursors of {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C. albicans using the isotope incorporation technology. The activities of Succinate Dehydrogenase (SDH), cytochrome oxidase (CCO) and Ca{sup 2+}–Mg{sup 2+} ATPase, cytosolic Ca{sup 2+} concentration, the cell cycle and apoptosis, as well as the ultrastructure of C.albicans were also tested. We found that baicalin inhibited {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C.albicans (P < 0.005). The activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase of C.albicans in baicalin groups were lower than those in control group (P < 0.05). Ca{sup 2+} concentrations of C. albicans in baicalin groups were much higher than those in control group (P < 0.05). The ratio of C.albicans at the G0/G1 stage increased in baicalin groups in dose dependent manner (P < 0.01). There were a significant differences in the apoptosis rate of C.albicans between baicalin and control groups (P < 0.01). After 12–48 h incubation with baicalin (1 mg/ml), C. albicans shown to be markedly damaged under transmission electron micrographs. Innovation and significance: Baicalin can increase the apoptosis rate of C. albicans. These effects of Baicalin may involved in its inhibiting the activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase, increasing

  8. Anticandidal action of fungal chitosan against Candida albicans.

    PubMed

    Tayel, Ahmed A; Moussa, Shaaban; el-Tras, Wael F; Knittel, Dierk; Opwis, Klaus; Schollmeyer, Eckhard

    2010-11-01

    The anticandidal activity of four fungal chitosan types, produced from Mucor rouxii DSM-1191, against three Candida albicans strains was determined. The most bioactive chitosan type, to inhibit C. albicans growth, had the lowest molecular weight (32 kDa) and the highest deacetylation degree (94%). Water soluble types had stronger anticandidal activity than soluble types in 1% acetic acid solution. Scanning electron micrographs of treated C. albicans with fungal chitosan proved that chitosan principally interact with yeast cell wall, causing severe swelling and asymmetric rough shapes, and subsequent cell wall lyses with the prolonging of exposure time. Fungal chitosan could be recommended for C. albicans control as a powerful and safe alternative to synthetic and chemical fungicides. PMID:20603144

  9. Short peptides allowing preferential detection of Candida albicans hyphae.

    PubMed

    Kaba, Hani E J; Pölderl, Antonia; Bilitewski, Ursula

    2015-09-01

    Whereas the detection of pathogens via recognition of surface structures by specific antibodies and various types of antibody mimics is frequently described, the applicability of short linear peptides as sensor molecules or diagnostic tools is less well-known. We selected peptides which were previously reported to bind to recombinant S. cerevisiae cells, expressing members of the C. albicans Agglutinin-Like-Sequence (ALS) cell wall protein family. We slightly modified amino acid sequences to evaluate peptide sequence properties influencing binding to C. albicans cells. Among the selected peptides, decamer peptides with an "AP"-N-terminus were superior to shorter peptides. The new decamer peptide FBP4 stained viable C. albicans cells more efficiently in their mature hyphal form than in their yeast form. Moreover, it allowed distinction of C. albicans from other related Candida spp. and could thus be the basis for the development of a useful tool for the diagnosis of invasive candidiasis.

  10. Rat indwelling urinary catheter model of Candida albicans biofilm infection.

    PubMed

    Nett, Jeniel E; Brooks, Erin G; Cabezas-Olcoz, Jonathan; Sanchez, Hiram; Zarnowski, Robert; Marchillo, Karen; Andes, David R

    2014-12-01

    Indwelling urinary catheters are commonly used in the management of hospitalized patients. Candida can adhere to the device surface and propagate as a biofilm. These Candida biofilm communities differ from free-floating Candida, exhibiting high tolerance to antifungal therapy. The significance of catheter-associated candiduria is often unclear, and treatment may be problematic considering the biofilm drug-resistant phenotype. Here we describe a rodent model for the study of urinary catheter-associated Candida albicans biofilm infection that mimics this common process in patients. In the setting of a functioning, indwelling urinary catheter in a rat, Candida proliferated as a biofilm on the device surface. Characteristic biofilm architecture was observed, including adherent, filamentous cells embedded in an extracellular matrix. Similar to what occurs in human patients, animals with this infection developed candiduria and pyuria. Infection progressed to cystitis, and a biofilmlike covering was observed over the bladder surface. Furthermore, large numbers of C. albicans cells were dispersed into the urine from either the catheter or bladder wall biofilm over the infection period. We successfully utilized the model to test the efficacy of antifungals, analyze transcriptional patterns, and examine the phenotype of a genetic mutant. The model should be useful for future investigations involving the pathogenesis, diagnosis, therapy, prevention, and drug resistance of Candida biofilms in the urinary tract.

  11. In vitro activity of eugenol against Candida albicans biofilms.

    PubMed

    He, Miao; Du, Minquan; Fan, Mingwen; Bian, Zhuan

    2007-03-01

    Most manifestations of candidiasis are associated with biofilm formation occurring on the surfaces of host tissues and medical devices. Candida albicans is the most frequently isolated causative pathogen of candidiasis, and the biofilms display significantly increased levels of resistance to the conventional antifungal agents. Eugenol, the major phenolic component of clove essential oil, possesses potent antifungal activity. The aim of this study was to investigate the effects of eugenol on preformed biofilms, adherent cells, subsequent biofilm formation and cell morphogenesis of C. albicans. Eugenol displayed in vitro activity against C. albicans cells within biofilms, when MIC(50) for sessile cells was 500 mg/L. C. albicans adherent cell populations (after 0, 1, 2 and 4 h of adherence) were treated with various concentrations of eugenol (0, 20, 200 and 2,000 mg/L). The extent of subsequent biofilm formation were then assessed with the tetrazolium salt reduction assay. Effect of eugenol on morphogenesis of C. albicans cells was observed by scanning electron microscopy (SEM). The results indicated that the effect of eugenol on adherent cells and subsequent biofilm formation was dependent on the initial adherence time and the concentration of this compound, and that eugenol can inhibit filamentous growth of C. albicans cells. In addition, using human erythrocytes, eugenol showed low hemolytic activity. These results indicated that eugenol displayed potent activity against C. albicans biofilms in vitro with low cytotoxicity and therefore has potential therapeutic implication for biofilm-associated candidal infections. PMID:17356790

  12. Survival of Candida albicans in tropical marine and fresh waters.

    PubMed Central

    Valdes-Collazo, L; Schultz, A J; Hazen, T C

    1987-01-01

    A survey of Candida albicans indicated that the organism was present at all sites sampled in a rain forest stream and in near-shore coastal waters of Puerto Rico. In the rain forest watershed no relationship existed between densities of fecal coliforms and densities of C. albicans. At two pristine sites in the rain forest watershed both C. albicans and Escherichia coli survived in diffusion chambers for extended periods of time. In near-shore coastal waters C. albicans and E. coli survival times in diffusion chambers were enhanced by effluent from a rum distillery. The rum distillery effluent had a greater effect on E. coli than on C. albicans survival in the diffusion chambers. These studies show that neither E. coli nor C. albicans organisms are good indicators of recent fecal contamination in tropical waters. It further demonstrates that pristine freshwater environments and marine waters receiving organic loading in the tropics can support densities of C. albicans which may be a health hazard. Images PMID:3310885

  13. Micafungin triggers caspase-dependent apoptosis in Candida albicans and Candida parapsilosis biofilms, including caspofungin non-susceptible isolates.

    PubMed

    Shirazi, F; Kontoyiannis, D P

    2015-01-01

    Candida biofilms play an important role in infections associated with medical devices and are resistant to antifungals. We hypothesized that the echinocandin micafungin (MICA) exerts an enhanced antifungal activity against caspofungin (CAS)-susceptible (CAS-S) and CAS-non-susceptible (CAS-NS) Candida albicans and Candida parapsilosis which is at least in part through apoptosis, even in the biofilm environment. Apoptosis was characterized by detecting reactive oxygen species (ROS) accumulation, depolarization of mitochondrial membrane potential (MMP), DNA fragmentation, lack of plasma membrane integrity, and metacaspase activation following exposure of Candida biofilm to MICA for 3h at 37°C in RPMI 1640 medium. The minimum inhibitory concentration was higher for CAS (2.0-16.0 μg/mL) than for MICA (1.0-8.0 μg/mL) for Candida biofilms. Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0-4.2 fold) and C. parapsilosis (4.8-5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0-4.2 fold) and C. parapsilosis (4.8-5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Finally higher ß-1, 3 glucan levels were seen in sessile cells compared to planktonic cells, especially in CAS-NS strains. MICA treatment might induce a metacaspase-dependent apoptotic process in biofilms of both CAS-S C. albicans and C. parapsilosis, and to some degree in CAS-NS strains.

  14. Dissecting Candida albicans Infection from the Perspective of C. albicans Virulence and Omics Approaches on Host–Pathogen Interaction: A Review

    PubMed Central

    Chin, Voon Kin; Lee, Tze Yan; Rusliza, Basir; Chong, Pei Pei

    2016-01-01

    Candida bloodstream infections remain the most frequent life-threatening fungal disease, with Candida albicans accounting for 70% to 80% of the Candida isolates recovered from infected patients. In nature, Candida species are part of the normal commensal flora in mammalian hosts. However, they can transform into pathogens once the host immune system is weakened or breached. More recently, mortality attributed to Candida infections has continued to increase due to both inherent and acquired drug resistance in Candida, the inefficacy of the available antifungal drugs, tedious diagnostic procedures, and a rising number of immunocompromised patients. Adoption of animal models, viz. minihosts, mice, and zebrafish, has brought us closer to unraveling the pathogenesis and complexity of Candida infection in human hosts, leading towards the discovery of biomarkers and identification of potential therapeutic agents. In addition, the advancement of omics technologies offers a holistic view of the Candida-host interaction in a non-targeted and non-biased manner. Hence, in this review, we seek to summarize past and present milestone findings on C. albicans virulence, adoption of animal models in the study of C. albicans infection, and the application of omics technologies in the study of Candida–host interaction. A profound understanding of the interaction between host defense and pathogenesis is imperative for better design of novel immunotherapeutic strategies in future. PMID:27763544

  15. Candida albicans specializations for iron homeostasis: from commensalism to virulence.

    PubMed

    Noble, Suzanne M

    2013-12-01

    Candida albicans is a fungal commensal-pathogen that persistently associates with its mammalian hosts. Between the commensal and pathogenic lifestyles, this microorganism inhabits host niches that differ markedly in the levels of bioavailable iron. A number of recent studies have exposed C. albicans specializations for acquiring iron from specific host molecules in regions where iron is scarce, while also defending against iron-related toxicity in regions where iron occurs in surfeit. Together, these results point to a central role for iron homeostasis in the evolution of this important human pathogen.

  16. Antifungal Effect of Zataria multiflora Essence on Experimentally Contaminated Acryl Resin Plates With Candida albicans

    PubMed Central

    Jafari, Abbas Ali; Falah Tafti, Abbas; Hoseiny, Seyed Mehdi; Kazemi, Abdolhossein

    2015-01-01

    Background: Adherence and colonization of Candida species particularly C. albicans on denture surfaces, forms a microbial biofilm, which may result denture stomatitis in complete denture users. Objectives: The purpose of the present study was to evaluate the antifungal effect Zataria multiflora essence in removing of Candida albicans biofilms on experimentally contaminated resin acryl plates. Materials and Methods: In the present experimental study, 160 resin acrylic plates (10 × 10 × 1 mm) were contaminated by immersion in 1 × 103 C. albicans suspension for 24 hours to prepare experimental Candida biofilms. The total number of Candida cells, which adhered to 20 randomly selected acryl resin plates was determined as the Candia load before cleaning. The remaining 140 plates were divided to seven groups of 20 and immersed in five concentrations of Zataria multiflora essence from 50 to 3.125 mg/mL as test, 100000 IU nystatin as the positive and sterile physiologic serum as the negative control. The remaining Candida cells on each acryl plate were also enumerated and data were analyzed using the SPSS 16 software with Kruskal-Wallis and Wilcoxon tests. Results: Zataria essence at concentrations of 50 and 25 mg/mL removed 100% of attached Candida cells similar to nystatine (MFC), while weaker Zataria essence solutions cleaned 88%, 60.5% and 44.7% of attached Candida cells. Kruskal-wallis test showed a statistically significant difference between all test groups (P = 0.0001). In this study 12.5 mg/mL concentration of Zataria multiflora was considered as the minimum inhibitory concentration (MIC90). Conclusions: Zataria essence, at concentrations of 50 and 25 mg/mL, effectively removed Candida cells that had adhered to the denture surface, similar to the level of removal observed for 100000 IU nystatin. PMID:25763273

  17. Modulation of Candida albicans virulence by bacterial biofilms on titanium surfaces.

    PubMed

    Cavalcanti, Yuri Wanderley; Wilson, Melanie; Lewis, Michael; Del-Bel-Cury, Altair Antoninha; da Silva, Wander José; Williams, David W

    2016-01-01

    Whilst Candida albicans occurs in peri-implant biofilms, its role in peri-implantitis remains unclear. This study therefore examined the virulence of C. albicans in mixed-species biofilms on titanium surfaces. Biofilms of C. albicans (Ca), C. albicans with streptococci (Streptococcus sanguinis, S. mutans) (Ca-Ss-Sm) and those incorporating Porphyromonas gingivalis (Ca-Pg and Ca-Ss-Sm-Pg) were developed. Expression of C. albicans genes associated with adhesion (ALS1, ALS3, HWP1) and hydrolytic enzymes (SAP2, SAP4, SAP6, PLD1) was measured and hyphal production by C. albicans quantified. Compared with Ca biofilms, significant (p<0.05) up-regulation of ALS3, HWP1, SAP2 and SAP6, and hyphal production occurred in biofilms containing streptococci (Ca-Ss-Sm). In Ca-Pg biofilms, down-regulation of HWP1 and SAP4 expression, with reduced hyphal production occurred. Ca-Ss-Sm-Pg biofilms had increased hyphal proportions and up-regulation of ALS3, SAP2 and SAP6. In conclusion, C. albicans expressed virulence factors in biofilms that could contribute to peri-implantitis, but this was dependent on associated bacterial species.

  18. Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicans and Candida glabrata biofilms.

    PubMed

    Monteiro, Douglas R; Silva, Sónia; Negri, Melyssa; Gorup, Luiz F; de Camargo, Emerson R; Oliveira, Rosário; Barbosa, Debora B; Henriques, Mariana

    2013-11-01

    Although silver nanoparticles (SN) have been investigated as an alternative to conventional antifungal drugs in the control of Candida-associated denture stomatitis, the antifungal activity of SN in combination with antifungal drugs against Candida biofilms remains unknown. Therefore, the aim of this study was to evaluate the antifungal efficacy of SN in combination with nystatin (NYT) or chlorhexidine digluconate (CHG) against Candida albicans and Candida glabrata biofilms. The drugs alone or combined with SN were applied on mature Candida biofilms (48 h), and after 24 h of treatment their antibiofilm activities were assessed by total biomass quantification (by crystal violet staining) and colony forming units enumeration. The structure of Candida biofilms was analysed by scanning electron microscopy (SEM) images. The data indicated that SN combined with either NYT or CHG demonstrated synergistic antibiofilm activity, and this activity was dependent on the species and on the drug concentrations used. SEM images showed that some drug combinations were able to disrupt Candida biofilms. The results of this study suggest that the combination of SN with NYT or CHG may have clinical implications in the treatment of denture stomatitis. However, further studies are needed before recommending the use of these drugs safely in clinical situations. PMID:23773119

  19. Phenotypic consequences of LYS4 gene disruption in Candida albicans.

    PubMed

    Gabriel, Iwona; Kur, Krzysztof; Laforce-Nesbitt, Sonia S; Pulickal, Anoop S; Bliss, Joseph M; Milewski, Sławomir

    2014-08-01

    A BLAST search of the Candida Genome Database with the Saccharomyces cerevisiae LYS4 sequence known to encode homoaconitase (HA) revealed ORFs 19.3846 and 19.11327. Both alleles of the LYS4 gene were sequentially disrupted in Candida albicans BWP17 cells using PCR-based methodology. The null lys4Δ mutant exhibited lysine auxotrophy in minimal medium but was able to grow in the presence of l-Lys and α-aminoadipate, an intermediate of the α-aminoadipate pathway, at millimolar concentrations. The presence of d-Lys and pipecolic acid did not trigger lys4Δ growth. The C. albicans lys4Δ mutant cells demonstrated diminished germination ability. However, their virulence in vivo in a murine model of disseminated neonatal candidiasis appeared identical to that of the wild-type strain. Moreover, there was no statistically significant difference in fungal burden of infected tissues between the strains.

  20. Effect of tunicamycin on Candida albicans biofilm formation and maintenance

    PubMed Central

    Pierce, Christopher G.; Thomas, Derek P.; López-Ribot, José L.

    2009-01-01

    Background Candida albicans is a common opportunistic pathogen of the human body and is the frequent causative agent of candidiasis. Typically, these infections are associated with the formation of biofilms on both host tissues and implanted biomaterials. As a result of the intrinsic resistance of C. albicans biofilms to most antifungal agents, new strategies are needed to combat these infections. Methods Here we have used a 96-well microtitre plate model of C. albicans biofilm formation to study the inhibitory effect of tunicamycin, a nucleoside antibiotic that inhibits N-linked glycosylation affecting cell wall and secreted proteins, on C. albicans biofilm formation. A proteomic approach was used to study the effect of tunicamycin on levels of glycosylation of key secreted mannoproteins in the biofilm matrix. Results Our results revealed that physiological concentrations of tunicamycin displayed significant inhibitory effects on biofilm development and maintenance, while not affecting overall cell growth or morphology. However, tunicamycin exerted a minimal effect on fully mature, pre-formed C. albicans biofilms. Conclusions The effect of tunicamycin on the C. albicans biofilm mode of growth demonstrates the importance of N-linked glycosylation in the developmental stages of biofilm formation. In addition, our results indicate that N-linked glycosylation represents an attractive target for the development of alternative strategies for the prevention of biofilm formation by this important pathogenic fungus. PMID:19098294

  1. Anti-biofilm Properties of Peganum harmala against Candida albicans

    PubMed Central

    Aboualigalehdari, Elham; Sadeghifard, Nourkhoda; Taherikalani, Morovat; Zargoush, Zaynab; Tahmasebi, Zahra; Badakhsh, Behzad; Rostamzad, Arman; Ghafourian, Sobhan; Pakzad, Iraj

    2016-01-01

    Objectives Vaginitis still remains as a health issue in women. It is notable that Candida albicans producing biofilm is considered a microorganism responsible for vaginitis with hard to treat. Also, Peganum harmala was applied as an anti fungal in treatment for many infections in Iran. Therefore, this study goal to investigate the role of P. harmala in inhibition of biofilm formation in C. albicans. Methods So, 27 C. albicans collected from women with Vaginitis, then subjected for biofilm formation assay. P. harmala was applied as antibiofilm formation in C. albicans. Results Our results demonstrated that P. harmala in concentration of 12 μg/ml easily inhibited strong biofilm formation; while the concentrations of 10 and 6 μg/ml inhibited biofilm formation in moderate and weak biofilm formation C. albicans strains, respectively. Conclusion Hence, the current study presented P. harmala as antibiofilm herbal medicine for C. albicans; but in vivo study suggested to be performed to confirm its effectiveness. PMID:27169010

  2. Dental caries in rats associated with Candida albicans.

    PubMed

    Klinke, T; Guggenheim, B; Klimm, W; Thurnheer, T

    2011-01-01

    In addition to occasional opportunistic colonization of the oral mucosa, Candida albicans is frequently found in carious dentin. The yeast's potential to induce dental caries as a consequence of its pronounced ability to produce and tolerate acids was investigated. Eighty caries-active Osborne-Mendel rats were raised on an ampicillin-supplemented diet and exposed to C. albicans and/or Streptococcus mutans, except for controls. Throughout the 28-day test period, the animals were offered the modified cariogenic diet 2000a, containing 40% various sugars. Subsequently, maxillary molars were scored for plaque extent. After dissection, the mandibular molars were evaluated for smooth surface and fissure caries. Test animals exposed to C. albicans displayed considerably more advanced fissure lesions (p < 0.001) than non-exposed controls. While S. mutans yielded similar results, a combined association of C. albicans and S. mutans had no effect on occlusal caries incidence. Substituting dietary sucrose by glucose did not modify caries induction by C. albicans. However, animals fed a diet containing 20% of both sugars showed no differences to non-infected controls. Smooth surface caries was not generated by the yeast. This study provides experimental evidence that C. albicans is capable of causing occlusal caries in rats at a high rate.

  3. [Progress on the role of Toll-like receptors in Candida albicans infections].

    PubMed

    Yun, Zhou; Jianping, Pan

    2016-05-25

    Toll like receptors (TLRs) are expressed mainly on innate immunocytes such as dendritic cells and macrophages, and may have the potential to recognize and bind to pathogen-associated molecular patterns (PAMPs) from Candida albicans, thereby triggering the downstream signals. The genetic polymorphism of TLRs is associated with susceptibility to Candida albicans. The activation of TLRs by PAMPs from Candida albicans can induce the production of proinflammatory cytokines that play key roles in the anti-infection of Candida albicans. However, in order to evade the immune response of host,Candida albicans can also change its bacterial phase. Understanding of the interaction between TLRs and Candida albicans will provide novel evidence to further clarify the mechanisms of anti-fungal immune response. PMID:27651197

  4. Biotyping of Candida albicans: results of an international collaborative survey.

    PubMed Central

    Odds, F C; Auger, P; Krogh, P; Neely, A N; Segal, E

    1989-01-01

    An agar plate system for biotyping isolates of Candida albicans was evaluated in four laboratories for 18 coded yeast isolates, each tested in triplicate on duplicate series of agar plates. The results showed that the biotyping system gave excellent intralaboratory reproducibility. However, because the concordance of data among laboratories was poor, the method must be regarded as suitable only for research applications and not for routine use. PMID:2671015

  5. Comparative Analysis of Protein Glycosylation Pathways in Humans and the Fungal Pathogen Candida albicans

    PubMed Central

    Martínez-Duncker, Iván; Díaz-Jímenez, Diana F.; Mora-Montes, Héctor M.

    2014-01-01

    Protein glycosylation pathways are present in all kingdoms of life and are metabolic pathways found in all the life kingdoms. Despite sharing commonalities in their synthesis, glycans attached to glycoproteins have species-specific structures generated by the presence of different sets of enzymes and acceptor substrates in each organism. In this review, we present a comparative analysis of the main glycosylation pathways shared by humans and the fungal pathogen Candida albicans: N-linked glycosylation, O-linked mannosylation and glycosylphosphatidylinositol-anchorage. The knowledge of similarities and divergences between these metabolic pathways could help find new pharmacological targets for C. albicans infection. PMID:25104959

  6. Candida albicans mutant construction and characterization of selected virulence determinants.

    PubMed

    Motaung, T E; Albertyn, J; Pohl, C H; Köhler, Gerwald

    2015-08-01

    Candida albicans is a diploid, polymorphic yeast, associated with humans, where it mostly causes no harm. However, under certain conditions it can cause infections ranging from superficial to life threatening. This ability to become pathogenic is often linked to the immune status of the host as well as the expression of certain virulence factors by the yeast. Due to the importance of C. albicans as a pathogen, determination of the molecular mechanisms that allow this yeast to cause disease is important. These studies rely on the ability of researchers to create deletion mutants of specific genes in order to study their function. This article provides a critical review of the important techniques used to create deletion mutants in C. albicans and highlights how these deletion mutants can be used to determine the role of genes in the expression of virulence factors in vitro.

  7. Top-down characterization data on the speciation of the Candida albicans immunome in candidemia.

    PubMed

    Pitarch, Aida; Nombela, César; Gil, Concha

    2016-03-01

    The characterization of pathogen-specific antigenic proteins at the protein species level is crucial in the development and molecular optimization of novel immunodiagnostics, vaccines or immunotherapeutics for infectious diseases. The major requirements to achieve this molecular level are to obtain 100% sequence coverage and identify all post-translational modifications of each antigenic protein species. In this article, we show nearly complete sequence information for five discrete antigenic species of Candida albicans Tdh3 (glyceraldehyde-3-phosphate dehydrogenase), which have been reported to be differentially recognized both among candidemia patients and between candidemia and control patients. A comprehensive description of the top-down immunoproteomic strategy used for seroprofiling at the C. albicans protein species level in candidemia as well as for the chemical characterization of this immunogenic protein (based on high-resolution 2-DE, Western blotting, peptide mass fingerprinting, tandem mass spectrometry and de novo peptide sequencing) is also provided. The top-down characterization data on the speciation of the C. albicans immunome in candidemia presented here are related to our research article entitled "Seroprofiling at the Candida albicans protein species level unveils an accurate molecular discriminator for candidemia" (Pitarch et al., J. Proteomics, 2015, http://dx.doi.org/10.1016/j.jprot.2015.10.022). PMID:26862568

  8. [Isolation rate and susceptibilities of candida species from blood, vascular catheter, urine and stool].

    PubMed

    Tashiro, Masato; Murakami, Hinako; Yoshizawa, Sadako; Tateda, Kazuhiro; Yamaguchi, Keizo

    2012-03-01

    We evaluated species distribution and antifungal susceptibility of Candida isolates during 2002-2008. Of 177 Candida isolates from blood, species distribution was 90 (51%) Candida albicans, 30 (17%) C. parapsilosis, 22 (12%) C. glabrata, 6 (3%) C. tropicalis and 29 (16%) other Candida spp.. Of 162 Candida isolates from vascular catheter, species distribution was 87 (54%) C. albicans, 14 (9%) C. parapsilosis, 36 (22%) C. glabrata, 5 (3%), C. tropicalis, 2 (1%) C. krusei and 18 (11%) other Candida spp.. Of 1889 Candida isolates from urine, species distribution was 1165 (62%) C. albicans, 22 (1%) C. parapsilosis, 484 (26%) C. glabrata, 83 (4%) C. tropicalis, 26 (1%) C. krusei and 109 (6%) other Candida spp.. Of 782 Candida isolates from stool, species distribution was 425 (54%) C. albicans, 3 (1%) C. parapsilosis, 103 (13%) C. glabrata, 28 (4%) C. tropicalis, 5 (1%), C. krusei and 218 (28%) other Candida spp. Both C. albicans and non-Candida spp. isolated from urine increased slightly over the past 7 years. Flucytosine, fluconazole, itraconazole and micafungin still have strong activity against Candida isolates.

  9. [Isolation rate and susceptibilities of Candida species from blood, vascular catheter, urine and stool].

    PubMed

    Tashiro, Masato; Murakami, Hinako; Yoshizawa, Sadako; Tateda, Kazuhiro; Yamaguchi, Keizo

    2010-03-01

    We evaluated species distribution and antifungal susceptibility of Candida isolates during 2002-2008. Of 177 Candida isolates from blood, species distribution was 90 (51%) Candida albicans, 30 (17%) C. parapsilosis, 22 (12%) C. glabrata, 6 (3%) C. tropicalis and 29 (16%) other Candida spp.. Of 162 Candida isolates from vascular catheter, species distribution was 87 (54%) C. albicans, 14 (9%) C. parapsilosis, 36 (22%) C. glabrata, 5 (3%), C. tropicalis, 2 (1%) C. krusei and 18 (11%) other Candida spp.. Of 1889 Candida isolates from urine, species distribution was 1165 (62%) C. albicans, 22 (1%) C. parapsilosis, 484 (26%) C. glabrata, 83 (4%) C. tropicalis, 26 (1%) C. krusei and 109 (6%) other Candida spp.. Of 782 Candida isolates from stool, species distribution was 425 (54%) C. albicans, 3 (1%) C. parapsilosis, 103 (13%) C. glabrata, 28 (4%) C. tropicalis, 5 (1%), C. krusei and 218 (28%) other Candida spp.. Both C. albicans and non-Candida spp. isolated from urine increased slightly over the past 7 years. Flucytosine, fluconazole, itraconazole and micafungin still have strong activity against Candida isolates.

  10. Ocimum sanctum essential oil inhibits virulence attributes in Candida albicans.

    PubMed

    Khan, Amber; Ahmad, Aijaz; Xess, Immaculata; Khan, Luqman A; Manzoor, Nikhat

    2014-03-15

    Candida albicans is an opportunistic human fungal pathogen which causes disease mainly in immunocompromised patients. Activity of hydrolytic enzymes is essential for virulence of C. albicans and so is the capacity of these cells to undergo transition from yeast to mycelial form of growth. Ocimum sanctum is cultivated worldwide for its essential oil which exhibits medicinal properties. This work evaluates the anti-virulence activity of O. sanctum essential oil (OSEO) on 22 strains of C. albicans (including a standard strain ATCC 90028) isolated from both HIV positive and HIV negative patients. Candida isolates were exposed to sub-MICs of OSEO. In vitro secretion of proteinases and phospholipases was evaluated by plate assay containing BSA and egg yolk respectively. Morphological transition from yeast to filamentous form was monitored microscopically in LSM. For genetic analysis, respective genes associated with morphological transition (HWP1), proteinase (SAP1) and phospholipase (PLB2) were also investigated by Real Time PCR (qRT-PCR). Results were analyzed using Student's t-test. OSEO inhibits morphological transition in C. albicans and had a significant inhibitory effect on extracellular secretion of proteinases and phospholipases. Expression profile of respective selected genes associated with C. albicans virulence by qRT-PCR showed a reduced expression of HWP1, SAP1 and PLB2 genes in cells treated with sub-inhibitory concentrations of OSEO. This work suggests that OSEO inhibits morphological transition in C. albicans and decreases the secretion of hydrolytic enzymes involved in the early stage of infection as well as down regulates the associated genes. Further studies will assess the clinical application of OSEO and its constituents in the treatment of fungal infections. PMID:24252340

  11. Candida albicans-induced agglutinin and immunoglobulin E responses in mice.

    PubMed Central

    Winterrowd, G E; Cutler, J E

    1983-01-01

    Mice varied in their ability to make detectable antibody responses to cell surface determinants of Candida albicans depending upon the antigen preparation and the immunization schedule used. Immunoglobulin M (IgM) appeared to be the major class of antibody responsible for the C. albicans-agglutinating activity of the immune sera. Various inbred strains of mice injected with a ribosomal fraction from C. albicans produced a low titer (average, 4 to 8) of yeast cell agglutinins and a higher titer (64 to 512) of IgE antibodies detected by passive cutaneous anaphylaxis (PCA) in rats. The two kinds of antibodies appeared to be specific for different antigens because the agglutinin, but not IgE, could be removed by absorbing the serum with a polysaccharide from the cell wall of C. albicans, but the polysaccharide did not provoke the PCA reaction. C. albicans-specific IgE antibodies showed cross-reactivity (PCA) with ribosomal antigens from a strain of C. albicans and C. tropicalis, but PCA reactions could not be elicited with similar antigen preparations from other yeast species. IgE responses were also detected in over 20% of the mice infected intravenously or intraperitoneally with live C. albicans. PMID:6190755

  12. Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii.

    PubMed Central

    Holmes, A R; Gopal, P K; Jenkinson, H F

    1995-01-01

    Candida albicans ATCC 10261 and CA2 bound to cells of the oral bacteria Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguis when these bacteria were immobilized onto microtiter plate wells, but they did not bind to cells of Streptococcus mutans or Streptococcus salivarius. Cell wall polysaccharide was extracted with alkali from S. gordonii NCTC 7869, the streptococcal species to which C. albicans bound with highest affinity, and was effective in blocking the coaggregation of C. albicans and S. gordonii cells in the fluid phase. When fixed to microtiter plate wells, the S. gordonii polysaccharide was bound by all strains of C. albicans tested. The polysaccharide contained Rha, Glc, GalNAc, GlcNAc, and Gal and was related compositionally to previously characterized cell wall polysaccharides from strains of S. oralis and S. sanguis. The adherence of yeast cells to the immobilized polysaccharide was not inhibitable by a number of saccharides. Antiserum raised to the S. gordonii NCTC 7869 polysaccharide blocked adherence of C. albicans ATCC 10261 to the polysaccharide. The results identify a complex cell wall polysaccharide of S. gordonii as the coaggregation receptor for C. albicans. Adherent interactions of yeast cells with streptococci and other bacteria may be important for colonization of both hard and soft oral surfaces by C. albicans. PMID:7729891

  13. Performance of chromogenic media for Candida in rapid presumptive identification of Candida species from clinical materials

    PubMed Central

    Pravin Charles, M. V.; Kali, Arunava; Joseph, Noyal Mariya

    2015-01-01

    Background: In perspective of the worldwide increase in a number of immunocompromised patients, the need for identification of Candida species has become a major concern. The development of chromogenic differential media, introduced recently, facilitate rapid speciation. However, it can be employed for routine mycology workup only after an exhaustive evaluation of its benefit and cost effectiveness. This study was undertaken to evaluate the benefit and cost effectiveness of chromogenic media for speciation of Candida clinical isolates. Materials and Methods: Sputum samples of 382 patients were screened for the presence of Candida spp. by Gram stain and culture on sabouraud dextrose agar. Candida species were identified using Gram stain morphology, germ tube formation, cornmeal agar with Tween-80, sugar fermentation tests and morphology on HiCrome Candida differential agar. All the Candida isolates were inoculated on HiCrome Candida agar (HiMedia, Mumbai, India). Results: The sensitivity and specificity of HiCrome agar for identification of Candida albicans were 90% and 96.42%, respectively whereas sensitivity and specificity of carbohydrate fermentation test were 86.67% and 74.07%, respectively. Sensitivity and specificity values of HiCrome agar for detection of C. albicans, Candida parapsilosis and Candida glabrata were above 90%. Conclusions: We found HiCrome agar has high sensitivity and specificity comparable to that of the conventional method. In addition, use of this differential media could significantly cut down the turnaround time as well as cost of sample processing. PMID:26109791

  14. Streptococcus mutans Can Modulate Biofilm Formation and Attenuate the Virulence of Candida albicans.

    PubMed

    Barbosa, Júnia Oliveira; Rossoni, Rodnei Dennis; Vilela, Simone Furgeri Godinho; de Alvarenga, Janaína Araújo; Velloso, Marisol dos Santos; Prata, Márcia Cristina de Azevedo; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Streptococcus mutans and Candida albicans are found together in the oral biofilms on dental surfaces, but little is known about the ecological interactions between these species. Here, we studied the effects of S. mutans UA159 on the growth and pathogencity of C. albicans. Initially, the effects of S. mutans on the biofilm formation and morphogenesis of C. albicans were tested in vitro. Next, we investigate the influence of S. mutans on pathogenicity of C. albicans using in vivo host models, in which the experimental candidiasis was induced in G. mellonella larvae and analyzed by survival curves, C. albicans count in hemolymph, and quantification of hyphae in the host tissues. In all the tests, we evaluated the direct effects of S. mutans cells, as well as the indirect effects of the subproducts secreted by this microorganism using a bacterial culture filtrate. The in vitro analysis showed that S. mutans cells favored biofilm formation by C. albicans. However, a reduction in biofilm viable cells and inhibition of hyphal growth was observed when C. albicans was in contact with the S. mutans culture filtrate. In the in vivo study, injection of S. mutans cells or S. mutans culture filtrate into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, a reduction in hyphal formation was observed in larval tissues when C. albicans was associated with S. mutans culture filtrate. These findings suggest that S. mutans can secrete subproducts capable to inhibit the biofilm formation, morphogenesis and pathogenicity of C. albicans, attenuating the experimental candidiasis in G. mellonella model.

  15. Streptococcus mutans Can Modulate Biofilm Formation and Attenuate the Virulence of Candida albicans

    PubMed Central

    Barbosa, Júnia Oliveira; Rossoni, Rodnei Dennis; Vilela, Simone Furgeri Godinho; de Alvarenga, Janaína Araújo; Velloso, Marisol dos Santos; Prata, Márcia Cristina de Azevedo; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Streptococcus mutans and Candida albicans are found together in the oral biofilms on dental surfaces, but little is known about the ecological interactions between these species. Here, we studied the effects of S. mutans UA159 on the growth and pathogencity of C. albicans. Initially, the effects of S. mutans on the biofilm formation and morphogenesis of C. albicans were tested in vitro. Next, we investigate the influence of S. mutans on pathogenicity of C. albicans using in vivo host models, in which the experimental candidiasis was induced in G. mellonella larvae and analyzed by survival curves, C. albicans count in hemolymph, and quantification of hyphae in the host tissues. In all the tests, we evaluated the direct effects of S. mutans cells, as well as the indirect effects of the subproducts secreted by this microorganism using a bacterial culture filtrate. The in vitro analysis showed that S. mutans cells favored biofilm formation by C. albicans. However, a reduction in biofilm viable cells and inhibition of hyphal growth was observed when C. albicans was in contact with the S. mutans culture filtrate. In the in vivo study, injection of S. mutans cells or S. mutans culture filtrate into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, a reduction in hyphal formation was observed in larval tissues when C. albicans was associated with S. mutans culture filtrate. These findings suggest that S. mutans can secrete subproducts capable to inhibit the biofilm formation, morphogenesis and pathogenicity of C. albicans, attenuating the experimental candidiasis in G. mellonella model. PMID:26934196

  16. Mixed Fungal Lung Infection with Aspergillus Fumigatus and Candida Albicans in a Immunocomprimised Patient: Case Report

    PubMed Central

    Vipparti, Haritha

    2014-01-01

    The frequency of invasive, opportunistic mycoses has increased significantly over the past 2 decades. In the immune-compromised host, many fungi, including species of fungi typically considered non-pathogenic, have the potential to cause serious morbidity and mortality. Here we report a rare case of mixed fungal infection of the lung with Candida albicans and Aspergillus fumigatus in a patient on prolonged steroid therapy. PMID:24959447

  17. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps

    PubMed Central

    Cabezas-Olcoz, Jonathan; Wang, Steven X.; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E.

    2016-01-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix. PMID:27622514

  18. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    PubMed

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix. PMID:27622514

  19. The antimicrobial effects of selenium nanoparticle-enriched probiotics and their fermented broth against Candida albicans

    PubMed Central

    2014-01-01

    Background Lactic acid bacteria are considered important probiotics for prevention of some infections. The aim of this work was to investigate the effect of selenium dioxide on the antifungal activity of Lactobacillus plantarum and L. johnsonii against Candida albicans. Methods Lactobacillus plantarum and L. johnsonii cells, grown in the presence and absence of selenium dioxide, and their cell-free spent culture media were tested for antifungal activity against C. albicans ATCC 14053 by a hole-plate diffusion method and a time-kill assay. Results Both L. plantarum and L. johnsonii reduced selenium dioxide to cell-associated elemental selenium nanoparticles. The cell-free spent culture media, from both Lactobacillus species that had been grown with selenium dioxide for 48 h, showed enhanced antifungal activity against C. albicans. Enhanced antifungal activity of cell biomass against C. albicans was also observed in cultures grown with selenium dioxide. Conclusions Selenium dioxide-treated Lactobacillus spp. or their cell-free spent broth inhibited the growth of C. albicans and should be investigated for possible use in anti-Candida probiotic formulations in future. PMID:24906455

  20. The genetic basis of fluconazole resistance development in Candida albicans.

    PubMed

    Morschhäuser, Joachim

    2002-07-18

    Infections by the opportunistic fungal pathogen Candida albicans are widely treated with the antifungal agent fluconazole that inhibits the biosynthesis of ergosterol, the major sterol in the fungal plasma membrane. The emergence of fluconazole-resistant C. albicans strains is a significant problem after long-term treatment of recurrent oropharyngeal candidiasis (OPC) in acquired immunodeficiency syndrome (AIDS) patients. Resistance can be caused by alterations in sterol biosynthesis, by mutations in the drug target enzyme, sterol 14alpha-demethylase (14DM), which lower its affinity for fluconazole, by increased expression of the ERG11 gene encoding 14DM, or by overexpression of genes coding for membrane transport proteins of the ABC transporter (CDR1/CDR2) or the major facilitator (MDR1) superfamilies. Different mechanisms are frequently combined to result in a stepwise development of fluconazole resistance over time. The MDR1 gene is not or barely transcribed during growth in vitro in fluconazole-susceptible C. albicans strains, but overexpressed in many fluconazole-resistant clinical isolates, resulting in reduced intracellular fluconazole accumulation. The activation of the gene in resistant isolates is caused by mutations in as yet unknown trans-regulatory factors, and the resulting constitutive high level of MDR1 expression causes resistance to other toxic compounds in addition to fluconazole. Disruption of both alleles of the MDR1 gene in resistant C. albicans isolates abolishes their resistance to these drugs, providing genetic evidence that MDR1 mediates multidrug resistance in C. albicans. PMID:12084466

  1. A Photonic Crystal Protein Hydrogel Sensor for Candida albicans.

    PubMed

    Cai, Zhongyu; Kwak, Daniel H; Punihaole, David; Hong, Zhenmin; Velankar, Sachin S; Liu, Xinyu; Asher, Sanford A

    2015-10-26

    We report two-dimensional (2D) photonic crystal (PC) sensing materials that selectively detect Candida albicans (C. albicans). These sensors utilize Concanavalin A (Con A) protein hydrogels with a 2D PC embedded on the Con A protein hydrogel surface, that multivalently and selectively bind to mannan on the C. albicans cell surface to form crosslinks. The resulting crosslinks shrink the Con A protein hydrogel, reduce the 2D PC particle spacing, and blue-shift the light diffracted from the PC. The diffraction shifts can be visually monitored, measured with a spectrometer, or determined from the Debye diffraction ring diameter. Our unoptimized hydrogel sensor has a detection limit of around 32 CFU/mL for C. albicans. This sensor distinguishes between C. albicans and those microbes devoid of cell-surface mannan such as the gram-negative bacterium E. coli. This sensor provides a proof-of-concept for utilizing recognition between lectins and microbial cell surface carbohydrates to detect microorganisms in aqueous environments. PMID:26480336

  2. O-mannosylation in Candida albicans enables development of interkingdom biofilm communities.

    PubMed

    Dutton, Lindsay C; Nobbs, Angela H; Jepson, Katy; Jepson, Mark A; Vickerman, M Margaret; Aqeel Alawfi, Sami; Munro, Carol A; Lamont, Richard J; Jenkinson, Howard F

    2014-04-15

    Candida albicans is a fungus that colonizes oral cavity surfaces, the gut, and the genital tract. Streptococcus gordonii is a ubiquitous oral bacterium that has been shown to form biofilm communities with C. albicans. Formation of dual-species S. gordonii-C. albicans biofilm communities involves interaction of the S. gordonii SspB protein with the Als3 protein on the hyphal filament surface of C. albicans. Mannoproteins comprise a major component of the C. albicans cell wall, and in this study we sought to determine if mannosylation in cell wall biogenesis of C. albicans was necessary for hyphal adhesin functions associated with interkingdom biofilm development. A C. albicans mnt1Δ mnt2Δ mutant, with deleted α-1,2-mannosyltransferase genes and thus defective in O-mannosylation, was abrogated in biofilm formation under various growth conditions and produced hyphal filaments that were not recognized by S. gordonii. Cell wall proteomes of hypha-forming mnt1Δ mnt2Δ mutant cells showed growth medium-dependent alterations, compared to findings for the wild type, in a range of protein components, including Als1, Als3, Rbt1, Scw1, and Sap9. Hyphal filaments formed by mnt1Δ mnt2Δ mutant cells, unlike wild-type hyphae, did not interact with C. albicans Als3 or Hwp1 partner cell wall proteins or with S. gordonii SspB partner adhesin, suggesting defective functionality of adhesins on the mnt1Δ mnt2Δ mutant. These observations imply that early stage O-mannosylation is critical for activation of hyphal adhesin functions required for biofilm formation, recognition by bacteria such as S. gordonii, and microbial community development. IMPORTANCE In the human mouth, microorganisms form communities known as biofilms that adhere to the surfaces present. Candida albicans is a fungus that is often found within these biofilms. We have focused on the mechanisms by which C. albicans becomes incorporated into communities containing bacteria, such as Streptococcus. We find that

  3. Spaceflight enhances cell aggregation and random budding in Candida albicans.

    PubMed

    Crabbé, Aurélie; Nielsen-Preiss, Sheila M; Woolley, Christine M; Barrila, Jennifer; Buchanan, Kent; McCracken, James; Inglis, Diane O; Searles, Stephen C; Nelman-Gonzalez, Mayra A; Ott, C Mark; Wilson, James W; Pierson, Duane L; Stefanyshyn-Piper, Heidemarie M; Hyman, Linda E; Nickerson, Cheryl A

    2013-01-01

    This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans-induced genes involved in cell aggregation (similar to flocculation), which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance. Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p.) infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the low fluid

  4. Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix

    PubMed Central

    Kong, Eric F.; Tsui, Christina; Kucharíková, Sona; Andes, David

    2016-01-01

    ABSTRACT Biofilm-associated polymicrobial infections, particularly those involving fungi and bacteria, are responsible for significant morbidity and mortality and tend to be challenging to treat. Candida albicans and Staphylococcus aureus specifically are considered leading opportunistic fungal and bacterial pathogens, respectively, mainly due to their ability to form biofilms on catheters and indwelling medical devices. However, the impact of mixed-species biofilm growth on therapy remains largely understudied. In this study, we investigated the influence of C. albicans secreted cell wall polysaccharides on the response of S. aureus to antibacterial agents in biofilm. Results demonstrated significantly enhanced tolerance for S. aureus to drugs in the presence of C. albicans or its secreted cell wall polysaccharide material. Fluorescence confocal time-lapse microscopy revealed impairment of drug diffusion through the mixed biofilm matrix. Using C. albicans mutant strains with modulated cell wall polysaccharide expression, exogenous supplementation, and enzymatic degradation, the C. albicans-secreted β-1,3-glucan cell wall component was identified as the key matrix constituent providing the bacteria with enhanced drug tolerance. Further, antibody labeling demonstrated rapid coating of the bacteria by the C. albicans matrix material. Importantly, via its effect on the fungal biofilm matrix, the antifungal caspofungin sensitized the bacteria to the drugs. Understanding such symbiotic interactions with clinical relevance between microbial species in biofilms will greatly aid in overcoming the limitations of current therapies and in defining potential new targets for treating polymicrobial infections. PMID:27729510

  5. Clusters of patients with candidaemia due to genotypes of Candida albicans and Candida parapsilosis: differences in frequency between hospitals.

    PubMed

    Marcos-Zambrano, L J; Escribano, P; Sanguinetti, M; Gómez G de la Pedrosa, E; De Carolis, E; Vella, A; Cantón, R; Bouza, E; Guinea, J

    2015-07-01

    The presence of clusters (identical genotypes infecting different patients) suggests patient-to-patient transmission or a common source for strains. We report the results of a genotyping study based on microsatellite markers of Candida albicans (n = 179) and Candida parapsilosis (n = 76) causing candidaemia, to assess and compare the percentage of patients grouped in clusters during the study period (January 2010 to December 2012). The study was performed in two large tertiary hospitals in Madrid, Spain. We detected 145 C. albicans genotypes (21 in clusters) and 63 C. parapsilosis genotypes (seven in clusters). Clusters involved two to seven patients each. Most of the clusters in the two centres involved two patients for both species, but the number of patients included in each cluster differed between hospitals. Considering both species, the percentage of patients per cluster ranged from 19% to 38% (p < 0.05) in Hospital A and B respectively. Up to 2.9% of genotypes were present in both hospitals. Clusters of C. albicans and C. parapsilosis genotypes causing candidaemia differed between hospitals, suggesting differences in strain transmission. Occasionally, the same genotypes were found in patients admitted to different hospitals located in the same city.

  6. Polyketide Glycosides from Bionectria ochroleuca Inhibit Candida albicans Biofilm Formation

    PubMed Central

    2015-01-01

    One of the challenges presented by Candida infections is that many of the isolates encountered in the clinic produce biofilms, which can decrease these pathogens’ susceptibilities to standard-of-care antibiotic therapies. Inhibitors of fungal biofilm formation offer a potential solution to counteracting some of the problems associated with Candida infections. A screening campaign utilizing samples from our fungal extract library revealed that a Bionectria ochroleuca isolate cultured on Cheerios breakfast cereal produced metabolites that blocked the in vitro formation of Candida albicans biofilms. A scale-up culture of the fungus was undertaken using mycobags (also known as mushroom bags or spawn bags), which afforded four known [TMC-151s C–F (1–4)] and three new [bionectriols B–D (5–7)] polyketide glycosides. All seven metabolites exhibited potent biofilm inhibition against C. albicans SC5314, as well as exerted synergistic antifungal activities in combination with amphotericin B. In this report, we describe the structure determination of the new metabolites, as well as compare the secondary metabolome profiles of fungi grown in flasks and mycobags. These studies demonstrate that mycobags offer a useful alternative to flask-based cultures for the preparative production of fungal secondary metabolites. PMID:25302529

  7. Spaceflight Enhances Cell Aggregation and Random Budding in Candida albicans

    PubMed Central

    Woolley, Christine M.; Barrila, Jennifer; Buchanan, Kent; McCracken, James; Inglis, Diane O.; Searles, Stephen C.; Nelman-Gonzalez, Mayra A.; Ott, C. Mark; Wilson, James W.; Pierson, Duane L.; Stefanyshyn-Piper, Heidemarie M.; Hyman, Linda E.; Nickerson, Cheryl A.

    2013-01-01

    This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans–induced genes involved in cell aggregation (similar to flocculation), which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance. Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p.) infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the low fluid

  8. Factors supporting cysteine tolerance and sulfite production in Candida albicans.

    PubMed

    Hennicke, Florian; Grumbt, Maria; Lermann, Ulrich; Ueberschaar, Nico; Palige, Katja; Böttcher, Bettina; Jacobsen, Ilse D; Staib, Claudia; Morschhäuser, Joachim; Monod, Michel; Hube, Bernhard; Hertweck, Christian; Staib, Peter

    2013-04-01

    The amino acid cysteine has long been known to be toxic at elevated levels for bacteria, fungi, and humans. However, mechanisms of cysteine tolerance in microbes remain largely obscure. Here we show that the human pathogenic yeast Candida albicans excretes sulfite when confronted with increasing cysteine concentrations. Mutant construction and phenotypic analysis revealed that sulfite formation from cysteine in C. albicans relies on cysteine dioxygenase Cdg1, an enzyme with similar functions in humans. Environmental cysteine induced not only the expression of the CDG1 gene in C. albicans, but also the expression of SSU1, encoding a putative sulfite efflux pump. Accordingly, the deletion of SSU1 resulted in enhanced sensitivity of the fungal cells to both cysteine and sulfite. To study the regulation of sulfite/cysteine tolerance in more detail, we screened a C. albicans library of transcription factor mutants in the presence of sulfite. This approach and subsequent independent mutant analysis identified the zinc cluster transcription factor Zcf2 to govern sulfite/cysteine tolerance, as well as cysteine-inducible SSU1 and CDG1 gene expression. cdg1Δ and ssu1Δ mutants displayed reduced hypha formation in the presence of cysteine, indicating a possible role of the newly proposed mechanisms of cysteine tolerance and sulfite secretion in the pathogenicity of C. albicans. Moreover, cdg1Δ mutants induced delayed mortality in a mouse model of disseminated infection. Since sulfite is toxic and a potent reducing agent, its production by C. albicans suggests diverse roles during host adaptation and pathogenicity.

  9. Comparison Between Biofilm Production, Phospholipase and Haemolytic Activity of Different Species of Candida Isolated from Dental Caries Lesions in Children

    PubMed Central

    Shenoy, Neetha

    2016-01-01

    Introduction C.albicans is the most commonly isolated fungal pathogen in the oral cavity, but isolation of non-albicans Candida is increasing in recent years. We wish to demonstrate the virulence factors of Candida spp. isolated from the dental caries lesion of the children as presence of virulence factors determines the pathogenic potential of any microorganism. Aim To compare biofilm production, phospholipase and haemolytic activity of C.albicans with that of non-albicans species of Candida isolated from dental caries lesions of children to evaluate the role of non- albicans species of Candida in formation of dental caries. Materials and Methods Oral swabs were collected from caries lesion of 100 school children of age 5-10 years with dental caries. Candida isolates were tested for biofilm production, phospholipase and haemolytic activity. Statistical analysis was done by Chi-Square test and Mann-Whitney U test wherever applicable using SPSS version 11.5. Results Out of the 100 children with dental caries 37 were positive for Candida by smear or culture and 31 by culture. C.albicans was the most prevalent isolate followed by C.krusei, C.tropicalis and C.albicans. Out of 21 C.albicans isolates, 10 (47.6%) showed phospholipase activity and 18 (85.71%) produced biofilm. Of the 10 non-albicans strains, 5 (50%) showed phospholipase activity and 6 (60%) produced biofilm. All isolates of Candida produced haemolysin (100%). Conclusion There was no statistically relevant difference between the virulence factor production by C.albicans and non-albicans species of Candida. In other words, our study shows that both C.albicans and non-albicans species of Candida isolated from caries lesions of the children, produce these virulence factors. So we can say that non-albicans species of Candida also are involved in caries formation. PMID:27190803

  10. In vitro effects of glycyrrhetinic acid on the growth of clinical isolates of Candida albicans.

    PubMed

    Pellati, Donatella; Fiore, Cristina; Armanini, Decio; Rassu, Mario; Bertoloni, Giulio

    2009-04-01

    Compounds derived from Glycyrrhiza glabra L. root have been used widely for centuries for their numerous therapeutic properties. The present study aimed to test the in vitro activity against Candida albicans strains of the compound 18-beta glycyrrhetinic acid (18-beta GA), derived from the root of Glycyrrhiza species. This antimicrobial activity was assessed using the National Committee for Clinical Laboratory Standards (NCCLS) method on C. albicans strains that were isolated from patients with recurrent vulvovaginal candidiasis (RVVC). The in vitro growth of the C. albicans strains was markedly reduced, in a pH-dependent manner, by relatively low doses (6.2 microg/mL) of 18-beta GA. The results demonstrate that 18-beta GA is a promising biological alternative for the topical treatment of recurrent vulvovaginal candidiasis (RVVC). PMID:19067381

  11. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    PubMed

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival.

  12. Rapid Identification of Candida dubliniensis by Indirect Immunofluorescence Based on Differential Localization of Antigens on C. dubliniensis Blastospores and Candida albicans Germ Tubes

    PubMed Central

    Bikandi, Joseba; Millán, Rosario San; Moragues, María D.; Cebas, Gontzal; Clarke, Mary; Coleman, David C.; Sullivan, Derek J.; Quindós, Guillermo; Pontón, José

    1998-01-01

    There is a clear need for the development of a rapid and reliable test for the identification of Candida dubliniensis and for the discrimination of this species from Candida albicans. In the present study we have investigated the potential use of C. dubliniensis-specific antigens as a basis for its identification. We produced an anti-C. dubliniensis serum which, after adsorption with C. albicans blastospores, was found to differentially label C. dubliniensis isolates in an indirect immunofluorescence test. In this test, the antiserum reacted with blastospores and germ tubes of C. dubliniensis and with blastospores of Candida krusei and Rhodotorula rubra but did not react with blastospores of several other Candida species including C. albicans. The antiserum also reacted with C. albicans germ tubes. The anti-C. dubliniensis adsorbed serum reacted with specific components of 25, 28, 37, 40, 52, and 62 kDa in the C. dubliniensis extract and with a variety of antigens from other yeast species. The antigens from non-C. dubliniensis yeasts showing reactivity with the anti-C. dubliniensis adsorbed serum are mostly expressed within the cell walls of these yeast species, and this reactivity does not interfere with the use of the anti-C. dubliniensis adsorbed serum in an indirect immunofluorescence test for the rapid identification of C. dubliniensis. PMID:9705368

  13. Histone deacetylase-mediated morphological transition in Candida albicans.

    PubMed

    Kim, Jueun; Lee, Ji-Eun; Lee, Jung-Shin

    2015-12-01

    Candida albicans is the most common opportunistic fungal pathogen, which switches its morphology from single-cell yeast to filament through the various signaling pathways responding to diverse environmental cues. Various transcriptional factors such as Nrg1, Efg1, Brg1, Ssn6, and Tup1 are the key components of these signaling pathways. Since C. albicans can regulate its transcriptional gene expressions using common eukaryotic regulatory systems, its morphological transition by these signaling pathways could be linked to the epigenetic regulation by chromatin structure modifiers. Histone proteins, which are critical components of eukaryotic chromatin structure, can regulate the eukaryotic chromatin structure through their own modifications such as acetylation, methylation, phosphorylation and ubiquitylation. Recent studies revealed that various histone modifications, especially histone acetylation and deacetylation, participate in morphological transition of C. albicans collaborating with well-known transcription factors in the signaling pathways. Here, we review recent studies about chromatin-mediated morphological transition of C. albicans focusing on the interaction between transcription factors in the signaling pathways and histone deacetylases.

  14. Detection of Candida albicans by mass spectrometric fingerprinting.

    PubMed

    Zehm, Sarah; Schweinitz, Simone; Würzner, Reinhard; Colvin, Hans Peter; Rieder, Josef

    2012-03-01

    Candida albicans is one of the most frequent causes of fungal infections in humans. Significant correlation between candiduria and invasive candidiasis has previously been described. The existing diagnostic methods are often time-consuming, cost-intensive and lack in sensitivity and specificity. In this study, the profile of low-molecular weight volatile compounds in the headspace of C. albicans-urine suspensions of four different fungal cell concentrations compared to nutrient media and urine without C. albicans was determined using proton-transfer reaction mass spectrometry (PTR-MS). At fungal counts of ≥1.5 × 10(5) colony forming units (CFU)/ml signals at 45, 47 and 73 atomic mass units (amu) highly significantly increased. At fungal counts of <1.5 × 10(5) CFU/ml signals at 47 and 73 amu also increased, but only at 45 amu a statistically significant increase was seen. Time course alterations of signal intensities dependent on different cell concentrations and after addition of Sabouraud nutrient solution were analysed. Recommendations for measurement conditions are given. Our study is the first to describe headspace profiling of C. albicans-urine suspensions of different fungal cell concentrations. PTR-MS represents a promising approach to rapid, highly sensitive and non-invasive clinical diagnostics allowing qualitative and quantitative analysis.

  15. Hydrophobic polyoxins are resistant to intracellular degradation in Candida albicans.

    PubMed Central

    Smith, H A; Shenbagamurthi, P; Naider, F; Kundu, B; Becker, J M

    1986-01-01

    Two novel polyoxins, N-epsilon-(octanoyl)-lysyl-uracil polyoxin C (Oct-Lys-UPOC) and N-gamma-(octyl)-glutaminyluracil polyoxin C (Oct-Gln-UPOC), were synthesized by reacting uracil polyoxin C with the appropriate amino acid p-nitrophenyl ester. Oct-Lys-UPOC and Oct-Gln-UPOC were strong inhibitors (Kis = 1.7 X 10(-6)M) of chitin synthetase from Candida albicans membrane preparations. In a permeabilized-cell assay, Oct-Gln-UPOC had a 10-fold-lower inhibitory activity toward chitin synthetase than did the Oct-Lys-UPOC analog. Both compounds were resistant to hydrolysis by a cell extract of C. albicans H317; however, Oct-Gln-UPOC was hydrolyzed with a half-life of 23 min by a permeabilized-cell preparation. Oct-Lys-UPOC was resistant to hydrolysis by permeabilized cells. Oct-Gln-UPOC and Oct-Lys-UPOC did not compete with the transport of peptides or uridine into the cell. At concentrations up to 2 mM these two new polyoxins were ineffective in the inhibition of cell growth or reduction of cell viability, but they induced aberrant morphologies in C. albicans at a concentration of 0.25 mM. These data suggest that polyoxins containing hydrophobic amino acids retain strong chitin synthetase inhibitory activity and are resistant to cellular hydrolysis. They provide the first example of effective synthetic chitin synthetase inhibitors which are stable inside C. albicans. PMID:3524423

  16. Disruption of Sphingolipid Biosynthesis Blocks Phagocytosis of Candida albicans

    PubMed Central

    Schmidt, Florian I.; Freinkman, Elizaveta; Dougan, Stephanie; Dougan, Michael; Esteban, Alexandre; Maruyama, Takeshi; Strijbis, Karin; Ploegh, Hidde L.

    2015-01-01

    The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway. Blockade of serine-palmitoyltransferase (SPT) and ceramide synthase-enzymes involved in sphingolipid biosynthesis- by myriocin and fumonisin B1, respectively, impaired phagocytosis by phagocytes. We used CRISPR/Cas9-mediated genome editing to generate Sptlc2-deficient DC2.4 dendritic cells, which lack serine palmitoyl transferase activity. Sptlc2-/- DC2.4 cells exhibited a stark defect in phagocytosis, were unable to bind fungal particles and failed to form a normal phagocytic cup to engulf C. albicans. Supplementing the growth media with GM1, the major ganglioside present at the cell surface, restored phagocytic activity of Sptlc2-/- DC2.4 cells. While overall membrane trafficking and endocytic pathways remained functional, Sptlc2-/- DC2.4 cells express reduced levels of the pattern recognition receptors Dectin-1 and TLR2 at the cell surface. Consistent with the in vitro data, compromised sphingolipid biosynthesis in mice sensitizes the animal to C. albicans infection. Sphingolipid biosynthesis is therefore critical for phagocytosis and in vivo clearance of C. albicans. PMID:26431038

  17. Disruption of Sphingolipid Biosynthesis Blocks Phagocytosis of Candida albicans.

    PubMed

    Tafesse, Fikadu G; Rashidfarrokhi, Ali; Schmidt, Florian I; Freinkman, Elizaveta; Dougan, Stephanie; Dougan, Michael; Esteban, Alexandre; Maruyama, Takeshi; Strijbis, Karin; Ploegh, Hidde L

    2015-10-01

    The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway. Blockade of serine-palmitoyltransferase (SPT) and ceramide synthase-enzymes involved in sphingolipid biosynthesis- by myriocin and fumonisin B1, respectively, impaired phagocytosis by phagocytes. We used CRISPR/Cas9-mediated genome editing to generate Sptlc2-deficient DC2.4 dendritic cells, which lack serine palmitoyl transferase activity. Sptlc2-/- DC2.4 cells exhibited a stark defect in phagocytosis, were unable to bind fungal particles and failed to form a normal phagocytic cup to engulf C. albicans. Supplementing the growth media with GM1, the major ganglioside present at the cell surface, restored phagocytic activity of Sptlc2-/- DC2.4 cells. While overall membrane trafficking and endocytic pathways remained functional, Sptlc2-/- DC2.4 cells express reduced levels of the pattern recognition receptors Dectin-1 and TLR2 at the cell surface. Consistent with the in vitro data, compromised sphingolipid biosynthesis in mice sensitizes the animal to C. albicans infection. Sphingolipid biosynthesis is therefore critical for phagocytosis and in vivo clearance of C. albicans.

  18. Effects of ambroxol on Candida albicans growth and biofilm formation.

    PubMed

    Rene, Hernandez-Delgadillo; José, Martínez-Sanmiguel Juan; Isela, Sánchez-Nájera Rosa; Claudio, Cabral-Romero

    2014-04-01

    Typically, the onset of candidiasis is characterised by the appearance of a biofilm of Candida albicans, which is associated with several diseases including oral candidiasis in young and elderly people. The objective of this work was to investigate the in vitro fungicidal activity as well as the antibiofilm activity of ambroxol (AMB) against C. albicans growth. In the present investigation, the fungicidal activity of AMB was established using the cell viability 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Also the minimum inhibitory concentration (MIC) of AMB required to inhibit the fungal growth was determined. Simultaneously, the antibiofilm activity of AMB was evaluated using fluorescence microscopy. The study revealed that 2 mg ml(-1) of AMB exhibited higher fungicidal activity than 3.3 mg ml(-1) of terbinafine, one of most common commercial antifungals. A MIC of 1 mg ml(-1) was determined for AMB to interfere with C. albicans growth. Furthermore, AMB was found to be effective in inhibiting the biofilm formation of C. albicans and exerted its fungicidal activity against the fungal cells interspersed in the preformed biofilm. The study suggests a potential role of the mucolytic agent, AMB, as an interesting therapeutic alternative in the treatment of oral candidiasis.

  19. Effects of ambroxol on Candida albicans growth and biofilm formation.

    PubMed

    Rene, Hernandez-Delgadillo; José, Martínez-Sanmiguel Juan; Isela, Sánchez-Nájera Rosa; Claudio, Cabral-Romero

    2014-04-01

    Typically, the onset of candidiasis is characterised by the appearance of a biofilm of Candida albicans, which is associated with several diseases including oral candidiasis in young and elderly people. The objective of this work was to investigate the in vitro fungicidal activity as well as the antibiofilm activity of ambroxol (AMB) against C. albicans growth. In the present investigation, the fungicidal activity of AMB was established using the cell viability 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Also the minimum inhibitory concentration (MIC) of AMB required to inhibit the fungal growth was determined. Simultaneously, the antibiofilm activity of AMB was evaluated using fluorescence microscopy. The study revealed that 2 mg ml(-1) of AMB exhibited higher fungicidal activity than 3.3 mg ml(-1) of terbinafine, one of most common commercial antifungals. A MIC of 1 mg ml(-1) was determined for AMB to interfere with C. albicans growth. Furthermore, AMB was found to be effective in inhibiting the biofilm formation of C. albicans and exerted its fungicidal activity against the fungal cells interspersed in the preformed biofilm. The study suggests a potential role of the mucolytic agent, AMB, as an interesting therapeutic alternative in the treatment of oral candidiasis. PMID:24224742

  20. Low virulent oral Candida albicans strains isolated from smokers.

    PubMed

    de Azevedo Izidoro, Ana Claudia Santos; Semprebom, Andressa Marafon; Baboni, Fernanda Brasil; Rosa, Rosimeire Takaki; Machado, Maria Angela Naval; Samaranayake, Lakshman Perera; Rosa, Edvaldo Antonio Ribeiro

    2012-02-01

    It is widely accepted that tabagism is a predisposing factor to oral candidosis and cumulate data suggest that cigarette compounds may increase candidal virulence. To verify if enhanced virulence occurs in Candida albicans from chronic smokers, a cohort of 42 non-smokers and other of 58 smokers (all with excellent oral conditions and without signs of candidosis) were swabbed on tong dorsum and jugal mucosa. Results showed that oral candidal loads do not differ between smoker and non-smokers. Activities of secreted aspartyl-protease (Sap), phospholipase, chondroitinase, esterase-lipase, and haemolysin secretions were screened for thirty-two C. albicans isolates. There were detected significant increments in phospholipasic and chondroitinasic activities in isolates from non-smokers. For other virulence factors, no differences between both cohorts were achieved. PMID:21924704

  1. Molecular cloning and characterization of chitinase genes from Candida albicans.

    PubMed Central

    McCreath, K J; Specht, C A; Robbins, P W

    1995-01-01

    Chitinase (EC 3.2.1.14) is an important enzyme for the remodeling of chitin in the cell wall of fungi. We have cloned three chitinase genes (CHT1, CHT2, and CHT3) from the dimorphic human pathogen Candida albicans. CHT2 and CHT3 have been sequenced in full and their primary structures have been analyzed: CHT2 encodes a protein of 583 aa with a predicted size of 60.8 kDa; CHT3 encodes a protein of 567 aa with a predicted size of 60 kDa. All three genes show striking similarity to other chitinase genes in the literature, especially in the proposed catalytic domain. Transcription of CHT2 and CHT3 was greater when C. albicans was grown in a yeast phase as compared to a mycelial phase. A transcript of CHT1 could not be detected in either growth condition. Images Fig. 2 Fig. 5 PMID:7708682

  2. Adaptation of Candida albicans to commensalism in the gut.

    PubMed

    Prieto, Daniel; Correia, Inês; Pla, Jesús; Román, Elvira

    2016-01-01

    Candida albicans is a common resident of the oral cavity, GI tract and vagina in healthy humans where it establishes a commensal relationship with the host. Colonization of the gut, which is an important niche for the microbe, may lead to systemic dissemination and disease upon alteration of host defences. Understanding the mechanisms responsible for the adaptation of C. albicans to the gut is therefore important for the design of new ways of combating fungal diseases. In this review we discuss the available models to study commensalism of this yeast, the main mechanisms controlling the establishment of the fungus, such as microbiota, mucus layer and antimicrobial peptides, and the gene regulatory circuits that ensure its survival in this niche.

  3. Catalase activity of different Candida species after exposition to specific antiserum

    PubMed Central

    Miyasaka, Natália R.S.; Unterkircher, Carmelinda S.; Shimizu, Mario T.

    2008-01-01

    Antisera were developed in rabbits after challenge with intracellular antigens of Candida albicans, C. tropicalis and C. parapsilosis. Microorganism catalase has been correlated with virulence, resistance to drugs and immunogenicity. The intracellular catalase is consistently present in strains of Candida and in this paper, the enzyme activity was analysed by PAGE after exposition to antisera. The catalases of C. albicans, C. parapsilosis and C. tropicalis were immunogenic and differed in their binding to specific antibodies raised in rabbits. Tests of cross-reactivity between different Candida species showed that when antiserum from C. albicans immunized rabbit was incubated with intracellular extracts of these three Candida species, the catalases activities were abolished. However, the antisera from C. parapsilosis or C. tropicalis immunized rabbits did not affect the catalase activity of C. albicans; the enzyme of C. albicans was inactivated only by the antiserum to the catalase of own C. albicans. The antiserum to the catalase of C. tropicalis was species-specific and did not cross-react with catalases of C. albicans and C. parapsilosis. The activities of Aspergillus niger and bovine catalases were not affected by the antiserum from any Candida immunized rabbits. This report is a preliminary study of specific antisera that react against intracellular catalase of Candida sp. and neutralize the enzymatic activity. Further study is necessary to develop species-specific antibody once differences in the susceptibility of the Candida species to commonly used antifungal drugs make identification to the species level important. PMID:24031174

  4. Variation of electrophoretic karyotypes among clinical isolates of Candida albicans.

    PubMed Central

    Merz, W G; Connelly, C; Hieter, P

    1988-01-01

    Orthogonal-field-alternation gel electrophoresis was used to compare clinical isolates of Candida albicans by resolving chromosome-sized DNA molecules into an electrophoretic karyotype. Seven to nine bands were observed among isolates recovered from 17 patients. In addition, 14 distinct electrophoretic patterns were noted among the isolates from these patients. In a given individual, isolates were likely to have identical electrophoretic patterns. Therefore, the electrophoretic karyotype patterns demonstrated by orthogonal-field-alternation gel electrophoresis can be used to designate a strain for epidemiologic studies. Images PMID:3290238

  5. Interactions between amphotericin B and nitroimidazoles against Candida albicans.

    PubMed

    Cury, A E; Hirschfeld, M P

    1997-10-01

    This work proved that nitroimidazole antiprotozoal agents, such as metronidazole, ornidazole, secnidazole and tinidazole, in concentrations of up to 64 micrograms ml-1 did not present any antifungal activity against 17 strains of Candida albicans. The combination of each drug with amphotericin B showed the occurrence of variable interactions according to the studied strain. Promising results were observed based on synergistic and additive interactions of the polyene with the metronidazole; the inhibitory and lethal activities of the drugs were potentiated against all strains in concentrations reachable in vivo. PMID:9476486

  6. Protective and pathologic immune responses against Candida albicans infection.

    PubMed

    Ashman, Robert B

    2008-05-01

    Candida albicans is an important opportunistic fungal pathogen. Clinical observations have indicated that both innate and adaptive immune responses are involved in recovery from initial infection, but analysis in murine models has shown that the contribution of the two arms of the cellular immune response differ in oral, vaginal, and systemic infections. The relative contributions of T cells and phagocytic cells, and the cytokines that mediate their interactions are discussed for each of the different manifestations of the disease, and the consequences of infection, in terms of protection and pathology, are evaluated.

  7. Sequence-identification of Candida species isolated from candidemia

    PubMed Central

    Fathi, Naeimeh; Mohammadi, Rasoul; Tabatabaiefar, Mohammad Amin; Ghahri, Mohammad; Sadrossadati, Seyedeh Zahra

    2016-01-01

    Background: Candida species are the most prevalent cause of invasive fungal infections such as candidemia. Candidemia is a lethal fungal infection among immunocompromised patients worldwide. Main pathogen is Candida albicans but a global shift in epidemiology toward non-albicans species have reported. Species identification is imperative for good management of candidemia as a fatal infection. The aim of the study is to identify Candida spp. obtained from candidemia and determination of mortality rate among this population. Materials and Methods: The study was performed during February 2014 to March 2015 in Tehran, Iran. Two-hundred and four blood cultures were evaluated for fungal bloodstream infection. Identification of isolates was carried out using phenotypic tests and polymerase chain reaction sequencing technique. Results: Twenty-two out of 204 patients (10.8%) had candidemia. Candida parapsilosis was the most prevalent species (45.4%), followed by C. albicans (31.8%) and Candida glabrata (22.7%). Male to female sex ratio was 8/14. Conclusions: The emergence of resistant strains of Candida species should be considered by physicians to decrease the mortality of this fatal fungal infection by appropriate treatment. PMID:27713871

  8. Design and Evaluation of Peptide Nucleic Acid Probes for Specific Identification of Candida albicans

    PubMed Central

    Kim, Hyun-Joong

    2014-01-01

    Candida albicans is an important cause of systemic fungal infections, and rapid diagnostics for identifying and differentiating C. albicans from other Candida species are critical for the timely application of appropriate antimicrobial therapy, improved patient outcomes, and pharmaceutical cost savings. In this work, two 28S rRNA-directed peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) probes, P-Ca726 (targeting a novel region of the ribosome) and P-CalB2208 (targeting a previously reported region), were evaluated. Hybridization conditions were optimized by using both fluorescence microscopy (FM) and flow cytometry (FCM), and probes were screened for specificity and discriminative ability against a panel of C. albicans and various nontarget Candida spp. The performance of these PNA probes was compared quantitatively against that of DNA probes or DNA probe/helper combinations directed against the same target regions. Ratiometric analyses of FCM results indicated that both the hybridization quality and yield of the PNA probes were higher than those of the DNA probes. In FCM-based comparisons of the PNA probes, P-Ca726 was found to be highly specific, showing 2.5- to 5.5-fold-higher discriminatory power for C. albicans than P-CalB2208. The use of formamide further improved the performance of the new probe. Our results reinforce the significant practical and diagnostic advantages of PNA probes over their DNA counterparts for FISH and indicate that P-Ca726 may be used advantageously for the rapid and specific identification of C. albicans in clinical and related applications, especially when combined with FCM. PMID:25428160

  9. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation.

    PubMed

    Matsubara, Victor Haruo; Wang, Yi; Bandara, H M H N; Mayer, Marcia Pinto Alves; Samaranayake, Lakshman P

    2016-07-01

    We evaluated the inhibitory effects of the probiotic Lactobacillus species on different phases of Candida albicans biofilm development. Quantification of biofilm growth and ultrastructural analyses were performed on C. albicans biofilms treated with Lactobacillus rhamnosus, Lactobacillus casei, and Lactobacillus acidophilus planktonic cell suspensions as well as their supernatants. Planktonic lactobacilli induced a significant reduction (p < 0.05) in the number of biofilm cells (25.5-61.8 %) depending on the probiotic strain and the biofilm phase. L. rhamnosus supernatants had no significant effect on the mature biofilm (p > 0.05), but significantly reduced the early stages of Candida biofilm formation (p < 0.01). Microscopic analyses revealed that L. rhamnosus suspensions reduced Candida hyphal differentiation, leading to a predominance of budding growth. All lactobacilli negatively impacted C. albicans yeast-to-hyphae differentiation and biofilm formation. The inhibitory effects of the probiotic Lactobacillus on C. albicans entailed both cell-cell interactions and secretion of exometabolites that may impact on pathogenic attributes associated with C. albicans colonization on host surfaces and yeast filamentation. This study clarifies, for the first time, the mechanics of how Lactobacillus species may antagonize C. albicans host colonization. Our data elucidate the inhibitory mechanisms that define the probiotic candicidal activity of lactobacilli, thus supporting their utility as an adjunctive therapeutic mode against mucosal candidal infections.

  10. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation.

    PubMed

    Matsubara, Victor Haruo; Wang, Yi; Bandara, H M H N; Mayer, Marcia Pinto Alves; Samaranayake, Lakshman P

    2016-07-01

    We evaluated the inhibitory effects of the probiotic Lactobacillus species on different phases of Candida albicans biofilm development. Quantification of biofilm growth and ultrastructural analyses were performed on C. albicans biofilms treated with Lactobacillus rhamnosus, Lactobacillus casei, and Lactobacillus acidophilus planktonic cell suspensions as well as their supernatants. Planktonic lactobacilli induced a significant reduction (p < 0.05) in the number of biofilm cells (25.5-61.8 %) depending on the probiotic strain and the biofilm phase. L. rhamnosus supernatants had no significant effect on the mature biofilm (p > 0.05), but significantly reduced the early stages of Candida biofilm formation (p < 0.01). Microscopic analyses revealed that L. rhamnosus suspensions reduced Candida hyphal differentiation, leading to a predominance of budding growth. All lactobacilli negatively impacted C. albicans yeast-to-hyphae differentiation and biofilm formation. The inhibitory effects of the probiotic Lactobacillus on C. albicans entailed both cell-cell interactions and secretion of exometabolites that may impact on pathogenic attributes associated with C. albicans colonization on host surfaces and yeast filamentation. This study clarifies, for the first time, the mechanics of how Lactobacillus species may antagonize C. albicans host colonization. Our data elucidate the inhibitory mechanisms that define the probiotic candicidal activity of lactobacilli, thus supporting their utility as an adjunctive therapeutic mode against mucosal candidal infections. PMID:27087525

  11. Comparison of Switching and Biofilm Formation between MTL-Homozygous Strains of Candida albicans and Candida dubliniensis.

    PubMed

    Pujol, Claude; Daniels, Karla J; Soll, David R

    2015-12-01

    Candida albicans and Candida dubliniensis are highly related species that share the same main developmental programs. In C. albicans, it has been demonstrated that the biofilms formed by strains heterozygous and homozygous at the mating type locus (MTL) differ functionally, but studies rarely identify the MTL configuration. This becomes a particular problem in studies of C. dubliniensis, given that one-third of natural strains are MTL homozygous. For that reason, we have analyzed MTL-homozygous strains of C. dubliniensis for their capacity to switch from white to opaque, the stability of the opaque phenotype, CO2 induction of switching, pheromone induction of adhesion, the effects of minority opaque cells on biofilm thickness and dry weight, and biofilm architecture in comparison with C. albicans. Our results reveal that C. dubliniensis strains switch to opaque at lower average frequencies, exhibit a far lower level of opaque phase stability, are not stimulated to switch by high CO2, exhibit more variability in biofilm architecture, and most notably, form mature biofilms composed predominately of pseudohyphae rather than true hyphae. Therefore, while several traits of MTL-homozygous strains of C. dubliniensis appear to be degenerating or have been lost, others, most notably several related to biofilm formation, have been conserved. Within this context, the possibility is considered that C. dubliniensis is transitioning from a hypha-dominated to a pseudohypha-dominated biofilm and that aspects of C. dubliniensis colonization may provide insights into the selective pressures that are involved.

  12. Cyclosporine A decreases the fluconazole minimum inhibitory concentration of Candida albicans clinical isolates but not biofilm formation and cell growth.

    PubMed

    Wibawa, T; Nurrokhman; Baly, I; Daeli, P R; Kartasasmita, G; Wijayanti, N

    2015-03-01

    Among the genus Candida, Candida albicans is the most abundant species in humans. One of the virulent factors of C. albicans is its ability to develop biofilm. Biofilm forming microbes are characterized by decreasing of its susceptibility to antibiotics and antifungal. The fungicidal effect of fluconazole may be enhanced by cyclosporine A in laboratory engineered C. albicans strains. The aim of this work is to analyze the synergistic effect of cyclosporine A with fluconazole in C. albicans clinical isolates and the effect of cycolsporine A alone in the biofilm formation. Six fluconazole resistant and six sensitive C. albicans clinical isolates were analyzed for its minimum inhibitory concentration (MICs), biofilm formation, and cell growths. A semi-quantitative XTT [2,3-bis(2-methoxy-4-nitro-5- sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assay was conducted to measure the biofilm formation. Cyclosporine A has synergistic effect with fluconazole that was shown by decreasing MICs of both fluconazole resistant and sensitive C. albicans clinical isolates. However, cyclosporine A alone did not influence the biofilm formation and cell growth of both fluconazole resistant and sensitive C. albicans clinical isolates. These results indicated that cyclosporine A might be a promising candidate of adjuvant therapy for fluconazole against both fluconazole resistant and sensitive C. albicans clinical isolates.

  13. Candida species: new insights into biofilm formation.

    PubMed

    Cuéllar-Cruz, Mayra; López-Romero, Everardo; Villagómez-Castro, Julio C; Ruiz-Baca, Estela

    2012-06-01

    Biofilms of Candida albicans, Candida parapsilosis, Candida glabrata and Candida tropicalis are associated with high indices of hospital morbidity and mortality. Major factors involved in the formation and growth of Candida biofilms are the chemical composition of the medical implant and the cell wall adhesins responsible for mediating Candida-Candida, Candida-human host cell and Candida-medical device adhesion. Strategies for elucidating the mechanisms that regulate the formation of Candida biofilms combine tools from biology, chemistry, nanoscience, material science and physics. This review proposes the use of new technologies, such as synchrotron radiation, to study the mechanisms of biofilm formation. In the future, this information is expected to facilitate the design of new materials and antifungal compounds that can eradicate nosocomial Candida infections due to biofilm formation on medical implants. This will reduce dissemination of candidiasis and hopefully improve the quality of life of patients.

  14. The effect of thyme and tea tree oils on morphology and metabolism of Candida albicans.

    PubMed

    Rajkowska, Katarzyna; Kunicka-Styczyńska, Alina; Maroszyńska, Marta; Dąbrowska, Mariola

    2014-01-01

    Members of Candida species cause significant problems in medicine and in many industrial branches also. In order to prevent from Candida sp. development, essential oils are more and more frequently applied as natural, non-toxic, non-pollutive and biodegradable agents with a broad spectrum of antimicrobial activity. The aim of the research was to determine changes in morphology and metabolic properties of Candida albicans in the presence of thyme and tea tree oils. Changes of enzymatic activity of isolates were observed in the presence of both tested essential oils, and they were primarily associated with loss or decrease of activity of all enzymes detected for control. Furthermore, only for 3 out of 11 isolates additional activity of N-acetyl-β-glucosaminidase, α-mannosidase, α-fucosidase and trypsin was detected. Vivid changes in biochemical profiles were found after treatment with tea tree oil and they were related to loss of ability to assimilate D-xylose, D-sorbitol and D-trehalose. The main differences in morphology of isolates compared to the control strain concerned formation of pseudohyphae structures. Both examined essential oils caused changes in cell and colony morphology, as well as in the metabolism of Candida albicans. However, the extent of differences depends on the type and concentration of an essential oil. The most important finding is the broad spectrum of changes in yeast enzymatic profiles induced by thyme and tea tree oils. It can be supposed that these changes, together with loss of ability to assimilate saccharides could significantly impact Candida albicans pathogenicity.

  15. The effect of thyme and tea tree oils on morphology and metabolism of Candida albicans.

    PubMed

    Rajkowska, Katarzyna; Kunicka-Styczyńska, Alina; Maroszyńska, Marta; Dąbrowska, Mariola

    2014-01-01

    Members of Candida species cause significant problems in medicine and in many industrial branches also. In order to prevent from Candida sp. development, essential oils are more and more frequently applied as natural, non-toxic, non-pollutive and biodegradable agents with a broad spectrum of antimicrobial activity. The aim of the research was to determine changes in morphology and metabolic properties of Candida albicans in the presence of thyme and tea tree oils. Changes of enzymatic activity of isolates were observed in the presence of both tested essential oils, and they were primarily associated with loss or decrease of activity of all enzymes detected for control. Furthermore, only for 3 out of 11 isolates additional activity of N-acetyl-β-glucosaminidase, α-mannosidase, α-fucosidase and trypsin was detected. Vivid changes in biochemical profiles were found after treatment with tea tree oil and they were related to loss of ability to assimilate D-xylose, D-sorbitol and D-trehalose. The main differences in morphology of isolates compared to the control strain concerned formation of pseudohyphae structures. Both examined essential oils caused changes in cell and colony morphology, as well as in the metabolism of Candida albicans. However, the extent of differences depends on the type and concentration of an essential oil. The most important finding is the broad spectrum of changes in yeast enzymatic profiles induced by thyme and tea tree oils. It can be supposed that these changes, together with loss of ability to assimilate saccharides could significantly impact Candida albicans pathogenicity. PMID:24918492

  16. Evolution and Application of Inteins in Candida species: A Review

    PubMed Central

    Fernandes, José A. L.; Prandini, Tâmara H. R.; Castro, Maria da Conceiçao A.; Arantes, Thales D.; Giacobino, Juliana; Bagagli, Eduardo; Theodoro, Raquel C.

    2016-01-01

    Inteins are invasive intervening sequences that perform an autocatalytic splicing from their host proteins. Among eukaryotes, these elements are present in many fungal species, including those considered opportunistic or primary pathogens, such as Candida spp. Here we reviewed and updated the list of Candida species containing inteins in the genes VMA, THRRS and GLT1 and pointed out the importance of these elements as molecular markers for molecular epidemiological researches and species-specific diagnosis, since the presence, as well as the size of these inteins, is polymorphic among the different species. Although absent in Candida albicans, these elements are present in different sizes, in some environmental Candida spp. and also in most of the non-albicans Candida spp. considered emergent opportunistic pathogens. Besides, the possible role of these inteins in yeast physiology was also discussed in the light of the recent findings on the importance of these elements as post-translational modulators of gene expression, reinforcing their relevance as alternative therapeutic targets for the treatment of non-albicans Candida infections, because, once the splicing of an intein is inhibited, its host protein, which is usually a housekeeping protein, becomes non-functional. PMID:27777569

  17. Antifungal activities of origanum oil against Candida albicans.

    PubMed

    Manohar, V; Ingram, C; Gray, J; Talpur, N A; Echard, B W; Bagchi, D; Preuss, H G

    2001-12-01

    The antimicrobial properties of volatile aromatic oils from medicinal as well as other edible plants has been recognized since antiquity. Origanum oil, which is used as a food flavoring agent, possesses a broad spectrum of in vitro antimicrobial activities attributed to the high content of phenolic derivatives such as carvacrol and thymol. In the present study, antifungal properties of origanum oil were examined both in vitro and in vivo. Using Candida albicans in broth cultures and a micro dilution method, comparative efficacy of origanum oil, carvacrol, nystatin and amphotericin B were examined in vitro. Origanum oil at 0.25 mg/ml was found to completely inhibit the growth of C. albicans in culture. Growth inhibitions of 75% and >50% were observed at 0.125 mg/ml and 0.0625 mg/ml level, respectively. In addition, both the germination and the mycelial growth of C. albicans were found to be inhibited by origanum oil and carvacrol in a dose-dependent manner. Furthermore, the therapeutic efficacy of origanum oil was examined in an experimental murine systemic candidiasis model. Groups of mice (n = 6) infected with C. albicans (5 x LD50) were fed varying amounts of origanum oil in a final vol. of 0.1 ml of olive oil (vehicle). The daily administration of 8.6 mg of origanum oil in 100 microl of olive oil/kg body weight for 30 days resulted in 80% survivability, with no renal burden of C. albicans as opposed to the group of mice fed olive oil alone, who died within 10 days. Similar results were obtained with carvacrol. However, mice fed origanum oil exhibited cosmetically better clinical appearance compared to those cured with carvacrol. The results from our study encourage examination of the efficacy of origanum oil in other forms of systemic and superficial fungal infections and exploration of its broad spectrum effect against other pathogenic manifestations including malignancy. PMID:11855736

  18. Isolation Frequency Characteristics of Candida Species from Clinical Specimens.

    PubMed

    Kim, Ga-Yeon; Jeon, Jae-Sik; Kim, Jae Kyung

    2016-06-01

    Candida spp. is an invasive infectious fungus, a major risk factor that can increase morbidity and mortality in hospitalized patients. In this study, 2,508 Candida spp. were isolated from various clinical specimens collected from university hospitals from July 2011 to October 2014. They were identified in order to determine isolation frequencies and characteristics by specimen, gender, age group, year, season, and month. The strain-specific isolation rate of Candida spp. is in the order of Candida albicans (1,218 strains, 48.56%), Candida glabrata (416 strains, 16.59%), Candida utilis (305 strains, 12.16%), Candida tropicalis (304 strains, 12.12%), and Candida parapsilosis (116 strains, 4.63%) and these five species accounted for more than 94% of the total strains. Of the specimens, Candida spp. were most frequently isolated from urine-catheter, followed by urine-voided, blood, sputum, other, open pus, vaginal discharge, Tip, ear discharge, bronchial aspiration and bile, in that order. Looking at the age distribution, the detection rate of patients in their 60s and older was significantly higher at 75.8% (1,900/2,508). The detection rate of patients in their 20s and younger was shown to be very low at 2.55% (64/2,508). By year, the detection rate of non-albicans Candida spp. showed a tendency to gradually increase each year compared with C. albicans. As isolation of Candida spp. from clinical samples at the specie level can vary depending on characteristics of the patient, sample, season, etc., continual studies are required.

  19. Systemic Candida albicans infection in two alpacas (Lama pacos).

    PubMed

    Kramer, K; Haist, V; Roth, C; Schröder, C; Siesenhop, U; Baumgärtner, W; Wohlsein, P

    2008-01-01

    Systemic Candida albicans infection was diagnosed in two adult alpaca stallions originating from different herds. Case 1 had a history of chronic dermatitis with unknown aetiology that had been treated long-term with glucocorticoids. Case 2 had suffered from transient facial paralysis and psoroptic mange of the external ear. Both animals died suddenly after recovering from their initial disorders. Necropsy examination of case 1 revealed multifocal erosive dermatitis, thoracic and abdominal serofibrinous effusions, and multiple suppurative foci in lung, myocardium, kidney, pancreas and brain. Case 2 had multiple ulcers of the third gastric compartment and focal suppurative nephritis. Additionally, moderate depletion of lymphoid organs was observed in both animals. Histologically, suppurative to necrotizing inflammation with necrotizing vasculitis was present in the grossly affected organs of both animals. Yeast, pseudohyphae and branching hyphae were present within these lesions and C. albicans was isolated from lesional tissue of both animals. The primary site of Candida invasion was not determined in case 1, but the most likely portal of entry in case 2 was the gastric ulcers. Depletion of lymphoid tissue suggested a possible underlying immune suppression in both animals.

  20. Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles.

    PubMed

    Shinde, Ravikumar Bapurao; Raut, Jayant Shankar; Chauhan, Nitin Mahendra; Karuppayil, Sankunny Mohan

    2013-01-01

    Biofilms formed by Candida albicans, a human pathogen, are known to be resistant to different antifungal agents. Novel strategies to combat the biofilm associated Candida infections like multiple drug therapy are being explored. In this study, potential of chloroquine to be a partner drug in combination with four antifungal agents, namely fluconazole, voriconazole, amphotericin B, and caspofungin, was explored against biofilms of C. albicans. Activity of various concentrations of chloroquine in combination with a particular antifungal drug was analyzed in a checkerboard format. Growth of biofilm in presence of drugs was analyzed by XTT-assay, in terms of relative metabolic activity compared to that of drug free control. Results obtained by XTT-metabolic assay were confirmed by scanning electron microscopy. The interactions between chloroquine and four antifungal drugs were determined by calculating fractional inhibitory concentration indices. Azole resistance in biofilms was reverted significantly (p<0.05) in presence of 250μg/mL of chloroquine, which resulted in inhibition of biofilms at very low concentrations of antifungal drugs. No significant alteration in the sensitivity of biofilms to caspofungin and amphotericin B was evident in combination with chloroquine. This study for the first time indicates that chloroquine potentiates anti-biofilm activity of fluconazole and voriconazole. PMID:23602464

  1. The ABCs of Candida albicans Multidrug Transporter Cdr1

    PubMed Central

    Banerjee, Atanu; Khandelwal, Nitesh Kumar; Dhamgaye, Sanjiveeni

    2015-01-01

    In the light of multidrug resistance (MDR) among pathogenic microbes and cancer cells, membrane transporters have gained profound clinical significance. Chemotherapeutic failure, by far, has been attributed mainly to the robust and diverse array of these proteins, which are omnipresent in every stratum of the living world. Candida albicans, one of the major fungal pathogens affecting immunocompromised patients, also develops MDR during the course of chemotherapy. The pivotal membrane transporters that C. albicans has exploited as one of the strategies to develop MDR belongs to either the ATP binding cassette (ABC) or the major facilitator superfamily (MFS) class of proteins. The ABC transporter Candida drug resistance 1 protein (Cdr1p) is a major player among these transporters that enables the pathogen to outplay the battery of antifungals encountered by it. The promiscuous Cdr1 protein fulfills the quintessential need of a model to study molecular mechanisms of multidrug transporter regulation and structure-function analyses of asymmetric ABC transporters. In this review, we cover the highlights of two decades of research on Cdr1p that has provided a platform to study its structure-function relationships and regulatory circuitry for a better understanding of MDR not only in yeast but also in other organisms. PMID:26407965

  2. SOME CYTOLOGICAL AND PATHOGENIC PROPERTIES OF SPHEROPLASTS OF CANDIDA ALBICANS

    PubMed Central

    Kobayashi, George S.; Friedman, Lorraine; Kofroth, Judith F.

    1964-01-01

    Kobayashi, George S. (Tulane University, New Orleans, La.), Lorraine Friedman, and Judith F. Kofroth. Some cytological and pathogenic properties of spheroplasts of Candida albicans. J. Bacteriol. 88:795–801. 1964.—Spheroplasts of Candida albicans were prepared by use of an enzymatic mixture from the digestive tract of the snail Helix pomatia. Untreated cells exhibited well-defined cell walls, whereas such structures were absent from spheroplasts. The intravenous inoculation of either spheroplasts or intact cells into rabbits produced a fever which was apparent within 30 min, the “immediate” fever response characteristic of microbial endotoxin. Cell-wall fragments of enzyme-treated cells did not induce a convincing pyrogenic response. When the inoculum was viable, body temperatures did not return to normal but remained elevated until death of the animal 1 or more days later, exhibiting the “delayed” fever of infection. The gross pathological picture in animals succumbing to infection by viable spheroplasts was similar to that obtained with untreated yeast cells. Images PMID:14208520

  3. Molecular Tools for Cryptic "Candida" Species Identification with Applications in a Clinical Laboratory

    ERIC Educational Resources Information Center

    Gamarra, Soledad; Dudiuk, Catiana; Mancilla, Estefania; Vera Garate, Maria Veronica; Guerrero, Sergio; Garcia-Effron, Guillermo

    2013-01-01

    "Candida" spp. includes more than 160 species but only 20 species pose clinical problems. "C. albicans" and "C. parapsilosis" account for more than 75% of all the fungemias worldwide. In 1995 and 2005, one "C. albicans" and two "C. parapsilosis"-related species were described, respectively. Using…

  4. Distribution of Candida albicans genotypes among family members

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Stevens, D. A.; Mishra, S. K.; Feroze, F.; Pierson, D. L.

    1999-01-01

    Thirty-three families (71 subjects) were screened for the presence of Candida albicans in mouthwash or stool specimens; 12 families (28 subjects) were culture-positive for this yeast. An enrichment procedure provided a twofold increase in the recovery of C. albicans from mouthwash specimens. Nine of the twelve culture-positive families had two positive members each, two families had three positive members each, and one family had four positive members. Genetic profiles were obtained by three methods: pulsed-field gel electrophoresis; restriction endonuclease analysis, and random amplification of polymorphic DNA analysis. DNA fingerprinting of C. albicans isolated from one body site three consecutive times revealed that each of the 12 families carried a distinct genotype. No two families shared the same strain, and two or more members of a family commonly shared the same strain. Intrafamily genotypic identity (i.e., each member within the family harbored the same strain) was demonstrated in six families. Genotypes of isolates from husband and wife differed from one another in five families. All three methods were satisfactory in determining genotypes; however, we concluded that restriction endonuclease analysis provided adequate resolving power.

  5. Potent Synergy between Spirocyclic Pyrrolidinoindolinones and Fluconazole against Candida albicans.

    PubMed

    Premachandra, Ilandari Dewage Udara Anulal; Scott, Kevin A; Shen, Chengtian; Wang, Fuqiang; Lane, Shelley; Liu, Haoping; Van Vranken, David L

    2015-10-01

    A spiroindolinone, (1S,3R,3aR,6aS)-1-benzyl-6'-chloro-5-(4-fluorophenyl)-7'-methylspiro[1,2,3a,6a-tetrahydropyrrolo[3,4-c]pyrrole-3,3'-1H-indole]-2',4,6-trione, was previously reported to enhance the antifungal effect of fluconazole against Candida albicans. A diastereomer of this compound was synthesized, along with various analogues. Many of the compounds were shown to enhance the antifungal effect of fluconazole against C. albicans, some with exquisite potency. One spirocyclic piperazine derivative, which we have named synazo-1, was found to enhance the effect of fluconazole with an EC50 value of 300 pM against a susceptible strain of C. albicans and going as low as 2 nM against some resistant strains. Synazo-1 exhibits true synergy with fluconazole, with an FIC index below 0.5 in the strains tested. Synazo-1 exhibited low toxicity in mammalian cells relative to the concentrations required for antifungal synergy.

  6. Superantigen-Like Effects of a Candida albicans Polypeptide

    PubMed Central

    Devore-Carter, Denise; Kar, Sujata; Vellucci, Vincent; Bhattacherjee, Vasker; Domanski, Paul; Hostetter, Margaret K.

    2008-01-01

    The amino terminal sequence of the Candida albicans cell wall protein Int1 exhibited partial identity with the major histocompatibility complex (MHC) class II binding site of the Mycoplasma arthritidis superantigen MAM. Int1-positive C. albicans blastospores activated human T lymphocytes and expanded Vβ subsets 2, 3, and/or 14; Int1-negative strains were inactive. Release of interferon-γ (IFN-γ) but not of tumor necrosis factor–α or interleukin-6 was Int1 dependent; interleukin-4 and interleukin-10 were not detected. T lymphocyte activation, Vβ expansion, and IFN-γ release were associated with a soluble polypeptide that encompassed the first 263 amino acids of Int1 (Pep263). Monoclonal antibody 163.5, which recognizes an Int1 epitope that overlaps the region of identity with MAM, significantly inhibited these activities when triggered by Int1-positive blastospores or Pep263 but not by staphylococcal enterotoxin B. Histidine263 was required. Pep263 bound to T lymphocytes and MHC class II and was detected in the urine of a patient with C. albicans fungemia. These studies identify a candidal protein that displays superantigen-like activities. PMID:18419534

  7. Gastrointestinal Colonization by Candida albicans Mutant Strains in Antibiotic-Treated Mice

    PubMed Central

    Wiesner, Stephen M.; Jechorek, Robert P.; Garni, Robb M.; Bendel, Catherine M.; Wells, Carol L.

    2001-01-01

    Antibiotic-treated mice orally inoculated with one of three Candida albicans strains (including two mutant strains) or indigenous Candida pelliculosa showed levels of candidal gastrointestinal colonization that were strain specific. However, regardless of strain, the numbers of viable candida were intermediate to high in the stomach, were consistently lowest in the upper small intestine, and increased progressively down the intestinal tract. PMID:11139219

  8. Vaginal epithelial cell anti-Candida albicans activity is associated with protection against symptomatic vaginal candidiasis.

    PubMed

    Barousse, Melissa M; Espinosa, Terri; Dunlap, Kathleen; Fidel, Paul L

    2005-11-01

    Vaginal epithelial cell (VEC) anti-Candida albicans activity, despite being measured in vitro, is considered an innate host defense mechanism. This was supported further by the fact that women protected from symptomatic infection following a live intravaginal Candida challenge had increased VEC anti-Candida activity compared to those who acquired a symptomatic infection.

  9. Fungicidal activity of fluconazole against Candida albicans in a synthetic vagina-simulative medium.

    PubMed

    Moosa, Mahomed-Yunus S; Sobel, Jack D; Elhalis, Hussain; Du, Wenjin; Akins, Robert A

    2004-01-01

    Fluconazole (FLZ) has emerged as a highly successful agent in the management of systemic infections of Candida. Cure rates for symptomatic candidiasis following single 150-mg FLZ dose therapy exceed 90%. In vitro, however, FLZ is fungistatic only in a narrow pH range and is not effective at vaginal pH, 4.2. This study evaluated the effect of FLZ on Candida albicans under in vitro conditions resembling the vaginal microenvironment, using vagina-simulative medium (VS). We found that FLZ was fungicidal for C. albicans in VS, but not in other media at the same pH, 4.2. In VS, FLZ was fungicidal at concentrations of >/=8 micro g/ml and reduced viability by greater than 99.9%. Analysis of the components of VS indicated that 17 mM acetic acid, a concentration achieved in the vagina, was responsible for the synergistic, fungicidal effect. This effect was not seen at neutral pH. Other substrates were not effective substitutes for acetic acid; however, short-chained carboxylic acids, glyoxylate and malonate, were effective. Most strains of C. albicans that were resistant to FLZ under standard conditions were killed by FLZ plus acetate. Other species of Candida were also killed, except C. krusei and C. glabrata. This study shows that FLZ has fungicidal activity for Candida species under in vitro conditions that mimic the vaginal microenvironment. This raises the possibility that FLZ may also have fungicidal effects during treatment of vaginal candidiasis. Elucidating the mechanism by which FLZ and acetate interact may disclose vulnerable pathways that could be exploited in drug development. PMID:14693534

  10. Human salivary histatin 5 fungicidal action does not induce programmed cell death pathways in Candida albicans.

    PubMed

    Wunder, David; Dong, Jin; Baev, Didi; Edgerton, Mira

    2004-01-01

    Salivary histatins (Hsts) are potent candidacidal proteins that induce a nonlytic form of cell death in Candida albicans accompanied by loss of mean cell volume, cell cycle arrest, and elevation of intracellular levels of reactive oxygen species (ROS). Since these phenotypes are often markers of programmed cell death and apoptosis, we investigated whether other classical markers of apoptosis, including generation of intracellular ROS and protein carbonyl groups, chromosomal fragmentation (laddering), and cytochrome c release, are found in Hst 5-mediated cell death. Increased intracellular levels of ROS in C. albicans were detected in cells both following exogenous application of Hst 5 and following intracellular expression of Hst 5. However, Western blot analysis failed to detect specifically increased protein carbonylation in Hst 5-treated cells. There was no evidence of chromosomal laddering and no cytochrome c release was observed following treatment of C. albicans mitochondria with Hst 5. Superoxide dismutase enzymes of C. albicans and Saccharomyces cerevisiae provide essential protection against oxidative stress; therefore, we tested whether SOD mutants have increased susceptibility to Hst 5, as expected if ROS mediate fungicidal effects. Cell survival of S. cerevisiae SOD1/SOD2 mutants and C. albicans SOD1 mutants following Hst 5 treatment (31 micro M) was indistinguishable from the survival of wild-type cells treated with Hst 5. We conclude that ROS may not play a direct role in fungicidal activity and that Hst 5 does not initiate apoptosis or programmed cell death pathways. PMID:14693527

  11. Stimulation of superoxide production increases fungicidal action of miconazole against Candida albicans biofilms

    PubMed Central

    De Cremer, Kaat; De Brucker, Katrijn; Staes, Ines; Peeters, Annelies; Van den Driessche, Freija; Coenye, Tom; Cammue, Bruno P. A.; Thevissen, Karin

    2016-01-01

    We performed a whole-transcriptome analysis of miconazole-treated Candida albicans biofilms, using RNA-sequencing. Our aim was to identify molecular pathways employed by biofilm cells of this pathogen to resist action of the commonly used antifungal miconazole. As expected, genes involved in sterol biosynthesis and genes encoding drug efflux pumps were highly induced in biofilm cells upon miconazole treatment. Other processes were affected as well, including the electron transport chain (ETC), of which eight components were transcriptionally downregulated. Within a diverse set of 17 inhibitors/inducers of the transcriptionally affected pathways, the ETC inhibitors acted most synergistically with miconazole against C. albicans biofilm cells. Synergy was not observed for planktonically growing C. albicans cultures or when biofilms were treated in oxygen-deprived conditions, pointing to a biofilm-specific oxygen-dependent tolerance mechanism. In line, a correlation between miconazole’s fungicidal action against C. albicans biofilm cells and the levels of superoxide radicals was observed, and confirmed both genetically and pharmacologically using a triple superoxide dismutase mutant and a superoxide dismutase inhibitor N-N′-diethyldithiocarbamate, respectively. Consequently, ETC inhibitors that result in mitochondrial dysfunction and affect production of reactive oxygen species can increase miconazole’s fungicidal activity against C. albicans biofilm cells. PMID:27272719

  12. In vivo immune responses to Candida albicans modified by treatment with recombinant murine gamma interferon.

    PubMed

    Garner, R E; Kuruganti, U; Czarniecki, C W; Chiu, H H; Domer, J E

    1989-06-01

    The immunologic effects of in vivo administration of recombinant murine gamma interferon (rMuIFN-gamma) were determined in a murine model of candidiasis. Naive mice were given graded doses of rMuIFN-gamma and then challenged intravenously with Candida albicans. Increased morbidity and mortality were noted in four different strains of mice, viz., BALB/c, A/J, Swiss Webster, and CBA/J, providing the mice had not been immunized with C. albicans before challenge. Quantitative culture of selected organs of Swiss Webster and CBA/J mice surviving treatment with rMuIFN-gamma revealed elevated numbers of C. albicans cells, particularly in the kidneys, but also in the liver, lungs, and spleen. The lungs, livers, and spleen of female CBA/J mice were more protected from increased multiplication of the fungus than were those of males of the same species or female Swiss Webster mice. On the basis of these initial findings, the effect of treatment with 5,000 U of rMuIFN-gamma on immune responses in a gastrointestinal model of candidiasis was determined. CBA/J mice that had been colonized with C. albicans as infants were boosted with a cutaneous inoculation of the fungus when 6 to 10 weeks old; development of delayed hypersensitivity (DH), antibodies, and protective responses was assayed at intervals thereafter. Daily treatment with rMuIFN-gamma (beginning 1 day before cutaneous inoculation) suppressed weak immune responses but had little effect on responses which were strong. For example, DH and anti-C. albicans antibody production were suppressed in animals colonized with C. albicans but not boosted by cutaneous inoculation, and DH was suppressed in uncolonized animals that had been inoculated once cutaneously with the fungus as well. There was no rMuIFN-gamma-induced suppressive effect of DH in mice which had been stimulated maximally with C. albicans, i.e., colonized animals that had been boosted cutaneously with the organisms. Collectively, these data indicate that naive mice

  13. In vivo immune responses to Candida albicans modified by treatment with recombinant murine gamma interferon.

    PubMed Central

    Garner, R. E.; Kuruganti, U.; Czarniecki, C. W.; Chiu, H. H.; Domer, J. E.

    1989-01-01

    The immunologic effects of in vivo administration of recombinant murine gamma interferon (rMuIFN-gamma) were determined in a murine model of candidiasis. Naive mice were given graded doses of rMuIFN-gamma and then challenged intravenously with Candida albicans. Increased morbidity and mortality were noted in four different strains of mice, viz., BALB/c, A/J, Swiss Webster, and CBA/J, providing the mice had not been immunized with C. albicans before challenge. Quantitative culture of selected organs of Swiss Webster and CBA/J mice surviving treatment with rMuIFN-gamma revealed elevated numbers of C. albicans cells, particularly in the kidneys, but also in the liver, lungs, and spleen. The lungs, livers, and spleen of female CBA/J mice were more protected from increased multiplication of the fungus than were those of males of the same species or female Swiss Webster mice. On the basis of these initial findings, the effect of treatment with 5,000 U of rMuIFN-gamma on immune responses in a gastrointestinal model of candidiasis was determined. CBA/J mice that had been colonized with C. albicans as infants were boosted with a cutaneous inoculation of the fungus when 6 to 10 weeks old; development of delayed hypersensitivity (DH), antibodies, and protective responses was assayed at intervals thereafter. Daily treatment with rMuIFN-gamma (beginning 1 day before cutaneous inoculation) suppressed weak immune responses but had little effect on responses which were strong. For example, DH and anti-C. albicans antibody production were suppressed in animals colonized with C. albicans but not boosted by cutaneous inoculation, and DH was suppressed in uncolonized animals that had been inoculated once cutaneously with the fungus as well. There was no rMuIFN-gamma-induced suppressive effect of DH in mice which had been stimulated maximally with C. albicans, i.e., colonized animals that had been boosted cutaneously with the organisms. Collectively, these data indicate that naive mice

  14. Binding of the extracellular matrix component entactin to Candida albicans.

    PubMed Central

    López-Ribot, J L; Chaffin, W L

    1994-01-01

    We have investigated the interaction between Candida albicans and entactin, a recently characterized glycoprotein present in the extracellular matrix, especially in the basement membrane. Organisms of both the yeast and the hyphal morphologies of the fungus had the ability to bind recombinant entactin, as detected by an indirect immunofluorescence assay. Material present in the 2-mercaptoethanol cell wall extracts from both C. albicans growth forms was capable of binding to immobilized recombinant entactin in a dose-dependent manner. Binding to entactin was approximately twice that observed for laminin. Binding of an extract component(s) to entactin was partially inhibited by an Arg-Gly-Asp-Ser peptide. A polyclonal antientactin antiserum, as well as a pooled antiserum preparation raised against components present in different C. albicans cell wall extracts, completely or almost completely abolished binding. The existence of morphology-specific receptor-like molecules which bind to different domains of the entactin molecule was ruled out in a competition binding assay. The entactin-binding material(s) in the cell wall also displayed some ability to bind laminin and fibronectin, since preadsorption in the presence of these extracellular matrix components resulted in reduction of binding to entactin. Moieties with a molecular mass of approximately 25, 44, and 65 kDa present in the 2-mercaptoethanol cell wall extracts from both blastoconidia and germ tubes were detected in a ligand affinity blotting experiment as having the ability to bind entactin. Interactions between C. albicans and entactin could be important in mediating adhesion of the fungus to the host tissues and may play a role in the establishment of the disseminated form of the disease. Images PMID:7927722

  15. Utilising polyphenols for the clinical management of Candida albicans biofilms.

    PubMed

    Shahzad, Muhammad; Sherry, Leighann; Rajendran, Ranjith; Edwards, Christine A; Combet, Emilie; Ramage, Gordon

    2014-09-01

    Polyphenols (PPs) are secondary metabolites abundant in plant-derived foods. They are reported to exhibit antimicrobial activity that may offer an alternative to existing antimicrobials. The aim of this study was to evaluate the antifungal potential of PPs against Candida albicans biofilms that are commonly recalcitrant to antifungal therapy. The antifungal activity of 14 PPs was assessed in terms of planktonic and sessile minimum inhibitory concentrations (PMICs and SMICs, respectively) against various C. albicans clinical isolates. The most active PPs were further tested for their effect on C. albicans adhesion and biofilm growth using standard biomass assays, microscopy and quantitative gene expression. Of the 14 PPs tested, 7 were effective inhibitors of planktonic growth, of which pyrogallol (PYG) was the most effective (PMIC₅₀=78 μg/mL), followed by curcumin (CUR) (PMIC₅₀=100 μg/mL) and pyrocatechol (PMIC₅₀=625 μg/mL). Both PYG and CUR displayed activity against C. albicans biofilms (SMIC₅₀=40 μg/mL and 50 μg/mL, respectively), although they did not disrupt the biofilm or directly affect the cellular structure. Overall, CUR displayed superior biofilm activity, significantly inhibiting initial cell adhesion following pre-coating (P<0.01), biofilm growth (P<0.05) and gene expression (P<0.05). This inhibitory effect diminished with prolonged CUR exposure, although it still inhibited by 50% after 4h adhesion. Overall, CUR exhibited positive antibiofilm properties that could be used at the basis for development of similar molecules, although further cellular and in vivo studies are required to explore its precise mechanism of action. PMID:25104135

  16. Diorcinol D Exerts Fungicidal Action against Candida albicans through Cytoplasm Membrane Destruction and ROS Accumulation.

    PubMed

    Li, Ying; Chang, Wenqiang; Zhang, Ming; Li, Xiaobin; Jiao, Yang; Lou, Hongxiang

    2015-01-01

    Candida albicans, which is the most common human fungal pathogen, causes high mortality among immunocompromised patients. Antifungal drug resistance becomes a major challenge for the management of Candida infection. Diorcinol D (DD), a diphenyl ether derivative isolated from an endolichenic fungus, exerted fungicidal action against Candida species. In this study, we investigated the possible mechanism of its antifungal activity. The change of membrane dynamics and permeability suggested that the cell membrane was disrupted by the treatment of DD. This was further supported by the evidences of intracellular glycerol accumulation, alteration of cell ultrastructure, and down-regulation of genes involved in cell membrane synthesis. In addition, the treatment of C. albicans with DD resulted in the elevation of reactive oxygen species (ROS), which caused the dysfunction of mitochondria. These altogether suggested that DD exerted its antifungal activity through cytoplasmic membrane destruction and ROS accumulation. This finding is helpful to uncover the underlying mechanisms for the diphenyl ether derivatives and provides a potential application in fighting clinical fungal infections. PMID:26047493

  17. Anticandidal Effect and Mechanisms of Monoterpenoid, Perillyl Alcohol against Candida albicans.

    PubMed

    Ansari, Moiz A; Fatima, Zeeshan; Hameed, Saif

    2016-01-01

    This study explored the antifungal potential of perillyl alcohol (PA), a natural monoterpene alcohol, against most prevalent human fungal pathogen C. albicans, its clinical isolates and four non-albicans species of Candida. To resolve the potential mechanisms, we used whole genome transcriptome analyses of PA treated Candida cells to examine the affected cellular circuitry of this pathogen. The transcriptome data revealed a link between calcineurin signaling and PA as among the several categories of PA responsive genes the down regulation of calcineurin signaling gene CNB1 was noteworthy which was also confirmed by both molecular docking and susceptibility assays. We observed that PA treated Candida phenocopied compromised calcineurin pathway stress responses and turned sensitive to alkaline pH, ionic, membrane, salinity, endoplasmic reticulum and serum stresses. Indispensability of functional calcineurin was further confirmed as calcineurin mutant was hypersensitive to PA while constitutively expressed calcineurin strain remained resistant. We explored that PA leads to perturbed membrane integrity as depicted through depleted ergosterol levels and disrupted pH homeostasis. Moreover, PA caused cell wall damage which was evident from hypersensitivity against cell wall perturbing agents (congo red, calcoflour white), SEM and enhanced rate of cell sedimentation. Furthermore, PA inhibited potential virulence traits including morphological transition, biofilm formation and displayed diminished capacity to adhere both to the polystyrene surface and buccal epithelial cells. The study also revealed that PA leads to cell cycle arrest and mitochondrial dysfunction in C. albicans. Together, the present study provides enough evidence for further work on PA so that better strategies could be employed to treat Candida infections. PMID:27627759

  18. Anticandidal Effect and Mechanisms of Monoterpenoid, Perillyl Alcohol against Candida albicans

    PubMed Central

    Ansari, Moiz A.; Fatima, Zeeshan; Hameed, Saif

    2016-01-01

    This study explored the antifungal potential of perillyl alcohol (PA), a natural monoterpene alcohol, against most prevalent human fungal pathogen C. albicans, its clinical isolates and four non-albicans species of Candida. To resolve the potential mechanisms, we used whole genome transcriptome analyses of PA treated Candida cells to examine the affected cellular circuitry of this pathogen. The transcriptome data revealed a link between calcineurin signaling and PA as among the several categories of PA responsive genes the down regulation of calcineurin signaling gene CNB1 was noteworthy which was also confirmed by both molecular docking and susceptibility assays. We observed that PA treated Candida phenocopied compromised calcineurin pathway stress responses and turned sensitive to alkaline pH, ionic, membrane, salinity, endoplasmic reticulum and serum stresses. Indispensability of functional calcineurin was further confirmed as calcineurin mutant was hypersensitive to PA while constitutively expressed calcineurin strain remained resistant. We explored that PA leads to perturbed membrane integrity as depicted through depleted ergosterol levels and disrupted pH homeostasis. Moreover, PA caused cell wall damage which was evident from hypersensitivity against cell wall perturbing agents (congo red, calcoflour white), SEM and enhanced rate of cell sedimentation. Furthermore, PA inhibited potential virulence traits including morphological transition, biofilm formation and displayed diminished capacity to adhere both to the polystyrene surface and buccal epithelial cells. The study also revealed that PA leads to cell cycle arrest and mitochondrial dysfunction in C. albicans. Together, the present study provides enough evidence for further work on PA so that better strategies could be employed to treat Candida infections. PMID:27627759

  19. Selective photoinactivation of Candida albicans in the non-vertebrate host infection model Galleria mellonella

    PubMed Central

    2013-01-01

    Background Candida spp. are recognized as a primary agent of severe fungal infection in immunocompromised patients, and are the fourth most common cause of bloodstream infections. Our study explores treatment with photodynamic therapy (PDT) as an innovative antimicrobial technology that employs a nontoxic dye, termed a photosensitizer (PS), followed by irradiation with harmless visible light. After photoactivation, the PS produces either singlet oxygen or other reactive oxygen species (ROS) that primarily react with the pathogen cell wall, promoting permeabilization of the membrane and cell death. The emergence of antifungal-resistant Candida strains has motivated the study of antimicrobial PDT (aPDT) as an alternative treatment of these infections. We employed the invertebrate wax moth Galleria mellonella as an in vivo model to study the effects of aPDT against C. albicans infection. The effects of aPDT combined with conventional antifungal drugs were also evaluated in G. mellonella. Results We verified that methylene blue-mediated aPDT prolonged the survival of C. albicans infected G. mellonella larvae. The fungal burden of G. mellonella hemolymph was reduced after aPDT in infected larvae. A fluconazole-resistant C. albicans strain was used to test the combination of aPDT and fluconazole. Administration of fluconazole either before or after exposing the larvae to aPDT significantly prolonged the survival of the larvae compared to either treatment alone. Conclusions G. mellonella is a useful in vivo model to evaluate aPDT as a treatment regimen for Candida infections. The data suggests that combined aPDT and antifungal therapy could be an alternative approach to antifungal-resistant Candida strains. PMID:24083556

  20. Multicenter Evaluation of Candida QuickFISH BC for Identification of Candida Species Directly from Blood Culture Bottles

    PubMed Central

    Abdelhamed, Ayman M.; Zhang, Sean X.; Watkins, Tonya; Morgan, Margie A.; Wu, Fann; Buckner, Rebecca J.; Fuller, DeAnna D.; Davis, Thomas E.; Salimnia, Hossein; Fairfax, Marilynn R.; Lephart, Paul R.; Poulter, Melinda D.; Regi, Sarah B.

    2015-01-01

    Candida species are common causes of bloodstream infections (BSI), with high mortality. Four species cause >90% of Candida BSI: C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis. Differentiation of Candida spp. is important because of differences in virulence and antimicrobial susceptibility. Candida QuickFISH BC, a multicolor, qualitative nucleic acid hybridization assay for the identification of C. albicans (green fluorescence), C. glabrata (red fluorescence), and C. parapsilosis (yellow fluorescence), was tested on Bactec and BacT/Alert blood culture bottles which signaled positive on automated blood culture devices and were positive for yeast by Gram stain at seven study sites. The results were compared to conventional identification. A total of 419 yeast-positive blood culture bottles were studied, consisting of 258 clinical samples (89 C. glabrata, 79 C. albicans, 23 C. parapsilosis, 18 C. tropicalis, and 49 other species) and 161 contrived samples inoculated with clinical isolates (40 C. glabrata, 46 C. albicans, 36 C. parapsilosis, 19 C. tropicalis, and 20 other species). A total of 415 samples contained a single fungal species, with C. glabrata (n = 129; 30.8%) being the most common isolate, followed by C. albicans (n = 125; 29.8%), C. parapsilosis (n = 59; 14.1%), C. tropicalis (n = 37; 8.8%), and C. krusei (n = 17; 4.1%). The overall agreement (with range for the three major Candida species) between the two methods was 99.3% (98.3 to 100%), with a sensitivity of 99.7% (98.3 to 100%) and a specificity of 98.0% (99.4 to 100%). This study showed that Candida QuickFISH BC is a rapid and accurate method for identifying C. albicans, C. glabrata, and C. parapsilosis, the three most common Candida species causing BSI, directly from blood culture bottles. PMID:25762766

  1. Antifungal effect of lavender honey against Candida albicans , Candida krusei and Cryptococcus neoformans.

    PubMed

    Estevinho, Maria Leticia; Afonso, Sílvia Esteves; Feás, Xesús

    2011-10-01

    Monofloral lavender honey samples (n = 30), were analyzed to test antifungal effect against Candida albicans, Candida krusei, and Cryptococcus neoformans. The specific growth rates (μ) showed that all the yeast growths were reduced in the presence of honey. The honey concentration (% w/v) that inhibited 10% of the yeasts growth (X min) ranged from 31.0% (C. albicans), 16.8% (C. krusei) and 23.0% (C. neoformans). A synthetic honey solution was also tested to determine antifungal activity attributable to sugars. The presence of synthetic honey in the C. krusei culture medium at concentrations above 58.0% (w/v) was established as X min, while C. albicans and C. neoformans were more resistant, since X min values were not reached over the ranged tested (10-60%, w/v). What the data suggests is that the component in the lavender honey responsible for the observed antifungal in vitro properties is not sugar based. Honey might be tapped as a natural resource to look for new medicines for the treatment of mycotic infections. This could be very useful, onsidering the increasing resistance of antifungals. It should be noticed that this is the first study concerning the effect of lavender honey on the growth of pathogenic yeasts.

  2. Population Structure of Candida albicans from Three Teaching Hospitals in Ghana.

    PubMed

    Adjapong, Gloria; Hale, Marie; Garrill, Ashley

    2016-02-01

    Previous studies on Candida species in a clinical setting in Ghana have shown a prevalence of Candida albicans. Despite this, very little is known about the various strain types and their population genetic structure. In this study three microsatellite loci, CAI, CAIII and CAVI, were used to investigate the population genetic structure of C. albicans from clinical isolates in Ghana. In all, 240 clinically unrelated C. albicans isolates were recovered from patients reporting at three teaching hospitals. All the isolates were heterozygous for at least one of the three loci, except for one isolate, which was homozygous for all three loci. Sixty-seven unique alleles and 240 different genotypes were generated by the three polymorphic microsatellite loci, resulting in a very high discriminatory potential of approximately 0.98. There was no significant difference in allele frequencies from the small number of anatomical sites sampled, regardless of the host conditions although high genotypic diversities were observed among the isolates. There was evidence for clonal reproduction, including over-expression of observed heterozygotes across the populations. The populations deviated significantly from Hardy-Weinberg equilibrium and pair-wise genotypic linkage disequilibria comparisons across the three loci were significant, also suggesting a clonal population. The overall Wright FIS for the three loci was negative, and the overall FST value was not significantly different from zero for the three loci analyzed, indicating a clonal and homogeneous population across the three sampling locations from Ghana.

  3. Gastrointestinal granuloma due to Candida albicans in an immunocompetent cat

    PubMed Central

    Duchaussoy, Anne-Claire; Rose, Annie; Talbot, Jessica J.; Barrs, Vanessa R.

    2015-01-01

    A 3.5 year-old cat was admitted to the University of Melbourne Veterinary Teaching Hospital for chronic vomiting. Abdominal ultrasonography revealed a focal, circumferential thickening of the wall of the duodenum extending from the pylorus aborally for 3 cm, and an enlarged gastric lymph node. Cytology of fine-needle aspirates of the intestinal mass and lymph node revealed an eosinophilic inflammatory infiltrate and numerous extracellular septate acute angle branching fungal-type hyphae. Occasional hyphae had globose terminal ends, as well as round to oval blastospores and germ tubes. Candida albicans was cultured from a surgical biopsy of the duodenal mass. No underlying host immunodeficiencies were identified. Passage of an abrasive intestinal foreign body was suspected to have caused intestinal mucosal damage resulting in focal intestinal candidiasis. The cat was treated with a short course of oral itraconazole and all clinical signs resolved. PMID:26862475

  4. Isolation and characterization of yeast monomorphic mutants of Candida albicans.

    PubMed Central

    Elorza, M V; Sentandreu, R; Ruiz-Herrera, J

    1994-01-01

    A method was devised for the isolation of yeast monomorphic (LEV) mutants of Candida albicans. By this procedure, about 20 stable yeast-like mutants were isolated after mutagenesis with ethyl methane sulfonate. The growth rate of the mutants in different carbon sources, both fermentable and not, was indistinguishable from that of the parental strain, but they were unable to grow as mycelial forms after application of any of the common effective inducers, i.e., heat shock, pH alterations, proline addition, or use of GlcNAc as the carbon source. Studies performed with one selected strain demonstrated that it had severe alterations in the chemical composition of the cell wall, mainly in the levels of chitin and glucans, and in specific mannoproteins, some of them recognizable by specific polyclonal and monoclonal antibodies. It is suggested that these structural alterations hinder the construction of a normal hyphal wall. Images PMID:8157600

  5. Mast cells phagocyte Candida albicans and produce nitric oxide by mechanisms involving TLR2 and Dectin-1.

    PubMed

    Pinke, Karen Henriette; Lima, Heliton Gustavo de; Cunha, Fernando Queiroz; Lara, Vanessa Soares

    2016-02-01

    Candida albicans (C. albicans) is a fungus commonly found in the human mucosa, which may cause superficial and systemic infections, especially in immunosuppression. Until now, the main actors in the defense against this fungus are the epithelial cells, neutrophils, macrophages/monocytes and dendritic cells. However, mast cells are strategically located to play a first line of anti-Candida defense and it has appropriate mechanisms to do it. As with other cells, the recognition of C. albicans occurs meanly via TLR2 and Dectin-1. We assess the TLR2/Dectin-1 involvement in phagocytosis and production of nitric oxide (NO) and reactive oxygen species (ROS) by mast cells challenged with C. albicans. Bone marrow-derived mast cells (MC) from wild type (Wt) or knockout (TLR2-/-) mice C57BL/6 were subjected to in vitro Dectin-1 blockade. After challenged with FITC-labeled C. albicans or zymosan, phagocytosis was analyzed by microscopy. The intracellular production of NO and ROS was measured by DAF-FM diacetate and CellROX Deep/Red Reagent kits. The nitrite formation and hydrogen peroxide release were analyzed by Griess reaction and Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit. Wt/MC phagocytose C. albicans with production of intracellular NO, but not ROS. Moreover, increased levels of nitrite were also observed. The absence and/or blockade of TLR2/Dectin-1 caused significant decreased in C. albicans phagocytosis and NO production. Our results showed that mast cells are able to phagocytose and produce NO against C. albicans via TLR2/Dectin-1. Therefore, mast cells could be important during the course of Candida infection and as a therapeutic target.

  6. Fluorometric determination of acid proteinase activity in Candida albicans strains from diabetic patients with vulvovaginal candidiasis.

    PubMed

    Yildirim, Zuhal; Kilic, Nedret; Kalkanci, Ayse

    2011-09-01

    Vulvovaginal candidiasis is one of the most frequent disorders in obstetrics and gynaecology. Approximately three-quarters of all adult women experience at least one episode of vulvovaginal candidiasis during their life span. Diabetes mellitus (DM) increases the rate of vaginal colonisation and infection with Candida species. The secreted acid proteinase might be especially relevant in the pathogenesis of vulvovaginal candidiasis. The aim of this study was to determine the acid proteinase activity in the samples of Candida albicans from diabetic patients with vulvovaginal candidiasis by a fluorometric method. Vaginal swabs were taken from 33 women (aged between 22 and 57 years) having symptoms of vaginitis. Patients were divided into three groups: control group, controlled diabetic group and uncontrolled diabetic group. The proteinase activity in the culture supernatants was determined by a modified fluorometric method. Acid proteinase activities were significantly increased in the uncontrolled diabetic group in comparison with both the control group and the controlled diabetic group (P < 0.05). Acid proteinase may play an important role in C. albicans pathogenesis in diabetic patients. Improving glucose control may reduce the risk of Candida colonisation and potentially symptomatic infection, among women with diabetes and hence may be useful even for weaker enzyme activity measurements.

  7. Ecology of Candida albicans gut colonization: inhibition of Candida adhesion, colonization, and dissemination from the gastrointestinal tract by bacterial antagonism.

    PubMed Central

    Kennedy, M J; Volz, P A

    1985-01-01

    Antibiotic-treated and untreated Syrian hamsters were inoculated intragastrically with Candida albicans to determine whether C. albicans could opportunistically colonize the gastrointestinal tract and disseminate to visceral organs. Antibiotic treatment decreased the total population levels of the indigenous bacterial flora and predisposed hamsters to gastrointestinal overgrowth and subsequent systemic dissemination by C. albicans in 86% of the animals. Both control hamsters not given antibiotics and antibiotic-treated animals reconventionalized with an indigenous microflora showed significantly lower gut populations of C. albicans, and C. albicans organisms were cultured from the visceral organs of 0 and 10% of the animals, respectively. Conversely, non-antibiotic-treated hamsters inoculated repeatedly with C. albicans had high numbers of C. albicans in the gut, and viable C. albicans was recovered from the visceral organs of 53% of the animals. Examination of the mucosal surfaces from test and control animals indicated further that animals which contained a complex indigenous microflora had significantly lower numbers of C. albicans associated with their gut walls than did antibiotic-treated animals. The ability of C. albicans to associate with intestinal mucosal surfaces also was tested by an in vitro adhesion assay. The results indicate that the indigenous microflora reduced the mucosal association of C. albicans by forming a dense layer of bacteria in the mucus gel, out-competing yeast cells for adhesion sites, and producing inhibitor substances (possibly volatile fatty acids, secondary bile acids, or both) that reduced C. albicans adhesion. It is suggested, therefore, that the indigenous intestinal microflora suppresses C. albicans colonization and dissemination from the gut by inhibiting Candida-mucosal association and reducing C. albicans population levels in the gut. Images PMID:3897061

  8. An Expanded Regulatory Network Temporally Controls Candida albicans Biofilm Formation

    PubMed Central

    Fox, Emily P.; Bui, Catherine K.; Nett, Jeniel E.; Hartooni, Nairi; Mui, Michael M.; Andes, David R.; Nobile, Clarissa J.; Johnson, Alexander D.

    2015-01-01

    Summary Candida albicans biofilms are composed of highly adherent and densely arranged cells with properties distinct from those of free-floating (planktonic) cells. These biofilms are a significant medical problem because they commonly form on implanted medical devices, are drug resistant, and are difficult to remove. C. albicans biofilms are not static structures; rather they are dynamic and develop over time. Here we characterize gene expression in biofilms during their development, and by comparing them to multiple planktonic reference states, we identify patterns of gene expression relevant to biofilm formation. In particular, we document time-dependent changes in genes involved in adhesion and metabolism, both of which are at the core of biofilm development. Additionally, we identify three new regulators of biofilm formation, Flo8, Gal4, and Rfx2, which play distinct roles during biofilm development over time. Flo8 is required for biofilm formation at all timepoints, and Gal4 and Rfx2 are needed for proper biofilm formation at intermediate time points. PMID:25784162

  9. Bacterial peptidoglycan-derived molecules activate Candida albicans hyphal growth.

    PubMed

    Wang, Yue; Xu, Xiao-Li

    2008-01-01

    Serum strongly induces the yeast-to-hypha growth transition in the human fungal pathogen Candida albicans, playing an important role in infection. However, identity of the serum inducer(s) and its sensor remain poorly defined. We used NMR to analyze the chromatographic serum fractionations enriched for the hypha-inducing activity and found structures resembling subunits of bacterial peptidoglycan (PGN). We then confirmed that several purified and synthetic muramyl dipeptides (MDPs), subunits of PGN, can indeed strongly promote C. albicans hyphal growth. Taking cue from the recognition of MDPs by the mammalian bacterial sensor Nod2 using its leucine-rich-repeat (LRR) domain, we discovered that MDPs activate the adenylyl cyclase Cyr1 by binding to its LRR domain. The cAMP/PKA signaling pathway is well known to control hyphal morphogenesis and other infection-related traits. Given the abundance of PGN at the large intestinal epithelial surface, a natural habitat and invasion site for C. albcians, our findings have important implications in the mechanisms of infection by this pathogen. PMID:19704871

  10. Bacterial peptidoglycan-derived molecules activate Candida albicans hyphal growth

    PubMed Central

    Xu, Xiao-Li

    2008-01-01

    Serum strongly induces the yeast-to-hypha growth transition in the human fungal pathogen Candida albicans, playing an important role in infection. However, identity of the serum inducer(s) and its sensor remain poorly defined. We used NMR to analyze the chromatographic serum fractionations enriched for the hypha-inducing activity and found structures resembling subunits of bacterial peptidoglycan (PGN). We then confirmed that several purified and synthetic muramyl dipeptides (MDPs), subunits of PGN, can indeed strongly promote C. albicans hyphal growth. Taking cue from the recognition of MDPs by the mammalian bacterial sensor Nod2 using its leucine-rich-repeat (LRR) domain, we discovered that MDPs activate the adenylyl cyclase Cyr1 by binding to its LRR domain. The cAMP/PKA signaling pathway is well known to control hyphal morphogenesis and other infection-related traits. Given the abundance of PGN at the large intestinal epithelial surface, a natural habitat and invasion site for C. albcians, our findings have important implications in the mechanisms of infection by this pathogen. PMID:19704871

  11. An expanded regulatory network temporally controls Candida albicans biofilm formation.

    PubMed

    Fox, Emily P; Bui, Catherine K; Nett, Jeniel E; Hartooni, Nairi; Mui, Michael C; Andes, David R; Nobile, Clarissa J; Johnson, Alexander D

    2015-06-01

    Candida albicans biofilms are composed of highly adherent and densely arranged cells with properties distinct from those of free-floating (planktonic) cells. These biofilms are a significant medical problem because they commonly form on implanted medical devices, are drug resistant and are difficult to remove. C. albicans biofilms are not static structures; rather they are dynamic and develop over time. Here we characterize gene expression in biofilms during their development, and by comparing them to multiple planktonic reference states, we identify patterns of gene expression relevant to biofilm formation. In particular, we document time-dependent changes in genes involved in adhesion and metabolism, both of which are at the core of biofilm development. Additionally, we identify three new regulators of biofilm formation, Flo8, Gal4, and Rfx2, which play distinct roles during biofilm development over time. Flo8 is required for biofilm formation at all time points, and Gal4 and Rfx2 are needed for proper biofilm formation at intermediate time points.

  12. Three prevacuolar compartment Rab GTPases impact Candida albicans hyphal growth.

    PubMed

    Johnston, Douglas A; Tapia, Arturo Luna; Eberle, Karen E; Palmer, Glen E

    2013-07-01

    Disruption of vacuolar biogenesis in the pathogenic yeast Candida albicans causes profound defects in polarized hyphal growth. However, the precise vacuolar pathways involved in yeast-hypha differentiation have not been determined. Previously we focused on Vps21p, a Rab GTPase involved in directing vacuolar trafficking through the late endosomal prevacuolar compartment (PVC). Herein, we identify two additional Vps21p-related GTPases, Ypt52p and Ypt53p, that colocalize with Vps21p and can suppress the hyphal defects of the vps21Δ/Δ mutant. Phenotypic analysis of gene deletion strains revealed that loss of both VPS21 and YPT52 causes synthetic defects in endocytic trafficking to the vacuole, as well as delivery of the virulence-associated vacuolar membrane protein Mlt1p from the Golgi compartment. Transcription of all three GTPase-encoding genes is increased under hyphal growth conditions, and overexpression of the transcription factor Ume6p is sufficient to increase the transcription of these genes. While only the vps21Δ/Δ single mutant has hyphal growth defects, these were greatly exacerbated in a vps21Δ/Δ ypt52Δ/Δ double mutant. On the basis of relative expression levels and phenotypic analysis of gene deletion strains, Vps21p is the most important of the three GTPases, followed by Ypt52p, while Ypt53p has an only marginal impact on C. albicans physiology. Finally, disruption of a nonendosomal AP-3-dependent vacuolar trafficking pathway in the vps21Δ/Δ ypt52Δ/Δ mutant, further exacerbated the stress and hyphal growth defects. These findings underscore the importance of membrane trafficking through the PVC in sustaining the invasive hyphal growth form of C. albicans.

  13. Development of a High-Throughput Candida albicans Biofilm Chip

    PubMed Central

    Srinivasan, Anand; Uppuluri, Priya; Lopez-Ribot, Jose; Ramasubramanian, Anand K.

    2011-01-01

    We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed “nano-biofilms”. The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B). Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip) is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously. PMID:21544190

  14. Early detection of Candida albicans biofilms at porous electrodes.

    PubMed

    Congdon, Robert B; Feldberg, Alexander S; Ben-Yakar, Natalie; McGee, Dennis; Ober, Christopher; Sammakia, Bahgat; Sadik, Omowunmi A

    2013-02-15

    We describe the development of an electrochemical sensor for early detection of biofilm using Candida albicans. The electrochemical sensor used the ability of biofilms to accept electrons from redox mediators relative to the number of metabolically active cells present. Cyclic voltammetry and differential pulse voltammetry techniques were used to monitor the redox reaction of K(3)Fe(CN)(6) at porous reticulated vitreous carbon (RVC) (238.7 cm(2)) working electrodes versus Ag/AgCl reference. A shift in the peak potential occurred after 12 h of film growth, which is attributed to the presence of C. albicans. Moreover, the intensity of the ferricyanide reduction peak first increased as C. albicans deposited onto the porous electrodes at various growth times. The peak current subsequently decreased at extended periods of growth of 48 h. The reduction in peak current was attributed to the biofilm reaching its maximum growth thickness, which correlated with the maximum number of metabolically active cells. The observed diffusion coefficients for the bare RVC and biofilm-coated electrodes were 2.2 × 10(-3) and 7.0 × 10(-6) cm(2)/s, respectively. The increase in diffusivity from the bare electrode to the biofilm-coated electrode indicated some enhancement of electron transfer mediated by the biofilm to the porous electrode. Verification of the growth of biofilm was achieved using scanning electron microcopy and laser scanning confocal imaging microscopy. Validation with conventional plating techniques confirmed that the correlation (R(2) = 0.9392) could be achieved between the electrochemical sensors data and colony-forming units. PMID:23107627

  15. Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material.

    PubMed

    Cavalcanti, Indira M G; Nobbs, Angela H; Ricomini-Filho, Antônio Pedro; Jenkinson, Howard F; Del Bel Cury, Altair A

    2016-04-01

    Candida-associated stomatitis affects up to 60% of denture wearers, and Candida albicans remains the most commonly isolated fungal species. The oral bacteria Actinomyces oris and Streptococcus oralis are abundant in early dental plaque. The aims of this study were to determine the effects of S. oralis and A. oris on the development of C. albicans biofilms on denture material. Resin discs were coated with saliva and at early (1.5 h) or later (24 h) stages of biofilm development, cell numbers of each species were determined. Spatial distribution of microorganisms was visualized by confocal scanning laser microscopy of biofilms labelled by differential fluorescence or by fluorescence in situ hybridization. Interkingdom interactions underpinning biofilm development were also evaluated planktonically utilizing fluorescence microscopy. Synergistic interactions between all three species occurred within biofilms and planktonically. Bacterial cells coaggregated with each other and adhered singly or in coaggregates to C. albicans hyphal filaments. Streptococcus oralis appeared to enhance hyphal filament production and C. albicans biovolume was increased 2-fold. Concomitantly, cell numbers of S. oralis and A. oris were enhanced by C. albicans. Thus, cooperative physical and metabolic processes occurring between these three microbial species intensify pathogenic plaque communities on denture surfaces. PMID:26755532

  16. A patient with allergic bronchopulmonary mycosis caused by Aspergillus fumigatus and Candida albicans.

    PubMed

    Wardhana; Datau, E A

    2012-10-01

    Allergic Bronchopulmonary Mycosis (ABPM) is an exagregated immunologic response to fungal colonization in the lower airways. It may cause by many kinds of fungal, but Aspergillus fumigatus is the most common cause of ABPM, although other Aspergillus and other fungal organisms, like Candida albicans, have been implicated. Aspergllus fumigatus and Candida albicans may be found as outdoor and indoor fungi, and cause the sensitization, elicitation of the disease pathology, and its clinical manifestations. Several diagnostic procedurs may be impicated to support the diagnosis of ABPM caused by Aspergillus fumigatus and Candida albicans. A case of allergic bronchopulmonary mycosis caused by Aspergillus fumigatus and Candida albicans in a 48 year old man was discussed. The patient was treated with antifungal, corticosteroids, and antibiotic for the secondary bacterial infection. The patient's condition is improved without any significant side effects. PMID:23314973

  17. The Antifungal Plant Defensin HsAFP1 from Heuchera sanguinea Induces Apoptosis in Candida albicans

    PubMed Central

    Aerts, An M.; Bammens, Leen; Govaert, Gilmer; Carmona-Gutierrez, Didac; Madeo, Frank; Cammue, Bruno P. A.; Thevissen, Karin

    2011-01-01

    Plant defensins are active against plant and human pathogenic fungi (such as Candida albicans) and baker's yeast. However, they are non-toxic to human cells, providing a possible source for treatment of fungal infections. In this study, we characterized the mode of action of the antifungal plant defensin HsAFP1 from coral bells by screening the Saccharomyces cerevisiae deletion mutant library for mutants with altered HsAFP1 sensitivity and verified the obtained genetic data by biochemical assays in S. cerevisiae and C. albicans. We identified 84 genes, which when deleted conferred at least fourfold hypersensitivity or resistance to HsAFP1. A considerable part of these genes were found to be implicated in mitochondrial functionality. In line, sodium azide, which blocks the respiratory electron transport chain, antagonized HsAFP1 antifungal activity, suggesting that a functional respiratory chain is indispensable for HsAFP1 antifungal action. Since mitochondria are the main source of cellular reactive oxygen species (ROS), we investigated the ROS-inducing nature of HsAFP1. We showed that HsAFP1 treatment of C. albicans resulted in ROS accumulation. As ROS accumulation is one of the phenotypic markers of apoptosis in yeast, we could further demonstrate that HsAFP1 induced apoptosis in C. albicans. These data provide novel mechanistic insights in the mode of action of a plant defensin. PMID:21993350

  18. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans

    PubMed Central

    Cui, Jinhui; Ren, Biao; Tong, Yaojun; Dai, Huanqin; Zhang, Lixin

    2015-01-01

    Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of drug resistant and potentially repurpose known antifungals, which bypass the costly and time-consuming pipeline of new drug development. Anti-virulence and synergistic combination provide new options for antifungal drug discovery by counteracting the difficulty or failure of traditional therapy for fungal infections. PMID:26048362

  19. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p

    PubMed Central

    Peters, Brian M.; Ovchinnikova, Ekaterina S.; Krom, Bastiaan P.; Schlecht, Lisa Marie; Zhou, Han; Hoyer, Lois L.; Busscher, Henk J.; van der Mei, Henny C.; Jabra-Rizk, Mary Ann

    2012-01-01

    The bacterium Staphylococcus (St.) aureus and the opportunistic fungus Candida albicans are currently among the leading nosocomial pathogens, often co-infecting critically ill patients, with high morbidity and mortality. Previous investigations have demonstrated preferential adherence of St. aureus to C. albicans hyphae during mixed biofilm growth. In this study, we aimed to characterize the mechanism behind this observed interaction. C. albicans adhesin-deficient mutant strains were screened by microscopy to identify the specific receptor on C. albicans hyphae recognized by St. aureus. Furthermore, an immunoassay was developed to validate and quantify staphylococcal binding to fungal biofilms. The findings from these experiments implicated the C. albicans adhesin agglutinin-like sequence 3 (Als3p) in playing a major role in the adherence process. This association was quantitatively established using atomic force microscopy, in which the adhesion force between single cells of the two species was significantly reduced for a C. albicans mutant strain lacking als3. Confocal microscopy further confirmed these observations, as St. aureus overlaid with a purified recombinant Als3 N-terminal domain fragment (rAls3p) exhibited robust binding. Importantly, a strain of Saccharomyces cerevisiae heterologously expressing Als3p was utilized to further confirm this adhesin as a receptor for St. aureus. Although the parental strain does not bind bacteria, expression of Als3p on the cell surface conferred upon the yeast the ability to strongly bind St. aureus. To elucidate the implications of these in vitro findings in a clinically relevant setting, an ex vivo murine model of co-infection was designed using murine tongue explants. Fluorescent microscopic images revealed extensive hyphal penetration of the epithelium typical of C. albicans mucosal infection. Interestingly, St. aureus bacterial cells were only seen within the epithelial tissue when associated with the invasive

  20. Manipulation of host diet to reduce gastrointestinal colonization by the opportunistic pathogen Candida albicans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal ...

  1. [Meningitis to Candida albicans at the adult, use of the new diagnosis methods].

    PubMed

    Duclos, G; Dumont, J-C; Ranque, S; Zieleskiewicz, L; Bruder, N

    2014-01-01

    Candida albicans or non-albicans are a frequent source of infection but seldom displayed in cerebrospinal fluid although responsible of an important number of nosocomial meningitis. Diagnosis is difficult which often delays treatment, which in turn hinders prognostic. This clinical case shows a patient afflicted with a deadly C. albicans meningitis and allows us to focus on new diagnostic tools and advice against this infection. PMID:25127852

  2. A piglet model for studying Candida albicans colonization of the human oro-gastrointestinal tract.

    PubMed

    Hoeflinger, Jennifer L; Coleman, David A; Oh, Soon-Hwan; Miller, Michael J; Hoyer, Lois L

    2014-08-01

    Pigs from a variety of sources were surveyed for oro-gastrointestinal (oro-GIT) carriage of Candida albicans. Candida albicans-positive animals were readily located, but we also identified C. albicans-free pigs. We hypothesized that pigs could be stably colonized with a C. albicans strain of choice, simply by feeding yeast cells. Piglets were farrowed routinely and remained with the sow for 4 days to acquire a normal microbiota. Piglets were then placed in an artificial rearing environment and fed sow milk replacer. Piglets were inoculated orally with one of three different C. albicans strains. Piglets were weighed daily, and culture swabs were collected to detect C. albicans orally, rectally and in the piglet's environment. Stable C. albicans colonization over the course of the study did not affect piglet growth. Necropsy revealed mucosally associated C. albicans throughout the oro-GIT with the highest abundance in the esophagus. Uninoculated control piglets remained C. albicans-negative. These data establish the piglet as a model to study C. albicans colonization of the human oro-GIT. Similarities between oro-GIT colonization in humans and pigs, as well as the ease of working with the piglet model, suggest its adaptability for use among investigators interested in understanding C. albicans-host commensal interactions.

  3. MIG1 Regulates Resistance of Candida albicans against the Fungistatic Effect of Weak Organic Acids.

    PubMed

    Cottier, Fabien; Tan, Alrina Shin Min; Xu, Xiaoli; Wang, Yue; Pavelka, Norman

    2015-10-01

    Candida albicans is the leading cause of fungal infections; but it is also a member of the human microbiome, an ecosystem of thousands of microbial species potentially influencing the outcome of host-fungal interactions. Accordingly, antibacterial therapy raises the risk of candidiasis, yet the underlying mechanism is currently not fully understood. We hypothesize the existence of bacterial metabolites that normally control C. albicans growth and of fungal resistance mechanisms against these metabolites. Among the most abundant microbiota-derived metabolites found on human mucosal surfaces are weak organic acids (WOAs), such as acetic, propionic, butyric, and lactic acid. Here, we used quantitative growth assays to investigate the dose-dependent fungistatic properties of WOAs on C. albicans growth and found inhibition of growth to occur at physiologically relevant concentrations and pH values. This effect was conserved across distantly related fungal species both inside and outside the CTG clade. We next screened a library of transcription factor mutants and identified several genes required for the resistance of C. albicans to one or more WOAs. A single gene, MIG1, previously known for its role in glucose repression, conferred resistance against all four acids tested. Consistent with glucose being an upstream activator of Mig1p, the presence of this carbon source was required for WOA resistance in wild-type C. albicans. Conversely, a MIG1-complemented strain completely restored the glucose-dependent resistance against WOAs. We conclude that Mig1p plays a central role in orchestrating a transcriptional program to fight against the fungistatic effect of this class of highly abundant metabolites produced by the gastrointestinal tract microbiota. PMID:26297702

  4. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans.

    PubMed

    Phillips, Andrew J; Sudbery, Ian; Ramsdale, Mark

    2003-11-25

    New antifungal agents are urgently required to combat life-threatening infections caused by opportunistic fungal pathogens like Candida albicans. The manipulation of endogenous fungal programmed cell death responses could provide a basis for future therapies. Here we assess the physiology of death in C. albicans in response to environmental stresses (acetic acid and hydrogen peroxide) and an antifungal agent (amphotericin B). Exposure of C. albicans to 40-60 mM acetic acid, 5-10 mM hydrogen peroxide, or 4-8 microg.ml-1 amphotericin B produced cellular changes reminiscent of mammalian apoptosis. Nonviable cells that excluded propidium iodide displayed the apoptotic marker phosphatidylserine (as shown by annexin-V-FITC labeling), were terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive (indicating nuclease-mediated double-strand DNA breakage), and produced reactive oxygen species. Ultrastructural changes in apoptotic cells included chromatin condensation and margination, separation of the nuclear envelope, and nuclear fragmentation. C. albicans cells treated at higher doses of these compounds showed cellular changes characteristic of necrosis. Necrotic cells displayed reduced TUNEL staining, a lack of surface phosphatidylserine, limited reactive oxygen species production, and an inability to exclude propidium iodide. Necrotic cells lacked defined nuclei and showed extensive intracellular vacuolization. Apoptosis in C. albicans was associated with an accumulation of cells in the G2/M phase of the cell cycle, and under some apoptosis-inducing conditions, significant proportions of yeast cells switched to hyphal growth before dying. This is a demonstration of apoptosis in a medically important fungal pathogen. PMID:14623979

  5. Candida albicans suppresses nitric oxide generation from macrophages via a secreted molecule.

    PubMed

    Collette, John R; Zhou, Huaijin; Lorenz, Michael C

    2014-01-01

    Macrophages and neutrophils generate a potent burst of reactive oxygen and nitrogen species as a key aspect of the antimicrobial response. While most successful pathogens, including the fungus Candida albicans, encode enzymes for the detoxification of these compounds and repair of the resulting cellular damage, some species actively modulate immune function to suppress the generation of these toxic compounds. We report here that C. albicans actively inhibits macrophage production of nitric oxide (NO). NO production was blocked in a dose-dependent manner when live C. albicans were incubated with either cultured or bone marrow-derived mouse macrophages. While filamentous growth is a key virulence trait, yeast-locked fungal cells were still capable of dose-dependent NO suppression. C. albicans suppresses NO production from macrophages stimulated by exposure to IFN-γ and LPS or cells of the non-pathogenic Saccharomyces cerevisiae. The NO inhibitory activity was produced only when the fungal cells were in direct contact with macrophages, but the compound itself was secreted into the culture media. LPS/IFNγ stimulated macrophages cultured in cell-free conditioned media from co-cultures showed reduced levels of iNOS enzymatic activity and lower amounts of iNOS protein. Initial biochemical characterization of this activity indicates that the inhibitor is a small, aqueous, heat-stable compound. In summary, C. albicans actively blocks NO production by macrophages via a secreted mediator; these findings expand our understanding of phagocyte modulation by this important fungal pathogen and represent a potential target for intervention to enhance antifungal immune responses.

  6. Global trends in the distribution of Candida species causing candidemia.

    PubMed

    Guinea, J

    2014-06-01

    Only five species account for 92% of cases of candidemia (Candida albicans, C. glabrata, C. tropicalis, C. parapsilosis, and C. krusei); however, their distribution varies in population-based studies conducted in different geographical areas. C. albicans is the most frequent species, but considerable differences are found between the number of cases caused by C. glabrata and C. parapsilosis. Studies from Northern Europe and the USA reported a high number of cases caused by C. glabrata, whereas studies from Spain and Brazil demonstrated a lower number of cases caused by C. glabrata and a higher number of cases attributed to C. parapsilosis. Globally, the frequency of C. albicans is decreasing, while that of C. glabrata and C. krusei is stable, and C. parapsilosis and C. tropicalis are increasing. Patient characteristics and prior antifungal therapy also have a considerable influence on the distribution and frequency of Candida spp., regardless of the geographical area. C. albicans is more frequent in patients aged up to 18 years, the frequency of C. parapsilosis decreases with age, and C. glabrata is more common in the elderly. Finally, the presence of horizontal transmission of Candida spp. isolates (reported mainly in patients from the adult medical and post-surgical ICU, patients from oncology-haematology units, and neonates) can affect species distribution.

  7. Contact-Free Inactivation of Candida albicans Biofilms by Cold Atmospheric Air Plasma

    PubMed Central

    Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G.; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L.

    2012-01-01

    Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm2). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log10 to 5 log10 reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided. PMID:22467505

  8. Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma.

    PubMed

    Maisch, Tim; Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L

    2012-06-01

    Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm(2)). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log(10) to 5 log(10) reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided.

  9. Photodynamic fungicidal efficacy of hypericin and dimethyl methylene blue against azole-resistant Candida albicans strains.

    PubMed

    Paz-Cristobal, M P; Royo, D; Rezusta, A; Andrés-Ciriano, E; Alejandre, M C; Meis, J F; Revillo, M J; Aspiroz, C; Nonell, S; Gilaberte, Y

    2014-01-01

    Antimicrobial photodynamic therapy (aPDT) is an emerging alternative to treat infections based on the use of photosensitisers (PSs) and visible light. To investigate the fungicidal effect of PDT against azole-resistant Candida albicans strains using two PSs with a different mechanism of action, hypericin (HYP) and 1,9-dimethyl methylene blue (DMMB), comparing their efficacy and the reactive oxygen species (ROS) species involved in their cytotoxicity. Azole-resistant and the azole-susceptible C. albicans strains were used. Solutions of 0.5 and 4 McFarland inoculum of each Candida strain were treated with different concentrations of each PS, and exposed to two light-emitting diode light fluences (18 and 37 J cm⁻²). Mechanistic insight was gained using several ROS quenchers. The minimal fungicidal concentration of HYP for ≥3 log₁₀ CFU reduction (0.5 McFarland) was 0.62 μmol l⁻¹ for most strains, whereas for DMMB it ranged between 1.25 and 2.5 μmol l⁻¹. Increasing the fluence to 37 J cm⁻² allowed to reduce the DMMB concentration. Higher concentrations of both PSs were required to reach a 6 log₁₀ reduction (4 McFarland). H₂O₂ was the main phototoxic species involved in the fungicidal effect of HYP-aPDT whereas ¹O₂ was more important for DMMB-based treatments. aPDT with either HYP or DMMB is effective in killing of C. albicans strains independent of their azole resistance pattern. HYP was more efficient at low fungal concentration and DMMB at higher concentrations. PMID:23905682

  10. The Fungus Candida albicans Tolerates Ambiguity at Multiple Codons

    PubMed Central

    Simões, João; Bezerra, Ana R.; Moura, Gabriela R.; Araújo, Hugo; Gut, Ivo; Bayes, Mónica; Santos, Manuel A. S.

    2016-01-01

    The ascomycete Candida albicans is a normal resident of the gastrointestinal tract of humans and other warm-blooded animals. It occurs in a broad range of body sites and has high capacity to survive and proliferate in adverse environments with drastic changes in oxygen, carbon dioxide, pH, osmolarity, nutrients, and temperature. Its biology is unique due to flexible reassignment of the leucine CUG codon to serine and synthesis of statistical proteins. Under standard growth conditions, CUG sites incorporate leucine (3% of the times) and serine (97% of the times) on a proteome wide scale, but leucine incorporation fluctuates in response to environmental stressors and can be artificially increased up to 98%. In order to determine whether such flexibility also exists at other codons, we have constructed several serine tRNAs that decode various non-cognate codons. Expression of these tRNAs had minor effects on fitness, but growth of the mistranslating strains at different temperatures, in medium with different pH and nutrients composition was often enhanced relatively to the wild type (WT) strain, supporting our previous data on adaptive roles of CUG ambiguity in variable growth conditions. Parallel evolution of the recombinant strains (100 generations) followed by full genome resequencing identified various strain specific single nucleotide polymorphisms (SNP) and one SNP in the deneddylase (JAB1) gene in all strains. Since JAB1 is a subunit of the COP9 signalosome complex, which interacts with cullin (Cdc53p) to mediate degradation of a variety of cellular proteins, our data suggest that neddylation plays a key role in tolerance and adaptation to codon ambiguity in C. albicans. PMID:27065968

  11. Susceptibility of Candida albicans to new synthetic sulfone derivatives.

    PubMed

    Staniszewska, Monika; Bondaryk, Małgorzata; Ochal, Zbigniew

    2015-02-01

    The influence of halogenated methyl sulfones, i.e. bromodichloromethyl-4-chloro-3-nitrophenyl sulfone (named halogenated methyl sulfone 1), dichloromethyl-4-chloro-3-nitrophenyl sulfone (halogenated methyl sulfone 2), and chlorodibromomethyl-4-hydrazino-3-nitrophenyl sulfone (halogenated methyl sulfone 3), on cell growth inhibition, aspartic protease gene (SAP4-6) expression, adhesion to epithelium, and filamentation was investigated. Antifungal susceptibility of the halogenated methyl sulfones was determined with the M27-A3 protocol in the range of 16-0.0313 µg/mL. Adherence to Caco-2 cells was performed in 24-well plates; relative quantification was normalized against ACT1 in cells after 18 h of growth in YEPD and on Caco-2 cells. SAP4-6 expression was analyzed using RT-PCR. Structure-activity relationship studies suggested that halogenated methyl sulfone 1 containing bromodichloromethyl or dichloromethyl function at C-4 (halogenated methyl sulfone 2) of the phenyl ring showed the best activity (100% cell inhibition at 0.5 µg/mL), while hydrazine at C-1 (halogenated methyl sulfone 3) reduced the sulfone potential (100% = 4 µg/mL). SAP4-6 were up- or down-regulated depending on the strains' genetic background and the substitutions on the phenyl ring. Halogenated methyl sulfone 2 repressed germination and affected adherence to epithelium (P ≤ 0.05). The tested halogenated methyl sulfones interfered with the adhesion of Candida albicans cells to the epithelial tissues, without affecting their viability after 90 min of incubation. The mode of action of the halogenated methyl sulfones was attributed to the reduced virulence of C. albicans. SAP5 and SAP6 contribute to halogenated methyl sulfones resistance. Thus, halogenated methyl sulfones can inhibit biofilm formation due to their interference with adherence and with the yeast-to-hyphae transition.

  12. Function and Regulation of Cph2 in Candida albicans

    PubMed Central

    Lane, Shelley; Di Lena, Pietro; Tormanen, Kati; Baldi, Pierre

    2015-01-01

    Candida albicans is associated with humans as both a harmless commensal organism and a pathogen. Cph2 is a transcription factor whose DNA binding domain is similar to that of mammalian sterol response element binding proteins (SREBPs). SREBPs are master regulators of cellular cholesterol levels and are highly conserved from fungi to mammals. However, ergosterol biosynthesis is regulated by the zinc finger transcription factor Upc2 in C. albicans and several other yeasts. Cph2 is not necessary for ergosterol biosynthesis but is important for colonization in the murine gastrointestinal (GI) tract. Here we demonstrate that Cph2 is a membrane-associated transcription factor that is processed to release the N-terminal DNA binding domain like SREBPs, but its cleavage is not regulated by cellular levels of ergosterol or oxygen. Chromatin immunoprecipitation sequencing (ChIP-seq) shows that Cph2 binds to the promoters of HMS1 and other components of the regulatory circuit for GI tract colonization. In addition, 50% of Cph2 targets are also bound by Hms1 and other factors of the regulatory circuit. Several common targets function at the head of the glycolysis pathway. Thus, Cph2 is an integral part of the regulatory circuit for GI colonization that regulates glycolytic flux. Transcriptome sequencing (RNA-seq) shows a significant overlap in genes differentially regulated by Cph2 and hypoxia, and Cph2 is important for optimal expression of some hypoxia-responsive genes in glycolysis and the citric acid cycle. We suggest that Cph2 and Upc2 regulate hypoxia-responsive expression in different pathways, consistent with a synthetic lethal defect of the cph2 upc2 double mutant in hypoxia. PMID:26342020

  13. Humoral Immunity Links Candida albicans Infection and Celiac Disease

    PubMed Central

    Fradin, Chantal; Salleron, Julia; Damiens, Sébastien; Moragues, Maria Dolores; Souplet, Vianney; Jouault, Thierry; Robert, Raymond; Dubucquoi, Sylvain; Sendid, Boualem; Colombel, Jean Fréderic; Poulain, Daniel

    2015-01-01

    Objective The protein Hwp1, expressed on the pathogenic phase of Candida albicans, presents sequence analogy with the gluten protein gliadin and is also a substrate for transglutaminase. This had led to the suggestion that C. albicans infection (CI) may be a triggering factor for Celiac disease (CeD) onset. We investigated cross-immune reactivity between CeD and CI. Methods Serum IgG levels against recombinant Hwp1 and serological markers of CeD were measured in 87 CeD patients, 41 CI patients, and 98 healthy controls (HC). IgA and IgG were also measured in 20 individuals from each of these groups using microchips sensitized with 38 peptides designed from the N-terminal of Hwp1. Results CI and CeD patients had higher levels of anti-Hwp1 (p=0.0005 and p=0.004) and anti-gliadin (p=0.002 and p=0.0009) antibodies than HC but there was no significant difference between CeD and CI patients. CeD and CI patients had higher levels of anti-transglutaminase IgA than HC (p=0.0001 and p=0.0039). During CI, the increase in anti-Hwp1 paralleled the increase in anti-gliadin antibodies. Microchip analysis showed that CeD patients were more reactive against some Hwp1 peptides than CI patients, and that some deamidated peptides were more reactive than their native analogs. Binding of IgG from CeD patients to Hwp1 peptides was inhibited by γIII gliadin peptides. Conclusions Humoral cross-reactivity between Hwp1 and gliadin was observed during CeD and CI. Increased reactivity to Hwp1 deamidated peptide suggests that transglutaminase is involved in this interplay. These results support the hypothesis that CI may trigger CeD onset in genetically-susceptible individuals. PMID:25793717

  14. Functional characterization of Candida albicans Hos2 histone deacetylase

    PubMed Central

    Karthikeyan, G; Paul-Satyaseela, Maneesh; Dhatchana Moorthy, Nachiappan; Gopalaswamy, Radha; Narayanan, Shridhar

    2014-01-01

    Candida albicans is a mucosal commensal organism capable of causing superficial (oral and vaginal thrush) infections in immune normal hosts, but is a major pathogen causing systemic and mucosal infections in immunocompromised individuals. Azoles have been very effective anti-fungal agents and the mainstay in treating opportunistic mold and yeast infections. Azole resistant strains have emerged compromising the utility of this class of drugs. It has been shown that azole resistance can be reversed by the co-administration of a histone deacetylase (HDAC) inhibitor, suggesting that resistance is mediated by epigenetic mechanisms possibly involving Hos2, a fungal deacetylase. We report here the cloning and functional characterization of  HOS2 (High Osmolarity  Sensitive) , a gene coding for fungal histone deacetylase from  C. albicans. Inhibition studies showed that Hos2 is susceptible to pan inhibitors such as trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), but is not inhibited by class I inhibitors such as MS-275. This  in  vitro enzymatic assay, which is amenable to high throughput could be used for screening potent fungal Hos2 inhibitors that could be a potential anti-fungal adjuvant. Purified Hos2 protein consistently deacetylated tubulins, rather than histones from TSA-treated cells. Hos2 has been reported to be a putative NAD+ dependent histone deacetylase, a feature of sirtuins. We assayed for sirtuin activation with resveratrol and purified Hos2 protein and did not find any sirtuin activity. PMID:25110576

  15. Differential association of fluconazole dose and dose/MIC ratio with mortality in patients with Candida albicans and non-albicans bloodstream infection.

    PubMed

    Brosh-Nissimov, T; Ben-Ami, R

    2015-11-01

    Targeting fluconazole therapy to achieve predefined pharmacodynamic goals has been suggested as a means of optimizing the treatment of patients with candidaemia. However, data regarding species-specific dosing targets are inconclusive. We retrospectively analysed a cohort of 75 adult patients with Candida bloodstream infection (BSI) who received initial treatment with fluconazole for ≥48 h (36 Candida albicans and 39 non-albicans Candida (NAC)). Fluconazole dose, the dose/MIC ratio and the 24-h area under the concentration-time curve (AUC24)/MIC ratio were determined for each patient, and classification and regression tree analysis was used to determine breakpoints for significant interactions with 30-day survival. Both fluconazole exposure parameters and patient-related and disease-related variables were assessed in univariable and multivariable survival models. The crude 30-day mortality rate was 32% (44% and 21% for C. albicans and NAC, respectively). An average fluconazole dose of >200 mg/day, a dose/MIC ratio of >400 and an AUC24/MIC ratio of >400 were associated with a higher 30-day survival rate and better microbiological response in patients with C. albicans BSI but not in those with NAC BSI. Baseline chronic kidney disease was a risk factor for fluconazole underdosing and mortality. Severity of sepsis (Sequential Organ Failure Assessment score) was the only significant predictor of death in patients with NAC BSI. We conclude that, although pharmacodynamic target-directed fluconazole dosing may help to optimize outcomes for patients with C. albicans BSI, additional studies are needed to define the role of fluconazole in the treatment of NAC BSI.

  16. Differential association of fluconazole dose and dose/MIC ratio with mortality in patients with Candida albicans and non-albicans bloodstream infection.

    PubMed

    Brosh-Nissimov, T; Ben-Ami, R

    2015-11-01

    Targeting fluconazole therapy to achieve predefined pharmacodynamic goals has been suggested as a means of optimizing the treatment of patients with candidaemia. However, data regarding species-specific dosing targets are inconclusive. We retrospectively analysed a cohort of 75 adult patients with Candida bloodstream infection (BSI) who received initial treatment with fluconazole for ≥48 h (36 Candida albicans and 39 non-albicans Candida (NAC)). Fluconazole dose, the dose/MIC ratio and the 24-h area under the concentration-time curve (AUC24)/MIC ratio were determined for each patient, and classification and regression tree analysis was used to determine breakpoints for significant interactions with 30-day survival. Both fluconazole exposure parameters and patient-related and disease-related variables were assessed in univariable and multivariable survival models. The crude 30-day mortality rate was 32% (44% and 21% for C. albicans and NAC, respectively). An average fluconazole dose of >200 mg/day, a dose/MIC ratio of >400 and an AUC24/MIC ratio of >400 were associated with a higher 30-day survival rate and better microbiological response in patients with C. albicans BSI but not in those with NAC BSI. Baseline chronic kidney disease was a risk factor for fluconazole underdosing and mortality. Severity of sepsis (Sequential Organ Failure Assessment score) was the only significant predictor of death in patients with NAC BSI. We conclude that, although pharmacodynamic target-directed fluconazole dosing may help to optimize outcomes for patients with C. albicans BSI, additional studies are needed to define the role of fluconazole in the treatment of NAC BSI. PMID:26183300

  17. Use of CHROMagar Candida for the presumptive identification of Candida species directly from clinical specimens in resource-limited settings

    PubMed Central

    Nadeem, Sayyada Ghufrana; Hakim, Shazia Tabassum; Kazmi, Shahana Urooj

    2010-01-01

    Introduction Identification of yeast isolated from clinical specimens to the species level has become increasingly important. Ever-increasing numbers of immuno-suppressed patients, a widening range of recognized pathogens, and the discovery of resistance to antifungal drugs are contributing factors to this necessity. Material and methods A total of 487 yeast strains were studied for the primary isolation and presumptive identification, directly from clinical specimen. Efficacy of CHROMagar Candida has been evaluated with conventional methods including morphology on Corn meal–tween 80 agar and biochemical methods by using API 20 C AUX. Results The result of this study shows that CHROMagar Candida can easily identify three species of Candida on the basis of colonial color and morphology, and accurately differentiate between them i.e. Candida albicans, Candida tropicalis, and Candida krusei. The specificity and sensitivity of CHROMagar Candida for C. albicans calculated as 99%, for C. tropicalis calculated as 98%, and C. krusei it is 100%. Conclusion The data presented supports the use of CHROMagar Candida for the rapid identification of Candida species directly from clinical specimens in resource-limited settings, which could be very helpful in developing appropriate therapeutic strategy and management of patients. PMID:21483597

  18. Synergistic mechanism for tetrandrine on fluconazole against Candida albicans through the mitochondrial aerobic respiratory metabolism pathway.

    PubMed

    Guo, Hui; Xie, Si Ming; Li, Shui Xiu; Song, Yan Jun; Lv, Xia Lin; Zhang, Hong

    2014-07-01

    We found that tetrandrine (TET) can reverse the resistance of Candida albicans to fluconazole (FLC) and that this interaction is associated with the inhibition of drug efflux pumps. Mitochondrial aerobic respiration, which plays a major role in C. albicans metabolism, is the primary source of ATP for cellular processes, including the activation of efflux pumps. However, it was unclear if TET exerts its synergistic action against C. albicans via its impact on the mitochondrial aerobic respiratory metabolism. To investigate this mechanism, we examined the impact of FLC in the presence or absence of TET on two C. albicans strains obtained from a single parental source (FLC-sensitive strain CA-1 and FLC-resistant strain CA-16). We analysed key measures of energy generation and conversion, including the activity of respiration chain complexes I and III (CI and CIII), ATP synthase (CV) activity, and the generation of reactive oxygen species (ROS), and studied intracellular ATP levels and the mitochondrial membrane potential (ΔΨm), which has a critical impact on energy transport. Mitochondrial morphology was observed by confocal microscopy. Our functional analyses revealed that, compared with strains treated only with FLC, TET+FLC increased the ATP levels and decreased ΔΨm in CA-1, but decreased ATP levels and increased ΔΨm in CA-16 (P<0.05). Additionally, CI, CIII and CV activity decreased by 23-48%. The production of ROS increased by two- to threefold and mitochondrial morphology was altered in both strains. Our data suggested that TET impacted mitochondrial aerobic respiratory metabolism by influencing the generation and transport of ATP, reducing the utilization of ATP, and resulting in the inhibition of drug efflux pump activity. This activity contributed to the synergistic action of TET on FLC against C. albicans. PMID:24790082

  19. Morphological and physiological changes induced by contact-dependent interaction between Candida albicans and Fusobacterium nucleatum.

    PubMed

    Bor, Batbileg; Cen, Lujia; Agnello, Melissa; Shi, Wenyuan; He, Xuesong

    2016-01-01

    Candida albicans and Fusobacterium nucleatum are well-studied oral commensal microbes with pathogenic potential that are involved in various oral polymicrobial infectious diseases. Recently, we demonstrated that F. nucleatum ATCC 23726 coaggregates with C. albicans SN152, a process mainly mediated by fusobacterial membrane protein RadD and Candida cell wall protein Flo9. The aim of this study was to investigate the potential biological impact of this inter-kingdom interaction. We found that F. nucleatum ATCC 23726 inhibits growth and hyphal morphogenesis of C. albicans SN152 in a contact-dependent manner. Further analysis revealed that the inhibition of Candida hyphal morphogenesis is mediated via RadD and Flo9 protein pair. Using a murine macrophage cell line, we showed that the F. nucleatum-induced inhibition of Candida hyphal morphogenesis promotes C. albicans survival and negatively impacts the macrophage-killing capability of C. albicans. Furthermore, the yeast form of C. albicans repressed F. nucleatum-induced MCP-1 and TNFα production in macrophages. Our study suggests that the interaction between C. albicans and F. nucleatum leads to a mutual attenuation of virulence, which may function to promote a long-term commensal lifestyle within the oral cavity. This finding has significant implications for our understanding of inter-kingdom interaction and may impact clinical treatment strategies. PMID:27295972

  20. Morphological and physiological changes induced by contact-dependent interaction between Candida albicans and Fusobacterium nucleatum

    PubMed Central

    Bor, Batbileg; Cen, Lujia; Agnello, Melissa; Shi, Wenyuan; He, Xuesong

    2016-01-01

    Candida albicans and Fusobacterium nucleatum are well-studied oral commensal microbes with pathogenic potential that are involved in various oral polymicrobial infectious diseases. Recently, we demonstrated that F. nucleatum ATCC 23726 coaggregates with C. albicans SN152, a process mainly mediated by fusobacterial membrane protein RadD and Candida cell wall protein Flo9. The aim of this study was to investigate the potential biological impact of this inter-kingdom interaction. We found that F. nucleatum ATCC 23726 inhibits growth and hyphal morphogenesis of C. albicans SN152 in a contact-dependent manner. Further analysis revealed that the inhibition of Candida hyphal morphogenesis is mediated via RadD and Flo9 protein pair. Using a murine macrophage cell line, we showed that the F. nucleatum-induced inhibition of Candida hyphal morphogenesis promotes C. albicans survival and negatively impacts the macrophage-killing capability of C. albicans. Furthermore, the yeast form of C. albicans repressed F. nucleatum-induced MCP-1 and TNFα production in macrophages. Our study suggests that the interaction between C. albicans and F. nucleatum leads to a mutual attenuation of virulence, which may function to promote a long-term commensal lifestyle within the oral cavity. This finding has significant implications for our understanding of inter-kingdom interaction and may impact clinical treatment strategies. PMID:27295972

  1. Effect of Low-Level Laser therapy on the fungal proliferation of Candida albicans

    NASA Astrophysics Data System (ADS)

    Carneiro, Vanda S. M.; Araújo, Natália C.; Menezes, Rebeca F. d.; Moreno, Lara M.; Santos-Neto, Alexandrino d. P.; Gerbi, Marleny Elizabeth M.

    2016-03-01

    Candida albicans plays an important role in triggering infections in HIV+ patients. The indiscriminate use of antifungals has led to resistance to Candida albicans, which requires new treatment alternatives for oral candidiasis. Low-level laser therapy promotes a considerable improvement in the healing of wounds and in curing illnesses caused by microorganisms. The aim of the present study was to assess the effect of laser radiation on the cell proliferation of Candida albicans in immunosuppressed patients. Six Candida albicans strains that had been isolated from immunosuppressed patients were divided into a control group and experimental groups, which received eight sessions of laser therapy (InGaAlP, λ685nm, P = 30mW, CW, Φ~6 mm and GaAlAs, λ830nm, P = 40mW, CW, Φ~6 mm) using dosimetries of 6J/cm2, 8J/cm2, 10J/cm2 and 12J/cm2 for each wavelength and power. The results were not statistically significant (Kruskal Wallis, p > 0.05), although the proliferation of Candida albicans was lower in some of the experimental groups. The dosimetry of 6J/cm2 (GaAlAs, λ830nm, P = 40mW) provided lower mean scores than the other groups for the growth of Candida. Further studies are required to confirm whetehr laser therapy is a viable option in the treatment of fungal infections.

  2. Evaluation of virulence factors of Candida albicans isolated from HIV-positive individuals using HAART.

    PubMed

    de Paula Menezes, Ralciane; de Melo Riceto, Érika Bezerra; Borges, Aércio Sebastião; de Brito Röder, Denise Von Dolingër; dos Santos Pedroso, Reginaldo

    2016-06-01

    The colonization by Candida species is one of the most important factors related to the development of oral candidiasis in HIV-infected individuals. The aim of the study was to evaluate and discuss the phospholipase, proteinase, DNAse and haemolytic activities of Candida albicans isolated from the oral cavity of HIV individuals with high efficiency antiretroviral therapy. Seventy-five isolates of C. albicans obtained from saliva samples of patients with HIV and 41 isolates from HIV-negative individuals were studied. Haemolytic activity was determined in Sabouraud dextrose agar plates containing 3% glucose and 7% sheep red cells. Culture medium containing DNA base-agar, egg yolk, and bovine albumin were used to determine DNase, phospholipase and proteinase activities, respectively. All isolates from the HIV patients group had haemolytic activity, 98% showed phospholipase activity, 92% were positive for proteinase and 32% DNAse activity. Regarding the group of indivídios HIV negative, all 41 isolates presented hemolytic activity, 90.2% showed phospholipase and proteinase activity and 12.2% were positive for DNAse. The phospholipase activity was more intense for the group of HIV positive individuals. DNase production was more frequently observed in the group of HIV-positive individuals. The percentage of isolates having DNAse activity was also significantly different between the groups of patients not using any antiretroviral therapy, those using transcriptase inhibitors and those using transcriptase inhibitor and protease inhibitor in combination. PMID:26913969

  3. Association of Oral Candida albicans with Severe Early Childhood Caries - A Pilot Study

    PubMed Central

    Thomas, Ann; Mhambrey, Sanjana; Chokshi, Achala; Jana, Sinjana; Thakur, Sneha; Jose, Deepak; Bajpai, Garima

    2016-01-01

    Introduction In early childhood, children are more susceptible to opportunistic microbial colonization in the oral cavity due to immature immune system and not fully established micro flora. The current literature proposes a probable role of Candida albicans, a fungus in the etiopathogenesis of dental caries. Aim This study was conducted to compare the Candida albicans count in children with severe early childhood caries and caries free children. Materials and Methods A cross-sectional study was conducted in 40 randomly selected healthy children between 12 to 71 months of age, who were divided into two groups based on the caries experience as Severe Early Childhood Caries (SECC) (dmfs ≥4) and caries free (dmfs = 0). The caries experiences (dmfs index) of the 40 children were recorded using visible light and diagnostic instruments. A 2ml sample of unstimulated whole saliva collected from the children was transported to the microbiology laboratory in universal containers and evaluated for Candida albicans count using the selective media. The data was statistically analyzed using SPSS software 17.0. Results Candida albicans was found in both the SECC group and caries free group. Median Candida albicans of the SECC group was numerically greater than the caries free group and this difference was highly statistically significant (p=0.012). Conclusion In this present cross-sectional study, we found a 100% prevalence of Candida albicans in the saliva of the study children. There was a highly significant increase in Candida albicans count in SECC children compared to the caries free children. PMID:27656551

  4. Occurrence of Candida species colonization in a population of denture-wearing immigrants.

    PubMed

    Calcaterra, R; Pasquantonio, G; Vitali, L A; Nicoletti, M; Di Girolamo, M; Mirisola, C; Prenna, M; Condo, R; Baggi, L

    2013-01-01

    Infection of the oral cavity and dentures by Candida species are frequent in denture wearers. C. albicans is the most common pathogen; however, other emerging Candida species are also responsible for this condition. Few data are available about the occurrence of Candida species in the oral cavities of denture-wearing immigrants to Italy. In this study, we compare the Candida species found in the oral mucosa and on dentures from a population of denture wearing immigrants to Italy to a matched Italian group. Oral swabs were collected from dentures and the underlying mucosa of patients enrolled in the study and were then cultured to test for the presence of Candida species in each sample. Out of 168 patients enrolled (73 Italians and 95 immigrants), 51 Italians (69.8 percent) and 75 immigrants (78.9 percent) tested positive for the presence of Candida. Candida albicans was the most frequently observed species overall; however, we found a higher occurrence of C. glabrata among immigrants than among Italians. In addition, immigrants displayed a higher incidence of Candida – associated stomatitis and a lower mean age than Candida-positive individuals from the Italian group. Immigrants are more prone to longer colonization of the oral mucosa and dentures by Candida. In these patients, dentures must be checked periodically to prevent the presence of Candida.

  5. Effects of histatin 5 and derived peptides on Candida albicans.

    PubMed Central

    Ruissen, A L; Groenink, J; Helmerhorst, E J; Walgreen-Weterings, E; Van't Hof, W; Veerman, E C; Nieuw Amerongen, A V

    2001-01-01

    Three anti-microbial peptides were compared with respect to their killing activity against Candida albicans and their ability to disturb its cellular and internal membranes. Histatin 5 is an anti-fungal peptide occurring naturally in human saliva, while dhvar4 and dhvar5 are variants of its active domain, with increased anti-microbial activity. dhvar4 has increased amphipathicity compared with histatin 5, whereas dhvar5 has amphipathicity comparable with that of histatin 5. All three peptides caused depolarization of the cytoplasmic and/or mitochondrial membrane, indicating membranolytic activity. For the variant peptides both depolarization and killing occurred at a faster rate. With FITC-labelled peptides, no association with the cytoplasmic membrane was observed, contradicting the formation of permanent transmembrane multimeric peptide pores. Instead, the peptides were internalized and act on internal membranes, as demonstrated with mitochondrion- and vacuole-specific markers. In comparison with histatin 5, the variant peptides showed a more destructive effect on mitochondria. Entry of the peptides and subsequent killing were dependent on the metabolic state of the cells. Blocking of the mitochondrial activity led to complete protection against histatin 5 activity, whereas that of dhvar4 was hardly affected and that of dhvar5 was affected only intermediately. PMID:11368762

  6. Integrating Candida albicans metabolism with biofilm heterogeneity by transcriptome mapping

    PubMed Central

    Rajendran, Ranjith; May, Ali; Sherry, Leighann; Kean, Ryan; Williams, Craig; Jones, Brian L.; Burgess, Karl V.; Heringa, Jaap; Abeln, Sanne; Brandt, Bernd W.; Munro, Carol A.; Ramage, Gordon

    2016-01-01

    Candida albicans biofilm formation is an important virulence factor in the pathogenesis of disease, a characteristic which has been shown to be heterogeneous in clinical isolates. Using an unbiased computational approach we investigated the central metabolic pathways driving biofilm heterogeneity. Transcripts from high (HBF) and low (LBF) biofilm forming isolates were analysed by RNA sequencing, with 6312 genes identified to be expressed in these two phenotypes. With a dedicated computational approach we identified and validated a significantly differentially expressed subnetwork of genes associated with these biofilm phenotypes. Our analysis revealed amino acid metabolism, such as arginine, proline, aspartate and glutamate metabolism, were predominantly upregulated in the HBF phenotype. On the contrary, purine, starch and sucrose metabolism was generally upregulated in the LBF phenotype. The aspartate aminotransferase gene AAT1 was found to be a common member of these amino acid pathways and significantly upregulated in the HBF phenotype. Pharmacological inhibition of AAT1 enzyme activity significantly reduced biofilm formation in a dose-dependent manner. Collectively, these findings provide evidence that biofilm phenotype is associated with differential regulation of metabolic pathways. Understanding and targeting such pathways, such as amino acid metabolism, is potentially useful for developing diagnostics and new antifungals to treat biofilm-based infections. PMID:27765942

  7. Prosthetic joint infections with osteomyelitis due to Candida albicans.

    PubMed

    Lerch, K; Kalteis, T; Schubert, T; Lehn, N; Grifka, J

    2003-12-01

    We report the case of a 78-year-old woman who suffered from a severe soft tissue and bone infection of her left knee 3 years after a total knee-joint replacement without loosening of her endoprosthesis. Cultures from joint aspiration and tissue specimen identified Staphylococcus aureus and Candida albicans. Direct microscopic examination of vital spongy bone and fibrous tissue revealed microabscesses and seeds of yeasts inside the fatty marrow and interface. After removal of the prosthesis several soft tissue and bone specimens were taken during planned re-operations. The histological examination showed no morphological changing, no reduction or extinction of the yeast cells under fluconazole therapy with a dosage of 6 mg kg(-1) body weight (400 mg daily). Curing of the fungal infection with eradication of the yeasts in the bony specimens was achieved with higher doses of 12 mg kg(-1) body weight (800 mg day(-1)) over a 2 month regimen in combination with repeated surgical debridements.

  8. Molecular mechanisms of primary resistance to flucytosine in Candida albicans.

    PubMed

    Hope, William W; Tabernero, Lydia; Denning, David W; Anderson, Michael J

    2004-11-01

    Primary resistance in Candida albicans to flucytosine (5-FC) was investigated in 25 strains by identifying and sequencing the genes FCA1, FUR1, FCY21, and FCY22, which code for cytosine deaminase, uracil phosphoribosyltransferase (UPRT), and two purine-cytosine permeases, respectively. These proteins are involved in pyrimidine salvage and 5-FC metabolism. An association between a polymorphic nucleotide and resistance to 5-FC was found within FUR1 where the substitution of cytidylate for thymidylate at nucleotide position 301 results in the replacement of arginine with cysteine at amino acid position 101 in UPRT. Isolates that are homozygous for this mutation display increased levels of resistance to 5-FC, whereas heterozygous isolates have reduced susceptibility. Three-dimensional protein modeling of UPRT suggests that the Arg101Cys mutation disturbs the quaternary structure of the enzyme, which is postulated to compromise optimal enzyme activity. A single resistant isolate, lacking the above polymorphism in FUR1, has a homozygous polymorphism in FCA1 that results in a glycine-to-aspartate substitution at position 28 in cytosine deaminase.

  9. Antibodies against glucan, chitin, and Saccharomyces cerevisiae mannan as new biomarkers of Candida albicans infection that complement tests based on C. albicans mannan.

    PubMed

    Sendid, B; Dotan, N; Nseir, S; Savaux, C; Vandewalle, P; Standaert, A; Zerimech, F; Guery, B P; Dukler, A; Colombel, J F; Poulain, D

    2008-12-01

    Antibodies against Saccharomyces cerevisiae mannan (ASCA) and antibodies against synthetic disaccharide fragments of glucans (ALCA) and chitin (ACCA) are biomarkers of Crohn's disease (CD). We previously showed that Candida albicans infection generates ASCA. Here, we explored ALCA and ACCA as possible biomarkers of invasive C. albicans infection (ICI). ASCA, ALCA, ACCA, and Candida mannan antigen and antibody detection tests were performed on 69 sera obtained sequentially from 18 patients with ICIs proven by blood culture, 59 sera from CD patients, 47 sera from hospitalized subjects colonized by Candida species (CZ), and 131 sera from healthy controls (HC). ASCA, ALCA, and ACCA levels in CD and ICI patients were significantly different from those in CZ and HC subjects (P<0.0001). In ICI patients, these levels increased as infection developed. Using ASCA, ALCA, ACCA, and Platelia Candida tests, 100% of ICIs were detected, with the kinetics of the antibody response depending on the patient during the time course of infection. A large number of sera presented with more than three positive tests. This is the first evidence that the detection of antibodies against chitin and glucans has diagnostic value in fungal infections and that these tests can complement more specific tests. Future trials are necessary to assess the value of these tests in multiparametric analysis, as well as their pathophysiological relevance.

  10. Oral administration of the broad-spectrum antibiofilm compound toremifene inhibits Candida albicans and Staphylococcus aureus biofilm formation in vivo.

    PubMed

    De Cremer, Kaat; Delattin, Nicolas; De Brucker, Katrijn; Peeters, Annelies; Kucharíková, Soña; Gerits, Evelien; Verstraeten, Natalie; Michiels, Jan; Van Dijck, Patrick; Cammue, Bruno P A; Thevissen, Karin

    2014-12-01

    We here report on the in vitro activity of toremifene to inhibit biofilm formation of different fungal and bacterial pathogens, including Candida albicans, Candida glabrata, Candida dubliniensis, Candida krusei, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. We validated the in vivo efficacy of orally administered toremifene against C. albicans and S. aureus biofilm formation in a rat subcutaneous catheter model. Combined, our results demonstrate the potential of toremifene as a broad-spectrum oral antibiofilm compound. PMID:25288093

  11. The role of pattern recognition receptors in the innate recognition of Candida albicans.

    PubMed

    Zheng, Nan-Xin; Wang, Yan; Hu, Dan-Dan; Yan, Lan; Jiang, Yuan-Ying

    2015-01-01

    Candida albicans is both a commensal microorganism in healthy individuals and a major fungal pathogen causing high mortality in immunocompromised patients. Yeast-hypha morphological transition is a well known virulence trait of C. albicans. Host innate immunity to C. albicans critically requires pattern recognition receptors (PRRs). In this review, we summarize the PRRs involved in the recognition of C. albicans in epithelial cells, endothelial cells, and phagocytic cells separately. We figure out the differential recognition of yeasts and hyphae, the findings on PRR-deficient mice, and the discoveries on human PRR-related single nucleotide polymorphisms (SNPs).

  12. MBL-Mediated Opsonophagocytosis of Candida albicans by Human Neutrophils Is Coupled with Intracellular Dectin-1-Triggered ROS Production

    PubMed Central

    Tong, Zhongsheng; Wang, Qinning; Liu, Weihuang; Wang, Yan; Liu, Wei; Chen, Jinbo; Xu, Li; Chen, Liuqing; Duan, Yiqun

    2012-01-01

    Mannan-binding lectin (MBL), a lectin homologous to C1q, greatly facilitates C3/C4-mediated opsonophagocytosis of Candida albicans (C. albicans) by human neutrophils, and has the capacity to bind to CR1 (CD35) expressed on circulating neutrophils. The intracellular pool of neutrophil Dectin-1 plays a critical role in stimulating the reactive oxygen species (ROS) generation through recognition of β-1,3-glucan component of phagocytized zymosan or yeasts. However, little is known about whether MBL can mediate the opsonophagocytosis of Candida albicans by neutrophils independent of complement activation, and whether MBL-mediated opsonophagocytosis influence the intracellular expression of Dectin-1 and ROS production. Here we showed that the inhibited phagocytic efficiency of neutrophils as a result of blockage of Dectin-1 was compensated by exogenous MBL alone in a dose-dependent manner. Furthermore, the expressions of Dectin-1 at mRNA and intracellular protein levels were significantly up-regulated in neutrophils stimulated by MBL-pre-incubated C. albicans, while the expression of surface Dectin-1 remained almost unchanged. Nevertheless, the stimulated ROS production in neutrophils was partly and irreversibly inhibited by blockage of Dectin-1 in the presence of exogenous MBL. Confocal microscopy examination showed that intracellular Dectin-1 was recruited and co-distributed with ROS on the surface of some phagocytized yeasts. The β-1,3-glucanase digestion test further suggested that the specific recognition and binding site of human Dectin-1 is just the β-1,3-glucan moiety on the cell wall of C. albicans. These data demonstrate that MBL has an ability to mediate the opsonophagocytosis of Candida albicans by human neutrophils independent of complement activation, which is coupled with intracellular Dectin-1-triggered ROS production. PMID:23239982

  13. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    PubMed

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms.

  14. Differential Regulation of Myeloid-Derived Suppressor Cells by Candida Species

    PubMed Central

    Singh, Anurag; Lelis, Felipe; Braig, Stefanie; Schäfer, Iris; Hartl, Dominik; Rieber, Nikolaus

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are innate immune cells characterized by their ability to suppress T-cell responses. Recently, we demonstrated that the human-pathogenic fungi Candida albicans and Aspergillus fumigatus induced a distinct subset of neutrophilic MDSCs. To dissect Candida-mediated MDSC induction in more depth, we studied the relative efficacy of different pathogenic non-albicans Candida species to induce and functionally modulate neutrophilic MDSCs, including C. glabrata, C. parapsilosis, C. dubliniensis, and C. krusei. Our data demonstrate that the extent of MDSC generation is largely dependent on the Candida species with MDSCs induced by C. krusei and C. glabrata showing a higher suppressive activity compared to MDSCs induced by C. albicans. In summary, these studies show that fungal MDSC induction is differentially regulated at the species level and differentially affects effector T-cell responses. PMID:27790210

  15. Current methods for identifying clinically important cryptic Candida species.

    PubMed

    Criseo, Giuseppe; Scordino, Fabio; Romeo, Orazio

    2015-04-01

    In recent years, the taxonomy of the most important pathogenic Candida species (Candida albicans, Candida parapsilosis and Candida glabrata) has undergone profound changes due to the description of new closely-related species. This has resulted in the establishment of cryptic species complexes difficult to recognize in clinical diagnostic laboratories. The identification of these novel Candida species seems to be clinically relevant because it is likely that they differ in virulence and drug resistance. Nevertheless, current phenotypic methods are not suitable to accurately distinguish all the species belonging to a specific cryptic complex and therefore their recognition still requires molecular methods. Since traditional mycological techniques have not been useful, a number of molecular based methods have recently been developed. These range from simple PCR-based methods to more sophisticated real-time PCR and/or MALDI-TOF methods. In this article, we review the current methods designed for discriminating among closely related Candida species by highlighting, in particular, the limits of the existing phenotypic tests and the development of rapid and specific molecular tools for their proper identification.

  16. Candida albicans Is Phagocytosed, Killed, and Processed for Antigen Presentation by Human Dendritic Cells

    PubMed Central

    Newman, Simon L.; Holly, Angela

    2001-01-01

    Candida albicans is a component of the normal flora of the alimentary tract and also is found on the mucocutaneous membranes of the healthy host. Candida is the leading cause of invasive fungal disease in premature infants, diabetics, and surgical patients, and of oropharyngeal disease in AIDS patients. As the induction of cell-mediated immunity to Candida is of critical importance in host defense, we sought to determine whether human dendritic cells (DC) could phagocytose and degrade Candida and subsequently present Candida antigens to T cells. Immature DC obtained by culture of human monocytes in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 phagocytosed unopsonized Candida in a time-dependent manner, and phagocytosis was not enhanced by opsonization of Candida in serum. Like macrophages (Mφ), DC recognized Candida by the mannose-fucose receptor. Upon ingestion, DC killed Candida as efficiently as human Mφ, and fungicidal activity was not enhanced by the presence of fresh serum. Although phagocytosis of Candida by DC stimulated the production of superoxide anion, inhibitors of the respiratory burst (or NO production) did not inhibit killing of Candida, even when phagocytosis was blocked by preincubation of DC with cytochalasin D. Further, although apparently only modest phagolysosomal fusion occurred upon DC phagocytosis of Candida, killing of Candida under anaerobic conditions was almost equivalent to killing under aerobic conditions. Finally, DC stimulated Candida-specific lymphocyte proliferation in a concentration-dependent manner after phagocytosis of both viable and heat-killed Candida cells. These data suggest that, in vivo, such interactions between DC and C. albicans may facilitate the induction of cell-mediated immunity. PMID:11598054

  17. Enhancement of non-Candida antibody responses by Candida albicans cell wall glycoprotein.

    PubMed

    Domer, J E; Elkins, K L; Ennist, D L; Stashak, P W; Garner, R E; Baker, P J

    1987-11-01

    Two cell wall glycoprotein extracts from Candida albicans (glycoprotein [GP] and peptidoglucomannan [PGM]) were tested for their influence on antibody responses to type III pneumococcal polysaccharide and sheep erythrocytes. GP was isolated from lipid-extracted cell walls with ethylenediamine, whereas PGM was extracted with dilute sodium hydroxide. Both glycoproteins increased the number of antibody-producing plaque-forming cells in the spleens of mice immunized with type III polysaccharide or sheep erythrocytes, although PGM appeared to be about 10 times more effective. PGM could be administered up to 3 days prior to immunization with sheep erythrocytes to elicit enhancement; it did not have to be administered by the same route as the immunogen to cause significant enhancement. Enhancement did not appear to be the result of a direct mitogenic effect of GP and PGM on lymphocytes, nor did these glycoproteins appear to stimulate the production of B-cell growth factors or interleukin 2.

  18. Person-to-person transfer of Candida albicans in the spacecraft environment

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Mehta, S. K.; Magee, B. B.; Mishra, S. K.

    1995-01-01

    We assessed the exchange of Candida albicans among crew members during 10 Space Shuttle missions. Throat, nasal, urine and faecal specimens were collected from 61 crew members twice before and once after space flights ranging from 7 to 10 days in duration; crews consisted of groups of five, six or seven men and women. Candida albicans was isolated at least once from 20 of the 61 subjects (33%). Candida strains were identified by restriction-fragment length polymorphism (RFLP) after digestion by the endonucleases EcoRI and HinfI; further discrimination was gained by Southern blot hybridization with the C. albicans repeat fragment 27A. Eighteen of the 20 Candida-positive crew members carried different strains of C. albicans in the specimens collected. Possible transfer of C. albicans between members of the same crew was demonstrated only once in the 10 missions studied. We conclude that the transfer of C. albicans among crew members during Space Shuttle flights is less frequent than had been predicted from earlier reports.

  19. Changing trends of Candida species in neonatal septicaemia in a tertiary North Indian hospital.

    PubMed

    Rani, R; Mohapatra, N P; Mehta, G; Randhawa, V S

    2002-01-01

    Four hundred and fifty four blood samples of clinically diagnosed septicemic neonates were collected over a period of six months from the neonatal ICU of Kalawati Saran Children Hospital, New Delhi. 144 samples were culture positive; out of which 50 (34.7%) were Candida isolates. 92% isolates were Candida tropicalis, 4% were C. albicans and C. kefyr each. The study emphasises the changing pattern of Candida species and their importance in blood stream infections in neonates. PMID:17657024

  20. Quantitative Investigation of Efficiency of Ultraviolet and Visible Light in Eradication of Candida albicans In Vitro

    PubMed Central

    Maver-Bišćanin, Mirela; Mravak-Stipetić, Marinka; Bukovski, Suzana; Bišćanin, Alen

    2014-01-01

    Abstract Objective: The aim of this study was to quantitatively investigate the efficiency of the ultraviolet (UV) and visible light in eradication of Candida albicans in vitro; in particular, to determine, for selected wavelengths, the specific eradication coefficients and thresholds in terms of energy density levels required to effect 3.0log10 and 4.0log10 reduction. Background data: Oral candidosis is the most common infection of the oral cavity and is caused by Candida species. The widespread use of topical and systemic antifungal agents as conventional treatment for oral candidosis has resulted in the development of resistance in C. albicans. Therefore, it has become necessary to develop alternative therapies for the treatment of oral candidosis. Methods: C. albicans ATCC® 90028™ was irradiated with 254 nm, 365 nm, 406 nm, 420 nm, and broadband Xe spectrum. For each wavelength, a fit of experimental data (survival fraction vs. applied energy density) with an exponential decay function enabled estimation of the specific eradication coefficients and thresholds. Results: Based on estimated specific efficiencies (Δ) and eradication thresholds (ET) of the investigated wavelengths, the ranking in eradication efficiency of C. albicans (most to least effective) is: 254 nm (Δ=6.1 mJ/cm−2, ET99.99=56 mJ/cm−2), broadband Xe spectrum (Δ=27.7 mJ/cm−2, ET99.99=255 mJ/cm−2), 365 nm (Δ=4.3 J/cm−2, ET99.99=39 J/cm−2), 420 nm (Δ=0.65 J/cm−2, ET99.99=6 J/cm−2), and 406 nm (Δ=11.4 J/cm−2, ET99.99=104 J/cm−2). Conclusions: The results provide insight into the wavelength-dependent dynamics of eradication of C. albicans. For each investigated wavelength, the eradication coefficient and corresponding eradication threshold were estimated. The observed different eradication efficiencies are consequence of different spectrally dependent inactivation mechanisms. The established methodology enables unambiguous quantitative

  1. Intra-amniotic Candida albicans infection induces mucosal injury and inflammation in the ovine fetal intestine

    PubMed Central

    Nikiforou, Maria; Jacobs, Esmee M.R.; Kemp, Matthew W.; Hornef, Mathias W.; Payne, Matthew S.; Saito, Masatoshi; Newnham, John P.; Janssen, Leon E.W.; Jobe, Alan H.; Kallapur, Suhas G.; Kramer, Boris W.; Wolfs, Tim G.A.M.

    2016-01-01

    Chorioamnionitis is caused by intrauterine infection with microorganisms including Candida albicans (C.albicans). Chorioamnionitis is associated with postnatal intestinal pathologies including necrotizing enterocolitis. The underlying mechanisms by which intra-amniotic C.albicans infection adversely affects the fetal gut remain unknown. Therefore, we assessed whether intra-amniotic C.albicans infection would cause intestinal inflammation and mucosal injury in an ovine model. Additionally, we tested whether treatment with the fungistatic fluconazole ameliorated the adverse intestinal outcome of intra-amniotic C.albicans infection. Pregnant sheep received intra-amniotic injections with 107 colony-forming units C.albicans or saline at 3 or 5 days before preterm delivery at 122 days of gestation. Fetuses were given intra-amniotic and intra-peritoneal fluconazole treatments 2 days after intra-amniotic administration of C.albicans. Intra-amniotic C.albicans caused intestinal colonization and invasive growth within the fetal gut with mucosal injury and intestinal inflammation, characterized by increased CD3+ lymphocytes, MPO+ cells and elevated TNF-α and IL-17 mRNA levels. Fluconazole treatment in utero decreased intestinal C.albicans colonization, mucosal injury but failed to attenuate intestinal inflammation. Intra-amniotic C.albicans caused intestinal infection, injury and inflammation. Fluconazole treatment decreased mucosal injury but failed to ameliorate C.albicans-mediated mucosal inflammation emphasizing the need to optimize the applied antifungal therapeutic strategy. PMID:27411776

  2. A simple and reliable PCR-restriction fragment length polymorphism assay to identify Candida albicans and its closely related Candida dubliniensis

    PubMed Central

    Ge, Yi Ping; Wang, Le; Lu, Gui Xia; Shen, Yong Nian; Liu, Wei Da

    2012-01-01

    Candida dubliniensis is an emerging pathogen capable of causing superficial as well as systemic infections. Due to its close similarity to C. albcians, conventional methods based on phenotypic traits are not always reliable in identification of C. dubliniensis. In this study, we developed a PCR-restriction fragment length polymorphism (RFLP) assay to identify and discriminate between the two closely related species. The D1/D2 region of 28S rDNA was amplified by PCR and enzymatically digested by ApaI and BsiEI respectively. PCR products of both species were digested into two fragments by ApaI, but those of other yeast species were undigested. BsiEI cut the PCR products of C. albicans into two fragments but not those of C. dubliniensis. Thus two species were differentiated. We evaluated 10 reference strains representing 10 yeast species, among which C. albicans and C. dubliniensis were successfully identified. A total of 56 phenotypically characterized clinical isolates (42 C. albicans isolates and 14 C. dubliniensis isolates) were also investigated for intra-species variability. All tested isolates produced identical RFLP patterns to their respective reference strains except one initially misidentified isolate. Our method offers a simple, rapid and reliable molecular method for the identification of C. albicans and C. dubliniensis. PMID:24031901

  3. A simple and reliable PCR-restriction fragment length polymorphism assay to identify Candida albicans and its closely related Candida dubliniensis.

    PubMed

    Ge, Yi Ping; Wang, Le; Lu, Gui Xia; Shen, Yong Nian; Liu, Wei Da

    2012-07-01

    Candida dubliniensis is an emerging pathogen capable of causing superficial as well as systemic infections. Due to its close similarity to C. albcians, conventional methods based on phenotypic traits are not always reliable in identification of C. dubliniensis. In this study, we developed a PCR-restriction fragment length polymorphism (RFLP) assay to identify and discriminate between the two closely related species. The D1/D2 region of 28S rDNA was amplified by PCR and enzymatically digested by ApaI and BsiEI respectively. PCR products of both species were digested into two fragments by ApaI, but those of other yeast species were undigested. BsiEI cut the PCR products of C. albicans into two fragments but not those of C. dubliniensis. Thus two species were differentiated. We evaluated 10 reference strains representing 10 yeast species, among which C. albicans and C. dubliniensis were successfully identified. A total of 56 phenotypically characterized clinical isolates (42 C. albicans isolates and 14 C. dubliniensis isolates) were also investigated for intra-species variability. All tested isolates produced identical RFLP patterns to their respective reference strains except one initially misidentified isolate. Our method offers a simple, rapid and reliable molecular method for the identification of C. albicans and C. dubliniensis. PMID:24031901

  4. Distinct mechanisms of epithelial adhesion for Candida albicans and Candida tropicalis. Identification of the participating ligands and development of inhibitory peptides.

    PubMed Central

    Bendel, C M; Hostetter, M K

    1993-01-01

    The yeast Candida albicans is the leading cause of disseminated fungal infection in neonates, immunocompromised hosts, diabetics, and postoperative patients; Candida tropicalis is the second most frequent isolate. Because the integrin analogue in C. albicans shares antigenic, structural, and functional homologies with the beta 2-integrin subunits alpha M and alpha X, we investigated the role of integrin analogues in epithelial adhesion of C. albicans and C. tropicalis. On flow cytometry with the monoclonal antibody (mAb) OKM1, surface fluorescence was highest for C. albicans and significantly reduced for C. tropicalis (P < 0.001). However, adhesion to the human epithelial cell line HeLa S3 did not differ for these two candidal species: specific adhesion was highest for C. albicans at 44.0 +/- 1.8%, and only slightly lower for C. tropicalis at 38.8 +/- 3.6% (P = NS). The disparity between expression of the integrin analogue and epithelial adhesion suggested distinct mechanisms for this process in C. albicans versus C. tropicalis. Preincubation of C. albicans with anti-alpha M mAbs, with purified iC3b (the RGD ligand for the integrin analogue), or with 9-15-mer RGD peptides from iC3b all inhibited epithelial adhesion significantly (P < 0.001-0.04). Purified fibronectin or fibronectin-RGD peptides failed to block C. albicans adhesion. In contrast, epithelial adhesion of C. tropicalis was significantly inhibited by purified fibronectin and its RGD peptides (P < or = 0.021), but not by iC3b nor the iC3b-RGD peptides. Both iC3b and fibronectin were identified on the surface of epithelial cells after growth in serum-free medium. A polyclonal antibody to C3 inhibited C. albicans adhesion while a control antibody to fibronectin was ineffective; the converse was true for C. tropicalis. These results indicate that the pathogenic yeasts C. albicans and C. tropicalis recognize distinct RGD ligands present at the surface of the epithelial cell and that these interactions can be

  5. Cilofungin (LY121019), an antifungal agent with specific activity against Candida albicans and Candida tropicalis.

    PubMed Central

    Hall, G S; Myles, C; Pratt, K J; Washington, J A

    1988-01-01

    Cilofungin (LY121019) is an antifungal agent that interferes with beta-glucan synthesis in the cells walls of fungi. The activity of this agent against 256 clinical isolates of yeasts was determined. It was found to be very active in vitro against Candida albicans (MIC for 90% of isolates [MIC90], less than or equal to 0.31 microgram/ml; minimal fungicidal concentration for 90% of isolates [MFC90], less than or equal to 0.31 micrograms/ml) and C. tropicalis (MIC90, less than or equal to 0.31 microgram/ml; MFC90, less than or equal to 0.31 microgram/ml) and moderately active against Torulopsis glabrata (MIC90 and MFC90, less than or equal to 20 micrograms/ml). All C. parapsilosis, Cryptococcus, and Saccharomyces cerevisiae strains were resistant. The activity of cilofungin was affected by medium and inoculum size. Antibiotic medium no. 3 was used as the standard medium. Isolates of C. albicans and C. tropicalis demonstrated a paradoxical effect in Sabouraud dextrose broth and yeast nitrogen base broth in that growth was partially inhibited at MICs equivalent to those in antibiotic medium no. 3, but growth continued, in many instances, throughout all concentrations tested. There was decreased activity of cilofungin with inocula greater than 10(5) CFU/ml. The temperature and duration of incubation did not affect its activity. Images PMID:3058017

  6. Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infection—Scotland, 2012–2013

    PubMed Central

    Rajendran, R.; Sherry, L.; Nile, C.J.; Sherriff, A.; Johnson, E.M.; Hanson, M.F.; Williams, C.; Munro, C.A.; Jones, B.J.; Ramage, G.

    2016-01-01

    Bloodstream infections caused by Candida species remain a significant cause of morbidity and mortality in hospitalized patients. Biofilm formation by Candida species is an important virulence factor for disease pathogenesis. A prospective analysis of patients with Candida bloodstream infection (n = 217) in Scotland (2012–2013) was performed to assess the risk factors associated with patient mortality, in particular the impact of biofilm formation. Candida bloodstream isolates (n = 280) and clinical records for 157 patients were collected through 11 different health boards across Scotland. Biofilm formation by clinical isolates was assessed in vitro with standard biomass assays. The role of biofilm phenotype on treatment efficacy was also evaluated in vitro by treating preformed biofilms with fixed concentrations of different classes of antifungal. Available mortality data for 134 patients showed that the 30-day candidaemia case mortality rate was 41%, with predisposing factors including patient age and catheter removal. Multivariate Cox regression survival analysis for 42 patients showed a significantly higher mortality rate for Candida albicans infection than for Candida glabrata infection. Biofilm-forming ability was significantly associated with C. albicans mortality (34 patients). Finally, in vitro antifungal sensitivity testing showed that low biofilm formers and high biofilm formers were differentially affected by azoles and echinocandins, but not by polyenes. This study provides further evidence that the biofilm phenotype represents a significant clinical entity, and that isolates with this phenotype differentially respond to antifungal therapy in vitro. Collectively, these findings show that greater clinical understanding is required with respect to Candida biofilm infections, and the implications of isolate heterogeneity. PMID:26432192

  7. Imaging morphogenesis of Candida albicans during infection in a live animal

    NASA Astrophysics Data System (ADS)

    Mitra, Soumya; Dolan, Kristy; Foster, Thomas H.; Wellington, Melanie

    2010-01-01

    Candida albicans is an opportunistic human fungal pathogen that requires an intact host immune response to prevent disease. Thus, studying host-pathogen interactions is critical to understanding and preventing this disease. We report a new model infection system in which ongoing C. albicans infections can be imaged at high spatial resolution in the ears of living mice. Intradermal inoculation into mouse ears with a C. albicans strain expressing green fluorescent protein results in systemic C. albicans infection that can be imaged in vivo using confocal microscopy. We observed filamentous growth of the organism in vivo as well as formation of microabscesses. This model system will allow us to gain significant new information about C. albicans pathogenesis through studies of host-C. albicans interactions in the native environment.

  8. Imaging morphogenesis of Candida albicans during infection in a live animal.

    PubMed

    Mitra, Soumya; Dolan, Kristy; Foster, Thomas H; Wellington, Melanie

    2010-01-01

    Candida albicans is an opportunistic human fungal pathogen that requires an intact host immune response to prevent disease. Thus, studying host-pathogen interactions is critical to understanding and preventing this disease. We report a new model infection system in which ongoing C. albicans infections can be imaged at high spatial resolution in the ears of living mice. Intradermal inoculation into mouse ears with a C. albicans strain expressing green fluorescent protein results in systemic C. albicans infection that can be imaged in vivo using confocal microscopy. We observed filamentous growth of the organism in vivo as well as formation of microabscesses. This model system will allow us to gain significant new information about C. albicans pathogenesis through studies of host-C. albicans interactions in the native environment.

  9. Candida albicans in Multispecies Oral Communities; A Keystone Commensal?

    PubMed

    Janus, Marleen M; Willems, Hubertine M E; Krom, Bastiaan P

    2016-01-01

    The complexity of the oral cavity, in which many hundreds of microbial species interact represents a challenge for modern microbiologists. What are all these species doing there? And why do we accept so many opportunistic pathogens to be part of our health (commensal) microflora? While the role of bacteria are often being studied, the role of fungi in the interactions within the oral cavity are understudied. This is partly because fungi in the oral cavity are generally considered as pathogens and related to diseases. In this chapter we will explore mechanisms of interaction between bacteria and fungi in the oral cavity that are involved in maintenance of oral health. We will argue that fungi in general and C. albicans specifically, should be regarded a keystone commensal in the oral cavity. PMID:27271681

  10. Multicenter surveillance of species distribution and antifungal susceptibilities of Candida bloodstream isolates in South Korea.

    PubMed

    Jung, Sook-In; Shin, Jong Hee; Song, Jae-Hoon; Peck, Kyong Ran; Lee, Kyungwon; Kim, Mi-Na; Chang, Hyun Ha; Moon, Chi Sook

    2010-06-01

    Multicenter data on in vitro susceptibility of Candida bloodstream isolates to echinocandin antifungal agents is still lacking in South Korea. We performed a prospective multicenter study to determine the species distribution of Candida bloodstream isolates and their susceptibility to five antifungal agents, including caspofungin and micafungin. A total of 639 isolates were collected from 20 tertiary hospitals between September 2006 and August 2007. Antifungal susceptibilities were determined through the use of the CLSI broth microdilution method M27-A3. The overall species distribution was as follows; Candida albicans (38%), Candida parapsilosis (26%), Candia tropicalis (20%), Candida glabrata (11%), and miscellaneous Candida species (5%). Although C. parapsilosis and miscellaneous Candida species were less susceptible to both echinocandins, all 639 isolates were susceptible to both caspofungin and micafungin (MIC, Candida isolates, with C. glabrata and C. krusei isolates displaying the greatest level of resistance. This is the largest multicenter candidemia study conducted in South Korea and shows that non-C. albicans Candida species, including C. parapsilosis, constitutes over 60% of all Candida species isolates recovered from the bloodstream. In addition, the rates of resistance to all five antifungals, including two echinocandins, are still low among bloodstream isolates in South Korea.

  11. Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans

    PubMed Central

    Komalapriya, Chandrasekaran; Yin, Zhikang; Herrero-de-Dios, Carmen; Jacobsen, Mette D.; Belmonte, Rodrigo C.; Cameron, Gary; Haynes, Ken; Grebogi, Celso; de Moura, Alessandro P. S.; Gow, Neil A. R.; Thiel, Marco; Quinn, Janet

    2015-01-01

    The major fungal pathogen of humans, Candida albicans, mounts robust responses to oxidative stress that are critical for its virulence. These responses counteract the reactive oxygen species (ROS) that are generated by host immune cells in an attempt to kill the invading fungus. Knowledge of the dynamical processes that instigate C. albicans oxidative stress responses is required for a proper understanding of fungus-host interactions. Therefore, we have adopted an interdisciplinary approach to explore the dynamical responses of C. albicans to hydrogen peroxide (H2O2). Our deterministic mathematical model integrates two major oxidative stress signalling pathways (Cap1 and Hog1 pathways) with the three major antioxidant systems (catalase, glutathione and thioredoxin systems) and the pentose phosphate pathway, which provides reducing equivalents required for oxidative stress adaptation. The model encapsulates existing knowledge of these systems with new genomic, proteomic, transcriptomic, molecular and cellular datasets. Our integrative approach predicts the existence of alternative states for the key regulators Cap1 and Hog1, thereby suggesting novel regulatory behaviours during oxidative stress. The model reproduces both existing and new experimental observations under a variety of scenarios. Time- and dose-dependent predictions of the oxidative stress responses for both wild type and mutant cells have highlighted the different temporal contributions of the various antioxidant systems during oxidative stress adaptation, indicating that catalase plays a critical role immediately following stress imposition. This is the first model to encapsulate the dynamics of the transcriptional response alongside the redox kinetics of the major antioxidant systems during H2O2 stress in C. albicans. PMID:26368573

  12. [Molecular epidemiologic surveillance and antifungal agent sensitivity of Candida albicans isolated from anesthesia intensive care units].

    PubMed

    Gülay, Zeynep; Ergon, Cem; Ozkütük, Aydan; Yücesoy, Mine; Biçmen, Meral

    2002-01-01

    Patients in intensive care units (ICU) are at risk of nosocomial infections. The incidence of nosocomial fungal infections has increased in parallel with the increase of nosocomial infections. Candida albicans is the most frequent pathogenic species among the fungi. The aim of this study was to make an epidemiological surveillance of C. albicans urine isolates which were isolated from patients who were hospitalized in ICU between June 2000 and October 2001 by antifungal susceptibility testing and Randomly Amplified Polymorphic DNA (RAPD) analysis. For this purpose, 38 C. albicans which were isolated from 29 patients were investigated for amphotericin B and fluconazole susceptibility with the microdilution method. The range of minimal inhibitory concentration (MIC) of amphotericin B was between 0.25-1 microgram/ml and MIC50 value was 0.5 microgram/ml and none of the isolates had high (MIC > 1 microgram/ml) MIC values. The MIC values for fluconazole varied between 0.25-16 micrograms/ml and MIC50 value was 1 microgram/ml. While none of the isolates was resistant to fluconazole, two isolates were detected as dose dependent susceptible. RAPD analysis was performed with two different primers in order to investigate clonal relationship, and 22 patterns were detected with one of the primers and 24 patterns were detected with the other. In conclusion, it is thought that the origin of the C. albicans urine isolates were mostly endogenous but exogenous spread might also be considered as isolates that were clonally related were isolated from different patients at the same time interval.

  13. Clathrin- and Arp2/3-Independent Endocytosis in the Fungal Pathogen Candida albicans

    PubMed Central

    Epp, Elias; Nazarova, Elena; Regan, Hannah; Douglas, Lois M.; Konopka, James B.; Vogel, Jackie; Whiteway, Malcolm

    2013-01-01

    ABSTRACT Clathrin-mediated endocytosis (CME) is conserved among eukaryotes and has been extensively analyzed at a molecular level. Here, we present an analysis of CME in the human fungal pathogen Candida albicans that shows the same modular structure as those in other fungi and mammalian cells. Intriguingly, C. albicans is perfectly viable in the absence of Arp2/3, an essential component of CME in other systems. In C. albicans, Arp2/3 function remains essential for CME as all 15 proteins tested that participate in CME, including clathrin, lose their characteristic dynamics observed in wild-type (WT) cells. However, since arp2/3 cells are still able to endocytose lipids and fluid-phase markers, but not the Ste2 and Mup1 plasma membrane proteins, there must be an alternate clathrin-independent pathway we term Arp2/3-independent endocytosis (AIE). Characterization of AIE shows that endocytosis in arp2 mutants relies on actin cables and other Arp2/3-independent actin structures, as inhibition of actin functions prevented cargo uptake in arp2/3 mutants. Transmission electron microscopy (TEM) showed that arp2/3 mutants still formed invaginating tubules, cell structures whose proper functions are believed to heavily rely on Arp2/3. Finally, Prk1 and Sjl2, two proteins involved in patch disassembly during CME, were not correctly localized to sites of endocytosis in arp2 mutants, implying a role of Arp2/3 in CME patch disassembly. Overall, C. albicans contains an alternative endocytic pathway (AIE) that relies on actin cable function to permit clathrin-independent endocytosis (CIE) and provides a system to further explore alternate endocytic routes that likely exist in fungal species. PMID:23982070

  14. Genetic control of susceptibility to Candida albicans in SM/J mice.

    PubMed

    Radovanovic, Irena; Leung, Vicki; Iliescu, Alexandra; Bongfen, Silayuv E; Mullick, Alaka; Langlais, David; Gros, Philippe

    2014-08-01

    In the immunocompromised host, invasive infection with the fungal pathogen Candida albicans is associated with high morbidity and mortality. Sporadic cases in otherwise normal individuals are rare, and they are thought to be associated with genetic predisposition. Using a mouse model of systemic infection with C. albicans, we identified the SM/J mouse strain as unusually susceptible to infection. Genetic linkage studies in informative [C57BL/6JxSM/J]F2 mice identified a major locus on distal chromosome 15, given the appellation Carg5, that regulates C. albicans replication in SM/J mice. Cellular and molecular immunophenotyping experiments, as well as functional studies in purified cell populations from SM/J and C57BL/6J, and in [C57BL/6JxSM/J]F2 mice fixed for homozygous or heterozygous Carg5 alleles, indicate that Carg5-regulated susceptibility in SM/J is associated with a complex defect in the myeloid compartment of these mice. SM/J neutrophils express lower levels of Ly6G, and importantly, they show significantly reduced production of reactive oxygen species in response to stimulation with fMLF and PMA. Likewise, CD11b(+)Ly6G(-)Ly6C(hi) inflammatory monocytes were present at lower levels in the blood of infected SM/J, recruited less efficiently at the site of infection, and displayed blunted oxidative burst. Studies in F2 mice establish strong correlations between Carg5 alleles, Ly6G expression, production of serum CCL2 (MCP-1), and susceptibility to C. albicans. Genomic DNA sequencing of chromatin immunoprecipitated for myeloid proinflammatory transcription factors IRF1, IRF8, STAT1 and NF-κB, as well as RNA sequencing, were used to develop a "myeloid inflammatory score" and systematically analyze and prioritize potential candidate genes in the Carg5 interval.

  15. Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans.

    PubMed

    Komalapriya, Chandrasekaran; Kaloriti, Despoina; Tillmann, Anna T; Yin, Zhikang; Herrero-de-Dios, Carmen; Jacobsen, Mette D; Belmonte, Rodrigo C; Cameron, Gary; Haynes, Ken; Grebogi, Celso; de Moura, Alessandro P S; Gow, Neil A R; Thiel, Marco; Quinn, Janet; Brown, Alistair J P; Romano, M Carmen

    2015-01-01

    The major fungal pathogen of humans, Candida albicans, mounts robust responses to oxidative stress that are critical for its virulence. These responses counteract the reactive oxygen species (ROS) that are generated by host immune cells in an attempt to kill the invading fungus. Knowledge of the dynamical processes that instigate C. albicans oxidative stress responses is required for a proper understanding of fungus-host interactions. Therefore, we have adopted an interdisciplinary approach to explore the dynamical responses of C. albicans to hydrogen peroxide (H2O2). Our deterministic mathematical model integrates two major oxidative stress signalling pathways (Cap1 and Hog1 pathways) with the three major antioxidant systems (catalase, glutathione and thioredoxin systems) and the pentose phosphate pathway, which provides reducing equivalents required for oxidative stress adaptation. The model encapsulates existing knowledge of these systems with new genomic, proteomic, transcriptomic, molecular and cellular datasets. Our integrative approach predicts the existence of alternative states for the key regulators Cap1 and Hog1, thereby suggesting novel regulatory behaviours during oxidative stress. The model reproduces both existing and new experimental observations under a variety of scenarios. Time- and dose-dependent predictions of the oxidative stress responses for both wild type and mutant cells have highlighted the different temporal contributions of the various antioxidant systems during oxidative stress adaptation, indicating that catalase plays a critical role immediately following stress imposition. This is the first model to encapsulate the dynamics of the transcriptional response alongside the redox kinetics of the major antioxidant systems during H2O2 stress in C. albicans. PMID:26368573

  16. An Optimized Lock Solution Containing Micafungin, Ethanol and Doxycycline Inhibits Candida albicans and Mixed C. albicans – Staphyloccoccus aureus Biofilms

    PubMed Central

    Lown, Livia; Peters, Brian M.; Walraven, Carla J.; Noverr, Mairi C.; Lee, Samuel A.

    2016-01-01

    Candida albicans is a major cause of catheter-related bloodstream infections and is associated with high morbidity and mortality. Due to the propensity of C. albicans to form drug-resistant biofilms, the current standard of care includes catheter removal; however, reinsertion may be technically challenging or risky. Prolonged exposure of an antifungal lock solution within the catheter in conjunction with systemic therapy has been experimentally attempted for catheter salvage. Previously, we demonstrated excellent in vitro activity of micafungin, ethanol, and high-dose doxycycline as single agents for prevention and treatment of C. albicans biofilms. Thus, we sought to investigate optimal combinations of micafungin, ethanol, and/or doxycycline as a lock solution. We performed two- and three-drug checkerboard assays to determine the in vitro activity of pairwise or three agents in combination for prevention or treatment of C. albicans biofilms. Optimal lock solutions were tested for activity against C. albicans clinical isolates, reference strains and polymicrobial C. albicans-S. aureus biofilms. A solution containing 20% (v/v) ethanol, 0.01565 μg/mL micafungin, and 800 μg/mL doxycycline demonstrated a reduction of 98% metabolic activity and no fungal regrowth when used to prevent fungal biofilm formation; however there was no advantage over 20% ethanol alone. This solution was also successful in inhibiting the regrowth of C. albicans from mature polymicrobial biofilms, although it was not fully bactericidal. Solutions containing 5% ethanol with low concentrations of micafungin and doxycycline demonstrated synergistic activity when used to prevent monomicrobial C. albicans biofilm formation. A combined solution of micafungin, ethanol and doxycycline is highly effective for the prevention of C. albicans biofilm formation but did not demonstrate an advantage over 20% ethanol alone in these studies. PMID:27428310

  17. An Optimized Lock Solution Containing Micafungin, Ethanol and Doxycycline Inhibits Candida albicans and Mixed C. albicans - Staphyloccoccus aureus Biofilms.

    PubMed

    Lown, Livia; Peters, Brian M; Walraven, Carla J; Noverr, Mairi C; Lee, Samuel A

    2016-01-01

    Candida albicans is a major cause of catheter-related bloodstream infections and is associated with high morbidity and mortality. Due to the propensity of C. albicans to form drug-resistant biofilms, the current standard of care includes catheter removal; however, reinsertion may be technically challenging or risky. Prolonged exposure of an antifungal lock solution within the catheter in conjunction with systemic therapy has been experimentally attempted for catheter salvage. Previously, we demonstrated excellent in vitro activity of micafungin, ethanol, and high-dose doxycycline as single agents for prevention and treatment of C. albicans biofilms. Thus, we sought to investigate optimal combinations of micafungin, ethanol, and/or doxycycline as a lock solution. We performed two- and three-drug checkerboard assays to determine the in vitro activity of pairwise or three agents in combination for prevention or treatment of C. albicans biofilms. Optimal lock solutions were tested for activity against C. albicans clinical isolates, reference strains and polymicrobial C. albicans-S. aureus biofilms. A solution containing 20% (v/v) ethanol, 0.01565 μg/mL micafungin, and 800 μg/mL doxycycline demonstrated a reduction of 98% metabolic activity and no fungal regrowth when used to prevent fungal biofilm formation; however there was no advantage over 20% ethanol alone. This solution was also successful in inhibiting the regrowth of C. albicans from mature polymicrobial biofilms, although it was not fully bactericidal. Solutions containing 5% ethanol with low concentrations of micafungin and doxycycline demonstrated synergistic activity when used to prevent monomicrobial C. albicans biofilm formation. A combined solution of micafungin, ethanol and doxycycline is highly effective for the prevention of C. albicans biofilm formation but did not demonstrate an advantage over 20% ethanol alone in these studies. PMID:27428310

  18. Delicate Metabolic Control and Coordinated Stress Response Critically Determine Antifungal Tolerance of Candida albicans Biofilm Persisters

    PubMed Central

    Li, Peng; Alpi, Emanuele; Vizcaino, Juan A.

    2015-01-01

    Candida infection has emerged as a critical health care burden worldwide, owing to the formation of robust biofilms against common antifungals. Recent evidence shows that multidrug-tolerant persisters critically account for biofilm recalcitrance, but their underlying biological mechanisms are poorly understood. Here, we first investigated the phenotypic characteristics of Candida biofilm persisters under consecutive harsh treatments of amphotericin B. The prolonged treatments effectively killed the majority of the cells of biofilms derived from representative strains of Candida albicans, Candida glabrata, and Candida tropicalis but failed to eradicate a small fraction of persisters. Next, we explored the tolerance mechanisms of the persisters through an investigation of the proteomic profiles of C. albicans biofilm persister fractions by liquid chromatography-tandem mass spectrometry. The C. albicans biofilm persisters displayed a specific proteomic signature, with an array of 205 differentially expressed proteins. The crucial enzymes involved in glycolysis, the tricarboxylic acid cycle, and protein synthesis were markedly downregulated, indicating that major metabolic activities are subdued in the persisters. It is noteworthy that certain metabolic pathways, such as the glyoxylate cycle, were able to be activated with significantly increased levels of isocitrate lyase and malate synthase. Moreover, a number of important proteins responsible for Candida growth, virulence, and the stress response were greatly upregulated. Interestingly, the persisters were tolerant to oxidative stress, despite highly induced intracellular superoxide. The current findings suggest that delicate metabolic control and a coordinated stress response may play a crucial role in mediating the survival and antifungal tolerance of Candida biofilm persisters. PMID:26195524

  19. In vitro antimicrobial properties of coconut oil on Candida species in Ibadan, Nigeria.

    PubMed

    Ogbolu, D O; Oni, A A; Daini, O A; Oloko, A P

    2007-06-01

    The emergence of antimicrobial resistance, coupled with the availability of fewer antifungal agents with fungicidal actions, prompted this present study to characterize Candida species in our environment and determine the effectiveness of virgin coconut oil as an antifungal agent on these species. In 2004, 52 recent isolates of Candida species were obtained from clinical specimens sent to the Medical Microbiology Laboratory, University College Hospital, Ibadan, Nigeria. Their susceptibilities to virgin coconut oil and fluconazole were studied by using the agar-well diffusion technique. Candida albicans was the most common isolate from clinical specimens (17); others were Candida glabrata (nine), Candida tropicalis (seven), Candida parapsilosis (seven), Candida stellatoidea (six), and Candida krusei (six). C. albicans had the highest susceptibility to coconut oil (100%), with a minimum inhibitory concentration (MIC) of 25% (1:4 dilution), while fluconazole had 100% susceptibility at an MIC of 64 microg/mL (1:2 dilution). C. krusei showed the highest resistance to coconut oil with an MIC of 100% (undiluted), while fluconazole had an MIC of > 128 microg/mL. It is noteworthy that coconut oil was active against species of Candida at 100% concentration compared to fluconazole. Coconut oil should be used in the treatment of fungal infections in view of emerging drug-resistant Candida species.

  20. In vitro antimicrobial properties of coconut oil on Candida species in Ibadan, Nigeria.

    PubMed

    Ogbolu, D O; Oni, A A; Daini, O A; Oloko, A P

    2007-06-01

    The emergence of antimicrobial resistance, coupled with the availability of fewer antifungal agents with fungicidal actions, prompted this present study to characterize Candida species in our environment and determine the effectiveness of virgin coconut oil as an antifungal agent on these species. In 2004, 52 recent isolates of Candida species were obtained from clinical specimens sent to the Medical Microbiology Laboratory, University College Hospital, Ibadan, Nigeria. Their susceptibilities to virgin coconut oil and fluconazole were studied by using the agar-well diffusion technique. Candida albicans was the most common isolate from clinical specimens (17); others were Candida glabrata (nine), Candida tropicalis (seven), Candida parapsilosis (seven), Candida stellatoidea (six), and Candida krusei (six). C. albicans had the highest susceptibility to coconut oil (100%), with a minimum inhibitory concentration (MIC) of 25% (1:4 dilution), while fluconazole had 100% susceptibility at an MIC of 64 microg/mL (1:2 dilution). C. krusei showed the highest resistance to coconut oil with an MIC of 100% (undiluted), while fluconazole had an MIC of > 128 microg/mL. It is noteworthy that coconut oil was active against species of Candida at 100% concentration compared to fluconazole. Coconut oil should be used in the treatment of fungal infections in view of emerging drug-resistant Candida species. PMID:17651080

  1. Evaluation of chromogenic media and seminested PCR in the identification of Candida species.

    PubMed

    Daef, Enas; Moharram, Ahmed; Eldin, Salwa Seif; Elsherbiny, Nahla; Mohammed, Mona

    2014-01-01

    Identification of Candida cultured from various clinical specimens to the species level is increasingly necessary for clinical laboratories. Although sn PCR identifies the species within hours but its cost-effectiveness is to be considered. So there is always a need for media which help in the isolation and identification at the species level. The study aimed to evaluate the performance of different chromogenic media and to compare the effectiveness of the traditional phenotypic methods vs. seminested polymerase chain reaction (sn PCR) for identification of Candida species. One hundred and twenty seven Candida strains isolated from various clinical specimens were identified by conventional methods, four different chromogenic media and sn PCR. HiCrome Candida Differential and CHROMagar Candida media showed comparably high sensitivities and specificities in the identification of C. albicans, C. tropicalis, C. glabrata and C. krusei. CHROMagar Candida had an extra advantage of identifying all C. parapsilosis isolates. CHROMagar-Pal's medium identified C. albicans, C. tropicalis and C. krusei with high sensitivities and specificities, but couldn't identify C. glabrata or C. parapsilosis. It was the only medium that identified C. dubliniensis with a sensitivity and specificity of 100%. Biggy agar showed the least sensitivities and specificities. The overall concordance of the snPCR compared to the conventional tests including CHROMAgar Candida in the identification of Candida species was 97.5%. The use of CHROMAgar Candida medium is an easy and accurate method for presumptive identification of the most commonly encountered Candida spp.

  2. Candida albicans Transcriptional Profiling Within Biliary Fluid From a Patient With Cholangitis, Before and After Antifungal Treatment and Surgical Drainage

    PubMed Central

    Clancy, Cornelius J.; Meslin, Camille; Badrane, Hassan; Cheng, Shaoji; Losada, Liliana C.; Nierman, William C.; Vergidis, Pascalis; Clark, Nathan L.; Nguyen, M. Hong

    2016-01-01

    We used ribonucleic acid sequencing to profile Candida albicans transcription within biliary fluid from a patient with cholangitis; samples were collected before and after treatment with fluconazole and drainage. Candida albicans transcriptomes at the infection site distinguished treated from untreated cholangitis. After treatment, 1131 C. albicans genes were differentially expressed in biliary fluid. Up-regulated genes were enriched in hyphal growth, cell wall organization, adhesion, oxidation reduction, biofilm, and fatty acid and ergosterol biosynthesis. This is the first study to define Candida global gene expression during deep-seated human infection. Successful treatment of cholangitis induced C. albicans genes involved in fluconazole responses and pathogenesis.

  3. [Fungal diseases of vulva and vagina caused by Candida species].

    PubMed

    Stock, Ingo

    2010-09-01

    Fungal diseases of vulva and vagina attributed to Candida species (vulvovaginal candidosis) are the most frequent mycoses of women. They show acute or chronic courses and different disease patterns which can strongly affect the quality of life of the women who are concerned. In general, the most common cause of acute vulvovaginal candidosis is Candida albicans, followed by C. glabrata. In chronic recurrent vulvovaginal candidosis, C. albicans and C. glabrata are often equally distributed. In several cases, treatment requires an antimycotic therapy which refers to the severity and main form of disease as well as to the aetiological agent. Most vulvovaginal candidoses are accessible to the treatment with local and systemic antimycotic agents. Generally, in Germany azoles such as clotrimazole, fluconazole and itraconazole, the polyens nystatin and Amphotericin B and the hydroxypyridone derivative ciclopirox are available for antimycotic therapy of vulvovaginal candidoses. Significance of non-conventional and adjuvant therapeutic approaches is considered to be generally low.

  4. Avian pox infection with secondary Candida albicans encephalitis in a juvenile golden eagle (Aquila chrysaetos).

    PubMed

    Shrubsole-Cockwill, Alana N; Millins, Caroline; Jardine, Claire; Kachur, Kelti; Parker, Dennilyn L

    2010-03-01

    Abstract: A juvenile golden eagle (Aquila chrysaetos) was presented with proliferative epithelial lesions, consistent with avian poxvirus infection, around the eyes, on commissures of the beak, and on both feet. Despite treatment, the eagle declined clinically, and, 15 days after presentation, the eagle began seizuring and was euthanatized because of a poor prognosis. On postmortem examination, avian poxvirus infection was confirmed in the nodular skin lesions, and Candida albicans was cultured from the skin, lungs, and brain. Breaks in the skin barrier from poxvirus infection likely led to secondary infection with C albicans. Systemic vascular dissemination of C albicans to the brain resulted in thrombosis, hemorrhage, local hypoxia, and the clinically observed seizures. The combination of the breach in the primary immune system, immunosuppression, and a prolonged course of antibiotics were contributory factors to the opportunistic fungal infection in this eagle. Candida albicans should be considered as a differential diagnosis for encephalitis in an immunocompromised avian patient. PMID:20496607

  5. Reduced inhibition of Candida albicans adhesion by saliva from patients receiving oral cancer therapy.

    PubMed Central

    Umazume, M; Ueta, E; Osaki, T

    1995-01-01

    The effect of saliva on the adhesion of Candida albicans to epithelial cells was examined in vitro by using saliva from healthy controls and patients with oral squamous cell carcinoma. The adhesion of C. albicans to established epithelial tumor cells was reduced by 40% by salivary treatment of the C. albicans or epithelial cells. The inhibitory activity of saliva was almost completely abolished by anti-secretory immunoglobulin A antibody, concanavalin A, and mannose. Compared with saliva from healthy individuals, that from patients who had received chemoradiotherapy for oral carcinoma showed reduced suppression of C. albicans adhesion, which accompanied decreased salivary secretory immunoglobulin A and lactoferrin concentrations. A greater number of C. albicans cells adhered to buccal cells obtained from patients who had received chemoradiotherapy than to those from healthy individuals. Treatment of either epithelial cells or C. albicans with anticancer drugs induced an increase in adherence of epithelial cells and yeast cells. In contrast, concanavalin A- and mannose-pretreated C. albicans exhibited reduced adhesion to epithelial cells. No further decrease of C. albicans adhesion was observed when both epithelial cells and yeast phase C. albicans were treated with mannose. In conclusion, the inhibition of C. albicans adhesion by saliva depends largely on mannose residues on salivary glycoproteins and mannose is one of the binding ligands on both C. albicans and epithelial cells. In addition, anticancer therapy may induce oral C. albicans overgrowth by decreasing salivation and the concentrations of glycoproteins in saliva inhibiting C. albicans adhesion and by increasing the adhesive properties of both C. albicans and oral epithelial cells. PMID:7714204

  6. Effects of simulated microgravity by RCCS on the biological features of Candida albicans.

    PubMed

    Jiang, Wenjun; Xu, Bingxin; Yi, Yong; Huang, Yuling; Li, Xiao-Ou; Jiang, Fuquan; Zhou, Jinlian; Zhang, Jianzhong; Cui, Yan

    2014-01-01

    During the spaceflight, a wide variety of microorganisms may be carried to the outer space by astronauts and aviation component. The yeast Candida albicans is an important opportunistic pathogen responsible for a variety of cutaneous and systemic human infections in human body, and the yeast cell itself could be affected by various stressful environmental factors including the weightless environment. We evaluated the effects of simulated microgravity on biological features of Candida albicans using the rotary cell culture system (RCCS). The growth curves of Candida albicans cultured in RCCS were recorded by spectrophotometer, the morphogenic switches were observed by optical microscope, and the viability of cells exposed to the various concentrations of fluconazole solution was assayed by flow cytometry at 7th, 14th and 21st day of experiment. The results showed that Candida albicans SC5314 under modeled microgravity were manifested as the growth curves leftward-shifted, lag phase shortened, along with logarithmic phase and stationary phase forwarded (P < 0.05). The simulated microgravity increased the growth rate and mycelia formation of Candida albicans. A statistically significant decrease in viability was detected in cells cultured for 7 d, 14 d and 21 d in group of simulated microgravity compared with the control group (P < 0.05). The increase of exposure time to simulate microgravity resulted in the decrease of viability of cells accordingly in same drug concentration compared with the control group. The study demonstrated that the three weeks' simulated microgravity in RCCS had a noticeable affect on the growth status of mycelia and spores and the morphogenic switches of Candida albicans, meanwhile, the yeast cells under simulated microgravity showed an increased antifungal susceptibility to fluconazole. PMID:25120754

  7. Detection of Candida albicans mRNA in Archival Histopathology Samples by Reverse Transcription-PCR

    PubMed Central

    Beggs, Kyle T.; Holmes, Ann R.; Cannon, Richard D.; Rich, Alison M.

    2004-01-01

    The feasibility of detecting Candida albicans mRNA in formalin-fixed paraffin-embedded archival human histopathology specimens by reverse transcription-PCR (RT-PCR) was investigated. RT with gene-specific primers was used to detect five single-copy C. albicans gene transcripts, including those of two housekeeping genes, in oral candidiasis samples up to 8 years of age. PMID:15131211

  8. Imbalanced Macrophage and Dendritic Cell Activations in Response to Candida albicans in a Murine Model of Diabetes Mellitus.

    PubMed

    Venturini, James; Fraga-Silva, Thais Fernanda Campos; Marchetti, Camila Martins; Mimura, Luiza Ayumi Nishiyama; Conti, Bruno José; Golim, Márjorie de Assis; Mendes, Rinaldo Poncio; de Arruda, Maria Sueli Parreira

    2016-07-01

    Bloodstream infections caused by Candida species are responsible for high morbidity and mortality, and diabetes mellitus (DM) is an important underlying disease in candidemia episodes. Although DM patients show an enhanced proinflammatory profile, they are highly susceptible to mycobacterial and mycotic infections. Attempting to understand this paradox, we investigated if imbalanced macrophage and dendritic cell (DC) activations could be associated to high incidence and/or severity of Candida albicans infection in the hypoinsulinemia-hyperglycemia (HH) milieu. HH alloxan-induced mice were infected with C. albicans and peritoneal aderent phagocytes were co-cultured with or without lipopolyssaccharide or heat-killed C. albicans, and the production of cytotoxic metabolites, cytokines, and chemokines was evaluated. We also evaluated the surface expression of MHC-II and CD86 in splenic DCs. Our findings showed that both uninfected and C. albicans-infected HH mice showed less production of CCL2 and reduced expression of CD86 by peritoneal phagocytes and splenic DCs, respectively.

  9. Species distribution & antifungal susceptibility pattern of oropharyngeal Candida isolates from human immunodeficiency virus infected individuals

    PubMed Central

    Das, Partha Pratim; Saikia, Lahari; Nath, Reema; Phukan, Sanjib Kumar

    2016-01-01

    Background & objectives: The changing spectrum of Candida species in causation of oropharyngeal candidiasis and their antifungal susceptibility pattern among the HIV infected individuals has made the identification to species level mandatory and detection of drug resistance necessary for patient care. The present study was carried out to determine the species distribution and antifungal susceptibility profile of oral Candida isolates colonizing or infecting both HIV seropositive and seronegative individuals. Methods: A case-control study was conducted including 141 consecutive, non-repeat HIV-seropositive individuals and an equal number of sex and age matched HIV-seronegative control. Speciation of the oropharyngeal Candida isolates was done using standard yeast identification protocol. Antifungal susceptibility testing was done by the disk-diffusion method as well as by Fungitest method. Results: From the 59 culture positive HIV seropositive cases, 61 Candida isolates were recovered; Candida albicans (n=47, 77.0%), C. dubliniensis (n=9, 14.7%), C. parapsilosis (n=2, 3.2%), C. glabrata (n=2, 3.2%), and C. famata (n=1, 1.6%). Candida colonization in HIV-seropositive individuals was significantly higher than that of HIV-seronegative (control) group. Antifungal susceptibility testing revealed (n=6, 9.3%) C. albicans isolates resistant to voriconazole and fluconazole by disk-diffusion method whereas no resistance was seen by Fungitest method. Interpretation & conclusions: C. albicans was the commonest Candida species infecting or colonizing HIV seropositive individuals. Oropharyngeal Candida isolates had high level susceptibility to all the major antifungals commonly in use. Increased level of immunosuppression in HIV-seropositives and drug resistance of non-albicans Candida species makes identification and susceptibility testing of Candida species necessary in different geographical areas of the country. PMID:27377507

  10. The synthesis and synergistic antifungal effects of chalcones against drug resistant Candida albicans.

    PubMed

    Wang, Yuan-Hua; Dong, Huai-Huai; Zhao, Fei; Wang, Jie; Yan, Fang; Jiang, Yuan-Ying; Jin, Yong-Sheng

    2016-07-01

    To identify effective and low toxicity synergistic antifungal compounds, 24 derivatives of chalcone were synthesized to restore the effectiveness of fluconazole against fluconazole-resistant Candida albicans. The minimal inhibitory concentration (MIC80) and the fractional inhibitory concentration index (FICI) of the antifungal synergist fluconazole were measured against fluconazole-resistant Candida albicans. This was done via methods established by the clinical and laboratory standards institute (CLSI). Of the synthesized compounds, 2'-hydroxy-4'-methoxychalcone (8) exhibited the most potent in vitro (FICI=0.007) effects. The structure activity relationship of the compounds are then discussed. PMID:27210436

  11. Betamethasone augments the antifungal effect of menadione--towards a novel anti-Candida albicans combination therapy.

    PubMed

    Jakab, Ágnes; Emri, Tamás; Sipos, Lilla; Kiss, Ágnes; Kovács, Renátó; Dombrádi, Viktor; Kemény-Beke, Ádám; Balla, József; Majoros, László; Pócsi, István

    2015-08-01

    The fluorinated glucocorticoid betamethasone stimulated both the extracellular phospholipase production and hypha formation of the opportunistic human pathogen Candida albicans and also decreased the efficiency of the polyene antimycotics amphotericin B and nystatin against C. albicans in a dose-dependent manner. Importantly, betamethasone increased synergistically the anti-Candida activity of the oxidative stress generating agent menadione, which may be exploited in future combination therapies to prevent or cure C. albicans infections, in the field of dermatology.

  12. Cloning of the RHO1 gene from Candida albicans and its regulation of beta-1,3-glucan synthesis.

    PubMed Central

    Kondoh, O; Tachibana, Y; Ohya, Y; Arisawa, M; Watanabe, T

    1997-01-01

    The Saccharomyces cerevisiae RHO1 gene encodes a low-molecular-weight GTPase. One of its recently identified functions is the regulation of beta-1,3-glucan synthase, which synthesizes the main component of the fungal cell wall (J. Drgonova et al., Science 272:277-279, 1996; T. Mazur and W. Baginsky, J. Biol. Chem. 271:14604-14609, 1996; and H. Qadota et al., Science 272:279-281, 1996). From the opportunistic pathogenic fungus Candida albicans, we cloned the RHO1 gene by the PCR and cross-hybridization methods. Sequence analysis revealed that the Candida RHO1 gene has a 597-nucleotide region which encodes a putative 22.0-kDa peptide. The deduced amino acid sequence predicts that Candida albicans Rho1p is 82.9% identical to Saccharomyces Rho1p and contains all the domains conserved among Rho-type GTPases from other organisms. The Candida albicans RHO1 gene could rescue a S. cerevisiae strain containing a rho1 deletion. Furthermore, recombinant Candida albicans Rho1p could reactivate the beta-1,3-glucan synthesis activities of both C. albicans and S. cerevisiae membranes in which endogenous Rho1p had been depleted by Tergitol NP-40-NaCl treatment. Candida albicans Rho1p was copurified with the beta-1,3-glucan synthase putative catalytic subunit, Candida albicans Gsc1p, by product entrapment. Candida albicans Rho1p was shown to interact directly with Candida albicans Gsc1p in a ligand overlay assay and a cross-linking study. These results indicate that Candida albicans Rho1p acts in the same manner as Saccharomyces cerevisiae Rho1p to regulate beta-1,3-glucan synthesis. PMID:9401032

  13. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue

    PubMed Central

    Schlecht, Lisa Marie; Peters, Brian M.; Krom, Bastiaan P.; Freiberg, Jeffrey A.; Hänsch, Gertrud M.; Filler, Scott G.

    2015-01-01

    Candida albicans and Staphylococcus aureus are often co-isolated in cases of biofilm-associated infections. C. albicans can cause systemic disease through morphological switch from the rounded yeast to the invasive hyphal form. Alternatively, systemic S. aureus infections arise from seeding through breaks in host epithelial layers although many patients have no documented portal of entry. We describe a novel strategy by which S. aureus is able to invade host tissue and disseminate via adherence to the invasive hyphal elements of Candida albicans. In vitro and ex vivo findings demonstrate a specific binding of the staphylococci to the candida hyphal elements. The C. albicans cell wall adhesin Als3p binds to multiple staphylococcal adhesins. Furthermore, Als3p is required for C. albicans to transport S. aureus into the tissue and cause a disseminated infection in an oral co-colonization model. These findings suggest that C. albicans can facilitate the invasion of S. aureus across mucosal barriers, leading to systemic infection in co-colonized patients. PMID:25332378

  14. Inhibitory Effect of Alpha-Mangostin on Adhesion of Candida albicans to Denture Acrylic

    PubMed Central

    Kaomongkolgit, Ruchadaporn; Jamdee, Kusuma

    2015-01-01

    Objective: Candida-associated denture stomatitis is a very common disease affecting denture wearers. It is characterized by the presence of yeast biofilm on the denture, primarily associated with C. albicans. The investigation of agents that can reduce C. albicans adhesion may represent a significant advancement in the prevention and treatment of this disease. This study aims to investigate the effect of alpha-mangostin on the in vitro adhesion of C. albicans to denture acrylic and germ tube formation by C. albicans and to compare its activity with clotrimazole which is a topical antifungal agent commonly used for the treatment of Candida-associated denture stomatitis. Materials and Methodology: Alpha-mangostin was extracted by thin layer chromatography. The effect of alpha-mangostin on adhesion of C. albicans to denture acrylic was determined by using a colorimetric tetrazolium assay and germ tube formation by C. albicans was determined by using the counting chamber. Results: A significant reduction of C. albicans adhesion to denture acrylic was evident after exposure to 2,000 µg/ml of alpha-mangostin for only 15 min. In addition, the 2,000 µg/ml of the alpha-mangostin-treated C. albicans had a reduced ability for germ tube formation. These inhibitory effects of alpha-mangostin were as effective as clotrimazole. Conclusion: Alpha-mangostin has antifungal property against C. albicans by inhibiting the adhesion to denture acrylic and germ tube formation in vitro. These results suggest the potential application of alpha-mangostin as a topical medication or a natural oral hygiene product for treatment of Candida-associated denture stomatitis. PMID:26962371

  15. External ecological niche for Candida albicans within reducing, oxygen-limited zones of wetlands.

    PubMed

    Stone, Wendy; Jones, Barbara-Lee; Wilsenach, Jac; Botha, Alfred

    2012-04-01

    Candida albicans within the human host is well studied; however, identifying environmental reservoirs of pathogens is epidemiologically valuable for disease management. Oxygen-limited, carbohydrate-rich zones of wetlands, to which sewage-borne C. albicans is often exposed, are characteristically similar to the gastrointestinal reservoir. Consequently, using quantitative real-time PCR (qRT-PCR) and gas chromatography-mass spectrometry (GC-MS), we demonstrated that oxygen-limited zones in polluted wetlands may act as potential reservoirs of C. albicans.

  16. Host defence against Candida albicans and the role of pattern-recognition receptors.

    PubMed

    Gauglitz, Gerd G; Callenberg, Helene; Weindl, Günther; Korting, Hans C

    2012-05-01

    Recognition of Candida albicans is mediated by several classes of pattern-recognition receptors, including Toll-like receptors and C-type lectin receptors. Cell wall components of C. albicans, interact with the pattern-recognition receptors, which are expressed by different cells, primarily antigen-presenting cells. This review aims to discuss the different pattern-recognition receptors responsible for recognition of special structures of C. albicans, which are known to activate intracellular signals that finally lead to directed and efficient host defence.

  17. Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans

    PubMed Central

    Li, Xiuyun; Hou, Yinglong; Yue, Longtao; Liu, Shuyuan; Du, Juan

    2015-01-01

    Fungal infections, especially infections caused by Candida albicans, remain a challenging problem in clinical settings. Despite the development of more-effective antifungal drugs, their application is limited for various reasons. Thus, alternative treatments with drugs aimed at novel targets in C. albicans are needed. Knowledge of growth and virulence in fungal cells is essential not only to understand their pathogenic mechanisms but also to identify potential antifungal targets. This article reviews the current knowledge of the mechanisms of growth and virulence in C. albicans and examines potential targets for the development of new antifungal drugs. PMID:26195510

  18. Molecular Identification of Candida Species Isolated from Onychomycosis in Shanghai, China.

    PubMed

    Feng, Xiaobo; Ling, Bo; Yang, Xianwei; Liao, Wanqing; Pan, Weihua; Yao, Zhirong

    2015-12-01

    Candida is a common cause of onychomycosis, especially for fingernail onychomycosis. In this study, two simple PCR-based assays combined with the internal transcribed spacers sequencing were performed to reveal the prevalence of Candida species including emerging species in onychomycosis, and triazole antifungal susceptibility profiles for Candida species were also evaluated. Among 210 Candida strains isolated from onychomycosis, Candida parapsilosis was the most common species (54.3%), followed by C. albicans (23.3%) and C. metapsilosis (9.5%). However, C. metapsilosis became the second leading species in toenail onychomycosis and accounted for 19.5% of Candida isolates from toenail samples. C. nivariensis, an emerging species, was firstly recovered from a toenail sample. Other emerging species such as C. orthopsilosis, C. pararugosa and C. fabryi were also identified by molecular tools. C. metapsilosis isolates exhibited significantly higher fluconazole minimum inhibitory concentrations than those exhibited by C. parapsilosis and C. albicans (P < 0.001). This study provides insight into the prevalence, distribution and susceptibility profiles of Candida species including emerging Candida species in onychomycosis.

  19. Growth of Candida albicans in human saliva is supported by low-molecular-mass compounds.

    PubMed

    Valentijn-Benz, Marianne; Nazmi, Kamran; Brand, Henk S; van't Hof, Wim; Veerman, Enno C I

    2015-12-01

    Saliva plays a key role in the maintenance of a stable oral microflora. It contains antimicrobial compounds but also functions as a substrate for growth of bacteria under conditions of low external nutrient supply. Besides bacteria, yeasts, in particular Candida albicans, commonly inhabit the oral cavity. Under immunocompromised conditions, instantaneous outgrowth of this yeast occurs in oral carriers of C. albicans, suggesting that this yeast is able to survive in the oral cavity with saliva as sole source of growth substrate. The aim of the present study was to identify the salivary constituents that are used by C. albicans for growth and survival in saliva. In addition, we have explored the effect of growth in saliva on the susceptibility of C. albicans to histatin 5, a salivary antifungal peptide. It was found that C. albicans was able to grow in human saliva without addition of glucose, and in the stationary phase could survive for more than 400 h. Candida albicans grown in saliva was more than 10 times less susceptible for salivary histatin 5 than C. albicans cultured in Sabouraud medium.

  20. 2-hydroxyisocaproic acid is fungicidal for Candida and Aspergillus species.

    PubMed

    Sakko, M; Moore, C; Novak-Frazer, L; Rautemaa, V; Sorsa, T; Hietala, P; Järvinen, A; Bowyer, P; Tjäderhane, L; Rautemaa, R

    2014-04-01

    The amino acid derivative 2-hydroxyisocaproic acid (HICA) is a nutritional additive used to increase muscle mass. Low levels can be detected in human plasma as a result of leucine metabolism. It has broad antibacterial activity but its efficacy against pathogenic fungi is not known. The aim was to test the efficacy of HICA against Candida and Aspergillus species. Efficacy of HICA against 19 clinical and reference isolates representing five Candida and three Aspergillus species with variable azole antifungal sensitivity profiles was tested using a microdilution method. The concentrations were 18, 36 and 72 mg ml(-1) . Growth was determined spectrophotometrically for Candida isolates and by visual inspection for Aspergillus isolates, viability was tested by culture and impact on morphology by microscopy. HICA of 72 mg ml(-1) was fungicidal against all Candida and Aspergillus fumigatus and Aspergillus terreus isolates. Lower concentrations were fungistatic. Aspergillus flavus was not inhibited by HICA. HICA inhibited hyphal formation in susceptible Candida albicans and A. fumigatus isolates and affected cell wall integrity. In conclusion, HICA has broad antifungal activity against Candida and Aspergillus at concentrations relevant for topical therapy. As a fungicidal agent with broad-spectrum bactericidal activity, it may be useful in the topical treatment of multispecies superficial infections.

  1. Effect of Nitric Oxide on the Antifungal Activity of Oxidative Stress and Azoles Against Candida albicans.

    PubMed

    Li, De-Dong; Yang, Chang-Chun; Liu, Ping; Wang, Yan; Sun, Yan

    2016-06-01

    Nitric oxide (NO) is a small molecule with a wide range of biological activities in mammalian and bacteria. However, the role of NO in fungi, especially Candida albicans, is not clear. In this study, we confirmed the generation of endogenous NO in C. albicans, and found that the production of endogenous NO in C. albicans was associated with nitric oxide synthase pathway. Our results further indicated that the production of endogenous NO in C. albicans was reduced under oxidative stress such as menadione or H2O2 treatment. Meanwhile, exogenous NO donor, sodium nitroprusside (SNP), synergized with H2O2 against C. albicans. Interestingly, SNP could inhibit the antifungal effect of azoles against C. albicans in vitro, suggesting that NO might be involved in the resistance of C. albicans to antifungals. Collectively, this study demonstrated the production of endogenous NO in C. albicans, and indicated that NO may play an important role in the response of C. albicans to oxidative stress and azoles. PMID:27570314

  2. Human Epithelial Cells Discriminate between Commensal and Pathogenic Interactions with Candida albicans.

    PubMed

    Rast, Timothy J; Kullas, Amy L; Southern, Peter J; Davis, Dana A

    2016-01-01

    The commensal fungus, Candida albicans, can cause life-threatening infections in at risk individuals. C. albicans colonizes mucosal surfaces of most people, adhering to and interacting with epithelial cells. At low concentrations, C. albicans is not pathogenic nor does it cause epithelial cell damage in vitro; at high concentrations, C. albicans causes mucosal infections and kills epithelial cells in vitro. Here we show that while there are quantitative dose-dependent differences in exposed epithelial cell populations, these reflect a fundamental qualitative difference in host cell response to C. albicans. Using transcriptional profiling experiments and real time PCR, we found that wild-type C. albicans induce dose-dependent responses from a FaDu epithelial cell line. However, real time PCR and Western blot analysis using a high dose of various C. albicans strains demonstrated that these dose-dependent responses are associated with ability to promote host cell damage. Our studies support the idea that epithelial cells play a key role in the immune system by monitoring the microbial community at mucosal surfaces and initiating defensive responses when this community is dysfunctional. This places epithelial cells at a pivotal position in the interaction with C. albicans as epithelial cells themselves promote C. albicans stimulated damage.

  3. Antimicrobial blue light therapy for Candida albicans burn infection in mice

    NASA Astrophysics Data System (ADS)

    Zhang, Yunsong; Wang, Yucheng; Murray, Clinton K.; Hamblin, Michael R.; Gu, Ying; Dai, Tianhong

    2015-05-01

    In this preclinical study, we investigated the utility of antimicrobial blue light therapy for Candida albicans infection in acutely burned mice. A bioluminescent strain of C. albicans was used. The susceptibilities to blue light inactivation were compared between C. albicans and human keratinocyte. In vitro serial passaging of C. albicans on blue light exposure was performed to evaluate the potential development of resistance to blue light inactivation. A mouse model of acute thermal burn injury infected with the bioluminescent strain of C. albicans was developed. Blue light (415 nm) was delivered to mouse burns for decolonization of C. albicans. Bioluminescence imaging was used to monitor in real time the extent of fungal infection in mouse burns. Experimental results showed that C. albicans was approximately 42-fold more susceptible to blue light inactivation in vitro than human keratinocyte (P=0.0022). Serial passaging of C. albicans on blue light exposure implied a tendency for the fungal susceptibility to blue light inactivation to decrease with the numbers of passages. Blue light reduced fungal burden by over 4-log10 (99.99%) in acute mouse burns infected with C. albicans in comparison to infected mouse burns without blue light therapy (P=0.015).

  4. Gene expression profile of THP-1 cells treated with heat-killed Candida albicans

    PubMed Central

    Hu, Zhi-De; Wei, Ting-Ting; Tang, Qing-Qin; Ma, Ning; Wang, Li-Li; Qin, Bao-Dong; Yin, Jian-Rong

    2016-01-01

    Background Mechanisms under immune response against Candida albicans (C. albicans) remain largely unknown. To better understand the mechanisms of innate immune response against C. albicans, we analyzed the gene expression profile of THP-1 cells stimulated with heat-killed C. albicans. Methods THP-1 cells were stimulated with heat-killed C. albicans for 9 hours at a ratio of 1:1, and gene expression profile of the cells was analyzed using Whole Human Genome Oligo Microarray. Differentially expressed genes were defined as change folds more than 2 and with statistical significance. Gene ontology (GO) and pathway analysis were used to systematically identify biological connections of differentially expressed genes, as well as the pathways associated with the immune response against C. albicans. Results A total of 355 genes were up-regulated and 715 genes were down-regulated significantly. The up-regulated genes were particularly involved in biological process of RNA processing and pathway of the spliceosome. In case of down-regulated genes, the particularly involved immune-related pathways were G-protein coupled receptor signaling pathway, calcium signaling pathway, MAPK signaling pathway and Ras pathway. Conclusions We depict the gene expression profile of heat-killed C. albicans stimulated THP-1 cells, and identify the major pathways involved in immune response against C. albicans. These pathways are potential candidate targets for developing anti-C. albicans agent. PMID:27275483

  5. Human Epithelial Cells Discriminate between Commensal and Pathogenic Interactions with Candida albicans

    PubMed Central

    Rast, Timothy J.; Kullas, Amy L.; Southern, Peter J.; Davis, Dana A.

    2016-01-01

    The commensal fungus, Candida albicans, can cause life-threatening infections in at risk individuals. C. albicans colonizes mucosal surfaces of most people, adhering to and interacting with epithelial cells. At low concentrations, C. albicans is not pathogenic nor does it cause epithelial cell damage in vitro; at high concentrations, C. albicans causes mucosal infections and kills epithelial cells in vitro. Here we show that while there are quantitative dose-dependent differences in exposed epithelial cell populations, these reflect a fundamental qualitative difference in host cell response to C. albicans. Using transcriptional profiling experiments and real time PCR, we found that wild-type C. albicans induce dose-dependent responses from a FaDu epithelial cell line. However, real time PCR and Western blot analysis using a high dose of various C. albicans strains demonstrated that these dose-dependent responses are associated with ability to promote host cell damage. Our studies support the idea that epithelial cells play a key role in the immune system by monitoring the microbial community at mucosal surfaces and initiating defensive responses when this community is dysfunctional. This places epithelial cells at a pivotal position in the interaction with C. albicans as epithelial cells themselves promote C. albicans stimulated damage. PMID:27088599

  6. Liposomal thymoquinone effectively combats fluconazole-resistant Candida albicans in a murine model.

    PubMed

    Khan, Masood Alam; Aljarbou, Ahmad N; Khan, Arif; Younus, Hina

    2015-05-01

    The aim of the present study was to develop a novel liposomal formulation of thymoquinone (TQ) to treat fluconazole-susceptible and -resistant Candida albicans (C. albicans) infections. The liposomal preparation of TQ (Lip-TQ) was used against a fluconazole-susceptible or -resistant isolate of C. albicans. Various doses of fluconazole (0, 5, 10, 20 and 40 mg/kg) or free TQ or Lip-TQ (0, 1, 2 and 5mg/kg) were used to treat C. albicans infected mice. Mice were observed for 40 days post C. albicans infection, and their kidneys were assessed for the fungal load. Fluconazole showed anti-fungal activity against the drug-susceptible, but not against the -resistant isolate of C. albicans. Free TQ showed its activity against both fluconazole-susceptible or -resistant C. albicans, however, Lip-TQ was found to be the most effective and imparted ∼ 100% and ∼ 90% survival of mice infected with fluconazole-susceptible and -resistant isolates of C. albicans, respectively. Mice treated with Lip-TQ showed highly reduced severity of infection in their tissue homogenates. Therefore, Lip-TQ may effectively be used in the treatment of C. albicans infections, including those which are not responding to fluconazole.

  7. Human Epithelial Cells Discriminate between Commensal and Pathogenic Interactions with Candida albicans.

    PubMed

    Rast, Timothy J; Kullas, Amy L; Southern, Peter J; Davis, Dana A

    2016-01-01

    The commensal fungus, Candida albicans, can cause life-threatening infections in at risk individuals. C. albicans colonizes mucosal surfaces of most people, adhering to and interacting with epithelial cells. At low concentrations, C. albicans is not pathogenic nor does it cause epithelial cell damage in vitro; at high concentrations, C. albicans causes mucosal infections and kills epithelial cells in vitro. Here we show that while there are quantitative dose-dependent differences in exposed epithelial cell populations, these reflect a fundamental qualitative difference in host cell response to C. albicans. Using transcriptional profiling experiments and real time PCR, we found that wild-type C. albicans induce dose-dependent responses from a FaDu epithelial cell line. However, real time PCR and Western blot analysis using a high dose of various C. albicans strains demonstrated that these dose-dependent responses are associated with ability to promote host cell damage. Our studies support the idea that epithelial cells play a key role in the immune system by monitoring the microbial community at mucosal surfaces and initiating defensive responses when this community is dysfunctional. This places epithelial cells at a pivotal position in the interaction with C. albicans as epithelial cells themselves promote C. albicans stimulated damage. PMID:27088599

  8. Molecular and Histological Association Between Candida albicans from Oral Soft Tissue and Carious Dentine of HIV-Positive Children.

    PubMed

    Blignaut, Elaine; van Heerden, Willie F P

    2015-10-01

    Candida albicans and caries are frequently investigated among healthy and immunosuppressed individuals. The objective of this study was to demonstrate the presence of C. albicans on both oral soft and hard tissue and to investigate, at molecular level, the genetic subtype of the organism from the two oral sites. Tongue swabs and dentine scrapings from 362 HIV-positive children, referred for the extraction of carious primary teeth, were cultured on CHROMagar and identified to species level with ID32C. Histological staining of extracted carious teeth was also done. In patients with positive C. albicans cultures from both the tongue and carious dentine, DNA fingerprinting of such paired isolates was performed, using Southern blot hybridisation with the Ca3 probe. Yeasts were cultured from the tongue of 151 (41.7 %) individuals and 57 (37.7 %) simultaneously yielded positive C. albicans cultures from carious dentine. Nine different yeast spp. were identified from the tongue using the ID32C commercial system, but C. albicans was the only species recovered from carious dentine and histological investigation demonstrated fungal elements penetrated into the dentine and not limited to superficial debris on the floor of the cavity. Twelve of 13 paired isolates of C. albicans revealed identical fingerprinting patterns. The findings from this study demonstrated that in a particular individual, the same genetic subtype of C. albicans was capable of colonising both oral soft tissue and carious dentine. This renders carious teeth a constant source, or reservoir, of potentially infectious agents and, particularly among immunosuppressed individuals, should therefore not be left unattended.

  9. Molecular and Histological Association Between Candida albicans from Oral Soft Tissue and Carious Dentine of HIV-Positive Children.

    PubMed

    Blignaut, Elaine; van Heerden, Willie F P

    2015-10-01

    Candida albicans and caries are frequently investigated among healthy and immunosuppressed individuals. The objective of this study was to demonstrate the presence of C. albicans on both oral soft and hard tissue and to investigate, at molecular level, the genetic subtype of the organism from the two oral sites. Tongue swabs and dentine scrapings from 362 HIV-positive children, referred for the extraction of carious primary teeth, were cultured on CHROMagar and identified to species level with ID32C. Histological staining of extracted carious teeth was also done. In patients with positive C. albicans cultures from both the tongue and carious dentine, DNA fingerprinting of such paired isolates was performed, using Southern blot hybridisation with the Ca3 probe. Yeasts were cultured from the tongue of 151 (41.7 %) individuals and 57 (37.7 %) simultaneously yielded positive C. albicans cultures from carious dentine. Nine different yeast spp. were identified from the tongue using the ID32C commercial system, but C. albicans was the only species recovered from carious dentine and histological investigation demonstrated fungal elements penetrated into the dentine and not limited to superficial debris on the floor of the cavity. Twelve of 13 paired isolates of C. albicans revealed identical fingerprinting patterns. The findings from this study demonstrated that in a particular individual, the same genetic subtype of C. albicans was capable of colonising both oral soft tissue and carious dentine. This renders carious teeth a constant source, or reservoir, of potentially infectious agents and, particularly among immunosuppressed individuals, should therefore not be left unattended. PMID:26153022

  10. Species distribution and susceptibility profile of Candida species in a Brazilian public tertiary hospital

    PubMed Central

    2010-01-01

    Background Species identification and antifungal susceptibility tests were carried out on 212 Candida isolates obtained from bloodstream infections, urinary tract infections and dialysis-associated peritonitis, from cases attended at a Brazilian public tertiary hospital from January 1998 to January 2005. Findings Candida albicans represented 33% of the isolates, Candida parapsilosis 31.1%, Candida tropicalis 17.9%,Candida glabrata 11.8%, and others species 6.2%. In blood culture, C. parapsilosis was the most frequently encountered species (48%). The resistance levels to the antifungal azoles were relatively low for the several species, except for C. tropicalis and C. glabrata. Amphotericin B resistance was observed in 1 isolate of C. parapsilosis. Conclusions The species distribution and antifungal susceptibility herein observed presented several epidemiological features common to other tertiary hospitals in Latin American countries. It also exhibited some peculiarity, such as a very high frequency of C. parapsilosis both in bloodstream infections and dialysis-associated peritonitis. C. albicans also occurred in an important number of case infections, in all evaluated clinical sources. C. glabrata presented a high proportion of resistant isolates. The data emphasize the necessity to carry out the correct species identification accompanied by the susceptibility tests in all tertiary hospitals. PMID:20044935

  11. Prevalence of oral Candida carriage and Candida species among cigarette and maras powder users

    PubMed Central

    Keten, Hamit Sirri; Keten, Derya; Ucer, Huseyin; Yildirim, Fatis; Hakkoymaz, Hakan; Isik, Oguz

    2015-01-01

    Objective: The aim of this study was to determine the prevalence of Candida carriage and Candida species among cigarette and Maras powder (MP) users. Material and methods: This study was conducted on 180 volunteering men in 20 cafehouses in the city of Kahramanmaras, Turkey. The sociodemographic characteristics of the participants and the behaviors of MP and cigarette usage were noted down. Culture specimens were obtained from bilateral buccal mucosa and dorsum of the tongue with a sterile cotton-tipped swap. Results: The specimens were inoculated into Sabouraud Dextrose Agar. The mean age of the participants was 40.49 ± 12.89 years (min = 18, max = 87). Fifty-eight percent of the cigarette users, 56.7% of the MP users, and 36.7% of the control group were Candida carriers. The difference of Candida carriage between cigarette and MP users and the control group was statistically significant (P = 0.018 and P = 0.029 respectively). The prevalence of Candida carriage was similar between cigarette and MP users (P = 0.854). The most frequently isolated species was Candida albicans at a rate of 30% in the cigarette users’ group, 28.3% in the MP users’ group and at a rate of 18.3% in the controls. The prevalence of Candida tropicalis carriage was found to be at a rate of 20% in cigarette and 21.7% in the MP users’ group compared to 11.7% in the nonusers. Conclusions: In the present study we found that the prevalence of oral Candida carriage was significantly higher among cigarette and MP users. PMID:26309667

  12. Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans.

    PubMed

    Klis, Frans M; de Koster, Chris G; Brul, Stanley

    2014-01-01

    Bionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeast Saccharomyces cerevisiae and the polymorphic, pathogenic fungus Candida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation of in vivo values. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allows C. albicans to cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.

  13. Cap1p attenuates the apoptosis of Candida albicans.

    PubMed

    Dai, Bao-Di; Wang, Yan; Zhao, Lan-Xue; Li, De-Dong; Li, Ming-Bang; Cao, Yong-Bing; Jiang, Yuan-Ying

    2013-06-01

    Candida albicans is the most common opportunistic fungal pathogen and its apoptosis is inducible by environmental stress. Based on our previous finding that transcription factor Cap1p was involved in baicalein-induced apoptosis, the present study aimed to further clarify the role of Cap1p in apoptosis by observing the impact of CAP1 deletion on cell fate. It was found that apoptotic stimulation with amphotericin B, acetic acid and hydrogen peroxide increased the number of apoptotic and necrotic cells, caspase activity and the accumulation of reactive oxygen species, whereas it decreased the mitochondrial membrane potential and intracellular ATP level in the cap1Δ/Δ mutant. The cell fate was, at least partly, caused by glutathione depletion and attenuation of the expression of the glutathione reductase gene in the cap1Δ/Δ mutant. Collectively, our data suggest that Cap1p participated in the apoptosis of C. albicans by regulating the expression of the glutathione reductase gene and glutathione content. PMID:23517286

  14. Genotoxic effect of photodynamic therapy mediated by curcumin on Candida albicans.

    PubMed

    Carmello, Juliana Cabrini; Pavarina, Ana Cláudia; Oliveira, Rui; Johansson, Björn

    2015-06-01

    Photodynamic therapy (PDT) is a promising method for localized and specific inactivation of fungi and bacteria. A nontoxic light-sensitive compound is taken up by cells, which are then exposed selectively to light, which activates toxicity of the compound. We investigated the potential of sublethal PDT using light-sensitive curcumin (CUR) in combination with blue (455 nm) light to promote reactive oxygen species (ROS) formation in the form of singlet oxygen and DNA damage of Candida albicans. Surprisingly, CUR-mediated PDT but also light alone caused significantly longer comet tails, an indication of DNA damage of C. albicans when compared with the negative control. The intracellular ROS production was also significantly higher for the group treated only with light. However, PDT compared to blue light alone significantly slowed DNA repair. Comet tails decreased during 30 min visualized as a 90% reduction in length in the absence of light for cells treated with light alone, while comet tails of cells treated with PDT only diminished in size about 45%. These results indicate that complex mechanisms may result in PDT in a way that should be considered when choosing the photosensitive compound and other aspects of the treatment design.

  15. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species.

    PubMed

    Raman, Namrata; Lee, Myung-Ryul; Lynn, David M; Palecek, Sean P

    2015-01-01

    Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics. PMID:26287212

  16. Altered hepatic clearance and killing of Candida albicans in the isolated perfused mouse liver model.

    PubMed

    Sawyer, R T; Horst, M N; Garner, R E; Hudson, J; Jenkins, P R; Richardson, A L

    1990-09-01

    The adherence of Candida albicans was studied in situ by using the perfused mouse liver model. After exhaustive washing, 10(6) C. albicans were infused into mouse livers. At the time of recovery, 62 +/- 5% (mean +/- standard error of the mean) of the infused C. albicans were recovered from the liver and 14 +/- 3% were recovered from the effluent for a total recovery of 76 +/- 4%. This indicates that 86 +/- 3% of the original inoculum was trapped by the liver and that 24 +/- 4% was killed within the liver. Chemical pretreatment of C. albicans with 8 M urea, 12 mM dithiothreitol, 2% beta-mercaptoethanol, 1% sodium dodecyl sulfate, 10% Triton X-100, or 3 M potassium chloride or enzyme pretreatment with alpha-mannosidase, alpha-chymotrypsin, subtilisin, beta-N-acetyl-glucosaminidase, pronase, trypsin, papain, or lipase did not alter adherence of C. albicans to hepatic tissue. By contrast, pepsin pretreatment significantly decreased hepatic trapping. Simultaneous perfusion with either 100 mg of C. albicans glycoprotein per liter or 100 mg of C. albicans mannan per liter also decreased trapping. Furthermore, both substances eluted previously trapped C. albicans from hepatic tissue. Chemical pretreatment with 8 M urea, 12 mM dithiothreitol, or 3 M KCI or enzymatic pretreatment with alpha-mannosidase, subtilisin, alpha-chymotrypsin, or papain increased killing of C. albicans three- to fivefold within hepatic tissue. The data suggest that mannose-containing structures on the surface of C. albicans, for example. mannans or glucomannoproteins, mediate adherence of C. albicans within the liver. Indirectly, chemical and enzymatic pretreatment renders C. albicans more susceptible to hepatic killing.

  17. Candida albicans Shaving to Profile Human Serum Proteins on Hyphal Surface

    PubMed Central

    Marín, Elvira; Parra-Giraldo, Claudia M.; Hernández-Haro, Carolina; Hernáez, María L.; Nombela, César; Monteoliva, Lucía; Gil, Concha

    2015-01-01

    Candida albicans is a human opportunistic fungus and it is responsible for a wide variety of infections, either superficial or systemic. C. albicans is a polymorphic fungus and its ability to switch between yeast and hyphae is essential for its virulence. Once C. albicans obtains access to the human body, the host serum constitutes a complex environment of interaction with C. albicans cell surface in bloodstream. To draw a comprehensive picture of this relevant step in host-pathogen interaction during invasive candidiasis, we have optimized a gel-free shaving proteomic strategy to identify both, human serum proteins coating C. albicans cells and fungi surface proteins simultaneously. This approach was carried out with normal serum (NS) and heat inactivated serum (HIS). We identified 214 human and 372 C. albicans unique proteins. Proteins identified in C. albicans included 147 which were described as located at the cell surface and 52 that were described as immunogenic. Interestingly, among these C. albicans proteins, we identified 23 GPI-anchored proteins, Gpd2 and Pra1, which are involved in complement system evasion and 7 other proteins that are able to attach plasminogen to C. albicans surface (Adh1, Eno1, Fba1, Pgk1, Tdh3, Tef1, and Tsa1). Furthermore, 12 proteins identified at the C. albicans hyphae surface induced with 10% human serum were not detected in other hypha-induced conditions. The most abundant human proteins identified are involved in complement and coagulation pathways. Remarkably, with this strategy, all main proteins belonging to complement cascades were identified on the C. albicans surface. Moreover, we identified immunoglobulins, cytoskeletal proteins, metabolic proteins such as apolipoproteins and others. Additionally, we identified more inhibitors of complement and coagulation pathways, some of them serpin proteins (serine protease inhibitors), in HIS vs. NS. On the other hand, we detected a higher amount of C3 at the C. albicans surface in

  18. A single strain of Candida albicans associated with separate episodes of fungemia and meningitis.

    PubMed Central

    Porter, S D; Noble, M A; Rennie, R

    1996-01-01

    Four isolates of Candida albicans recovered from the blood and cerebral spinal fluid of a 66-year-old man during episodes of systemic infection separated by 3 months and antifungal therapy were analyzed by a variety of molecular typing methods. All four isolates were shown to represent the same strain, indicating a relapse of infection rather than reinfection. PMID:8784598

  19. Cerebral macroabscess caused by Candida albicans in an immunocompetent patient: A diagnostic challenge

    PubMed Central

    Figueiredo, Sônia M.; Campolina, Sabrina; Rosa, Carlos A.; Gontijo, Marcus; Tirone, Thelma; Assunção, Claudia B.; Freire, Tarcísio F.A.; Christo, Paulo P.; Caligiorne, Rachel B.

    2014-01-01

    We describe the history of a 24-year-old immunocompetent man with an expansive lesion in the brainstem that, after many misdiagnoses, was found to be caused by a Candida albicans abscess. One year after surgery and 3 months of fluconazole treatment, the patient was asymptomatic and all image and laboratory tests were normal. PMID:24567895

  20. Comparative Susceptibility of Candida albicans to Amphotericin B and Amphotericin B Methyl Ester

    PubMed Central

    Bannatyne, Robert M.; Cheung, Rose

    1977-01-01

    The in vitro antifungal activities of amphotericin B (AMB) and amphotericin B methyl ester (AME) were compared against 465 clinical isolates of Candida albicans. AMB and AME possessed comparable activity against half of the strains, but against the remainder of the strains the activity of AME was slightly lower than that of AMB. Rarely did AME show superior antifungal activity to AMB. PMID:335958

  1. Effect of surface treatments of porcelain on adhesion of Candida albicans.

    PubMed

    Lawaf, Shirin; Azizi, Arash; Farzad, Azin; Adimi, Parvaneh

    2016-01-01

    Surface treatment of porcelain is required to minimize the adhesion of microorganisms to surfaces of the restoration. This study sought to assess the effects of 3 different porcelain surface treatments on adhesion of Candida albicans. This in vitro experimental study was conducted on 60 porcelain disks (10 × 3 mm) randomly divided into 4 groups of 15. The nonglazed group received no surface treatment; specimens in the other 3 groups were glazed in the furnace, overglazed with liquid glaze, or polished using a polishing kit. The specimens were washed, sterilized, and separately incubated with 350 µL of Candida albicans suspension for 24 hours. Specimens were then rinsed for 20 seconds and shaken in 1 mL of saline solution for 1 minute, and 20 µL of this suspension was cultured in a plate and incubated at 37°C for 48 hours. Candida albicans colonies were counted to assess the number of microorganisms adhering to each disk. Data were analyzed with the Kruskal-Wallis test. Statistically significant differences were found among the 4 groups in terms of C albicans adherence (P = 0.001). The nonglazed porcelain had the highest and the overglazed porcelain had the lowest mean adherence value. No statistically significant difference was noted between glazed and polished specimens. Based on the obtained results, overglazing resulted in the least adhesion of C albicans, and polishing provided a surface as smooth as a glazed surface. PMID:27367639

  2. Tetracycline alters drug susceptibility in Candida albicans and other pathogenic fungi

    PubMed Central

    Oliver, Brian G.; Silver, Peter M.; Marie, Chelsea; Hoot, Samantha J.; Leyde, Sarah E.; White, Theodore C.

    2008-01-01

    Summary The tetracycline (TET) promoter has been used in several systems as an inducible regulator of gene expression. In control analyses, the standard Candida albicans laboratory strain SC5314 was found to have altered susceptibility to a variety of antifungal drugs in the presence of relatively high concentrations (50 to 200 μg/ml) of TET. Altered susceptibility was most notable with exposure to amphotericin B (AMB) with a 32 fold increase in susceptibility, and terbinafine (TRB) with a 32 fold decrease in susceptibility. The TET/AMB synergy was observed in several clinical isolates of C. albicans and in distantly related species Aspergillus fumigatus, and Cryptococcus neoformans. The TET/AMB synergy is not related to efflux pump activity, as determined by FACS analyses and by analysis of a strain containing efflux pump deletions. Gene expression analyses by luciferase and by quantitative real time reverse transcriptase PCR failed to identify significant alterations in expression of any genes associated with resistance. C. albicans grown in TET for 48 h does show a reduction in total cellular ergosterol. Analysis of growth curves suggests that the TET effect is associated with lack of a diauxic shift, which is related to a loss of mitochondrial function. MitoTracker fluorescent dye was used to demonstrate that TET has a direct effect on mitochondrial function. These results demonstrate the need for careful analysis of TET effects when using a TET-inducible promoter, especially in studies that involve antifungal drugs. This study defines some limits to the use of the TET inducible promoter, and identifies effects on cells that are the result of TET exposure alone, not the result of expression of a targeted gene. PMID:18310042

  3. pH Regulates White-Opaque Switching and Sexual Mating in Candida albicans.

    PubMed

    Sun, Yuan; Cao, Chengjun; Jia, Wei; Tao, Li; Guan, Guobo; Huang, Guanghua

    2015-11-01

    As a successful commensal and pathogen of humans, Candida albicans encounters a wide range of environmental conditions. Among them, ambient pH, which changes frequently and affects many biological processes in this species, is an important factor, and the ability to adapt to pH changes is tightly linked with pathogenesis and morphogenesis. In this study, we report that pH has a profound effect on white-opaque switching and sexual mating in C. albicans. Acidic pH promotes white-to-opaque switching under certain culture conditions but represses sexual mating. The Rim101-mediated pH-sensing pathway is involved in the control of pH-regulated white-opaque switching and the mating response. Phr2 and Rim101 could play a major role in acidic pH-induced opaque cell formation. Despite the fact that the cyclic AMP (cAMP) signaling pathway does not play a major role in pH-regulated white-opaque switching and mating, white and opaque cells of the cyr1/cyr1 mutant, which is defective in the production of cAMP, showed distinct growth defects under acidic and alkaline conditions. We further discovered that acidic pH conditions repressed sexual mating due to the failure of activation of the Ste2-mediated α-pheromone response pathway in opaque A: cells. The effects of pH changes on phenotypic switching and sexual mating could involve a balance of host adaptation and sexual reproduction in C. albicans.

  4. Evaluation of Candida albicans formation on feldspathic porcelain subjected to four surface treatment methods.

    PubMed

    Karayazgan, Banu; Atay, Arzu; Saracli, Mehmet Ali; Gunay, Yumushan

    2010-03-01

    Candida albicans, known for its adhesion on prosthetic materials and oral tissues, is the most frequently encountered fungal infection in dentistry. The aim of this study was to evaluate the effects of four different surface treatment methods and immersion in artificial saliva on the surface roughness of and candida adhesion on dental porcelains. The four surface treatment methods were namely: natural glaze, overglaze, dual ion exchange, and polishing. Surface roughness of porcelain was evaluated using a surface profilometer and by SEM. Candida adhesion was examined by culturing two Candida strains on porcelain specimens followed by a colorimetric method using XTT/Coenzyme Q0. It became evident that Candida adhesion was found more in the specimens treated with natural glaze and polishing. Further, by the visual inspection of SEM images and comparison of surface roughness, polished and natural-glazed specimens showed rougher surface characteristics than overglazed and dual-ion-exchanged specimens. PMID:20379024

  5. IL-33 Priming Enhances Peritoneal Macrophage Activity in Response to Candida albicans.

    PubMed

    Tran, Vuvi G; Cho, Hong R; Kwon, Byungsuk

    2014-08-01

    IL-33 is a member of the IL-1 cytokine family and plays a role in the host defense against bacteria, viruses, and fungi. In this study, we investigated the function of IL-33 and its receptor in in vitro macrophage responses to Candida albicans. Our results demonstrate that pre-sensitization of isolated peritoneal macrophages with IL-33 enhanced their pro-inflammatory cytokine production and phagocytic activity in response to C. albicans. These macrophage activities were entirely dependent on the ST2-MyD88 signaling pathway. In addition, pre-sensitization with IL-33 also increased ROS production and the subsequent killing ability of macrophages following C. albicans challenge. These results indicate that IL-33 may increase anti-fungal activity against Candida through macrophage-mediated resistance mechanisms. PMID:25177252

  6. Identification of local clinical Candida isolates using CHROMagar Candida™ as a primary identification method for various Candida species.

    PubMed

    Madhavan, P; Jamal, F; Chong, P P; Ng, K P

    2011-08-01

    The objective of our study was to study the effectiveness of CHROMagar Candida™ as the primary identification method for various clinical Candida isolates, other than the three suggested species by the manufacturer. We studied 34 clinical isolates which were isolated from patients in a local teaching hospital and 7 ATCC strains. These strains were first cultured in Sabouraud dextrose broth (SDB) for 36 hours at 35ºC, then on CHROMagar plates at 30ºC, 35ºC and 37ºC. The sensitivity of this agar to identify Candida albicans, Candida dubliniensis, Candida tropicalis, Candida glabrata, Candida rugosa, Candida krusei and Candida parapsilosis ranged between 25 and 100% at 30ºC, 14% and 100% at 35ºC, 56% and 100% at 37ºC. The specificity of this agar was 100% at 30ºC, between 97% and 100% at 35ºC, 92% and 100% at 37ºC. The efficiency of this agar ranged between 88 and 100% at 30ºC, 83% and 100% at 35ºC, 88% and 100% at 37ºC. Each species also gave rise to a variety of colony colours ranging from pink to green to blue of different colony characteristics. Therefore, the chromogenic agar was found to be useful in our study for identifying clinical Candida isolates. PMID:22041745

  7. The correlation of virulence, pathogenicity, and itraconazole resistance with SAP activity in Candida albicans strains.

    PubMed

    Feng, Wenli; Yang, Jing; Pan, Yanwei; Xi, Zhiqin; Qiao, Zusha; Ma, Yan

    2016-02-01

    The relationship between SAP2 activity and drug resistance in Candida albicans was investigated by using itraconazole-resistant and itraconazole-sensitive C. albicans isolates. The precipitation zones were measured to analyze SAP2 activity. Mice were classified into itraconazole-resistant and -sensitive C. albicans isolate groups, and a control group, with their survival and mortality rate being observed over 30 days. The relative expression levels of CDR1, CDR2, MDR1, and SAP2 were measured using RT-PCR. It was found that the secreted aspartyl proteinase activity of itraconazole-resistant C. albicans strains was significantly higher than that of itraconazole-sensitive C. albicans strains (P < 0.001). A significantly higher mortality rate was recorded for mice treated with itraconazole-resistant C. albicans than for mice treated with itraconazole-sensitive C. albicans. In regards to the CDR1, CDR2, and MDR1 genes, there was no significant difference between the 2 groups of mice. Positive correlations between SAP2 and MDR1 and between CDR1 and CDR2 were found. The high expression level of SAP2 may relate to the virulence, pathogenicity, and resistance of C. albicans.

  8. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans.

    PubMed

    Hsu, Chih-Chieh; Lai, Wen-Lin; Chuang, Kuei-Chin; Lee, Meng-Hwan; Tsai, Ying-Chieh

    2013-07-01

    Candida spp. are part of the natural human microbiota, but they also represent important opportunistic human pathogens. Biofilm-associated Candida albicans infections are clinically relevant due to their high levels of resistance to traditional antifungal agents. In this study, we investigated the ability of linalool to inhibit the formation of C. albicans biofilms and reduce existing C. albicans biofilms. Linalool exhibited antifungal activity against C. albicans ATCC 14053, with a minimum inhibitory concentration (MIC) of 8 mM. Sub-MIC concentrations of linalool also inhibited the formation of germ tubes and biofilms in that strain. The defective architecture composition of C. albicans biofilms exposed to linalool was characterized by scanning electron microscopy. The expression levels of the adhesin genes HWP1 and ALS3 were downregulated by linalool, as assessed by real-time RT-PCR. The expression levels of CYR1 and CPH1, which encode components of the cAMP-PKA and MAPK hyphal formation regulatory pathways, respectively, were also suppressed by linalool, as was the gene encoding their upstream regulator, Ras1. The expression levels of long-term hyphae maintenance associated genes, including UME6, HGC1, and EED1, were all suppressed by linalool. These results indicate that linalool may have therapeutic potential in the treatment of candidiasis associated with medical devices because it interferes with the morphological switch and biofilm formation of C. albicans.

  9. Time-course proteomic profile of Candida albicans during adaptation to a fetal serum.

    PubMed

    Aoki, Wataru; Ueda, Tomomi; Tatsukami, Yohei; Kitahara, Nao; Morisaka, Hironobu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2013-02-01

    Candida albicans is a commensal organism; however, it causes fatal diseases if the host immunity is compromised. The mortality rate is very high due to the lack of effective treatment, leading to ceaseless demand for novel pharmaceuticals. In this study, time-course proteomics of C. albicans during adaptation to fetal bovine serum (FBS) was described. Time-course proteomics is a promising way to understand the exact process of going adaptation in dynamically changing environments. Candida albicans was cultivated in yeast nitrogen base (YNB) ± FBS media, and we identified 1418 proteins in the endpoint samples incubated for 0 or 60 min by a LC-MS/MS system with a long monolithic silica capillary column. Next, we carried out time-course proteomics of the YNB + FBS samples to identify top-priority proteins for adaption to FBS. We identified 16 proteins as nascent/newly synthesized proteins, and they were recognized as candidates of important virulent factors. Gene ontology analysis revealed that transport-related proteins were enriched in the 16 proteins, indicating that C. albicans probably put priority in time on the acquisition of essential elements. Time-course proteomics of C. albicans revealed the order of priority to adapt to FBS. Depicting time-course dynamics will lead to profound understandings of virulence of C. albicans. PMID:23620121

  10. An assessment of growth media enrichment on lipid metabolome and the concurrent phenotypic properties of Candida albicans.

    PubMed

    Mahto, Kaushal Kumar; Singh, Ashutosh; Khandelwal, Nitesh Kumar; Bhardwaj, Nitin; Jha, Jaykar; Prasad, Rajendra

    2014-01-01

    A critical question among the researchers working on fungal lipid biology is whether the use of an enriched growth medium can affect the lipid composition of a cell and, therefore, contribute to the observed phenotypes. One presumption is that enriched medias, such as YPD (yeast extract, peptone and dextrose), are likely to contain lipids, which may homogenize with the yeast lipids and play a role in masking the actual differences in the observed phenotypes or lead to an altered phenotype altogether. To address this issue, we compared the lipids of Candida albicans, our fungus of interest, grown in YPD or in a defined media such as YNB (yeast nitrogen base). Mass spectrometry-based lipid analyses showed differences in the levels of phospholipids, including phosphatidylinositol, phosphatidylglycerol, lyso-phospholipids; sphingolipids, such as mannosyldiinositolphosphorylceramide; and sterols, such as ergostatetraenol. Significant differences were observed in 70 lipid species between the cells grown in the two media, but the two growth conditions did not affect the morphological characteristics of C. albicans. The lipid profiles of the YNB- and YPD-grown C. albicans cells did vary, but these differences did not influence their response to the majority of the tested agents. Rather, the observed differences could be attributed to the slow growth rate of the Candida cells in YNB compared to YPD. Notably, the altered lipid changes between the two media did impact the susceptibility to some drugs. This data provided evidence that changes in media can lead to certain lipid alterations, which may affect specific pathways but, in general, do not affect the majority of the phenotypic properties of C. albicans. It was determined that either YNB or YPD may be suitable for the growth and lipid analysis of C. albicans, depending upon the experimental requirements, but additional precautions are necessary when correlating the phenotypes with the lipids.

  11. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle.

    PubMed

    Zore, Gajanan B; Thakre, Archana D; Jadhav, Sitaram; Karuppayil, S Mohan

    2011-10-15

    Anti-Candida potential of six terpenoids were evaluated in this study against various isolates of Candida albicans (n=39) and non-C. albicans (n=9) that are differentially susceptible to fluconazole. All the six terpenoids tested, showed excellent activity and were equally effective against isolates of Candida sps., tested in this study. Linalool and citral were the most effective ones, inhibiting all the isolates at ≤0.064% (v/v). Five among the six terpenoids tested were fungicidal. Time dependent kill curve assay showed that MFCs of linalool and eugenol were highly toxic to C. albicans, killing 99.9% inoculum within seven min of exposure, while that of citronellal, linalyl acetate and citral required 15min, 1h and 2h, respectively. FIC index values (Linalool - 0.140, benzyl benzoate - 0.156, eugenol - 0.265, citral - 0.281 and 0.312 for linalyl acetate and citronellal) and isobologram obtained by checker board assay showed that all the six terpenoids tested exhibit excellent synergistic activity with fluconazole against a fluconazole resistant strain of C. albicans. Terpenoids tested arrested C. albicans cells at different phases of the cell cycle i.e. linalool and LA at G1, citral and citronellal at S phase and benzyl benzoate at G2-M phase and induced apoptosis. Linalool, citral, citronellal and benzyl benzoate caused more than 50% inhibition of germ tube induction at 0.008%, while eugenol and LA required 0.032 and 0.016% (v/v) concentrations, respectively. MICs of all the terpenoids for the C. albicans growth were non toxic to HeLa cells. Terpenoids tested exhibited excellent activity against C. albicans yeast and hyphal form growth at the concentrations that are non toxic to HeLa cells. Terpenoids tested in this study may find use in antifungal chemotherapy, not only as antifungal agents but also as synergistic agents along with conventional drugs like fluconazole.

  12. Candida albicans bloodstream isolates in a German university hospital are genetically heterogenous and susceptible to commonly used antifungals.

    PubMed

    Huyke, Johanna; Martin, Ronny; Walther, Grit; Weber, Michael; Kaerger, Kerstin; Bougnoux, Marie-Elisabeth; Elias, Johannes; Kurzai, Oliver

    2015-10-01

    From an eight-year-span, 99 Candida bloodstream isolates were collected at the University Hospital Wuerzburg, Germany. In this study, all strains were analyzed using molecular and phenotypic typing methods. Confirmatory species identification revealed three isolates that were initially diagnosed as C. albicans to be actually C. dubliniensis. Two isolates contained a mixed culture of C. albicans and C. glabrata, in one of the specimens both species could be separated while it was not possible to recover C. albicans in the other sample. The remaining 95 C. albicans isolates were profiled by multilocus sequence typing (MLST). Phylogenetic analyses showed a highly heterogenous collection of strains, associated with many different clades and constituting a set of new diploid sequence types (DST). For all strains with identical DST, patient data were reviewed for potential nosocomial transmission. In addition, all isolates were tested for their susceptibility to amphotericin B, caspofungin, fluconazole, itraconazole, posaconazole and voriconazole. No clinically relevant resistance could be detected. Furthermore, these data underline that correlation between minimal inhibitory concentrations for caspofungin and anidulafungin is low.

  13. Dill (Anethum graveolens L.) seed essential oil induces Candida albicans apoptosis in a metacaspase-dependent manner.

    PubMed

    Chen, Yuxin; Zeng, Hong; Tian, Jun; Ban, Xiaoquan; Ma, Bingxin; Wang, Youwei

    2014-04-01

    Dill (Anethum graveolens L.) has been used in traditional Uighur medicine for its various pharmacological activities. Previous studies have suggested that dill seed essential oil (DSEO) has anti-Candida potential and the mechanism of its action also has been studied. Our study examined whether DSEO induces apoptosis in the human pathogen Candida albicans ATCC 64550. Our results indicate that C. albicans ATCC 64550 cells treated with DSEO show some typical apoptosis characters, such as decrease in adenosine triphosphatase (ATPase) activity, chromatin condensation, nuclear fragmentation, and phosphatidylserine (PS) exposure. The DSEO promoted cytochrome c (cyt c) release and metacaspase activation, which resulted in C. albicans ATCC 64550 apoptosis. L-cysteine prevented the DSEO-induced nuclear fragmentation, PS externalization, and metacaspase activation, thus indicating that the reactive oxygen species (ROS) is an important mediator of DSEO-induced apoptosis. To our knowledge, this study is the first to report the induction of apoptosis of this pathogen with concomitant metacaspase activation by DSEO. PMID:24742834

  14. DNA content, kinetic complexity, and the ploidy question in Candida albicans.

    PubMed Central

    Riggsby, W S; Torres-Bauza, L J; Wills, J W; Townes, T M

    1982-01-01

    Candida albicans is a dimorphic fungus that is pathogenic for humans. No sexual cycle has been reported for this fungus, and earlier reports have differed on whether typical strains of C. albicans are haploid or diploid. Previous estimates of the DNA content of C. albicans varied by one order of magnitude. We used three independent methods to measure the kinetic complexity of the single-copy DNA from a typical strain of C. albicans (strain H317) to determine the DNA content per haploid genote; we obtained values of 15 and 20 fg per cell by using S1 nuclease and hydroxyapatite assays, respectively. Optical assays for DNA reassociation kinetics, although not definitive in themselves, yielded values in this range. Chemical measurements of the DNA content of several typical strains, including strain H317, yielded values clustered about a mean of 37 fg per cell. We concluded that these strains are diploid. PMID:6765567

  15. Increase of mouse resistance to Candida albicans infection by thymosin alpha 1.

    PubMed Central

    Bistoni, F; Marconi, P; Frati, L; Bonmassar, E; Garaci, E

    1982-01-01

    Studies were carried out to assess the ability of thymosin alpha 1 to prolong the survival of mice challenged with Candida albicans. Two- to four-month-old mice were treated with graded doses of thymosin alpha 1 before, after, or before and after intravenous challenge with C. albicans. Significant resistance ot lethal infection was afforded by 100 micrograms of thymosin alpha 1 per kg given before or before and after challenge, whereas no protection was found in mice treated with thymosin alpha 1 administered at any dose level after inoculation. Pretreatment with thymosin alpha 1 also prevented the increased susceptibility to C. albicans infection of mice pretreated with cyclophosphamide on day -6. The results showed that thymosin alpha 1 was capable of protecting untreated or cyclophosphamide-pretreated mice from C. albicans infection at an optimal dose and schedule of administration. PMID:7085074

  16. Additive potential of ginger starch on antifungal potency of honey against Candida albicans

    PubMed Central

    Moussa, Ahmed; Noureddine, Djebli; SM, Hammoudi; Saad, Aissat; Bourabeh, Akila; Houari, Hemida

    2012-01-01

    Objective To evaluate the additive action of ginger starch on the antifungal activity of honey against Candida albicans (C. albicans). Methods C. albicans was used to determine the minimum inhibitory concentration (MIC) of four varieties of Algerian honey. Lower concentrations of honey than the MIC were incubated with a set of concentrations of starch and then added to media to determine the minimum additive inhibitory concentration (MAIC). Results The MIC for the four varieties of honey without starch against C. albicans ranged between 38% and 42% (v/v). When starch was incubated with honey and then added to media, a MIC drop was noticed with each variety. MAIC of the four varieties ranged between 32% honey (v/v) with 4% starch and 36% honey (v/v) with 2% starch. Conclusions The use of ginger starch allows honey benefit and will constitute an alternative way against the resistance to antifungal agents. PMID:23569909

  17. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species.

    PubMed Central

    Odds, F C; Bernaerts, R

    1994-01-01

    CHROMagar Candida is a novel, differential culture medium that is claimed to facilitate the isolation and presumptive identification of some clinically important yeast species. We evaluated the use of this medium with 726 yeast isolates, including 82 isolated directly on the medium from clinical material. After 2 days of incubation at 37 degrees C, 285 C. albicans isolates gave distinctive green colonies that were not seen with any of 441 other yeast isolates representing 21 different species. A total of 54 C. tropicalis isolates also developed distinctive dark blue-gray colonies with a halo of dark brownish purple in the surrounding agar. C. krusei isolates (n = 43) also formed highly characteristic rough, spreading colonies with pale pink centers and a white edge that was otherwise encountered only rarely with isolates of C. norvegensis. Trichosporon spp. (n = 34) formed small, pale colonies that became larger and characteristically rough with prolonged incubation. Most of the other 310 yeasts studied formed colonies with a color that ranged from white to pink to purple with a brownish tint. The only exceptions were found among isolates identified as Geotrichum sp. or Pichia sp., some of which formed colonies with a gray to blue color and which in two instances formed a green pigment or a dark halo in the agar. The specificity and sensitivity of the new medium for the presumptive identification of C. albicans, C. krusei, and C. tropicalis exceeded 99% for all three species. A blinded reading test involving four personnel and 57 yeast isolates representing nine clinically important species confirmed that colonial appearance after 48 h of incubation on CHROMagar Candida afforded the correct presumptive recognition of C. albicans, C. tropicalis, C, krusei, and Trichosporon spp. None of nine bacterial isolates grew on CHROMagar Candida within 72 h, and bacteria (Escherichia coli) grew from only 4 of 104 vaginal, 100 oral, and 99 anorectal swabs. The new medium

  18. Chemical characterization by GC-MS and in vitro activity against Candida albicans of volatile fractions prepared from Artemisia dracunculus, Artemisia abrotanum, Artemisia absinthium and Artemisia vulgaris

    PubMed Central

    2014-01-01

    Background A large number of essential oils is reported to have significant activity against Candida albicans. But the different chemical composition influences the degree of their activity. The intention of this study was to investigate the chemical composition and the activity against Candida albicans of volatile oils obtained from Artemisia dracunculus, A. abrotanum, A. absinthium and A. vulgaris (Asteraceae). The aim of the study was to identify new chemical compounds that have effect against C. albicans. The essential oils were obtained by hydrodistillation or extraction with dichloromethane (a new procedure we developed trying to obtain better, more separated compounds) from air dried above ground plant material and analyzed by GC-MS. Additionally commercial essential oils from the same species were tested. The Candida albicans inhibition studies were carried out by the paper disc diffusion method. Results The essential oils shared common components but presented differences in composition and showed variable antifungal activity. Davanone and derivatives thereof, compounds with silphiperfolane skeleton, estragole, davanone oil, β-thujone, sabinyl acetate, herniarin, cis-chrysanthenyl acetate, 1,8-cineol, and terpineol were the main components of Artemisia volatiles. Conclusions Among the volatile fractions tested those from A. abrotanum containing davanone or silphiperfolane derivatives showed the highest antifungal activity. The in vitro tests revealed that the Artemisia oils are promising candidates for further research to develop novel anti-candida drugs. PMID:24475951

  19. Chronic Candida albicans Meningitis in a 4-Year-Old Girl with a Homozygous Mutation in the CARD9 Gene (Q295X).

    PubMed

    Herbst, Martin; Gazendam, Roel; Reimnitz, Denise; Sawalle-Belohradsky, Julie; Groll, Andreas; Schlegel, Paul-Gerhardt; Belohradsky, Bernd; Renner, Ellen; Klepper, Jörg; Grimbacher, Bodo; Kuijpers, Taco; Liese, Johannes

    2015-09-01

    A 4-year-old Turkish girl of consanguineous parents was hospitalized for the evaluation of headaches and recurrent febrile episodes of unknown origin. Her medical history was unremarkable except for a few episodes of uncomplicated oral thrush. Meningitis was diagnosed, and Candida albicans was the only pathogen identified by polymerase chain reaction and culture. Despite systemic antifungal multidrug therapy, a prolonged course of 16 months of therapy was necessary to clear C. albicans from the cerebrospinal fluid. Molecular genetic analysis revealed a homozygous caspase recruitment domain 9 (CARD9) mutation (Q295X), which was reported to predispose to chronic mucocutaneous candidiasis. Immunologic workup excluded predisposing B-cell and T-cell defects. In addition, T cells producing interleukin-17 were repeatedly measured within the normal range. Analyses of neutrophils demonstrated normal nicotinamide adenine dinucleotide phosphate oxidase activity in response to various stimuli including Staphylococcus aureus and C. albicans. Additional neutrophilic functional testing, however, showed a decreased cytotoxicity to nonopsonized C. albicans, indicating an impaired killing mechanism against Candida spp. independent from the production of reactive oxygen species by the nicotinamide adenine dinucleotide phosphate oxidase system. Because this defect was only demonstrated in the absence of opsonins, it might especially predispose to chronic C. albicans infections in the central nervous system where opsonin concentrations are usually low. We, therefore, suggest that due to an additional neutrophil dependent defect CARD9 deficiency predisposes not only to chronic mucocutaneous candidiasis, but also to invasive chronic Candida infections, especially of the central nervous system.

  20. Effect of Candida albicans on Intestinal Ischemia-reperfusion Injury in Rats

    PubMed Central

    Yan, Lei; Wu, Chun-Rong; Wang, Chen; Yang, Chun-Hui; Tong, Guang-Zhi; Tang, Jian-Guo

    2016-01-01

    Background: Inflammation is supposed to play a key role in the pathophysiological processes of intestinal ischemia-reperfusion injury (IIRI), and Candida albicans in human gut commonly elevates inflammatory cytokines in intestinal mucosa. This study aimed to explore the effect of C. albicans on IIRI. Methods: Fifty female Wistar rats were divided into five groups according to the status of C. albicans infection and IIRI operation: group blank and sham; group blank and IIRI; group cefoperazone plus IIRI; group C. albicans plus cefoperazone and IIRI (CCI); and group C. albicans plus cefoperazone and sham. The levels of inflammatory factors tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and diamine oxidase (DAO) measured by enzyme-linked immunosorbent assay were used to evaluate the inflammation reactivity as well as the integrity of small intestine. Histological scores were used to assess the mucosal damage, and the C. albicans blood translocation was detected to judge the permeability of intestinal mucosal barrier. Results: The levels of inflammatory factors TNF-α, IL-6, and IL-1β in serum and intestine were higher in rats undergone both C. albicans infection and IIRI operation compared with rats in other groups. The levels of DAO (serum: 44.13 ± 4.30 pg/ml, intestine: 346.21 ± 37.03 pg/g) and Chiu scores (3.41 ± 1.09) which reflected intestinal mucosal disruption were highest in group CCI after the operation. The number of C. albicans translocated into blood was most in group CCI ([33.80 ± 6.60] ×102 colony forming unit (CFU)/ml). Conclusion: Intestinal C. albicans infection worsened the IIRI-induced disruption of intestinal mucosal barrier and facilitated the subsequent C. albicans translocation and dissemination. PMID:27411459

  1. Effect of UV irradiation on lethal infection of mice with Candida albicans.

    PubMed

    Denkins, Y M; Kripke, M L

    1993-02-01

    Exposure of mice to UV radiation inhibits the induction and elicitation of the delayed-type hypersensitivity (DTH) response to Candida albicans. To determine whether UV irradiation also affects the pathogenesis of systemic C. albicans infection, C3H mice were exposed to a single dose of 48 kJ/m2 UV-B radiation from FS40 sunlamps 5 days before or 5 days after sensitization with formalin-fixed C. albicans and challenged intravenously (i.v.) with a lethal dose of viable fungi 6 days after sensitization (11 or 1 days after UV irradiation). Exposing unsensitized mice to UV radiation 11 days before lethal challenge had no effect on survival, but the survival time of mice exposed to UV radiation 1 day before challenge was reduced by more than 50%. In the latter group, decreased survival time correlated with persistence of C. albicans in the brain and progressive growth of C. albicans in the kidneys. Sensitization of unirradiated mice with formalin-fixed C. albicans extended their survival time following lethal i.v. challenge with viable C. albicans. Exposing the mice to UV radiation 5 days before sensitization did not abrogate this beneficial effect of sensitization on survival, even though it significantly reduced the DTH response. Thus, immunity to systemic infection did not depend on the ability of the mice to exhibit a DTH response to C. albicans. The beneficial effect of sensitization on survival after lethal infection was abrogated, however, in mice exposed to UV radiation 1 day before lethal challenge with C. albicans. Furthermore, these mice were unable to contain the progressive growth of C. albicans in the kidneys, in contrast to sensitized, unirradiated mice. PMID:8451288

  2. Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder

    PubMed Central

    Severance, Emily G; Gressitt, Kristin L; Stallings, Catherine R; Katsafanas, Emily; Schweinfurth, Lucy A; Savage, Christina L; Adamos, Maria B; Sweeney, Kevin M; Origoni, Andrea E; Khushalani, Sunil; Leweke, F Markus; Dickerson, Faith B; Yolken, Robert H

    2016-01-01

    Immune aberrations in schizophrenia and bipolar disorder have led to the hypotheses that infectious agents or corresponding immune responses might contribute to psychiatric etiopathogeneses. We investigated case–control differences in exposure to the opportunistic fungal pathogen, Candida albicans, and examined associations with cognition, medication, lifestyle, and somatic conditions. We quantified C. albicans IgG antibodies in two cohorts totaling 947 individuals and evaluated odds ratios (OR) of exposure with psychiatric disorder using multivariate regressions. The case–control cohort included 261 with schizophrenia, 270 with bipolar disorder, and 277 non-psychiatric controls; the second included 139 with first-episode schizophrenia, 78 of whom were antipsychotic naive. No differences in C. albicans exposures were found until diagnostic groups were stratified by sex. In males, C. albicans seropositivity conferred increased odds for a schizophrenia diagnosis (OR 2.04–9.53, P⩽0.0001). In females, C. albicans seropositivity conferred increased odds for lower cognitive scores on Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) in schizophrenia (OR 1.12, P⩽0.004), with significant decreases on memory modules for both disorders (P⩽0.0007–0.03). C. albicans IgG levels were not impacted by antipsychotic medications. Gastrointestinal (GI) disturbances were associated with elevated C. albicans in males with schizophrenia and females with bipolar disorder (P⩽0.009–0.02). C. albicans exposure was associated with homelessness in bipolar males (P⩽0.0015). In conclusion, sex-specific C. albicans immune responses were evident in psychiatric disorder subsets. Inquiry regarding C. albicans infection or symptoms may expedite amelioration of this treatable comorbid condition. Yeast exposure as a risk factor for schizophrenia and its associated cognitive and GI effects require further investigation including the possible contribution of

  3. Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder.

    PubMed

    Severance, Emily G; Gressitt, Kristin L; Stallings, Catherine R; Katsafanas, Emily; Schweinfurth, Lucy A; Savage, Christina L; Adamos, Maria B; Sweeney, Kevin M; Origoni, Andrea E; Khushalani, Sunil; Leweke, F Markus; Dickerson, Faith B; Yolken, Robert H

    2016-01-01

    Immune aberrations in schizophrenia and bipolar disorder have led to the hypotheses that infectious agents or corresponding immune responses might contribute to psychiatric etiopathogeneses. We investigated case-control differences in exposure to the opportunistic fungal pathogen, Candida albicans, and examined associations with cognition, medication, lifestyle, and somatic conditions. We quantified C. albicans IgG antibodies in two cohorts totaling 947 individuals and evaluated odds ratios (OR) of exposure with psychiatric disorder using multivariate regressions. The case-control cohort included 261 with schizophrenia, 270 with bipolar disorder, and 277 non-psychiatric controls; the second included 139 with first-episode schizophrenia, 78 of whom were antipsychotic naive. No differences in C. albicans exposures were found until diagnostic groups were stratified by sex. In males, C. albicans seropositivity conferred increased odds for a schizophrenia diagnosis (OR 2.04-9.53, P⩽0.0001). In females, C. albicans seropositivity conferred increased odds for lower cognitive scores on Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) in schizophrenia (OR 1.12, P⩽0.004), with significant decreases on memory modules for both disorders (P⩽0.0007-0.03). C. albicans IgG levels were not impacted by antipsychotic medications. Gastrointestinal (GI) disturbances were associated with elevated C. albicans in males with schizophrenia and females with bipolar disorder (P⩽0.009-0.02). C. albicans exposure was associated with homelessness in bipolar males (P⩽0.0015). In conclusion, sex-specific C. albicans immune responses were evident in psychiatric disorder subsets. Inquiry regarding C. albicans infection or symptoms may expedite amelioration of this treatable comorbid condition. Yeast exposure as a risk factor for schizophrenia and its associated cognitive and GI effects require further investigation including the possible contribution of gut

  4. Treatment with probiotics in experimental oral colonization by Candida albicans in murine model (DBA/2).

    PubMed

    Matsubara, V H; Silva, E G; Paula, C R; Ishikawa, K H; Nakamae, A E M

    2012-04-01

    The aim of this study is to evaluate the oral colonization by Candida albicans in experimental murine immunosuppressed DBA/2 and treatment with probiotic bacteria. To achieve these objectives, 152 DBA/2-immunosuppressed mice were orally inoculated with a suspension of C. albicans containing 10(8) viable yeast cells, the animals were treated with nystatin or with the probiotics (Lactobacillus acidophilus and Lactobacillus rhamnosus). Evaluations were performed by Candida count from oral mucosa swabbing. The oral mucosa colonization by C. albicans started at day 1 after inoculation, remained maximal from day 3 until day 7, and then decreased significantly. Probiotics reduced the C. albicans colonization significantly on the oral mucosa in comparison with the untreated animal group. In the group treated with L. rhamnosus, the reduction in yeast colonization was significantly higher compared with that of the group receiving nystatin. Immunosuppressed animal model DBA/2 is a relevant model for experimental Candida oral colonization, and the treatment with probiotics in this model may be an effective alternative to prevent it.

  5. [Neonatal Candida infections and the antifungal susceptibilities of the related Candida species].

    PubMed

    Altuncu, Emel; Bilgen, Hülya; Cerikçioğlu, Nilgün; Ilki, Arzu; Ulger, Nurver; Bakır, Mustafa; Akman, Ipek; Ozek, Eren

    2010-10-01

    Among nosocomial infections in the newborns, the incidence of fungal infections has been rising over the last decades. Fluconazole has been a new option for treatment however, expanded use of the drug brought up the development of resistance. In this study, species of the Candida isolates from neonates with candida infections, their antifungal susceptibilities and the effectiveness of the therapy were evaluated. All the species of Candida isolates from blood, urine and sterile body fluids of 54 neonates and their antifungal susceptibilities were evaluated retrospectively over the 13-year period. Demographic characteristics, risk factors, infection foci, Candida species causing infection and their in vitro susceptibilities for fluconazole (FCZ) and amphotericin B (AMB) and treatment responses were analyzed. The antifungal susceptibility testing of isolates was performed by microdilution technique. The median birth weight and gestational age of the study groups were 1735 (660-3990) g and 33 (24-40) weeks, respectively. Among the patients, 19 (35%) were term, while 35 (65%) were preterm [< 32 weeks n = 20 (37%), < 28 weeks n = 7 (13%)]. The percentage of low birth weight infants was 65% (42% was < 1500 g, 13% was < 1000 g). Candida spp. were isolated mostly from blood samples (63%), followed by urine (46%), cerebrospinal fluid (CSF; 5%), peritoneal fluid (3%) and endotracheal aspirate (2%). Multifocal growth was determined in 10 (18%) cases. The isolated species were C.albicans (n =36) as being the most common isolate followed by C.parapsilosis (n = 12), C.tropicalis (n = 1), C.kefyr (n = 1), C.lusitaniae (n = 1), C.pelluculosa (n = 1) and Candida spp. (n = 2). Prior antibiotic use, long term hospitalization, total parenteral nutrition and use of lipid solutions, prematurity and catheter use were determined as the most frequently associated factors causing candidal infections. A congenital abnormality, mainly myeloschisis and hydrocephaly, was detected in 18 (33%) of

  6. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms.

    PubMed

    Martins, Margarida; Uppuluri, Priya; Thomas, Derek P; Cleary, Ian A; Henriques, Mariana; Lopez-Ribot, José L; Oliveira, Rosário

    2010-05-01

    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.

  7. Candida albicans Amphotericin B-Tolerant Persister Formation is Closely Related to Surface Adhesion.

    PubMed

    Sun, Jing; Li, Zhigang; Chu, Haoyue; Guo, Jing; Jiang, Guangshui; Qi, Qingguo

    2016-02-01

    Candida albicans persisters have so far been observed only in biofilm environment; the biofilm element(s) that trigger(s) persister formation are still unknown. In this study, we tried to further elucidate the possible relationship between C. albicans persisters and the early phases of biofilm formation, especially the surface adhesion phase. Three C. albicans strains were surveyed for the formation of persisters. We tested C. albicans persister formation dynamically at different time points during the process of adhesion and biofilm formation. The number of persister cells was determined based on an assessment of cell viability after amphotericin B treatment and colony-forming unit assay. None of the planktonic cultures contained persisters. Immediately following adhesion of C. albicans cells to the surface, persister cells emerged and the proportion of persisters reached a peak of 0.2-0.69 % in approximately 2-h biofilm. As the biofilm matured, the proportion of persisters decreased and was only 0.01-0.02 % by 24 h, while the number of persisters remained stable with no significant change. Persisters were not detected in the absence of an attachment surface which was pre-coated. Persisters were also absent in biofilms that were scraped to disrupt surface adhesion prior to amphotericin B treatment. These results indicate that C. albicans antifungal-tolerant persisters are produced mainly in surface adhesion phase and surface adhesion is required for the emergence and maintenance of C. albicans persisters.

  8. Essential Functional Modules for Pathogenic and Defensive Mechanisms in Candida albicans Infections

    PubMed Central

    Tsai, I-Chun; Lin, Che; Chuang, Yung-Jen

    2014-01-01

    The clinical and biological significance of the study of fungal pathogen Candida albicans (C. albicans) has markedly increased. However, the explicit pathogenic and invasive mechanisms of such host-pathogen interactions have not yet been fully elucidated. Therefore, the essential functional modules involved in C. albicans-zebrafish interactions were investigated in this study. Adopting a systems biology approach, the early-stage and late-stage protein-protein interaction (PPI) networks for both C. albicans and zebrafish were constructed. By comparing PPI networks at the early and late stages of the infection process, several critical functional modules were identified in both pathogenic and defensive mechanisms. Functional modules in C. albicans, like those involved in hyphal morphogenesis, ion and small molecule transport, protein secretion, and shifts in carbon utilization, were seen to play important roles in pathogen invasion and damage caused to host cells. Moreover, the functional modules in zebrafish, such as those involved in immune response, apoptosis mechanisms, ion transport, protein secretion, and hemostasis-related processes, were found to be significant as defensive mechanisms during C. albicans infection. The essential functional modules thus determined could provide insights into the molecular mechanisms of host-pathogen interactions during the infection process and thereby devise potential therapeutic strategies to treat C. albicans infection. PMID:24757665

  9. Antifungal activity of Rubus chingii extract combined with fluconazole against fluconazole-resistant Candida albicans.

    PubMed

    Han, Bing; Chen, Jia; Yu, Yi-qun; Cao, Yong-bing; Jiang, Yuan-ying

    2016-02-01

    This study aimed to investigate the antifungal activity of Rubus chingii extract in combination with fluconazole (FLC) against FLC-resistant Candida albicans 100 in vitro. A R. chingii extract and FLC-resistant C. albicans fungus suspension were prepared. The minimum inhibitory concentration and fractional inhibitory concentration index of R. chingii extract combined with FLC against C. albicans were determined, after which growth curves for C. albicans treated with R. chingii extract, FLC alone and a combination of these preparations were constructed. Additionally, the mechanisms of drug combination against C. albicans were explored by flow cytometry, gas chromatographic mass spectrometry and drug efflux pump function detection. R. chingii extract combined with FLC showed significant synergy. Flow cytometry suggested that C. albicans cells mainly arrest in G1 and S phases when they have been treated with the drug combination. The drug combination resulted in a marked decrease in the ergosterol content of the cell membrane. Additionally, efflux of Rhodamine 6G decreased with increasing concentrations of R. chingii extract. R. chingii extract combined with FLC has antifungal activity against FLC-resistant C. albicans. PMID:26891940

  10. [The effects of an aroma candy on oral Candida albicans colony-forming units (CFU) and oral hygiene states in healthy elderly carrying Candida albicans].

    PubMed

    Suzuki, Motofumi; Hayama, Kazumi; Takahashi, Miki; Ezawa, Kunio; Yamazaki, Masatoshi; Matsukawa, Taiji; Kishi, Akinobu; Satou, Nobuya; Abe, Shigeru

    2015-01-01

    In a preceding paper, we showed that aroma candy containing oligonol, capric acid, and cinnamon (cassia) powder had potent inhibitory activity against mycelial growth of Candida albicans in vitro and protective activity against murine oral candidiasis. In order to assess the effects of this candy (the test candy) on oral C. albicans colony-forming units (CFU) and oral hygiene states, a placebo-controlled double-blind crossover comparative study was performed. Twenty subjects were divided into two groups. One group ingested the test candy in the first 7 days followed by 2 weeks washing-off period, then ingested the placebo candy (control candy) for 7 days. The other group was vice versa. C. albicans CFU in all oral rinse samples from the subjects before and after 7 days ingestion of candy was measured. The degree of oral malodor in all subjects was monitored using a portable measuring instrument. The results showed no statistically significant difference between test-candy group and placebo group for C. albicans CFU. However, C. albicans CFU in test-candy group with>4,000 CFUs was significantly decreased after 7 days ingestion of test-candy (p<0.05). Scores of oral malodor in the test-candy group was significantly decreased after 7 days ingestion of test-candy (p<0.05). A questionnaire survey of oral hygiene states indicated that in the test-candy group, oral malodor, glutinous feeling, and refreshing feeling significantly improved in comparison with control-candy group (p<0.05). Our study suggests that the aroma candy is effective in oral health care of elderly carrying C. albicans.

  11. Morphology-Independent Virulence of Candida Species during Polymicrobial Intra-abdominal Infections with Staphylococcus aureus.

    PubMed

    Nash, Evelyn E; Peters, Brian M; Fidel, Paul L; Noverr, Mairi C

    2016-01-01

    Intra-abdominal polymicrobial infections cause significant morbidity and mortality. An experimental mouse model of Candida albicans-Staphylococcus aureus intra-abdominal infection (IAI) results in 100% mortality by 48 to 72 h postinoculation, while monomicrobial infections are avirulent. Mortality is associated with robust local and systemic inflammation without a requirement for C. albicans morphogenesis. However, the contribution of virulence factors coregulated during the yeast-to-hypha transition is unknown. This also raised the question of whether other Candida species that are unable to form hyphae are as virulent as C. albicans during polymicrobial IAI. Therefore, the purpose of this study was to evaluate the ability of non-albicans Candida (NAC) species with various morphologies and C. albicans transcription factor mutants (efg1/efg1 and cph1/cph1) to induce synergistic mortality and the accompanying inflammation. Results showed that S. aureus coinoculated with C. krusei or C. tropicalis was highly lethal, similar to C. albicans, while S. aureus-C. dubliniensis, S. aureus-C. parapsilosis, and S. aureus-C. glabrata coinoculations resulted in little to no mortality. Local and systemic interleukin-6 (IL-6) and prostaglandin E2 (PGE2) levels were significantly elevated during symptomatic and/or lethal coinfections, and hypothermia strongly correlated with mortality. Coinoculation with C. albicans strains deficient in the transcription factor Efg1 but not Cph1 reversed the lethal outcome. These results support previous findings and demonstrate that select Candida species, without reference to any morphological requirement, induce synergistic mortality, with IL-6 and PGE2 acting as key inflammatory factors. Mechanistically, signaling pathways controlled by Efg1 are critical for the ability of C. albicans to induce mortality from an intra-abdominal polymicrobial infection. PMID:26483410

  12. Isolation, characterization and mechanism of action of an antimicrobial peptide from Lecythis pisonis seeds with inhibitory activity against Candida albicans.

    PubMed

    Vieira, Maria Eliza Brambila; Vasconcelos, Ilka Maria; Machado, Olga Lima Tavares; Gomes, Valdirene Moreira; Carvalho, André de Oliveira

    2015-09-01

    Antimicrobial peptides (AMPs) are produced by a range of organisms as a first line of defense against invaders or competitors. Owing to their broad antimicrobial activity, AMPs have attracted attention as a potential source of chemotherapeutic drugs. The increasing prevalence of infections caused by Candida species as opportunistic pathogens in immunocompromised patients requires new drugs. Lecythis pisonis is a Lecythydaceae tree that grows in Brazil. The AMPs produced by this tree have not been described previously. We describe the isolation of 12 fractions enriched in peptides from L. pisonis seeds. Of the 12 fractions, at 10 μg/ml, the F4 fraction had the strongest growth inhibitory effect (53.7%) in Candida albicans, in addition to a loss of viability of 94.9%. The F4 fraction was separated into seven sub-fractions by reversed-phase chromatography. The F4.7' fraction had the strongest activity at 10 μg/ml, inhibiting C. albicans growth by 38.5% and a 69.3% loss of viability. The peptide in F4.7' was sequenced and was found to be similar to plant defensins. For this reason, the peptide was named L. pisonis defensin 1 (Lp-Def1). The mechanism of action that is responsible for C. albicans inhibition by Lp-Def1 includes a slight increase of reactive oxygen species induction and a significant loss of mitochondrial function. The results described here support the future development of plant defensins, specifically Lp-Def1, as new therapeutic substances against fungi, especially C. albicans. PMID:26245301

  13. Thrush and Other Candida Infections

    MedlinePlus

    ... these infections are caused by Candida albicans, a yeast-like fungus, although other species of Candida are ... in some cases. Teenaged girls who develop a yeast infection of the vagina and the surrounding area ...

  14. Beyond the wall: Candida albicans secret(e)s to survive.

    PubMed

    Sorgo, Alice G; Heilmann, Clemens J; Brul, Stanley; de Koster, Chris G; Klis, Frans M

    2013-01-01

    The opportunistic fungal pathogen Candida albicans occupies various niches of the human body such as the skin and the mucosal surfaces of the gastrointestinal and urogenital tracts. It can also enter the blood stream and cause deadly, systemic infections, especially in immunocompromised patients, but also in immunocompetent individuals through inserted medical devices. To survive in these diverse host environments, C. albicans has developed specialized virulence attributes and rapidly adapts itself to local growth conditions and defense mechanisms. Candida albicans secretes a considerable number of proteins that are involved in biofilm formation, tissue invasion, immune evasion, and wall maintenance, as well as acquisition of nutrients including metal ions. The secretome of C. albicans is predicted to comprise 225 proteins. On a proteomic level, however, analysis of the secretome of C. albicans is incomplete as many secreted proteins are only produced under certain conditions. Interestingly, glycosylphosphatidylinositol proteins and known cytoplasmic proteins are also consistently detected in the growth medium. Importantly, a core set of seven wall polysaccharide-processing enzymes seems to be consistently present, including the diagnostic marker Mp65. Overall, we discuss the importance of the secretome for virulence and suggest potential targets for better and faster diagnostic methods.

  15. Beyond the wall: Candida albicans secret(e)s to survive.

    PubMed

    Sorgo, Alice G; Heilmann, Clemens J; Brul, Stanley; de Koster, Chris G; Klis, Frans M

    2013-01-01

    The opportunistic fungal pathogen Candida albicans occupies various niches of the human body such as the skin and the mucosal surfaces of the gastrointestinal and urogenital tracts. It can also enter the blood stream and cause deadly, systemic infections, especially in immunocompromised patients, but also in immunocompetent individuals through inserted medical devices. To survive in these diverse host environments, C. albicans has developed specialized virulence attributes and rapidly adapts itself to local growth conditions and defense mechanisms. Candida albicans secretes a considerable number of proteins that are involved in biofilm formation, tissue invasion, immune evasion, and wall maintenance, as well as acquisition of nutrients including metal ions. The secretome of C. albicans is predicted to comprise 225 proteins. On a proteomic level, however, analysis of the secretome of C. albicans is incomplete as many secreted proteins are only produced under certain conditions. Interestingly, glycosylphosphatidylinositol proteins and known cytoplasmic proteins are also consistently detected in the growth medium. Importantly, a core set of seven wall polysaccharide-processing enzymes seems to be consistently present, including the diagnostic marker Mp65. Overall, we discuss the importance of the secretome for virulence and suggest potential targets for better and faster diagnostic methods. PMID:23170918

  16. Colonization and antifungals susceptibility patterns of Candida species isolated from hospitalized patients in ICUs and NICUs

    PubMed Central

    Zarei Mahmoudabadi, Ali; Rezaei-Matehkolaei, Ali; Navid, Mojgan; Torabizadeh, Mehdi; Mazdarani, Shahnam

    2015-01-01

    Background: Several studies have shown that there are an increasing in invasive candidiasis during 2-3 last decades. Although, Candida albicans is considered as the most common candidiasis agents, other non-albicans such as C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis were raised as infectious agents. Resistance to fluconazole among non-albicans species is an important problem for clinicians during therapy and prophylaxis. Objectives: The aim of current study was to detect the Candida species from hospitalized neonatal and children in intensive care units (ICUs) and neonatal intensive care units (NICUs). In addition, the susceptibility of isolated agents were also evaluated against three antifungals. Materials and Methods: In the present study 298 samples including 98 blood samples, 100 urines and 100 swabs from oral cavity were inoculated on CHROMagar Candida. Initial detection was done according to the coloration colonies on CHROMagar Candida . Morphology on cornmeal agar, germ tube formation and growth at 45°C were confirmed isolates. Amphotericin B, fluconazole and terbinafine (Lamisil) were used for the susceptibility tests using microdilution method. Results: In the present study 21% and 34% of urines and swabs from oral cavity were positive for Candida species, respectively. The most common species was C. albicans (62.5%) followed by C. tropicalis (15.6%), C. glabrata (6.3%) and Candida species (15.6%). Our study indicated that the most tested species of Candida, 70.3% were sensitive to fluconazole at the concentration of ≤8 μg/mL. Whereas 9 (14.1%) of isolates were resistant to amphotericine B at ≥8 μg/mL. Conclusions: This study demonstrates the importance of species identification and antifungals susceptibility testing for hospitalized patients in ICUs and NICUs wards. PMID:26312235

  17. A novel role for the transcription factor Cwt1p as a negative regulator of nitrosative stress in Candida albicans.

    PubMed

    Sellam, Adnane; Tebbji, Faiza; Whiteway, Malcolm; Nantel, André

    2012-01-01

    The ability of Candida albicans to survive in the presence of nitrosative stress during the initial contact with the host immune system is crucial for its ability to colonize mammalian hosts. Thus, this fungus must activate robust mechanisms to neutralize and repair nitrosative-induced damage. Until now, very little was known regarding the regulatory circuits associated with reactive nitrogen species detoxification in fungi. To gain insight into the transcriptional regulatory networks controlling nitrosative stress response (NRS) in C. albicans a compilation of transcriptional regulator-defective mutants were screened. This led to the identification of Cwt1p as a negative regulator of NSR. By combining genome-wide location and expression analyses, we have characterized the Cwt1p regulon and demonstrated that Cwt1p is directly required for proper repression of the flavohemoglobin Yhb1p, a key NO-detoxification enzyme. Furthermore, Cwt1p operates both by activating and repressing genes of specific functions solicited upon NSR. Additionally, we used Gene Set Enrichment Analysis to reinvestigate the C. albicans NSR-transcriptome and demonstrate a significant similarity with the transcriptional profiles of C. albicans interacting with phagocytic host-cells. In summary, we have characterized a novel negative regulator of NSR and bring new insights into the transcriptional regulatory network governing fungal NSR.

  18. N-Acetylglucosamine-Induced Cell Death in Candida albicans and Its Implications for Adaptive Mechanisms of Nutrient Sensing in Yeasts

    PubMed Central

    Du, Han; Guan, Guobo; Li, Xiaoling; Gulati, Megha; Tao, Li; Cao, Chengjun; Johnson, Alexander D.; Nobile, Clarissa J.

    2015-01-01

    ABSTRACT Single-celled organisms have different strategies to sense and utilize nutrients in their ever-changing environments. The opportunistic fungal pathogen Candida albicans is a common member of the human microbiota, especially that of the gastrointestinal (GI) tract. An important question concerns how C. albicans gained a competitive advantage over other microbes to become a successful commensal and opportunistic pathogen. Here, we report that C. albicans uses N-acetylglucosamine (GlcNAc), an abundant carbon source present in the GI tract, as a signal for nutrient availability. When placed in water, C. albicans cells normally enter the G0 phase and remain viable for weeks. However, they quickly lose viability when cultured in water containing only GlcNAc. We term this phenomenon GlcNAc-induced cell death (GICD). GlcNAc triggers the upregulation of ribosomal biogenesis genes, alterations of mitochondrial metabolism, and the accumulation of reactive oxygen species (ROS), followed by rapid cell death via both apoptotic and necrotic mechanisms. Multiple pathways, including the conserved cyclic AMP (cAMP) signaling and GlcNAc catabolic pathways, are involved in GICD. GlcNAc acts as a signaling molecule to regulate multiple cellular programs in a coordinated manner and therefore maximizes the efficiency of nutrient use. This adaptive behavior allows C. albicans’ more efficient colonization of the gut. PMID:26350972

  19. Genotypes of Candida albicans involved in development of candidiasis and their distribution in oral cavity of non-candidiasis individuals.

    PubMed

    Takagi, Yuki; Hattori, Hisao; Adachi, Hidesada; Takakura, Shunji; Horii, Toshinobu; Chindamporn, Ariya; Kitai, Hiroki; Tanaka, Reiko; Yaguchi, Takashi; Fukano, Hideo; Kawamoto, Fumihiko; Shimozato, Kazuo; Kanbe, Toshio

    2011-01-01

    Genotype characteristics and distribution of commensal Candida albicans should be studied to predict the development of candidiasis, however, extensive genotype analysis of commensal C. albicans has not been made. In this study, 508 C. albicans isolates were collected from patients with/without candidiasis and divided into 4 isolate groups (SG-1, oral cavity of non-candidiasis patients; SG-2, patients with cutaneous candidiasis; SG-3, patients with vaginal candidiasis; SG-4, patients with candidemia). These isolates were characterized to study the relationship between genotypes and pathogenicity using microsatellite analysis. Using CDC3 and CAI, 5 genotypes (I, 111: 115/33: 41; II, 115: 119/23: 23; III, 115: 123/18: 27; IV, 115: 123/33: 40; and V, 123: 127/32: 41) were found in 4.2%, 8.9%, 7.1%, 2.2% and 3.1% of the isolates, respectively. Genotypes II and III were commonly found in all isolate groups. These genotypes were further divided into 28 types by additional HIS3 and CAIII microsatellite markers. In this analysis, C. albicans with type 6 and type 23 was widely distributed as a commensal species in the oral cavity of non-candidiasis patients and found to be related with candidiasis development. Additionally, genotypes I and IV were found in SG-2 and/or SG-4, suggesting that the fungus with those genotypes is also involved in this development. In contrast, genotype V was not identified in any infective isolates.

  20. Roles of IL-33 in Resistance and Tolerance to Systemic Candida albicans Infections

    PubMed Central

    Park, Sang Jun; Cho, Hong Rae

    2016-01-01

    IL-33 is a multifunctional cytokine that is released in response to a variety of intrinsic and extrinsic stimuli. The role of IL-33 in Candida albicans infections is just beginning to be revealed. This cytokine has beneficial effects on host defense against systemic C. albicans infections, and it promotes resistance mechanisms by which the immune system eliminates the invading fungal pathogens; and it also elevates host tolerance by reducing the inflammatory response and thereby, potentially, tissue damage. Thus, IL-33 is classified as a cytokine that has evolved functionally to protect the host from damage by pathogens and immunopathology. PMID:27340384

  1. Thiamine antivitamins--an opportunity of therapy of fungal infections caused by Malassezia pachydermatis and Candida albicans.

    PubMed

    Siemieniuk, Magdalena; Czyzewska, Urszula; Strumilo, Slawomir; Tylicki, Adam

    2016-02-01

    Severe skin diseases and systemic fungaemia are caused by Malassezia pachydermatis and Candida albicans respectively. Antifungal therapies are less effective because of chronic character of infections and high percentage of relapses. Therefore, there is a great need to develop new strategies of antifungal therapies. We previously found that oxythiamine decreases proliferation of yeast (Saccharomyces cerevisiae), therefore we suggest that thiamine antivitamins can be considered as antifungal agents. The aim of this study was the comparison of thiamine antivitamins (oxythiamine, amprolium, thiochrome, tetrahydrothiamine and tetrahydrooxythiamine) inhibitory effect on the growth rate and energetic metabolism efficiency in non-pathogenic S. cerevisiae and two potentially pathogenic species M. pachydermatis and C. albicans. Investigated species were cultured on a Sabouraud medium supplemented with trace elements in the presence (40 mg l(-1)) or absence of each tested antivitamins to estimate their influence on growth rate, enzyme activity and kinetic parameters of pyruvate decarboxylase and malate dehydrogenase of each tested species. Oxythiamine was the only antivitamin with antifungal potential. M. pachydermatis and S. cerevisiae were the most sensitive, whereas C. albicans was the least sensitive to oxythiamine action. Oxythiamine can be considered as supportive agent in superficial mycoses treatment, especially those caused by species from the genus Malassezia.

  2. Multi-drug resistant oral Candida species isolated from HIV-positive patients in South Africa and Cameroon.

    PubMed

    Dos Santos Abrantes, Pedro Miguel; McArthur, Carole P; Africa, Charlene Wilma Joyce

    2014-06-01

    Candida species are a common cause of infection in immune-compromised HIV-positive individuals, who are usually treated with the antifungal drug, fluconazole, in public hospitals in Africa. However, information about the prevalence of drug resistance to fluconazole and other antifungal agents on Candida species is very limited. This study examined 128 Candida isolates from South Africa and 126 Cameroonian Candida isolates for determination of species prevalence and antifungal drug susceptibility. The isolates were characterized by growth on chromogenic and selective media and by their susceptibility to 9 antifungal drugs tested using the TREK™ YeastOne9 drug panel (Thermo Scientific, USA). Eighty-three percent (82.8%) of South African isolates were Candida albicans (106 isolates), 9.4% were Candida glabrata (12 isolates), and 7.8% were Candida dubliniensis (10 isolates). Of the Cameroonian isolates, 73.02% were C. albicans (92 isolates); 19.05% C. glabrata (24 isolates); 3.2% Candida tropicalis (4 isolates); 2.4% Candida krusei (3 isolates); 1.59% either Candida kefyr, Candida parapsilopsis, or Candida lusitaneae (2 isolates); and 0.79% C. dubliniensis (1 isolate). Widespread C. albicans resistance to azoles was detected phenotypically in both populations. Differences in drug resistance were seen within C. glabrata found in both populations. Echinocandin drugs were more effective on isolates obtained from the Cameroon than in South Africa. A multiple-drug resistant C. dubliniensis strain isolated from the South African samples was inhibited only by 5-flucytosine in vitro on the YO9 panel. Drug resistance among oral Candida species is common among African HIV patients in these 2 countries. Regional surveillance of Candida species drug susceptibility should be undertaken to ensure effective treatment for HIV-positive patients.

  3. Activity of antimicrobial peptide mimetics in the oral cavity: I. Activity against biofilms of Candida albicans.

    PubMed

    Hua, J; Yamarthy, R; Felsenstein, S; Scott, R W; Markowitz, K; Diamond, G

    2010-12-01

    Naturally occurring antimicrobial peptides hold promise as therapeutic agents against oral pathogens such as Candida albicans but numerous difficulties have slowed their development. Synthetic, non-peptidic analogs that mimic the properties of these peptides have many advantages and exhibit potent, selective antimicrobial activity. Several series of mimetics (with molecular weight < 1000) were developed and screened against oral Candida strains as a proof-of-principle for their antifungal properties. One phenylalkyne and several arylamide compounds with reduced mammalian cytotoxicities were found to be active against C. albicans. These compounds demonstrated rapid fungicidal activity in liquid culture even in the presence of saliva, and demonstrated synergy with standard antifungal agents. When assayed against biofilms grown on denture acrylic, the compounds exhibited potent fungicidal activity as measured by metabolic and fluorescent viability assays. Repeated passages in sub-minimum inhibitory concentration levels did not lead to resistant Candida, in contrast to fluconazole. Our results demonstrate the proof-of principle for the use of these compounds as anti-Candida agents, and their further testing is warranted as novel anti-Candida therapies.

  4. Activity of Antimicrobial Peptide Mimetics in the Oral Cavity: I. Activity Against Biofilms of Candida albicans

    PubMed Central

    Hua, Jianyuan; Yamarthy, Radha; Felsenstein, Shaina; Scott, Richard W.; Markowitz, Kenneth; Diamond, Gill

    2010-01-01

    Summary Naturally occurring antimicrobial peptides hold promise as therapeutic agents against oral pathogens such as Candida albicans, however numerous difficulties have slowed their development. Synthetic, non-peptidic analogs that mimic the properties of these peptides have many advantages and exhibit potent, selective antimicrobial activity. Several series of mimetics (MW <1,000) were developed and screened against oral Candida strains as a proof-of-principle for their antifungal properties. One phenylalkyne and several arylamide compounds with reduced mammalian cytotoxicities were found to be active against C. albicans. These compounds demonstrated rapid fungicidal activity in liquid culture even in the presence of saliva, and demonstrated synergy with standard antifungal agents. When assayed against biofilms grown on denture acrylic, the compounds exhibited potent fungicidal activity as measured by metabolic and fluorescent viability assays. Repeated passages in sub-MIC levels did not lead to resistant Candida in contrast to fluconazole. Our results demonstrate the proof-of principle for the use of these compounds as anti-Candida agents, and their further testing is warranted as novel anti-Candida therapies. PMID:21040515

  5. Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans.

    PubMed

    Chang, Peng; Fan, Xueyi; Chen, Jiangye

    2015-08-01

    Candida albicans is an opportunistic fungal pathogen commonly found in humans. It has the ability to switch reversibly between three growth forms: budding yeast, pseudohypha, and hypha. The transition between yeast and hyphal growth forms is critical for the pathogenesis of C. albicans. During the yeast-to-hypha morphologic transition, gene expression is regulated by transcriptional regulators including histone modifying complexes and chromatin remodeling complexes. We previously reported that Esa1, a catalytic subunit in the histone acetyltransferase complex NuA4, is essential for the hyphal development of C. albicans. In this study, we analyzed the functional roles of Gcn5, a catalytic subunit in the histone acetyltransferase complex SAGA, in C. albicans. Gcn5 is required for the invasive and filamentous growth of C. albicans. Deletion of GCN5 impaired hyphal elongation in sensing serum and attenuated the virulence of C. albicans in a mouse systemic infection model. The C. albicans gcn5/gcn5 mutant cells also exhibited sensitivity to cell wall stress. Functional analysis showed that the HAT domain and Bromodomain in Gcn5 play distinct roles in morphogenesis and cell wall stress response of C. albicans. Our results show that the conserved residue Glu188 is crucial for the Gcn5 HAT activity and for Gcn5 function during filamentous growth. In addition, the subcellular distribution of ectopically expressed GFP-Gcn5 correlates with the different growth states of C. albicans. In stationary phase, Gcn5 accumulated in the nucleus, while during vegetative growth it localized in the cytoplasm in a morpha-independent manner. Our results suggest that the nuclear localization of Gcn5 depends on the existence of its N-terminal NLS and HAT domains.

  6. Five novel Candida species in insect-associated yeast clades isolated from Neuroptera and other insects.

    PubMed

    Nguyen, Nhu H; Suh, Sung-Oui; Blackwell, Meredith

    2007-01-01

    Ascomycete yeasts are found commonly in the guts of basidioma-feeding beetles but little is known about their occurrence in the gut of other insects. In this study we isolated 95 yeasts from the gut of adult insects in five neuropteran families (Neuroptera: Corydalidae, Chrysopidae, Ascalaphidae, Mantispidae and Hemerobiidae) and a roach (Blattodea: Blattidae). Based on DNA sequence comparisons and other taxonomic characteristics, they were identified as more than 15 species of Saccharomycetes as well as occasional Cryptococcus-like basidiomycete yeasts. Yeast species such as Lachancea fermentati, Lachancea thermotolerans and Hanseniaspora vineae were isolated repeatedly from the gut of three species of corydalids, suggesting a close association of these species and their insect hosts. Among the yeasts isolated in this study 12 were identified as five novel Candida species that occurred in three phylogenetically distinct clades. Molecular phylogenetic analyses showed that Candida chauliodes sp. nov. (NRRL Y-27909T) and Candida corydali sp. nov. (NRRL Y-27910T) were sister taxa in the Candida albicans/ Lodderomyces elongisporus clade. Candida dosseyi sp. nov. (NRRL Y-27950T) and Candida blattae sp. nov. (NRRL Y-27698T) were sister taxa in the Candida intermedia clade. Candida ascalaphidarum sp. nov. (NRRL Y-27908T) fell on a basal branch in a clade containing Candida membranifaciens and many other insect-associated species. Descriptions of these novel yeast species are provided as well as discussion of their ecology in relation to their insect hosts.

  7. Piperazinyl quinolines as chemosensitizers to increase fluconazole susceptibility of Candida albicans clinical isolates.

    PubMed

    Youngsaye, Willmen; Vincent, Benjamin; Hartland, Cathy L; Morgan, Barbara J; Buhrlage, Sara J; Johnston, Stephen; Bittker, Joshua A; MacPherson, Lawrence; Dandapani, Sivaraman; Palmer, Michelle; Whitesell, Luke; Lindquist, Susan; Schreiber, Stuart L; Munoz, Benito

    2011-09-15

    The effectiveness of the potent antifungal drug fluconazole is being compromised by the rise of drug-resistant fungal pathogens. While inhibition of Hsp90 or calcineurin can reverse drug resistance in Candida, such inhibitors also impair the homologous human host protein and fungal-selective chemosensitizers remain rare. The MLPCN library was screened to identify compounds that selectively reverse fluconazole resistance in a Candida albicans clinical isolate, while having no antifungal activity when administered as a single agent. A piperazinyl quinoline was identified as a new small-molecule probe (ML189) satisfying these criteria.

  8. [Killer toxin and enzyme production by Candida albicans isolated from buccal mucosa in patients with cancer].

    PubMed

    de Oliveira, E E; Silva, S C; Soares, A J; Attux, C; Cruvinel, B; Silva, M do R

    1998-01-01

    Opportunistic infections of the oral cavity are primarily caused by Candida and frequently occur in patients with cancer who are undergoing chemotherapy and antibiotic treatment. Of the specimens received from the oral mucosa of 44 patients with cancer, 25 (56.8%) yielded Candida on culture in Sabouraud agar. Twenty four of these isolates were identified as C. albicans (96%) and 1 as C. krusei (4%). The phenotypic characteristics of these isolates showed that all of them were strongly proteolytic, had a high ability to produce phospholipase, and presented the byotypes characterized as 811 (95.8%) and 511 (4.2%) in terms of susceptibility to killer toxins. PMID:9859695

  9. Biofilm formation by Candida albicans and Streptococcus mutans in the presence of farnesol: a quantitative evaluation.

    PubMed

    Fernandes, Renan Aparecido; Monteiro, Douglas Roberto; Arias, Laís Salomão; Fernandes, Gabriela Lopes; Delbem, Alberto Carlos Botazzo; Barbosa, Debora Barros

    2016-01-01

    The aim of this study was to evaluate the effect of the QS molecule farnesol on single and mixed species biofilms formed by Candida albicans and Streptococcus mutans. The anti-biofilm effect of farnesol was assessed through total biomass quantification, counting of colony forming units (CFUs) and evaluation of metabolic activity. Biofilms were also analyzed by scanning electron microscopy (SEM). It was observed that farnesol reduced the formation of single and mixed biofilms, with significant reductions of 37% to 90% and 64% to 96%, respectively, for total biomass and metabolic activity. Regarding cell viability, farnesol treatment promoted significant log reductions in the number of CFUs, ie 1.3-4.2 log10 and 0.67-5.32 log10, respectively, for single and mixed species biofilms. SEM images confirmed these results, showing decreases in the number of cells in all biofilms. In conclusion, these findings highlight the role of farnesol as an alternative agent with the potential to reduce the formation of pathogenic biofilms.

  10. Identification of Candida species in patients with oral lesion undergoing chemotherapy along with minimum inhibitory concentration to fluconazole

    PubMed Central

    Maheronnaghsh, Mehrnoush; Tolouei, Sepideh; Dehghan, Parvin; Chadeganipour, Mostafa; Yazdi, Maryam

    2016-01-01

    Background: Various species of Candida, especially Candida albicans was known as the most important etiological agent of fungal infections. Oral candidiasis is the most common fungal infection in patients undergoing chemotherapy. The purpose of this study was to identify Candida species from oral lesions of these patients and antifungal susceptibility of the clinical isolates. Materials and Methods: Among 385 patients with cancer, 55 (14.3%) showed oral lesions. Oral swabs were performed to identify the yeasts using direct smear and CHROMagar medium. Micro dilution method was prepared in different concentrations of fluconazole and minimum inhibitory concentration and minimum fungicidal concentration of each species were compared. Results: Oral candidiasis confirmed in 36 cases by direct examination and culture. C. albicans and non-albicans represented in 26 (72.2%) and 10 (27.8%) of the isolates, respectively. 76.5% of C. albicans and 23.5% non-albicans isolates were resistant to fluconazole. Data were shown that 62% and 30.7% of resistant strains of C. albicans were found in patient with gastrointestinal cancer and lymphoma respectively. Conclusion: Data were shown that C. albicans is the most commonly identified species in oral candidiasis and majority of fluconazole resistant C. albicans were found in patients with gastrointestinal cancer and lymphoma. Therefore, we recommend an alternative drug instead of fluconazole as a first line of treatment for these type of cancers and administration of fluconazole in patients undergoing chemotherapy should be prescribed in accordance with the type of cancer.

  11. Identification of Candida species in patients with oral lesion undergoing chemotherapy along with minimum inhibitory concentration to fluconazole

    PubMed Central

    Maheronnaghsh, Mehrnoush; Tolouei, Sepideh; Dehghan, Parvin; Chadeganipour, Mostafa; Yazdi, Maryam

    2016-01-01

    Background: Various species of Candida, especially Candida albicans was known as the most important etiological agent of fungal infections. Oral candidiasis is the most common fungal infection in patients undergoing chemotherapy. The purpose of this study was to identify Candida species from oral lesions of these patients and antifungal susceptibility of the clinical isolates. Materials and Methods: Among 385 patients with cancer, 55 (14.3%) showed oral lesions. Oral swabs were performed to identify the yeasts using direct smear and CHROMagar medium. Micro dilution method was prepared in different concentrations of fluconazole and minimum inhibitory concentration and minimum fungicidal concentration of each species were compared. Results: Oral candidiasis confirmed in 36 cases by direct examination and culture. C. albicans and non-albicans represented in 26 (72.2%) and 10 (27.8%) of the isolates, respectively. 76.5% of C. albicans and 23.5% non-albicans isolates were resistant to fluconazole. Data were shown that 62% and 30.7% of resistant strains of C. albicans were found in patient with gastrointestinal cancer and lymphoma respectively. Conclusion: Data were shown that C. albicans is the most commonly identified species in oral candidiasis and majority of fluconazole resistant C. albicans were found in patients with gastrointestinal cancer and lymphoma. Therefore, we recommend an alternative drug instead of fluconazole as a first line of treatment for these type of cancers and administration of fluconazole in patients undergoing chemotherapy should be prescribed in accordance with the type of cancer. PMID:27656601

  12. Etiological significance of Candida albicans in otitis externa.

    PubMed

    Jadhav, Vijay J; Pal, M; Mishra, G S

    2003-01-01

    A study covering 79 patients (42 males, 37 females) of different age groups clinically diagnosed as otomycosis were investigated mycologically to elucidate the role of Candia albicans, an opportunistic polymorphic yeast, in otitis externa. C. albicans was diagnosed as the sole pathogen in two patients (1 male and 1 female) aged 18 and 20 years, respectively. The organism was repeatedly demonstrated in the aural specimens both by direct microscopy as well as culture isolation. Both the patients had unilateral otomycosis and used antibiotic solution and removed wax with wooden stick. The topical application of one per cent clotrimazole lotion showed good response both clinically as well as mycologically. The growing significance of opportunistic fungi emphasizes on comprehensive studies to establish the etiologic role in various clinical disorders in human and animal medicine.

  13. Phenotypic Plasticity Regulates Candida albicans Interactions and Virulence in the Vertebrate Host

    PubMed Central

    Mallick, Emily M.; Bergeron, Audrey C.; Jones, Stephen K.; Newman, Zachary R.; Brothers, Kimberly M.; Creton, Robbert; Wheeler, Robert T.; Bennett, Richard J.

    2016-01-01

    Phenotypic diversity is critical to the lifestyles of many microbial species, enabling rapid responses to changes in environmental conditions. In the human fungal pathogen Candida albicans, cells exhibit heritable switching between two phenotypic states, white and opaque, which yield differences in mating, filamentous growth, and interactions with immune cells in vitro. Here, we address the in vivo virulence properties of the two cell states in a zebrafish model of infection. Multiple attributes were compared including the stability of phenotypic states, filamentation, virulence, dissemination, and phagocytosis by immune cells, and phenotypes equated across three different host temperatures. Importantly, we found that both white and opaque cells could establish a lethal systemic infection. The relative virulence of the two cell types was temperature dependent; virulence was similar at 25°C, but at higher temperatures (30 and 33°C) white cells were significantly more virulent than opaque cells. Despite the difference in virulence, fungal burden, and dissemination were similar between cells in the two states. Additionally, both white and opaque cells exhibited robust filamentation during infection and blocking filamentation resulted in decreased virulence, establishing that this program is critical for pathogenesis in both cell states. Interactions between C. albicans cells and immune cells differed between white and opaque states. Macrophages and neutrophils preferentially phagocytosed white cells over opaque cells in vitro, and neutrophils showed preferential phagocytosis of white cells in vivo. Together, these studies distinguish the properties of white and opaque cells in a vertebrate host, and establish that the two cell types demonstrate both important similarities and key differences during infection. PMID:27303374

  14. Acetate-mediated growth inhibition in sterol 14alpha-demethylation-deficient cells of Candida albicans.

    PubMed

    Shimokawa, O; Nakayama, H

    1999-01-01

    Candida albicans is a fungus thought to be viable in the presence of a deficiency in sterol 14alpha-demethylation. We showed in a strain of this species that the deficiency, caused either by a mutation or by an azole antifungal agent, made the cells susceptible to growth inhibition by acetate included in the culture medium. Studies with a mutant demonstrated that the inhibition was complete at a sodium acetate concentration of 0.24 M (20 g/liter) and was evident even at a pH of 8, the latter result indicating the involvement of acetate ions rather than the undissociated form of acetic acid. In fluconazole-treated cells, sterol profiles determined by thin-layer chromatography revealed that the minimum sterol 14alpha-demethylation-inhibitory concentrations (MDICs) of the drug, thought to be the most important parameter for clinical purposes, were practically identical in the media with and without 0.24 M acetate and were equivalent to the MIC in the acetate-supplemented medium. The acetate-mediated growth inhibition of azole-treated cells was confirmed with two additional strains of C. albicans and four different agents, suggesting the possibility of generalization. From these results, it was surmised that the acetate-containing medium may find use in azole susceptibility testing, for which there is currently no method capable of measuring MDICs directly for those fungi whose viability is not lost as a result of sterol 14alpha-demethylation deficiency. Additionally, the acetate-supplemented agar medium was found to be useful in detecting reversions from sterol 14alpha-demethylation deficiency to proficiency. PMID:9869573

  15. Antibacterial and antifungal activity of Iranian propolis against Staphylococcus aureus and Candida albicans.

    PubMed

    Ghasem, Yousef-Beigi; Ownagh, Abdolghaffar; Hasanloei, M

    2007-04-15

    Propolis samples from West North region of Iran were studied for their antibacterial (against Staphylococcus aureus) and antifungal (against Candida albicans) activities. In this article, yield of extracts and their pH values were measured. Antibacterial and antifungal activities of Ethanol-Extracted Propolis (EEP) were investigated by Petri dish bioassay method. Dilutions of EPP in agar with serial concentrations ranging from 0/04 to 10% (W/V) were prepared and antimicrobial activities were determined as Minimal Inhibitory Concentrations (MIC). All samples were active against the fungal and bacterial test strains. MIC values for different propolis samples against Staphylococcus aureus were, respectively 4, 3 and 1.5% (W/V) and against Candida albicans were, respectively 2, 4 and 3% (W/V).

  16. Innate Immunity and Saliva in Candida albicans-mediated Oral Diseases.

    PubMed

    Salvatori, O; Puri, S; Tati, S; Edgerton, M

    2016-04-01

    The oral cavity is a unique niche where Candida albicans infections occur in immunocompetent as well as immunosuppressed individuals. Here we critically review the significance of human innate immune response in preventing oral candidiasis. One important line of defense against oropharyngeal candidiasis is the oral microbiota that prevents infection by competing for space and nutrients as well as by secreting antagonistic molecules and triggering local inflammatory responses. C. albicans is able to induce mucosal defenses through activation of immune cells and production of cytokines. Also, saliva contains various proteins that affect C. albicans growth positively by promoting mucosal adherence and negatively through immune exclusion and direct fungicidal activity. We further discuss the role of saliva in unifying host innate immune defenses against C. albicans as a communicating medium and how C. albicans overgrowth in the oral cavity may be a result of aberrations ranging from microbial dysbiosis and salivary dysfunction to epithelial damage. Last we underscore select oral diseases in which C. albicans is a contributory microorganism in immune-competent individuals.

  17. Hyphal formation of Candida albicans is controlled by electron transfer system

    SciTech Connect

    Watanabe, Toshihiko . E-mail: twatanab@tohoku-pharm.ac.jp; Ogasawara, Ayako; Mikami, Takeshi; Matsumoto, Tatsuji

    2006-09-15

    Most Candida albicans cells cultured in RPMI1640 medium at 37 deg. C grow in hyphal form in aerobic conditions, but they grow in yeast form in anaerobic conditions. The hyphal growth of C. albicans was inhibited in glucose-deficient conditions. Malonic acid, an inhibitor of succinate dehydrogenase, enhanced the yeast proliferation of C. albicans, indicating that the hyphal-formation signal was derived from the glycolysis system and the signal was transmitted to the electron transfer system via the citric acid cycle. Thenoyl trifluoro acetone (TTFA), an inhibitor of the signal transmission between complex II and Co Q, significantly inhibited the hyphal growth of C. albicans. Antimycin, KCN, and oligomycin, inhibitors of complex III, IV, and V, respectively, did not inhibit the hyphal growth of C. albicans. The production of mRNAs for the hyphal formation signal was completely inhibited in anaerobic conditions. These results indicate that the electron transfer system functions upstream of the RAS1 signal pathway and activates the expression of the hyphal formation signal. Since the electron transfer system is inactivated in anaerobic conditions, C. albicans grew in yeast form in this condition.

  18. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

    PubMed Central

    Lee, Seung-Bae

    2016-01-01

    Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV) and sweet bee venom (SBV) against Candida albicans (C. albicans) clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC) strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC) assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti- fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from 62.5 μg/ mL to 125 μg/mL for BV and from 15.63 μg/mL to 62.5 μg/mL for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates. PMID:27280049

  19. Specific induction of fibronectin binding activity by hemoglobin in Candida albicans grown in defined media.

    PubMed

    Yan, S; Nègre, E; Cashel, J A; Guo, N; Lyman, C A; Walsh, T J; Roberts, D D

    1996-08-01

    Fibronectin (FN) is a major component of host extracellular matrix that may play an important role in the initiation and dissemination of Candida albicans infections. Expression of FN binding requires growth of C albicans blastoconidia in complex medium, and the regulation of FN receptor expression is poorly understood. We now demonstrate that hemoglobin is a potent and specific inducer of FN receptor expression and describe a defined medium supplemented with hemoglobin that greatly and stably enhances the binding activity of C. albicans for soluble FN. Enhancement of FN binding by hemoglobin in strain 44807 was concentration dependent and was maximal at 0.1% hemoglobin with 20- to 80-fold enhancement. The hemoglobin-induced FN binding to C. albicans was saturable, with a Kd of 2.7 X 10(-8) M. Enhancement required growth of C. albicans in hemoglobin-containing medium, since simply exposing blastoconidia to hemoglobin in a nongrowing status did not enhance binding. Induction was reversible following removal of hemoglobin from the growth medium and not associated with germination. Inorganic or protein-bound iron was not sufficient for the induction, since other iron-containing proteins or inorganic iron salts were inactive. Growth in the simple medium yeast nitrogen base supplemented with hemoglobin increased cell adhesion to immobilized FN and to cultured monolayers of bovine corneal endothelial cells. These data suggest that hemoglobin may be an important regulator of FN binding activity in C. albicans and thus may play a role in its pathogenesis. PMID:8757815

  20. Innate Immunity and Saliva in Candida albicans-mediated Oral Diseases.

    PubMed

    Salvatori, O; Puri, S; Tati, S; Edgerton, M

    2016-04-01

    The oral cavity is a unique niche where Candida albicans infections occur in immunocompetent as well as immunosuppressed individuals. Here we critically review the significance of human innate immune response in preventing oral candidiasis. One important line of defense against oropharyngeal candidiasis is the oral microbiota that prevents infection by competing for space and nutrients as well as by secreting antagonistic molecules and triggering local inflammatory responses. C. albicans is able to induce mucosal defenses through activation of immune cells and production of cytokines. Also, saliva contains various proteins that affect C. albicans growth positively by promoting mucosal adherence and negatively through immune exclusion and direct fungicidal activity. We further discuss the role of saliva in unifying host innate immune defenses against C. albicans as a communicating medium and how C. albicans overgrowth in the oral cavity may be a result of aberrations ranging from microbial dysbiosis and salivary dysfunction to epithelial damage. Last we underscore select oral diseases in which C. albicans is a contributory microorganism in immune-competent individuals. PMID:26747422

  1. Identification of the cell targets important for propolis-induced cell death in Candida albicans.

    PubMed

    de Castro, Patrícia Alves; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; de Almeida, Ricardo Sérgio Couto; Ramalho, Leandra Naira Zambelli; Savoldi, Marcela; Goldman, Maria Helena S; Berretta, Andresa A; Goldman, Gustavo Henrique

    2013-11-01

    Candida albicans is the most common fungal pathogen of humans, forming both commensal and opportunistic pathogenic interactions, causing a variety of skin and soft tissue infections in healthy people. In immunocompromised patients C. albicans can result in invasive, systemic infections that are associated with a high incidence of mortality. Propolis is a complex mixture of several resinous substances which are collected from plants by bees. Here, we demonstrated the fungicidal activity of propolis against all three morphogenetic types of C. albicans and that propolis-induced cell death was mediated via metacaspase and Ras signaling. To identify genes that were involved in propolis tolerance, we screened ~800 C. albicans homozygous deletion mutants for decreased tolerance to propolis. Fifty-one mutant strains were identified as being hypersensitive to propolis including seventeen genes involved in cell adhesion, biofilm formation, filamentous growth, phenotypic switching and pathogenesis (HST7, GIN4, VPS34, HOG1, ISW2, SUV3, MDS3, HDA2, KAR3, YHB1, NUP85, CDC10, MNN9, ACE2, FKH2, and SNF5). We validated these results by showing that propolis inhibited the transition from yeast-like to hyphal growth. Propolis was shown to contain compounds that conferred fluorescent properties to C. albicans cells. Moreover, we have shown that a topical pharmaceutical preparation, based upon propolis, was able to control C. albicans infections in a mouse model for vulvovaginal candidiasis. Our results strongly indicate that propolis could be used as a strategy for controlling candidiasis.

  2. Occurrence ofCandida albicans in fresh gull feces in temperate and subtropical areas.

    PubMed

    Buck, J D

    1983-07-01

    The occurrence ofCandida albicans in fresh gull (Larus spp.) feces was compared in temperate and subtropical locations. Of 239 fresh samples, 133 were obtained in southeastern Connecticut and 106 from different sites on the southeastern and central western coasts of Florida. Overall, 60% of all feces containedC. albicans. Of the Connecticut samples, 78% were positive, whereas 38% of the Florida samples revealed the presence of the yeast. Only 1 of 24 samples of fresh brown pelican feces containedC. albicans. Differences inC. albicans occurrence in birds in various locations was ascribed to variations in habitat and feeding behavior. Samples of water from a municipal reservoir in Connecticut were routinely positive, with an average cell density of 20/liter. Two fresh gull samples obtained on the reservoir bank containedC. albicans at an average cell concentration of 5, 200/g. The frequency ofC. albicans in gull droppings was higher than reported by others, and the yeast is common in temperate waters. These findings have important public health implications. PMID:24221652

  3. Potent Synergy between Spirocyclic Pyrrolidinoindolinones and Fluconazole against Candida albicans

    PubMed Central

    Premachandra, Ilandari Dewage Udara Anulal; Scott, Kevin A.; Shen, Chengtian; Wang, Fuqiang; Lane, Shelley; Liu, Haoping

    2015-01-01

    A spiroindolinone (1S,3R,3aR,6aS)-1-benzyl-6′-chloro-5-(4-fluorophenyl)-7′-methylspiro[1,2,3a,6a-tetrahydropyrrolo[3,4-c]pyrrole-3,3′-1H-indole]-2′,4,6-trione was previously reported to enhance the antifungal effect of fluconazole against C. albicans. A diastereomer of that compound was synthesized, along with various analogues. Many of the compounds were shown to enhance the antifungal effect of fluconazole against C. albicans, some with exquisite potency. One spirocyclic piperazine derivative, which we have named synazo-1, enhanced the effect of fluconazole with EC50 of 300 pM against a susceptible strain of C. albicans and as low as 2 nM against some resistant strains. Synazo-1 exhibits true synergy with fluconazole with an FIC index below 0.5 in the strains tested. Synazo-1 exhibited low toxicity in mammalian cells relative to the concentrations required for the antifungal synergy. PMID:26263912

  4. Members of the Candida parapsilosis Complex and Candida albicans are Differentially Recognized by Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Estrada-Mata, Eine; Navarro-Arias, María J.; Pérez-García, Luis A.; Mellado-Mojica, Erika; López, Mercedes G.; Csonka, Katalin; Gacser, Attila; Mora-Montes, Héctor M.

    2016-01-01

    The systemic infections caused by members of the Candida parapsilosis complex are currently associated to high morbility and mortality rates, and are considered as relevant as those caused by Candida albicans. Since the fungal cell wall is the first point of contact with the host cells, here we performed a comparison of this organelle in members of the C. parapsilosis complex, and its relevance during interaction with human peripheral blood mononuclear cells (PBMCs). We found that the wall of the C. parapsilosis complex members is similar in composition, but differs to that from C. albicans, with less mannan content and more β-glucan and porosity levels. Furthermore, lectin-based analysis showed increased chitin and β1,3-glucan exposure at the surface of C. parapsilosis sensu lato when compared to C. albicans. Yeast cells of members of the C. parapsilosis complex stimulated more cytokine production by human PBMCs than C. albicans cells; and this significantly changed upon removal of O-linked mannans, indicating this wall component plays a significant role in cytokine stimulation by C. parapsilosis sensu lato. When inner wall components were exposed on the wall surface, C. parapsilosis sensu stricto and C. metapsilosis, but not C. orthopsilosis, stimulated higher cytokine production. Moreover, we found a strong dependency on β1,3-glucan recognition for the members of the C. parapsilosis complex, but not for live C. albicans cells; whereas TLR4 was required for TNFα production by the three members of the complex, and stimulation of IL-6 by C. orthopsilosis. Mannose receptor had a significant role during TNFα and IL-1β stimulation by members of the complex. Finally, we demonstrated that purified N- and O-mannans from either C. parapsilosis sensu lato or C. albicans are capable to block the recognition of these pathogens by human PBMCs. Together; our results suggest that the innate immune recognition of the members of the C. parapsilosis complex is differential

  5. Candida albicans blastoconidia in peripheral blood smears from non-neutropenic surgical patients.

    PubMed

    Berrouane, Y; Bisiau, H; Le Baron, F; Cattoen, C; Duthilleul, P; Dei Cas, E

    1998-07-01

    An 80 year old woman developed fever 11 days after volvulus surgery. A peripheral blood smear showed numerous yeast cells--both extraleucocytic and intraleucocytic--as well as leucoagglutination. The fungal elements included blastospores, pseudohyphae, and germ tubes. Two days later, blood cultures yielded Candida albicans, Enterobacter aerogenes, and Staphlococcus aureus. The patient had no medical history of immunodeficiency. Several reports indicate that fungal elements may be detected in peripheral blood smears from patients who have a severe intestinal disease.

  6. ML212: A small-molecule probe for investigating fluconazole resistance mechanisms in Candida albicans

    PubMed Central

    Youngsaye, Willmen; Hartland, Cathy L; Morgan, Barbara J; Ting, Amal; Nag, Partha P; Vincent, Benjamin; Mosher, Carrie A; Bittker, Joshua A; Dandapani, Sivaraman; Palmer, Michelle; Whitesell, Luke; Lindquist, Susan; Schreiber, Stuart L

    2013-01-01

    Summary The National Institutes of Health Molecular Libraries and Probe Production Centers Network (NIH-MLPCN) screened >300,000 compounds to evaluate their ability to restore fluconazole susceptibility in resistant Candida albicans isolates. Additional counter screens were incorporated to remove substances inherently toxic to either mammalian or fungal cells. A substituted indazole possessing the desired bioactivity profile was selected for further development, and initial investigation of structure–activity relationships led to the discovery of ML212. PMID:23946849

  7. Ultrastructure of Candida albicans pleomorphic forms: phase-contrast microscopy, scanning and transmission electron microscopy.

    PubMed

    Staniszewska, Monika; Bondaryk, Małgorzata; Siennicka, Katarzyna; Kurzatkowski, Wiesław

    2012-01-01

    A modified method of glutaraldeyde-osmium tetroxide fixation was adjusted to characterize the ultrastructure of Candida albicans pleomorphic forms, using phase-contrast microscopy, scanning electron microscopy and transmission electron microscopy. The discovered morphological criteria defining the individual morphotypes are discussed in terms of mycological and histopathological diagnostics of candidiasis. The relations are discussed between fungal pleomorphism, virulence and susceptibility of different morphotypes to fungicides.

  8. Suppression of humoral response during the course of Candida albicans infection in mice.

    PubMed

    Valdez, J C; Meson, O E; de Valdez, G A; Sirena, A

    1984-10-30

    This paper aims at demonstrating the non-specific immunosuppression as regards thyme-dependent antigens sheep erythrocytes (SRBC) during the course of Candida albicans systemic infection. Three lots of syngeneic/BALB/c mice, 8-12 weeks of age, were used. The first normal lot was inoculated via the intraperitoneal route with a (SRBC) suspension (4 X 10(8) cells ml) in a Hank's balanced saline solution. The primary response of antibodies formed by splenic cells was measured from 4 to 8 days after inoculation using the direct plaque forming cells technique. The second lot was infected by the same route with a suspension of Candida albicans (1 X 10(7) cells). Positive retrocultures from the blood and kidneys of these infected mice were obtained. These yeasts cultivated in a Sabouraud medium were harvested after 20 h at 37 degrees C. Following the same methodology the immune response to SRBC was determined. The serum obtained from infected mice was transferred to a third lot of mice at different intervals during the course of the infection. The immune response to SRBC was done by the direct plaque-forming cells technique. Controls were carried out using normal donors and recipients. A suppression of the immune response was obtained as from the 2nd day of inoculation up to the 28th day. It was not possible to transfer such suppression passively by means of the serum. These results suggest that the systemic infection by Candida albicans induce a non-specific immunosuppression in the organism, already demonstrated in viral infections, bacteria, protozoaria and metazoaria in mammals. In some way, this will contribute to explain the mechanisms of immune response to Candida albicans.

  9. Ibuprofen potentiates the in vivo antifungal activity of fluconazole against Candida albicans murine infection.

    PubMed

    Costa-de-Oliveira, Sofia; Miranda, Isabel M; Silva-Dias, Ana; Silva, Ana P; Rodrigues, Acácio G; Pina-Vaz, Cidália

    2015-07-01

    Candida albicans is the most prevalent cause of fungemia worldwide. Its ability to develop resistance in patients receiving azole antifungal therapy is well documented. In a murine model of systemic infection, we show that ibuprofen potentiates fluconazole antifungal activity against a fluconazole-resistant strain, drastically reducing the fungal burden and morbidity. The therapeutic combination of fluconazole with ibuprofen may constitute a new approach for the management of antifungal therapeutics to reverse the resistance conferred by efflux pump overexpression.

  10. Suppression of humoral response during the course of Candida albicans infection in mice.

    PubMed

    Valdez, J C; Meson, O E; de Valdez, G A; Sirena, A

    1984-10-30

    This paper aims at demonstrating the non-specific immunosuppression as regards thyme-dependent antigens sheep erythrocytes (SRBC) during the course of Candida albicans systemic infection. Three lots of syngeneic/BALB/c mice, 8-12 weeks of age, were used. The first normal lot was inoculated via the intraperitoneal route with a (SRBC) suspension (4 X 10(8) cells ml) in a Hank's balanced saline solution. The primary response of antibodies formed by splenic cells was measured from 4 to 8 days after inoculation using the direct plaque forming cells technique. The second lot was infected by the same route with a suspension of Candida albicans (1 X 10(7) cells). Positive retrocultures from the blood and kidneys of these infected mice were obtained. These yeasts cultivated in a Sabouraud medium were harvested after 20 h at 37 degrees C. Following the same methodology the immune response to SRBC was determined. The serum obtained from infected mice was transferred to a third lot of mice at different intervals during the course of the infection. The immune response to SRBC was done by the direct plaque-forming cells technique. Controls were carried out using normal donors and recipients. A suppression of the immune response was obtained as from the 2nd day of inoculation up to the 28th day. It was not possible to transfer such suppression passively by means of the serum. These results suggest that the systemic infection by Candida albicans induce a non-specific immunosuppression in the organism, already demonstrated in viral infections, bacteria, protozoaria and metazoaria in mammals. In some way, this will contribute to explain the mechanisms of immune response to Candida albicans. PMID:6392889

  11. Ibuprofen Potentiates the In Vivo Antifungal Activity of Fluconazole against Candida albicans Murine Infection

    PubMed Central

    Miranda, Isabel M.; Silva-Dias, Ana; Silva, Ana P.; Rodrigues, Acácio G.; Pina-Vaz, Cidália

    2015-01-01

    Candida albicans is the most prevalent cause of fungemia worldwide. Its ability to develop resistance in patients receiving azole antifungal therapy is well documented. In a murine model of systemic infection, we show that ibuprofen potentiates fluconazole antifungal activity against a fluconazole-resistant strain, drastically reducing the fungal burden and morbidity. The therapeutic combination of fluconazole with ibuprofen may constitute a new approach for the management of antifungal therapeutics to reverse the resistance conferred by efflux pump overexpression. PMID:25845879

  12. Comparative efficacies of Zataria multiflora essential oil and itraconazole against disseminated Candida albicans infection in BALB/c mice

    PubMed Central

    Khosravi, A.R.; Shokri, H.; Tootian, Z.; Alizadeh, M.; Yahyaraeyat, R.

    2009-01-01

    Disseminated candidiasis is a serious problem in public health that results from the invasion of Candida species, in particular Candida albicans. The aim of this study was to compare the efficacies of Zataria multiflora essential oil and itraconazole in clearing C. albicans from the visceral organs of BALB/c mice suffered from disseminated candidiasis. Zataria multiflora essential oil was extracted using Clevenger-type apparatus and analyzed by gas chromatography mass spectrometry (GC-MS). For clearance experiment, mice (20-25 g, N=8 per group) received essential oil at doses of 30, 48 and 64 mg/kg and itraconazole at dose of 200 mg/kg intraperitoneally (IP) 2 days before and after intravenous inoculation of 0.5 × 106 C. albicans blastospores. The treated animals were sacrificed on day 20, and 0.1 g of the tissue homogenates was plated onto specific media. In GC-Mass, the main components of the essential oil were carvacrol (61.29%) and thymol (25.18%). The results demonstrated that IP administration of 64 mg/kg of the essential oil had the highest efficacy in reducing C. albicans and produced 39.5, 21.8, 141.5, 174 and 501-fold reductions in mean CFUs per 0.1 gram in Candida infections of the liver, spleen, lungs, brain and kidneys, respectively, compared to positive control. Itraconazole showed significantly more responsiveness than the essential oil at dose of 30 mg/kg in clearing C. albicans from the kidneys (P<0.02), brain (P<0.02) and spleen (P<0.04), and less responsiveness than that of 64 mg/kg in clearing the organism from the brain (P<0.01), lungs (P<0.0005) and kidneys (P<0.0005), whereas no significant difference was observed between this drug and Z. multiflora at dose of 48 mg/kg. These data explain the increased rate of yeast clearance and reduced dissemination to the viscera of Z. multiflora treated mice. PMID:24031384

  13. Antifungal potential of Sideroxylon obtusifolium and Syzygium cumini and their mode of action against Candida albicans.

    PubMed

    Pereira, Jozinete Vieira; Freires, Irlan Almeida; Castilho, Aline Rogéria; da Cunha, Marcos Guilherme; Alves, Harley da Silva; Rosalen, Pedro Luiz

    2016-10-01

    Context The emergence of resistant pathogens and toxicity of antifungals have encouraged an active search for novel candidates to manage Candida biofilms. Objective In this study, the little known species Sideroxylon obtusifolium T.D. Penn (Sapotacea) and Syzygium cumini (L.) Skeels (Myrtaceae), from the Caatinga biome in Brazil were chemically characterized and explored for their antifungal potential against C. albicans. Materials and methods We determined the effects of hydroalcoholic extracts/fractions upon fungal growth (minimum inhibitory and fungicidal concentrations, MIC/MFC), biofilm morphology (scanning electron microscopy) and viability (confocal laser scanning microscopy), proposed their mode of action (sorbitol and ergosterol assays), and finally investigated their effects against macrophage and keratinocyte cells in a cell-based assay. Data were analysed using one-way analysis of variance with Tukey-Kramer post-test (α = 0.05). Results The n-butanol (Nb) fraction from S. obtusifolium and S. cumini extract (Sc) showed flavonoids (39.11 ± 6.62 mg/g) and saponins (820.35 ± 225.38 mg/g), respectively, in their chemical composition and demonstrated antifungal activity, with MICs of 62.5 and 125 μg/mL, respectively. Nb and Sc may complex with ergosterol as there was a 4-16-fold increase in MICs in the presence of exogenous ergosterol, leading to disrupted permeability of cell membrane. Deleterious effects were observed on morphology and viability of treated biofilms from concentrations as low as their MICs and higher. Sc was not toxic to macrophages and keratinocytes at these concentrations (p > 0.05), unlike Nb. Conclusions Nb and Sc demonstrated considerable antifungal activity and should be further investigated as potential alternative candidates to treat Candida biofilms. PMID:26987037

  14. Sensitive and rapid RT-qPCR quantification of pathogenic Candida species in human blood.

    PubMed

    Ogata, Kiyohito; Matsuda, Kazunori; Tsuji, Hirokazu; Nomoto, Koji

    2015-10-01

    For accurate diagnosis and appropriate treatment of candidiasis, we developed a highly sensitive quantitative RT-PCR (RT-qPCR) system for five Candida species that have been reported to be the major causes of bloodstream fungal infection (Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei), together with a system for all pathogenic Candida species. Cells of each fungal species spiked into human peripheral blood (PB) were specifically detected at a lower detection limit of 10(0) cell/1 mL PB by this system using the newly developed specific primer sets targeting 18S or 26S rRNA of the five Candida species, together with the existing group primer set. The total count of the five Candida spp. as the sum of those obtained by using the five species primer sets was equivalent to the count obtained by using the group primer set, indicating that the group set covered the major five Candida spp. in human blood with the same degree of accuracy as the species primer sets. The RT-qPCR counts of the Candida species were in good agreement with CFU counts obtained by their culture on CHROMagar™, with a lower detection limit of 10(0)cell/mL of PB. Candida rRNA molecules were stably stored for at least 7 days at 4°C by keeping the blood specimens in an RNA stabilizing reagent. These results strongly suggest that this sensitive system is useful for accurate and rapid diagnosis of Candida bloodstream infections.

  15. Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen Candida albicans

    PubMed Central

    Tornberg-Belanger, Stephanie N.; Matthan, Nirupa R.; Lichtenstein, Alice H.

    2015-01-01

    ABSTRACT Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal drugs prevents C. albicans-associated mortalities. C. albicans provides a clinically relevant system for studying the relationship between diet and the microbiota as it relates to commensalism and pathogenicity. As a first step toward a dietary intervention to reduce C. albicans GI colonization, we investigated the impact of dietary lipids on murine colonization by C. albicans. Coconut oil and its constituent fatty acids have antifungal activity in vitro; we hypothesized that dietary coconut oil would reduce GI colonization by C. albicans. Colonization was lower in mice fed a coconut oil-rich diet than in mice fed diets rich in beef tallow or soybean oil. Switching beef tallow-fed mice to a coconut oil diet reduced preexisting colonization. Coconut oil reduced colonization even when the diet also contained beef tallow. Dietary coconut oil also altered the metabolic program of colonizing C. albicans cells. Long-chain fatty acids were less abundant in the cecal contents of coconut oil-fed mice than in the cecal contents of beef tallow-fed mice; the expression of genes involved in fatty acid utilization was lower in C. albicans from coconut oil-fed mice than in C. albicans from beef tallow-fed mice. Extrapolating to humans, these findings suggest that coconut oil could become the first dietary intervention to reduce C. albicans GI colonization. IMPORTANCE Candida albicans, the most common human fungal pathogen, can cause infections with a mortality rate of ~40%. C. albicans is part of the normal gut flora, but when a patient’s immune system is compromised, it can leave the gut and cause infections. By reducing the amount of C. albicans in the gut of

  16. Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen Candida albicans.

    PubMed

    Gunsalus, Kearney T W; Tornberg-Belanger, Stephanie N; Matthan, Nirupa R; Lichtenstein, Alice H; Kumamoto, Carol A

    2016-01-01

    Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal drugs prevents C. albicans-associated mortalities. C. albicans provides a clinically relevant system for studying the relationship between diet and the microbiota as it relates to commensalism and pathogenicity. As a first step toward a dietary intervention to reduce C. albicans GI colonization, we investigated the impact of dietary lipids on murine colonization by C. albicans. Coconut oil and its constituent fatty acids have antifungal activity in vitro; we hypothesized that dietary coconut oil would reduce GI colonization by C. albicans. Colonization was lower in mice fed a coconut oil-rich diet than in mice fed diets rich in beef tallow or soybean oil. Switching beef tallow-fed mice to a coconut oil diet reduced preexisting colonization. Coconut oil reduced colonization even when the diet also contained beef tallow. Dietary coconut oil also altered the metabolic program of colonizing C. albicans cells. Long-chain fatty acids were less abundant in the cecal contents of coconut oil-fed mice than in the cecal contents of beef tallow-fed mice; the expression of genes involved in fatty acid utilization was lower in C. albicans from coconut oil-fed mice than in C. albicans from beef tallow-fed mice. Extrapolating to humans, these findings suggest that coconut oil could become the first dietary intervention to reduce C. albicans GI colonization. IMPORTANCE Candida albicans, the most common human fungal pathogen, can cause infections with a mortality rate of ~40%. C. albicans is part of the normal gut flora, but when a patient's immune system is compromised, it can leave the gut and cause infections. By reducing the amount of C. albicans in the gut of susceptible

  17. Eugenol and thymol, alone or in combination, induce morphological alterations in the envelope of Candida albicans.

    PubMed

    Braga, P C; Sasso, M Dal; Culici, M; Alfieri, M

    2007-09-01

    The envelope of Candida albicans, with its outermost array of macromolecules protruding towards the environment, is pivotal to the expression of major virulence factors such as adhesiveness, and the morphological transition to hyphal form. We tested the anticandidal activity of eugenol, main component of clove oil, and thymol, main component of thyme oil, alone or in combination, by investigating their ability to interfere with the architecture of the envelope of C. albicans. Both molecules alterated the morphogenesis of the envelope, but the effects of thymol were more pronounced than those of eugenol. Certain combinations of the two molecules led to a synergistic effect, which is interesting in the view of potentiating their inhibition of C. albicans colonisation and infectiousness. PMID:17590533

  18. Oral Immunization Against Candidiasis Using Lactobacillus casei Displaying Enolase 1 from Candida albicans

    PubMed Central

    Shibasaki, Seiji; Karasaki, Miki; Tafuku, Senji; Aoki, Wataru; Sewaki, Tomomitsu; Ueda, Mitsuyoshi

    2014-01-01

    Abstract Candidiasis is a common fungal infection that is prevalent in immunocompromised individuals. In this study, an oral vaccine against Candida albicans was developed by using the molecular display approach. Enolase 1 protein (Eno1p) of C. albicans was expressed on the Lactobacillus casei cell surface by using poly-gamma-glutamic acid synthetase complex A from Bacillus subtilis as an anchoring protein. The Eno1p-displaying L. casei cells were used to immunize mice, which were later challenged with a lethal dose of C. albicans. The data indicated that the vaccine elicited a strong IgG response and increased the survival rate of the vaccinated mice. Furthermore, L. casei acted as a potent adjuvant and induced high antibody titers that were comparable to those induced by strong adjuvants such as the cholera toxin. Overall, the molecular display method can be used to rapidly develop vaccines that can be conveniently administered and require minimal processing. PMID:25853077

  19. Effect of ferrocene-substituted porphyrin RL-91 on Candida albicans biofilm formation.

    PubMed

    Lippert, Rainer; Vojnovic, Sandra; Mitrovic, Aleksandra; Jux, Norbert; Ivanović-Burmazović, Ivana; Vasiljevic, Branka; Stankovic, Nada

    2014-08-01

    Ferrocene-substituted porphyrin RL-91 exhibits antifungal activity against opportune human pathogen Candida albicans. RL-91 efficiently inhibits growth of both planktonic C. albicans cells and cells within biofilms without photoactivation. The minimal inhibitory concentration for plankton form (PMIC) was established to be 100 μg/mL and the same concentration killed 80% of sessile cells in the mature biofilm (SMIC80). Furthermore PMIC of RL-91 efficiently prevents C. albicans biofilm formation. RL-91 is cytotoxic for human fibroblasts in vitro in concentration of 10 μg/mL, however it does not cause hemolysis in concentrations of up to 50 μg/mL. These findings open possibility for application of RL-91 as an antifungal agent for external antibiofilm treatment of medical devices as well as a scaffold for further development of porphyrin based systemic antifungals.

  20. The Role of Autophagy-Related Proteins in Candida albicans Infections

    PubMed Central

    Tam, Jenny M.; Mansour, Michael K.; Acharya, Mridu; Sokolovska, Anna; Timmons, Allison K.; Lacy-Hulbert, Adam; Vyas, Jatin M.

    2016-01-01

    Autophagy plays an important role in maintaining cell homeostasis by providing nutrients during periods of starvation and removing damaged organelles from the cytoplasm. A marker in the autophagic process is the reversible conjugation of LC3, a membrane scaffolding protein, to double membrane autophagosomes. Recently, a role for LC3 in the elimination of pathogenic bacteria and fungi, including Candida albicans (C. albicans), was demonstrated, but these organisms reside in single membrane phagosomes. This process is distinct from autophagy and is termed LC3-associated phagocytosis (LAP). This review will detail the hallmarks of LAP that distinguish it from classical autophagy and review the role of autophagy proteins in host response to C. albicans and other pathogenic fungi. PMID:27043636

  1. Protocol for Determination of the Persister Subpopulation in Candida Albicans Biofilms.

    PubMed

    De Brucker, Katrijn; De Cremer, Kaat; Cammue, Bruno P A; Thevissen, Karin

    2016-01-01

    In contrast to planktonic cultures of the human fungal pathogen Candida albicans, C. albicans biofilms can contain a persister subpopulation that is tolerant to high concentrations of currently used antifungals. In this chapter, the method to determine the persister fraction in a C. albicans biofilm treated with an antifungal compound is described. To this end, a mature biofilm is developed and subsequently treated with a concentration series of the antifungal compound of interest. Upon incubation, the fraction of surviving biofilm cells is determined by plating and plotted versus the used concentrations of the antifungal compound. If a persister subpopulation in the biofilm is present, the dose-dependent killing of the biofilm cells results in a biphasic killing pattern.

  2. Acute labyrinthitis associated with systemic Candida albicans infection in ageing mice.

    PubMed

    Ashman, R B; Papadimitriou, J M; Fulurija, A

    1996-01-01

    The yeast Candida albicans is an important opportunistic pathogen that has been associated with disease of the inner ear. This study describes the histopathology of acute labyrinthitis caused by systemic infection with C. albicans in aging inbred mice. Within four days after infection, yeast and hyphal forms of C.albicans were found in the membranous labyrinth. The utricle and the adjacent parts of the ampullary regions of the semicircular canals were most severely affected, but damage was also seen in the scala media, the scala tympani, the saccule, and the scala vestibuli. In the utricle, the lining epithelium of the membranous labyrinth was disrupted, and the lining cells of the vestibular membrane showed foci in which the membrane was disrupted. The data suggest that age may represent a risk factor for fungal labyrinthitis.

  3. D-Erythroascorbic acid activates cyanide-resistant respiration in Candida albicans.

    PubMed

    Huh, Won-Ki; Song, Yong Bhum; Lee, Young-Seok; Ha, Cheol Woong; Kim, Seong-Tae; Kang, Sa-Ouk

    2008-05-01

    Higher plants, protists and fungi possess cyanide-resistant respiratory pathway, which is mediated by alternative oxidase (AOX). The activity of AOX has been found to be dependent on several regulatory mechanisms including gene expression and posttranslational regulation. In the present study, we report that the presence of cyanide in culture medium remarkably retarded the growth of alo1/alo1 mutant of Candida albicans, which lacks d-arabinono-1,4-lactone oxidase (ALO) that catalyzes the final step of d-erythroascorbic acid (EASC) biosynthesis. Measurement of respiratory activity and Western blot analysis revealed that increase in the intracellular EASC level induces the expression of AOX in C. albicans. AOX could still be induced by antimycin A, a respiratory inhibitor, in the absence of EASC, suggesting that several factors may act in parallel pathways to induce the expression of AOX. Taken together, our results suggest that EASC plays important roles in activation of cyanide-resistant respiration in C. albicans.

  4. Modulation of Candida albicans attachment to human epithelial cells by bacteria and carbohydrates.

    PubMed Central

    Centeno, A; Davis, C P; Cohen, M S; Warren, M M

    1983-01-01

    The effects of carbohydrates (mannose and dextrose). Escherichia coli 07KL. and Klebsiella pneumoniae on Candida albicans attachment to epithelial cells was studied. Dextrose had no effect on yeast attachment to epithelial cells. Conversely, mannose significantly decreased both yeast and piliated bacterial attachment (E. coli 07KL, heavily piliated K. pneumoniae) whereas having no effect on nonpiliated K. pneumoniae attachment to epithelial cells. The number of yeasts attaching to epithelial cells was enhanced by preincubation of epithelial cells with piliated strains of bacteria, whereas preincubation with nonpiliated strains of bacteria had no effect on yeast attachment. Scanning electron microscopy showed that piliated bacteria and yeasts were juxtaposed on the epithelial cell surface. These data suggest that certain piliated strains of bacteria can enhance C. albicans attachment to epithelial cells and that type 1 pili of bacteria can be a factor in the enhanced attachment of C. albicans to epithelial cells. Images PMID:6132878

  5. Effect of sodium bicarbonate on Candida albicans adherence to thermally activated acrylic resin.

    PubMed

    Sousa, Fernando Augusto Cervantes Garcia de; Paradella, Thaís Cachuté; Koga-Ito, Cristiane Yumi; Jorge, Antonio Olavo Cardoso

    2009-01-01

    The purpose of this study was to evaluate the effect of 5% sodium bicarbonate on the adherence of Candida albicans to thermally activated acrylic resin. Fifty 4 mm(2) specimens of acrylic resin were obtained using a metallic matrix. The specimens received chemical polishing, were sterilized and then immersed in Sabouraud broth, inoculated with Candida albicans standardized suspension. After 24 hours of incubation at 37 degrees Celsius, the specimens were divided into four groups according to the substance used for disinfection (5% sodium bicarbonate, 0.12% digluconate chlorhexidine, vinegar and Corega Tabs). A control group was included, in which distilled water was used. The adhered microorganisms were dispersed, diluted and plated onto culture media to determine the number of colony-forming units (cfu/mL). The results were analyzed through the Mann-Whitney statistical test at the 5% level of significance. Only 0.12% digluconate chlorhexidine and 5% sodium bicarbonate presented a statistically significant difference (p = 0.0010 and p = 0.0156, respectively) compared to the control group, decreasing the number of cfu/mL. However, when the different disinfecting solutions were compared with each other, only 0.12% digluconate chlorhexidine presented a statistically significant difference in the reduction of cfu/mL. It was concluded that although 0.12% digluconate chlorhexidine was more effective in the reduction of Candida albicans adherence values to thermally activated acrylic resin, 5% sodium bicarbonate also proved to be a viable alternative. PMID:20027444

  6. Analysis of the relationship between fluconazole consumption and non-C. albicans Candida infections.

    PubMed

    Tyczkowska-Sieron, E; Gaszynski, W; Tyczkowski, J; Glowacka, A

    2014-10-01

    The effect of fluconazole consumption on the incidence of nosocomial non-C. albicans Candida infections remains unclear. In this study we investigated such a relationship in an intensive care unit (Poland) over an 11-year period (2002-2012). Statistics relating to the number of candidiasis cases and the number of defined daily doses of fluconazole showed that only a very weak and not statistically significant linear correlation existed between these two variables (r(2) = 0.36, P = 0.052). However, the assumption of a 1-year delay in the infection response to changes in fluconazole concentrations resulted in a strong and statistically significant linear correlation (r(2) = 0.64, P = 0.0053). To more accurately determine the nature of this relationship, a simple epidemiological model was proposed that provided a better than linear correlation (r(2) = 0.78, P = 0.00077). We successfully used this approach to analyze results from the literature that were interpreted as evidence that fluconazole use is not a risk factor for development of non-C. albicans Candida infections. If a time delay in the infection response was assumed, a strong and statistically significant correlation was obtained. These findings suggest the need for a closer look at fluconazole therapy as a possible risk factor for development of non-C. albicans Candida infections.

  7. DLH1 is a functional Candida albicans homologue of the meiosis-specific gene DMC1

    SciTech Connect

    Diener, A.C.; Fink, G.R.

    1996-06-01

    DMC1/LIM15 homologue 1 (DLH1), a gene related to meiosis-specific genes, has been isolated from Candida albicans, a fungus thought not to undergo meiosis. The deduced protein sequence of DLH1 contains 74% amino acid identity with Dmc1p from Saccharomyces cerevisiae and 63% with Lim15p from the plant Lilium longiflorum, meiosis-specific homologous of Escherichia coli RecA. Candida DLH1 complements a dmc1/dmc1 null mutant in S. cerevisiae. High copy expression of DLH1 restores both sporulation and meiotic recombination to a Saccharomyces dmc1/{Delta}/dmc1{Delta} strain. Unlike the DMC1 gene, which is transcribed only in meiotic cells, the heterologous Candida DLH1 gene is transcribed in both vegetative and meiotic cells of S. cerevisiae. Transcription of DLH1 is not detected or induced in C. albicans under conditions that induce DMC1 and meiosis in S. cerevisiae. The presence of an intact homologue of a meiosis-specific gene in C. albicans raises the possibility that this organism has a cryptic meiotic pathway. 25 refs., 6 figs., 3 tabs.

  8. Primary isolation of Candida species from urine specimens using chromogenic medium.

    PubMed

    Okulicz, J F; Rivard, R G; Conger, N G; Nguyen, M X; Hospenthal, D R

    2008-03-01

    CHROMagar Candida (CaC) is a chromogenic medium that can be used to detect Candida species, including Candida albicans, Candida krusei, Candida tropicalis, and perhaps Candida glabrata. We evaluated the utility of CaC to detect candiduria in high-risk patients and the potential usefulness of this information in directing initial antifungal therapy in those later identified with candidaemia. CaC was compared in parallel to standard laboratory methods (SM) for the detection of Candida from urine collected from high-risk units and wards. Of 893 samples, Candida was recovered by CaC from 104 compared with 35 using SM. No isolates detected by SM were undetected by CaC. More than one Candida species were recovered by CaC in 19 of the 104 (18.3%); only two mixed cultures were detected by SM. The identification was more rapid with CaC. Five of 69 patients with candiduria detected by CaC developed candidaemia on or after the date of urine culture. SM recovered fungus in only two of these patients. CaC can be used as primary media for the detection of Candida species from urine specimens. Primary isolation by CaC may enable clinicians to make earlier, directed selection of antifungal agents and potentially reduce patient morbidity and mortality.

  9. Development of Candida-Specific Real-Time PCR Assays for the Detection and Identification of Eight Medically Important Candida Species.

    PubMed

    Zhang, Jing; Hung, Guo-Chiuan; Nagamine, Kenjiro; Li, Bingjie; Tsai, Shien; Lo, Shyh-Ching

    2016-01-01

    Culture-based identification methods have been the gold standard for the diagnosis of fungal infection. Currently, molecular technologies such as real-time PCR assays with short turnaround time can provide desirable alternatives for the rapid detection of Candida microbes. However, most of the published PCR primer sets are not Candida specific and likely to amplify DNA from common environmental contaminants, such as Aspergillus microbes. In this study, we designed pan-Candida primer sets based on the ribosomal DNA-coding regions conserved within Candida but distinct from those of Aspergillus and Penicillium. We demonstrate that the final two selected pan-Candida primer sets would not amplify Aspergillus DNA and could be used to differentiate eight medically important Candida pathogens in real-time PCR assays based on their melting profiles, with a sensitivity of detection as low as 10 fg of Candida genomic DNA. Moreover, we further evaluated and selected species-specific primer sets covering Candida albicans, Candida glabrata, Candida tropicalis, and Candida dubliniensis and show that they had high sensitivity and specificity. These real-time PCR primer sets could potentially be assembled into a single PCR array for the rapid detection of Candida species in various clinical settings, such as corneal transplantation. PMID:27103821

  10. Effect of two monoterpene phenols on antioxidant defense system in Candida albicans.

    PubMed

    Khan, Amber; Ahmad, Aijaz; Ahmad Khan, Luqman; Padoa, Carolyn J; van Vuuren, Sandy; Manzoor, Nikhat

    2015-03-01

    Thymol and carvacrol from the class of monoterpene phenols are one of the most potent plant essential oil components possessing antimicrobial effects. Known for their wide bioactive spectrum, these positional isomers of isopropyl cresol deplete ergosterol content, compromise membrane permeability, block efflux pumps and restore antifungal susceptibility to fluconazole in resistant Candida strains. Exposure to these natural compounds induces a cascade of stress responses, which are important to comprehend their microbicidal mechanisms. This study evaluates the antioxidant defense response to lower concentrations of thymol and carvacrol in Candida albicans. The antioxidant defense responses in C. albicans are important for developmental mechanisms pertaining to resistance against the immune system, infection establishment and drug resistance. In this view, primary and secondary antioxidant defense enzymes, and oxidative stress markers including glutathione and lipid peroxidation were determined in C. albicans cells exposed to lower concentrations of thymol and carvacrol. These compounds were found to induce oxidative stress and compromised the antioxidant defense system in C. albicans at lower concentrations. This study helps in understanding the 'in cell' antifungal mechanisms of natural monoterpene phenols originating from oxidative stress. Thymol and carvacrol induced membrane deterioration reported earlier, is further explained as a result of a toxic radical cascade mediated by lipid peroxidation. Findings reinforce the observed toxic oxidizing effects of these compounds as a consequence of direct damage to antioxidant components and not to their genetic manipulations. PMID:25681060

  11. Effect of serum and surface characteristics on Candida albicans biofilm formation.

    PubMed

    Frade, João Pedro; Arthington-Skaggs, Beth A

    2011-07-01

    Candida spp. biofilms can be established on a wide range of materials, including implanted medical devices, and can display a resistant phenotype to antifungal drugs. Several factors, including host and surface properties, may influence the establishment and the development of Candida albicans biofilms on biotic and abiotic surfaces. We therefore selected a collection of C. albicans clinical isolates to evaluate the effect of surface and serum on biofilm attachment and development. Disc coupons from the CDC biofilm reactor were used in a well plate assay to study biofilm production on six different surfaces with or without the addition of serum: polycarbonate, polystyrene, stainless steel, Teflon, polyvinyl chloride or hydroxyapatite. Our results showed that serum increases in vitro C. albicans biofilm formation on a wide range of distinct surfaces including metallic and non-metallic materials, and that roughness and hydrophobicity can modulate C. albicans biofilm formation. These findings were also confirmed by scanning electron microscopy and it revealed the deposition of extracellular material on hyphae attached to a solid surface. Interestingly, adhesion can be significantly increased in the early stages of colonisation when serum is provided as a conditioning film in a surface-dependent manner.

  12. Application of surface plasmon resonance biosensor for the detection of Candida albicans

    NASA Astrophysics Data System (ADS)

    Yodmongkol, Sirasa; Thaweboon, Sroisiri; Thaweboon, Boonyanit; Puttharugsa, Chokchai; Sutapun, Boonsong; Amarit, Ratthasart; Somboonkaew, Armote; Srikhirin, Toemsak

    2016-02-01

    In this study, surface plasmon resonance imaging (SPR imaging) was developed for the detection of Candida albicans which is a causal agent of oral infection. The detection was based on the sandwich assay. The capture antibody was covalently immobilized on the mixed self assemble monolayers (SAMs). The ratio of mixed SAMs between 11-mercaptoundecanoic acid and 3-mercaptopropanol was varied to find the optimal ratio for use as a sensor surface. The results showed that the suitable surface for C. albicans detection was SAM of carboxylic (mixed SAMs 1:0), even though mixed SAMs 1:40 had a high detection signal in comparison to mixed SAMs 1:0, but the non-specific signal was higher. The detection limit was 107 cells/ml for direct detection, and was increased to 106 cells/ml with sandwich antibody. The use of polyclonal C. albicans antibody as capture and sandwich antibody showed good selectivity against the relevant oral bacteria including Escherichia coli, Streptococcus mutan, Staphylococcus aureus, β-streptococci, and Lactobacillus casei. SPR platform in this study could detect C. albicans from the mixed microbial suspension without requirement of skillful technician. This SPR imaging biosensor could be applied for Candida identification after cultivation.

  13. Nanoscopic cell-wall architecture of an immunogenic ligand in Candida albicans during antifungal drug treatment

    PubMed Central

    Lin, Jia; Wester, Michael J.; Graus, Matthew S.; Lidke, Keith A.; Neumann, Aaron K.

    2016-01-01

    The cell wall of Candida albicans is composed largely of polysaccharides. Here we focus on β-glucan, an immunogenic cell-wall polysaccharide whose surface exposure is often restricted, or “masked,” from immune recognition by Dectin-1 on dendritic cells (DCs) and other innate immune cells. Previous research suggested that the physical presentation geometry of β-glucan might determine whether it can be recognized by Dectin-1. We used direct stochastic optical reconstruction microscopy to explore the fine structure of β-glucan exposed on C. albicans cell walls before and after treatment with the antimycotic drug caspofungin, which alters glucan exposure. Most surface-accessible glucan on C. albicans yeast and hyphae is limited to isolated Dectin-1–binding sites. Caspofungin-induced unmasking caused approximately fourfold to sevenfold increase in total glucan exposure, accompanied by increased phagocytosis efficiency of DCs for unmasked yeasts. Nanoscopic imaging of caspofungin-unmasked C. albicans cell walls revealed that the increase in glucan exposure is due to increased density of glucan exposures and increased multiglucan exposure sizes. These findings reveal that glucan exhibits significant nanostructure, which is a previously unknown physical component of the host–Candida interaction that might change during antifungal chemotherapy and affect innate immune activation. PMID:26792838

  14. Biofilm formation and Candida albicans morphology on the surface of denture base materials.

    PubMed

    Susewind, Sabine; Lang, Reinhold; Hahnel, Sebastian

    2015-12-01

    Fungal biofilms may contribute to the occurrence of denture stomatitis. The objective of the study was to investigate the biofilm formation and morphology of Candida albicans in biofilms on the surface of denture base materials. Specimens were prepared from different denture base materials. After determination of surface properties and salivary pellicle formation, mono- and multispecies biofilm formation including Candida albicans ATCC 10231 was initiated. Relative amounts of adherent cells were determined after 20, 44, 68 and 188 h; C. albicans morphology was analysed employing selective fluorescence microscopic analysis. Significant differences were identified in the relative amount of cells adherent to the denture base materials. Highest blastospore/hyphae index suggesting an increased percentage of hyphae was observed in mono- and multispecies biofilms on the soft denture liner, which did not necessarily respond to the highest relative amount of adherent cells. For both biofilm models, lowest relative amount of adherent cells was identified on the methacrylate-based denture base material, which did not necessarily relate to a significantly lower blastospore/hyphae index. The results indicate that there are significant differences in both biofilm formation as well as the morphology of C. albicans cells in biofilms on the surface of different denture base materials.

  15. Application of benzo[a]phenoxazinium chlorides in Antimicrobial Photodynamic Therapy of Candida albicans biofilms.

    PubMed

    Lopes, Marisa; Alves, Carlos Tiago; Rama Raju, B; Gonçalves, M Sameiro T; Coutinho, Paulo J G; Henriques, Mariana; Belo, Isabel

    2014-12-01

    The use of Antimicrobial Photodynamic Therapy (APDT) as a new approach to treat localized Candida infections is an emerging and promising field nowadays. The aim of this study was to verify the efficacy of photodynamic therapy using two new benzo[a]phenoxazinium photosensitizers against Candida albicans biofilms: N-(5-(3-hydroxypropylamino)-10-methyl-9H-benzo[a]phenoxazin-9-ylidene)ethanaminium chloride (FSc) and N-(5-(11-hydroxyundecylamino)-10-methyl-9H-benzo[a]phenoxazin-9-ylidene)ethanaminium chloride (FSd). The photodynamic activity of dyes against C. albicans biofilms was evaluated by incubating biofilms with dyes in the range of 100-300 μM for 3 or 18 h followed by illumination at 12 or 36 J cm(-2), using a xenon arc lamp (600 ± 2 nm). A total photoinactivation of C. albicans biofilm cells was achieved using 300 μM of FSc with 18 h of incubation, followed by illumination at 36 J cm(-2). Contrarily, FSd had insignificant effect on biofilms inactivation by APDT. The higher uptake of FSc than FSd dye by biofilms during the dark incubation may explain the greater photodynamic effectiveness achieved with FSc. The results obtained stresses out the FSc-mediated APDT potential use to treat C. albicans infections.

  16. Adding Biotin to Parenteral Nutrition Solutions Without Lipid Accelerates the Growth of Candida albicans

    PubMed Central

    Kuwahara, Takashi; Kaneda, Shinya; Shimono, Kazuyuki

    2016-01-01

    Background: We have previously demonstrated that Candida albicans requires multivitamins (MVs) or lipid to increase rapidly in parenteral nutrition (PN) solutions. In this study, in detail, the effects of vitamins on the growth of C. albicans in PN solutions without lipid were investigated. Methods: In the 1st experiment, a commercial PN solution without lipid was supplemented with water-soluble vitamins (SVs: vitamins B1, B2, B6, B12 and C, folic acid, nicotinamide, biotin and panthenol), water-insoluble vitamins (IVs: vitamins A, D, E and K) or both (MVs). In the 2nd experiment, the test solutions were prepared by supplementing the PN solution with one of each or all of the SVs. In the 3rd experiment, another commercial peripheral PN (PPN) solution without lipid was supplemented with SVs, nicotinic acid, biotin or both nicotinic acid and biotin. In each of the experiments, a specified number of C. albicans organisms was added to each test solution, and all of the test solutions were allowed to stand at room temperature (23-26ºC). The number of C. albicans was counted at 0, 24, 48 and 72 hours after the addition of the organism. Results: In the 1st experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs, but increased slowly without the SVs, regardless of the addition of the IVs. In the 2nd experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs or biotin, but increased slowly with each of the other water-soluble vitamins. In the 3rd experiment, the C. albicans increased rapidly in the PPN solution supplemented with the SVs or biotin, but increased slowly with the addition of nicotinic acid. Conclusions: These results suggested that adding MVs or SVs to PN solutions without lipid promotes the growth of C. albicans, and that this effect is mostly attributable to biotin. PMID:27648003

  17. Adding Biotin to Parenteral Nutrition Solutions Without Lipid Accelerates the Growth of Candida albicans

    PubMed Central

    Kuwahara, Takashi; Kaneda, Shinya; Shimono, Kazuyuki

    2016-01-01

    Background: We have previously demonstrated that Candida albicans requires multivitamins (MVs) or lipid to increase rapidly in parenteral nutrition (PN) solutions. In this study, in detail, the effects of vitamins on the growth of C. albicans in PN solutions without lipid were investigated. Methods: In the 1st experiment, a commercial PN solution without lipid was supplemented with water-soluble vitamins (SVs: vitamins B1, B2, B6, B12 and C, folic acid, nicotinamide, biotin and panthenol), water-insoluble vitamins (IVs: vitamins A, D, E and K) or both (MVs). In the 2nd experiment, the test solutions were prepared by supplementing the PN solution with one of each or all of the SVs. In the 3rd experiment, another commercial peripheral PN (PPN) solution without lipid was supplemented with SVs, nicotinic acid, biotin or both nicotinic acid and biotin. In each of the experiments, a specified number of C. albicans organisms was added to each test solution, and all of the test solutions were allowed to stand at room temperature (23-26ºC). The number of C. albicans was counted at 0, 24, 48 and 72 hours after the addition of the organism. Results: In the 1st experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs, but increased slowly without the SVs, regardless of the addition of the IVs. In the 2nd experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs or biotin, but increased slowly with each of the other water-soluble vitamins. In the 3rd experiment, the C. albicans increased rapidly in the PPN solution supplemented with the SVs or biotin, but increased slowly with the addition of nicotinic acid. Conclusions: These results suggested that adding MVs or SVs to PN solutions without lipid promotes the growth of C. albicans, and that this effect is mostly attributable to biotin.

  18. Structure and regulation of the HSP90 gene from the pathogenic fungus Candida albicans.

    PubMed Central

    Swoboda, R K; Bertram, G; Budge, S; Gooday, G W; Gow, N A; Brown, A J

    1995-01-01

    Candida albicans HSP90 sequences were isolated by screening cDNA and genomic libraries with a probe derived from the Saccharomyces cerevisiae homolog, HSP82, which encodes a member of the heat shock protein 90 family of molecular chaperones. Identical sequences were obtained for the 2,197-bp overlap of the cDNA and gene sequences, which were derived from C. albicans 3153A and ATCC 10261, respectively. The C. albicans HSP90 gene contained no introns, and it showed strong homology (61 to 79% identity) to HSP90 sequences from other fungi, vertebrates, and plants. The C-terminal portion of the predicted Hsp90 amino acid sequence was identical to the 47-kDa protein which is thought to be immunoprotective during C. albicans infections (R. C. Matthews, J. Med. Microbiol. 36:367-370, 1992), confirming that this protein represents the C-terminal portion of the 81-kDa Hsp90 protein. Quantitative Northern (RNA) analyses revealed that C. albicans HSP90 mRNA was heat shock inducible and that its levels changed during batch growth, with its maximum levels being reached during the mid-exponential growth phase. HSP90 mRNA levels increased transiently during the yeast-to-hyphal transition but did not correlate directly with germ tube production per se. These data do not exclude a role for Hsp90 in the dimorphic transition. Southern blotting revealed only one HSP90 locus in the diploid C. albicans genome. Repeated attempts to disrupt both alleles and generate a homozygous C. albicans delta hsp90/delta hsp90 null mutant were unsuccessful. These observations suggest the existence of a single HSP90 locus which is essential for viability in C. albicans. PMID:7591093

  19. Recurrent candidaemia and pacemaker wire infection with Candida albicans.

    PubMed

    Glöckner, A

    2011-12-01

    Recurrent candidaemia is both a cause and a symptom of deep organ candidiasis or infection of foreign bodies (e.g. central venous line, other indwelling catheter or pacemaker wire) and is associated with significant morbidity and mortality. This case report demonstrates that in the event of pacemaker wire infection with Candida and when it is not possible to remove the infected pacemaker wire, treatment with an echinocandin, such as anidulafungin, can be safe and successful.

  20. Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin.

    PubMed

    Doke, Sonali Kashinath; Raut, Jayant Shankar; Dhawale, Shashikant; Karuppayil, Sankunny Mohan

    2014-01-01

    Infections associated with the biofilms of Candida albicans are a challenge to antifungal treatment. Combinatorial therapy involving plant molecules with antifungal drugs would be an effective complementary approach against drug-resistant Candida biofilms. The aim of this study was to evaluate the efficacy of three bioactive terpenoids (carvacrol, eugenol and thymol) in combination with fluconazole against planktonic cells, biofilm development and mature biofilms of C. albicans. Activities of the selected molecules were tested using a microplate-based methodology, while their combinations with fluconazole were performed in a checkerboard format. Biofilms were quantitated by XTT-metabolic assay and confirmed by microscopic observations. Combinations of carvacrol and eugenol with fluconazole were found synergistic against planktonic growth of C. albicans, while that of thymol with fluconazole did not have any interaction. Biofilm development and mature biofilms were highly resistant to fluconazole, but susceptible to three terpenoids. Sensitization of cells by sub-inhibitory concentrations of carvacrol and eugenol resulted in prevention of biofilm formation at low fluconazole concentrations, i.e. 0.032 and 0.002 mg ml(-1), respectively. Addition of thymol could not potentiate activity of fluconazole against biofilm formation by C. albicans. Fractional inhibitory concentration indices (FICI) for carvacrol-fluconazole and eugenol-fluconazole combinations for biofilm formation were 0.311 and 0.25, respectively. The FICI value of 1.003 indicated a status of indifference for the combination of thymol and fluconazole against biofilm formation. Eugenol and thymol combinations with fluconazole did not have useful interaction against mature biofilms of C. albicans, but the presence of 0.5 mg ml(-1) of carvacrol caused inhibition of mature biofilms at a significantly low concentration (i.e. 0.032 mg ml(-1)) of fluconazole. The study indicated that carvacrol and eugenol

  1. Serologic Response to Cell Wall Mannoproteins and Proteins of Candida albicans

    PubMed Central

    Martínez, José P.; Gil, M. Luisa; López-Ribot, José L.; Chaffin, W. LaJean

    1998-01-01

    The cell wall of Candida albicans not only is the structure in which many biological functions essential for the fungal cells reside but also is a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both the carbohydrate and protein moieties are able to trigger immune responses. Although cell-mediated immunity is often considered to be the most important line of defense against candidiasis, cell wall protein and glycoprotein components also elicit a potent humoral response from the host that may include some protective antibodies. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to influence profoundly the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins for host ligands. In this review, the various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo are examined. Although a number of proteins have been shown to stimulate an antibody response, for some of these species the response is not universal. On the other hand, some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidasis, particularly the disseminated form. In addition, recent studies have focused on the potential for antibodies to cell wall protein determinants to protect the host against infection. Hence, a better understanding of the humoral response to cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures

  2. Dithiocarbamates are strong inhibitors of the beta-class fungal carbonic anhydrases from Cryptococcus neoformans, Candida albicans and Candida glabrata.

    PubMed

    Monti, Simona Maria; Maresca, Alfonso; Viparelli, Francesca; Carta, Fabrizio; De Simone, Giuseppina; Mühlschlegel, Fritz A; Scozzafava, Andrea; Supuran, Claudiu T

    2012-01-15

    A series of N-mono- and N,N-disubstituted dithiocarbamates have been investigated as inhibitors of three β-carbonic anhydrases (CAs, EC 4.2.1.1) from the fungal pathogens Cryptococcus neoformans, Candida albicans and Candida glabrata, that is, Can2, CaNce103 and CgNce103, respectively. These enzymes were inhibited with efficacies between the subnanomolar to the micromolar range, depending on the substitution pattern at the nitrogen atom from the dithiocarbamate zinc-binding group. This new class of β-CA inhibitors may have the potential for developing antifungal agents with a diverse mechanism of action compared to the clinically used drugs for which drug resistance was reported, and may also explain the efficacy of dithiocarbamates as agricultural antifungal agents. PMID:22209456

  3. Chitin synthetases in Candida albicans: a review on their subcellular distribution and biological function.

    PubMed

    Martínez, J P; Gozalbo, D

    1994-09-01

    In the light of recent genetic advances, some results regarding chitin biosynthetic activities are reviewed in this paper. Genes coding for distinct enzymes displaying chitin synthetase activities have been characterized in Saccharomyces cerevisiae as well as in other fungal species including Candida albicans. Several activities seem to exist in the cells: (i) one zymogenic, located in cytoplasmic vesicles called chitosomes, although the presence of other types of vesicles with zymogenic activity cannot be completely discarded, and (ii) plasma membrane associated activities (the active enzyme and probably two distinct pools of zymogenic activity). Possible relationships between these activities, if any, remain to be determined. These multiplicity of enzymes is not surprising taking into account that chitin biosynthesis is required during very well defined temporal and spatial events of the cell cycle. A general repair function for one of the chitin biosynthetic activities is proposed as a possible salvage mechanism to warrant cell survival after wall damage has been caused, since chitin appears to be the most suitable polymer to carry out this function due to its particular physico-chemical properties.

  4. Candida albicans Ethanol Stimulates Pseudomonas aeruginosa WspR-Controlled Biofilm Formation as Part of a Cyclic Relationship Involving Phenazines

    PubMed Central

    Okegbe, Chinweike; Harty, Colleen E.; Golub, Yuriy; Thao, Sandy; Ha, Dae Gon; Willger, Sven D.; O'Toole, George A.; Harwood, Caroline S.; Dietrich, Lars E. P.; Hogan, Deborah A.

    2014-01-01

    In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF) and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic-di-GMP (c-di-GMP), and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol stimulation of c-di-GMP. Multiple lines of evidence indicate that ethanol stimulates WspR signaling through its cognate sensor WspA, and promotes WspR-dependent activation of Pel exopolysaccharide production, which contributes to biofilm maturation. We also found that ethanol stimulation of WspR promoted P. aeruginosa colonization of CF airway epithelial cells. P. aeruginosa production of phenazines occurs both in the CF lung and in culture, and phenazines enhance ethanol production by C. albicans. Using a C. albicans adh1/adh1 mutant with decreased ethanol production, we found that fungal ethanol strongly altered the spectrum of P. aeruginosa phenazines in favor of those that are most effective against fungi. Thus, a feedback cycle comprised of ethanol and phenazines drives this polymicrobial interaction, and these relationships may provide insight into why co-infection with both P. aeruginosa and C. albicans has been associated with worse outcomes in cystic fibrosis. PMID:25340349

  5. Impaired killing of Candida albicans by granulocytes mobilized for transfusion purposes: a role for granule components

    PubMed Central

    Gazendam, Roel P.; van de Geer, Annemarie; van Hamme, John L.; Tool, Anton T.J.; van Rees, Dieke J.; Aarts, Cathelijn E.M.; van den Biggelaar, Maartje; van Alphen, Floris; Verkuijlen, Paul; Meijer, Alexander B.; Janssen, Hans; Roos, Dirk; van den Berg, Timo K.; Kuijpers, Taco W.

    2016-01-01

    Granulocyte transfusions are used to treat neutropenic patients with life-threatening bacterial or fungal infections that do not respond to anti-microbial drugs. Donor neutrophils that have been mobilized with granulocyte-colony stimulating factor (G-CSF) and dexamethasone are functional in terms of antibacterial activity, but less is known about their fungal killing capacity. We investigated the neutrophil-mediated cytotoxic response against C. albicans and A. fumigatus in detail. Whereas G-CSF/dexamethasone-mobilized neutrophils appeared less mature as compared to neutrophils from untreated controls, these cells exhibited normal ROS production by the NADPH oxidase system and an unaltered granule mobilization capacity upon stimulation. G-CSF/dexamethasone-mobilized neutrophils efficiently inhibited A. fumigatus germination and killed Aspergillus and Candida hyphae, but the killing of C. albicans yeasts was distinctly impaired. Following normal Candida phagocytosis, analysis by mass spectrometry of purified phagosomes after fusion with granules demonstrated that major constituents of the antimicrobial granule components, including major basic protein (MBP), were reduced. Purified MBP showed candidacidal activity, and neutrophil-like Crisp-Cas9 NB4-KO-MBP differentiated into phagocytes were impaired in Candida killing. Together, these findings indicate that G-CSF/dexamethasone-mobilized neutrophils for transfusion purposes have a selectively impaired capacity to kill Candida yeasts, as a consequence of an altered neutrophil granular content. PMID:26802050

  6. Impaired killing of Candida albicans by granulocytes mobilized for transfusion purposes: a role for granule components.

    PubMed

    Gazendam, Roel P; van de Geer, Annemarie; van Hamme, John L; Tool, Anton T J; van Rees, Dieke J; Aarts, Cathelijn E M; van den Biggelaar, Maartje; van Alphen, Floris; Verkuijlen, Paul; Meijer, Alexander B; Janssen, Hans; Roos, Dirk; van den Berg, Timo K; Kuijpers, Taco W

    2016-05-01

    Granulocyte transfusions are used to treat neutropenic patients with life-threatening bacterial or fungal infections that do not respond to anti-microbial drugs. Donor neutrophils that have been mobilized with granulocyte-colony stimulating factor (G-CSF) and dexamethasone are functional in terms of antibacterial activity, but less is known about their fungal killing capacity. We investigated the neutrophil-mediated cytotoxic response against C. albicans and A. fumigatus in detail. Whereas G-CSF/dexamethasone-mobilized neutrophils appeared less mature as compared to neutrophils from untreated controls, these cells exhibited normal ROS production by the NADPH oxidase system and an unaltered granule mobilization capacity upon stimulation. G-CSF/dexamethasone-mobilized neutrophils efficiently inhibited A. fumigatus germination and killed Aspergillus and Candida hyphae, but the killing of C. albicans yeasts was distinctly impaired. Following normal Candida phagocytosis, analysis by mass spectrometry of purified phagosomes after fusion with granules demonstrated that major constituents of the antimicrobial granule components, including major basic protein (MBP), were reduced. Purified MBP showed candidacidal activity, and neutrophil-like Crisp-Cas9 NB4-KO-MBP differentiated into phagocytes were impaired in Candida killing. Together, these findings indicate that G-CSF/dexamethasone-mobilized neutrophils for transfusion purposes have a selectively impaired capacity to kill Candida yeasts, as a consequence of an altered neutrophil granular content. PMID:26802050

  7. A Candida albicans Strain Expressing Mammalian Interleukin-17A Results in Early Control of Fungal Growth during Disseminated Infection

    PubMed Central

    Huppler, Anna R.; Whibley, Natasha; Woolford, Carol A.; Childs, Erin E.; He, Jie; Biswas, Partha S.; McGeachy, Mandy J.; Mitchell, Aaron P.

    2015-01-01

    Candida albicans is normally a commensal fungus of the human mucosae and skin, but it causes life-threatening systemic infections in hospital settings in the face of predisposing conditions, such as indwelling catheters, abdominal surgery, or antibiotic use. Immunity to C. albicans involves various immune parameters, but the cytokine interleukin-17A (IL-17A) (also known as IL-17) has emerged as a centrally important mediator of immune defense against both mucosal and systemic candidiasis. Conversely, IL-17A has been suggested to enhance the virulence of C. albicans, indicating that it may exert detrimental effects on pathogenesis. In this study, we hypothesized that a C. albicans strain expressing IL-17A would exhibit reduced virulence in vivo. To that end, we created a Candida-optimized expression cassette encoding murine IL-17A, which was transformed into the DAY286 strain of C. albicans. Candida-derived IL-17A was indistinguishable from murine IL-17A in terms of biological activity and detection in standard enzyme-linked immunosorbent assays (ELISAs). Expression of IL-17A did not negatively impact the growth of these strains in vitro. Moreover, the IL-17A-expressing C. albicans strains showed significantly reduced pathogenicity in a systemic model of Candida infection, mainly evident during the early stages of disease. Collectively, these findings suggest that IL-17A mitigates the virulence of C. albicans. PMID:26150537

  8. Exploring ecological modelling to investigate factors governing the colonization success in nosocomial environment of Candida albicans and other pathogenic yeasts

    PubMed Central

    Corte, Laura; Roscini, Luca; Colabella, Claudia; Tascini, Carlo; Leonildi, Alessandro; Sozio, Emanuela; Menichetti, Francesco; Merelli, Maria; Scarparo, Claudio; Meyer, Wieland; Cardinali, Gianluigi; Bassetti, Matteo

    2016-01-01

    Two hundred seventy seven strains from eleven opportunistic species of the genus Candida, isolated from two Italian hospitals, were identified and analyzed for their ability to form biofilm in laboratory conditions. The majority of Candida albicans strains formed biofilm while among the NCAC species there were different level of biofilm forming ability, in accordance with the current literature. The relation between the variables considered, i.e. the departments and the hospitals or the species and their ability to form biofilm, was tested with the assessment of the probability associated to each combination. Species and biofilm forming ability appeared to be distributed almost randomly, although some combinations suggest a potential preference of some species or of biofilm forming strains for specific wards. On the contrary, the relation between biofilm formation and species isolation frequency was highly significant (R2 around 0.98). Interestingly, the regression analyses carried out on the data of the two hospitals separately were rather different and the analysis on the data merged together gave a much lower correlation. These findings suggest that, harsh environments shape the composition of microbial species significantly and that each environment should be considered per se to avoid less significant statistical treatments. PMID:27246511

  9. Identification of signature volatiles to discriminate Candida albicans, glabrata, krusei and tropicalis using gas chromatography and mass spectrometry.

    PubMed

    Hertel, Moritz; Hartwig, Stefan; Schütte, Eyke; Gillissen, Bernhard; Preissner, Robert; Schmidt-Westhausen, Andrea Maria; Paris, Sebastian; Kastner, Isabell; Preissner, Saskia

    2016-02-01

    Oral candidiasis is the most frequent fungal infection of the oral cavity. Clinical diagnoses require mycological confirmation, which is time-consuming in case of culture testing. The aim of the study was to identify signature volatiles to develop a chairside breath test to diagnose oral candidiasis. Headspaces above Candida albicans, glabrata, tropicalis, krusei cultures, and growth media as control were analysed after eight and 24 h using offline gas chromatography and mass spectrometry. The identification of signature volatiles was assisted using various microbial databases. Retrieved volatile patterns enabled Candida species discrimination in vitro. For C. albicans 3-methyl-2-butanone and styrene and for C. krusei a combination of p-xylene, 2-octanone, 2-heptanone and n-butyl acetate were found to be specific. 1-hexanol was found in C. tropicalis, but is emitted by a variety of other microorganisms. C. glabrata was characterised through the absence of these volatiles. The development of a breath test is a promising approach in confirming suspicions of oral candidiasis. To confirm the retrieved results in vivo, breath tests in affected and healthy subjects have to be performed.

  10. Identification of signature volatiles to discriminate Candida albicans, glabrata, krusei and tropicalis using gas chromatography and mass spectrometry.

    PubMed

    Hertel, Moritz; Hartwig, Stefan; Schütte, Eyke; Gillissen, Bernhard; Preissner, Robert; Schmidt-Westhausen, Andrea Maria; Paris, Sebastian; Kastner, Isabell; Preissner, Saskia

    2016-02-01

    Oral candidiasis is the most frequent fungal infection of the oral cavity. Clinical diagnoses require mycological confirmation, which is time-consuming in case of culture testing. The aim of the study was to identify signature volatiles to develop a chairside breath test to diagnose oral candidiasis. Headspaces above Candida albicans, glabrata, tropicalis, krusei cultures, and growth media as control were analysed after eight and 24 h using offline gas chromatography and mass spectrometry. The identification of signature volatiles was assisted using various microbial databases. Retrieved volatile patterns enabled Candida species discrimination in vitro. For C. albicans 3-methyl-2-butanone and styrene and for C. krusei a combination of p-xylene, 2-octanone, 2-heptanone and n-butyl acetate were found to be specific. 1-hexanol was found in C. tropicalis, but is emitted by a variety of other microorganisms. C. glabrata was characterised through the absence of these volatiles. The development of a breath test is a promising approach in confirming suspicions of oral candidiasis. To confirm the retrieved results in vivo, breath tests in affected and healthy subjects have to be performed. PMID:26667499

  11. [Activity of ajoene on dermatophytes, Candida albicans and Malassezia furfur.].

    PubMed

    de González, M I; Mendoza, M; Bastardo de Albornoz, M; Apitz-Castro, R

    1998-12-01

    The sensitivity in vitro of an isolate of Trichophyton rubrum and another of Trichophyton mentagrophytes to ajoene. This compound inhibited the growth of both isolates, showing an minimal inhibitory concentration (MIC) of 60 microg/ml and a minimal fungicidal concentration (MFC) of 75 microg/ml. In vivo, the ajoene cream at 0.4% used once a day and every five days in 38 patients (thirty dermatophytosis a